
Swift Documentation
Release 2.27.1.dev38

Swift Team

Dec 22, 2024





CONTENTS

1 Getting Started 3
1.1 System Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 CLI client and SDK library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Overview and Concepts 5
2.1 Object Storage API overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Swift Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 The Rings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Storage Policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.5 The Account Reaper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.6 The Auth System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.7 Access Control Lists (ACLs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.8 Replication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.9 Rate Limiting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.10 Large Object Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
2.11 Global Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
2.12 Container to Container Synchronization . . . . . . . . . . . . . . . . . . . . . . . . . . 61
2.13 Expiring Object Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
2.14 CORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
2.15 Cross-domain Policy File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
2.16 Erasure Code Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
2.17 Object Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
2.18 Using Swift as Backing Store for Service Data . . . . . . . . . . . . . . . . . . . . . . 105
2.19 Container Sharding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
2.20 Building a Consistent Hashing Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
2.21 Modifying Ring Partition Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
2.22 Associated Projects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

3 Contributor Documentation 147
3.1 Contributing to OpenStack Swift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
3.2 Swift Design Principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
3.3 Recommended workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
3.4 Notes on Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
3.5 Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
3.6 Community . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
3.7 Review Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

i



4 Developer Documentation 159
4.1 Development Guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
4.2 SAIO (Swift All In One) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
4.3 First Contribution to Swift . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
4.4 Adding Storage Policies to an Existing SAIO . . . . . . . . . . . . . . . . . . . . . . . 198
4.5 Auth Server and Middleware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
4.6 Middleware and Metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
4.7 Pluggable On-Disk Back-end APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
4.8 Auditor Watchers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

5 Administrator Documentation 243
5.1 Instructions for a Multiple Server Swift Installation . . . . . . . . . . . . . . . . . . . . 243
5.2 Deployment Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
5.3 Apache Deployment Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
5.4 Administrators Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
5.5 Dedicated replication network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
5.6 Logs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
5.7 Swift Ops Runbook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
5.8 OpenStack Swift Administrator Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
5.9 Object Storage Install Guide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
5.10 Configuration Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

6 Object Storage v1 REST API Documentation 423
6.1 Discoverability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423
6.2 Authentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
6.3 Container quotas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
6.4 Object versioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
6.5 Large objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
6.6 Temporary URL middleware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 436
6.7 Form POST middleware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 439
6.8 Use Content-Encoding metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
6.9 Use the Content-Disposition metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . 442
6.10 Pseudo-hierarchical folders and directories . . . . . . . . . . . . . . . . . . . . . . . . 443
6.11 Page through large lists of containers or objects . . . . . . . . . . . . . . . . . . . . . . 445
6.12 Serialized response formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
6.13 Create static website . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 448
6.14 Object expiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
6.15 Bulk delete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450

7 S3 Compatibility Info 453
7.1 S3/Swift REST API Comparison Matrix . . . . . . . . . . . . . . . . . . . . . . . . . 453

8 OpenStack End User Guide 455

9 Source Documentation 457
9.1 Partitioned Consistent Hash Ring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 457
9.2 Proxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
9.3 Account . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 491
9.4 Container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
9.5 Account DB and Container DB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
9.6 Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
9.7 Misc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 558

ii



9.8 Middleware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 648

10 Indices and tables 727

Python Module Index 729

Index 731

iii



iv



Swift Documentation, Release 2.27.1.dev38

Swift is a highly available, distributed, eventually consistent object/blob store. Organizations can use
Swift to store lots of data efficiently, safely, and cheaply.

This documentation is generated by the Sphinx toolkit and lives in the source tree. Additional docu-
mentation on Swift and other components of OpenStack can be found on the OpenStack wiki and at
http://docs.openstack.org.

Note: If youre looking for associated projects that enhance or use Swift, please see the Associated
Projects page.

CONTENTS 1

http://wiki.openstack.org
http://docs.openstack.org


Swift Documentation, Release 2.27.1.dev38

2 CONTENTS



CHAPTER

ONE

GETTING STARTED

1.1 System Requirements

Swift development currently targets Ubuntu Server 16.04, but should work on most Linux platforms.

Swift is written in Python and has these dependencies:

• Python (2.7, 3.6, or 3.7)

• rsync 3.0

• The Python packages listed in the requirements file

• Testing additionally requires the test dependencies

• Testing requires these distribution packages

1.2 Development

To get started with development with Swift, or to just play around, the following docs will be useful:

• Swift All in One - Set up a VM with Swift installed

• Development Guidelines

• First Contribution to Swift

• Associated Projects

1.3 CLI client and SDK library

There are many clients in the ecosystem. The official CLI and SDK is python-swiftclient.

• Source code

• Python Package Index

3

https://github.com/openstack/swift/blob/master/requirements.txt
https://github.com/openstack/swift/blob/master/test-requirements.txt
https://github.com/openstack/swift/blob/master/bindep.txt
https://github.com/openstack/python-swiftclient
https://pypi.org/project/python-swiftclient


Swift Documentation, Release 2.27.1.dev38

1.4 Production

If you want to set up and configure Swift for a production cluster, the following doc should be useful:

• Multiple Server Swift Installation

4 Chapter 1. Getting Started



CHAPTER

TWO

OVERVIEW AND CONCEPTS

2.1 Object Storage API overview

OpenStack Object Storage is a highly available, distributed, eventually consistent object/blob store. You
create, modify, and get objects and metadata by using the Object Storage API, which is implemented as
a set of Representational State Transfer (REST) web services.

For an introduction to OpenStack Object Storage, see the OpenStack Swift Administrator Guide.

You use the HTTPS (SSL) protocol to interact with Object Storage, and you use standard HTTP calls
to perform API operations. You can also use language-specific APIs, which use the RESTful API, that
make it easier for you to integrate into your applications.

To assert your right to access and change data in an account, you identify yourself to Object Storage
by using an authentication token. To get a token, you present your credentials to an authentication
service. The authentication service returns a token and the URL for the account. Depending on which
authentication service that you use, the URL for the account appears in:

• OpenStack Identity Service. The URL is defined in the service catalog.

• Tempauth. The URL is provided in the X-Storage-Url response header.

In both cases, the URL is the full URL and includes the account resource.

The Object Storage API supports the standard, non-serialized response format, which is the default, and
both JSON and XML serialized response formats.

The Object Storage system organizes data in a hierarchy, as follows:

• Account. Represents the top-level of the hierarchy.

Your service provider creates your account and you own all resources in that account. The account
defines a namespace for containers. A container might have the same name in two different
accounts.

In the OpenStack environment, account is synonymous with a project or tenant.

• Container. Defines a namespace for objects. An object with the same name in two different
containers represents two different objects. You can create any number of containers within an
account.

In addition to containing objects, you can also use the container to control access to objects by
using an access control list (ACL). You cannot store an ACL with individual objects.

In addition, you configure and control many other features, such as object versioning, at the con-
tainer level.

5



Swift Documentation, Release 2.27.1.dev38

You can bulk-delete up to 10,000 containers in a single request.

You can set a storage policy on a container with predefined names and definitions from your cloud
provider.

• Object. Stores data content, such as documents, images, and so on. You can also store custom
metadata with an object.

With the Object Storage API, you can:

– Store an unlimited number of objects. Each object can be as large as 5 GB, which is the
default. You can configure the maximum object size.

– Upload and store objects of any size with large object creation.

– Use cross-origin resource sharing to manage object security.

– Compress files using content-encoding metadata.

– Override browser behavior for an object using content-disposition metadata.

– Schedule objects for deletion.

– Bulk-delete up to 10,000 objects in a single request.

– Auto-extract archive files.

– Generate a URL that provides time-limited GET access to an object.

– Upload objects directly to the Object Storage system from a browser by using form POST
middleware.

– Create symbolic links to other objects.

The account, container, and object hierarchy affects the way you interact with the Object Storage API.

Specifically, the resource path reflects this structure and has this format:

/v1/{account}/{container}/{object}

For example, for the flowers/rose.jpg object in the images container in the
12345678912345 account, the resource path is:

/v1/12345678912345/images/flowers/rose.jpg

Notice that the object name contains the / character. This slash does not indicate that Object Storage has
a sub-hierarchy called flowers because containers do not store objects in actual sub-folders. However,
the inclusion of / or a similar convention inside object names enables you to create pseudo-hierarchical
folders and directories.

For example, if the endpoint for Object Storage is objects.mycloud.com, the returned URL is
https://objects.mycloud.com/v1/12345678912345.

To access a container, append the container name to the resource path.

To access an object, append the container and the object name to the path.

If you have a large number of containers or objects, you can use query parameters to page through large
lists of containers or objects. Use the marker, limit, and end_marker query parameters to control
how many items are returned in a list and where the list starts or ends. If you want to page through in
reverse order, you can use the query parameter reverse, noting that your marker and end_markers

6 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

should be switched when applied to a reverse listing. I.e, for a list of objects [a, b, c, d, e] the
non-reversed could be:

/v1/{account}/{container}/?marker=a&end_marker=d
b
c

However, when reversed marker and end_marker are applied to a reversed list:

/v1/{account}/{container}/?marker=d&end_marker=a&reverse=on
c
b

Object Storage HTTP requests have the following default constraints. Your service provider might use
different default values.

Item Maximum value Notes
Number of HTTP headers 90
Length of HTTP headers 4096 bytes
Length per HTTP request line 8192 bytes
Length of HTTP request 5 GB
Length of container names 256 bytes Cannot contain the / character.
Length of object names 1024 bytes By default, there are no character restrictions.

You must UTF-8-encode and then URL-encode container and object names before you call the API
binding. If you use an API binding that performs the URL-encoding for you, do not URL-encode the
names before you call the API binding. Otherwise, you double-encode these names. Check the length
restrictions against the URL-encoded string.

The API Reference describes the operations that you can perform with the Object Storage API:

• Storage accounts: Use to perform account-level tasks.

Lists containers for a specified account. Creates, updates, and deletes account metadata. Shows
account metadata.

• Storage containers: Use to perform container-level tasks.

Lists objects in a specified container. Creates, shows details for, and deletes containers. Creates,
updates, shows, and deletes container metadata.

• Storage objects: Use to perform object-level tasks.

Creates, replaces, shows details for, and deletes objects. Copies objects with another object with
a new or different name. Updates object metadata.

2.1. Object Storage API overview 7

https://docs.openstack.org/api-ref/object-store/index.html#accounts
https://docs.openstack.org/api-ref/object-store/index.html#containers
https://docs.openstack.org/api-ref/object-store/index.html#objects


Swift Documentation, Release 2.27.1.dev38

2.2 Swift Architectural Overview

2.2.1 Proxy Server

The Proxy Server is responsible for tying together the rest of the Swift architecture. For each request,
it will look up the location of the account, container, or object in the ring (see below) and route the
request accordingly. For Erasure Code type policies, the Proxy Server is also responsible for encoding
and decoding object data. See Erasure Code Support for complete information on Erasure Code support.
The public API is also exposed through the Proxy Server.

A large number of failures are also handled in the Proxy Server. For example, if a server is unavailable
for an object PUT, it will ask the ring for a handoff server and route there instead.

When objects are streamed to or from an object server, they are streamed directly through the proxy
server to or from the user the proxy server does not spool them.

2.2.2 The Ring

A ring represents a mapping between the names of entities stored on disk and their physical location.
There are separate rings for accounts, containers, and one object ring per storage policy. When other
components need to perform any operation on an object, container, or account, they need to interact with
the appropriate ring to determine its location in the cluster.

The Ring maintains this mapping using zones, devices, partitions, and replicas. Each partition in the
ring is replicated, by default, 3 times across the cluster, and the locations for a partition are stored in the
mapping maintained by the ring. The ring is also responsible for determining which devices are used for
handoff in failure scenarios.

The replicas of each partition will be isolated onto as many distinct regions, zones, servers and devices
as the capacity of these failure domains allow. If there are less failure domains at a given tier than
replicas of the partition assigned within a tier (e.g. a 3 replica cluster with 2 servers), or the available
capacity across the failure domains within a tier are not well balanced it will not be possible to achieve
both even capacity distribution (balance) as well as complete isolation of replicas across failure domains
(dispersion). When this occurs the ring management tools will display a warning so that the operator
can evaluate the cluster topology.

Data is evenly distributed across the capacity available in the cluster as described by the devices weight.
Weights can be used to balance the distribution of partitions on drives across the cluster. This can be
useful, for example, when different sized drives are used in a cluster. Device weights can also be used
when adding or removing capacity or failure domains to control how many partitions are reassigned
during a rebalance to be moved as soon as replication bandwidth allows.

Note: Prior to Swift 2.1.0 it was not possible to restrict partition movement by device weight when
adding new failure domains, and would allow extremely unbalanced rings. The greedy dispersion algo-
rithm is now subject to the constraints of the physical capacity in the system, but can be adjusted with-in
reason via the overload option. Artificially unbalancing the partition assignment without respect to ca-
pacity can introduce unexpected full devices when a given failure domain does not physically support
its share of the used capacity in the tier.

When partitions need to be moved around (for example if a device is added to the cluster), the ring
ensures that a minimum number of partitions are moved at a time, and only one replica of a partition is

8 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

moved at a time.

The ring is used by the Proxy server and several background processes (like replication). See The Rings
for complete information on the ring.

2.2.3 Storage Policies

Storage Policies provide a way for object storage providers to differentiate service levels, features and
behaviors of a Swift deployment. Each Storage Policy configured in Swift is exposed to the client
via an abstract name. Each device in the system is assigned to one or more Storage Policies. This is
accomplished through the use of multiple object rings, where each Storage Policy has an independent
object ring, which may include a subset of hardware implementing a particular differentiation.

For example, one might have the default policy with 3x replication, and create a second policy which,
when applied to new containers only uses 2x replication. Another might add SSDs to a set of storage
nodes and create a performance tier storage policy for certain containers to have their objects stored
there. Yet another might be the use of Erasure Coding to define a cold-storage tier.

This mapping is then exposed on a per-container basis, where each container can be assigned a specific
storage policy when it is created, which remains in effect for the lifetime of the container. Applications
require minimal awareness of storage policies to use them; once a container has been created with a
specific policy, all objects stored in it will be done so in accordance with that policy.

The Storage Policies feature is implemented throughout the entire code base so it is an important concept
in understanding Swift architecture.

See Storage Policies for complete information on storage policies.

2.2.4 Object Server

The Object Server is a very simple blob storage server that can store, retrieve and delete objects stored
on local devices. Objects are stored as binary files on the filesystem with metadata stored in the files
extended attributes (xattrs). This requires that the underlying filesystem choice for object servers support
xattrs on files. Some filesystems, like ext3, have xattrs turned off by default.

Each object is stored using a path derived from the object names hash and the operations timestamp. Last
write always wins, and ensures that the latest object version will be served. A deletion is also treated as
a version of the file (a 0 byte file ending with .ts, which stands for tombstone). This ensures that deleted
files are replicated correctly and older versions dont magically reappear due to failure scenarios.

2.2.5 Container Server

The Container Servers primary job is to handle listings of objects. It doesnt know where those objects
are, just what objects are in a specific container. The listings are stored as sqlite database files, and
replicated across the cluster similar to how objects are. Statistics are also tracked that include the total
number of objects, and total storage usage for that container.

2.2. Swift Architectural Overview 9



Swift Documentation, Release 2.27.1.dev38

2.2.6 Account Server

The Account Server is very similar to the Container Server, excepting that it is responsible for listings
of containers rather than objects.

2.2.7 Replication

Replication is designed to keep the system in a consistent state in the face of temporary error conditions
like network outages or drive failures.

The replication processes compare local data with each remote copy to ensure they all contain the lat-
est version. Object replication uses a hash list to quickly compare subsections of each partition, and
container and account replication use a combination of hashes and shared high water marks.

Replication updates are push based. For object replication, updating is just a matter of rsyncing files to
the peer. Account and container replication push missing records over HTTP or rsync whole database
files.

The replicator also ensures that data is removed from the system. When an item (object, container,
or account) is deleted, a tombstone is set as the latest version of the item. The replicator will see the
tombstone and ensure that the item is removed from the entire system.

See Replication for complete information on replication.

2.2.8 Reconstruction

The reconstructor is used by Erasure Code policies and is analogous to the replicator for Replication
type policies. See Erasure Code Support for complete information on both Erasure Code support as
well as the reconstructor.

2.2.9 Updaters

There are times when container or account data can not be immediately updated. This usually occurs
during failure scenarios or periods of high load. If an update fails, the update is queued locally on
the filesystem, and the updater will process the failed updates. This is where an eventual consistency
window will most likely come in to play. For example, suppose a container server is under load and a
new object is put in to the system. The object will be immediately available for reads as soon as the
proxy server responds to the client with success. However, the container server did not update the object
listing, and so the update would be queued for a later update. Container listings, therefore, may not
immediately contain the object.

In practice, the consistency window is only as large as the frequency at which the updater runs and may
not even be noticed as the proxy server will route listing requests to the first container server which
responds. The server under load may not be the one that serves subsequent listing requests one of the
other two replicas may handle the listing.

10 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

2.2.10 Auditors

Auditors crawl the local server checking the integrity of the objects, containers, and accounts. If corrup-
tion is found (in the case of bit rot, for example), the file is quarantined, and replication will replace the
bad file from another replica. If other errors are found they are logged (for example, an objects listing
cant be found on any container server it should be).

2.3 The Rings

The rings determine where data should reside in the cluster. There is a separate ring for account
databases, container databases, and individual object storage policies but each ring works in the same
way. These rings are externally managed. The server processes themselves do not modify the rings; they
are instead given new rings modified by other tools.

The ring uses a configurable number of bits from the MD5 hash of an items path as a partition index that
designates the device(s) on which that item should be stored. The number of bits kept from the hash is
known as the partition power, and 2 to the partition power indicates the partition count. Partitioning the
full MD5 hash ring allows the cluster components to process resources in batches. This ends up either
more efficient or at least less complex than working with each item separately or the entire cluster all at
once.

Another configurable value is the replica count, which indicates how many devices to assign for each
partition in the ring. By having multiple devices responsible for each partition, the cluster can recover
from drive or network failures.

Devices are added to the ring to describe the capacity available for partition replica assignments. Devices
are placed into failure domains consisting of region, zone, and server. Regions can be used to describe
geographical systems characterized by lower bandwidth or higher latency between machines in different
regions. Many rings will consist of only a single region. Zones can be used to group devices based
on physical locations, power separations, network separations, or any other attribute that would lessen
multiple replicas being unavailable at the same time.

Devices are given a weight which describes the relative storage capacity contributed by the device in
comparison to other devices.

When building a ring, replicas for each partition will be assigned to devices according to the devices
weights. Additionally, each replica of a partition will preferentially be assigned to a device whose
failure domain does not already have a replica for that partition. Only a single replica of a partition may
be assigned to each device - you must have at least as many devices as replicas.

2.3.1 Ring Builder

The rings are built and managed manually by a utility called the ring-builder. The ring-builder assigns
partitions to devices and writes an optimized structure to a gzipped, serialized file on disk for ship-
ping out to the servers. The server processes check the modification time of the file occasionally and
reload their in-memory copies of the ring structure as needed. Because of how the ring-builder manages
changes to the ring, using a slightly older ring usually just means that for a subset of the partitions the
device for one of the replicas will be incorrect, which can be easily worked around.

The ring-builder also keeps a separate builder file which includes the ring information as well as addi-
tional data required to build future rings. It is very important to keep multiple backup copies of these

2.3. The Rings 11



Swift Documentation, Release 2.27.1.dev38

builder files. One option is to copy the builder files out to every server while copying the ring files them-
selves. Another is to upload the builder files into the cluster itself. Complete loss of a builder file will
mean creating a new ring from scratch, nearly all partitions will end up assigned to different devices, and
therefore nearly all data stored will have to be replicated to new locations. So, recovery from a builder
file loss is possible, but data will definitely be unreachable for an extended time.

2.3.2 Ring Data Structure

The ring data structure consists of three top level fields: a list of devices in the cluster, a list of lists of
device ids indicating partition to device assignments, and an integer indicating the number of bits to shift
an MD5 hash to calculate the partition for the hash.

List of Devices

The list of devices is known internally to the Ring class as devs. Each item in the list of devices is a
dictionary with the following keys:

id integer The index into the list of devices.
zone integer The zone in which the device resides.
region integer The region in which the zone resides.
weight float The relative weight of the device in comparison to other devices. This usually

corresponds directly to the amount of disk space the device has compared to
other devices. For instance a device with 1 terabyte of space might have a weight
of 100.0 and another device with 2 terabytes of space might have a weight of
200.0. This weight can also be used to bring back into balance a device that has
ended up with more or less data than desired over time. A good average weight
of 100.0 allows flexibility in lowering the weight later if necessary.

ip string The IP address or hostname of the server containing the device.
port int The TCP port on which the server process listens to serve requests for the device.
device string The on-disk name of the device on the server. For example: sdb1
meta string A general-use field for storing additional information for the device. This infor-

mation isnt used directly by the server processes, but can be useful in debugging.
For example, the date and time of installation and hardware manufacturer could
be stored here.

Note: The list of devices may contain holes, or indexes set to None, for devices that have been removed
from the cluster. However, device ids are reused. Device ids are reused to avoid potentially running out
of device id slots when there are available slots (from prior removal of devices). A consequence of this
device id reuse is that the device id (integer value) does not necessarily correspond with the chronology
of when the device was added to the ring. Also, some devices may be temporarily disabled by setting
their weight to 0.0. To obtain a list of active devices (for uptime polling, for example) the Python code
would look like:

devices = list(self._iter_devs())

12 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

Partition Assignment List

The partition assignment list is known internally to the Ring class as _replica2part2dev_id. This
is a list of array('H')s, one for each replica. Each array('H') has a length equal to the partition
count for the ring. Each integer in the array('H') is an index into the above list of devices.

So, to create a list of device dictionaries assigned to a partition, the Python code would look like:

devices = [self.devs[part2dev_id[partition]]
for part2dev_id in self._replica2part2dev_id]

array('H') is used for memory conservation as there may be millions of partitions.

Partition Shift Value

The partition shift value is known internally to the Ring class as _part_shift. This value is used
to shift an MD5 hash of an items path to calculate the partition on which the data for that item should
reside. Only the top four bytes of the hash are used in this process. For example, to compute the partition
for the path /account/container/object, the Python code might look like:

objhash = md5('/account/container/object').digest()
partition = struct.unpack_from('>I', objhash)[0] >> self._part_shift

For a ring generated with partition power P, the partition shift value is 32 - P.

Fractional Replicas

A ring is not restricted to having an integer number of replicas. In order to support the gradual changing
of replica counts, the ring is able to have a real number of replicas.

When the number of replicas is not an integer, the last element of _replica2part2dev_id will
have a length that is less than the partition count for the ring. This means that some partitions will have
more replicas than others. For example, if a ring has 3.25 replicas, then 25% of its partitions will have
four replicas, while the remaining 75% will have just three.

Dispersion

With each rebalance, the ring builder calculates a dispersion metric. This is the percentage of partitions
in the ring that have too many replicas within a particular failure domain.

For example, if you have three servers in a cluster but two replicas for a partition get placed onto the
same server, that partition will count towards the dispersion metric.

A lower dispersion value is better, and the value can be used to find the proper value for overload.

2.3. The Rings 13



Swift Documentation, Release 2.27.1.dev38

Overload

The ring builder tries to keep replicas as far apart as possible while still respecting device weights. When
it cant do both, the overload factor determines what happens. Each device may take some extra fraction
of its desired partitions to allow for replica dispersion; once that extra fraction is exhausted, replicas will
be placed closer together than is optimal for durability.

Essentially, the overload factor lets the operator trade off replica dispersion (durability) against device
balance (uniform disk usage).

The default overload factor is 0, so device weights will be strictly followed.

With an overload factor of 0.1, each device will accept 10% more partitions than it otherwise would,
but only if needed to maintain dispersion.

Example: Consider a 3-node cluster of machines with equal-size disks; let node A have 12 disks, node
B have 12 disks, and node C have only 11 disks. Let the ring have an overload factor of 0.1 (10%).

Without the overload, some partitions would end up with replicas only on nodes A and B. However,
with the overload, every device is willing to accept up to 10% more partitions for the sake of dispersion.
The missing disk in C means there is one disks worth of partitions that would like to spread across the
remaining 11 disks, which gives each disk in C an extra 9.09% load. Since this is less than the 10%
overload, there is one replica of each partition on each node.

However, this does mean that the disks in node C will have more data on them than the disks in nodes
A and B. If 80% full is the warning threshold for the cluster, node Cs disks will reach 80% full while A
and Bs disks are only 72.7% full.

2.3.3 Partition & Replica Terminology

All descriptions of consistent hashing describe the process of breaking the keyspace up into multiple
ranges (vnodes, buckets, etc.) - many more than the number of nodes to which keys in the keyspace
must be assigned. Swift calls these ranges partitions - they are partitions of the total keyspace.

Each partition will have multiple replicas. Every replica of each partition must be assigned to a device in
the ring. When describing a specific replica of a partition (like when its assigned a device) it is described
as a part-replica in that it is a specific replica of the specific partition. A single device will likely be
assigned different replicas from many partitions, but it may not be assigned multiple replicas of a single
partition.

The total number of partitions in a ring is calculated as 2 ** <part-power>. The total number of
part-replicas in a ring is calculated as <replica-count> * 2 ** <part-power>.

When considering a devices weight it is useful to describe the number of part-replicas it would like to
be assigned. A single device, regardless of weight, will never hold more than 2 ** <part-power>
part-replicas because it can not have more than one replica of any partition assigned. The number of
part-replicas a device can take by weights is calculated as its parts-wanted. The true number of part-
replicas assigned to a device can be compared to its parts-wanted similarly to a calculation of percentage
error - this deviation in the observed result from the idealized target is called a devices balance.

When considering a devices failure domain it is useful to describe the number of part-replicas it would
like to be assigned. The number of part-replicas wanted in a failure domain of a tier is the sum of the
part-replicas wanted in the failure domains of its sub-tier. However, collectively when the total number
of part-replicas in a failure domain exceeds or is equal to 2 ** <part-power> it is most obvious
that its no longer sufficient to consider only the number of total part-replicas, but rather the fraction of
each replicas partitions. Consider for example a ring with 3 replicas and 3 servers: while dispersion

14 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

requires that each server hold only of the total part-replicas, placement is additionally constrained to
require 1.0 replica of each partition per server. It would not be sufficient to satisfy dispersion if two
devices on one of the servers each held a replica of a single partition, while another server held none.
By considering a decimal fraction of one replicas worth of partitions in a failure domain we can derive
the total part-replicas wanted in a failure domain (1.0 * 2 ** <part-power>). Additionally we
infer more about which part-replicas must go in the failure domain. Consider a ring with three replicas
and two zones, each with two servers (four servers total). The three replicas worth of partitions will be
assigned into two failure domains at the zone tier. Each zone must hold more than one replica of some
partitions. We represent this improper fraction of a replicas worth of partitions in decimal form as 1.5
(3.0 / 2). This tells us not only the number of total partitions (1.5 * 2 ** <part-power>)
but also that each partition must have at least one replica in this failure domain (in fact 0.5 of the
partitions will have 2 replicas). Within each zone the two servers will hold 0.75 of a replicas worth of
partitions - this is equal both to the fraction of a replicas worth of partitions assigned to each zone (1.5)
divided evenly among the number of failure domains in its sub-tier (2 servers in each zone, i.e. 1.5 /
2) but also the total number of replicas (3.0) divided evenly among the total number of failure domains
in the server tier (2 servers Œ 2 zones = 4, i.e. 3.0 / 4). It is useful to consider that each server in this
ring will hold only 0.75 of a replicas worth of partitions which tells that any server should have at most
one replica of a given partition assigned. In the interests of brevity, some variable names will often refer
to the concept representing the fraction of a replicas worth of partitions in decimal form as replicanths -
this is meant to invoke connotations similar to ordinal numbers as applied to fractions, but generalized
to a replica instead of a four*th* or a fif*th*. The n was probably thrown in because of Blade Runner.

2.3.4 Building the Ring

First the ring builder calculates the replicanths wanted at each tier in the rings topology based on weight.

Then the ring builder calculates the replicanths wanted at each tier in the rings topology based on dis-
persion.

Then the ring builder calculates the maximum deviation on a single device between its weighted repli-
canths and wanted replicanths.

Next we interpolate between the two replicanth values (weighted & wanted) at each tier using the spec-
ified overload (up to the maximum required overload). Its a linear interpolation, similar to solving for a
point on a line between two points - we calculate the slope across the max required overload and then
calculate the intersection of the line with the desired overload. This becomes the target.

From the target we calculate the minimum and maximum number of replicas any partition may have in
a tier. This becomes the replica-plan.

Finally, we calculate the number of partitions that should ideally be assigned to each device based the
replica-plan.

On initial balance (i.e., the first time partitions are placed to generate a ring) we must assign each replica
of each partition to the device that desires the most partitions excluding any devices that already have
their maximum number of replicas of that partition assigned to some parent tier of that devices failure
domain.

When building a new ring based on an old ring, the desired number of partitions each device wants is
recalculated from the current replica-plan. Next the partitions to be reassigned are gathered up. Any re-
moved devices have all their assigned partitions unassigned and added to the gathered list. Any partition
replicas that (due to the addition of new devices) can be spread out for better durability are unassigned
and added to the gathered list. Any devices that have more partitions than they now desire have random

2.3. The Rings 15



Swift Documentation, Release 2.27.1.dev38

partitions unassigned from them and added to the gathered list. Lastly, the gathered partitions are then
reassigned to devices using a similar method as in the initial assignment described above.

Whenever a partition has a replica reassigned, the time of the reassignment is recorded. This is taken
into account when gathering partitions to reassign so that no partition is moved twice in a configurable
amount of time. This configurable amount of time is known internally to the RingBuilder class as
min_part_hours. This restriction is ignored for replicas of partitions on devices that have been
removed, as device removal should only happens on device failure and theres no choice but to make a
reassignment.

The above processes dont always perfectly rebalance a ring due to the random nature of gathering par-
titions for reassignment. To help reach a more balanced ring, the rebalance process is repeated a fixed
number of times until the replica-plan is fulfilled or unable to be fulfilled (indicating we probably cant
get perfect balance due to too many partitions recently moved).

2.3.5 Composite Rings

See Composite Ring Builder.

swift-ring-composer (Experimental)

swift-ring-composer is an experimental tool for building a composite ring file from other existing
component ring builder files. Its CLI, name or implementation may change or be removed altogether in
future versions of Swift.

Currently its interface is similar to that of the swift-ring-builder. The command structure takes
the form of:

swift-ring-composer <composite builder file> <sub-command> <options>

where <composite builder file> is a special builder which stores a json blob of composite
ring metadata. This metadata describes the component RingBuilders used in the composite ring,
their order and version.

There are currently 2 sub-commands: show and compose. The show sub-command takes no addi-
tional arguments and displays the current contents of of the composite builder file:

swift-ring-composer <composite builder file> show

The compose sub-command is the one that actually stitches the component ring builders together to
create both the composite ring file and composite builder file. The command takes the form:

swift-ring-composer <composite builder file> compose <builder1> \
<builder2> [<builder3> .. <builderN>] --output <composite ring file> \
[--force]

There may look like there is a lot going on there but its actually quite simple. The compose com-
mand takes in the list of builders to stitch together and the filename for the composite ring file via the
--output option. The --force option overrides checks on the ring composition.

To change ring devices, first add or remove devices from the component ring builders and then use the
compose sub-command to create a new composite ring file.

16 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

Note: swift-ring-builder cannot be used to inspect the generated composite ring file because
there is no conventional builder file corresponding to the composite ring file name. You can either
programmatically look inside the composite ring file using the swift ring classes or create a temporary
builder file from the composite ring file using:

swift-ring-builder <composite ring file> write_builder

Do not use this builder file to manage ring devices.

For further details use:

swift-ring-composer -h

2.3.6 Ring Builder Analyzer

This is a tool for analyzing how well the ring builder performs its job in a particular scenario. It is
intended to help developers quantify any improvements or regressions in the ring builder; it is probably
not useful to others.

The ring builder analyzer takes a scenario file containing some initial parameters for a ring builder plus a
certain number of rounds. In each round, some modifications are made to the builder, e.g. add a device,
remove a device, change a devices weight. Then, the builder is repeatedly rebalanced until it settles
down. Data about that round is printed, and the next round begins.

Scenarios are specified in JSON. Example scenario for a gradual device addition:

{
"part_power": 12,
"replicas": 3,
"overload": 0.1,
"random_seed": 203488,

"rounds": [
[

["add", "r1z2-10.20.30.40:6200/sda", 8000],
["add", "r1z2-10.20.30.40:6200/sdb", 8000],
["add", "r1z2-10.20.30.40:6200/sdc", 8000],
["add", "r1z2-10.20.30.40:6200/sdd", 8000],

["add", "r1z2-10.20.30.41:6200/sda", 8000],
["add", "r1z2-10.20.30.41:6200/sdb", 8000],
["add", "r1z2-10.20.30.41:6200/sdc", 8000],
["add", "r1z2-10.20.30.41:6200/sdd", 8000],

["add", "r1z2-10.20.30.43:6200/sda", 8000],
["add", "r1z2-10.20.30.43:6200/sdb", 8000],
["add", "r1z2-10.20.30.43:6200/sdc", 8000],
["add", "r1z2-10.20.30.43:6200/sdd", 8000],

["add", "r1z2-10.20.30.44:6200/sda", 8000],
["add", "r1z2-10.20.30.44:6200/sdb", 8000],
["add", "r1z2-10.20.30.44:6200/sdc", 8000]

], [

(continues on next page)

2.3. The Rings 17



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

["add", "r1z2-10.20.30.44:6200/sdd", 1000]
], [

["set_weight", 15, 2000]
], [

["remove", 3],
["set_weight", 15, 3000]

], [
["set_weight", 15, 4000]

], [
["set_weight", 15, 5000]

], [
["set_weight", 15, 6000]

], [
["set_weight", 15, 7000]

], [
["set_weight", 15, 8000]

]]
}

2.3.7 History

The ring code went through many iterations before arriving at what it is now and while it has largely
been stable, the algorithm has seen a few tweaks or perhaps even fundamentally changed as new ideas
emerge. This section will try to describe the previous ideas attempted and attempt to explain why they
were discarded.

A live ring option was considered where each server could maintain its own copy of the ring and the
servers would use a gossip protocol to communicate the changes they made. This was discarded as too
complex and error prone to code correctly in the project timespan available. One bug could easily gossip
bad data out to the entire cluster and be difficult to recover from. Having an externally managed ring
simplifies the process, allows full validation of data before its shipped out to the servers, and guarantees
each server is using a ring from the same timeline. It also means that the servers themselves arent
spending a lot of resources maintaining rings.

A couple of ring server options were considered. One was where all ring lookups would be done by
calling a service on a separate server or set of servers, but this was discarded due to the latency involved.
Another was much like the current process but where servers could submit change requests to the ring
server to have a new ring built and shipped back out to the servers. This was discarded due to project time
constraints and because ring changes are currently infrequent enough that manual control was sufficient.
However, lack of quick automatic ring changes did mean that other components of the system had to be
coded to handle devices being unavailable for a period of hours until someone could manually update
the ring.

The current ring process has each replica of a partition independently assigned to a device. A version
of the ring that used a third of the memory was tried, where the first replica of a partition was directly
assigned and the other two were determined by walking the ring until finding additional devices in other
zones. This was discarded due to the loss of control over how many replicas for a given partition moved
at once. Keeping each replica independent allows for moving only one partition replica within a given
time window (except due to device failures). Using the additional memory was deemed a good trade-off
for moving data around the cluster much less often.

Another ring design was tried where the partition to device assignments werent stored in a big list in
memory but instead each device was assigned a set of hashes, or anchors. The partition would be

18 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

determined from the data items hash and the nearest device anchors would determine where the replicas
should be stored. However, to get reasonable distribution of data each device had to have a lot of anchors
and walking through those anchors to find replicas started to add up. In the end, the memory savings
wasnt that great and more processing power was used, so the idea was discarded.

A completely non-partitioned ring was also tried but discarded as the partitioning helps many other
components of the system, especially replication. Replication can be attempted and retried in a partition
batch with the other replicas rather than each data item independently attempted and retried. Hashes of
directory structures can be calculated and compared with other replicas to reduce directory walking and
network traffic.

Partitioning and independently assigning partition replicas also allowed for the best-balanced cluster.
The best of the other strategies tended to give ś10% variance on device balance with devices of equal
weight and ś15% with devices of varying weights. The current strategy allows us to get ś3% and ś8%
respectively.

Various hashing algorithms were tried. SHA offers better security, but the ring doesnt need to be cryp-
tographically secure and SHA is slower. Murmur was much faster, but MD5 was built-in and hash
computation is a small percentage of the overall request handling time. In all, once it was decided the
servers wouldnt be maintaining the rings themselves anyway and only doing hash lookups, MD5 was
chosen for its general availability, good distribution, and adequate speed.

The placement algorithm has seen a number of behavioral changes for unbalanceable rings. The ring
builder wants to keep replicas as far apart as possible while still respecting device weights. In most
cases, the ring builder can achieve both, but sometimes they conflict. At first, the behavior was to keep
the replicas far apart and ignore device weight, but that made it impossible to gradually go from one
region to two, or from two to three. Then it was changed to favor device weight over dispersion, but that
wasnt so good for rings that were close to balanceable, like 3 machines with 60TB, 60TB, and 57TB
of disk space; operators were expecting one replica per machine, but didnt always get it. After that,
overload was added to the ring builder so that operators could choose a balance between dispersion and
device weights. In time the overload concept was improved and made more accurate.

For more background on consistent hashing rings, please see Building a Consistent Hashing Ring.

2.4 Storage Policies

Storage Policies allow for some level of segmenting the cluster for various purposes through the creation
of multiple object rings. The Storage Policies feature is implemented throughout the entire code base so
it is an important concept in understanding Swift architecture.

As described in The Rings, Swift uses modified hashing rings to determine where data should reside in
the cluster. There is a separate ring for account databases, container databases, and there is also one
object ring per storage policy. Each object ring behaves exactly the same way and is maintained in the
same manner, but with policies, different devices can belong to different rings. By supporting multiple
object rings, Swift allows the application and/or deployer to essentially segregate the object storage
within a single cluster. There are many reasons why this might be desirable:

• Different levels of durability: If a provider wants to offer, for example, 2x replication and 3x repli-
cation but doesnt want to maintain 2 separate clusters, they would setup a 2x and a 3x replication
policy and assign the nodes to their respective rings. Furthermore, if a provider wanted to offer a
cold storage tier, they could create an erasure coded policy.

• Performance: Just as SSDs can be used as the exclusive members of an account or database
ring, an SSD-only object ring can be created as well and used to implement a low-latency/high

2.4. Storage Policies 19



Swift Documentation, Release 2.27.1.dev38

performance policy.

• Collecting nodes into group: Different object rings may have different physical servers so that
objects in specific storage policies are always placed in a particular data center or geography.

• Different Storage implementations: Another example would be to collect together a set of nodes
that use a different Diskfile (e.g., Kinetic, GlusterFS) and use a policy to direct traffic just to those
nodes.

• Different read and write affinity settings: proxy-servers can be configured to use different read
and write affinity options for each policy. See Per policy configuration for more details.

Note: Today, Swift supports two different policy types: Replication and Erasure Code. See Erasure
Code Support for details.

Also note that Diskfile refers to backend object storage plug-in architecture. See Pluggable On-Disk
Back-end APIs for details.

2.4.1 Containers and Policies

Policies are implemented at the container level. There are many advantages to this approach, not the
least of which is how easy it makes life on applications that want to take advantage of them. It also
ensures that Storage Policies remain a core feature of Swift independent of the auth implementation.
Policies were not implemented at the account/auth layer because it would require changes to all auth
systems in use by Swift deployers. Each container has a new special immutable metadata element called
the storage policy index. Note that internally, Swift relies on policy indexes and not policy names. Policy
names exist for human readability and translation is managed in the proxy. When a container is created,
one new optional header is supported to specify the policy name. If no name is specified, the default
policy is used (and if no other policies defined, Policy-0 is considered the default). We will be covering
the difference between default and Policy-0 in the next section.

Policies are assigned when a container is created. Once a container has been assigned a policy, it cannot
be changed (unless it is deleted/recreated). The implications on data placement/movement for large
datasets would make this a task best left for applications to perform. Therefore, if a container has an
existing policy of, for example 3x replication, and one wanted to migrate that data to an Erasure Code
policy, the application would create another container specifying the other policy parameters and then
simply move the data from one container to the other. Policies apply on a per container basis allowing
for minimal application awareness; once a container has been created with a specific policy, all objects
stored in it will be done so in accordance with that policy. If a container with a specific name is deleted
(requires the container be empty) a new container may be created with the same name without any
restriction on storage policy enforced by the deleted container which previously shared the same name.

Containers have a many-to-one relationship with policies meaning that any number of containers can
share one policy. There is no limit to how many containers can use a specific policy.

The notion of associating a ring with a container introduces an interesting scenario: What would happen
if 2 containers of the same name were created with different Storage Policies on either side of a network
outage at the same time? Furthermore, what would happen if objects were placed in those containers, a
whole bunch of them, and then later the network outage was restored? Well, without special care it would
be a big problem as an application could end up using the wrong ring to try and find an object. Luckily
there is a solution for this problem, a daemon known as the Container Reconciler works tirelessly to
identify and rectify this potential scenario.

