Source code for watcher.decision_engine.strategy.strategies.outlet_temp_control

# -*- encoding: utf-8 -*-
# Copyright (c) 2015 Intel Corp
#
# Authors: Junjie-Huang <junjie.huang@intel.com>
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

"""
*Good Thermal Strategy*:

Towards to software defined infrastructure, the power and thermal
intelligences is being adopted to optimize workload, which can help
improve efficiency, reduce power, as well as to improve datacenter PUE
and lower down operation cost in data center.
Outlet (Exhaust Air) Temperature is one of the important thermal
telemetries to measure thermal/workload status of server.
"""

import datetime

from oslo_log import log

from watcher._i18n import _
from watcher.common import exception as wexc
from watcher.datasource import ceilometer as ceil
from watcher.datasource import gnocchi as gnoc
from watcher.decision_engine.model import element
from watcher.decision_engine.strategy.strategies import base


LOG = log.getLogger(__name__)


[docs]class OutletTempControl(base.ThermalOptimizationBaseStrategy): """[PoC] Outlet temperature control using live migration *Description* It is a migration strategy based on the outlet temperature of compute hosts. It generates solutions to move a workload whenever a server's outlet temperature is higher than the specified threshold. *Requirements* * Hardware: All computer hosts should support IPMI and PTAS technology * Software: Ceilometer component ceilometer-agent-ipmi running in each compute host, and Ceilometer API can report such telemetry ``hardware.ipmi.node.outlet_temperature`` successfully. * You must have at least 2 physical compute hosts to run this strategy. *Limitations* - This is a proof of concept that is not meant to be used in production - We cannot forecast how many servers should be migrated. This is the reason why we only plan a single virtual machine migration at a time. So it's better to use this algorithm with `CONTINUOUS` audits. - It assume that live migrations are possible *Spec URL* https://github.com/openstack/watcher-specs/blob/master/specs/mitaka/approved/outlet-temperature-based-strategy.rst """ # noqa # The meter to report outlet temperature in ceilometer MIGRATION = "migrate" METRIC_NAMES = dict( ceilometer=dict( host_outlet_temp='hardware.ipmi.node.outlet_temperature'), gnocchi=dict( host_outlet_temp='hardware.ipmi.node.outlet_temperature'), ) def __init__(self, config, osc=None): """Outlet temperature control using live migration :param config: A mapping containing the configuration of this strategy :type config: dict :param osc: an OpenStackClients object, defaults to None :type osc: :py:class:`~.OpenStackClients` instance, optional """ super(OutletTempControl, self).__init__(config, osc) self._ceilometer = None self._gnocchi = None @classmethod
[docs] def get_name(cls): return "outlet_temperature"
@classmethod
[docs] def get_display_name(cls): return _("Outlet temperature based strategy")
@classmethod
[docs] def get_translatable_display_name(cls): return "Outlet temperature based strategy"
@property def period(self): return self.input_parameters.get('period', 30) @classmethod
[docs] def get_schema(cls): # Mandatory default setting for each element return { "properties": { "threshold": { "description": "temperature threshold for migration", "type": "number", "default": 35.0 }, "period": { "description": "The time interval in seconds for " "getting statistic aggregation", "type": "number", "default": 30 }, "granularity": { "description": "The time between two measures in an " "aggregated timeseries of a metric.", "type": "number", "default": 300 }, }, }
@property def ceilometer(self): if self._ceilometer is None: self._ceilometer = ceil.CeilometerHelper(osc=self.osc) return self._ceilometer @ceilometer.setter def ceilometer(self, c): self._ceilometer = c @property def gnocchi(self): if self._gnocchi is None: self._gnocchi = gnoc.GnocchiHelper(osc=self.osc) return self._gnocchi @gnocchi.setter def gnocchi(self, g): self._gnocchi = g @property def granularity(self): return self.input_parameters.get('granularity', 300)
[docs] def calc_used_resource(self, node): """Calculate the used vcpus, memory and disk based on VM flavors""" instances = self.compute_model.get_node_instances(node) vcpus_used = 0 memory_mb_used = 0 disk_gb_used = 0 for instance in instances: vcpus_used += instance.vcpus memory_mb_used += instance.memory disk_gb_used += instance.disk return vcpus_used, memory_mb_used, disk_gb_used
