OpenStack Identity supports a caching layer that is above the configurable
subsystems (for example, token). This gives you the flexibility to setup
caching for all or some subsystems. OpenStack Identity uses the oslo.cache library which allows
flexible cache back ends. The majority of the caching configuration options are
set in the [cache]
section of the /etc/keystone/keystone.conf
file. The
enabled
option of the [cache]
section must be set to True
in order
for any subsystem to cache responses. Each section that has the capability to
be cached will have a caching
boolean value that toggles caching behavior
of that particular subsystem.
So to enable only the token back end caching, set the values as follows:
[cache]
enabled=true
[catalog]
caching=false
[domain_config]
caching=false
[federation]
caching=false
[resource]
caching=false
[revoke]
caching=false
[role]
caching=false
[token]
caching=true
Note
Each subsystem is configured to cache by default. However, the global
toggle for caching defaults to False
. A subsystem is only able to cache
responses if the global toggle is enabled.
Current functional back ends are:
dogpile.cache.null
dogpile.cache.memcached
python-memcached
library.dogpile.cache.pylibmc
pylibmc
library.dogpile.cache.bmemcached
python-binary-memcached
library.dogpile.cache.redis
dogpile.cache.dbm
dogpile.cache.memory
dogpile.cache.memory_pickle
dogpile.cache.memory
oslo_cache.mongo
oslo_cache.memcache_pool
oslo_cache.etcd3gw
oslo_cache.dict
The token subsystem is OpenStack Identity’s most heavily used API. As a result, all types of tokens benefit from caching, including Fernet tokens. Although Fernet tokens do not need to be persisted, they should still be cached for optimal token validation performance.
The token system has a separate cache_time
configuration option,
that can be set to a value above or below the global expiration_time
default, allowing for different caching behavior from the other systems
in OpenStack Identity. This option is set in the [token]
section of
the configuration file.
The token revocation list cache time is handled by the configuration
option revocation_cache_time
in the [token]
section. The
revocation list is refreshed whenever a token is revoked. It typically
sees significantly more requests than specific token retrievals or token
validation calls.
Here is a list of actions that are affected by the cached time:
The delete token API calls invalidate the cache for the tokens being acted upon, as well as invalidating the cache for the revoked token list and the validate/check token calls.
Token caching is configurable independently of the revocation_list
caching. Lifted expiration checks from the token drivers to the token
manager. This ensures that cached tokens will still raise a
TokenNotFound
flag when expired.
For cache consistency, all token IDs are transformed into the short token hash at the provider and token driver level. Some methods have access to the full ID (PKI Tokens), and some methods do not. Cache invalidation is inconsistent without token ID normalization.
Various other keystone components have a separate cache_time
configuration
option, that can be set to a value above or below the global
expiration_time
default, allowing for different caching behavior
from the other systems in Identity service. This option can be set in various
sections (for example, [role]
and [resource]
) of the configuration
file.
The create, update, and delete actions for domains, projects and roles
will perform proper invalidations of the cached methods listed above.
For more information about the different back ends (and configuration options), see:
Note
The memory back end is not suitable for use in a production environment.
A common concern with caching is relaying inaccurate information after updating or deleting a resource. Most subsystems within OpenStack Identity invalidate specific cache entries once they have changed. In cases where a specific cache entry cannot be invalidated from the cache, the cache region will be invalidated instead. This invalidates all entries within the cache to prevent returning stale or misleading data. A subsequent request for the resource will be fully processed and cached.
Warning
Be aware that if a read-only back end is in use for a particular subsystem,
the cache will not immediately reflect changes performed through the back
end. Any given change may take up to the cache_time
(if set in the
subsystem section of the configuration) or the global expiration_time
(set in the [cache]
section of the configuration) before it is
reflected. If this type of delay is an issue, we recommend disabling
caching for that particular subsystem.
The following example shows how to configure the memcached back end:
[cache]
enabled = true
backend = dogpile.cache.memcached
backend_argument = url:127.0.0.1:11211
You need to specify the URL to reach the memcached
instance with the
backend_argument
parameter.
Except where otherwise noted, this document is licensed under Creative Commons Attribution 3.0 License. See all OpenStack Legal Documents.