20 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

2.4.2 Container Reconciler

Because atomicity of container creation cannot be enforced in a distributed eventually consistent system,
object writes into the wrong storage policy must be eventually merged into the correct storage policy by
an asynchronous daemon. Recovery from object writes during a network partition which resulted in a
split brain container created with different storage policies are handled by the swift-container-reconciler
daemon.

The container reconciler works off a queue similar to the object-expirer. The queue is populated dur-
ing container-replication. It is never considered incorrect to enqueue an object to be evaluated by the
container-reconciler because if there is nothing wrong with the location of the object the reconciler will
simply dequeue it. The container-reconciler queue is an indexed log for the real location of an object for
which a discrepancy in the storage policy of the container was discovered.

To determine the correct storage policy of a container, it is necessary to update the status_changed_at
field in the container_stat table when a container changes status from deleted to re-created. This trans-
action log allows the container-replicator to update the correct storage policy both when replicating a
container and handling REPLICATE requests.

Because each object write is a separate distributed transaction it is not possible to determine the cor-
rectness of the storage policy for each object write with respect to the entire transaction log at a given
container database. As such, container databases will always record the object write regardless of the
storage policy on a per object row basis. Object byte and count stats are tracked per storage policy in
each container and reconciled using normal object row merge semantics.

The object rows are ensured to be fully durable during replication using the normal container replication.
After the container replicator pushes its object rows to available primary nodes any misplaced object
rows are bulk loaded into containers based off the object timestamp under the .misplaced_objects
system account. The rows are initially written to a handoff container on the local node, and at the end
of the replication pass the .misplaced_objects containers are replicated to the correct primary
nodes.

The container-reconciler processes the .misplaced_objects containers in descending order and
reaps its containers as the objects represented by the rows are successfully reconciled. The container-
reconciler will always validate the correct storage policy for enqueued objects using direct container
HEAD requests which are accelerated via caching.

Because failure of individual storage nodes in aggregate is assumed to be common at scale, the container-
reconciler will make forward progress with a simple quorum majority. During a combination of failures
and rebalances it is possible that a quorum could provide an incomplete record of the correct storage
policy - so an object write may have to be applied more than once. Because storage nodes and container
databases will not process writes with an X-Timestamp less than or equal to their existing record
when objects writes are re-applied their timestamp is slightly incremented. In order for this increment
to be applied transparently to the client a second vector of time has been added to Swift for internal use.
See Timestamp.

As the reconciler applies object writes to the correct storage policy it cleans up writes which no longer
apply to the incorrect storage policy and removes the rows from the .misplaced_objects con-
tainers. After all rows have been successfully processed it sleeps and will periodically check for newly
enqueued rows to be discovered during container replication.

2.4. Storage Policies 21



Swift Documentation, Release 2.27.1.dev38

2.4.3 Default versus Policy-0

Storage Policies is a versatile feature intended to support both new and pre-existing clusters with the
same level of flexibility. For that reason, we introduce the Policy-0 concept which is not the same
as the default policy. As you will see when we begin to configure policies, each policy has a single
name and an arbitrary number of aliases (human friendly, configurable) as well as an index (or simply
policy number). Swift reserves index 0 to map to the object ring thats present in all installations (e.g., /
etc/swift/object.ring.gz). You can name this policy anything you like, and if no policies are
defined it will report itself as Policy-0, however you cannot change the index as there must always
be a policy with index 0.

Another important concept is the default policy which can be any policy in the cluster. The default policy
is the policy that is automatically chosen when a container creation request is sent without a storage
policy being specified. Configuring Policies describes how to set the default policy. The difference from
Policy-0 is subtle but extremely important. Policy-0 is what is used by Swift when accessing
pre-storage-policy containers which wont have a policy - in this case we would not use the default as
it might not have the same policy as legacy containers. When no other policies are defined, Swift will
always choose Policy-0 as the default.

In other words, default means create using this policy if nothing else is specified and Policy-0 means
use the legacy policy if a container doesnt have one which really means use object.ring.gz for
lookups.

Note: With the Storage Policy based code, its not possible to create a container that doesnt have a
policy. If nothing is provided, Swift will still select the default and assign it to the container. For
containers created before Storage Policies were introduced, the legacy Policy-0 will be used.

2.4.4 Deprecating Policies

There will be times when a policy is no longer desired; however simply deleting the policy and associated
rings would be problematic for existing data. In order to ensure that resources are not orphaned in the
cluster (left on disk but no longer accessible) and to provide proper messaging to applications when
a policy needs to be retired, the notion of deprecation is used. Configuring Policies describes how to
deprecate a policy.

Swifts behavior with deprecated policies is as follows:

• The deprecated policy will not appear in /info

• PUT/GET/DELETE/POST/HEAD are still allowed on the pre-existing containers created with a
deprecated policy

• Clients will get an 400 Bad Request error when trying to create a new container using the depre-
cated policy

• Clients still have access to policy statistics via HEAD on pre-existing containers

Note: A policy cannot be both the default and deprecated. If you deprecate the default policy, you must
specify a new default.

You can also use the deprecated feature to rollout new policies. If you want to test a new storage policy
before making it generally available you could deprecate the policy when you initially roll it the new

22 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

configuration and rings to all nodes. Being deprecated will render it innate and unable to be used. To test
it you will need to create a container with that storage policy; which will require a single proxy instance
(or a set of proxy-servers which are only internally accessible) that has been one-off configured with the
new policy NOT marked deprecated. Once the container has been created with the new storage policy
any client authorized to use that container will be able to add and access data stored in that container in
the new storage policy. When satisfied you can roll out a new swift.conf which does not mark the
policy as deprecated to all nodes.

2.4.5 Configuring Policies

Note: See Adding Storage Policies to an Existing SAIO for a step by step guide on adding a policy to
the SAIO setup.

It is important that the deployer have a solid understanding of the semantics for configuring policies.
Configuring a policy is a three-step process:

1. Edit your /etc/swift/swift.conf file to define your new policy.

2. Create the corresponding policy object ring file.

3. (Optional) Create policy-specific proxy-server configuration settings.

Defining a policy

Each policy is defined by a section in the /etc/swift/swift.conf file. The section name must be
of the form [storage-policy:<N>] where <N> is the policy index. Theres no reason other than
readability that policy indexes be sequential but the following rules are enforced:

• If a policy with index 0 is not declared and no other policies are defined, Swift will create a default
policy with index 0.

• The policy index must be a non-negative integer.

• Policy indexes must be unique.

Warning: The index of a policy should never be changed once a policy has been created and used.
Changing a policy index may cause loss of access to data.

Each policy section contains the following options:

• name = <policy_name> (required)

– The primary name of the policy.

– Policy names are case insensitive.

– Policy names must contain only letters, digits or a dash.

– Policy names must be unique.

– Policy names can be changed.

– The name Policy-0 can only be used for the policy with index 0.

2.4. Storage Policies 23



Swift Documentation, Release 2.27.1.dev38

• aliases = <policy_name>[, <policy_name>, ...] (optional)

– A comma-separated list of alternative names for the policy.

– The default value is an empty list (i.e. no aliases).

– All alias names must follow the rules for the name option.

– Aliases can be added to and removed from the list.

– Aliases can be useful to retain support for old primary names if the primary name is
changed.

• default = [true|false] (optional)

– If true then this policy will be used when the client does not specify a policy.

– The default value is false.

– The default policy can be changed at any time, by setting default = true in the
desired policy section.

– If no policy is declared as the default and no other policies are defined, the policy with
index 0 is set as the default;

– Otherwise, exactly one policy must be declared default.

– Deprecated policies cannot be declared the default.

– See Default versus Policy-0 for more information.

• deprecated = [true|false] (optional)

– If true then new containers cannot be created using this policy.

– The default value is false.

– Any policy may be deprecated by adding the deprecated option to the desired policy
section. However, a deprecated policy may not also be declared the default. Therefore,
since there must always be a default policy, there must also always be at least one policy
which is not deprecated.

– See Deprecating Policies for more information.

• policy_type = [replication|erasure_coding] (optional)

– The option policy_type is used to distinguish between different policy types.

– The default value is replication.

– When defining an EC policy use the value erasure_coding.

• diskfile_module = <entry point> (optional)

– The option diskfile_module is used to load an alternate backend object storage
plug-in architecture.

– The default value is egg:swift#replication.fs or
egg:swift#erasure_coding.fs depending on the policy type. The scheme
and package name are optionals and default to egg and swift.

The EC policy type has additional required options. See Using an Erasure Code Policy for details.

The following is an example of a properly configured swift.conf file. See Adding Storage Policies
to an Existing SAIO for full instructions on setting up an all-in-one with this example configuration.:

24 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

[swift-hash]
# random unique strings that can never change (DO NOT LOSE)
# Use only printable chars (python -c "import string; print(string.
↪→printable)")
swift_hash_path_prefix = changeme
swift_hash_path_suffix = changeme

[storage-policy:0]
name = gold
aliases = yellow, orange
policy_type = replication
default = yes

[storage-policy:1]
name = silver
policy_type = replication
diskfile_module = replication.fs
deprecated = yes

Creating a ring

Once swift.conf is configured for a new policy, a new ring must be created. The ring tools are not
policy name aware so its critical that the correct policy index be used when creating the new policys
ring file. Additional object rings are created using swift-ring-builder in the same manner as the
legacy ring except that -N is appended after the word object in the builder file name, where N matches
the policy index used in swift.conf. So, to create the ring for policy index 1:

swift-ring-builder object-1.builder create 10 3 1

Continue to use the same naming convention when using swift-ring-builder to add devices,
rebalance etc. This naming convention is also used in the pattern for per-policy storage node data
directories.

Note: The same drives can indeed be used for multiple policies and the details of how thats managed on
disk will be covered in a later section, its important to understand the implications of such a configuration
before setting one up. Make sure its really what you want to do, in many cases it will be, but in others
maybe not.

2.4. Storage Policies 25



Swift Documentation, Release 2.27.1.dev38

Proxy server configuration (optional)

The Proxy Server configuration options related to read and write affinity may optionally be overridden
for individual storage policies. See Per policy configuration for more details.

2.4.6 Using Policies

Using policies is very simple - a policy is only specified when a container is initially created. There are
no other API changes. Creating a container can be done without any special policy information:

curl -v -X PUT -H 'X-Auth-Token: <your auth token>' \
http://127.0.0.1:8080/v1/AUTH_test/myCont0

Which will result in a container created that is associated with the policy name gold assuming were using
the swift.conf example from above. It would use gold because it was specified as the default. Now, when
we put an object into this container, it will get placed on nodes that are part of the ring we created for
policy gold.

If we wanted to explicitly state that we wanted policy gold the command would simply need to include
a new header as shown below:

curl -v -X PUT -H 'X-Auth-Token: <your auth token>' \
-H 'X-Storage-Policy: gold' http://127.0.0.1:8080/v1/AUTH_test/myCont0

And thats it! The application does not need to specify the policy name ever again. There are some illegal
operations however:

• If an invalid (typo, non-existent) policy is specified: 400 Bad Request

• if you try to change the policy either via PUT or POST: 409 Conflict

If youd like to see how the storage in the cluster is being used, simply HEAD the account and youll see
not only the cumulative numbers, as before, but per policy statistics as well. In the example below theres
3 objects total with two of them in policy gold and one in policy silver:

curl -i -X HEAD -H 'X-Auth-Token: <your auth token>' \
http://127.0.0.1:8080/v1/AUTH_test

and your results will include (some output removed for readability):

X-Account-Container-Count: 3
X-Account-Object-Count: 3
X-Account-Bytes-Used: 21
X-Storage-Policy-Gold-Object-Count: 2
X-Storage-Policy-Gold-Bytes-Used: 14
X-Storage-Policy-Silver-Object-Count: 1
X-Storage-Policy-Silver-Bytes-Used: 7

26 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

2.4.7 Under the Hood

Now that weve explained a little about what Policies are and how to configure/use them, lets explore
how Storage Policies fit in at the nuts-n-bolts level.

Parsing and Configuring

The module, Storage Policy, is responsible for parsing the swift.conf file, validating the input, and
creating a global collection of configured policies via class StoragePolicyCollection. This col-
lection is made up of policies of class StoragePolicy . The collection class includes handy functions
for getting to a policy either by name or by index , getting info about the policies, etc. Theres also one
very important function, get_object_ring(). Object rings are members of the StoragePolicy
class and are actually not instantiated until the load_ring() method is called. Any caller anywhere
in the code base that needs to access an object ring must use the POLICIES global singleton to access
the get_object_ring() function and provide the policy index which will call load_ring() if
needed; however, when starting request handling services such as the Proxy Server rings are proactively
loaded to provide moderate protection against a mis-configuration resulting in a run time error. The
global is instantiated when Swift starts and provides a mechanism to patch policies for the test code.

Middleware

Middleware can take advantage of policies through the POLICIES global and by importing
get_container_info() to gain access to the policy index associated with the container in ques-
tion. From the index it can then use the POLICIES singleton to grab the right ring. For example, List
Endpoints is policy aware using the means just described. Another example is Recon which will report
the md5 sums for all of the rings.

Proxy Server

The Proxy Server modules role in Storage Policies is essentially to make sure the correct ring is used as
its member element. Before policies, the one object ring would be instantiated when the Application
class was instantiated and could be overridden by test code via init parameter. With policies, however,
there is no init parameter and the Application class instead depends on the POLICIES global
singleton to retrieve the ring which is instantiated the first time its needed. So, instead of an object ring
member of the Application class, there is an accessor function, get_object_ring(), that gets
the ring from POLICIES.

In general, when any module running on the proxy requires an object ring, it does so via first getting the
policy index from the cached container info. The exception is during container creation where it uses
the policy name from the request header to look up policy index from the POLICIES global. Once the
proxy has determined the policy index, it can use the get_object_ring() method described earlier
to gain access to the correct ring. It then has the responsibility of passing the index information, not the
policy name, on to the back-end servers via the header X -Backend-Storage-Policy-Index.
Going the other way, the proxy also strips the index out of headers that go back to clients, and makes
sure they only see the friendly policy names.

2.4. Storage Policies 27



Swift Documentation, Release 2.27.1.dev38

On Disk Storage

Policies each have their own directories on the back-end servers and are identified by their storage policy
indexes. Organizing the back-end directory structures by policy index helps keep track of things and also
allows for sharing of disks between policies which may or may not make sense depending on the needs
of the provider. More on this later, but for now be aware of the following directory naming convention:

• /objects maps to objects associated with Policy-0

• /objects-N maps to storage policy index #N

• /async_pending maps to async pending update for Policy-0

• /async_pending-N maps to async pending update for storage policy index #N

• /tmp maps to the DiskFile temporary directory for Policy-0

• /tmp-N maps to the DiskFile temporary directory for policy index #N

• /quarantined/objects maps to the quarantine directory for Policy-0

• /quarantined/objects-N maps to the quarantine directory for policy index #N

Note that these directory names are actually owned by the specific Diskfile implementation, the names
shown above are used by the default Diskfile.

Object Server

The Object Server is not involved with selecting the storage policy placement directly. However, because
of how back-end directory structures are setup for policies, as described earlier, the object server modules
do play a role. When the object server gets a Diskfile, it passes in the policy index and leaves the
actual directory naming/structure mechanisms to Diskfile. By passing in the index, the instance of
Diskfile being used will assure that data is properly located in the tree based on its policy.

For the same reason, the Object Updater also is policy aware. As previously described, different policies
use different async pending directories so the updater needs to know how to scan them appropriately.

The Object Replicator is policy aware in that, depending on the policy, it may have to do drastically
different things, or maybe not. For example, the difference in handling a replication job for 2x versus 3x
is trivial; however, the difference in handling replication between 3x and erasure code is most definitely
not. In fact, the term replication really isnt appropriate for some policies like erasure code; however, the
majority of the framework for collecting and processing jobs is common. Thus, those functions in the
replicator are leveraged for all policies and then there is policy specific code required for each policy,
added when the policy is defined if needed.

The ssync functionality is policy aware for the same reason. Some of the other modules may not ob-
viously be affected, but the back-end directory structure owned by Diskfile requires the policy in-
dex parameter. Therefore ssync being policy aware really means passing the policy index along. See
ssync_sender and ssync_receiver for more information on ssync.

For Diskfile itself, being policy aware is all about managing the back-end structure using the pro-
vided policy index. In other words, callers who get a Diskfile instance provide a policy index and
Diskfiles job is to keep data separated via this index (however it chooses) such that policies can
share the same media/nodes if desired. The included implementation of Diskfile lays out the direc-
tory structure described earlier but thats owned within Diskfile; external modules have no visibility
into that detail. A common function is provided to map various directory names and/or strings based on

28 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

their policy index. For example Diskfile defines get_data_dir() which builds off of a generic
get_policy_string() to consistently build policy aware strings for various usage.

Container Server

The Container Server plays a very important role in Storage Policies, it is responsible for handling the
assignment of a policy to a container and the prevention of bad things like changing policies or picking
the wrong policy to use when nothing is specified (recall earlier discussion on Policy-0 versus default).

The Container Updater is policy aware, however its job is very simple, to pass the policy index along to
the Account Server via a request header.

The Container Backend is responsible for both altering existing DB schema as well as assuring new DBs
are created with a schema that supports storage policies. The on-demand migration of container schemas
allows Swift to upgrade without downtime (sqlites alter statements are fast regardless of row count). To
support rolling upgrades (and downgrades) the incompatible schema changes to the container_stat
table are made to a container_info table, and the container_stat table is replaced with a view
that includes an INSTEAD OF UPDATE trigger which makes it behave like the old table.

The policy index is stored here for use in reporting information about the container as well as managing
split-brain scenario induced discrepancies between containers and their storage policies. Furthermore,
during split-brain, containers must be prepared to track object updates from multiple policies so the
object table also includes a storage_policy_index column. Per-policy object counts and bytes
are updated in the policy_stat table using INSERT and DELETE triggers similar to the pre-policy
triggers that updated container_stat directly.

The Container Replicator daemon will pro-actively migrate legacy schemas as part of its nor-
mal consistency checking process when it updates the reconciler_sync_point entry in the
container_info table. This ensures that read heavy containers which do not encounter any writes
will still get migrated to be fully compatible with the post-storage-policy queries without having to fall
back and retry queries with the legacy schema to service container read requests.

The Container Sync functionality only needs to be policy aware in that it accesses the object rings.
Therefore, it needs to pull the policy index out of the container information and use it to select the
appropriate object ring from the POLICIES global.

Account Server

The Account Servers role in Storage Policies is really limited to reporting. When a HEAD request is
made on an account (see example provided earlier), the account server is provided with the storage
policy index and builds the object_count and byte_count information for the client on a per
policy basis.

The account servers are able to report per-storage-policy object and byte counts because of some policy
specific DB schema changes. A policy specific table, policy_stat, maintains information on a per
policy basis (one row per policy) in the same manner in which the account_stat table does. The
account_stat table still serves the same purpose and is not replaced by policy_stat, it holds the
total account stats whereas policy_stat just has the break downs. The backend is also responsible
for migrating pre-storage-policy accounts by altering the DB schema and populating the policy_stat
table for Policy-0 with current account_stat data at that point in time.

The per-storage-policy object and byte counts are not updated with each object PUT and DELETE
request, instead container updates to the account server are performed asynchronously by the
swift-container-updater.

2.4. Storage Policies 29



Swift Documentation, Release 2.27.1.dev38

Upgrading and Confirming Functionality

Upgrading to a version of Swift that has Storage Policy support is not difficult, in fact, the cluster admin-
istrator isnt required to make any special configuration changes to get going. Swift will automatically
begin using the existing object ring as both the default ring and the Policy-0 ring. Adding the declaration
of policy 0 is totally optional and in its absence, the name given to the implicit policy 0 will be Policy-0.
Lets say for testing purposes that you wanted to take an existing cluster that already has lots of data on
it and upgrade to Swift with Storage Policies. From there you want to go ahead and create a policy and
test a few things out. All you need to do is:

1. Upgrade all of your Swift nodes to a policy-aware version of Swift

2. Define your policies in /etc/swift/swift.conf

3. Create the corresponding object rings

4. Create containers and objects and confirm their placement is as expected

For a specific example that takes you through these steps, please see Adding Storage Policies to an
Existing SAIO

Note: If you downgrade from a Storage Policy enabled version of Swift to an older version that doesnt
support policies, you will not be able to access any data stored in policies other than the policy with index
0 but those objects WILL appear in container listings (possibly as duplicates if there was a network
partition and un-reconciled objects). It is EXTREMELY important that you perform any necessary
integration testing on the upgraded deployment before enabling an additional storage policy to ensure
a consistent API experience for your clients. DO NOT downgrade to a version of Swift that does not
support storage policies once you expose multiple storage policies.

2.5 The Account Reaper

The Account Reaper removes data from deleted accounts in the background.

An account is marked for deletion by a reseller issuing a DELETE request on the accounts storage URL.
This simply puts the value DELETED into the status column of the account_stat table in the account
database (and replicas), indicating the data for the account should be deleted later.

There is normally no set retention time and no undelete; it is assumed the reseller will implement such
features and only call DELETE on the account once it is truly desired the accounts data be removed.
However, in order to protect the Swift cluster accounts from an improper or mistaken delete request,
you can set a delay_reaping value in the [account-reaper] section of the account-server.conf to delay
the actual deletion of data. At this time, there is no utility to undelete an account; one would have to
update the account database replicas directly, setting the status column to an empty string and updating
the put_timestamp to be greater than the delete_timestamp. (On the TODO list is writing a utility to
perform this task, preferably through a REST call.)

The account reaper runs on each account server and scans the server occasionally for account databases
marked for deletion. It will only trigger on accounts that server is the primary node for, so that multiple
account servers arent all trying to do the same work at the same time. Using multiple servers to delete
one account might improve deletion speed, but requires coordination so they arent duplicating effort.
Speed really isnt as much of a concern with data deletion and large accounts arent deleted that often.

30 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

The deletion process for an account itself is pretty straightforward. For each container in the account,
each object is deleted and then the container is deleted. Any deletion requests that fail wont stop the
overall process, but will cause the overall process to fail eventually (for example, if an object delete times
out, the container wont be able to be deleted later and therefore the account wont be deleted either). The
overall process continues even on a failure so that it doesnt get hung up reclaiming cluster space because
of one troublesome spot. The account reaper will keep trying to delete an account until it eventually
becomes empty, at which point the database reclaim process within the db_replicator will eventually
remove the database files.

Sometimes a persistent error state can prevent some object or container from being deleted. If this
happens, you will see a message such as Account <name> has not been reaped since <date> in the log.
You can control when this is logged with the reap_warn_after value in the [account-reaper] section of
the account-server.conf file. By default this is 30 days.

2.5.1 History

At first, a simple approach of deleting an account through completely external calls was considered as
it required no changes to the system. All data would simply be deleted in the same way the actual user
would, through the public REST API. However, the downside was that it would use proxy resources and
log everything when it didnt really need to. Also, it would likely need a dedicated server or two, just for
issuing the delete requests.

A completely bottom-up approach was also considered, where the object and container servers would
occasionally scan the data they held and check if the account was deleted, removing the data if so. The
upside was the speed of reclamation with no impact on the proxies or logging, but the downside was that
nearly 100% of the scanning would result in no action creating a lot of I/O load for no reason.

A more container server centric approach was also considered, where the account server would mark
all the containers for deletion and the container servers would delete the objects in each container and
then themselves. This has the benefit of still speedy reclamation for accounts with a lot of containers,
but has the downside of a pretty big load spike. The process could be slowed down to alleviate the load
spike possibility, but then the benefit of speedy reclamation is lost and whats left is just a more complex
process. Also, scanning all the containers for those marked for deletion when the majority wouldnt be
seemed wasteful. The db_replicator could do this work while performing its replication scan, but it
would have to spawn and track deletion processes which seemed needlessly complex.

In the end, an account server centric approach seemed best, as described above.

2.6 The Auth System

2.6.1 Overview

Swift supports a number of auth systems that share the following common characteristics:

• The authentication/authorization part can be an external system or a subsystem run within Swift
as WSGI middleware

• The user of Swift passes in an auth token with each request

• Swift validates each token with the external auth system or auth subsystem and caches the result

• The token does not change from request to request, but does expire

2.6. The Auth System 31



Swift Documentation, Release 2.27.1.dev38

The token can be passed into Swift using the X-Auth-Token or the X-Storage-Token header. Both have
the same format: just a simple string representing the token. Some auth systems use UUID tokens, some
an MD5 hash of something unique, some use something else but the salient point is that the token is a
string which can be sent as-is back to the auth system for validation.

Swift will make calls to the auth system, giving the auth token to be validated. For a valid token, the
auth system responds with an overall expiration time in seconds from now. To avoid the overhead in
validating the same token over and over again, Swift will cache the token for a configurable time, but no
longer than the expiration time.

The Swift project includes two auth systems:

• TempAuth

• Keystone Auth

It is also possible to write your own auth system as described in Extending Auth.

2.6.2 TempAuth

TempAuth is used primarily in Swifts functional test environment and can be used in other test envi-
ronments (such as SAIO (Swift All In One)). It is not recommended to use TempAuth in a production
system. However, TempAuth is fully functional and can be used as a model to develop your own auth
system.

TempAuth has the concept of admin and non-admin users within an account. Admin users can do any-
thing within the account. Non-admin users can only perform read operations. However, some privileged
metadata such as X-Container-Sync-Key is not accessible to non-admin users.

Users with the special group .reseller_admin can operate on any account. For an example usage
please see swift.common.middleware.tempauth. If a request is coming from a reseller the
auth system sets the request environ reseller_request to True. This can be used by other middlewares.

Other users may be granted the ability to perform operations on an account or container via ACLs.
TempAuth supports two types of ACL:

• Per container ACLs based on the containers X-Container-Read and
X-Container-Write metadata. See Container ACLs for more information.

• Per account ACLs based on the accounts X-Account-Access-Control metadata. For more
information see Account ACLs.

TempAuth will now allow OPTIONS requests to go through without a token.

The TempAuth middleware is responsible for creating its own tokens. A user makes a request containing
their username and password and TempAuth responds with a token. This token is then used to perform
subsequent requests on the users account, containers and objects.

32 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

2.6.3 Keystone Auth

Swift is able to authenticate against OpenStack Keystone. In this environment, Keystone is responsible
for creating and validating tokens. The KeystoneAuth middleware is responsible for implementing the
auth system within Swift as described here.

The KeystoneAuth middleware supports per container based ACLs on the containers
X-Container-Read and X-Container-Write metadata. For more information see Con-
tainer ACLs.

The account-level ACL is not supported by Keystone auth.

In order to use the keystoneauth middleware the auth_token middleware from KeystoneMid-
dleware will need to be configured.

The authtoken middleware performs the authentication token validation and retrieves actual user
authentication information. It can be found in the KeystoneMiddleware distribution.

The KeystoneAuth middleware performs authorization and mapping the Keystone roles to Swifts ACLs.

Configuring Swift to use Keystone

Configuring Swift to use Keystone is relatively straightforward. The first step is to ensure that you have
the auth_token middleware installed. It can either be dropped in your python path or installed via
the KeystoneMiddleware package.

You need at first make sure you have a service endpoint of type object-store in Keystone point-
ing to your Swift proxy. For example having this in your /etc/keystone/default_catalog.
templates

catalog.RegionOne.object_store.name = Swift Service
catalog.RegionOne.object_store.publicURL = http://swiftproxy:8080/v1/AUTH_
↪→$(tenant_id)s
catalog.RegionOne.object_store.adminURL = http://swiftproxy:8080/
catalog.RegionOne.object_store.internalURL = http://swiftproxy:8080/v1/
↪→AUTH_$(tenant_id)s

On your Swift proxy server you will want to adjust your main pipeline and add auth_token and key-
stoneauth in your /etc/swift/proxy-server.conf like this

[pipeline:main]
pipeline = [....] authtoken keystoneauth proxy-logging proxy-server

add the configuration for the authtoken middleware:

[filter:authtoken]
paste.filter_factory = keystonemiddleware.auth_token:filter_factory
www_authenticate_uri = http://keystonehost:5000/
auth_url = http://keystonehost:5000/
auth_plugin = password
project_domain_id = default
user_domain_id = default
project_name = service
username = swift
password = password
cache = swift.cache

(continues on next page)

2.6. The Auth System 33

https://docs.openstack.org/keystone/latest/
https://docs.openstack.org/keystonemiddleware/latest/
https://docs.openstack.org/keystonemiddleware/latest/
https://docs.openstack.org/keystonemiddleware/latest/
https://docs.openstack.org/keystone/latest/
https://docs.openstack.org/keystonemiddleware/latest/


Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

include_service_catalog = False
delay_auth_decision = True

The actual values for these variables will need to be set depending on your situation, but in short:

• www_authenticate_uri should point to a Keystone service from which users may retrieve
tokens. This value is used in the WWW-Authenticate header that auth_token sends with any denial
response.

• auth_url points to the Keystone Admin service. This information is used by the middleware
to actually query Keystone about the validity of the authentication tokens. It is not necessary to
append any Keystone API version number to this URI.

• The auth credentials (project_domain_id, user_domain_id, username,
project_name, password) will be used to retrieve an admin token. That token will
be used to authorize user tokens behind the scenes. These credentials must match the Keystone
credentials for the Swift service. The example values shown here assume a user named swift with
admin role on a project named service, both being in the Keystone domain with id default. Refer
to the KeystoneMiddleware documentation for other examples.

• cache is set to swift.cache. This means that the middleware will get the Swift memcache
from the request environment.

• include_service_catalog defaults to True if not set. This means that when validating
a token, the service catalog is retrieved and stored in the X-Service-Catalog header. Since
Swift does not use the X-Service-Catalog header, there is no point in getting the service
catalog. We recommend you set include_service_catalog to False.

Note: The authtoken config variable delay_auth_decision must be set to True. The default is
False, but that breaks public access, StaticWeb, FormPost, TempURL, and authenticated capabilities
requests (using Discoverability).

and you can finally add the keystoneauth configuration. Here is a simple configuration:

[filter:keystoneauth]
use = egg:swift#keystoneauth
operator_roles = admin, swiftoperator

Use an appropriate list of roles in operator_roles. For example, in some systems, the role _member_ or
Member is used to indicate that the user is allowed to operate on project resources.

OpenStack Service Using Composite Tokens

Some OpenStack services such as Cinder and Glance may use a service account. In this mode, you
configure a separate account where the service stores project data that it manages. This account is not
used directly by the end-user. Instead, all access is done through the service.

To access the service account, the service must present two tokens: one from the end-user and another
from its own service user. Only when both tokens are present can the account be accessed. This section
describes how to set the configuration options to correctly control access to both the normal and service
accounts.

34 Chapter 2. Overview and Concepts

https://docs.openstack.org/keystonemiddleware/latest/middlewarearchitecture.html#configuration


Swift Documentation, Release 2.27.1.dev38

In this example, end users use the AUTH_ prefix in account names, whereas services use the SERVICE_
prefix:

[filter:keystoneauth]
use = egg:swift#keystoneauth
reseller_prefix = AUTH, SERVICE
operator_roles = admin, swiftoperator
SERVICE_service_roles = service

The actual values for these variable will need to be set depending on your situation as follows:

• The first item in the reseller_prefix list must match Keystones endpoint (see /etc/keystone/
default_catalog.templates above). Normally this is AUTH.

• The second item in the reseller_prefix list is the prefix used by the OpenStack services(s). You
must configure this value (SERVICE in the example) with whatever the other OpenStack ser-
vice(s) use.

• Set the operator_roles option to contain a role or roles that end-users have on projects they use.

• Set the SERVICE_service_roles value to a role or roles that only the OpenStack service user has.
Do not use a role that is assigned to normal end users. In this example, the role service is used.
The service user is granted this role to a single project only. You do not need to make the service
user a member of every project.

This configuration works as follows:

• The end-user presents a user token to an OpenStack service. The service then makes a Swift
request to the account with the SERVICE prefix.

• The service forwards the original user token with the request. It also adds its own service token.

• Swift validates both tokens. When validated, the user token gives the admin or
swiftoperator role(s). When validated, the service token gives the service role.

• Swift interprets the above configuration as follows:

– Did the user token provide one of the roles listed in operator_roles?

– Did the service token have the service role as described by the
SERVICE_service_roles options.

• If both conditions are met, the request is granted. Otherwise, Swift rejects the request.

In the above example, all services share the same account. You can separate each service into its own
account. For example, the following provides a dedicated account for each of the Glance and Cinder ser-
vices. In addition, you must assign the glance_service and cinder_service to the appropriate
service users:

[filter:keystoneauth]
use = egg:swift#keystoneauth
reseller_prefix = AUTH, IMAGE, VOLUME
operator_roles = admin, swiftoperator
IMAGE_service_roles = glance_service
VOLUME_service_roles = cinder_service

2.6. The Auth System 35



Swift Documentation, Release 2.27.1.dev38

Access control using keystoneauth

By default the only users able to perform operations (e.g. create a container) on an account are those
having a Keystone role for the corresponding Keystone project that matches one of the roles specified in
the operator_roles option.

Users who have one of the operator_roles will be able to set container ACLs to grant other
users permission to read and/or write objects in specific containers, using X-Container-Read and
X-Container-Write headers respectively. In addition to the ACL formats described here, key-
stoneauth supports ACLs using the format:

other_project_id:other_user_id.

where other_project_id is the UUID of a Keystone project and other_user_id is the UUID
of a Keystone user. This will allow the other user to access a container provided their token is scoped
on the other project. Both other_project_id and other_user_id may be replaced with the
wildcard character * which will match any project or user respectively.

Be sure to use Keystone UUIDs rather than names in container ACLs.

Note: For backwards compatibility, keystoneauth will by default grant container ACLs expressed as
other_project_name:other_user_name (i.e. using Keystone names rather than UUIDs) in
the special case when both the other project and the other user are in Keystones default domain and the
project being accessed is also in the default domain.

For further information see KeystoneAuth

Users with the Keystone role defined in reseller_admin_role (ResellerAdmin by default)
can operate on any account. The auth system sets the request environ reseller_request to True if a
request is coming from a user with this role. This can be used by other middlewares.

Troubleshooting tips for keystoneauth deployment

Some common mistakes can result in API requests failing when first deploying keystone with Swift:

• Incorrect configuration of the Swift endpoint in the Keystone service.

By default, keystoneauth expects the account part of a URL to have the form
AUTH_<keystone_project_id>. Sometimes the AUTH_ prefix is missed when configur-
ing Swift endpoints in Keystone, as described in the Install Guide. This is easily diagnosed by
inspecting the proxy-server log file for a failed request URL and checking that the URL includes
the AUTH_ prefix (or whatever reseller prefix may have been configured for keystoneauth):

GOOD:
proxy-server: 127.0.0.1 127.0.0.1 07/Sep/2016/16/06/58 HEAD /v1/AUTH_
↪→cfb8d9d45212408b90bc0776117aec9e HTTP/1.0 204 ...

BAD:
proxy-server: 127.0.0.1 127.0.0.1 07/Sep/2016/16/07/35 HEAD /v1/
↪→cfb8d9d45212408b90bc0776117aec9e HTTP/1.0 403 ...

• Incorrect configuration of the authtoken middleware options in the Swift proxy server.

36 Chapter 2. Overview and Concepts

http://docs.openstack.org/


Swift Documentation, Release 2.27.1.dev38

The authtoken middleware communicates with the Keystone service to validate tokens that are
presented with client requests. To do this authtoken must authenticate itself with Keystone
using the credentials configured in the [filter:authtoken] section of /etc/swift/
proxy-server.conf. Errors in these credentials can result in authtoken failing to validate
tokens and may be revealed in the proxy server logs by a message such as:

proxy-server: Identity server rejected authorization

Note: More detailed log messaging may be seen by setting the authtoken option log_level
= debug.

The authtoken configuration options may be checked by attempting to use them to commu-
nicate directly with Keystone using an openstack command line. For example, given the
authtoken configuration sample shown in Configuring Swift to use Keystone, the following
command should return a service catalog:

openstack --os-identity-api-version=3 --os-auth-url=http://
↪→keystonehost:5000/ \

--os-username=swift --os-user-domain-id=default \
--os-project-name=service --os-project-domain-id=default \
--os-password=password catalog show object-store

If this openstack command fails then it is likely that there is a problem with the authtoken
configuration.

2.6.4 Extending Auth

TempAuth is written as wsgi middleware, so implementing your own auth is as easy as writing new wsgi
middleware, and plugging it in to the proxy server. The Swauth project is an example of an additional
auth service.

See Auth Server and Middleware for detailed information on extending the auth system.

2.7 Access Control Lists (ACLs)

Normally to create, read and modify containers and objects, you must have the appropriate roles on the
project associated with the account, i.e., you must be the owner of the account. However, an owner can
grant access to other users by using an Access Control List (ACL).

There are two types of ACLs:

• Container ACLs. These are specified on a container and apply to that container only and the
objects in the container.

• Account ACLs. These are specified at the account level and apply to all containers and objects in
the account.

2.7. Access Control Lists (ACLs) 37

https://github.com/openstack/swauth


Swift Documentation, Release 2.27.1.dev38

2.7.1 Container ACLs

Container ACLs are stored in the X-Container-Write and X-Container-Read metadata. The
scope of the ACL is limited to the container where the metadata is set and the objects in the container.
In addition:

• X-Container-Write grants the ability to perform PUT, POST and DELETE operations on
objects within a container. It does not grant the ability to perform POST or DELETE operations
on the container itself. Some ACL elements also grant the ability to perform HEAD or GET
operations on the container.

• X-Container-Read grants the ability to perform GET and HEAD operations on objects within
a container. Some of the ACL elements also grant the ability to perform HEAD or GET operations
on the container itself. However, a container ACL does not allow access to privileged metadata
(such as X-Container-Sync-Key).

Container ACLs use the V1 ACL syntax which is a comma separated string of elements as shown in the
following example:

.r:*,.rlistings,7ec59e87c6584c348b563254aae4c221:*

Spaces may occur between elements as shown in the following example:

.r : *, .rlistings, 7ec59e87c6584c348b563254aae4c221:*

However, these spaces are removed from the value stored in the X-Container-Write and
X-Container-Read metadata. In addition, the .r: string can be written as .referrer:, but
is stored as .r:.

While all auth systems use the same syntax, the meaning of some elements is different because of the
different concepts used by different auth systems as explained in the following sections:

• Common ACL Elements

• Keystone Auth ACL Elements

• TempAuth ACL Elements

Common ACL Elements

The following table describes elements of an ACL that are supported by both Keystone auth and Tem-
pAuth. These elements should only be used with X-Container-Read (with the exception of .
rlistings, an error will occur if used with X-Container-Write):

Ele-
ment

Description

.r:* Any user has access to objects. No token is required in the request.

.r:<referrer>The referrer is granted access to objects. The referrer is identified by the Referer request
header in the request. No token is required.

.r:-
<referrer>

This syntax (with - prepended to the referrer) is supported. However, it does not deny access
if another element (e.g., .r:*) grants access.

.rlist-
ings

Any user can perform a HEAD or GET operation on the container provided the user also
has read access on objects (e.g., also has .r:* or .r:<referrer>. No token is required.

38 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

Keystone Auth ACL Elements

The following table describes elements of an ACL that are supported only by Keystone auth. Keystone
auth also supports the elements described in Common ACL Elements.

A token must be included in the request for any of these ACL elements to take effect.

Ele-
ment

Description

<project-
id>:<user-
id>

The specified user, provided a token scoped to the project is included in the re-
quest, is granted access. Access to the container is also granted when used in
X-Container-Read.

<project-
id>:*

Any user with a role in the specified Keystone project has access. A token scoped to the
project must be included in the request. Access to the container is also granted when used
in X-Container-Read.

*:<user-
id>

The specified user has access. A token for the user (scoped to any project) must be included
in the request. Access to the container is also granted when used in X-Container-Read.

*:* Any user has access. Access to the container is also granted when used in
X-Container-Read. The *:* element differs from the .r:* element because *:*
requires that a valid token is included in the request whereas .r:* does not require a token.
In addition, .r:* does not grant access to the container listing.

<role_name>A user with the specified role name on the project within which the container is stored is
granted access. A user token scoped to the project must be included in the request. Access
to the container is also granted when used in X-Container-Read.

Note: Keystone project (tenant) or user names (i.e., <project-name>:<user-name>) must no
longer be used because with the introduction of domains in Keystone, names are not globally unique.
You should use user and project ids instead.

For backwards compatibility, ACLs using names will be granted by keystoneauth when it can be estab-
lished that the grantee project, the grantee user and the project being accessed are either not yet in a
domain (e.g. the X-Auth-Token has been obtained via the Keystone V2 API) or are all in the default
domain to which legacy accounts would have been migrated.

TempAuth ACL Elements

The following table describes elements of an ACL that are supported only by TempAuth. TempAuth
auth also supports the elements described in Common ACL Elements.

Ele-
ment

Description

<user-
name>

The named user is granted access. The wildcard (*) character is not supported. A token
from the user must be included in the request.