[docs] def group_hosts_by_outlet_temp(self): """Group hosts based on outlet temp meters""" nodes = self.compute_model.get_all_compute_nodes() size_cluster = len(nodes) if size_cluster == 0: raise wexc.ClusterEmpty() hosts_need_release = [] hosts_target = [] metric_name = self.METRIC_NAMES[ self.config.datasource]['host_outlet_temp'] for node in nodes.values(): resource_id = node.uuid outlet_temp = None if self.config.datasource == "ceilometer": outlet_temp = self.ceilometer.statistic_aggregation( resource_id=resource_id, meter_name=metric_name, period=self.period, aggregate='avg' ) elif self.config.datasource == "gnocchi": stop_time = datetime.datetime.utcnow() start_time = stop_time - datetime.timedelta( seconds=int(self.period)) outlet_temp = self.gnocchi.statistic_aggregation( resource_id=resource_id, metric=metric_name, granularity=self.granularity, start_time=start_time, stop_time=stop_time, aggregation='mean' ) # some hosts may not have outlet temp meters, remove from target if outlet_temp is None: LOG.warning("%s: no outlet temp data", resource_id) continue LOG.debug("%s: outlet temperature %f" % (resource_id, outlet_temp)) instance_data = {'node': node, 'outlet_temp': outlet_temp} if outlet_temp >= self.threshold: # mark the node to release resources hosts_need_release.append(instance_data) else: hosts_target.append(instance_data) return hosts_need_release, hosts_target
[docs] def choose_instance_to_migrate(self, hosts): """Pick up an active instance to migrate from provided hosts""" for instance_data in hosts: mig_source_node = instance_data['node'] instances_of_src = self.compute_model.get_node_instances( mig_source_node) for instance in instances_of_src: try: # select the first active instance to migrate if (instance.state != element.InstanceState.ACTIVE.value): LOG.info("Instance not active, skipped: %s", instance.uuid) continue return mig_source_node, instance except wexc.InstanceNotFound as e: LOG.exception(e) LOG.info("Instance not found") return None
[docs] def filter_dest_servers(self, hosts, instance_to_migrate): """Only return hosts with sufficient available resources""" required_cores = instance_to_migrate.vcpus required_disk = instance_to_migrate.disk required_memory = instance_to_migrate.memory # filter nodes without enough resource dest_servers = [] for instance_data in hosts: host = instance_data['node'] # available cores_used, mem_used, disk_used = self.calc_used_resource(host) cores_available = host.vcpus - cores_used disk_available = host.disk - disk_used mem_available = host.memory - mem_used if cores_available >= required_cores \ and disk_available >= required_disk \ and mem_available >= required_memory: dest_servers.append(instance_data) return dest_servers
[docs] def pre_execute(self): LOG.debug("Initializing Outlet temperature strategy") if not self.compute_model: raise wexc.ClusterStateNotDefined() if self.compute_model.stale: raise wexc.ClusterStateStale() LOG.debug(self.compute_model.to_string())
[docs] def do_execute(self): # the migration plan will be triggered when the outlet temperature # reaches threshold self.threshold = self.input_parameters.threshold LOG.debug("Initializing Outlet temperature strategy with threshold=%d", self.threshold) hosts_need_release, hosts_target = self.group_hosts_by_outlet_temp() if len(hosts_need_release) == 0: # TODO(zhenzanz): return something right if there's no hot servers LOG.debug("No hosts require optimization") return self.solution if len(hosts_target) == 0: LOG.warning("No hosts under outlet temp threshold found") return self.solution # choose the server with highest outlet t hosts_need_release = sorted(hosts_need_release, reverse=True, key=lambda x: (x["outlet_temp"])) instance_to_migrate = self.choose_instance_to_migrate( hosts_need_release) # calculate the instance's cpu cores,memory,disk needs if instance_to_migrate is None: return self.solution mig_source_node, instance_src = instance_to_migrate dest_servers = self.filter_dest_servers(hosts_target, instance_src) # sort the filtered result by outlet temp # pick up the lowest one as dest server if len(dest_servers) == 0: # TODO(zhenzanz): maybe to warn that there's no resource # for instance. LOG.info("No proper target host could be found") return self.solution dest_servers = sorted(dest_servers, key=lambda x: (x["outlet_temp"])) # always use the host with lowerest outlet temperature mig_destination_node = dest_servers[0]['node'] # generate solution to migrate the instance to the dest server, if self.compute_model.migrate_instance( instance_src, mig_source_node, mig_destination_node): parameters = {'migration_type': 'live', 'source_node': mig_source_node.uuid, 'destination_node': mig_destination_node.uuid} self.solution.add_action(action_type=self.MIGRATION, resource_id=instance_src.uuid, input_parameters=parameters)
[docs] def post_execute(self): self.solution.model = self.compute_model # TODO(v-francoise): Add the indicators to the solution LOG.debug(self.compute_model.to_string())