2.7. Access Control Lists (ACLs) 39



Swift Documentation, Release 2.27.1.dev38

2.7.2 Container ACL Examples

Container ACLs may be set by including X-Container-Write and/or X-Container-Read head-
ers with a PUT or a POST request to the container URL. The following examples use the swift
command line client which support these headers being set via its --write-acl and --read-acl
options.

Example: Public Container

The following allows anybody to list objects in the www container and download objects. The users do
not need to include a token in their request. This ACL is commonly referred to as making the container
public. It is useful when used with StaticWeb:

swift post www --read-acl ".r:*,.rlistings"

Example: Shared Writable Container

The following allows anybody to upload or download objects. However, to download an object, the
exact name of the object must be known since users cannot list the objects in the container. The users
must include a Keystone token in the upload request. However, it does not need to be scoped to the
project associated with the container:

swift post www --read-acl ".r:*" --write-acl "*:*"

Example: Sharing a Container with Project Members

The following allows any member of the 77b8f82565f14814bece56e50c4c240f project to
upload and download objects or to list the contents of the www container. A token scoped to the
77b8f82565f14814bece56e50c4c240f project must be included in the request:

swift post www --read-acl "77b8f82565f14814bece56e50c4c240f:*" \
--write-acl "77b8f82565f14814bece56e50c4c240f:*"

Example: Sharing a Container with Users having a specified Role

The following allows any user that has been assigned the my_read_access_role on the project
within which the www container is stored to download objects or to list the contents of the www container.
A user token scoped to the project must be included in the download or list request:

swift post www --read-acl "my_read_access_role"

40 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

Example: Allowing a Referrer Domain to Download Objects

The following allows any request from the example.com domain to access an object in the container:

swift post www --read-acl ".r:.example.com"

However, the request from the user must contain the appropriate Referer header as shown in this example
request:

curl -i $publicURL/www/document --head -H "Referer: http://www.example.com/
↪→index.html"

Note: The Referer header is included in requests by many browsers. However, since it is easy to create
a request with any desired value in the Referer header, the referrer ACL has very weak security.

Example: Sharing a Container with Another User

Sharing a Container with another user requires the knowledge of few parameters regarding the users.

The sharing user must know:

• the OpenStack user id of the other user

The sharing user must communicate to the other user:

• the name of the shared container

• the OS_STORAGE_URL

Usually the OS_STORAGE_URL is not exposed directly to the user because the swift client by
default automatically construct the OS_STORAGE_URL based on the User credential.

We assume that in the current directory there are the two client environment script for the two users
sharing.openrc and other.openrc.

The sharing.openrc should be similar to the following:

export OS_USERNAME=sharing
# WARNING: Save the password in clear text only for testing purposes
export OS_PASSWORD=password
export OS_TENANT_NAME=projectName
export OS_AUTH_URL=https://identityHost:portNumber/v2.0
# The following lines can be omitted
export OS_TENANT_ID=tenantIDString
export OS_REGION_NAME=regionName
export OS_CACERT=/path/to/cacertFile

The other.openrc should be similar to the following:

export OS_USERNAME=other
# WARNING: Save the password in clear text only for testing purposes
export OS_PASSWORD=otherPassword
export OS_TENANT_NAME=otherProjectName
export OS_AUTH_URL=https://identityHost:portNumber/v2.0
# The following lines can be omitted

(continues on next page)

2.7. Access Control Lists (ACLs) 41



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

export OS_TENANT_ID=tenantIDString
export OS_REGION_NAME=regionName
export OS_CACERT=/path/to/cacertFile

For more information see using the OpenStack RC file

First we figure out the other user id:

. other.openrc
OUID="$(openstack user show --format json "${OS_USERNAME}" | jq -r .id)"

or alternatively:

. other.openrc
OUID="$(openstack token issue -f json | jq -r .user_id)"

Then we figure out the storage url of the sharing user:

sharing.openrc
SURL="$(swift auth | awk -F = '/OS_STORAGE_URL/ {print $2}')"

Running as the sharing user create a shared container named shared in read-only mode with the other
user using the proper acl:

sharing.openrc
swift post --read-acl "*:${OUID}" shared

Running as the sharing user create and upload a test file:

touch void
swift upload shared void

Running as the other user list the files in the shared container:

other.openrc
swift --os-storage-url="${SURL}" list shared

Running as the other user download the shared container in the /tmp directory:

cd /tmp
swift --os-storage-url="${SURL}" download shared

2.7.3 Account ACLs

Note: Account ACLs are not currently supported by Keystone auth

The X-Account-Access-Control header is used to specify account-level ACLs in a format spe-
cific to the auth system. These headers are visible and settable only by account owners (those for whom
swift_owner is true). Behavior of account ACLs is auth-system-dependent. In the case of Tem-
pAuth, if an authenticated user has membership in a group which is listed in the ACL, then the user is
allowed the access level of that ACL.

42 Chapter 2. Overview and Concepts

https://docs.openstack.org/user-guide/common/cli-set-environment-variables-using-openstack-rc.html


Swift Documentation, Release 2.27.1.dev38

Account ACLs use the V2 ACL syntax, which is a JSON dictionary with keys named admin, read-write,
and read-only. (Note the case sensitivity.) An example value for the X-Account-Access-Control
header looks like this, where a, b and c are user names:

{"admin":["a","b"],"read-only":["c"]}

Keys may be absent (as shown in above example).

The recommended way to generate ACL strings is as follows:

from swift.common.middleware.acl import format_acl
acl_data = { 'admin': ['alice'], 'read-write': ['bob', 'carol'] }
acl_string = format_acl(version=2, acl_dict=acl_data)

Using the format_acl() method will ensure that JSON is encoded as ASCII (using e.g.
u1234 for Unicode). While its permissible to manually send curl commands containing
X-Account-Access-Control headers, you should exercise caution when doing so, due to the
potential for human error.

Within the JSON dictionary stored in X-Account-Access-Control, the keys have the following
meanings:

Ac-
cess
Level

Description

read-
only

These identities can read everything (except privileged headers) in the account. Specifically, a
user with read-only account access can get a list of containers in the account, list the contents
of any container, retrieve any object, and see the (non-privileged) headers of the account, any
container, or any object.

read-
write

These identities can read or write (or create) any container. A user with read-write account
access can create new containers, set any unprivileged container headers, overwrite objects,
delete containers, etc. A read-write user can NOT set account headers (or perform any
PUT/POST/DELETE requests on the account).

ad-
min

These identities have swift_owner privileges. A user with admin account access can do any-
thing the account owner can, including setting account headers and any privileged headers
and thus granting read-only, read-write, or admin access to other users.

For more details, see swift.common.middleware.tempauth. For details on the ACL format,
see swift.common.middleware.acl.

2.8 Replication

Because each replica in Swift functions independently, and clients generally require only a simple ma-
jority of nodes responding to consider an operation successful, transient failures like network partitions
can quickly cause replicas to diverge. These differences are eventually reconciled by asynchronous,
peer-to-peer replicator processes. The replicator processes traverse their local filesystems, concurrently
performing operations in a manner that balances load across physical disks.

Replication uses a push model, with records and files generally only being copied from local to remote
replicas. This is important because data on the node may not belong there (as in the case of handoffs
and ring changes), and a replicator cant know what data exists elsewhere in the cluster that it should

2.8. Replication 43



Swift Documentation, Release 2.27.1.dev38

pull in. Its the duty of any node that contains data to ensure that data gets to where it belongs. Replica
placement is handled by the ring.

Every deleted record or file in the system is marked by a tombstone, so that deletions can be replicated
alongside creations. The replication process cleans up tombstones after a time period known as the
consistency window. The consistency window encompasses replication duration and how long transient
failure can remove a node from the cluster. Tombstone cleanup must be tied to replication to reach
replica convergence.

If a replicator detects that a remote drive has failed, the replicator uses the get_more_nodes interface
for the ring to choose an alternate node with which to synchronize. The replicator can maintain desired
levels of replication in the face of disk failures, though some replicas may not be in an immediately
usable location. Note that the replicator doesnt maintain desired levels of replication when other failures,
such as entire node failures, occur because most failure are transient.

Replication is an area of active development, and likely rife with potential improvements to speed and
correctness.

There are two major classes of replicator - the db replicator, which replicates accounts and containers,
and the object replicator, which replicates object data.

2.8.1 DB Replication

The first step performed by db replication is a low-cost hash comparison to determine whether two
replicas already match. Under normal operation, this check is able to verify that most databases in the
system are already synchronized very quickly. If the hashes differ, the replicator brings the databases in
sync by sharing records added since the last sync point.

This sync point is a high water mark noting the last record at which two databases were known to be
in sync, and is stored in each database as a tuple of the remote database id and record id. Database ids
are unique amongst all replicas of the database, and record ids are monotonically increasing integers.
After all new records have been pushed to the remote database, the entire sync table of the local database
is pushed, so the remote database can guarantee that it is in sync with everything with which the local
database has previously synchronized.

If a replica is found to be missing entirely, the whole local database file is transmitted to the peer using
rsync(1) and vested with a new unique id.

In practice, DB replication can process hundreds of databases per concurrency setting per second (up
to the number of available CPUs or disks) and is bound by the number of DB transactions that must be
performed.

2.8.2 Object Replication

The initial implementation of object replication simply performed an rsync to push data from a local
partition to all remote servers it was expected to exist on. While this performed adequately at small
scale, replication times skyrocketed once directory structures could no longer be held in RAM. We now
use a modification of this scheme in which a hash of the contents for each suffix directory is saved to a
per-partition hashes file. The hash for a suffix directory is invalidated when the contents of that suffix
directory are modified.

The object replication process reads in these hash files, calculating any invalidated hashes. It then
transmits the hashes to each remote server that should hold the partition, and only suffix directories with

44 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

differing hashes on the remote server are rsynced. After pushing files to the remote server, the replication
process notifies it to recalculate hashes for the rsynced suffix directories.

Performance of object replication is generally bound by the number of uncached directories it has to
traverse, usually as a result of invalidated suffix directory hashes. Using write volume and partition
counts from our running systems, it was designed so that around 2% of the hash space on a normal node
will be invalidated per day, which has experimentally given us acceptable replication speeds.

Work continues with a new ssync method where rsync is not used at all and instead all-Swift code is used
to transfer the objects. At first, this ssync will just strive to emulate the rsync behavior. Once deemed
stable it will open the way for future improvements in replication since well be able to easily add code
in the replication path instead of trying to alter the rsync code base and distributing such modifications.

One of the first improvements planned is an index.db that will replace the hashes.pkl. This will allow
quicker updates to that data as well as more streamlined queries. Quite likely well implement a better
scheme than the current one hashes.pkl uses (hash-trees, that sort of thing).

Another improvement planned all along the way is separating the local disk structure from the protocol
path structure. This separation will allow ring resizing at some point, or at least ring-doubling.

Note that for objects being stored with an Erasure Code policy, the replicator daemon is not involved.
Instead, the reconstructor is used by Erasure Code policies and is analogous to the replicator for Repli-
cation type policies. See Erasure Code Support for complete information on both Erasure Code support
as well as the reconstructor.

2.8.3 Hashes.pkl

The hashes.pkl file is a key element for both replication and reconstruction (for Erasure Coding). Both
daemons use this file to determine if any kind of action is required between nodes that are participating in
the durability scheme. The file itself is a pickled dictionary with slightly different formats depending on
whether the policy is Replication or Erasure Code. In either case, however, the same basic information
is provided between the nodes. The dictionary contains a dictionary where the key is a suffix directory
name and the value is the MD5 hash of the directory listing for that suffix. In this manner, the daemon
can quickly identify differences between local and remote suffix directories on a per partition basis as
the scope of any one hashes.pkl file is a partition directory.

For Erasure Code policies, there is a little more information required. An objects hash directory may
contain multiple fragments of a single object in the event that the node is acting as a handoff or perhaps
if a rebalance is underway. Each fragment of an object is stored with a fragment index, so the hashes.pkl
for an Erasure Code partition will still be a dictionary keyed on the suffix directory name, however, the
value is another dictionary keyed on the fragment index with subsequent MD5 hashes for each one as
values. Some files within an object hash directory dont require a fragment index so None is used to
represent those. Below are examples of what these dictionaries might look like.

Replication hashes.pkl:

{'a43': '72018c5fbfae934e1f56069ad4425627',
'b23': '12348c5fbfae934e1f56069ad4421234'}

Erasure Code hashes.pkl:

{'a43': {None: '72018c5fbfae934e1f56069ad4425627',
2: 'b6dd6db937cb8748f50a5b6e4bc3b808'},

'b23': {None: '12348c5fbfae934e1f56069ad4421234',
1: '45676db937cb8748f50a5b6e4bc34567'}}

2.8. Replication 45



Swift Documentation, Release 2.27.1.dev38

2.8.4 Dedicated replication network

Swift has support for using dedicated network for replication traffic. For more information see Overview
of dedicated replication network.

2.9 Rate Limiting

Rate limiting in Swift is implemented as a pluggable middleware. Rate limiting is performed on requests
that result in database writes to the account and container sqlite dbs. It uses memcached and is dependent
on the proxy servers having highly synchronized time. The rate limits are limited by the accuracy of the
proxy server clocks.

2.9.1 Configuration

All configuration is optional. If no account or container limits are provided there will be no rate limiting.
Configuration available:

Option De-
fault

Description

clock_accuracy1000 Represents how accurate the proxy servers system clocks are with each other.
1000 means that all the proxies clock are accurate to each other within 1 mil-
lisecond. No ratelimit should be higher than the clock accuracy.

max_sleep_time_seconds60 App will immediately return a 498 response if the necessary sleep time ever
exceeds the given max_sleep_time_seconds.

log_sleep_time_seconds0 To allow visibility into rate limiting set this value > 0 and all sleeps greater than
the number will be logged.

rate_buffer_seconds5 Number of seconds the rate counter can drop and be allowed to catch up (at a
faster than listed rate). A larger number will result in larger spikes in rate but
better average accuracy.

ac-
count_ratelimit

0 If set, will limit PUT and DELETE requests to /account_name/container_name.
Number is in requests per second.

con-
tainer_ratelimit_size

When set with container_ratelimit_x = r: for containers of size x, limit requests
per second to r. Will limit PUT, DELETE, and POST requests to /a/c/o.

con-
tainer_listing_ratelimit_size

When set with container_listing_ratelimit_x = r: for containers of size x, limit
listing requests per second to r. Will limit GET requests to /a/c.

The container rate limits are linearly interpolated from the values given. A sample container rate limiting
could be:

container_ratelimit_100 = 100

container_ratelimit_200 = 50

container_ratelimit_500 = 20

This would result in

46 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

Container Size Rate Limit
0-99 No limiting
100 100
150 75
500 20
1000 20

2.9.2 Account Specific Ratelimiting

The above ratelimiting is to prevent the many writes to a single container bottleneck from causing a
problem. There could also be a problem where a single account is just using too much of the clusters
resources. In this case, the container ratelimits may not help because the customer could be doing
thousands of reqs/sec to distributed containers each getting a small fraction of the total so those limits
would never trigger. If a system administrator notices this, he/she can set the X-Account-Sysmeta-
Global-Write-Ratelimit on an account and that will limit the total number of write requests (PUT, POST,
DELETE, COPY) that account can do for the whole account. This limit will be in addition to the
applicable account/container limits from above. This header will be hidden from the user, because of
the gatekeeper middleware, and can only be set using a direct client to the account nodes. It accepts a
float value and will only limit requests if the value is > 0.

2.9.3 Black/White-listing

To blacklist or whitelist an account set:

X-Account-Sysmeta-Global-Write-Ratelimit: BLACKLIST

or

X-Account-Sysmeta-Global-Write-Ratelimit: WHITELIST

in the account headers.

2.10 Large Object Support

2.10.1 Overview

Swift has a limit on the size of a single uploaded object; by default this is 5GB. However, the download
size of a single object is virtually unlimited with the concept of segmentation. Segments of the larger
object are uploaded and a special manifest file is created that, when downloaded, sends all the segments
concatenated as a single object. This also offers much greater upload speed with the possibility of
parallel uploads of the segments.

2.10. Large Object Support 47



Swift Documentation, Release 2.27.1.dev38

2.10.2 Dynamic Large Objects

Middleware that will provide Dynamic Large Object (DLO) support.

Using swift

The quickest way to try out this feature is use the swift Swift Tool included with the python-swiftclient
library. You can use the -S option to specify the segment size to use when splitting a large file. For
example:

swift upload test_container -S 1073741824 large_file

This would split the large_file into 1G segments and begin uploading those segments in parallel. Once
all the segments have been uploaded, swift will then create the manifest file so the segments can be
downloaded as one.

So now, the following swift command would download the entire large object:

swift download test_container large_file

swift command uses a strict convention for its segmented object support. In the above ex-
ample it will upload all the segments into a second container named test_container_segments.
These segments will have names like large_file/1290206778.25/21474836480/00000000,
large_file/1290206778.25/21474836480/00000001, etc.

The main benefit for using a separate container is that the main container listings will not
be polluted with all the segment names. The reason for using the segment name format of
<name>/<timestamp>/<size>/<segment> is so that an upload of a new file with the same name wont
overwrite the contents of the first until the last moment when the manifest file is updated.

swift will manage these segment files for you, deleting old segments on deletes and overwrites, etc.
You can override this behavior with the --leave-segments option if desired; this is useful if you
want to have multiple versions of the same large object available.

Direct API

You can also work with the segments and manifests directly with HTTP requests instead of having
swift do that for you. You can just upload the segments like you would any other object and the
manifest is just a zero-byte (not enforced) file with an extra X-Object-Manifest header.

All the object segments need to be in the same container, have a common object name prefix, and sort
in the order in which they should be concatenated. Object names are sorted lexicographically as UTF-8
byte strings. They dont have to be in the same container as the manifest file will be, which is useful to
keep container listings clean as explained above with swift.

The manifest file is simply a zero-byte (not enforced) file with the extra X-Object-Manifest:
<container>/<prefix> header, where <container> is the container the object segments are in
and <prefix> is the common prefix for all the segments.

It is best to upload all the segments first and then create or update the manifest. In this way, the full
object wont be available for downloading until the upload is complete. Also, you can upload a new set
of segments to a second location and then update the manifest to point to this new location. During
the upload of the new segments, the original manifest will still be available to download the first set of
segments.

48 Chapter 2. Overview and Concepts

http://github.com/openstack/python-swiftclient


Swift Documentation, Release 2.27.1.dev38

Note: When updating a manifest object using a POST request, a X-Object-Manifest header must
be included for the object to continue to behave as a manifest object.

The manifest file should have no content. However, this is not enforced. If the manifest path itself con-
forms to container/prefix specified in X-Object-Manifest, and if manifest has some content/data
in it, it would also be considered as segment and manifests content will be part of the concatenated GET
response. The order of concatenation follows the usual DLO logic which is - the order of concatenation
adheres to order returned when segment names are sorted.

Heres an example using curl with tiny 1-byte segments:

# First, upload the segments
curl -X PUT -H 'X-Auth-Token: <token>' http://<storage_url>/
↪→container/myobject/00000001 --data-binary '1'
curl -X PUT -H 'X-Auth-Token: <token>' http://<storage_url>/
↪→container/myobject/00000002 --data-binary '2'
curl -X PUT -H 'X-Auth-Token: <token>' http://<storage_url>/
↪→container/myobject/00000003 --data-binary '3'

# Next, create the manifest file
curl -X PUT -H 'X-Auth-Token: <token>' -H 'X-Object-Manifest:
↪→container/myobject/' http://<storage_url>/container/myobject --
↪→data-binary ''

# And now we can download the segments as a single object
curl -H 'X-Auth-Token: <token>' http://<storage_url>/container/
↪→myobject

class swift.common.middleware.dlo.GetContext(dlo, logger)
Bases: swift.common.wsgi.WSGIContext

get_or_head_response(req, x_object_manifest)

Parameters

• req users request

• x_object_manifest as unquoted, native string

handle_request(req, start_response)
Take a GET or HEAD request, and if it is for a dynamic large object manifest, return an
appropriate response.

Otherwise, simply pass it through.

2.10.3 Static Large Objects

Middleware that will provide Static Large Object (SLO) support.

This feature is very similar to Dynamic Large Object (DLO) support in that it allows the user to upload
many objects concurrently and afterwards download them as a single object. It is different in that it does
not rely on eventually consistent container listings to do so. Instead, a user defined manifest of the object
segments is used.

2.10. Large Object Support 49



Swift Documentation, Release 2.27.1.dev38

Uploading the Manifest

After the user has uploaded the objects to be concatenated, a manifest is uploaded. The request must be
a PUT with the query parameter:

?multipart-manifest=put

The body of this request will be an ordered list of segment descriptions in JSON format. The data to be
supplied for each segment is either:

Key Description
path the path to the segment object (not including account) /container/object_name
etag (optional) the ETag given back when the segment object was PUT
size_bytes (optional) the size of the complete segment object in bytes
range (optional) the (inclusive) range within the object to use as a segment. If omitted, the entire

object is used

Or:

Key Description
data base64-encoded data to be returned

Note: At least one object-backed segment must be included. If youd like to create a manifest consisting
purely of data segments, consider uploading a normal object instead.

The format of the list will be:

[{"path": "/cont/object",
"etag": "etagoftheobjectsegment",
"size_bytes": 10485760,
"range": "1048576-2097151"},
{"data": base64.b64encode("interstitial data")},
{"path": "/cont/another-object", ...},
...]

The number of object-backed segments is limited to max_manifest_segments (configurable in
proxy-server.conf, default 1000). Each segment must be at least 1 byte. On upload, the middleware will
head every object-backed segment passed in to verify:

1. the segment exists (i.e. the HEAD was successful);

2. the segment meets minimum size requirements;

3. if the user provided a non-null etag, the etag matches;

4. if the user provided a non-null size_bytes, the size_bytes matches; and

5. if the user provided a range, it is a singular, syntactically correct range that is satisfiable given
the size of the object referenced.

For inlined data segments, the middleware verifies each is valid, non-empty base64-encoded binary data.
Note that data segments do not count against max_manifest_segments.

50 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

Note that the etag and size_bytes keys are optional; if omitted, the verification is not performed.
If any of the objects fail to verify (not found, size/etag mismatch, below minimum size, invalid range)
then the user will receive a 4xx error response. If everything does match, the user will receive a 2xx
response and the SLO object is ready for downloading.

Note that large manifests may take a long time to verify; historically, clients would need to use a long
read timeout for the connection to give Swift enough time to send a final 201 Created or 400 Bad
Request response. Now, clients should use the query parameters:

?multipart-manifest=put&heartbeat=on

to request that Swift send an immediate 202 Accepted response and periodic whitespace to keep
the connection alive. A final response code will appear in the body. The format of the response body
defaults to text/plain but can be either json or xml depending on the Accept header. An example body
is as follows:

Response Status: 201 Created
Response Body:
Etag: "8f481cede6d2ddc07cb36aa084d9a64d"
Last Modified: Wed, 25 Oct 2017 17:08:55 GMT
Errors:

Or, as a json response:

{"Response Status": "201 Created",
"Response Body": "",
"Etag": "\"8f481cede6d2ddc07cb36aa084d9a64d\"",
"Last Modified": "Wed, 25 Oct 2017 17:08:55 GMT",
"Errors": []}

Behind the scenes, on success, a JSON manifest generated from the user input is sent to object servers
with an extra X-Static-Large-Object: True header and a modified Content-Type. The
items in this manifest will include the etag and size_bytes for each segment, regardless of whether
the client specified them for verification. The parameter swift_bytes=$total_size will be ap-
pended to the existing Content-Type, where $total_size is the sum of all the included segments
size_bytes. This extra parameter will be hidden from the user.

Manifest files can reference objects in separate containers, which will improve concurrent upload speed.
Objects can be referenced by multiple manifests. The segments of a SLO manifest can even be other
SLO manifests. Treat them as any other object i.e., use the Etag and Content-Length given on the
PUT of the sub-SLO in the manifest to the parent SLO.

While uploading a manifest, a user can send Etag for verification. It needs to be md5 of the segments
etags, if there is no range specified. For example, if the manifest to be uploaded looks like this:

[{"path": "/cont/object1",
"etag": "etagoftheobjectsegment1",
"size_bytes": 10485760},
{"path": "/cont/object2",
"etag": "etagoftheobjectsegment2",
"size_bytes": 10485760}]

The Etag of the above manifest would be md5 of etagoftheobjectsegment1 and
etagoftheobjectsegment2. This could be computed in the following way:

2.10. Large Object Support 51



Swift Documentation, Release 2.27.1.dev38

echo -n 'etagoftheobjectsegment1etagoftheobjectsegment2' | md5sum

If a manifest to be uploaded with a segment range looks like this:

[{"path": "/cont/object1",
"etag": "etagoftheobjectsegmentone",
"size_bytes": 10485760,
"range": "1-2"},
{"path": "/cont/object2",
"etag": "etagoftheobjectsegmenttwo",
"size_bytes": 10485760,
"range": "3-4"}]

While computing the Etag of the above manifest, internally each segments etag will be taken in the form
of etagvalue:rangevalue;. Hence the Etag of the above manifest would be:

echo -n 'etagoftheobjectsegmentone:1-2;etagoftheobjectsegmenttwo:3-4;' \
| md5sum

For the purposes of Etag computations, inlined data segments are considered to have an etag of the md5
of the raw data (i.e., not base64-encoded).

Range Specification

Users now have the ability to specify ranges for SLO segments. Users can include an optional range
field in segment descriptions to specify which bytes from the underlying object should be used for the
segment data. Only one range may be specified per segment.

Note: The etag and size_bytes fields still describe the backing object as a whole.

If a user uploads this manifest:

[{"path": "/con/obj_seg_1", "size_bytes": 2097152, "range": "0-1048576"},
{"path": "/con/obj_seg_2", "size_bytes": 2097152,
"range": "512-1550000"},
{"path": "/con/obj_seg_1", "size_bytes": 2097152, "range": "-2048"}]

The segment will consist of the first 1048576 bytes of /con/obj_seg_1, followed by bytes 513 through
1550000 (inclusive) of /con/obj_seg_2, and finally bytes 2095104 through 2097152 (i.e., the last 2048
bytes) of /con/obj_seg_1.

Note: The minimum sized range is 1 byte. This is the same as the minimum segment size.

52 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

Inline Data Specification

When uploading a manifest, users can include data segments that should be included along with objects.
The data in these segments must be base64-encoded binary data and will be included in the etag of the
resulting large object exactly as if that data had been uploaded and referenced as separate objects.

Note: This feature is primarily aimed at reducing the need for storing many tiny objects, and as such
any supplied data must fit within the maximum manifest size (default is 8MiB). This maximum size can
be configured via max_manifest_size in proxy-server.conf.

Retrieving a Large Object

A GET request to the manifest object will return the concatenation of the objects from the manifest much
like DLO. If any of the segments from the manifest are not found or their Etag/Content-Length
have changed since upload, the connection will drop. In this case a 409 Conflict will be logged in
the proxy logs and the user will receive incomplete results. Note that this will be enforced regardless of
whether the user performed per-segment validation during upload.

The headers from this GET or HEAD request will return the metadata attached to the manifest object
itself with some exceptions:

Header Value
Content-Length the total size of the SLO (the sum of the sizes of the segments in the manifest)
X-Static-Large-
Object

the string True

Etag the etag of the SLO (generated the same way as DLO)

A GET request with the query parameter:

?multipart-manifest=get

will return a transformed version of the original manifest, containing additional fields and different key
names. For example, the first manifest in the example above would look like this:

[{"name": "/cont/object",
"hash": "etagoftheobjectsegment",
"bytes": 10485760,
"range": "1048576-2097151"}, ...]

As you can see, some of the fields are renamed compared to the put request: path is name, etag is hash,
size_bytes is bytes. The range field remains the same (if present).

A GET request with the query parameters:

?multipart-manifest=get&format=raw

will return the contents of the original manifest as it was sent by the client. The main purpose for both
calls is solely debugging.

When the manifest object is uploaded you are more or less guaranteed that every segment in the manifest
exists and matched the specifications. However, there is nothing that prevents the user from breaking the

2.10. Large Object Support 53



Swift Documentation, Release 2.27.1.dev38

SLO download by deleting/replacing a segment referenced in the manifest. It is left to the user to use
caution in handling the segments.

Deleting a Large Object

A DELETE request will just delete the manifest object itself. The segment data referenced by the mani-
fest will remain unchanged.

A DELETE with a query parameter:

?multipart-manifest=delete

will delete all the segments referenced in the manifest and then the manifest itself. The failure response
will be similar to the bulk delete middleware.

A DELETE with the query parameters:

?multipart-manifest=delete&async=yes

will schedule all the segments referenced in the manifest to be deleted asynchronously and then delete
the manifest itself. Note that segments will continue to appear in listings and be counted for quotas until
they are cleaned up by the object-expirer. This option is only available when all segments are in the
same container and none of them are nested SLOs.

Modifying a Large Object

PUT and POST requests will work as expected; PUTs will just overwrite the manifest object for example.

Container Listings

In a container listing the size listed for SLO manifest objects will be the total_size of the con-
catenated segments in the manifest. The overall X-Container-Bytes-Used for the container (and
subsequently for the account) will not reflect total_size of the manifest but the actual size of the
JSON data stored. The reason for this somewhat confusing discrepancy is we want the container listing
to reflect the size of the manifest object when it is downloaded. We do not, however, want to count the
bytes-used twice (for both the manifest and the segments its referring to) in the container and account
metadata which can be used for stats and billing purposes.

class swift.common.middleware.slo.SloGetContext(slo)
Bases: swift.common.wsgi.WSGIContext

convert_segment_listing(resp_headers, resp_iter)
Converts the manifest data to match with the format that was put in through ?multipart-
manifest=put

Parameters

• resp_headers response headers

• resp_iter a response iterable

handle_slo_get_or_head(req, start_response)
Takes a request and a start_response callable and does the normal WSGI thing with them.
Returns an iterator suitable for sending up the WSGI chain.

54 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

Parameters

• req Request object; is a GET or HEAD request aimed at what may (or
may not) be a static large object manifest.

• start_response WSGI start_response callable

class swift.common.middleware.slo.StaticLargeObject(app, conf,
max_manifest_segments=1000,
max_manifest_size=8388608,
yield_frequency=10,
al-
low_async_delete=False)

Bases: object

StaticLargeObject Middleware

See above for a full description.

The proxy logs created for any subrequests made will have swift.source set to SLO.

Parameters

• app The next WSGI filter or app in the paste.deploy chain.

• conf The configuration dict for the middleware.

• max_manifest_segments The maximum number of segments allowed
in newly-created static large objects.

• max_manifest_size The maximum size (in bytes) of newly-created
static-large-object manifests.

• yield_frequency If the client included heartbeat=on in the query
parameters when creating a new static large object, the period of time to wait
between sending whitespace to keep the connection alive.

get_segments_to_delete_iter(req)
A generator function to be used to delete all the segments and sub-segments referenced in a
manifest.

Parameters req a Request with an SLO manifest in path

Raises

• HTTPPreconditionFailed on invalid UTF8 in request path

• HTTPBadRequest on too many buffered sub segments and on invalid
SLO manifest path

get_slo_segments(obj_name, req)
Performs a Request and returns the SLO manifests segments.

Parameters

• obj_name the name of the object being deleted, as /container/
object

• req the base Request

Raises

2.10. Large Object Support 55



Swift Documentation, Release 2.27.1.dev38

• HTTPServerError on unable to load obj_name or on unable to load the
SLO manifest data.

• HTTPBadRequest on not an SLO manifest

• HTTPNotFound on SLO manifest not found

Returns SLO manifests segments

handle_multipart_delete(req)
Will delete all the segments in the SLO manifest and then, if successful, will delete the
manifest file.

Parameters req a Request with an obj in path

Returns swob.Response whose app_iter set to Bulk.handle_delete_iter

handle_multipart_get_or_head(req, start_response)
Handles the GET or HEAD of a SLO manifest.

The response body (only on GET, of course) will consist of the concatenation of the seg-
ments.

Parameters

• req a Request with a path referencing an object

• start_response WSGI start_response callable

Raises HttpException on errors

handle_multipart_put(req, start_response)
Will handle the PUT of a SLO manifest. Heads every object in manifest to check if is valid
and if so will save a manifest generated from the user input. Uses WSGIContext to call self
and start_response and returns a WSGI iterator.

Parameters

• req a Request with an obj in path

• start_response WSGI start_response callable

Raises HttpException on errors

swift.common.middleware.slo.parse_and_validate_input(req_body,
req_path)

Given a request body, parses it and returns a list of dictionaries.

The output structure is nearly the same as the input structure, but it is not an exact copy. Given a
valid object-backed input dictionary d_in, its corresponding output dictionary d_out will be as
follows:

• d_out[etag] == d_in[etag]

• d_out[path] == d_in[path]

• d_in[size_bytes] can be a string (12) or an integer (12), but d_out[size_bytes] is an integer.

• (optional) d_in[range] is a string of the form M-N, M-, or -N, where M and N are non-
negative integers. d_out[range] is the corresponding swob.Range object. If d_in does not
have a key range, neither will d_out.

Inlined data dictionaries will have any extraneous padding stripped.

56 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

Raises HTTPException on parse errors or semantic errors (e.g. bogus JSON structure,
syntactically invalid ranges)

Returns a list of dictionaries on success

2.10.4 Direct API

SLO support centers around the user generated manifest file. After the user has uploaded the segments
into their account a manifest file needs to be built and uploaded. All object segments, must be at least 1
byte in size. Please see the SLO docs for Static Large Objects further details.

2.10.5 Additional Notes

• With a GET or HEAD of a manifest file, the X-Object-Manifest: <container>/
<prefix> header will be returned with the concatenated object so you can tell where its getting
its segments from.

• When updating a manifest object using a POST request, a X-Object-Manifest header must
be included for the object to continue to behave as a manifest object.

• The responses Content-Length for a GET or HEAD on the manifest file will be the sum of all
the segments in the <container>/<prefix> listing, dynamically. So, uploading additional
segments after the manifest is created will cause the concatenated object to be that much larger;
theres no need to recreate the manifest file.

• The responses Content-Type for a GET or HEAD on the manifest will be the same as the
Content-Type set during the PUT request that created the manifest. You can easily change the
Content-Type by reissuing the PUT.

• The responses ETag for a GET or HEAD on the manifest file will be the MD5 sum of the con-
catenated string of ETags for each of the segments in the manifest (for DLO, from the listing
<container>/<prefix>). Usually in Swift the ETag is the MD5 sum of the contents of the
object, and that holds true for each segment independently. But its not meaningful to generate
such an ETag for the manifest itself so this method was chosen to at least offer change detection.

Note: If you are using the container sync feature you will need to ensure both your manifest file and
your segment files are synced if they happen to be in different containers.

2.10.6 History

Dynamic large object support has gone through various iterations before settling on this implementation.

The primary factor driving the limitation of object size in Swift is maintaining balance among the parti-
tions of the ring. To maintain an even dispersion of disk usage throughout the cluster the obvious storage
pattern was to simply split larger objects into smaller segments, which could then be glued together dur-
ing a read.

Before the introduction of large object support some applications were already splitting their uploads into
segments and re-assembling them on the client side after retrieving the individual pieces. This design
allowed the client to support backup and archiving of large data sets, but was also frequently employed
to improve performance or reduce errors due to network interruption. The major disadvantage of this

2.10. Large Object Support 57



Swift Documentation, Release 2.27.1.dev38

method is that knowledge of the original partitioning scheme is required to properly reassemble the
object, which is not practical for some use cases, such as CDN origination.

In order to eliminate any barrier to entry for clients wanting to store objects larger than 5GB, initially we
also prototyped fully transparent support for large object uploads. A fully transparent implementation
would support a larger max size by automatically splitting objects into segments during upload within
the proxy without any changes to the client API. All segments were completely hidden from the client
API.

This solution introduced a number of challenging failure conditions into the cluster, wouldnt provide
the client with any option to do parallel uploads, and had no basis for a resume feature. The transparent
implementation was deemed just too complex for the benefit.

The current user manifest design was chosen in order to provide a transparent download of large objects
to the client and still provide the uploading client a clean API to support segmented uploads.

To meet an many use cases as possible Swift supports two types of large object manifests. Dynamic and
static large object manifests both support the same idea of allowing the user to upload many segments
to be later downloaded as a single file.

Dynamic large objects rely on a container listing to provide the manifest. This has the advantage of
allowing the user to add/removes segments from the manifest at any time. It has the disadvantage of
relying on eventually consistent container listings. All three copies of the container dbs must be updated
for a complete list to be guaranteed. Also, all segments must be in a single container, which can limit
concurrent upload speed.

Static large objects rely on a user provided manifest file. A user can upload objects into multiple con-
tainers and then reference those objects (segments) in a self generated manifest file. Future GETs to that
file will download the concatenation of the specified segments. This has the advantage of being able to
immediately download the complete object once the manifest has been successfully PUT. Being able to
upload segments into separate containers also improves concurrent upload speed. It has the disadvantage
that the manifest is finalized once PUT. Any changes to it means it has to be replaced.

Between these two methods the user has great flexibility in how (s)he chooses to upload and retrieve
large objects to Swift. Swift does not, however, stop the user from harming themselves. In both cases
the segments are deletable by the user at any time. If a segment was deleted by mistake, a dynamic large
object, having no way of knowing it was ever there, would happily ignore the deleted file and the user
will get an incomplete file. A static large object would, when failing to retrieve the object specified in
the manifest, drop the connection and the user would receive partial results.

2.11 Global Clusters

2.11.1 Overview

Swifts default configuration is currently designed to work in a single region, where a region is defined
as a group of machines with high-bandwidth, low-latency links between them. However, configuration
options exist that make running a performant multi-region Swift cluster possible.

For the rest of this section, we will assume a two-region Swift cluster: region 1 in San Francisco (SF),
and region 2 in New York (NY). Each region shall contain within it 3 zones, numbered 1, 2, and 3, for a
total of 6 zones.

58 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

2.11.2 Configuring Global Clusters

Note: The proxy-server configuration options described below can be given generic settings in the
[app:proxy-server] configuration section and/or given specific settings for individual policies
using Per policy configuration.

read_affinity

This setting, combined with sorting_method setting, makes the proxy server prefer local backend servers
for GET and HEAD requests over non-local ones. For example, it is preferable for an SF proxy server
to service object GET requests by talking to SF object servers, as the client will receive lower latency
and higher throughput.

By default, Swift randomly chooses one of the three replicas to give to the client, thereby spreading the
load evenly. In the case of a geographically-distributed cluster, the administrator is likely to prioritize
keeping traffic local over even distribution of results. This is where the read_affinity setting comes in.

Example:

[app:proxy-server]
sorting_method = affinity
read_affinity = r1=100

This will make the proxy attempt to service GET and HEAD requests from backends in region 1 before
contacting any backends in region 2. However, if no region 1 backends are available (due to replica
placement, failed hardware, or other reasons), then the proxy will fall back to backend servers in other
regions.

Example:

[app:proxy-server]
sorting_method = affinity
read_affinity = r1z1=100, r1=200

This will make the proxy attempt to service GET and HEAD requests from backends in region 1 zone 1,
then backends in region 1, then any other backends. If a proxy is physically close to a particular zone or
zones, this can provide bandwidth savings. For example, if a zone corresponds to servers in a particular
rack, and the proxy server is in that same rack, then setting read_affinity to prefer reads from within the
rack will result in less traffic between the top-of-rack switches.

The read_affinity setting may contain any number of region/zone specifiers; the priority number (after
the equals sign) determines the ordering in which backend servers will be contacted. A lower number
means higher priority.

Note that read_affinity only affects the ordering of primary nodes (see ring docs for definition of primary
node), not the ordering of handoff nodes.

2.11. Global Clusters 59



Swift Documentation, Release 2.27.1.dev38

write_affinity

This setting makes the proxy server prefer local backend servers for object PUT requests over non-local
ones. For example, it may be preferable for an SF proxy server to service object PUT requests by
talking to SF object servers, as the client will receive lower latency and higher throughput. However,
if this setting is used, note that a NY proxy server handling a GET request for an object that was PUT
using write affinity may have to fetch it across the WAN link, as the object wont immediately have any
replicas in NY. However, replication will move the objects replicas to their proper homes in both SF and
NY.

One potential issue with write_affinity is, end user may get 404 error when deleting objects before
replication. The write_affinity_handoff_delete_count setting is used together with write_affinity in order
to solve that issue. With its default configuration, Swift will calculate the proper number of handoff
nodes to send requests to.

Note that only object PUT/DELETE requests are affected by the write_affinity setting; POST, GET,
HEAD, OPTIONS, and account/container PUT requests are not affected.

This setting lets you trade data distribution for throughput. If write_affinity is enabled, then object
replicas will initially be stored all within a particular region or zone, thereby decreasing the quality of
the data distribution, but the replicas will be distributed over fast WAN links, giving higher throughput
to clients. Note that the replicators will eventually move objects to their proper, well-distributed homes.

The write_affinity setting is useful only when you dont typically read objects immediately after writing
them. For example, consider a workload of mainly backups: if you have a bunch of machines in NY that
periodically write backups to Swift, then odds are that you dont then immediately read those backups in
SF. If your workload doesnt look like that, then you probably shouldnt use write_affinity.

The write_affinity_node_count setting is only useful in conjunction with write_affinity; it governs how
many local object servers will be tried before falling back to non-local ones.

Example:

[app:proxy-server]
write_affinity = r1
write_affinity_node_count = 2 * replicas

Assuming 3 replicas, this configuration will make object PUTs try storing the objects replicas on up to
6 disks (2 * replicas) in region 1 (r1). Proxy server tries to find 3 devices for storing the object. While
a device is unavailable, it queries the ring for the 4th device and so on until 6th device. If the 6th disk
is still unavailable, the last replica will be sent to other region. It doesnt mean therell have 6 replicas in
region 1.

You should be aware that, if you have data coming into SF faster than your replicators are transferring it
to NY, then your clusters data distribution will get worse and worse over time as objects pile up in SF. If
this happens, it is recommended to disable write_affinity and simply let object PUTs traverse the WAN
link, as that will naturally limit the object growth rate to what your WAN link can handle.

60 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

2.12 Container to Container Synchronization

2.12.1 Overview

Swift has a feature where all the contents of a container can be mirrored to another container through
background synchronization. Swift cluster operators configure their cluster to allow/accept sync re-
quests to/from other clusters, and the user specifies where to sync their container to along with a secret
synchronization key.

Note: If you are using the Large Objects feature and syncing to another cluster then you will need to
ensure that manifest files and segment files are synced. If segment files are in a different container than
their manifest then both the manifests container and the segments container must be synced. The target
container for synced segment files must always have the same name as their source container in order
for them to be resolved by synced manifests.

Be aware that manifest files may be synced before segment files even if they are in the same container
and were created after the segment files.

In the case of Static Large Objects, a GET request for a manifest whose segments have yet to be com-
pletely synced will fail with none or only part of the large object content being returned.

In the case of Dynamic Large Objects, a GET request for a manifest whose segments have yet to be
completely synced will either fail or return unexpected (and most likely incorrect) content.

Note: If you are using encryption middleware in the cluster from which objects are being synced, then
you should follow the instructions for Container sync configuration to be compatible with encryption.

Note: If you are using symlink middleware in the cluster from which objects are being synced, then
you should follow the instructions for Container sync configuration to be compatible with symlinks.

Be aware that symlinks may be synced before their targets even if they are in the same container and
were created after the target objects. In such cases, a GET for the symlink will fail with a 404 Not
Found error. If the target has been overwritten, a GET may produce an older version (for dynamic
links) or a 409 Conflict error (for static links).

2.12.2 Configuring Container Sync

Create a container-sync-realms.conf file specifying the allowable clusters and their informa-
tion:

[realm1]
key = realm1key
key2 = realm1key2
cluster_clustername1 = https://host1/v1/
cluster_clustername2 = https://host2/v1/

[realm2]
key = realm2key

(continues on next page)

2.12. Container to Container Synchronization 61



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

key2 = realm2key2
cluster_clustername3 = https://host3/v1/
cluster_clustername4 = https://host4/v1/

Each section name is the name of a sync realm. A sync realm is a set of clusters that have agreed to
allow container syncing with each other. Realm names will be considered case insensitive.

key is the overall cluster-to-cluster key used in combination with the external users key that they set
on their containers X-Container-Sync-Key metadata header values. These keys will be used to
sign each request the container sync daemon makes and used to validate each incoming container sync
request.

key2 is optional and is an additional key incoming requests will be checked against. This is so you can
rotate keys if you wish; you move the existing key to key2 and make a new key value.

Any values in the realm section whose names begin with cluster_ will indicate the name and end-
point of a cluster and will be used by external users in their containers X-Container-Sync-To
metadata header values with the format //realm_name/cluster_name/account_name/
container_name. Realm and cluster names are considered case insensitive.

The endpoint is what the container sync daemon will use when sending out requests to that cluster. Keep
in mind this endpoint must be reachable by all container servers, since that is where the container sync
daemon runs. Note that the endpoint ends with /v1/ and that the container sync daemon will then add
the account/container/obj name after that.

Distribute this container-sync-realms.conf file to all your proxy servers and container
servers.

You also need to add the container_sync middleware to your proxy pipeline. It needs to be after any
memcache middleware and before any auth middleware. The [filter:container_sync] section
only needs the use item. For example:

[pipeline:main]
pipeline = healthcheck proxy-logging cache container_sync tempauth proxy-
↪→logging proxy-server

[filter:container_sync]
use = egg:swift#container_sync

The container sync daemon will use an internal client to sync objects. Even if you dont configure the
internal client, the container sync daemon will work with default configuration. The default configura-
tion is the same as internal-client.conf-sample. If you want to configure the internal client,
please update internal_client_conf_path in container-server.conf. The configura-
tion file at the path will be used for the internal client.

62 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

2.12.3 Old-Style: Configuring a Clusters Allowable Sync Hosts

This section is for the old-style of using container sync. See the previous section, Configuring Container
Sync, for the new-style.

With the old-style, the Swift cluster operator must allow synchronization with a set of hosts before the
user can enable container synchronization. First, the backend container server needs to be given this list
of hosts in the container-server.conf file:

[DEFAULT]
# This is a comma separated list of hosts allowed in the
# X-Container-Sync-To field for containers.
# allowed_sync_hosts = 127.0.0.1
allowed_sync_hosts = host1,host2,etc.
...

[container-sync]
# You can override the default log routing for this app here (don't
# use set!):
# log_name = container-sync
# log_facility = LOG_LOCAL0
# log_level = INFO
# Will sync, at most, each container once per interval
# interval = 300
# Maximum amount of time to spend syncing each container
# container_time = 60

2.12.4 Logging Container Sync

Currently, log processing is the only way to track sync progress, problems, and even just general activity
for container synchronization. In that light, you may wish to set the above log_ options to direct the
container-sync logs to a different file for easier monitoring. Additionally, it should be noted there is no
way for an end user to monitor sync progress or detect problems other than HEADing both containers
and comparing the overall information.

2.12.5 Container Sync Statistics

Container Sync INFO level logs contain activity metrics and accounting information for insightful track-
ing. Currently two different statistics are collected:

About once an hour or so, accumulated statistics of all operations performed by Container Sync are
reported to the log file with the following format:

Since (time): (sync) synced [(delete) deletes, (put) puts], (skip) skipped,
↪→ (fail) failed

time last report time

sync number of containers with sync turned on that were successfully synced

delete number of successful DELETE object requests to the target cluster

put number of successful PUT object request to the target cluster

skip number of containers whose sync has been turned off, but are not yet cleared from the sync store

2.12. Container to Container Synchronization 63



Swift Documentation, Release 2.27.1.dev38

fail number of containers with failure (due to exception, timeout or other reason)

For each container synced, per container statistics are reported with the following format:

Container sync report: (container), time window start: (start), time
↪→window end: %(end), puts: (puts), posts: (posts), deletes: (deletes),
↪→bytes: (bytes), sync_point1: (point1), sync_point2: (point2), total_
↪→rows: (total)

container account/container statistics are for

start report start time

end report end time

puts number of successful PUT object requests to the target container

posts N/A (0)

deletes number of successful DELETE object requests to the target container

bytes number of bytes sent over the network to the target container

point1 progress indication - the containers x_container_sync_point1

point2 progress indication - the containers x_container_sync_point2

total number of objects processed at the container

It is possible that more than one server syncs a container, therefore log files from all servers need to be
evaluated

2.12.6 Using the swift tool to set up synchronized containers

Note: The swift tool is available from the python-swiftclient library.

Note: You must be the account admin on the account to set synchronization targets and keys.

You simply tell each container where to sync to and give it a secret synchronization key. First, lets get
the account details for our two cluster accounts:

$ swift -A http://cluster1/auth/v1.0 -U test:tester -K testing stat -v
StorageURL: http://cluster1/v1/AUTH_208d1854-e475-4500-b315-81de645d060e
Auth Token: AUTH_tkd5359e46ff9e419fa193dbd367f3cd19

Account: AUTH_208d1854-e475-4500-b315-81de645d060e
Containers: 0

Objects: 0
Bytes: 0

$ swift -A http://cluster2/auth/v1.0 -U test2:tester2 -K testing2 stat -v
StorageURL: http://cluster2/v1/AUTH_33cdcad8-09fb-4940-90da-0f00cbf21c7c
Auth Token: AUTH_tk816a1aaf403c49adb92ecfca2f88e430

Account: AUTH_33cdcad8-09fb-4940-90da-0f00cbf21c7c
Containers: 0

(continues on next page)

64 Chapter 2. Overview and Concepts

http://github.com/openstack/python-swiftclient


Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

Objects: 0
Bytes: 0

Now, lets make our first container and tell it to synchronize to a second well make next:

$ swift -A http://cluster1/auth/v1.0 -U test:tester -K testing post \
-t '//realm_name/clustername2/AUTH_33cdcad8-09fb-4940-90da-0f00cbf21c7c/

↪→container2' \
-k 'secret' container1

The -t indicates the cluster to sync to, which is the realm name of the section from
container-sync-realms.conf, followed by the cluster name from that section (without the
cluster_ prefix), followed by the account and container names we want to sync to. The -k spec-
ifies the secret key the two containers will share for synchronization; this is the user key, the cluster key
in container-sync-realms.conf will also be used behind the scenes.

Now, well do something similar for the second clusters container:

$ swift -A http://cluster2/auth/v1.0 -U test2:tester2 -K testing2 post \
-t '//realm_name/clustername1/AUTH_208d1854-e475-4500-b315-81de645d060e/

↪→container1' \
-k 'secret' container2

Thats it. Now we can upload a bunch of stuff to the first container and watch as it gets synchronized
over to the second:

$ swift -A http://cluster1/auth/v1.0 -U test:tester -K testing \
upload container1 .

photo002.png
photo004.png
photo001.png
photo003.png

$ swift -A http://cluster2/auth/v1.0 -U test2:tester2 -K testing2 \
list container2

[Nothing there yet, so we wait a bit...]

Note: If youre an operator running SAIO (Swift All In One) and just testing, each time you configure
a container for synchronization and place objects in the source container you will need to ensure that
container-sync runs before attempting to retrieve objects from the target container. That is, you need to
run:

swift-init container-sync once

Now expect to see objects copied from the first container to the second:

$ swift -A http://cluster2/auth/v1.0 -U test2:tester2 -K testing2 \
list container2

photo001.png
photo002.png
photo003.png
photo004.png

2.12. Container to Container Synchronization 65



Swift Documentation, Release 2.27.1.dev38

You can also set up a chain of synced containers if you want more than two. Youd point 1 -> 2, then 2 ->
3, and finally 3 -> 1 for three containers. Theyd all need to share the same secret synchronization key.

2.12.7 Using curl (or other tools) instead

So whats swift doing behind the scenes? Nothing overly complicated. It translates the -t <value>
option into an X-Container-Sync-To: <value> header and the -k <value> option into an
X-Container-Sync-Key: <value> header.

For instance, when we created the first container above and told it to synchronize to the second, we could
have used this curl command:

$ curl -i -X POST -H 'X-Auth-Token: AUTH_tkd5359e46ff9e419fa193dbd367f3cd19
↪→' \
-H 'X-Container-Sync-To: //realm_name/clustername2/AUTH_33cdcad8-09fb-

↪→4940-90da-0f00cbf21c7c/container2' \
-H 'X-Container-Sync-Key: secret' \
'http://cluster1/v1/AUTH_208d1854-e475-4500-b315-81de645d060e/container1'

HTTP/1.1 204 No Content
Content-Length: 0
Content-Type: text/plain; charset=UTF-8
Date: Thu, 24 Feb 2011 22:39:14 GMT

2.12.8 Old-Style: Using the swift tool to set up synchronized containers

Note: The swift tool is available from the python-swiftclient library.

Note: You must be the account admin on the account to set synchronization targets and keys.

This is for the old-style of container syncing using allowed_sync_hosts.

You simply tell each container where to sync to and give it a secret synchronization key. First, lets get
the account details for our two cluster accounts:

$ swift -A http://cluster1/auth/v1.0 -U test:tester -K testing stat -v
StorageURL: http://cluster1/v1/AUTH_208d1854-e475-4500-b315-81de645d060e
Auth Token: AUTH_tkd5359e46ff9e419fa193dbd367f3cd19

Account: AUTH_208d1854-e475-4500-b315-81de645d060e
Containers: 0

Objects: 0
Bytes: 0

$ swift -A http://cluster2/auth/v1.0 -U test2:tester2 -K testing2 stat -v
StorageURL: http://cluster2/v1/AUTH_33cdcad8-09fb-4940-90da-0f00cbf21c7c
Auth Token: AUTH_tk816a1aaf403c49adb92ecfca2f88e430

Account: AUTH_33cdcad8-09fb-4940-90da-0f00cbf21c7c
Containers: 0

Objects: 0
Bytes: 0

Now, lets make our first container and tell it to synchronize to a second well make next:

66 Chapter 2. Overview and Concepts

http://github.com/openstack/python-swiftclient


Swift Documentation, Release 2.27.1.dev38

$ swift -A http://cluster1/auth/v1.0 -U test:tester -K testing post \
-t 'http://cluster2/v1/AUTH_33cdcad8-09fb-4940-90da-0f00cbf21c7c/

↪→container2' \
-k 'secret' container1

The -t indicates the URL to sync to, which is the StorageURL from cluster2 we retrieved above plus
the container name. The -k specifies the secret key the two containers will share for synchronization.
Now, well do something similar for the second clusters container:

$ swift -A http://cluster2/auth/v1.0 -U test2:tester2 -K testing2 post \
-t 'http://cluster1/v1/AUTH_208d1854-e475-4500-b315-81de645d060e/

↪→container1' \
-k 'secret' container2

Thats it. Now we can upload a bunch of stuff to the first container and watch as it gets synchronized
over to the second:

$ swift -A http://cluster1/auth/v1.0 -U test:tester -K testing \
upload container1 .

photo002.png
photo004.png
photo001.png
photo003.png

$ swift -A http://cluster2/auth/v1.0 -U test2:tester2 -K testing2 \
list container2

[Nothing there yet, so we wait a bit...]
[If you're an operator running SAIO and just testing, you may need to
run 'swift-init container-sync once' to perform a sync scan.]

$ swift -A http://cluster2/auth/v1.0 -U test2:tester2 -K testing2 \
list container2

photo001.png
photo002.png
photo003.png
photo004.png

You can also set up a chain of synced containers if you want more than two. Youd point 1 -> 2, then 2 ->
3, and finally 3 -> 1 for three containers. Theyd all need to share the same secret synchronization key.

2.12.9 Old-Style: Using curl (or other tools) instead

This is for the old-style of container syncing using allowed_sync_hosts.

So whats swift doing behind the scenes? Nothing overly complicated. It translates the -t <value>
option into an X-Container-Sync-To: <value> header and the -k <value> option into an
X-Container-Sync-Key: <value> header.

For instance, when we created the first container above and told it to synchronize to the second, we could
have used this curl command:

$ curl -i -X POST -H 'X-Auth-Token: AUTH_tkd5359e46ff9e419fa193dbd367f3cd19
↪→' \
-H 'X-Container-Sync-To: http://cluster2/v1/AUTH_33cdcad8-09fb-4940-90da-

↪→0f00cbf21c7c/container2' \ (continues on next page)

2.12. Container to Container Synchronization 67



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

-H 'X-Container-Sync-Key: secret' \
'http://cluster1/v1/AUTH_208d1854-e475-4500-b315-81de645d060e/container1'

HTTP/1.1 204 No Content
Content-Length: 0
Content-Type: text/plain; charset=UTF-8
Date: Thu, 24 Feb 2011 22:39:14 GMT

2.12.10 Whats going on behind the scenes, in the cluster?

Container ring devices have a directory called containers, where container databases reside. In
addition to containers, each container ring device also has a directory called sync-containers.
sync-containers holds symlinks to container databases that were configured for container sync
using x-container-sync-to and x-container-sync-key metadata keys.

The swift-container-sync process does the job of sending updates to the remote container. This is done
by scanning sync-containers for container databases. For each container db found, newer rows
since the last sync will trigger PUTs or DELETEs to the other container.

sync-containers is maintained as follows: Whenever the container-server processes a PUT or a
POST request that carries x-container-sync-to and x-container-sync-keymetadata keys
the server creates a symlink to the container database in sync-containers. Whenever the container
server deletes a synced container, the appropriate symlink is deleted from sync-containers.

In addition to the container-server, the container-replicator process does the job of identifying containers
that should be synchronized. This is done by scanning the local devices for container databases and
checking for x-container-sync-to and x-container-sync-key metadata values. If they
exist then a symlink to the container database is created in a sync-containers sub-directory on the
same device.

Similarly, when the container sync metadata keys are deleted, the container server and container-
replicator would take care of deleting the symlinks from sync-containers.

Note: The swift-container-sync process runs on each container server in the cluster and talks to the
proxy servers (or load balancers) in the remote cluster. Therefore, the container servers must be permit-
ted to initiate outbound connections to the remote proxy servers (or load balancers).

The actual syncing is slightly more complicated to make use of the three (or number-of-replicas) main
nodes for a container without each trying to do the exact same work but also without missing work if
one node happens to be down.

Two sync points are kept in each container database. When syncing a container, the container-sync
process figures out which replica of the container it has. In a standard 3-replica scenario, the process
will have either replica number 0, 1, or 2. This is used to figure out which rows belong to this sync
process and which ones dont.

An example may help. Assume a replica count of 3 and database row IDs are 1..6. Also, assume that
container-sync is running on this container for the first time, hence SP1 = SP2 = -1.

SP1
SP2
|

(continues on next page)

68 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

v
-1 0 1 2 3 4 5 6

First, the container-sync process looks for rows with id between SP1 and SP2. Since this is the first run,
SP1 = SP2 = -1, and there arent any such rows.

SP1
SP2
|
v

-1 0 1 2 3 4 5 6

Second, the container-sync process looks for rows with id greater than SP1, and syncs those rows which
it owns. Ownership is based on the hash of the object name, so its not always guaranteed to be exactly
one out of every three rows, but it usually gets close. For the sake of example, lets say that this process
ends up owning rows 2 and 5.

Once its finished trying to sync those rows, it updates SP1 to be the biggest row-id that its seen, which
is 6 in this example.

SP2 SP1
| |
v v

-1 0 1 2 3 4 5 6

While all that was going on, clients uploaded new objects into the container, creating new rows in the
database.

SP2 SP1
| |
v v

-1 0 1 2 3 4 5 6 7 8 9 10 11 12

On the next run, the container-sync starts off looking at rows with ids between SP1 and SP2. This time,
there are a bunch of them. The sync process try to sync all of them. If it succeeds, it will set SP2 to
equal SP1. If it fails, it will set SP2 to the failed object and will continue to try all other objects till SP1,
setting SP2 to the first object that failed.

Under normal circumstances, the container-sync processes will have already taken care of synchronizing
all rows, between SP1 and SP2, resulting in a set of quick checks. However, if one of the sync processes
failed for some reason, then this is a vital fallback to make sure all the objects in the container get syn-
chronized. Without this seemingly-redundant work, any container-sync failure results in unsynchronized
objects. Note that the container sync will persistently retry to sync any faulty object until success, while
logging each failure.

Once its done with the fallback rows, and assuming no faults occurred, SP2 is advanced to SP1.

SP2
SP1
|
v

-1 0 1 2 3 4 5 6 7 8 9 10 11 12

Then, rows with row ID greater than SP1 are synchronized (provided this container-sync process is
responsible for them), and SP1 is moved up to the greatest row ID seen.

2.12. Container to Container Synchronization 69



Swift Documentation, Release 2.27.1.dev38

SP2 SP1
| |
v v

-1 0 1 2 3 4 5 6 7 8 9 10 11 12

2.13 Expiring Object Support

The swift-object-expirer offers scheduled deletion of objects. The Swift client would use the
X-Delete-At or X-Delete-After headers during an object PUT or POST and the cluster would
automatically quit serving that object at the specified time and would shortly thereafter remove the object
from the system.

The X-Delete-At header takes a Unix Epoch timestamp, in integer form; for example:
1317070737 represents Mon Sep 26 20:58:57 2011 UTC.

The X-Delete-After header takes a positive integer number of seconds. The proxy server that
receives the request will convert this header into an X-Delete-At header using the request timestamp
plus the value given.

If both the X-Delete-At and X-Delete-After headers are sent with a request then the
X-Delete-After header will take precedence.

As expiring objects are added to the system, the object servers will record the expirations in a hidden
.expiring_objects account for the swift-object-expirer to handle later.

Usually, just one instance of the swift-object-expirer daemon needs to run for a cluster. This
isnt exactly automatic failover high availability, but if this daemon doesnt run for a few hours it should
not be any real issue. The expired-but-not-yet-deleted objects will still 404 Not Found if someone
tries to GET or HEAD them and theyll just be deleted a bit later when the daemon is restarted.

By default, the swift-object-expirer daemon will run with a concurrency of 1. Increase this
value to get more concurrency. A concurrency of 1 may not be enough to delete expiring objects in a
timely fashion for a particular Swift cluster.

It is possible to run multiple daemons to do different parts of the work if a single process with a concur-
rency of more than 1 is not enough (see the sample config file for details).

To run the swift-object-expirer as multiple processes, set processes to the number of pro-
cesses (either in the config file or on the command line). Then run one process for each part. Use
process to specify the part of the work to be done by a process using the command line or the config.
So, for example, if youd like to run three processes, set processes to 3 and run three processes with
process set to 0, 1, and 2 for the three processes. If multiple processes are used, its necessary to run
one for each part of the work or that part of the work will not be done.

By default the daemon looks for two different config files. When launching, the process searches for the
[object-expirer] section in the

/etc/swift/object-server.conf config. If the section or the config is missing it will then
look for and use the /etc/swift/object-expirer.conf config. The latter config file is con-
sidered deprecated and is searched for to aid in cluster upgrades.

70 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

2.13.1 Upgrading impact: General Task Queue vs Legacy Queue

The expirer daemon will be moving to a new general task-queue based design that will divide the work
across all object servers, as such only expirers defined in the object-server config will be able to use
the new system. The parameters in both files are identical except for a new option in the object-server
[object-expirer] section, dequeue_from_legacy which when set to True will tell the ex-
pirer that in addition to using the new task queueing system to also check the legacy (soon to be depre-
cated) queue.

Note: The new task-queue system has not been completed yet. So an expirers with
dequeue_from_legacy set to False will currently do nothing.

By default dequeue_from_legacywill be False, it is necessary to be set to True explicitly while
migrating from the old expiring queue.

Any expirer using the old config /etc/swift/object-expirer.conf will not use the new gen-
eral task queue. Itll ignore the dequeue_from_legacy and will only check the legacy queue. Mean-
ing itll run as a legacy expirer.

Why is this important? If you are currently running object-expirers on nodes that are not object storage
nodes, then for the time being they will still work but only by dequeuing from the old queue. When the
new general task queue is introduced, expirers will be required to run on the object servers so that any
new objects added can be removed. If youre in this situation, you can safely setup the new expirer section
in the object-server.conf to deal with the new queue and leave the legacy expirers running
elsewhere.

However, if your old expirers are running on the object-servers, the most common topology, then you
would add the new section to all object servers, to deal the new queue. In order to maintain the same
number of expirers checking the legacy queue, pick the same number of nodes as you previously had
and turn on dequeue_from_legacy on those nodes only. Also note on these nodes youd need to
keep the legacy process and processes options to maintain the concurrency level for the legacy
queue.

Note: Be careful not to enable dequeue_from_legacy on too many expirers as all legacy tasks
are stored in a single hidden account and the same hidden containers. On a large cluster one may
inadvertently overload the acccount/container servers handling the legacy expirer queue.

Here is a quick sample of the object-expirer section required in the object-server.conf:

[object-expirer]
# log_name = object-expirer
# log_facility = LOG_LOCAL0
# log_level = INFO
# log_address = /dev/log
#
interval = 300

# If this true, expirer execute tasks in legacy expirer task queue
dequeue_from_legacy = false

# processes can only be used in conjunction with `dequeue_from_legacy`.
# So this option is ignored if dequeue_from_legacy=false.

(continues on next page)

2.13. Expiring Object Support 71



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

# processes is how many parts to divide the legacy work into, one part per
# process that will be doing the work
# processes set 0 means that a single legacy process will be doing all the
↪→work
# processes can also be specified on the command line and will override the
# config value
# processes = 0

# process can only be used in conjunction with `dequeue_from_legacy`.
# So this option is ignored if dequeue_from_legacy=false.
# process is which of the parts a particular legacy process will work on
# process can also be specified on the command line and will override the
↪→config
# value
# process is "zero based", if you want to use 3 processes, you should run
# processes with process set to 0, 1, and 2
# process = 0

report_interval = 300

# request_tries is the number of times the expirer's internal client will
# attempt any given request in the event of failure. The default is 3.
# request_tries = 3

# concurrency is the level of concurrency to use to do the work, this value
# must be set to at least 1
# concurrency = 1

# The expirer will re-attempt expiring if the source object is not
↪→available
# up to reclaim_age seconds before it gives up and deletes the entry in the
# queue.
# reclaim_age = 604800

And for completeness, here is a quick sample of the legacy object-expirer.conf file:

[DEFAULT]
# swift_dir = /etc/swift
# user = swift
# You can specify default log routing here if you want:
# log_name = swift
# log_facility = LOG_LOCAL0
# log_level = INFO

[object-expirer]
interval = 300

[pipeline:main]
pipeline = catch_errors cache proxy-server

[app:proxy-server]
use = egg:swift#proxy
# See proxy-server.conf-sample for options

[filter:cache]
use = egg:swift#memcache

(continues on next page)

72 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

# See proxy-server.conf-sample for options

[filter:catch_errors]
use = egg:swift#catch_errors
# See proxy-server.conf-sample for options

Note: When running legacy expirers, the daemon needs to run on a machine with access to all the
backend servers in the cluster, but does not need proxy server or public access. The daemon will use its
own internal proxy code instance to access the backend servers.

2.14 CORS

CORS is a mechanism to allow code running in a browser (Javascript for example) make requests to a
domain other than the one from where it originated.

Swift supports CORS requests to containers and objects.

CORS metadata is held on the container only. The values given apply to the container itself and all
objects within it.

The supported headers are,

Metadata Use
X-Container-Meta-Access-
Control-Allow-Origin

Origins to be allowed to make Cross Origin Requests, space
separated.

X-Container-Meta-Access-
Control-Max-Age

Max age for the Origin to hold the preflight results.

X-Container-Meta-Access-
Control-Expose-Headers

Headers exposed to the user agent (e.g. browser) in the actual
request response. Space separated.

In addition the values set in container metadata, some cluster-wide values may also be config-
ured using the strict_cors_mode, cors_allow_origin and cors_expose_headers in
proxy-server.conf. See proxy-server.conf-sample for more information.

Before a browser issues an actual request it may issue a preflight request. The preflight request is an
OPTIONS call to verify the Origin is allowed to make the request. The sequence of events are,

• Browser makes OPTIONS request to Swift

• Swift returns 200/401 to browser based on allowed origins

• If 200, browser makes the actual request to Swift, i.e. PUT, POST, DELETE, HEAD, GET

When a browser receives a response to an actual request it only exposes those headers listed in the
Access-Control-Expose-Headers header. By default Swift returns the following values for
this header,

• simple response headers as listed on http://www.w3.org/TR/cors/#simple-response-header

• the headers etag, x-timestamp, x-trans-id, x-openstack-request-id

2.14. CORS 73

https://developer.mozilla.org/en-US/docs/HTTP/Access_control_CORS
https://developer.mozilla.org/en-US/docs/HTTP/Access_control_CORS#Preflighted_requests
http://www.w3.org/TR/cors/#simple-response-header


Swift Documentation, Release 2.27.1.dev38

• all metadata headers (X-Container-Meta-* for containers and X-Object-Meta-* for
objects)

• headers listed in X-Container-Meta-Access-Control-Expose-Headers

• headers configured using the cors_expose_headers option in proxy-server.conf

Note: An OPTIONS request to a symlink object will respond with the options for the symlink only, the
request will not be redirected to the target object. Therefore, if the symlinks target object is in another
container with CORS settings, the response will not reflect the settings.

2.14.1 Sample Javascript

To see some CORS Javascript in action download the test CORS page (source below). Host it on a
webserver and take note of the protocol and hostname (origin) youll be using to request the page, e.g.
http://localhost.

Locate a container youd like to query. Needless to say the Swift cluster hosting this con-
tainer should have CORS support. Append the origin of the test page to the containers
X-Container-Meta-Access-Control-Allow-Origin header,:

curl -X POST -H 'X-Auth-Token: xxx' \
-H 'X-Container-Meta-Access-Control-Allow-Origin: http://localhost' \
http://192.168.56.3:8080/v1/AUTH_test/cont1

At this point the container is now accessible to CORS clients hosted on http://localhost. Open the test
CORS page in your browser.

1. Populate the Token field

2. Populate the URL field with the URL of either a container or object

3. Select the request method

4. Hit Submit

Assuming the request succeeds you should see the response header and body. If something went wrong
the response status will be 0.

2.14.2 Test CORS Page

A sample cross-site test page is located in the project source tree doc/source/test-cors.html.

<!DOCTYPE html>
<html>
<head>

<meta charset="utf-8">
<title>Test CORS</title>

</head>
<body>

Token<br><input id="token" type="text" size="64"><br><br>

Method<br>

(continues on next page)

74 Chapter 2. Overview and Concepts

http://localhost
http://localhost


Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

<select id="method">
<option value="GET">GET</option>
<option value="HEAD">HEAD</option>
<option value="POST">POST</option>
<option value="DELETE">DELETE</option>
<option value="PUT">PUT</option>

</select><br><br>

URL (Container or Object)<br><input id="url" size="64" type=
↪→"text"><br><br>

<input id="submit" type="button" value="Submit" onclick=
↪→"submit(); return false;">

<pre id="response_headers"></pre>
<p>
<hr>
<pre id="response_body"></pre>

<script type="text/javascript">
function submit() {

var token = document.getElementById('token').value;
var method = document.getElementById('method').value;
var url = document.getElementById('url').value;

document.getElementById('response_headers').textContent
↪→= null;

document.getElementById('response_body').textContent =
↪→null;

var request = new XMLHttpRequest();

request.onreadystatechange = function (oEvent) {
if (request.readyState == 4) {

responseHeaders = 'Status: ' + request.status;
responseHeaders = responseHeaders + '\nStatus

↪→Text: ' + request.statusText;
responseHeaders = responseHeaders + '\n\n' +

↪→request.getAllResponseHeaders();
document.getElementById('response_headers').

↪→textContent = responseHeaders;
document.getElementById('response_body').

↪→textContent = request.responseText;
}

}

request.open(method, url);
if (token != '') {

// custom headers always trigger a pre-flight
↪→request

request.setRequestHeader('X-Auth-Token', token);
}
request.send(null);

}
</script>

(continues on next page)

2.14. CORS 75



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

</body>
</html>

2.15 Cross-domain Policy File

A cross-domain policy file allows web pages hosted elsewhere to use client side technologies such as
Flash, Java and Silverlight to interact with the Swift API.

See http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html for a description of the
purpose and structure of the cross-domain policy file. The cross-domain policy file is installed in the
root of a web server (i.e., the path is /crossdomain.xml).

The crossdomain middleware responds to a path of /crossdomain.xml with an XML document such as:

<?xml version="1.0"?>
<!DOCTYPE cross-domain-policy SYSTEM "http://www.adobe.com/xml/dtds/cross-
↪→domain-policy.dtd" >
<cross-domain-policy>

<allow-access-from domain="*" secure="false" />
</cross-domain-policy>

You should use a policy appropriate to your site. The examples and the default policy are provided to
indicate how to syntactically construct a cross domain policy file they are not recommendations.

2.15.1 Configuration

To enable this middleware, add it to the pipeline in your proxy-server.conf file. It should be added
before any authentication (e.g., tempauth or keystone) middleware. In this example ellipsis () indicate
other middleware you may have chosen to use:

[pipeline:main]
pipeline = ... crossdomain ... authtoken ... proxy-server

And add a filter section, such as:

[filter:crossdomain]
use = egg:swift#crossdomain
cross_domain_policy = <allow-access-from domain="*.example.com" />

<allow-access-from domain="www.example.com" secure="false" />

For continuation lines, put some whitespace before the continuation text. Ensure you put a completely
blank line to terminate the cross_domain_policy value.

The cross_domain_policy name/value is optional. If omitted, the policy defaults as if you had specified:

cross_domain_policy = <allow-access-from domain="*" secure="false" />

76 Chapter 2. Overview and Concepts

http://www.adobe.com/devnet/articles/crossdomain_policy_file_spec.html


Swift Documentation, Release 2.27.1.dev38

2.16 Erasure Code Support

2.16.1 History and Theory of Operation

Theres a lot of good material out there on Erasure Code (EC) theory, this short introduction is just meant
to provide some basic context to help the reader better understand the implementation in Swift.

Erasure Coding for storage applications grew out of Coding Theory as far back as the 1960s with the
Reed-Solomon codes. These codes have been used for years in applications ranging from CDs to DVDs
to general communications and, yes, even in the space program starting with Voyager! The basic idea
is that some amount of data is broken up into smaller pieces called fragments and coded in such a way
that it can be transmitted with the ability to tolerate the loss of some number of the coded fragments.
Thats where the word erasure comes in, if you transmit 14 fragments and only 13 are received then one
of them is said to be erased. The word erasure provides an important distinction with EC; it isnt about
detecting errors, its about dealing with failures. Another important element of EC is that the number of
erasures that can be tolerated can be adjusted to meet the needs of the application.

At a high level EC works by using a specific scheme to break up a single data buffer into several smaller
data buffers then, depending on the scheme, performing some encoding operation on that data in order
to generate additional information. So you end up with more data than you started with and that extra
data is often called parity. Note that there are many, many different encoding techniques that vary both
in how they organize and manipulate the data as well by what means they use to calculate parity. For
example, one scheme might rely on Galois Field Arithmetic while others may work with only XOR. The
number of variations and details about their differences are well beyond the scope of this introduction,
but we will talk more about a few of them when we get into the implementation of EC in Swift.

Overview of EC Support in Swift

First and foremost, from an application perspective EC support is totally transparent. There are no EC
related external API; a container is simply created using a Storage Policy defined to use EC and then
interaction with the cluster is the same as any other durability policy.

EC is implemented in Swift as a Storage Policy, see Storage Policies for complete details on Storage
Policies. Because support is implemented as a Storage Policy, all of the storage devices associated with
your clusters EC capability can be isolated. It is entirely possible to share devices between storage
policies, but for EC it may make more sense to not only use separate devices but possibly even entire
nodes dedicated for EC.

Which direction one chooses depends on why the EC policy is being deployed. If, for example, there
is a production replication policy in place already and the goal is to add a cold storage tier such that
the existing nodes performing replication are impacted as little as possible, adding a new set of nodes
dedicated to EC might make the most sense but also incurs the most cost. On the other hand, if EC
is being added as a capability to provide additional durability for a specific set of applications and the
existing infrastructure is well suited for EC (sufficient number of nodes, zones for the EC scheme that is
chosen) then leveraging the existing infrastructure such that the EC ring shares nodes with the replication
ring makes the most sense. These are some of the main considerations:

• Layout of existing infrastructure.

• Cost of adding dedicated EC nodes (or just dedicated EC devices).

• Intended usage model(s).

2.16. Erasure Code Support 77

http://www.ssrc.ucsc.edu/Papers/plank-fast13.pdf


Swift Documentation, Release 2.27.1.dev38

The Swift code base does not include any of the algorithms necessary to perform the actual encoding
and decoding of data; that is left to external libraries. The Storage Policies architecture is leveraged
to enable EC on a per container basis the object rings are still used to determine the placement of EC
data fragments. Although there are several code paths that are unique to an operation associated with
an EC policy, an external dependency to an Erasure Code library is what Swift counts on to perform
the low level EC functions. The use of an external library allows for maximum flexibility as there are a
significant number of options out there, each with its owns pros and cons that can vary greatly from one
use case to another.

PyECLib: External Erasure Code Library

PyECLib is a Python Erasure Coding Library originally designed and written as part of the effort to
add EC support to the Swift project, however it is an independent project. The library provides a well-
defined and simple Python interface and internally implements a plug-in architecture allowing it to take
advantage of many well-known C libraries such as:

• Jerasure and GFComplete at http://jerasure.org.

• Intel(R) ISA-L at http://01.org/intel%C2%AE-storage-acceleration-library-open-source-version.

• Or write your own!

PyECLib uses a C based library called liberasurecode to implement the plug in infrastructure; libera-
surecode is available at:

• liberasurecode: https://github.com/openstack/liberasurecode

PyECLib itself therefore allows for not only choice but further extensibility as well. PyECLib also
comes with a handy utility to help determine the best algorithm to use based on the equipment that will
be used (processors and server configurations may vary in performance per algorithm). More on this
will be covered in the configuration section. PyECLib is included as a Swift requirement.

For complete details see PyECLib

Storing and Retrieving Objects

We will discuss the details of how PUT and GET work in the Under the Hood section later on. The key
point here is that all of the erasure code work goes on behind the scenes; this summary is a high level
information overview only.

The PUT flow looks like this:

1. The proxy server streams in an object and buffers up a segment of data (size is configurable).

2. The proxy server calls on PyECLib to encode the data into smaller fragments.

3. The proxy streams the encoded fragments out to the storage nodes based on ring locations.

4. Repeat until the client is done sending data.

5. The client is notified of completion when a quorum is met.

The GET flow looks like this:

1. The proxy server makes simultaneous requests to participating nodes.

2. As soon as the proxy has the fragments it needs, it calls on PyECLib to decode the data.

78 Chapter 2. Overview and Concepts

http://jerasure.org
http://01.org/intel%C2%AE-storage-acceleration-library-open-source-version
https://github.com/openstack/liberasurecode
https://github.com/openstack/pyeclib


Swift Documentation, Release 2.27.1.dev38

3. The proxy streams the decoded data it has back to the client.

4. Repeat until the proxy is done sending data back to the client.

It may sound like, from this high level overview, that using EC is going to cause an explosion in the
number of actual files stored in each nodes local file system. Although it is true that more files will
be stored (because an object is broken into pieces), the implementation works to minimize this where
possible, more details are available in the Under the Hood section.

Handoff Nodes

In EC policies, similarly to replication, handoff nodes are a set of storage nodes used to augment the list
of primary nodes responsible for storing an erasure coded object. These handoff nodes are used in the
event that one or more of the primaries are unavailable. Handoff nodes are still selected with an attempt
to achieve maximum separation of the data being placed.

Reconstruction

For an EC policy, reconstruction is analogous to the process of replication for a replication type pol-
icy essentially the reconstructor replaces the replicator for EC policy types. The basic framework of
reconstruction is very similar to that of replication with a few notable exceptions:

• Because EC does not actually replicate partitions, it needs to operate at a finer granularity than
what is provided with rsync, therefore EC leverages much of ssync behind the scenes (you do not
need to manually configure ssync).

• Once a pair of nodes has determined the need to replace a missing object fragment, instead of
pushing over a copy like replication would do, the reconstructor has to read in enough surviving
fragments from other nodes and perform a local reconstruction before it has the correct data to
push to the other node.

• A reconstructor does not talk to all other reconstructors in the set of nodes responsible for an EC
partition, this would be far too chatty, instead each reconstructor is responsible for syncing with
the partitions closest two neighbors (closest meaning left and right on the ring).

Note: EC work (encode and decode) takes place both on the proxy nodes, for PUT/GET operations, as
well as on the storage nodes for reconstruction. As with replication, reconstruction can be the result of
rebalancing, bit-rot, drive failure or reverting data from a hand-off node back to its primary.

2.16.2 Performance Considerations

In general, EC has different performance characteristics than replicated data. EC requires substantially
more CPU to read and write data, and is more suited for larger objects that are not frequently accessed
(e.g. backups).

Operators are encouraged to characterize the performance of various EC schemes and share their obser-
vations with the developer community.

2.16. Erasure Code Support 79



Swift Documentation, Release 2.27.1.dev38

2.16.3 Using an Erasure Code Policy

To use an EC policy, the administrator simply needs to define an EC policy in swift.conf and cre-
ate/configure the associated object ring. An example of how an EC policy can be setup is shown below:

[storage-policy:2]
name = ec104
policy_type = erasure_coding
ec_type = liberasurecode_rs_vand
ec_num_data_fragments = 10
ec_num_parity_fragments = 4
ec_object_segment_size = 1048576

Lets take a closer look at each configuration parameter:

• name: This is a standard storage policy parameter. See Storage Policies for details.

• policy_type: Set this to erasure_coding to indicate that this is an EC policy.

• ec_type: Set this value according to the available options in the selected PyECLib back-end.
This specifies the EC scheme that is to be used. For example the option shown here selects
Vandermonde Reed-Solomon encoding while an option of flat_xor_hd_3 would select Flat-
XOR based HD combination codes. See the PyECLib page for full details.

• ec_num_data_fragments: The total number of fragments that will be comprised of data.

• ec_num_parity_fragments: The total number of fragments that will be comprised of par-
ity.

• ec_object_segment_size: The amount of data that will be buffered up before feeding a
segment into the encoder/decoder. The default value is 1048576.

When PyECLib encodes an object, it will break it into N fragments. However, what is important during
configuration, is how many of those are data and how many are parity. So in the example above, PyE-
CLib will actually break an object in 14 different fragments, 10 of them will be made up of actual object
data and 4 of them will be made of parity data (calculations depending on ec_type).

When deciding which devices to use in the EC policys object ring, be sure to carefully consider the
performance impacts. Running some performance benchmarking in a test environment for your config-
uration is highly recommended before deployment.

To create the EC policys object ring, the only difference in the usage of the swift-ring-builder
create command is the replicas parameter. The replicas value is the number of fragments
spread across the object servers associated with the ring; replicas must be equal to the sum of
ec_num_data_fragments and ec_num_parity_fragments. For example:

swift-ring-builder object-1.builder create 10 14 1

Note that in this example the replicas value of 14 is based on the sum of 10 EC data fragments and
4 EC parity fragments.

Once you have configured your EC policy in swift.conf and created your object ring, your application is
ready to start using EC simply by creating a container with the specified policy name and interacting as
usual.

Note: Its important to note that once you have deployed a policy and have created objects with that
policy, these configurations options cannot be changed. In case a change in the configuration is desired,

80 Chapter 2. Overview and Concepts

https://github.com/openstack/pyeclib


Swift Documentation, Release 2.27.1.dev38

you must create a new policy and migrate the data to a new container.

Warning: Using isa_l_rs_vand with more than 4 parity fragments creates fragments which
may in some circumstances fail to reconstruct properly or (with liberasurecode < 1.3.1) reconstruct
corrupted data. New policies that need large numbers of parity fragments should consider using
isa_l_rs_cauchy. Any existing affected policies must be marked deprecated, and data in con-
tainers with that policy should be migrated to a new policy.

Migrating Between Policies

A common usage of EC is to migrate less commonly accessed data from a more expensive but lower
latency policy such as replication. When an application determines that it wants to move data from a
replication policy to an EC policy, it simply needs to move the data from the replicated container to an
EC container that was created with the target durability policy.

2.16.4 Global EC

The following recommendations are made when deploying an EC policy that spans multiple regions in
a Global Cluster:

• The global EC policy should use EC Duplication in conjunction with a Composite Ring, as de-
scribed below.

• Proxy servers should be configured to use read affinity to prefer reading from their local region for
the global EC policy. Per policy configuration allows this to be configured for individual policies.

Note: Before deploying a Global EC policy, consideration should be given to the Known Issues, in
particular the relatively poor performance anticipated from the object-reconstructor.

EC Duplication

EC Duplication enables Swift to make duplicated copies of fragments of erasure coded objects. If an
EC storage policy is configured with a non-default ec_duplication_factor of N > 1, then the
policy will create N duplicates of each unique fragment that is returned from the configured EC engine.

Duplication of EC fragments is optimal for Global EC storage policies, which require dispersion of
fragment data across failure domains. Without fragment duplication, common EC parameters will not
distribute enough unique fragments between large failure domains to allow for a rebuild using fragments
from any one domain. For example a uniformly distributed 10+4 EC policy schema would place 7
fragments in each of two failure domains, which is less in each failure domain than the 10 fragments
needed to rebuild a missing fragment.

Without fragment duplication, an EC policy schema must be adjusted to include additional parity frag-
ments in order to guarantee the number of fragments in each failure domain is greater than the number
required to rebuild. For example, a uniformly distributed 10+18 EC policy schema would place 14
fragments in each of two failure domains, which is more than sufficient in each failure domain to rebuild
a missing fragment. However, empirical testing has shown encoding a schema with num_parity >

2.16. Erasure Code Support 81



Swift Documentation, Release 2.27.1.dev38

num_data (such as 10+18) is less efficient than using duplication of fragments. EC fragment du-
plication enables Swifts Global EC to maintain more independence between failure domains without
sacrificing efficiency on read/write or rebuild!

The ec_duplication_factor option may be configured in swift.conf in each storage-policy
section. The option may be omitted - the default value is 1 (i.e. no duplication):

[storage-policy:2]
name = ec104
policy_type = erasure_coding
ec_type = liberasurecode_rs_vand
ec_num_data_fragments = 10
ec_num_parity_fragments = 4
ec_object_segment_size = 1048576
ec_duplication_factor = 2

Warning: EC duplication is intended for use with Global EC policies. To ensure independent
availability of data in all regions, the ec_duplication_factor option should only be used in
conjunction with Composite Rings, as described in this document.

In this example, a 10+4 schema and a duplication factor of 2 will result in (10+4)x2 = 28 frag-
ments being stored (we will use the shorthand 10+4x2 to denote that policy configuration) . The
ring for this policy should be configured with 28 replicas (i.e. (ec_num_data_fragments +
ec_num_parity_fragments) * ec_duplication_factor). A 10+4x2 schema can al-
low a multi-region deployment to rebuild an object to full durability even when more than 14 fragments
are unavailable. This is advantageous with respect to a 10+18 configuration not only because reads
from data fragments will be more common and more efficient, but also because a 10+4x2 can grow
into a 10+4x3 to expand into another region.

EC duplication with composite rings

It is recommended that EC Duplication is used with Composite Rings in order to disperse duplicate
fragments across regions.

When EC duplication is used, it is highly desirable to have one duplicate of each fragment placed in
each region. This ensures that a set of ec_num_data_fragments unique fragments (the minimum
needed to reconstruct an object) can always be assembled from a single region. This in turn means that
objects are robust in the event of an entire region becoming unavailable.

This can be achieved by using a composite ring with the following properties:

• The number of component rings in the composite ring is equal to the
ec_duplication_factor for the policy.

• Each component ring has a number of replicas that is equal to the sum of
ec_num_data_fragments and ec_num_parity_fragments.

• Each component ring is populated with devices in a unique region.

This arrangement results in each component ring in the composite ring, and therefore each region, having
one copy of each fragment.

For example, consider a Swift cluster with two regions, region1 and region2 and a 4+2x2 EC
policy schema. This policy should use a composite ring with two component rings, ring1 and ring2,

82 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

having devices exclusively in regions region1 and region2 respectively. Each component ring
should have replicas = 6. As a result, the first 6 fragments for an object will always be placed in
ring1 (i.e. in region1) and the second 6 duplicate fragments will always be placed in ring2 (i.e.
in region2).

Conversely, a conventional ring spanning the two regions may give a suboptimal distribution of dupli-
cates across the regions; it is possible for duplicates of the same fragment to be placed in the same region,
and consequently for another region to have no copies of that fragment. This may make it impossible to
assemble a set of ec_num_data_fragments unique fragments from a single region. For example,
the conventional ring could have a pathologically sub-optimal placement such as:

r1
<timestamp>#0#d.data
<timestamp>#0#d.data
<timestamp>#2#d.data
<timestamp>#2#d.data
<timestamp>#4#d.data
<timestamp>#4#d.data

r2
<timestamp>#1#d.data
<timestamp>#1#d.data
<timestamp>#3#d.data
<timestamp>#3#d.data
<timestamp>#5#d.data
<timestamp>#5#d.data

In this case, the object cannot be reconstructed from a single region; region1 has only the fragments
with index 0, 2, 4 and region2 has the other 3 indexes, but we need 4 unique indexes to be able to
rebuild an object.

Node Selection Strategy for Reads

Proxy servers require a set of unique fragment indexes to decode the original object when handling a
GET request to an EC policy. With a conventional EC policy, this is very likely to be the outcome
of reading fragments from a random selection of backend nodes. With an EC Duplication policy it is
significantly more likely that responses from a random selection of backend nodes might include some
duplicated fragments.

For this reason it is strongly recommended that EC Duplication always be deployed in combination with
Composite Rings and proxy server read affinity.

Under normal conditions with the recommended deployment, read affinity will cause a proxy server to
first attempt to read fragments from nodes in its local region. These fragments are guaranteed to be
unique with respect to each other. Even if there are a small number of local failures, unique local parity
fragments will make up the difference. However, should enough local primary storage nodes fail, such
that sufficient unique fragments are not available in the local region, a global EC cluster will proceed
to read fragments from the other region(s). Random reads from the remote region are not guaranteed
to return unique fragments; with EC Duplication there is a significantly high probability that the proxy
server will encounter a fragment that is a duplicate of one it has already found in the local region. The
proxy server will ignore these and make additional requests until it accumulates the required set of
unique fragments, potentially searching all the primary and handoff locations in the local and remote
regions before ultimately failing the read.

A global EC deployment configured as recommended is therefore extremely resilient. However, under

2.16. Erasure Code Support 83



Swift Documentation, Release 2.27.1.dev38

extreme failure conditions read handling can be inefficient because nodes in other regions are guaranteed
to have some fragments which are duplicates of those the proxy server has already received. Work is in
progress to improve the proxy server node selection strategy such that when it is necessary to read from
other regions, nodes that are likely to have useful fragments are preferred over those that are likely to
return a duplicate.

Known Issues

Efficient Cross Region Rebuild

Work is also in progress to improve the object-reconstructor efficiency for Global EC policies. Unlike
the proxy server, the reconstructor does not apply any read affinity settings when gathering fragments.
It is therefore likely to receive duplicated fragments (i.e. make wasted backend GET requests) while
performing every fragment reconstruction.

Additionally, other reconstructor optimisations for Global EC are under investigation:

• Since fragments are duplicated between regions it may in some cases be more attractive to restore
failed fragments from their duplicates in another region instead of rebuilding them from other
fragments in the local region.

• Conversely, to avoid WAN transfer it may be more attractive to rebuild fragments from local parity.

• During rebalance it will always be more attractive to revert a fragment from its old-primary to its
new primary rather than rebuilding or transferring a duplicate from the remote region.

2.16.5 Under the Hood

Now that weve explained a little about EC support in Swift and how to configure and use it, lets explore
how EC fits in at the nuts-n-bolts level.

Terminology

The term fragment has been used already to describe the output of the EC process (a series of fragments)
however we need to define some other key terms here before going any deeper. Without paying special
attention to using the correct terms consistently, it is very easy to get confused in a hurry!

• chunk: HTTP chunks received over wire (term not used to describe any EC specific operation).

• segment: Not to be confused with SLO/DLO use of the word, in EC we call a segment a series of
consecutive HTTP chunks buffered up before performing an EC operation.

• fragment: Data and parity fragments are generated when erasure coding transformation is applied
to a segment.

• EC archive: A concatenation of EC fragments; to a storage node this looks like an object.

• ec_ndata: Number of EC data fragments.

• ec_nparity: Number of EC parity fragments.

84 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

Middleware

Middleware remains unchanged. For most middleware (e.g., SLO/DLO) the fact that the proxy is frag-
menting incoming objects is transparent. For list endpoints, however, it is a bit different. A caller of list
endpoints will get back the locations of all of the fragments. The caller will be unable to re-assemble the
original object with this information, however the node locations may still prove to be useful information
for some applications.

On Disk Storage

EC archives are stored on disk in their respective objects-N directory based on their policy index. See
Storage Policies for details on per policy directory information.

In addition to the object timestamp, the filenames of EC archives encode other information related to the
archive:

• The fragment archive index. This is required for a few reasons. For one, it allows us to store
fragment archives of different indexes on the same storage node which is not typical however it
is possible in many circumstances. Without unique filenames for the different EC archive files in
a set, we would be at risk of overwriting one archive of index n with another of index m in some
scenarios.

The index is appended to the filename just before the .data extension. For example, the filename
for a fragment archive storing the 5th fragment would be:

1418673556.92690#5.data

• The durable state of the archive. The meaning of this will be described in more detail later, but
a fragment archive that is considered durable has an additional #d string included in its filename
immediately before the .data extension. For example:

1418673556.92690#5#d.data

A policy-specific transformation function is therefore used to build the archive filename. These
functions are implemented in the diskfile module as methods of policy specific sub classes of
BaseDiskFileManager.

The transformation function for the replication policy is simply a NOP.

Note: In older versions the durable state of an archive was represented by an additional file called the
.durable file instead of the #d substring in the .data filename. The .durable for the example
above would be:

1418673556.92690.durable

2.16. Erasure Code Support 85



Swift Documentation, Release 2.27.1.dev38

Proxy Server

High Level

The Proxy Server handles Erasure Coding in a different manner than replication, therefore there are
several code paths unique to EC policies either though sub classing or simple conditionals. Taking a
closer look at the PUT and the GET paths will help make this clearer. But first, a high level overview of
how an object flows through the system:

Note how:

• Incoming objects are buffered into segments at the proxy.

• Segments are erasure coded into fragments at the proxy.

• The proxy stripes fragments across participating nodes such that the on-disk stored files that we
call a fragment archive is appended with each new fragment.

This scheme makes it possible to minimize the number of on-disk files given our segmenting and frag-
menting.

Multi_Phase Conversation

Multi-part MIME document support is used to allow the proxy to engage in a handshake conversation
with the storage node for processing PUT requests. This is required for a few different reasons.

1. From the perspective of the storage node, a fragment archive is really just another object, we need
a mechanism to send down the original object etag after all fragment archives have landed.

2. Without introducing strong consistency semantics, the proxy needs a mechanism to know when
a quorum of fragment archives have actually made it to disk before it can inform the client of a
successful PUT.

MIME supports a conversation between the proxy and the storage nodes for every PUT. This provides
us with the ability to handle a PUT in one connection and assure that we have the essence of a 2 phase
commit, basically having the proxy communicate back to the storage nodes once it has confirmation that
a quorum of fragment archives in the set have been written.

86 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

For the first phase of the conversation the proxy requires a quorum of ec_ndata + 1 fragment archives to
be successfully put to storage nodes. This ensures that the object could still be reconstructed even if one
of the fragment archives becomes unavailable. As described above, each fragment archive file is named:

<ts>#<frag_index>.data

where ts is the timestamp and frag_index is the fragment archive index.

During the second phase of the conversation the proxy communicates a confirmation to storage nodes
that the fragment archive quorum has been achieved. This causes each storage node to rename the
fragment archive written in the first phase of the conversation to include the substring #d in its name:

<ts>#<frag_index>#d.data

This indicates to the object server that this fragment archive is durable and that there is a set of data files
that are durable at timestamp ts.

For the second phase of the conversation the proxy requires a quorum of ec_ndata + 1 successful com-
mits on storage nodes. This ensures that there are sufficient committed fragment archives for the object
to be reconstructed even if one becomes unavailable. The reconstructor ensures that the durable state is
replicated on storage nodes where it may be missing.

Note that the completion of the commit phase of the conversation is also a signal for the object server to
go ahead and immediately delete older timestamp files for this object. This is critical as we do not want
to delete the older object until the storage node has confirmation from the proxy, via the multi-phase
conversation, that the other nodes have landed enough for a quorum.

The basic flow looks like this:

1. The Proxy Server erasure codes and streams the object fragments (ec_ndata + ec_nparity) to the
storage nodes.

2. The storage nodes store objects as EC archives and upon finishing object data/metadata write,
send a 1st-phase response to proxy.

3. Upon quorum of storage nodes responses, the proxy initiates 2nd-phase by sending commit con-
firmations to object servers.

4. Upon receipt of commit message, object servers rename .data files to include the #d substring,
indicating successful PUT, and send a final response to the proxy server.

5. The proxy waits for ec_ndata + 1 object servers to respond with a success (2xx) status before
responding to the client with a successful status.

Here is a high level example of what the conversation looks like:

proxy: PUT /p/a/c/o
Transfer-Encoding': 'chunked'
Expect': '100-continue'
X-Backend-Obj-Multiphase-Commit: yes

obj: 100 Continue
X-Obj-Multiphase-Commit: yes

proxy: --MIMEboundary
X-Document: object body
<obj_data>
--MIMEboundary
X-Document: object metadata
Content-MD5: <footer_meta_cksum>

(continues on next page)

2.16. Erasure Code Support 87



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

<footer_meta>
--MIMEboundary

<object server writes data, metadata to <ts>#<frag_index>.data file>
obj: 100 Continue
<quorum>
proxy: X-Document: put commit

commit_confirmation
--MIMEboundary--

<object server renames <ts>#<frag_index>.data to <ts>#<frag_index>#d.data>
obj: 20x
<proxy waits to receive >=2 2xx responses>
proxy: 2xx -> client

A few key points on the durable state of a fragment archive:

• A durable fragment archive means that there exist sufficient other fragment archives elsewhere in
the cluster (durable and/or non-durable) to reconstruct the object.

• When a proxy does a GET, it will require at least one object server to respond with a fragment
archive is durable before reconstructing and returning the object to the client.

Partial PUT Failures

A partial PUT failure has a few different modes. In one scenario the Proxy Server is alive through the
entire PUT conversation. This is a very straightforward case. The client will receive a good response
if and only if a quorum of fragment archives were successfully landed on their storage nodes. In this
case the Reconstructor will discover the missing fragment archives, perform a reconstruction and deliver
those fragment archives to their nodes.

The more interesting case is what happens if the proxy dies in the middle of a conversation. If it turns
out that a quorum had been met and the commit phase of the conversation finished, its as simple as the
previous case in that the reconstructor will repair things. However, if the commit didnt get a chance to
happen then some number of the storage nodes have .data files on them (fragment archives) but none of
them knows whether there are enough elsewhere for the entire object to be reconstructed. In this case
the client will not have received a 2xx response so there is no issue there, however, it is left to the storage
nodes to clean up the stale fragment archives. Work is ongoing in this area to enable the proxy to play a
role in reviving these fragment archives, however, for the current release, a proxy failure after the start
of a conversation but before the commit message will simply result in a PUT failure.

GET

The GET for EC is different enough from replication that subclassing the BaseObjectController to the
ECObjectController enables an efficient way to implement the high level steps described earlier:

1. The proxy server makes simultaneous requests to ec_ndata primary object server nodes with goal
of finding a set of ec_ndata distinct EC archives at the same timestamp, and an indication from at
least one object server that a durable fragment archive exists for that timestamp. If this goal is not
achieved with the first ec_ndata requests then the proxy server continues to issue requests to the
remaining primary nodes and then handoff nodes.

2. As soon as the proxy server has found a usable set of ec_ndata EC archives, it starts to call
PyECLib to decode fragments as they are returned by the object server nodes.

88 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

3. The proxy server creates Etag and content length headers for the client response since each EC
archives metadata is valid only for that archive.

4. The proxy streams the decoded data it has back to the client.

Note that the proxy does not require all objects servers to have a durable fragment archive to return in
response to a GET. The proxy will be satisfied if just one object server has a durable fragment archive
at the same timestamp as EC archives returned from other object servers. This means that the proxy can
successfully GET an object that had missing durable state on some nodes when it was PUT (i.e. a partial
PUT failure occurred).

Note also that an object server may inform the proxy server that it has more than one EC archive for dif-
ferent timestamps and/or fragment indexes, which may cause the proxy server to issue multiple requests
for distinct EC archives to that object server. (This situation can temporarily occur after a ring rebalance
when a handoff node storing an archive has become a primary node and received its primary archive but
not yet moved the handoff archive to its primary node.)

The proxy may receive EC archives having different timestamps, and may receive several EC archives
having the same index. The proxy therefore ensures that it has sufficient EC archives with the same
timestamp and distinct fragment indexes before considering a GET to be successful.

Object Server

The Object Server, like the Proxy Server, supports MIME conversations as described in the proxy section
earlier. This includes processing of the commit message and decoding various sections of the MIME
document to extract the footer which includes things like the entire object etag.

DiskFile

Erasure code policies use subclassed ECDiskFile, ECDiskFileWriter, ECDiskFileReader
and ECDiskFileManager to implement EC specific handling of on disk files. This includes things
like file name manipulation to include the fragment index and durable state in the filename, construction
of EC specific hashes.pkl file to include fragment index information, etc.

Metadata

There are few different categories of metadata that are associated with EC:

System Metadata: EC has a set of object level system metadata that it attaches to each of the EC archives.
The metadata is for internal use only:

• X-Object-Sysmeta-EC-Etag: The Etag of the original object.

• X-Object-Sysmeta-EC-Content-Length: The content length of the original object.

• X-Object-Sysmeta-EC-Frag-Index: The fragment index for the object.

• X-Object-Sysmeta-EC-Scheme: Description of the EC policy used to encode the object.

• X-Object-Sysmeta-EC-Segment-Size: The segment size used for the object.

User Metadata: User metadata is unaffected by EC, however, a full copy of the user metadata is stored
with every EC archive. This is required as the reconstructor needs this information and each reconstruc-
tor only communicates with its closest neighbors on the ring.

2.16. Erasure Code Support 89



Swift Documentation, Release 2.27.1.dev38

PyECLib Metadata: PyECLib stores a small amount of metadata on a per fragment basis. This metadata
is not documented here as it is opaque to Swift.

Database Updates

As account and container rings are not associated with a Storage Policy, there is no change to how these
database updates occur when using an EC policy.

The Reconstructor

The Reconstructor performs analogous functions to the replicator:

1. Recovering from disk drive failure.

2. Moving data around because of a rebalance.

3. Reverting data back to a primary from a handoff.

4. Recovering fragment archives from bit rot discovered by the auditor.

However, under the hood it operates quite differently. The following are some of the key elements in
understanding how the reconstructor operates.

Unlike the replicator, the work that the reconstructor does is not always as easy to break down into the
2 basic tasks of synchronize or revert (move data from handoff back to primary) because of the fact that
one storage node can house fragment archives of various indexes and each index really "belongs" to a
different node. So, whereas when the replicator is reverting data from a handoff it has just one node
to send its data to, the reconstructor can have several. Additionally, it is not always the case that the
processing of a particular suffix directory means one or the other job type for the entire directory (as it
does for replication). The scenarios that create these mixed situations can be pretty complex so we will
just focus on what the reconstructor does here and not a detailed explanation of why.

Job Construction and Processing

Because of the nature of the work it has to do as described above, the reconstructor builds jobs for a
single job processor. The job itself contains all of the information needed for the processor to execute
the job which may be a synchronization or a data reversion. There may be a mix of jobs that perform
both of these operations on the same suffix directory.

Jobs are constructed on a per-partition basis and then per-fragment-index basis. That is, there will be
one job for every fragment index in a partition. Performing this construction "up front" like this helps
minimize the interaction between nodes collecting hashes.pkl information.

Once a set of jobs for a partition has been constructed, those jobs are sent off to threads for execution.
The single job processor then performs the necessary actions, working closely with ssync to carry out
its instructions. For data reversion, the actual objects themselves are cleaned up via the ssync module
and once that partitions set of jobs is complete, the reconstructor will attempt to remove the relevant
directory structures.

Job construction must account for a variety of scenarios, including:

1. A partition directory with all fragment indexes matching the local node index. This is the case
where everything is where it belongs and we just need to compare hashes and sync if needed. Here
we simply sync with our partners.

90 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

2. A partition directory with at least one local fragment index and mix of others. Here we need to
sync with our partners where fragment indexes matches the local_id, all others are syncd with
their home nodes and then deleted.

3. A partition directory with no local fragment index and just one or more of others. Here we sync
with just the home nodes for the fragment indexes that we have and then all the local archives are
deleted. This is the basic handoff reversion case.

Note: A "home node" is the node where the fragment index encoded in the fragment archives filename
matches the node index of a node in the primary partition list.

Node Communication

The replicators talk to all nodes who have a copy of their object, typically just 2 other nodes. For EC,
having each reconstructor node talk to all nodes would incur a large amount of overhead as there will
typically be a much larger number of nodes participating in the EC scheme. Therefore, the reconstructor
is built to talk to its adjacent nodes on the ring only. These nodes are typically referred to as partners.

Reconstruction

Reconstruction can be thought of sort of like replication but with an extra step in the middle. The
reconstructor is hard-wired to use ssync to determine what is missing and desired by the other side.
However, before an object is sent over the wire it needs to be reconstructed from the remaining fragments
as the local fragment is just that - a different fragment index than what the other end is asking for.

Thus, there are hooks in ssync for EC based policies. One case would be for basic reconstruction which,
at a high level, looks like this:

• Determine which nodes need to be contacted to collect other EC archives needed to perform
reconstruction.

• Update the etag and fragment index metadata elements of the newly constructed fragment archive.

• Establish a connection to the target nodes and give ssync a DiskFileLike class from which it can
stream data.

The reader in this class gathers fragments from the nodes and uses PyECLib to reconstruct each segment
before yielding data back to ssync. Essentially what this means is that data is buffered, in memory, on a
per segment basis at the node performing reconstruction and each segment is dynamically reconstructed
and delivered to ssync_sender where the send_put() method will ship them on over. The sender
is then responsible for deleting the objects as they are sent in the case of data reversion.

2.16. Erasure Code Support 91



Swift Documentation, Release 2.27.1.dev38

The Auditor

Because the auditor already operates on a per storage policy basis, there are no specific auditor changes
associated with EC. Each EC archive looks like, and is treated like, a regular object from the perspective
of the auditor. Therefore, if the auditor finds bit-rot in an EC archive, it simply quarantines it and the
reconstructor will take care of the rest just as the replicator does for replication policies.

2.17 Object Encryption

Swift supports the optional encryption of object data at rest on storage nodes. The encryption of object
data is intended to mitigate the risk of users data being read if an unauthorised party were to gain physical
access to a disk.

Note: Swifts data-at-rest encryption accepts plaintext object data from the client, encrypts it in the
cluster, and stores the encrypted data. This protects object data from inadvertently being exposed if a
data drive leaves the Swift cluster. If a user wishes to ensure that the plaintext data is always encrypted
while in transit and in storage, it is strongly recommended that the data be encrypted before sending it to
the Swift cluster. Encrypting on the client side is the only way to ensure that the data is fully encrypted
for its entire lifecycle.

Encryption of data at rest is implemented by middleware that may be included in the proxy server WSGI
pipeline. The feature is internal to a Swift cluster and not exposed through the API. Clients are unaware
that data is encrypted by this feature internally to the Swift service; internally encrypted data should
never be returned to clients via the Swift API.

The following data are encrypted while at rest in Swift:

• Object content i.e. the content of an object PUT requests body

• The entity tag (ETag) of objects that have non-zero content

• All custom user object metadata values i.e. metadata sent using X-Object-Meta- prefixed headers
with PUT or POST requests

Any data or metadata not included in the list above are not encrypted, including:

• Account, container and object names

• Account and container custom user metadata values

• All custom user metadata names

• Object Content-Type values

• Object size

• System metadata

Note: This feature is intended to provide confidentiality of data that is at rest i.e. to protect user data
from being read by an attacker that gains access to disks on which object data is stored.

This feature is not intended to prevent undetectable modification of user data at rest.

92 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

This feature is not intended to protect against an attacker that gains access to Swifts internal network
connections, or gains access to key material or is able to modify the Swift code running on Swift nodes.

2.17.1 Deployment and operation

Encryption is deployed by adding two middleware filters to the proxy server WSGI pipeline and in-
cluding their respective filter configuration sections in the proxy-server.conf file. Additional steps are
required if the container sync feature is being used.

The keymaster and encryption middleware filters must be to the right of all other middleware in the
pipeline apart from the final proxy-logging middleware, and in the order shown in this example:

<other middleware> keymaster encryption proxy-logging proxy-server

[filter:keymaster]
use = egg:swift#keymaster
encryption_root_secret = your_secret

[filter:encryption]
use = egg:swift#encryption
# disable_encryption = False

See the proxy-server.conf-sample file for further details on the middleware configuration options.

Keymaster middleware

The keymaster middleware must be configured with a root secret before it is used. By default the
keymaster middleware will use the root secret configured using the encryption_root_secret
option in the middleware filter section of the proxy-server.conf file, for example:

[filter:keymaster]
use = egg:swift#keymaster
encryption_root_secret = your_secret

Root secret values MUST be at least 44 valid base-64 characters and should be consistent across all
proxy servers. The minimum length of 44 has been chosen because it is the length of a base-64 encoded
32 byte value.

Note: The encryption_root_secret option holds the master secret key used for encryption.
The security of all encrypted data critically depends on this key and it should therefore be set to a high-
entropy value. For example, a suitable encryption_root_secret may be obtained by base-64
encoding a 32 byte (or longer) value generated by a cryptographically secure random number generator.

The encryption_root_secret value is necessary to recover any encrypted data from the storage
system, and therefore, it must be guarded against accidental loss. Its value (and consequently, the proxy-
server.conf file) should not be stored on any disk that is in any account, container or object ring.

The encryption_root_secret value should not be changed once deployed. Doing so would
prevent Swift from properly decrypting data that was encrypted using the former value, and would
therefore result in the loss of that data.

2.17. Object Encryption 93



Swift Documentation, Release 2.27.1.dev38

One method for generating a suitable value for encryption_root_secret is to use the openssl
command line tool:

openssl rand -base64 32

Separate keymaster configuration file

The encryption_root_secret option may alternatively be specified in a separate config file at a
path specified by the keymaster_config_path option, for example:

[filter:keymaster]
use = egg:swift#keymaster
keymaster_config_path = /etc/swift/keymaster.conf

This has the advantage of allowing multiple processes which need to be encryption-aware (for example,
proxy-server and container-sync) to share the same config file, ensuring that consistent encryption keys
are used by those processes. It also allows the keymaster configuration file to have different permissions
than the proxy-server.conf file.

A separate keymaster config file should have a [keymaster] section containing the
encryption_root_secret option:

[keymaster]
encryption_root_secret = your_secret

Note: Alternative keymaster middleware is available to retrieve encryption root secrets from an external
key management system such as Barbican rather than storing root secrets in configuration files.

Once deployed, the encryption filter will by default encrypt object data and metadata when handling
PUT and POST requests and decrypt object data and metadata when handling GET and HEAD requests.
COPY requests are transformed into GET and PUT requests by the Server Side Copy middleware be-
fore reaching the encryption middleware and as a result object data and metadata is decrypted and
re-encrypted when copied.

Changing the encryption root secret

From time to time it may be desirable to change the root secret that is used to derive encryption keys for
new data written to the cluster. The keymaster middleware allows alternative root secrets to be specified
in its configuration using options of the form:

encryption_root_secret_<secret_id> = <secret value>

where secret_id is a unique identifier for the root secret and secret value is a value that meets
the requirements for a root secret described above.

Only one root secret is used to encrypt new data at any moment in time. This root secret is specified
using the active_root_secret_id option. If specified, the value of this option should be one of
the configured root secret secret_id values; otherwise the value of encryption_root_secret
will be taken as the default active root secret.

94 Chapter 2. Overview and Concepts

https://docs.openstack.org/barbican


Swift Documentation, Release 2.27.1.dev38

Note: The active root secret is only used to derive keys for new data written to the cluster. Changing
the active root secret does not cause any existing data to be re-encrypted.

Existing encrypted data will be decrypted using the root secret that was active when that data was
written. All previous active root secrets must therefore remain in the middleware configuration in order
for decryption of existing data to succeed. Existing encrypted data will reference previous root secret by
the secret_id so it must be kept consistent in the configuration.

Note: Do not remove or change any previously active <secret value> or <secret_id>.

For example, the following keymaster configuration file specifies three root secrets, with the value of
encryption_root_secret_2 being the current active root secret:

[keymaster]
active_root_secret_id = 2
encryption_root_secret = your_secret
encryption_root_secret_1 = your_secret_1
encryption_root_secret_2 = your_secret_2

Note: To ensure there is no loss of data availability, deploying a new key to your cluster requires a two-
stage config change. First, add the new key to the encryption_root_secret_<secret_id>
option and restart the proxy-server. Do this for all proxies. Next, set the active_root_secret_id
option to the new secret id and restart the proxy. Again, do this for all proxies. This process ensures that
all proxies will have the new key available for decryption before any proxy uses it for encryption.

Encryption middleware

Once deployed, the encryption filter will by default encrypt object data and metadata when handling
PUT and POST requests and decrypt object data and metadata when handling GET and HEAD requests.
COPY requests are transformed into GET and PUT requests by the Server Side Copy middleware be-
fore reaching the encryption middleware and as a result object data and metadata is decrypted and
re-encrypted when copied.

Encryption Root Secret in External Key Management System

The benefits of using a dedicated system for storing the encryption root secret include the auditing and
access control infrastructure that are already in place in such a system, and the fact that an encryption
root secret stored in a key management system (KMS) may be backed by a hardware security module
(HSM) for additional security. Another significant benefit of storing the root encryption secret in an
external KMS is that it is in this case never stored on a disk in the Swift cluster.

Swift supports fetching encryption root secrets from a Barbican service or a KMIP service using the
kms_keymaster or kmip_keymaster middleware respectively.

2.17. Object Encryption 95

https://docs.openstack.org/barbican
https://www.oasis-open.org/committees/kmip/


Swift Documentation, Release 2.27.1.dev38

Encryption Root Secret in a Barbican KMS

Make sure the required dependencies are installed for retrieving an encryption root secret from an exter-
nal KMS. This can be done when installing Swift (add the -e flag to install as a development version)
by changing to the Swift directory and running the following command to install Swift together with the
kms_keymaster extra dependencies:

sudo pip install .[kms_keymaster]

Another way to install the dependencies is by making sure the following lines exist in the require-
ments.txt file, and installing them using pip install -r requirements.txt:

cryptography>=1.6 # BSD/Apache-2.0
castellan>=0.6.0

Note: If any of the required packages is already installed, the --upgrade flag may be required for
the pip commands in order for the required minimum version to be installed.

To make use of an encryption root secret stored in an external KMS, replace the keymaster middleware
with the kms_keymaster middleware in the proxy server WSGI pipeline in proxy-server.conf, in the order
shown in this example:

<other middleware> kms_keymaster encryption proxy-logging proxy-server

and add a section to the same file:

[filter:kms_keymaster]
use = egg:swift#kms_keymaster
keymaster_config_path = file_with_kms_keymaster_config

Create or edit the file file_with_kms_keymaster_config referenced above. For further details on the mid-
dleware configuration options, see the keymaster.conf-sample file. An example of the content of this file,
with optional parameters omitted, is below:

[kms_keymaster]
key_id = changeme
username = swift
password = password
project_name = swift
auth_endpoint = http://keystonehost:5000/v3

The encryption root secret shall be created and stored in the external key management system be-
fore it can be used by the keymaster. It shall be stored as a symmetric key, with content type
application/octet-stream, base64 content encoding, AES algorithm, bit length 256, and
secret type symmetric. The mode ctr may also be stored for informational purposes - it is not
currently checked by the keymaster.

The following command can be used to store the currently configured encryption_root_secret
value from the proxy-server.conf file in Barbican:

openstack secret store --name swift_root_secret \
--payload-content-type="application/octet-stream" \

(continues on next page)

96 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

--payload-content-encoding="base64" --algorithm aes --bit-length 256 \
--mode ctr --secret-type symmetric --payload <base64_encoded_root_secret>

Alternatively, the existing root secret can also be stored in Barbican using curl.

Note: The credentials used to store the secret in Barbican shall be the same ones that the proxy server
uses to retrieve the secret, i.e., the ones configured in the keymaster.conf file. For clarity reasons the
commands shown here omit the credentials - they may be specified explicitly, or in environment vari-
ables.

Instead of using an existing root secret, Barbican can also be asked to generate a new 256-bit root
secret, with content type application/octet-stream and algorithm AES (the mode parameter
is currently optional):

openstack secret order create --name swift_root_secret \
--payload-content-type="application/octet-stream" --algorithm aes \
--bit-length 256 --mode ctr key

The order create creates an asynchronous request to create the actual secret. The order can be
retrieved using openstack secret order get, and once the order completes successfully, the
output will show the key id of the generated root secret. Keys currently stored in Barbican can be listed
using the openstack secret list command.

Note: Both the order (the asynchronous request for creating or storing a secret), and the actual secret
itself, have similar unique identifiers. Once the order has been completed, the key id is shown in the
output of the order get command.

The keymaster uses the explicitly configured username and password (and project name etc.) from the
keymaster.conf file for retrieving the encryption root secret from an external key management system.
The Castellan library is used to communicate with Barbican.

For the proxy server, reading the encryption root secret directly from the proxy-server.conf file, from
the keymaster.conf file pointed to from the proxy-server.conf file, or from an external key management
system such as Barbican, are all functionally equivalent. In case reading the encryption root secret from
the external key management system fails, the proxy server will not start up. If the encryption root secret
is retrieved successfully, it is cached in memory in the proxy server.

For further details on the configuration options, see the [filter:kms_keymaster] section in the proxy-
server.conf-sample file, and the keymaster.conf-sample file.

2.17. Object Encryption 97

https://docs.openstack.org/api-guide/key-manager/secrets.html
https://docs.openstack.org/castellan/latest/


Swift Documentation, Release 2.27.1.dev38

Encryption Root Secret in a KMIP service

This middleware enables Swift to fetch a root secret from a KMIP service. The root secret is expected to
have been previously created in the KMIP service and is referenced by its unique identifier. The secret
should be an AES-256 symmetric key.

To use this middleware Swift must be installed with the extra required dependencies:

sudo pip install .[kmip_keymaster]

Add the -e flag to install as a development version.

Edit the swift proxy-server.conf file to insert the middleware in the wsgi pipeline, replacing any other
keymaster middleware:

[pipeline:main]
pipeline = catch_errors gatekeeper healthcheck proxy-logging \

<other middleware> kmip_keymaster encryption proxy-logging proxy-server

and add a new filter section:

[filter:kmip_keymaster]
use = egg:swift#kmip_keymaster
key_id = <unique id of secret to be fetched from the KMIP service>
host = <KMIP server host>
port = <KMIP server port>
certfile = /path/to/client/cert.pem
keyfile = /path/to/client/key.pem
ca_certs = /path/to/server/cert.pem
username = <KMIP username>
password = <KMIP password>

Apart from use and key_id the options are as defined for a PyKMIP client. The authoritative defini-
tion of these options can be found at https://pykmip.readthedocs.io/en/latest/client.html.

The value of the key_id option should be the unique identifier for a secret that will be retrieved from
the KMIP service.

The keymaster configuration can alternatively be defined in a separate config file by using the
keymaster_config_path option:

[filter:kmip_keymaster]
use = egg:swift#kmip_keymaster
keymaster_config_path = /etc/swift/kmip_keymaster.conf

In this case, the filter:kmip_keymaster section should contain no other options than use and
keymaster_config_path. All other options should be defined in the separate config file in a
section named kmip_keymaster. For example:

[kmip_keymaster]
key_id = 1234567890
host = 127.0.0.1
port = 5696
certfile = /etc/swift/kmip_client.crt
keyfile = /etc/swift/kmip_client.key
ca_certs = /etc/swift/kmip_server.crt

(continues on next page)

98 Chapter 2. Overview and Concepts

https://www.oasis-open.org/committees/kmip/
https://www.oasis-open.org/committees/kmip/
https://pykmip.readthedocs.io/en/latest/client.html
https://www.oasis-open.org/committees/kmip/


Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

username = swift
password = swift_password

Changing the encryption root secret of external KMSs

Because the KMS and KMIP keymasters derive from the default KeyMaster they also have to ability to
define multiple keys. The only difference is the key option names. Instead of using the form encryp-
tion_root_secret_<secret_id> both external KMSs use key_id_<secret_id>, as it is an extension of their
existing configuration. For example:

...
key_id = 1234567890
key_id_foo = 0987654321
key_id_bar = 5432106789
active_root_secret_id = foo
...

Other then that, the process is the same as Changing the encryption root secret.

Upgrade Considerations

When upgrading an existing cluster to deploy encryption, the following sequence of steps is recom-
mended:

1. Upgrade all object servers

2. Upgrade all proxy servers

3. Add keymaster and encryption middlewares to every proxy servers middleware pipeline
with the encryption disable_encryption option set to True and the keymaster
encryption_root_secret value set as described above.

4. If required, follow the steps for Container sync configuration.

5. Finally, change the encryption disable_encryption option to False

Objects that existed in the cluster prior to the keymaster and encryption middlewares being deployed
are still readable with GET and HEAD requests. The content of those objects will not be encrypted
unless they are written again by a PUT or COPY request. Any user metadata of those objects will not
be encrypted unless it is written again by a PUT, POST or COPY request.

Disabling Encryption

Once deployed, the keymaster and encryption middlewares should not be removed from the pipeline.
To do so will cause encrypted object data and/or metadata to be returned in response to GET or HEAD
requests for objects that were previously encrypted.

Encryption of inbound object data may be disabled by setting the encryption disable_encryption
option to True, in which case existing encrypted objects will remain encrypted but new data written
with PUT, POST or COPY requests will not be encrypted. The keymaster and encryption middlewares
should remain in the pipeline even when encryption of new objects is not required. The encryption

2.17. Object Encryption 99



Swift Documentation, Release 2.27.1.dev38

middleware is needed to handle GET requests for objects that may have been previously encrypted. The
keymaster is needed to provide keys for those requests.

Container sync configuration

If container sync is being used then the keymaster and encryption middlewares must be added to the
container sync internal client pipeline. The following configuration steps are required:

1. Create a custom internal client configuration file for container sync (if one is not already in use)
based on the sample file internal-client.conf-sample. For example, copy internal-client.conf-
sample to /etc/swift/container-sync-client.conf.

2. Modify this file to include the middlewares in the pipeline in the same way as described above for
the proxy server.

3. Modify the container-sync section of all container server config files to point to this internal client
config file using the internal_client_conf_path option. For example:

internal_client_conf_path = /etc/swift/container-sync-client.conf

Note: The encryption_root_secret value is necessary to recover any encrypted data from the
storage system, and therefore, it must be guarded against accidental loss. Its value (and consequently,
the custom internal client configuration file) should not be stored on any disk that is in any account,
container or object ring.

Note: These container sync configuration steps will be necessary for container sync probe tests to pass
if the encryption middlewares are included in the proxy pipeline of a test cluster.

2.17.2 Implementation

Encryption scheme

Plaintext data is encrypted to ciphertext using the AES cipher with 256-bit keys implemented by the
python cryptography package. The cipher is used in counter (CTR) mode so that any byte or range of
bytes in the ciphertext may be decrypted independently of any other bytes in the ciphertext. This enables
very simple handling of ranged GETs.

In general an item of unencrypted data, plaintext, is transformed to an item of encrypted data,
ciphertext:

ciphertext = E(plaintext, k, iv)

where E is the encryption function, k is an encryption key and iv is a unique initialization vector
(IV) chosen for each encryption context. For example, the object body is one encryption context with
a randomly chosen IV. The IV is stored as metadata of the encrypted item so that it is available for
decryption:

plaintext = D(ciphertext, k, iv)

100 Chapter 2. Overview and Concepts

https://pypi.org/project/cryptography


Swift Documentation, Release 2.27.1.dev38

where D is the decryption function.

The implementation of CTR mode follows NIST SP800-38A, and the full IV passed to the encryption
or decryption function serves as the initial counter block.

In general any encrypted item has accompanying crypto-metadata that describes the IV and the cipher
algorithm used for the encryption:

crypto_metadata = {"iv": <16 byte value>,
"cipher": "AES_CTR_256"}

This crypto-metadata is stored either with the ciphertext (for user metadata and etags) or as a separate
header (for object bodies).

Key management

A keymaster middleware is responsible for providing the keys required for each encryption and decryp-
tion operation. Two keys are required when handling object requests: a container key that is uniquely
associated with the container path and an object key that is uniquely associated with the object path.
These keys are made available to the encryption middleware via a callback function that the keymaster
installs in the WSGI request environ.

The current keymaster implementation derives container and object keys from the
encryption_root_secret in a deterministic way by constructing a SHA256 HMAC using
the encryption_root_secret as a key and the container or object path as a message, for
example:

object_key = HMAC(encryption_root_secret, "/a/c/o")

Other strategies for providing object and container keys may be employed by future implementations of
alternative keymaster middleware.

During each object PUT, a random key is generated to encrypt the object body. This random key is then
encrypted using the object key provided by the keymaster. This makes it safe to store the encrypted
random key alongside the encrypted object data and metadata.

This process of key wrapping enables more efficient re-keying events when the object key may need to
be replaced and consequently any data encrypted using that key must be re-encrypted. Key wrapping
minimizes the amount of data encrypted using those keys to just other randomly chosen keys which can
be re-wrapped efficiently without needing to re-encrypt the larger amounts of data that were encrypted
using the random keys.

Note: Re-keying is not currently implemented. Key wrapping is implemented in anticipation of future
re-keying operations.

2.17. Object Encryption 101

http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf


Swift Documentation, Release 2.27.1.dev38

Encryption middleware

The encryption middleware is composed of an encrypter component and a decrypter component.

Encrypter operation

Custom user metadata

The encrypter encrypts each item of custom user metadata using the object key provided by the keymas-
ter and an IV that is randomly chosen for that metadata item. The encrypted values are stored as Object
Transient-Sysmeta with associated crypto-metadata appended to the encrypted value. For example:

X-Object-Meta-Private1: value1
X-Object-Meta-Private2: value2

are transformed to:

X-Object-Transient-Sysmeta-Crypto-Meta-Private1:
E(value1, object_key, header_iv_1); swift_meta={"iv": header_iv_1,

"cipher": "AES_CTR_256"}
X-Object-Transient-Sysmeta-Crypto-Meta-Private2:

E(value2, object_key, header_iv_2); swift_meta={"iv": header_iv_2,
"cipher": "AES_CTR_256"}

The unencrypted custom user metadata headers are removed.

Object body

Encryption of an object body is performed using a randomly chosen body key and a randomly chosen
IV:

body_ciphertext = E(body_plaintext, body_key, body_iv)

The body_key is wrapped using the object key provided by the keymaster and a randomly chosen IV:

wrapped_body_key = E(body_key, object_key, body_key_iv)

The encrypter stores the associated crypto-metadata in a system metadata header:

X-Object-Sysmeta-Crypto-Body-Meta:
{"iv": body_iv,
"cipher": "AES_CTR_256",
"body_key": {"key": wrapped_body_key,

"iv": body_key_iv}}

Note that in this case there is an extra item of crypto-metadata which stores the wrapped body key and
its IV.

102 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

Entity tag

While encrypting the object body the encrypter also calculates the ETag (md5 digest) of the plaintext
body. This value is encrypted using the object key provided by the keymaster and a randomly chosen
IV, and saved as an item of system metadata, with associated crypto-metadata appended to the encrypted
value:

X-Object-Sysmeta-Crypto-Etag:
E(md5(plaintext), object_key, etag_iv); swift_meta={"iv": etag_iv,

"cipher": "AES_CTR_
↪→256"}

The encrypter also forces an encrypted version of the plaintext ETag to be sent with container updates
by adding an update override header to the PUT request. The associated crypto-metadata is appended to
the encrypted ETag value of this update override header:

X-Object-Sysmeta-Container-Update-Override-Etag:
E(md5(plaintext), container_key, override_etag_iv);
meta={"iv": override_etag_iv, "cipher": "AES_CTR_256"}

The container key is used for this encryption so that the decrypter is able to decrypt the ETags in con-
tainer listings when handling a container request, since object keys may not be available in that context.

Since the plaintext ETag value is only known once the encrypter has completed
processing the entire object body, the X-Object-Sysmeta-Crypto-Etag and
X-Object-Sysmeta-Container-Update-Override-Etag headers are sent after the
encrypted object body using the proxy servers support for request footers.

Conditional Requests

In general, an object server evaluates conditional requests with If[-None]-Match headers by com-
paring values listed in an If[-None]-Match header against the ETag that is stored in the object
metadata. This is not possible when the ETag stored in object metadata has been encrypted. The en-
crypter therefore calculates an HMAC using the object key and the ETag while handling object PUT
requests, and stores this under the metadata key X-Object-Sysmeta-Crypto-Etag-Mac:

X-Object-Sysmeta-Crypto-Etag-Mac: HMAC(object_key, md5(plaintext))

Like other ETag-related metadata, this is sent after the encrypted object body using the proxy servers
support for request footers.

The encrypter similarly calculates an HMAC for each ETag value included in If[-None]-Match
headers of conditional GET or HEAD requests, and appends these to the If[-None]-Match header.
The encrypter also sets the X-Backend-Etag-Is-At header to point to the previously stored
X-Object-Sysmeta-Crypto-Etag-Mac metadata so that the object server evaluates the con-
ditional request by comparing the HMAC values included in the If[-None]-Match with the value
stored under X-Object-Sysmeta-Crypto-Etag-Mac. For example, given a conditional request
with header:

If-Match: match_etag

the encrypter would transform the request headers to include:

2.17. Object Encryption 103



Swift Documentation, Release 2.27.1.dev38

If-Match: match_etag,HMAC(object_key, match_etag)
X-Backend-Etag-Is-At: X-Object-Sysmeta-Crypto-Etag-Mac

This enables the object server to perform an encrypted comparison to check whether the ETags match,
without leaking the ETag itself or leaking information about the object body.

Decrypter operation

For each GET or HEAD request to an object, the decrypter inspects the response for encrypted items
(revealed by crypto-metadata headers), and if any are discovered then it will:

1. Fetch the object and container keys from the keymaster via its callback

2. Decrypt the X-Object-Sysmeta-Crypto-Etag value

3. Decrypt the X-Object-Sysmeta-Container-Update-Override-Etag value

4. Decrypt metadata header values using the object key

5. Decrypt the wrapped body key found in X-Object-Sysmeta-Crypto-Body-Meta

6. Decrypt the body using the body key

For each GET request to a container that would include ETags in its response body, the decrypter will:

1. GET the response body with the container listing

2. Fetch the container key from the keymaster via its callback

3. Decrypt any encrypted ETag entries in the container listing using the container key

Impact on other Swift services and features

Encryption has no impact on Versioned Writes other than that any previously unencrypted objects will be
encrypted as they are copied to or from the versions container. Keymaster and encryption middlewares
should be placed after versioned_writes in the proxy server pipeline, as described in Deployment
and operation.

Container Sync uses an internal client to GET objects that are to be syncd. This internal client must be
configured to use the keymaster and encryption middlewares as described above.

Encryption has no impact on the object-auditor service. Since the ETag header saved with the object at
rest is the md5 sum of the encrypted object body then the auditor will verify that encrypted data is valid.

Encryption has no impact on the object-expirer service. X-Delete-At and X-Delete-After head-
ers are not encrypted.

Encryption has no impact on the object-replicator and object-reconstructor services. These services are
unaware of the object or EC fragment data being encrypted.

Encryption has no impact on the container-reconciler service. The container-reconciler uses an internal
client to move objects between different policy rings. The reconcilers pipeline MUST NOT have en-
cryption enabled. The destination object has the same URL as the source object and the object is moved
without re-encryption.

104 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

Considerations for developers

Developers should be aware that keymaster and encryption middlewares rely on the path of an object
remaining unchanged. The included keymaster derives keys for containers and objects based on their
paths and the encryption_root_secret. The keymaster does not rely on object metadata to
inform its generation of keys for GET and HEAD requests because when handling Conditional Requests
it is required to provide the object key before any metadata has been read from the object.

Developers should therefore give careful consideration to any new features that would relocate object
data and metadata within a Swift cluster by means that do not cause the object data and metadata to pass
through the encryption middlewares in the proxy pipeline and be re-encrypted.

The crypto-metadata associated with each encrypted item does include some key_id metadata that is
provided by the keymaster and contains the path used to derive keys. This key_id metadata is persisted
in anticipation of future scenarios when it may be necessary to decrypt an object that has been relocated
without re-encrypting, in which case the metadata could be used to derive the keys that were used for
encryption. However, this alone is not sufficient to handle conditional requests and to decrypt container
listings where objects have been relocated, and further work will be required to solve those issues.

2.18 Using Swift as Backing Store for Service Data

2.18.1 Background

This section provides guidance to OpenStack Service developers for how to store your users data in
Swift. An example of this is that a user requests that Nova save a snapshot of a VM. Nova passes the
request to Glance, Glance writes the image to a Swift container as a set of objects.

Throughout this section, the following terminology and concepts are used:

• User or end-user. This is a person making a request that will result in an OpenStack Service
making a request to Swift.

• Project (also known as Tenant). This is the unit of resource ownership. While data such as
snapshot images or block volume backups may be stored as a result of an end-users request, the
reality is that these are project data.

• Service. This is a program or system used by end-users. Specifically, it is any program or system
that is capable of receiving end-users tokens and validating the token with the Keystone Service
and has a need to store data in Swift. Glance and Cinder are examples of such Services.

• Service User. This is a Keystone user that has been assigned to a Service. This allows the Service
to generate and use its own tokens so that it can interact with other Services as itself.

• Service Project. This is a project (tenant) that is associated with a Service. There may be a single
project shared by many Services or there may be a project dedicated to each Service. In this
document, the main purpose of the Service Project is to allow the system operator to configure
specific roles for each Service User.

2.18. Using Swift as Backing Store for Service Data 105



Swift Documentation, Release 2.27.1.dev38

2.18.2 Alternate Backing Store Schemes

There are three schemes described here:

• Dedicated Service Account (Single Tenant)

Your Service has a dedicated Service Project (hence a single dedicated Swift account). Data for
all users and projects are stored in this account. Your Service must have a user assigned to it (the
Service User). When you have data to store on behalf of one of your users, you use the Service
User credentials to get a token for the Service Project and request Swift to store the data in the
Service Project.

With this scheme, data for all users is stored in a single account. This is transparent to your users
and since the credentials for the Service User are typically not shared with anyone, your users
cannot access their data by making a request directly to Swift. However, since data belonging to
all users is stored in one account, it presents a single point of vulnerably to accidental deletion or
a leak of the service-user credentials.

• Multi Project (Multi Tenant)

Data belonging to a project is stored in the Swift account associated with the project. Users make
requests to your Service using a token scoped to a project in the normal way. You can then use
this same token to store the user data in the projects Swift account.

The effect is that data is stored in multiple projects (aka tenants). Hence this scheme has been
known as the multi tenant scheme.

With this scheme, access is controlled by Keystone. The users must have a role that allows them
to perform the request to your Service. In addition, they must have a role that also allows them
to store data in the Swift account. By default, the admin or swiftoperator roles are used for this
purpose (specific systems may use other role names). If the user does not have the appropriate
roles, when your Service attempts to access Swift, the operation will fail.

Since you are using the users token to access the data, it follows that the user can use the same
token to access Swift directly bypassing your Service. When end-users are browsing containers,
they will also see your Services containers and objects and may potentially delete the data. Con-
versely, there is no single account where all data so leakage of credentials will only affect a single
project/tenant.

• Service Prefix Account

Data belonging to a project is stored in a Swift account associated with the project. This is similar
to the Multi Project scheme described above. However, the Swift account is different than the
account that users access. Specifically, it has a different account prefix. For example, for the
project 1234, the user account is named AUTH_1234. Your Service uses a different account, for
example, SERVICE_1234.

To access the SERVICE_1234 account, you must present two tokens: the users token is put in
the X-Auth-Token header. You present your Services token in the X-Service-Token header. Swift
is configured such that only when both tokens are presented will it allow access. Specifically,
the user cannot bypass your Service because they only have their own token. Conversely, your
Service can only access the data while it has a copy of the users token the Services token by itself
will not grant access.

The data stored in the Service Prefix Account cannot be seen by end-users. So they cannot delete
this data they can only access the data if they make a request through your Service. The data is
also more secure. To make an unauthorized access, someone would need to compromise both an

106 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

end-users and your Service User credentials. Even then, this would only expose one project not
other projects.

The Service Prefix Account scheme combines features of the Dedicated Service Account and Multi
Project schemes. It has the private, dedicated, characteristics of the Dedicated Service Account scheme
but does not present a single point of attack. Using the Service Prefix Account scheme is a little more
involved than the other schemes, so the rest of this document describes it more detail.

2.18.3 Service Prefix Account Overview

The following diagram shows the flow through the system from the end-user, to your Service and then
onto Swift:

client
\
\ <request>: <path-specific-to-the-service>
\ x-auth-token: <user-token>
\

SERVICE
\
\ PUT: /v1/SERVICE_1234/<container>/<object>
\ x-auth-token: <user-token>
\ x-service-token: <service-token>
\
Swift

The sequence of events and actions are as follows:

• Request arrives at your Service

• The <user-token> is validated by the keystonemiddleware.auth_token middleware. The users
role(s) are used to determine if the user can perform the request. See The Auth System for technical
information on the authentication system.

• As part of this request, your Service needs to access Swift (either to write or read a container or
object). In this example, you want to perform a PUT on <container>/<object>.

• In the wsgi environment, the auth_token module will have populated the
HTTP_X_SERVICE_CATALOG item. This lists the Swift endpoint and account. This is
something such as https://<netloc>/v1/AUTH_1234 where AUTH_ is a prefix and 1234 is the
project id.

• The AUTH_ prefix is the default value. However, your system may use a different prefix. To
determine the actual prefix, search for the first underscore (_) character in the account name. If
there is no underscore character in the account name, this means there is no prefix.

• Your Service should have a configuration parameter that provides the appropriate prefix to use for
storing data in Swift. There is more discussion of this below, but for now assume the prefix is
SERVICE_.

• Replace the prefix (AUTH_ in above examples) in the path with SERVICE_, so the full URL to
access the object becomes https://<netloc>/v1/SERVICE_1234/<container>/<object>.

• Make the request to Swift, using this URL. In the X-Auth-Token header place a copy of the <user-
token>. In the X-Service-Token header, place your Services token. If you use python-swiftclient
you can achieve this by:

2.18. Using Swift as Backing Store for Service Data 107

https:/
https:/


Swift Documentation, Release 2.27.1.dev38

– Putting the URL in the preauthurl parameter

– Putting the <user-token> in preauthtoken parameter

– Adding the X-Service-Token to the headers parameter

Using the HTTP_X_SERVICE_CATALOG to get Swift Account Name

The auth_token middleware populates the wsgi environment with information when it validates the users
token. The HTTP_X_SERVICE_CATALOG item is a JSON string containing details of the OpenStack
endpoints. For Swift, this also contains the projects Swift account name. Here is an example of a catalog
entry for Swift:

"serviceCatalog": [
...
{

....
"type": "object-store",
"endpoints": [

...
{

...
"publicURL": "https://<netloc>/v1/AUTH_1234",
"region": "<region-name>"
...

}
...

...
}

}

To get the End-users account:

• Look for an entry with type of object-store

• If there are several regions, there will be several endpoints. Use the appropriate region name and
select the publicURL item.

• The Swift account name is the final item in the path (AUTH_1234 in this example).

Getting a Service Token

A Service Token is no different than any other token and is requested from Keystone using user creden-
tials and project in the usual way. The core requirement is that your Service User has the appropriate
role. In practice:

• Your Service must have a user assigned to it (the Service User).

• Your Service has a project assigned to it (the Service Project).

• The Service User must have a role on the Service Project. This role is distinct from any of the
normal end-user roles.

• The role used must the role configured in the /etc/swift/proxy-server.conf. This is the
<prefix>_service_roles option. In this example, the role is the service role:

108 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

[keystoneauth]
reseller_prefix = AUTH_, SERVICE_
SERVICE_service_role = service

The service role should only be granted to OpenStack Services. It should not be granted to users.

Single or multiple Service Prefixes?

Most of the examples used in this document used a single prefix. The prefix, SERVICE was used. By
using a single prefix, an operator is allowing all OpenStack Services to share the same account for data
associated with a given project. For test systems or deployments well protected on private firewalled
networks, this is appropriate.

However, if one Service is compromised, that Service can access data created by another Service. To
prevent this, multiple Service Prefixes may be used. This also requires that the operator configure multi-
ple service roles. For example, in a system that has Glance and Cinder, the following Swift configuration
could be used:

[keystoneauth]
reseller_prefix = AUTH_, IMAGE_, BLOCK_
IMAGE_service_roles = image_service
BLOCK_service_roles = block_service

The Service User for Glance would be granted the image_service role on its Service Project and the
Cinder Service user is granted the block_service role on its project. In this scheme, if the Cinder
Service was compromised, it would not be able to access any Glance data.

Container Naming

Since a single Service Prefix is possible, container names should be prefixed with a unique string to
prevent name clashes. We suggest you use the service type field (as used in the service catalog). For
example, The Glance Service would use image as a prefix.

2.19 Container Sharding

Container sharding is an operator controlled feature that may be used to shard very large container
databases into a number of smaller shard containers

Note: Container sharding is currently an experimental feature. It is strongly recommended that opera-
tors gain experience of sharding containers in a non-production cluster before using in production.

The sharding process involves moving all sharding container database records via the container repli-
cation engine; the time taken to complete sharding is dependent upon the existing cluster load and the
performance of the container database being sharded.

There is currently no documented process for reversing the sharding process once sharding has been
enabled.

2.19. Container Sharding 109



Swift Documentation, Release 2.27.1.dev38

2.19.1 Background

The metadata for each container in Swift is stored in an SQLite database. This metadata includes: infor-
mation about the container such as its name, modification time and current object count; user metadata
that may been written to the container by clients; a record of every object in the container. The container
database object records are used to generate container listings in response to container GET requests;
each object record stores the objects name, size, hash and content-type as well as associated timestamps.

As the number of objects in a container increases then the number of object records in the container
database increases. Eventually the container database performance starts to degrade and the time taken
to update an object record increases. This can result in object updates timing out, with a corresponding
increase in the backlog of pending asynchronous updates on object servers. Container databases are
typically replicated on several nodes and any database performance degradation can also result in longer
container replication times.

The point at which container database performance starts to degrade depends upon the choice of hard-
ware in the container ring. Anecdotal evidence suggests that containers with tens of millions of object
records have noticeably degraded performance.

This performance degradation can be avoided by ensuring that clients use an object naming scheme that
disperses objects across a number of containers thereby distributing load across a number of container
databases. However, that is not always desirable nor is it under the control of the cluster operator.

Swifts container sharding feature provides the operator with a mechanism to distribute the load on a
single client-visible container across multiple, hidden, shard containers, each of which stores a subset
of the containers object records. Clients are unaware of container sharding; clients continue to use the
same API to access a container that, if sharded, maps to a number of shard containers within the Swift
cluster.

2.19.2 Deployment and operation

Upgrade Considerations

It is essential that all servers in a Swift cluster have been upgraded to support the container sharding
feature before attempting to shard a container.

Identifying containers in need of sharding

Container sharding is currently initiated by the swift-manage-shard-ranges CLI tool described
below. Operators must first identify containers that are candidates for sharding. To assist with this,
the container-sharder daemon inspects the size of containers that it visits and writes a list of sharding
candidates to recon cache. For example:

"sharding_candidates": {
"found": 1,
"top": [

{
"account": "AUTH_test",
"container": "c1",
"file_size": 497763328,
"meta_timestamp": "1525346445.31161",
"node_index": 2,

(continues on next page)

110 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

"object_count": 3349028,
"path": <path_to_db>,
"root": "AUTH_test/c1"

}
]

}

A container is considered to be a sharding candidate if its object count is greater than or equal to the
shard_container_threshold option. The number of candidates reported is limited to a number
configured by the recon_candidates_limit option such that only the largest candidate containers
are included in the sharding_candidates data.

swift-manage-shard-ranges CLI tool

The swift-manage-shard-ranges tool provides commands for initiating sharding of a container.
swift-manage-shard-ranges operates directly on a container database file.

Note: swift-manage-shard-ranges must only be used on one replica of a container database
to avoid inconsistent results. The modifications made by swift-manage-shard-ranges will be
automatically copied to other replicas of the container database via normal replication processes.

There are three steps in the process of initiating sharding, each of which may be performed in isolation
or, as shown below, using a single command.

1. The find sub-command scans the container database to identify how many shard containers will
be required and which objects they will manage. Each shard container manages a range of the
object namespace defined by a lower and upper bound. The maximum number of objects to
be allocated to each shard container is specified on the command line. For example:

$ swift-manage-shard-ranges <path_to_db> find 500000
Loaded db broker for AUTH_test/c1.
[
{

"index": 0,
"lower": "",
"object_count": 500000,
"upper": "o_01086834"

},
{

"index": 1,
"lower": "o_01086834",
"object_count": 500000,
"upper": "o_01586834"

},
{

"index": 2,
"lower": "o_01586834",
"object_count": 500000,
"upper": "o_02087570"

},
{

"index": 3,
(continues on next page)

2.19. Container Sharding 111



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

"lower": "o_02087570",
"object_count": 500000,
"upper": "o_02587572"

},
{

"index": 4,
"lower": "o_02587572",
"object_count": 500000,
"upper": "o_03087572"

},
{

"index": 5,
"lower": "o_03087572",
"object_count": 500000,
"upper": "o_03587572"

},
{

"index": 6,
"lower": "o_03587572",
"object_count": 349194,
"upper": ""

}
]
Found 7 ranges in 4.37222s (total object count 3349194)

This command returns a list of shard ranges each of which describes the namespace to be managed
by a shard container. No other action is taken by this command and the container database is
unchanged. The output may be redirected to a file for subsequent retrieval by the replace
command. For example:

$ swift-manage-shard-ranges <path_to_db> find 500000 > my_shard_ranges
Loaded db broker for AUTH_test/c1.
Found 7 ranges in 2.448s (total object count 3349194)

2. The replace sub-command deletes any shard ranges that might already be in the container
database and inserts shard ranges from a given file. The file contents should be in the format
generated by the find sub-command. For example:

$ swift-manage-shard-ranges <path_to_db> replace my_shard_ranges
Loaded db broker for AUTH_test/c1.
No shard ranges found to delete.
Injected 7 shard ranges.
Run container-replicator to replicate them to other nodes.
Use the enable sub-command to enable sharding.

The container database is modified to store the shard ranges, but the container will not start shard-
ing until sharding is enabled. The info sub-command may be used to inspect the state of the
container database at any point, and the show sub-command may be used to display the inserted
shard ranges.

Shard ranges stored in the container database may be replaced using the replace sub-command.
This will first delete all existing shard ranges before storing new shard ranges. Shard ranges may
also be deleted from the container database using the delete sub-command.

Shard ranges should not be replaced or deleted using swift-manage-shard-ranges once

112 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

the next step of enabling sharding has been taken.

3. The enable sub-command enables the container for sharding. The sharder daemon and/or con-
tainer replicator daemon will replicate shard ranges to other replicas of the container DB and the
sharder daemon will proceed to shard the container. This process may take some time depending
on the size of the container, the number of shard ranges and the underlying hardware.

Note: Once the enable sub-command has been used there is no supported mechanism to revert
sharding. Do not use swift-manage-shard-ranges to make any further changes to the
shard ranges in the container DB.

For example:

$ swift-manage-shard-ranges <path_to_db> enable
Loaded db broker for AUTH_test/c1.
Container moved to state 'sharding' with epoch 1525345093.22908.
Run container-sharder on all nodes to shard the container.

This does not shard the container - sharding is performed by the container-sharder daemon - but
sets the necessary state in the database for the daemon to subsequently start the sharding process.

The epoch value displayed in the output is the time at which sharding was enabled. When the
container-sharder daemon starts sharding this container it creates a new container database file
using the epoch in the filename to distinguish it from the retiring DB that is being sharded.

All three steps may be performed with one sub-command:

$ swift-manage-shard-ranges <path_to_db> find_and_replace 500000 --enable -
↪→-force
Loaded db broker for AUTH_test/c1.
No shard ranges found to delete.
Injected 7 shard ranges.
Run container-replicator to replicate them to other nodes.
Container moved to state 'sharding' with epoch 1525345669.46153.
Run container-sharder on all nodes to shard the container.

container-sharder daemon

Once sharding has been enabled for a container, the act of sharding is performed by the Con-
tainer Sharder. The Container Sharder daemon must be running on all container servers. The
container-sharder daemon periodically visits each container database to perform any container
sharding tasks that are required.

The container-sharder daemon requires a [container-sharder] config section to exist in
the container server configuration file; a sample config section is shown in the container-server.conf-
sample file.

Note: Several of the [container-sharder] config options are only significant when the
auto_shard option is enabled. This option enables the container-sharder daemon to auto-
matically identify containers that are candidates for sharding and initiate the sharding process, instead
of using the swift-manage-shard-ranges tool. The auto_shard option is currently NOT
recommended for production systems and shoud be set to false (the default value).

2.19. Container Sharding 113



Swift Documentation, Release 2.27.1.dev38

The container sharder uses an internal client and therefore requires an internal client configura-
tion file to exist. By default the internal-client configuration file is expected to be found at
/etc/swift/internal-client.conf. An alternative location for the configuration file may be specified using
the internal_client_conf_path option in the [container-sharder] config section.

The content of the internal-client configuration file should be the same as the internal-client.conf-sample
file. In particular, the internal-client configuration should have:

account_autocreate = True

in the [proxy-server] section.

A container database may require several visits by the container-sharder daemon before it is
fully sharded. On each visit the container-sharder daemon will move a subset of object records
to new shard containers by cleaving new shard container databases from the original. By default, two
shards are processed per visit; this number may be configured by the cleave_batch_size option.

The container-sharder daemon periodically writes progress data for containers that are being
sharded to recon cache. For example:

"sharding_in_progress": {
"all": [

{
"account": "AUTH_test",
"active": 0,
"cleaved": 2,
"container": "c1",
"created": 5,
"db_state": "sharding",
"error": null,
"file_size": 26624,
"found": 0,
"meta_timestamp": "1525349617.46235",
"node_index": 1,
"object_count": 3349030,
"path": <path_to_db>,
"root": "AUTH_test/c1",
"state": "sharding"

}
]

}

This example indicates that from a total of 7 shard ranges, 2 have been cleaved whereas 5 remain in
created state waiting to be cleaved.

Shard containers are created in an internal account and not visible to clients. By default, shard containers
for an account AUTH_test are created in the internal account .shards_AUTH_test.

Once a container has started sharding, object updates to that container may be redirected to the shard
container. The container-sharder daemon is also responsible for sending updates of a shards
object count and bytes_used to the original container so that aggegrate object count and bytes used
values can be returned in responses to client requests.

Note: The container-sharder daemon must continue to run on all container servers in order for
shards object stats updates to be generated.

114 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

2.19.3 Under the hood

Terminology

Name Description
Root
con-
tainer

The original container that lives in the users account. It holds references to its shard con-
tainers.

Re-
tiring
DB

The original database file that is to be sharded.

Fresh
DB

A database file that will replace the retiring database.

Epoch A timestamp at which the fresh DB is created; the epoch value is embedded in the fresh DB
filename.

Shard
range

A range of the object namespace defined by a lower bound and upper bound.

Shard
con-
tainer

A container that holds object records for a shard range. Shard containers exist in a hidden
account mirroring the users account.

Parent
con-
tainer

The container from which a shard container has been cleaved. When first sharding a root
container each shards parent container will be the root container. When sharding a shard
container each shards parent container will be the sharding shard container.

Mis-
placed
ob-
jects

Items that dont belong in a containers shard range. These will be moved to their correct
location by the container-sharder.

Cleav-
ing

The act of moving object records within a shard range to a shard container database.

Shrink-
ing

The act of merging a small shard container into another shard container in order to delete
the small shard container.

Donor The shard range that is shrinking away.
Ac-
ceptor

The shard range into which a donor is merged.

Finding shard ranges

The end goal of sharding a container is to replace the original container database which has grown very
large with a number of shard container databases, each of which is responsible for storing a range of
the entire object namespace. The first step towards achieving this is to identify an appropriate set of
contiguous object namespaces, known as shard ranges, each of which contains a similar sized portion of
the containers current object content.

Shard ranges cannot simply be selected by sharding the namespace uniformly, because object names
are not guaranteed to be distributed uniformly. If the container were naively sharded into two shard
ranges, one containing all object names up to m and the other containing all object names beyond m,
then if all object names actually start with o the outcome would be an extremely unbalanced pair of
shard containers.

It is also too simplistic to assume that every container that requires sharding can be sharded into two.

2.19. Container Sharding 115



Swift Documentation, Release 2.27.1.dev38

This might be the goal in the ideal world, but in practice there will be containers that have grown very
large and should be sharded into many shards. Furthermore, the time required to find the exact mid-point
of the existing object names in a large SQLite database would increase with container size.

For these reasons, shard ranges of size N are found by searching for the Nth object in the database table,
sorted by object name, and then searching for the (2 * N)th object, and so on until all objects have been
searched. For a container that has exactly 2N objects, the end result is the same as sharding the container
at the midpoint of its object names. In practice sharding would typically be enabled for containers with
great than 2N objects and more than two shard ranges will be found, the last one probably containing
less than N objects. With containers having large multiples of N objects, shard ranges can be identified
in batches which enables more scalable solution.

To illustrate this process, consider a very large container in a user account acct that is a candidate for
sharding:

/acct

cont

The swift-manage-shard-ranges CLI tool tool find sub-command searches the object table for the Nth
object whose name will become the upper bound of the first shard range, and the lower bound of the
second shard range. The lower bound of the first shard range is the empty string.

For the purposes of this example the first upper bound is cat:

/acct

cont

cat giraffe

swift-manage-shard-ranges CLI tool continues to search the container to find further shard ranges, with
the final upper bound also being the empty string.

Enabling sharding

Once shard ranges have been found the swift-manage-shard-ranges CLI tool replace sub-command
is used to insert them into the shard_ranges table of the container database. In addition to its lower and
upper bounds, each shard range is given a unique name.

The enable sub-command then creates some final state required to initiate sharding the container,
including a special shard range record referred to as the containers own_shard_range whose name is
equal to the containers path. This is used to keep a record of the object namespace that the container
covers, which for user containers is always the entire namespace. Sharding of the container will only
begin when its own shard ranges state has been set to SHARDING.

116 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

The ShardRange class

The ShardRange class provides methods for interactng with the attributes and state of a shard range.
The class encapsulates the following properties:

• The name of the shard range which is also the name of the shard container used to hold object
records in its namespace.

• Lower and upper bounds which define the object namespace of the shard range.

• A deleted flag.

• A timestamp at which the bounds and deleted flag were last modified.

• The object stats for the shard range i.e. object count and bytes used.

• A timestamp at which the object stats were last modified.

• The state of the shard range, and an epoch, which is the timestamp used in the shard containers
database file name.

• A timestamp at which the state and epoch were last modified.

A shard range progresses through the following states:

• FOUND: the shard range has been identified in the container that is to be sharded but no resources
have been created for it.

• CREATED: a shard container has been created to store the contents of the shard range.

• CLEAVED: the sharding containers contents for the shard range have been copied to the shard
container from at least one replica of the sharding container.

• ACTIVE: a sharding containers constituent shard ranges are moved to this state when all shard
ranges in the sharding container have been cleaved.

• SHRINKING: the shard range has been enabled for shrinking; or

• SHARDING: the shard range has been enabled for sharding into further sub-shards.

• SHARDED: the shard range has completed sharding or shrinking; the container will typically now
have a number of constituent ACTIVE shard ranges.

Note: Shard range state represents the most advanced state of the shard range on any replica of the
container. For example, a shard range in CLEAVED state may not have completed cleaving on all
replicas but has cleaved on at least one replica.

Fresh and retiring database files

As alluded to earlier, writing to a large container causes increased latency for the container servers. Once
sharding has been initiated on a container it is desirable to stop writing to the large database; ultimately
it will be unlinked. This is primarily achieved by redirecting object updates to new shard containers as
they are created (see Redirecting object updates below), but some object updates may still need to be
accepted by the root container and other container metadata must still be modifiable.

To render the large retiring database effectively read-only, when the container-sharder daemon finds
a container with a set of shard range records, including an own_shard_range, it first creates a fresh

2.19. Container Sharding 117



Swift Documentation, Release 2.27.1.dev38

database file which will ultimately replace the existing retiring database. For a retiring DB whose
filename is:

<hash>.db

the fresh database file name is of the form:

<hash>_<epoch>.db

where epoch is a timestamp stored in the containers own_shard_range.

The fresh DB has a copy of the shard ranges table from the retiring DB and all other container metadata
apart from the object records. Once a fresh DB file has been created it is used to store any new object
updates and no more object records are written to the retiring DB file.

Once the sharding process has completed, the retiring DB file will be unlinked leaving only the fresh
DB file in the containers directory. There are therefore three states that the container DB directory may
be in during the sharding process: UNSHARDED, SHARDING and SHARDED.

00
43

00
6F

00
6E

00
74

00
61

00
69

00
6E

00
65

00
72

00
44

00
42

00
52

00
65

00
74

00
69

00
72

00
69

00
6E

00
67

00
44

00
42

00
46

00
72

00
65

00
73

00
68

00
44

00
42

00
46

00
72

00
65

00
73

00
68

00
44

00
42

00
53

00
48

00
41

00
52

00
44

00
45

00
44

00
55

00
4E

00
53

00
48

00
41

00
52

00
44

00
45

00
44

00
53

00
48

00
41

00
52

00
44

00
49

00
4E

00
47

If the container ever shrink to the point that is has no shards then the fresh DB starts to store object
records, behaving the same as an unsharded container. This is known as the COLLAPSED state.

In summary, the DB states that any container replica may be in are:

• UNSHARDED - In this state there is just one standard container database. All containers are
originally in this state.

• SHARDING - There are now two databases, the retiring database and a fresh database. The fresh
database stores any metadata, container level stats, an object holding table, and a table that stores
shard ranges.

118 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

• SHARDED - There is only one database, the fresh database, which has one or more shard ranges
in addition to its own shard range. The retiring database has been unlinked.

• COLLAPSED - There is only one database, the fresh database, which has only its own shard range
and store object records.

Note: DB state is unique to each replica of a container and is not necessarily synchronised with shard
range state.

Creating shard containers

The container-sharder daemon next creates a shard container for each shard range using the shard range
name as the name of the shard container:

/.shards_acct

/acct

cont-568d8e-<ts>-0 cont-750ed3-<ts>-1

cont

Each shard container has an own_shard_range record which has the lower and upper bounds of the
object namespace for which it is responsible, and a reference to the sharding user container, which is
referred to as the root_container. Unlike the root_container, the shard containers own_shard_range
does not cover the entire namepsace.

A shard range name takes the form <shard_a>/<shard_c> where <shard_a> is a hidden account
and <shard_c> is a container name that is derived from the root container.

The account name <shard_a> used for shard containers is formed by prefixing the user account with
the string .shards_. This avoids namespace collisions and also keeps all the shard containers out of
view from users of the account.

The container name for each shard container has the form:

<root container name>-<hash of parent container>-<timestamp>-<shard index>

where root container name is the name of the user container to which the contents of the shard container
belong, parent container is the name of the container from which the shard is being cleaved, timestamp
is the time at which the shard range was created and shard index is the position of the shard range in the
name-ordered list of shard ranges for the parent container.

When sharding a user container the parent container name will be the same as the root container. How-
ever, if a shard container grows to a size that it requires sharding, then the parent container name for its
shards will be the name of the sharding shard container.

2.19. Container Sharding 119



Swift Documentation, Release 2.27.1.dev38

For example, consider a user container with path AUTH_user/c which is sharded into two shard
containers whose name will be:

.shards_AUTH_user/c-<hash(c)>-1234512345.12345-0

.shards_AUTH_user/c-<hash(c)>-1234512345.12345-1

If the first shard container is subsequently sharded into a further two shard containers then they will be
named:

.shards_AUTH_user/c-<hash(c-<hash(c)>-1234567890.12345-0)>-1234567890.
↪→12345-0
.shards_AUTH_user/c-<hash(c-<hash(c)>-1234567890.12345-0)>-1234567890.
↪→12345-1

This naming scheme guarantees that shards, and shards of shards, each have a unique name of bounded
length.

Cleaving shard containers

Having created empty shard containers the sharder daemon will proceed to cleave objects from the
retiring database to each shard range. Cleaving occurs in batches of two (by default) shard ranges, so
if a container has more than two shard ranges then the daemon must visit it multiple times to complete
cleaving.

To cleave a shard range the daemon creates a shard database for the shard container on a local device.
This device may be one of the shard containers primary nodes but often it will not. Object records from
the corresponding shard range namespace are then copied from the retiring DB to this shard DB.

Swifts container replication mechanism is then used to replicate the shard DB to its primary nodes.
Checks are made to ensure that the new shard container DB has been replicated to a sufficient number
of its primary nodes before it is considered to have been successfully cleaved. By default the daemon
requires successful replication of a new shard broker to at least a quorum of the container rings replica
count, but this requirement can be tuned using the shard_replication_quorum option.

Once a shard range has been successfully cleaved from a retiring database the daemon transitions its
state to CLEAVED. It should be noted that this state transition occurs as soon as any one of the retiring
DB replicas has cleaved the shard range, and therefore does not imply that all retiring DB replicas have
cleaved that range. The significance of the state transition is that the shard container is now considered
suitable for contributing to object listings, since its contents are present on a quorum of its primary nodes
and are the same as at least one of the retiring DBs for that namespace.

Once a shard range is in the CLEAVED state, the requirement for successful cleaving of other instances
of the retirng DB may optionally be relaxed since it is not so imperative that their contents are replicated
immediately to their primary nodes. The existing_shard_replication_quorum option can
be used to reduce the quorum required for a cleaved shard range to be considered successfully replicated
by the sharder daemon.

Note: Once cleaved, shard container DBs will continue to be replicated by the normal container-
replicator daemon so that they will eventually be fully replicated to all primary nodes regardless of any
replication quorum options used by the sharder daemon.

The cleaving progress of each replica of a retiring DB must be tracked independently of the shard range
state. This is done using a per-DB CleavingContext object that maintains a cleaving cursor for the

120 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

retiring DB that it is associated with. The cleaving cursor is simply the upper bound of the last shard
range to have been cleaved from that particular retiring DB.

Each CleavingContext is stored in the sharding containers sysmeta under a key that is the id of the
retiring DB. Since all container DB files have a unique id, this guarantees that each retiring DB will
have a unique CleavingContext. Furthermore, if the retiring DB file is changed, for example by an
rsync_then_merge replication operation which might change the contents of the DBs object table, then
it will get a new unique CleavingContext.

A CleavingContext maintains other state that is used to ensure that a retiring DB is only considered to
be fully cleaved, and ready to be deleted, if all of its object rows have been cleaved to a shard range.

Once all shard ranges have been cleaved from the retiring DB it is deleted. The container is now repre-
sented by the fresh DB which has a table of shard range records that point to the shard containers that
store the containers object records.

Redirecting object updates

Once a shard container exists, object updates arising from new client requests and async pending files
are directed to the shard container instead of the root container. This takes load off of the root container.

For a sharded (or partially sharded) container, when the proxy receives a new object request it issues a
GET request to the container for data describing a shard container to which the object update should be
sent. The proxy then annotates the object request with the shard container location so that the object
server will forward object updates to the shard container. If those updates fail then the async pending
file that is written on the object server contains the shard container location.

When the object updater processes async pending files for previously failed object updates, it may not
find a shard container location. In this case the updater sends the update to the root container, which
returns a redirection response with the shard container location.

Note: Object updates are directed to shard containers as soon as they exist, even if the retiring DB object
records have not yet been cleaved to the shard container. This prevents further writes to the retiring DB
and also avoids the fresh DB being polluted by new object updates. The goal is to ultimately have all
object records in the shard containers and none in the root container.

Building container listings

Listing requests for a sharded container are handled by querying the shard containers for components
of the listing. The proxy forwards the client listing request to the root container, as it would for an
unsharded container, but the container server responds with a list of shard ranges rather than objects.
The proxy then queries each shard container in namespace order for their listing, until either the listing
length limit is reached or all shard ranges have been listed.

While a container is still in the process of sharding, only cleaved shard ranges are used when building a
container listing. Shard ranges that have not yet cleaved will not have any object records from the root
container. The root container continues to provide listings for the uncleaved part of its namespace.

Note: New object updates are redirected to shard containers that have not yet been cleaved. These
updates will not therefore be included in container listings until their shard range has been cleaved.

2.19. Container Sharding 121



Swift Documentation, Release 2.27.1.dev38

Example request redirection

As an example, consider a sharding container in which 3 shard ranges have been found ending in cat,
giraffe and igloo. Their respective shard containers have been created so update requests for objects
up to igloo are redirected to the appropriate shard container. The root DB continues to handle listing
requests and update requests for any object name beyond igloo.

cont (fresh db)cont (retiring db)

/.shards_acct

/acct

cont-568d8e-<ts>-0 cont-750ed3-<ts>-1 cont-4ec28d-<ts>-2

"" - "cat" "cat" - "giraffe" "giraffe" - "igloo"

cat giraffe igloo "igloo" - ""

The sharder daemon cleaves objects from the retiring DB to the shard range DBs; it also moves any
misplaced objects from the root containers fresh DB to the shard DB. Cleaving progress is represented by
the blue line. Once the first shard range has been cleaved listing requests for that namespace are directed
to the shard container. The root container still provides listings for the remainder of the namespace.

cont (fresh db)cont (retiring db)

/.shards_acct

/acct

cont-568d8e-<ts>-0 cont-750ed3-<ts>-1 cont-4ec28d-<ts>-2

cat giraffe igloo "igloo" - ""

"" - "cat" "cat" - "giraffe" "giraffe" - "igloo"

The process continues: the sharder cleaves the next range and a new range is found with upper bound
of linux. Now the root container only needs to handle listing requests up to giraffe and update requests
for objects whose name is greater than linux. Load will continue to diminish on the root DB and be
dispersed across the shard DBs.

122 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

cont (fresh db)cont (retiring db)

/.shards_acct

/acct

cont-568d8e-<ts>-0 cont-750ed3-<ts>-1 cont-4ec28d-<ts>-2

cat giraffe igloo linux

cont-aef34f-<ts>-3

"" - "cat" "cat" - "giraffe" "giraffe" - "igloo" "igloo" - "linux"

"linux" - ""

Container replication

Shard range records are replicated between container DB replicas in much the same way as object
records are for unsharded containers. However, the usual replication of object records between replicas
of a container is halted as soon as a container is capable of being sharded. Instead, object records are
moved to their new locations in shard containers. This avoids unnecessary replication traffic between
container replicas.

To facilitate this, shard ranges are both pushed and pulled during replication, prior to any attempt to
replicate objects. This means that the node initiating replication learns about shard ranges from the
destination node early during the replication process and is able to skip object replication if it discovers
that it has shard ranges and is able to shard.

Note: When the destination DB for container replication is missing then the complete_rsync replication
mechanism is still used and in this case only both object records and shard range records are copied to
the destination node.

Container deletion

Sharded containers may be deleted by a DELETE request just like an unsharded container. A sharded
container must be empty before it can be deleted which implies that all of its shard containers must have
reported that they are empty.

Shard containers are not immediately deleted when their root container is deleted; the shard containers
remain undeleted so that they are able to continue to receive object updates that might arrive after the
root container has been deleted. Shard containers continue to update their deleted root container with
their object stats. If a shard container does receive object updates that cause it to no longer be empty
then the root container will no longer be considered deleted once that shard container sends an object
stats update.

2.19. Container Sharding 123



Swift Documentation, Release 2.27.1.dev38

Sharding a shard container

A shard container may grow to a size that requires it to be sharded. swift-manage-shard-ranges
may be used to identify shard ranges within a shard container and enable sharding in the same way as
for a root container. When a shard is sharding it notifies the root container of its shard ranges so that the
root container can start to redirect object updates to the new sub-shards. When the shard has completed
sharding the root is aware of all the new sub-shards and the sharding shard deletes its shard range record
in the root container shard ranges table. At this point the root container is aware of all the new sub-shards
which collectively cover the namespace of the now-deleted shard.

There is no hierarchy of shards beyond the root container and its immediate shards. When a shard shards,
its sub-shards are effectively re-parented with the root container.

Shrinking a shard container

A shard containers contents may reduce to a point where the shard container is no longer required. If
this happens then the shard container may be shrunk into another shard range. Shrinking is achieved in a
similar way to sharding: an acceptor shard range is written to the shrinking shard containers shard ranges
table; unlike sharding, where shard ranges each cover a subset of the sharding containers namespace,
the acceptor shard range is a superset of the shrinking shard range.

Once given an acceptor shard range the shrinking shard will cleave itself to its acceptor, and then delete
itself from the root container shard ranges table.

2.20 Building a Consistent Hashing Ring

2.20.1 Authored by Greg Holt, February 2011

This is a compilation of five posts I made earlier discussing how to build a consistent hashing ring.
The posts seemed to be accessed quite frequently, so Ive gathered them all here on one page for easier
reading.

Note: This is an historical document; as such, all code examples are Python 2. If this makes you squirm,
think of it as pseudo-code. Regardless of implementation language, the state of the art in consistent-
hashing and distributed systems more generally has advanced. We hope that this introduction from first
principles will still prove informative, particularly with regard to how data is distributed within a Swift
cluster.

Part 1

Consistent Hashing is a term used to describe a process where data is distributed using a hashing al-
gorithm to determine its location. Using only the hash of the id of the data you can determine exactly
where that data should be. This mapping of hashes to locations is usually termed a ring.

Probably the simplest hash is just a modulus of the id. For instance, if all ids are numbers and you have
two machines you wish to distribute data to, you could just put all odd numbered ids on one machine
and even numbered ids on the other. Assuming you have a balanced number of odd and even numbered
ids, and a balanced data size per id, your data would be balanced between the two machines.

124 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

Since data ids are often textual names and not numbers, like paths for files or URLs, it makes sense
to use a real hashing algorithm to convert the names to numbers first. Using MD5 for instance,
the hash of the name mom.png is 4559a12e3e8da7c2186250c2f292e3af and the hash of dad.png is
096edcc4107e9e18d6a03a43b3853bea. Now, using the modulus, we can place mom.jpg on the odd
machine and dad.png on the even one. Another benefit of using a hashing algorithm like MD5 is that
the resulting hashes have a known even distribution, meaning your ids will be evenly distributed without
worrying about keeping the id values themselves evenly distributed.

Here is a simple example of this in action:

from hashlib import md5
from struct import unpack_from

NODE_COUNT = 100
DATA_ID_COUNT = 10000000

node_counts = [0] * NODE_COUNT
for data_id in range(DATA_ID_COUNT):

data_id = str(data_id)
# This just pulls part of the hash out as an integer
hsh = unpack_from('>I', md5(data_id).digest())[0]
node_id = hsh % NODE_COUNT
node_counts[node_id] += 1

desired_count = DATA_ID_COUNT / NODE_COUNT
print '%d: Desired data ids per node' % desired_count
max_count = max(node_counts)
over = 100.0 * (max_count - desired_count) / desired_count
print '%d: Most data ids on one node, %.02f%% over' % \

(max_count, over)
min_count = min(node_counts)
under = 100.0 * (desired_count - min_count) / desired_count
print '%d: Least data ids on one node, %.02f%% under' % \

(min_count, under)

100000: Desired data ids per node
100695: Most data ids on one node, 0.69% over
99073: Least data ids on one node, 0.93% under

So thats not bad at all; less than a percent over/under for distribution per node. In the next part of
this series well examine where modulus distribution causes problems and how to improve our ring to
overcome them.

Part 2

In Part 1 of this series, we did a simple test of using the modulus of a hash to locate data. We saw very
good distribution, but thats only part of the story. Distributed systems not only need to distribute load,
but they often also need to grow as more and more data is placed in it.

So lets imagine we have a 100 node system up and running using our previous algorithm, but its starting
to get full so we want to add another node. When we add that 101st node to our algorithm we notice
that many ids now map to different nodes than they previously did. Were going to have to shuffle a ton
of data around our system to get it all into place again.

Lets examine whats happened on a much smaller scale: just 2 nodes again, node 0 gets even ids and
node 1 gets odd ids. So data id 100 would map to node 0, data id 101 to node 1, data id 102 to node 0,

2.20. Building a Consistent Hashing Ring 125



Swift Documentation, Release 2.27.1.dev38

etc. This is simply node = id % 2. Now we add a third node (node 2) for more space, so we want node
= id % 3. So now data id 100 maps to node id 1, data id 101 to node 2, and data id 102 to node 0. So we
have to move data for 2 of our 3 ids so they can be found again.

Lets examine this at a larger scale:

from hashlib import md5
from struct import unpack_from

NODE_COUNT = 100
NEW_NODE_COUNT = 101
DATA_ID_COUNT = 10000000

moved_ids = 0
for data_id in range(DATA_ID_COUNT):

data_id = str(data_id)
hsh = unpack_from('>I', md5(str(data_id)).digest())[0]
node_id = hsh % NODE_COUNT
new_node_id = hsh % NEW_NODE_COUNT
if node_id != new_node_id:

moved_ids += 1
percent_moved = 100.0 * moved_ids / DATA_ID_COUNT
print '%d ids moved, %.02f%%' % (moved_ids, percent_moved)

9900989 ids moved, 99.01%

Wow, thats severe. Wed have to shuffle around 99% of our data just to increase our capacity 1%! We
need a new algorithm that combats this behavior.

This is where the ring really comes in. We can assign ranges of hashes directly to nodes and then use
an algorithm that minimizes the changes to those ranges. Back to our small scale, lets say our ids range
from 0 to 999. We have two nodes and well assign data ids 0499 to node 0 and 500999 to node 1. Later,
when we add node 2, we can take half the data ids from node 0 and half from node 1, minimizing the
amount of data that needs to move.

Lets examine this at a larger scale:

from bisect import bisect_left
from hashlib import md5
from struct import unpack_from

NODE_COUNT = 100
NEW_NODE_COUNT = 101
DATA_ID_COUNT = 10000000

node_range_starts = []
for node_id in range(NODE_COUNT):

node_range_starts.append(DATA_ID_COUNT /
NODE_COUNT * node_id)

new_node_range_starts = []
for new_node_id in range(NEW_NODE_COUNT):

new_node_range_starts.append(DATA_ID_COUNT /
NEW_NODE_COUNT * new_node_id)

moved_ids = 0
for data_id in range(DATA_ID_COUNT):

data_id = str(data_id)
hsh = unpack_from('>I', md5(str(data_id)).digest())[0]

(continues on next page)

126 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

node_id = bisect_left(node_range_starts,
hsh % DATA_ID_COUNT) % NODE_COUNT

new_node_id = bisect_left(new_node_range_starts,
hsh % DATA_ID_COUNT) % NEW_NODE_COUNT

if node_id != new_node_id:
moved_ids += 1

percent_moved = 100.0 * moved_ids / DATA_ID_COUNT
print '%d ids moved, %.02f%%' % (moved_ids, percent_moved)

4901707 ids moved, 49.02%

Okay, that is better. But still, moving 50% of our data to add 1% capacity is not very good. If we
examine what happened more closely well see what is an accordion effect. We shrunk node 0s range a
bit to give to the new node, but that shifted all the other nodes ranges by the same amount.

We can minimize the change to a nodes assigned range by assigning several smaller ranges instead of
the single broad range we were before. This can be done by creating virtual nodes for each node. So
100 nodes might have 1000 virtual nodes. Lets examine how that might work.

from bisect import bisect_left
from hashlib import md5
from struct import unpack_from

NODE_COUNT = 100
DATA_ID_COUNT = 10000000
VNODE_COUNT = 1000

vnode_range_starts = []
vnode2node = []
for vnode_id in range(VNODE_COUNT):

vnode_range_starts.append(DATA_ID_COUNT /
VNODE_COUNT * vnode_id)

vnode2node.append(vnode_id % NODE_COUNT)
new_vnode2node = list(vnode2node)
new_node_id = NODE_COUNT
NEW_NODE_COUNT = NODE_COUNT + 1
vnodes_to_reassign = VNODE_COUNT / NEW_NODE_COUNT
while vnodes_to_reassign > 0:

for node_to_take_from in range(NODE_COUNT):
for vnode_id, node_id in enumerate(new_vnode2node):

if node_id == node_to_take_from:
new_vnode2node[vnode_id] = new_node_id
vnodes_to_reassign -= 1
break

if vnodes_to_reassign <= 0:
break

moved_ids = 0
for data_id in range(DATA_ID_COUNT):

data_id = str(data_id)
hsh = unpack_from('>I', md5(str(data_id)).digest())[0]
vnode_id = bisect_left(vnode_range_starts,

hsh % DATA_ID_COUNT) % VNODE_COUNT
node_id = vnode2node[vnode_id]
new_node_id = new_vnode2node[vnode_id]
if node_id != new_node_id:

(continues on next page)

2.20. Building a Consistent Hashing Ring 127



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

moved_ids += 1
percent_moved = 100.0 * moved_ids / DATA_ID_COUNT
print '%d ids moved, %.02f%%' % (moved_ids, percent_moved)

90423 ids moved, 0.90%

There we go, we added 1% capacity and only moved 0.9% of existing data. The vnode_range_starts list
seems a bit out of place though. Its values are calculated and never change for the lifetime of the cluster,
so lets optimize that out.

from bisect import bisect_left
from hashlib import md5
from struct import unpack_from

NODE_COUNT = 100
DATA_ID_COUNT = 10000000
VNODE_COUNT = 1000

vnode2node = []
for vnode_id in range(VNODE_COUNT):

vnode2node.append(vnode_id % NODE_COUNT)
new_vnode2node = list(vnode2node)
new_node_id = NODE_COUNT
vnodes_to_reassign = VNODE_COUNT / (NODE_COUNT + 1)
while vnodes_to_reassign > 0:

for node_to_take_from in range(NODE_COUNT):
for vnode_id, node_id in enumerate(vnode2node):

if node_id == node_to_take_from:
vnode2node[vnode_id] = new_node_id
vnodes_to_reassign -= 1
break

if vnodes_to_reassign <= 0:
break

moved_ids = 0
for data_id in range(DATA_ID_COUNT):

data_id = str(data_id)
hsh = unpack_from('>I', md5(str(data_id)).digest())[0]
vnode_id = hsh % VNODE_COUNT
node_id = vnode2node[vnode_id]
new_node_id = new_vnode2node[vnode_id]
if node_id != new_node_id:

moved_ids += 1
percent_moved = 100.0 * moved_ids / DATA_ID_COUNT
print '%d ids moved, %.02f%%' % (moved_ids, percent_moved)

89841 ids moved, 0.90%

There we go. In the next part of this series, will further examine the algorithms limitations and how to
improve on it.

128 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

Part 3

In Part 2 of this series, we reached an algorithm that performed well even when adding new nodes to
the cluster. We used 1000 virtual nodes that could be independently assigned to nodes, allowing us to
minimize the amount of data moved when a node was added.

The number of virtual nodes puts a cap on how many real nodes you can have. For example, if you have
1000 virtual nodes and you try to add a 1001st real node, you cant assign a virtual node to it without
leaving another real node with no assignment, leaving you with just 1000 active real nodes still.

Unfortunately, the number of virtual nodes created at the beginning can never change for the life of the
cluster without a lot of careful work. For example, you could double the virtual node count by splitting
each existing virtual node in half and assigning both halves to the same real node. However, if the
real node uses the virtual nodes id to optimally store the data (for example, all data might be stored in
/[virtual node id]/[data id]) it would have to move data around locally to reflect the change. And it would
have to resolve data using both the new and old locations while the moves were taking place, making
atomic operations difficult or impossible.

Lets continue with this assumption that changing the virtual node count is more work than its worth, but
keep in mind that some applications might be fine with this.

The easiest way to deal with this limitation is to make the limit high enough that it wont matter. For
instance, if we decide our cluster will never exceed 60,000 real nodes, we can just make 60,000 virtual
nodes.

Also, we should include in our calculations the relative size of our nodes. For instance, a year from
now we might have real nodes that can handle twice the capacity of our current nodes. So wed want to
assign twice the virtual nodes to those future nodes, so maybe we should raise our virtual node estimate
to 120,000.

A good rule to follow might be to calculate 100 virtual nodes to each real node at maximum capacity.
This would allow you to alter the load on any given node by 1%, even at max capacity, which is pretty
fine tuning. So now were at 6,000,000 virtual nodes for a max capacity cluster of 60,000 real nodes.

6 million virtual nodes seems like a lot, and it might seem like wed use up way too much memory. But
the only structure this affects is the virtual node to real node mapping. The base amount of memory
required would be 6 million times 2 bytes (to store a real node id from 0 to 65,535). 12 megabytes of
memory just isnt that much to use these days.

Even with all the overhead of flexible data types, things arent that bad. I changed the code from the pre-
vious part in this series to have 60,000 real and 6,000,000 virtual nodes, changed the list to an array(H),
and python topped out at 27m of resident memory and that includes two rings.

To change terminology a bit, were going to start calling these virtual nodes partitions. This will make
it a bit easier to discern between the two types of nodes weve been talking about so far. Also, it makes
sense to talk about partitions as they are really just unchanging sections of the hash space.

Were also going to always keep the partition count a power of two. This makes it easy to just use bit
manipulation on the hash to determine the partition rather than modulus. It isnt much faster, but it is a
little. So, heres our updated ring code, using 8,388,608 (2 ** 23) partitions and 65,536 nodes. Weve
upped the sample data id set and checked the distribution to make sure we havent broken anything.

from array import array
from hashlib import md5
from struct import unpack_from

(continues on next page)

2.20. Building a Consistent Hashing Ring 129



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

PARTITION_POWER = 23
PARTITION_SHIFT = 32 - PARTITION_POWER
NODE_COUNT = 65536
DATA_ID_COUNT = 100000000

part2node = array('H')
for part in range(2 ** PARTITION_POWER):

part2node.append(part % NODE_COUNT)
node_counts = [0] * NODE_COUNT
for data_id in range(DATA_ID_COUNT):

data_id = str(data_id)
part = unpack_from('>I',

md5(str(data_id)).digest())[0] >> PARTITION_SHIFT
node_id = part2node[part]
node_counts[node_id] += 1

desired_count = DATA_ID_COUNT / NODE_COUNT
print '%d: Desired data ids per node' % desired_count
max_count = max(node_counts)
over = 100.0 * (max_count - desired_count) / desired_count
print '%d: Most data ids on one node, %.02f%% over' % \

(max_count, over)
min_count = min(node_counts)
under = 100.0 * (desired_count - min_count) / desired_count
print '%d: Least data ids on one node, %.02f%% under' % \

(min_count, under)

1525: Desired data ids per node
1683: Most data ids on one node, 10.36% over
1360: Least data ids on one node, 10.82% under

Hmm. +10% seems a bit high, but I reran with 65,536 partitions and 256 nodes and got +0.4% so its just
that our sample size (100m) is too small for our number of partitions (8m). Itll take way too long to run
experiments with an even larger sample size, so lets reduce back down to these lesser numbers. (To be
certain, I reran at the full version with a 10 billion data id sample set and got +1%, but it took 6.5 hours
to run.)

In the next part of this series, well talk about how to increase the durability of our data in the cluster.

Part 4

In Part 3 of this series, we just further discussed partitions (virtual nodes) and cleaned up our code a
bit based on that. Now, lets talk about how to increase the durability and availability of our data in the
cluster.

For many distributed data stores, durability is quite important. Either RAID arrays or individually dis-
tinct copies of data are required. While RAID will increase the durability, it does nothing to increase the
availability if the RAID machine crashes, the data may be safe but inaccessible until repairs are done.
If we keep distinct copies of the data on different machines and a machine crashes, the other copies will
still be available while we repair the broken machine.

An easy way to gain this multiple copy durability/availability is to just use multiple rings and groups
of nodes. For instance, to achieve the industry standard of three copies, youd split the nodes into three
groups and each group would have its own ring and each would receive a copy of each data item. This

130 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

can work well enough, but has the drawback that expanding capacity requires adding three nodes at a
time and that losing one node essentially lowers capacity by three times that nodes capacity.

Instead, lets use a different, but common, approach of meeting our requirements with a single ring. This
can be done by walking the ring from the starting point and looking for additional distinct nodes. Heres
code that supports a variable number of replicas (set to 3 for testing):

from array import array
from hashlib import md5
from struct import unpack_from

REPLICAS = 3
PARTITION_POWER = 16
PARTITION_SHIFT = 32 - PARTITION_POWER
PARTITION_MAX = 2 ** PARTITION_POWER - 1
NODE_COUNT = 256
DATA_ID_COUNT = 10000000

part2node = array('H')
for part in range(2 ** PARTITION_POWER):

part2node.append(part % NODE_COUNT)
node_counts = [0] * NODE_COUNT
for data_id in range(DATA_ID_COUNT):

data_id = str(data_id)
part = unpack_from('>I',

md5(str(data_id)).digest())[0] >> PARTITION_SHIFT
node_ids = [part2node[part]]
node_counts[node_ids[0]] += 1
for replica in range(1, REPLICAS):

while part2node[part] in node_ids:
part += 1
if part > PARTITION_MAX:

part = 0
node_ids.append(part2node[part])
node_counts[node_ids[-1]] += 1

desired_count = DATA_ID_COUNT / NODE_COUNT * REPLICAS
print '%d: Desired data ids per node' % desired_count
max_count = max(node_counts)
over = 100.0 * (max_count - desired_count) / desired_count
print '%d: Most data ids on one node, %.02f%% over' % \

(max_count, over)
min_count = min(node_counts)
under = 100.0 * (desired_count - min_count) / desired_count
print '%d: Least data ids on one node, %.02f%% under' % \

(min_count, under)

117186: Desired data ids per node
118133: Most data ids on one node, 0.81% over
116093: Least data ids on one node, 0.93% under

Thats pretty good; less than 1% over/under. While this works well, there are a couple of problems.

First, because of how weve initially assigned the partitions to nodes, all the partitions for a given node
have their extra copies on the same other two nodes. The problem here is that when a machine fails, the
load on these other nodes will jump by that amount. Itd be better if we initially shuffled the partition
assignment to distribute the failover load better.

The other problem is a bit harder to explain, but deals with physical separation of machines. Imagine

2.20. Building a Consistent Hashing Ring 131



Swift Documentation, Release 2.27.1.dev38

you can only put 16 machines in a rack in your datacenter. The 256 nodes weve been using would fill
16 racks. With our current code, if a rack goes out (power problem, network issue, etc.) there is a
good chance some data will have all three copies in that rack, becoming inaccessible. We can fix this
shortcoming by adding the concept of zones to our nodes, and then ensuring that replicas are stored in
distinct zones.

from array import array
from hashlib import md5
from random import shuffle
from struct import unpack_from

REPLICAS = 3
PARTITION_POWER = 16
PARTITION_SHIFT = 32 - PARTITION_POWER
PARTITION_MAX = 2 ** PARTITION_POWER - 1
NODE_COUNT = 256
ZONE_COUNT = 16
DATA_ID_COUNT = 10000000

node2zone = []
while len(node2zone) < NODE_COUNT:

zone = 0
while zone < ZONE_COUNT and len(node2zone) < NODE_COUNT:

node2zone.append(zone)
zone += 1

part2node = array('H')
for part in range(2 ** PARTITION_POWER):

part2node.append(part % NODE_COUNT)
shuffle(part2node)
node_counts = [0] * NODE_COUNT
zone_counts = [0] * ZONE_COUNT
for data_id in range(DATA_ID_COUNT):

data_id = str(data_id)
part = unpack_from('>I',

md5(str(data_id)).digest())[0] >> PARTITION_SHIFT
node_ids = [part2node[part]]
zones = [node2zone[node_ids[0]]]
node_counts[node_ids[0]] += 1
zone_counts[zones[0]] += 1
for replica in range(1, REPLICAS):

while part2node[part] in node_ids and \
node2zone[part2node[part]] in zones:

part += 1
if part > PARTITION_MAX:

part = 0
node_ids.append(part2node[part])
zones.append(node2zone[node_ids[-1]])
node_counts[node_ids[-1]] += 1
zone_counts[zones[-1]] += 1

desired_count = DATA_ID_COUNT / NODE_COUNT * REPLICAS
print '%d: Desired data ids per node' % desired_count
max_count = max(node_counts)
over = 100.0 * (max_count - desired_count) / desired_count
print '%d: Most data ids on one node, %.02f%% over' % \

(max_count, over)
min_count = min(node_counts)
under = 100.0 * (desired_count - min_count) / desired_count

(continues on next page)

132 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

print '%d: Least data ids on one node, %.02f%% under' % \
(min_count, under)

desired_count = DATA_ID_COUNT / ZONE_COUNT * REPLICAS
print '%d: Desired data ids per zone' % desired_count
max_count = max(zone_counts)
over = 100.0 * (max_count - desired_count) / desired_count
print '%d: Most data ids in one zone, %.02f%% over' % \

(max_count, over)
min_count = min(zone_counts)
under = 100.0 * (desired_count - min_count) / desired_count
print '%d: Least data ids in one zone, %.02f%% under' % \

(min_count, under)

117186: Desired data ids per node
118782: Most data ids on one node, 1.36% over
115632: Least data ids on one node, 1.33% under
1875000: Desired data ids per zone
1878533: Most data ids in one zone, 0.19% over
1869070: Least data ids in one zone, 0.32% under

So the shuffle and zone distinctions affected our distribution some, but still definitely good enough. This
test took about 64 seconds to run on my machine.

Theres a completely alternate, and quite common, way of accomplishing these same requirements. This
alternate method doesnt use partitions at all, but instead just assigns anchors to the nodes within the hash
space. Finding the first node for a given hash just involves walking this anchor ring for the next node,
and finding additional nodes works similarly as before. To attain the equivalent of our virtual nodes,
each real node is assigned multiple anchors.

from bisect import bisect_left
from hashlib import md5
from struct import unpack_from

REPLICAS = 3
NODE_COUNT = 256
ZONE_COUNT = 16
DATA_ID_COUNT = 10000000
VNODE_COUNT = 100

node2zone = []
while len(node2zone) < NODE_COUNT:

zone = 0
while zone < ZONE_COUNT and len(node2zone) < NODE_COUNT:

node2zone.append(zone)
zone += 1

hash2index = []
index2node = []
for node in range(NODE_COUNT):

for vnode in range(VNODE_COUNT):
hsh = unpack_from('>I', md5(str(node)).digest())[0]
index = bisect_left(hash2index, hsh)
if index > len(hash2index):

index = 0
hash2index.insert(index, hsh)
index2node.insert(index, node)

(continues on next page)

2.20. Building a Consistent Hashing Ring 133



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

node_counts = [0] * NODE_COUNT
zone_counts = [0] * ZONE_COUNT
for data_id in range(DATA_ID_COUNT):

data_id = str(data_id)
hsh = unpack_from('>I', md5(str(data_id)).digest())[0]
index = bisect_left(hash2index, hsh)
if index >= len(hash2index):

index = 0
node_ids = [index2node[index]]
zones = [node2zone[node_ids[0]]]
node_counts[node_ids[0]] += 1
zone_counts[zones[0]] += 1
for replica in range(1, REPLICAS):

while index2node[index] in node_ids and \
node2zone[index2node[index]] in zones:

index += 1
if index >= len(hash2index):

index = 0
node_ids.append(index2node[index])
zones.append(node2zone[node_ids[-1]])
node_counts[node_ids[-1]] += 1
zone_counts[zones[-1]] += 1

desired_count = DATA_ID_COUNT / NODE_COUNT * REPLICAS
print '%d: Desired data ids per node' % desired_count
max_count = max(node_counts)
over = 100.0 * (max_count - desired_count) / desired_count
print '%d: Most data ids on one node, %.02f%% over' % \

(max_count, over)
min_count = min(node_counts)
under = 100.0 * (desired_count - min_count) / desired_count
print '%d: Least data ids on one node, %.02f%% under' % \

(min_count, under)
desired_count = DATA_ID_COUNT / ZONE_COUNT * REPLICAS
print '%d: Desired data ids per zone' % desired_count
max_count = max(zone_counts)
over = 100.0 * (max_count - desired_count) / desired_count
print '%d: Most data ids in one zone, %.02f%% over' % \

(max_count, over)
min_count = min(zone_counts)
under = 100.0 * (desired_count - min_count) / desired_count
print '%d: Least data ids in one zone, %.02f%% under' % \

(min_count, under)

117186: Desired data ids per node
351282: Most data ids on one node, 199.76% over
15965: Least data ids on one node, 86.38% under
1875000: Desired data ids per zone
2248496: Most data ids in one zone, 19.92% over
1378013: Least data ids in one zone, 26.51% under

This test took over 15 minutes to run! Unfortunately, this method also gives much less control over the
distribution. To get better distribution, you have to add more virtual nodes, which eats up more memory
and takes even more time to build the ring and perform distinct node lookups. The most common
operation, data id lookup, can be improved (by predetermining each virtual nodes failover nodes, for
instance) but it starts off so far behind our first approach that well just stick with that.

134 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

In the next part of this series, well start to wrap all this up into a useful Python module.

Part 5

In Part 4 of this series, we ended up with a multiple copy, distinctly zoned ring. Or at least the start of it.
In this final part well package the code up into a useable Python module and then add one last feature.
First, lets separate the ring itself from the building of the data for the ring and its testing.

from array import array
from hashlib import md5
from random import shuffle
from struct import unpack_from
from time import time

class Ring(object):

def __init__(self, nodes, part2node, replicas):
self.nodes = nodes
self.part2node = part2node
self.replicas = replicas
partition_power = 1
while 2 ** partition_power < len(part2node):

partition_power += 1
if len(part2node) != 2 ** partition_power:

raise Exception("part2node's length is not an "
"exact power of 2")

self.partition_shift = 32 - partition_power

def get_nodes(self, data_id):
data_id = str(data_id)
part = unpack_from('>I',

md5(data_id).digest())[0] >> self.partition_shift
node_ids = [self.part2node[part]]
zones = [self.nodes[node_ids[0]]]
for replica in range(1, self.replicas):

while self.part2node[part] in node_ids and \
self.nodes[self.part2node[part]] in zones:

part += 1
if part >= len(self.part2node):

part = 0
node_ids.append(self.part2node[part])
zones.append(self.nodes[node_ids[-1]])

return [self.nodes[n] for n in node_ids]

def build_ring(nodes, partition_power, replicas):
begin = time()
part2node = array('H')
for part in range(2 ** partition_power):

part2node.append(part % len(nodes))
shuffle(part2node)
ring = Ring(nodes, part2node, replicas)
print '%.02fs to build ring' % (time() - begin)
return ring

def test_ring(ring):
begin = time()

(continues on next page)

2.20. Building a Consistent Hashing Ring 135



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

DATA_ID_COUNT = 10000000
node_counts = {}
zone_counts = {}
for data_id in range(DATA_ID_COUNT):

for node in ring.get_nodes(data_id):
node_counts[node['id']] = \

node_counts.get(node['id'], 0) + 1
zone_counts[node['zone']] = \

zone_counts.get(node['zone'], 0) + 1
print '%ds to test ring' % (time() - begin)
desired_count = \

DATA_ID_COUNT / len(ring.nodes) * REPLICAS
print '%d: Desired data ids per node' % desired_count
max_count = max(node_counts.values())
over = \

100.0 * (max_count - desired_count) / desired_count
print '%d: Most data ids on one node, %.02f%% over' % \

(max_count, over)
min_count = min(node_counts.values())
under = \

100.0 * (desired_count - min_count) / desired_count
print '%d: Least data ids on one node, %.02f%% under' % \

(min_count, under)
zone_count = \

len(set(n['zone'] for n in ring.nodes.values()))
desired_count = \

DATA_ID_COUNT / zone_count * ring.replicas
print '%d: Desired data ids per zone' % desired_count
max_count = max(zone_counts.values())
over = \

100.0 * (max_count - desired_count) / desired_count
print '%d: Most data ids in one zone, %.02f%% over' % \

(max_count, over)
min_count = min(zone_counts.values())
under = \

100.0 * (desired_count - min_count) / desired_count
print '%d: Least data ids in one zone, %.02f%% under' % \

(min_count, under)

if __name__ == '__main__':
PARTITION_POWER = 16
REPLICAS = 3
NODE_COUNT = 256
ZONE_COUNT = 16
nodes = {}
while len(nodes) < NODE_COUNT:

zone = 0
while zone < ZONE_COUNT and len(nodes) < NODE_COUNT:

node_id = len(nodes)
nodes[node_id] = {'id': node_id, 'zone': zone}
zone += 1

ring = build_ring(nodes, PARTITION_POWER, REPLICAS)
test_ring(ring)

0.06s to build ring

(continues on next page)

136 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

82s to test ring
117186: Desired data ids per node
118773: Most data ids on one node, 1.35% over
115801: Least data ids on one node, 1.18% under
1875000: Desired data ids per zone
1878339: Most data ids in one zone, 0.18% over
1869914: Least data ids in one zone, 0.27% under

It takes a bit longer to test our ring, but thats mostly because of the switch to dictionaries from arrays for
various items. Having node dictionaries is nice because you can attach any node information you want
directly there (ip addresses, tcp ports, drive paths, etc.). But were still on track for further testing; our
distribution is still good.

Now, lets add our one last feature to our ring: the concept of weights. Weights are useful because the
nodes you add later in a rings life are likely to have more capacity than those you have at the outset. For
this test, well make half our nodes have twice the weight. Well have to change build_ring to give more
partitions to the nodes with more weight and well change test_ring to take into account these weights.
Since weve changed so much Ill just post the entire module again:

from array import array
from hashlib import md5
from random import shuffle
from struct import unpack_from
from time import time

class Ring(object):

def __init__(self, nodes, part2node, replicas):
self.nodes = nodes
self.part2node = part2node
self.replicas = replicas
partition_power = 1
while 2 ** partition_power < len(part2node):

partition_power += 1
if len(part2node) != 2 ** partition_power:

raise Exception("part2node's length is not an "
"exact power of 2")

self.partition_shift = 32 - partition_power

def get_nodes(self, data_id):
data_id = str(data_id)
part = unpack_from('>I',

md5(data_id).digest())[0] >> self.partition_shift
node_ids = [self.part2node[part]]
zones = [self.nodes[node_ids[0]]]
for replica in range(1, self.replicas):

while self.part2node[part] in node_ids and \
self.nodes[self.part2node[part]] in zones:

part += 1
if part >= len(self.part2node):

part = 0
node_ids.append(self.part2node[part])
zones.append(self.nodes[node_ids[-1]])

return [self.nodes[n] for n in node_ids]

(continues on next page)

2.20. Building a Consistent Hashing Ring 137



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

def build_ring(nodes, partition_power, replicas):
begin = time()
parts = 2 ** partition_power
total_weight = \

float(sum(n['weight'] for n in nodes.values()))
for node in nodes.values():

node['desired_parts'] = \
parts / total_weight * node['weight']

part2node = array('H')
for part in range(2 ** partition_power):

for node in nodes.values():
if node['desired_parts'] >= 1:

node['desired_parts'] -= 1
part2node.append(node['id'])
break

else:
for node in nodes.values():

if node['desired_parts'] >= 0:
node['desired_parts'] -= 1
part2node.append(node['id'])
break

shuffle(part2node)
ring = Ring(nodes, part2node, replicas)
print '%.02fs to build ring' % (time() - begin)
return ring

def test_ring(ring):
begin = time()
DATA_ID_COUNT = 10000000
node_counts = {}
zone_counts = {}
for data_id in range(DATA_ID_COUNT):

for node in ring.get_nodes(data_id):
node_counts[node['id']] = \

node_counts.get(node['id'], 0) + 1
zone_counts[node['zone']] = \

zone_counts.get(node['zone'], 0) + 1
print '%ds to test ring' % (time() - begin)
total_weight = float(sum(n['weight'] for n in

ring.nodes.values()))
max_over = 0
max_under = 0
for node in ring.nodes.values():

desired = DATA_ID_COUNT * REPLICAS * \
node['weight'] / total_weight

diff = node_counts[node['id']] - desired
if diff > 0:

over = 100.0 * diff / desired
if over > max_over:

max_over = over
else:

under = 100.0 * (-diff) / desired
if under > max_under:

max_under = under
print '%.02f%% max node over' % max_over
print '%.02f%% max node under' % max_under

(continues on next page)

138 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

max_over = 0
max_under = 0
for zone in set(n['zone'] for n in

ring.nodes.values()):
zone_weight = sum(n['weight'] for n in

ring.nodes.values() if n['zone'] == zone)
desired = DATA_ID_COUNT * REPLICAS * \

zone_weight / total_weight
diff = zone_counts[zone] - desired
if diff > 0:

over = 100.0 * diff / desired
if over > max_over:

max_over = over
else:

under = 100.0 * (-diff) / desired
if under > max_under:

max_under = under
print '%.02f%% max zone over' % max_over
print '%.02f%% max zone under' % max_under

if __name__ == '__main__':
PARTITION_POWER = 16
REPLICAS = 3
NODE_COUNT = 256
ZONE_COUNT = 16
nodes = {}
while len(nodes) < NODE_COUNT:

zone = 0
while zone < ZONE_COUNT and len(nodes) < NODE_COUNT:

node_id = len(nodes)
nodes[node_id] = {'id': node_id, 'zone': zone,

'weight': 1.0 + (node_id % 2)}
zone += 1

ring = build_ring(nodes, PARTITION_POWER, REPLICAS)
test_ring(ring)

0.88s to build ring
86s to test ring
1.66% max over
1.46% max under
0.28% max zone over
0.23% max zone under

So things are still good, even though we have differently weighted nodes. I ran another test with this
code using random weights from 1 to 100 and got over/under values for nodes of 7.35%/18.12% and
zones of 0.24%/0.22%, still pretty good considering the crazy weight ranges.

2.20. Building a Consistent Hashing Ring 139



Swift Documentation, Release 2.27.1.dev38

Summary

Hopefully this series has been a good introduction to building a ring. This code is essentially how the
OpenStack Swift ring works, except that Swifts ring has lots of additional optimizations, such as storing
each replica assignment separately, and lots of extra features for building, validating, and otherwise
working with rings.

2.21 Modifying Ring Partition Power

The ring partition power determines the on-disk location of data files and is selected when creating a
new ring. In normal operation, it is a fixed value. This is because a different partition power results in a
different on-disk location for all data files.

However, increasing the partition power by 1 can be done by choosing locations that are on the same
disk. As a result, we can create hard-links for both the new and old locations, avoiding data movement
without impacting availability.

To enable a partition power change without interrupting user access, object servers need to be aware of
it in advance. Therefore a partition power change needs to be done in multiple steps.

Note: Do not increase the partition power on account and container rings. Increasing the partition
power is only supported for object rings. Trying to increase the part_power for account and container
rings will result in unavailability, maybe even data loss.

2.21.1 Caveats

Before increasing the partition power, consider the possible drawbacks. There are a few caveats when
increasing the partition power:

• Almost all diskfiles in the cluster need to be relinked then cleaned up, and all partition directories
need to be rehashed. This imposes significant I/O load on object servers, which may impact client
requests. Consider using cgroups, ionice, or even just the built-in --files-per-second
rate-limiting to reduce client impact.

• Object replicators and reconstructors will skip affected policies during the partition power in-
crease. Replicators are not aware of hard-links, and would simply copy the content; this would
result in heavy data movement and the worst case would be that all data is stored twice.

• Due to the fact that each object will now be hard linked from two locations, many more inodes
will be used temporarily - expect around twice the amount. You need to check the free inode count
before increasing the partition power. Even after the increase is complete and extra hardlinks are
cleaned up, expect increased inode usage since there will be twice as many partition and suffix
directories.

• Also, object auditors might read each object twice before cleanup removes the second hard link.

• Due to the new inodes more memory is needed to cache them, and your object servers
should have plenty of available memory to avoid running out of inode cache. Setting
vfs_cache_pressure to 1 might help with that.

• All nodes in the cluster must run at least Swift version 2.13.0 or later.

140 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

Due to these caveats you should only increase the partition power if really needed, i.e. if the number of
partitions per disk is extremely low and the data is distributed unevenly across disks.

2.21.2 1. Prepare partition power increase

The swift-ring-builder is used to prepare the ring for an upcoming partition power increase. It will store
a new variable next_part_power with the current partition power + 1. Object servers recognize
this, and hard links to the new location will be created (or deleted) on every PUT or DELETE. This will
make it possible to access newly written objects using the future partition power:

swift-ring-builder <builder-file> prepare_increase_partition_power
swift-ring-builder <builder-file> write_ring

Now you need to copy the updated .ring.gz to all nodes. Already existing data needs to be relinked too;
therefore an operator has to run a relinker command on all object servers in this phase:

swift-object-relinker relink

Note: Start relinking after all the servers re-read the modified ring files, which normally happens within
15 seconds after writing a modified ring. Also, make sure the modified rings are pushed to all nodes
running object services (replicators, reconstructors and reconcilers)- they have to skip the policy during
relinking.

Note: The relinking command must run as the same user as the daemon processes (usually swift).
It will create files and directories that must be manipulable by the daemon processes (server, auditor,
replicator, ). If necessary, the --user option may be used to drop privileges.

Relinking might take some time; while there is no data copied or actually moved, the tool still needs to
walk the whole file system and create new hard links as required.

2.21.3 2. Increase partition power

Now that all existing data can be found using the new location, its time to actually increase the partition
power itself:

swift-ring-builder <builder-file> increase_partition_power
swift-ring-builder <builder-file> write_ring

Now you need to copy the updated .ring.gz again to all nodes. Object servers are now using the new,
increased partition power and no longer create additional hard links.

Note: The object servers will create additional hard links for each modified or new object, and this
requires more inodes.

Note: If you decide you dont want to increase the partition power, you should instead cancel the
increase. It is not possible to revert this operation once started. To abort the partition power increase, ex-

2.21. Modifying Ring Partition Power 141



Swift Documentation, Release 2.27.1.dev38

ecute the following commands, copy the updated .ring.gz files to all nodes and continue with 3. Cleanup
afterwards:

swift-ring-builder <builder-file> cancel_increase_partition_power
swift-ring-builder <builder-file> write_ring

2.21.4 3. Cleanup

Existing hard links in the old locations need to be removed, and a cleanup tool is provided to do this.
Run the following command on each storage node:

swift-object-relinker cleanup

Note: The cleanup must be finished within your object servers reclaim_age period (which is by
default 1 week). Otherwise objects that have been overwritten between step #1 and step #2 and deleted
afterwards cant be cleaned up anymore. You may want to increase your reclaim_age before or
during relinking.

Afterwards it is required to update the rings one last time to inform servers that all steps to increase the
partition power are done, and replicators should resume their job:

swift-ring-builder <builder-file> finish_increase_partition_power
swift-ring-builder <builder-file> write_ring

Now you need to copy the updated .ring.gz again to all nodes.

2.21.5 Background

An existing object that is currently located on partition X will be placed either on partition 2*X or
2*X+1 after the partition power is increased. The reason for this is the Ring.get_part() method, that
does a bitwise shift to the right.

To avoid actual data movement to different disks or even nodes, the allocation of partitions to nodes
needs to be changed. The allocation is pairwise due to the above mentioned new partition scheme.
Therefore devices are allocated like this, with the partition being the index and the value being the
device id:

old new
part dev part dev
---- --- ---- ---
0 0 0 0

1 0
1 3 2 3

3 3
2 7 4 7

5 7
3 5 6 5

7 5
4 2 8 2

9 2

(continues on next page)

142 Chapter 2. Overview and Concepts



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

5 1 10 1
11 1

There is a helper method to compute the new path, and the following example shows the mapping
between old and new location:

>>> from swift.common.utils import replace_partition_in_path
>>> old='objects/16003/a38/fa0fcec07328d068e24ccbf2a62f2a38/1467658208.
↪→57179.data'
>>> replace_partition_in_path(old, 14)
'objects/16003/a38/fa0fcec07328d068e24ccbf2a62f2a38/1467658208.57179.data'
>>> replace_partition_in_path(old, 15)
'objects/32007/a38/fa0fcec07328d068e24ccbf2a62f2a38/1467658208.57179.data'

Using the original partition power (14) it returned the same path; however after an increase to 15 it
returns the new path, and the new partition is 2*X+1 in this case.

2.22 Associated Projects

2.22.1 Application Bindings

• OpenStack supported binding:

– Python-SwiftClient

• Unofficial libraries and bindings:

– PHP

* PHP-opencloud - Official Rackspace PHP bindings that should work for other Swift
deployments too.

– Ruby

* swift_client - Small but powerful Ruby client to interact with OpenStack Swift

* nightcrawler_swift - This Ruby gem teleports your assets to an OpenStack Swift
bucket/container

* swift storage - Simple OpenStack Swift storage client.

– Java

* libcloud - Apache Libcloud - a unified interface in Python for different clouds with
OpenStack Swift support.

* jclouds - Java library offering bindings for all OpenStack projects

* java-openstack-swift - Java bindings for OpenStack Swift

* javaswift - Collection of Java tools for Swift

– Bash

* supload - Bash script to upload file to cloud storage based on OpenStack Swift API.

– .NET

2.22. Associated Projects 143

https://pypi.org/project/python-swiftclient
http://php-opencloud.com
https://github.com/mrkamel/swift_client
https://github.com/tulios/nightcrawler_swift
https://rubygems.org/gems/swift-storage
http://libcloud.apache.org
http://jclouds.apache.org/guides/openstack/
https://github.com/iterate-ch/java-openstack-swift
http://javaswift.org/
https://github.com/selectel/supload


Swift Documentation, Release 2.27.1.dev38

* openstacknetsdk.org - An OpenStack Cloud SDK for Microsoft .NET.

– Go

* Go language bindings

* Gophercloud an OpenStack SDK for Go

2.22.2 Authentication

• Keystone - Official Identity Service for OpenStack.

• Swauth - An alternative Swift authentication service that only requires Swift itself.

• Basicauth - HTTP Basic authentication support (keystone backed).

2.22.3 Command Line Access

• Swiftly - Alternate command line access to Swift with direct (no proxy) access capabilities as
well.

2.22.4 External Integration

• 1space - Multi-cloud synchronization tool - supports Swift and S3 APIs

• swift-metadata-sync - Propagate OpenStack Swift object metadata into Elasticsearch

2.22.5 Log Processing

• slogging - Basic stats and logging tools.

2.22.6 Monitoring & Statistics

• Swift Informant - Swift proxy Middleware to send events to a statsd instance.

• Swift Inspector - Swift middleware to relay information about a request back to the client.

2.22.7 Content Distribution Network Integration

• SOS - Swift Origin Server.

2.22.8 Alternative API

• ProxyFS - Integrated file and object access for Swift object storage

• SwiftHLM - a middleware for using OpenStack Swift with tape and other high latency media
storage backends.

144 Chapter 2. Overview and Concepts

http://www.openstacknetsdk.org
https://github.com/ncw/swift
https://godoc.org/github.com/gophercloud/gophercloud
https://github.com/openstack/keystone
https://github.com/openstack/swauth
https://github.com/CloudVPS/swift-basicauth
https://github.com/gholt/swiftly
https://github.com/swiftstack/1space
https://github.com/swiftstack/swift-metadata-sync
https://github.com/openstack/slogging
https://github.com/pandemicsyn/swift-informant
https://github.com/hurricanerix/swift-inspector
https://github.com/dpgoetz/sos
https://github.com/swiftstack/ProxyFS
https://github.com/ibm-research/SwiftHLM


Swift Documentation, Release 2.27.1.dev38

2.22.9 Benchmarking/Load Generators

• getput - getput tool suite

• COSbench - COSbench tool suite

• ssbench - ssbench tool suite

2.22.10 Custom Logger Hooks

• swift-sentry - Sentry exception reporting for Swift

2.22.11 Storage Backends (DiskFile API implementations)

• Swift-on-File - Enables objects created using Swift API to be accessed as files on a POSIX filesys-
tem and vice versa.

• swift-scality-backend - Scality sproxyd object server implementation for Swift.

2.22.12 Developer Tools

• SAIO bash scripts - Well commented simple bash scripts for Swift all in one setup.

• vagrant-swift-all-in-one - Quickly setup a standard development environment using Vagrant and
Chef cookbooks in an Ubuntu virtual machine.

• SAIO Ansible playbook - Quickly setup a standard development environment using Vagrant and
Ansible in a Fedora virtual machine (with built-in Swift-on-File support).

• runway - Runway sets up a swift-all-in-one (SAIO) dev environment in an lxc container.

• Multi Swift - Bash scripts to spin up multiple Swift clusters sharing the same hardware

2.22.13 Other

• Glance - Provides services for discovering, registering, and retrieving virtual machine images (for
OpenStack Compute [Nova], for example).

• Django Swiftbrowser - Simple Django web app to access OpenStack Swift.

• Swift-account-stats - Swift-account-stats is a tool to report statistics on Swift usage at tenant and
global levels.

• PyECLib - High-level erasure code library used by Swift

• liberasurecode - Low-level erasure code library used by PyECLib

• Swift Browser - JavaScript interface for Swift

• swift-ui - OpenStack Swift web browser

• swiftbackmeup - Utility that allows one to create backups and upload them to OpenStack Swift

• s3compat - S3 API compatibility checker

2.22. Associated Projects 145

https://github.com/markseger/getput
https://github.com/intel-cloud/cosbench
https://github.com/swiftstack/ssbench
https://github.com/pandemicsyn/swift-sentry
https://github.com/openstack/swiftonfile
https://github.com/scality/ScalitySproxydSwift
https://github.com/ntata/swift-setup-scripts
https://github.com/swiftstack/vagrant-swift-all-in-one
https://github.com/thiagodasilva/ansible-saio
https://github.com/openstack/swiftonfile
https://github.com/swiftstack/runway
https://github.com/ntata/multi-swift-POC
https://github.com/openstack/glance
https://github.com/cschwede/django-swiftbrowser
https://github.com/redhat-cip/swift-account-stats
https://github.com/openstack/pyeclib
https://github.com/openstack/liberasurecode
https://github.com/mgeisler/swift-browser
https://github.com/fanatic/swift-ui
https://github.com/redhat-cip/swiftbackmeup
https://github.com/swiftstack/s3compat


Swift Documentation, Release 2.27.1.dev38

146 Chapter 2. Overview and Concepts



CHAPTER

THREE

CONTRIBUTOR DOCUMENTATION

3.1 Contributing to OpenStack Swift

3.1.1 Who is a Contributor?

Put simply, if you improve Swift, youre a contributor. The easiest way to improve the project is to tell
us where theres a bug. In other words, filing a bug is a valuable and helpful way to contribute to the
project.

Once a bug has been filed, someone will work on writing a patch to fix the bug. Perhaps youd like to fix
a bug. Writing code to fix a bug or add new functionality is tremendously important.

Once code has been written, it is submitted upstream for review. All code, even that written by the most
senior members of the community, must pass code review and all tests before it can be included in the
project. Reviewing proposed patches is a very helpful way to be a contributor.

Swift is nothing without the community behind it. Wed love to welcome you to our community. Come
find us in #openstack-swift on freenode IRC or on the OpenStack dev mailing list.

For general information on contributing to OpenStack, please check out the contributor guide to get
started. It covers all the basics that are common to all OpenStack projects: the accounts you need, the
basics of interacting with our Gerrit review system, how we communicate as a community, etc.

If you want more Swift related project documentation make sure you checkout the Swift developer
(contributor) documentation at https://docs.openstack.org/swift/latest/

Filing a Bug

Filing a bug is the easiest way to contribute. We use Launchpad as a bug tracker; you can find currently-
tracked bugs at https://bugs.launchpad.net/swift. Use the Report a bug link to file a new bug.

If you find something in Swift that doesnt match the documentation or doesnt meet your expectations
with how it should work, please let us know. Of course, if you ever get an error (like a Traceback
message in the logs), we definitely want to know about that. Well do our best to diagnose any problem
and patch it as soon as possible.

A bug report, at minimum, should describe what you were doing that caused the bug. Swift broke, pls fix
is not helpful. Instead, something like When I restarted syslog, Swift started logging traceback messages
is very helpful. The goal is that we can reproduce the bug and isolate the issue in order to apply a fix. If
you dont have full details, thats ok. Anything you can provide is helpful.

147

https://docs.openstack.org/contributors/
https://docs.openstack.org/swift/latest/
https://bugs.launchpad.net/swift
https://bugs.launchpad.net/swift/+filebug


Swift Documentation, Release 2.27.1.dev38

You may have noticed that there are many tracked bugs, but not all of them have been confirmed. If you
take a look at an old bug report and you can reproduce the issue described, please leave a comment on
the bug about that. It lets us all know that the bug is very likely to be valid.

Reviewing Someone Elses Code

All code reviews in OpenStack projects are done on https://review.opendev.org/. Reviewing patches is
one of the most effective ways you can contribute to the community.

Weve written REVIEW_GUIDELINES.rst (found in this source tree) to help you give good reviews.

https://wiki.openstack.org/wiki/Swift/PriorityReviews is a starting point to find what reviews are priority
in the community.

3.1.2 What do I work on?

If youre looking for a way to write and contribute code, but youre not sure what to work on, check out
the wishlist bugs in the bug tracker. These are normally smaller items that someone took the time to
write down but didnt have time to implement.

And please join #openstack-swift on freenode IRC to tell us what youre working on.

3.1.3 Getting Started

https://docs.openstack.org/swift/latest/first_contribution_swift.html

Once those steps have been completed, changes to OpenStack should be submitted for review via the
Gerrit tool, following the workflow documented at http://docs.openstack.org/infra/manual/developers.
html#development-workflow.

Gerrit is the review system used in the OpenStack projects. Were sorry, but we wont be able to respond
to pull requests submitted through GitHub.

Bugs should be filed on Launchpad, not in GitHubs issue tracker.

3.2 Swift Design Principles

• The Zen of Python

• Simple Scales

• Minimal dependencies

• Re-use existing tools and libraries when reasonable

• Leverage the economies of scale

• Small, loosely coupled RESTful services

• No single points of failure

• Start with the use case

• then design from the cluster operator up

148 Chapter 3. Contributor Documentation

https://review.opendev.org/
https://wiki.openstack.org/wiki/Swift/PriorityReviews
https://docs.openstack.org/swift/latest/first_contribution_swift.html
http://docs.openstack.org/infra/manual/developers.html#development-workflow
http://docs.openstack.org/infra/manual/developers.html#development-workflow
https://bugs.launchpad.net/swift
http://legacy.python.org/dev/peps/pep-0020/


Swift Documentation, Release 2.27.1.dev38

• If you havent argued about it, you dont have the right answer yet :)

• If it is your first implementation, you probably arent done yet :)

Please dont feel offended by difference of opinion. Be prepared to advocate for your change and iterate
on it based on feedback. Reach out to other people working on the project on IRC or the mailing list -
we want to help.

3.3 Recommended workflow

• Set up a Swift All-In-One VM(SAIO).

• Make your changes. Docs and tests for your patch must land before or with your patch.

• Run unit tests, functional tests, probe tests ./.unittests ./.functests ./.
probetests

• Run tox (no command-line args needed)

• git review

3.4 Notes on Testing

Running the tests above against Swift in your development environment (ie your SAIO) will catch most
issues. Any patch you propose is expected to be both tested and documented and all tests should pass.

If you want to run just a subset of the tests while you are developing, you can use nosetests:

cd test/unit/common/middleware/ && nosetests test_healthcheck.py

To check which parts of your code are being exercised by a test, you can run tox and then point your
browser to swift/cover/index.html:

tox -e py27 -- test.unit.common.middleware.test_
↪→healthcheck:TestHealthCheck.test_healthcheck

Swifts unit tests are designed to test small parts of the code in isolation. The functional tests validate
that the entire system is working from an external perspective (they are black-box tests). You can even
run functional tests against public Swift endpoints. The probetests are designed to test much of Swifts
internal processes. For example, a test may write data, intentionally corrupt it, and then ensure that the
correct processes detect and repair it.

When your patch is submitted for code review, it will automatically be tested on the OpenStack CI
infrastructure. In addition to many of the tests above, it will also be tested by several other OpenStack
test jobs.

Once your patch has been reviewed and approved by core reviewers and has passed all automated tests,
it will be merged into the Swift source tree.

3.3. Recommended workflow 149

http://eavesdrop.openstack.org/irclogs/%23openstack-swift/
http://lists.openstack.org/pipermail/openstack-discuss/
https://docs.openstack.org/swift/latest/development_saio.html


Swift Documentation, Release 2.27.1.dev38

3.5 Ideas

https://wiki.openstack.org/wiki/Swift/ideas

If youre working on something, its a very good idea to write down what youre thinking about. This lets
others get up to speed, helps you collaborate, and serves as a great record for future reference. Write
down your thoughts somewhere and put a link to it here. It doesnt matter what form your thoughts are in;
use whatever is best for you. Your document should include why your idea is needed and your thoughts
on particular design choices and tradeoffs. Please include some contact information (ideally, your IRC
nick) so that people can collaborate with you.

3.6 Community

3.6.1 Communication

IRC People working on the Swift project may be found in the #openstack-swift channel on
Freenode during working hours in their timezone. The channel is logged, so if you ask a question
when no one is around, you can check the log to see if its been answered: http://eavesdrop.
openstack.org/irclogs/%23openstack-swift/

weekly meeting This is a Swift team meeting. The discussion in this meeting is about all things related
to the Swift project:

• time: http://eavesdrop.openstack.org/#Swift_Team_Meeting

• agenda: https://wiki.openstack.org/wiki/Meetings/Swift

mailing list We use the openstack-discuss@lists.openstack.org mailing list for asynchronous discus-
sions or to communicate with other OpenStack teams. Use the prefix [swift] in your subject
line (its a high-volume list, so most people use email filters).

More information about the mailing list, including how to subscribe and read the archives, can be
found at: http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss

3.6.2 Contacting the Core Team

The swift-core team is an active group of contributors who are responsible for directing and maintaining
the Swift project. As a new contributor, your interaction with this group will be mostly through code
reviews, because only members of swift-core can approve a code change to be merged into the code
repository. But the swift-core team also spend time on IRC so feel free to drop in to ask questions or
just to meet us.

Note: Although your contribution will require reviews by members of swift-core, these arent the only
people whose reviews matter. Anyone with a gerrit account can post reviews, so you can ask other
developers you know to review your code and you can review theirs. (A good way to learn your way
around the codebase is to review other peoples patches.)

If youre thinking, Im new at this, how can I possibly provide a helpful review?, take a look at How to
Review Changes the OpenStack Way.

Or for more specifically in a Swift context read Review Guidelines

150 Chapter 3. Contributor Documentation

https://wiki.openstack.org/wiki/Swift/ideas
http://eavesdrop.openstack.org/irclogs/%23openstack-swift/
http://eavesdrop.openstack.org/irclogs/%23openstack-swift/
http://eavesdrop.openstack.org/#Swift_Team_Meeting
https://wiki.openstack.org/wiki/Meetings/Swift
mailto:openstack-discuss@lists.openstack.org
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss
https://docs.openstack.org/project-team-guide/review-the-openstack-way.html
https://docs.openstack.org/project-team-guide/review-the-openstack-way.html


Swift Documentation, Release 2.27.1.dev38

You can learn more about the role of core reviewers in the OpenStack governance documentation: https:
//docs.openstack.org/contributors/common/governance.html#core-reviewer

The membership list of swift-core is maintained in gerrit: https://review.opendev.org/#/admin/groups/
24,members

You can also find the members of the swift-core team at the Swift weekly meetings.

3.6.3 Getting Your Patch Merged

Understanding how reviewers review and what they look for will help getting your code merged. See
Swift Review Guidelines for how we review code.

Keep in mind that reviewers are also human; if something feels stalled, then come and poke us on IRC
or add it to our meeting agenda.

3.6.4 Project Team Lead Duties

All common PTL duties are enumerated in the PTL guide.

3.7 Review Guidelines

Effective code review is a skill like any other professional skill you develop with experience. Effective
code review requires trust. No one is perfect. Everyone makes mistakes. Trust builds over time.

This document will enumerate behaviors commonly observed and associated with competent reviews of
changes purposed to the Swift code base. No one is expected to follow these steps. Guidelines are not
rules, not all behaviors will be relevant in all situations.

Code review is collaboration, not judgement.

—Alistair Coles

3.7.1 Checkout the Change

You will need to have a copy of the change in an environment where you can freely edit and experiment
with the code in order to provide a non-superficial review. Superficial reviews are not terribly helpful.
Always try to be helpful. ;)

Check out the change so that you may begin.

Commonly, git review -d <change-id>

3.7. Review Guidelines 151

https://docs.openstack.org/contributors/common/governance.html#core-reviewer
https://docs.openstack.org/contributors/common/governance.html#core-reviewer
https://review.opendev.org/#/admin/groups/24,members
https://review.opendev.org/#/admin/groups/24,members
https://docs.openstack.org/project-team-guide/ptl.html


Swift Documentation, Release 2.27.1.dev38

3.7.2 Run it

Imagine that you submit a patch to Swift, and a reviewer starts to take a look at it. Your commit message
on the patch claims that it fixes a bug or adds a feature, but as soon as the reviewer downloads it locally
and tries to test it, a severe and obvious error shows up. Something like a syntax error or a missing
dependency.

Did you even run this? is the review comment all contributors dread.

Reviewers in particular need to be fearful merging changes that just dont work - or at least fail in
frequently common enough scenarios to be considered horribly broken. A comment in our review that
says roughly I ran this on my machine and observed description of behavior change is
supposed to achieve is the most powerful defense we have against the terrible scorn from our
fellow Swift developers and operators when we accidentally merge bad code.

If youre doing a fair amount of reviews - you will participate in merging a change that will break my
clusters - its cool - Ill do it to you at some point too (sorry about that). But when either of us go look at
the reviews to understand the process gap that allowed this to happen - it better not be just because we
were too lazy to check it out and run it before it got merged.

Or be warned, you may receive, the dreaded

Did you even run this?

Im sorry, I know its rough. ;)

3.7.3 Consider edge cases very seriously

Saying that should rarely happen is the same as saying that will happen

—Douglas Crockford

Scale is an amazingly abusive partner. If you contribute changes to Swift your code is running - in
production - at scale - and your bugs cannot hide. I wish on all of us that our bugs may be exceptionally
rare - meaning they only happen in extremely unlikely edge cases. For example, bad things that happen
only 1 out of every 10K times an op is performed will be discovered in minutes. Bad things that happen
only 1 out of every one billion times something happens will be observed - by multiple deployments -
over the course of a release. Bad things that happen 1/100 times some op is performed are considered
horribly broken. Tests must exhaustively exercise possible scenarios. Every system call and network
connection will raise an error and timeout - where will that Exception be caught?

3.7.4 Run the tests

Yes, I know Gerrit does this already. You can do it too. You might not need to re-run all the tests on your
machine - it depends on the change. But, if youre not sure which will be most useful - running all of them
best - unit - functional - probe. If you cant reliably get all tests passing in your development environment
you will not be able to do effective reviews. Whatever tests/suites you are able to exercise/validate on
your machine against your config you should mention in your review comments so that other reviewers
might choose to do other testing locally when they have the change checked out.

e.g.

I went ahead and ran probe/test_object_metadata_replication.py on my machine with both
sync_method = rsync and sync_method = ssync - that works for me - but I didnt try it with
object_post_as_copy = false

152 Chapter 3. Contributor Documentation



Swift Documentation, Release 2.27.1.dev38

3.7.5 Maintainable Code is Obvious

Style is an important component to review. The goal is maintainability.

However, keep in mind that generally style, readability and maintainability are orthogonal to the suit-
ability of a change for merge. A critical bug fix may be a well written pythonic masterpiece of style - or
it may be a hack-y ugly mess that will absolutely need to be cleaned up at some point - but it absolutely
should merge because: CRITICAL. BUG. FIX.

You should comment inline to praise code that is obvious. You should comment inline to highlight code
that you found to be obfuscated.

Unfortunately readability is often subjective. We should remember that its probably just our own per-
sonal preference. Rather than a comment that says You should use a list comprehension here - rewrite
the code as a list comprehension, run the specific tests that hit the relevant section to validate your code
is correct, then leave a comment that says:

I find this more readable:

diff with working tested code

If the author (or another reviewer) agrees - its possible the change will get updated to include that
improvement before it is merged; or it may happen in a follow-up change.

However, remember that style is non-material - it is useful to provide (via diff) suggestions to improve
maintainability as part of your review - but if the suggestion is functionally equivalent - it is by definition
optional.

3.7.6 Commit Messages

Read the commit message thoroughly before you begin the review.

Commit messages must answer the why and the what for - more so than the how or what it does.
Commonly this will take the form of a short description:

• What is broken - without this change

• What is impossible to do with Swift - without this change

• What is slower/worse/harder - without this change

If youre not able to discern why a change is being made or how it would be used - you may have to ask
for more details before you can successfully review it.

Commit messages need to have a high consistent quality. While many things under source control can
be fixed and improved in a follow-up change - commit messages are forever. Luckily its easy to fix
minor mistakes using the in-line edit feature in Gerrit! If you can avoid ever having to ask someone to
change a commit message you will find yourself an amazingly happier and more productive reviewer.

Also commit messages should follow the OpenStack Commit Message guidelines, including references
to relevant impact tags or bug numbers. You should hand out links to the OpenStack Commit Message
guidelines liberally via comments when fixing commit messages during review.

Here you go: GitCommitMessages

3.7. Review Guidelines 153

https://wiki.openstack.org/wiki/GitCommitMessages#Summary_of_Git_commit_message_structure


Swift Documentation, Release 2.27.1.dev38

3.7.7 New Tests

New tests should be added for all code changes. Historically you should expect good changes to have
a diff line count ratio of at least 2:1 tests to code. Even if a change has to fix a lot of existing tests, if a
change does not include any new tests it probably should not merge.

If a change includes a good ratio of test changes and adds new tests - you should say so in your review
comments.

If it does not - you should write some!

and offer them to the patch author as a diff indicating to them that something like these tests Im providing
as an example will need to be included in this change before it is suitable to merge. Bonus points if you
include suggestions for the author as to how they might improve or expand upon the tests stubs you
provide.

Be very careful about asking an author to add a test for a small change before attempting to do so
yourself. Its quite possible there is a lack of existing test infrastructure needed to develop a concise and
clear test - the author of a small change may not be the best person to introduce a large amount of new
test infrastructure. Also, most of the time remember its harder to write the test than the change - if the
author is unable to develop a test for their change on their own you may prevent a useful change from
being merged. At a minimum you should suggest a specific unit test that you think they should be able to
copy and modify to exercise the behavior in their change. If youre not sure if such a test exists - replace
their change with an Exception and run tests until you find one that blows up.

3.7.8 Documentation

Most changes should include documentation. New functions and code should have Docstrings. Tests
should obviate new or changed behaviors with descriptive and meaningful phrases. New features should
include changes to the documentation tree. New config options should be documented in example
configs. The commit message should document the change for the change log.

Always point out typos or grammar mistakes when you see them in review, but also consider that if you
were able to recognize the intent of the statement - documentation with typos may be easier to iterate
and improve on than nothing.

If a change does not have adequate documentation it may not be suitable to merge. If a change includes
incorrect or misleading documentation or is contrary to existing documentation is probably is not suitable
to merge.

Every change could have better documentation.

Like with tests, a patch isnt done until it has docs. Any patch that adds a new feature, changes behavior,
updates configs, or in any other way is different than previous behavior requires docs. manpages, sample
configs, docstrings, descriptive prose in the source tree, etc.

154 Chapter 3. Contributor Documentation



Swift Documentation, Release 2.27.1.dev38

3.7.9 Reviewers Write Code

Reviews have been shown to provide many benefits - one of which is shared ownership. After providing
a positive review you should understand how the change works. Doing this will probably require you to
play with the change.

You might functionally test the change in various scenarios. You may need to write a new unit test to
validate the change will degrade gracefully under failure. You might have to write a script to exercise
the change under some superficial load. You might have to break the change and validate the new tests
fail and provide useful errors. You might have to step through some critical section of the code in a
debugger to understand when all the possible branches are exercised in tests.

When youre done with your review an artifact of your effort will be observable in the piles of code and
scripts and diffs you wrote while reviewing. You should make sure to capture those artifacts in a paste
or gist and include them in your review comments so that others may reference them.

e.g.

When I broke the change like this:

diff

it blew up like this:

unit test failure

Its not uncommon that a review takes more time than writing a change - hopefully the author also spent
as much time as you did validating their change but thats not really in your control. When you provide a
positive review you should be sure you understand the change - even seemingly trivial changes will take
time to consider the ramifications.

3.7.10 Leave Comments

Leave. Lots. Of. Comments.

A popular web comic has stated that WTFs/Minute is the only valid measurement of code quality.

If something initially strikes you as questionable - you should jot down a note so you can loop back
around to it.

However, because of the distributed nature of authors and reviewers its imperative that you try your best
to answer your own questions as part of your review.

Do not say Does this blow up if it gets called when xyz - rather try and find a test that specifically covers
that condition and mention it in the comment so others can find it more quickly. Or if you can find no
such test, add one to demonstrate the failure, and include a diff in a comment. Hopefully you can say I
thought this would blow up, so I wrote this test, but it seems fine.

But if your initial reaction is I dont understand this or How does this even work? you should notate it
and explain whatever you were able to figure out in order to help subsequent reviewers more quickly
identify and grok the subtle or complex issues.

Because you will be leaving lots of comments - many of which are potentially not highlighting anything
specific - it is VERY important to leave a good summary. Your summary should include details of how
you reviewed the change. You may include what you liked most, or least.

If you are leaving a negative score ideally you should provide clear instructions on how the change could
be modified such that it would be suitable for merge - again diffs work best.

3.7. Review Guidelines 155

http://www.osnews.com/images/comics/wtfm.jpg


Swift Documentation, Release 2.27.1.dev38

3.7.11 Scoring

Scoring is subjective. Try to realize youre making a judgment call.

A positive score means you believe Swift would be undeniably better off with this code merged than it
would be going one more second without this change running in production immediately. It is indeed
high praise - you should be sure.

A negative score means that to the best of your abilities you have not been able to your satisfaction, to
justify the value of a change against the cost of its deficiencies and risks. It is a surprisingly difficult
chore to be confident about the value of unproven code or a not well understood use-case in an uncertain
world, and unfortunately all too easy with a thorough review to uncover our defects, and be reminded
of the risk of regression.

Reviewers must try very hard first and foremost to keep master stable.

If you can demonstrate a change has an incorrect behavior its almost without exception that the change
must be revised to fix the defect before merging rather than letting it in and having to also file a bug.

Every commit must be deployable to production.

Beyond that - almost any change might be merge-able depending on its merits! Here are some tips you
might be able to use to find more changes that should merge!

1. Fixing bugs is HUGELY valuable - the only thing which has a higher cost than the value of fixing a
bug - is adding a new bug - if its broken and this change makes it fixed (without breaking anything
else) you have a winner!

2. Features are INCREDIBLY difficult to justify their value against the cost of increased complexity,
lowered maintainability, risk of regression, or new defects. Try to focus on what is impossible
without the feature - when you make the impossible possible, things are better. Make things
better.

3. Purely test/doc changes, complex refactoring, or mechanical cleanups are quite nuanced because
theres less concrete objective value. Ive seen lots of these kind of changes get lost to the backlog.
Ive also seen some success where multiple authors have collaborated to push-over a change rather
than provide a review ultimately resulting in a quorum of three or more authors who all agree
there is a lot of value in the change - however subjective.

Because the bar is high - most reviews will end with a negative score.

However, for non-material grievances (nits) - you should feel confident in a positive review if the change
is otherwise complete correct and undeniably makes Swift better (not perfect, better). If you see some-
thing worth fixing you should point it out in review comments, but when applying a score consider if
it need be fixed before the change is suitable to merge vs. fixing it in a follow up change? Consider
if the change makes Swift so undeniably better and it was deployed in production without making any
additional changes would it still be correct and complete? Would releasing the change to production
without any additional follow up make it more difficult to maintain and continue to improve Swift?

Endeavor to leave a positive or negative score on every change you review.

Use your best judgment.

156 Chapter 3. Contributor Documentation



Swift Documentation, Release 2.27.1.dev38

3.7.12 A note on Swift Core Maintainers

Swift Core maintainers may provide positive reviews scores that look different from your reviews - a +2
instead of a +1.

But its exactly the same as your +1.

It means the change has been thoroughly and positively reviewed. The only reason its different is to
help identify changes which have received multiple competent and positive reviews. If you consistently
provide competent reviews you run a VERY high risk of being approached to have your future positive
review scores changed from a +1 to +2 in order to make it easier to identify changes which need to get
merged.

Ideally a review from a core maintainer should provide a clear path forward for the patch author. If you
dont know how to proceed respond to the reviewers comments on the change and ask for help. Wed love
to try and help.

3.7. Review Guidelines 157



Swift Documentation, Release 2.27.1.dev38

158 Chapter 3. Contributor Documentation



CHAPTER

FOUR

DEVELOPER DOCUMENTATION

4.1 Development Guidelines

4.1.1 Coding Guidelines

For the most part we try to follow PEP 8 guidelines which can be viewed here: http://www.python.org/
dev/peps/pep-0008/

4.1.2 Testing Guidelines

Swift has a comprehensive suite of tests and pep8 checks that are run on all submitted code, and it is
recommended that developers execute the tests themselves to catch regressions early. Developers are
also expected to keep the test suite up-to-date with any submitted code changes.

Swifts tests and pep8 checks can be executed in an isolated environment with tox: http://tox.testrun.org/

To execute the tests:

• Ensure pip and virtualenv are upgraded to satisfy the version requirements listed in the
OpenStack global requirements:

pip install pip -U
pip install virtualenv -U

• Install tox:

pip install tox

• Generate list of distribution packages to install for testing:

tox -e bindep

Now install these packages using your distribution package manager like apt-get, dnf, yum, or
zypper.

• Run tox from the root of the swift repo:

tox

Note: If you installed using cd ~/swift; sudo python setup.py develop, you may need

159

http://www.python.org/dev/peps/pep-0008/
http://www.python.org/dev/peps/pep-0008/
http://tox.testrun.org/
https://github.com/openstack/requirements/blob/master/global-requirements.txt


Swift Documentation, Release 2.27.1.dev38

to do cd ~/swift; sudo chown -R ${USER}:${USER} swift.egg-info prior to run-
ning tox.

• By default tox will run all of the unit test and pep8 checks listed in the tox.ini file envlist
option. A subset of the test environments can be specified on the tox command line or by setting
the TOXENV environment variable. For example, to run only the pep8 checks and python2.7 unit
tests use:

tox -e pep8,py27

or:

TOXENV=py27,pep8 tox

Note: As of tox version 2.0.0, most environment variables are not automatically passed to the test en-
vironment. Swifts tox.ini overrides this default behavior so that variable names matching SWIFT_*
and *_proxy will be passed, but you may need to run tox --recreate for this to take effect after
upgrading from tox <2.0.0.

Conversely, if you do not want those environment variables to be passed to the test environment then
you will need to unset them before calling tox.

Also, if you ever encounter DistributionNotFound, try to use tox --recreate or remove the .tox
directory to force tox to recreate the dependency list.

Swifts tests require having an XFS directory available in /tmp or in the TMPDIR environment variable.

Swifts functional tests may be executed against a SAIO (Swift All In One) or other running Swift cluster
using the command:

tox -e func

The endpoint and authorization credentials to be used by functional tests should be configured in the
test.conf file as described in the section Setting up scripts for running Swift.

The environment variable SWIFT_TEST_POLICY may be set to specify a particular storage policy
name that will be used for testing. When set, tests that would otherwise not specify a policy or choose
a random policy from those available will instead use the policy specified. Tests that use more than one
policy will include the specified policy in the set of policies used. The specified policy must be available
on the cluster under test.

For example, this command would run the functional tests using policy silver:

SWIFT_TEST_POLICY=silver tox -e func

To run a single functional test, use the --no-discover option together with a path to a specific test
method, for example:

tox -e func -- --no-discover test.functional.tests.TestFile.testCopy

160 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

In-process functional testing

If the test.conf file is not found then the functional test framework will instantiate a set of Swift
servers in the same process that executes the functional tests. This in-process test mode may also be
enabled (or disabled) by setting the environment variable SWIFT_TEST_IN_PROCESS to a true (or
false) value prior to executing tox -e func.

When using the in-process test mode some server configuration options may be set using environment
variables:

• the optional in-memory object server may be selected by setting the environment variable
SWIFT_TEST_IN_MEMORY_OBJ to a true value.

• encryption may be added to the proxy pipeline by setting the environment variable
SWIFT_TEST_IN_PROCESS_CONF_LOADER to encryption.

• a 2+1 EC policy may be installed as the default policy by setting the environment variable
SWIFT_TEST_IN_PROCESS_CONF_LOADER to ec.

• logging to stdout may be enabled by setting SWIFT_TEST_DEBUG_LOGS.

For example, this command would run the in-process mode functional tests with encryption enabled in
the proxy-server:

SWIFT_TEST_IN_PROCESS=1 SWIFT_TEST_IN_PROCESS_CONF_LOADER=encryption \
tox -e func

This particular example may also be run using the func-encryption tox environment:

tox -e func-encryption

The tox.ini file also specifies test environments for running other in-process functional test configu-
rations, e.g.:

tox -e func-ec

To debug the functional tests, use the in-process test mode and pass the --pdb flag to tox:

SWIFT_TEST_IN_PROCESS=1 tox -e func -- --pdb \
test.functional.tests.TestFile.testCopy

The in-process test mode searches for proxy-server.conf and swift.conf config files from
which it copies config options and overrides some options to suit in process testing. The search will first
look for config files in a <custom_conf_source_dir> that may optionally be specified using the
environment variable:

SWIFT_TEST_IN_PROCESS_CONF_DIR=<custom_conf_source_dir>

If SWIFT_TEST_IN_PROCESS_CONF_DIR is not set, or if a config file is not found in
<custom_conf_source_dir>, the search will then look in the etc/ directory in the source
tree. If the config file is still not found, the corresponding sample config file from etc/ is used (e.g.
proxy-server.conf-sample or swift.conf-sample).

When using the in-process test mode SWIFT_TEST_POLICY may be set to specify a particular storage
policy name that will be used for testing as described above. When set, this policy must exist in the
swift.conf file and its corresponding ring file must exist in <custom_conf_source_dir> (if
specified) or etc/. The test setup will set the specified policy to be the default and use its ring file

4.1. Development Guidelines 161



Swift Documentation, Release 2.27.1.dev38

properties for constructing the test object ring. This allows in-process testing to be run against various
policy types and ring files.

For example, this command would run the in-process mode functional tests using config files found in
$HOME/my_tests and policy silver:

SWIFT_TEST_IN_PROCESS=1 SWIFT_TEST_IN_PROCESS_CONF_DIR=$HOME/my_tests \
SWIFT_TEST_POLICY=silver tox -e func

4.1.3 Coding Style

Swift uses flake8 with the OpenStack hacking module to enforce coding style.

Install flake8 and hacking with pip or by the packages of your Operating System.

It is advised to integrate flake8+hacking with your editor to get it automated and not get caught by
Jenkins.

For example for Vim the syntastic plugin can do this for you.

4.1.4 Documentation Guidelines

The documentation in docstrings should follow the PEP 257 conventions (as mentioned in the PEP 8
guidelines).

More specifically:

1. Triple quotes should be used for all docstrings.

2. If the docstring is simple and fits on one line, then just use one line.

3. For docstrings that take multiple lines, there should be a newline after the opening quotes, and
before the closing quotes.

4. Sphinx is used to build documentation, so use the restructured text markup to designate pa-
rameters, return values, etc. Documentation on the sphinx specific markup can be found here:
http://sphinx.pocoo.org/markup/index.html

To build documentation run:

pip install -r requirements.txt -r doc/requirements.txt
sphinx-build -W -b html doc/source doc/build/html

and then browse to doc/build/html/index.html. These docs are auto-generated after every commit and
available online at https://docs.openstack.org/swift/latest/.

162 Chapter 4. Developer Documentation

https://pypi.org/project/hacking
https://github.com/scrooloose/syntastic
http://sphinx.pocoo.org/markup/index.html
https://docs.openstack.org/swift/latest/


Swift Documentation, Release 2.27.1.dev38

4.1.5 Manpages

For sanity check of your change in manpage, use this command in the root of your Swift repo:

./.manpages

4.1.6 License and Copyright

You can have the following copyright and license statement at the top of each source file. Copyright
assignment is optional.

New files should contain the current year. Substantial updates can have another year added, and date
ranges are not needed.:

# Copyright (c) 2013 OpenStack Foundation.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied.
# See the License for the specific language governing permissions and
# limitations under the License.

4.2 SAIO (Swift All In One)

Note: This guide assumes an existing Linux server. A physical machine or VM will work. We recom-
mend configuring it with at least 2GB of memory and 40GB of storage space. We recommend using a
VM in order to isolate Swift and its dependencies from other projects you may be working on.

4.2.1 Instructions for setting up a development VM

This section documents setting up a virtual machine for doing Swift development. The virtual machine
will emulate running a four node Swift cluster. To begin:

• Get a Linux system server image, this guide will cover:

– Ubuntu 14.04, 16.04 LTS

– CentOS 7

– Fedora

– OpenSuse

• Create guest virtual machine from the image.

4.2. SAIO (Swift All In One) 163



Swift Documentation, Release 2.27.1.dev38

4.2.2 Whats in a <your-user-name>

Much of the configuration described in this guide requires escalated administrator (root) privileges;
however, we assume that administrator logs in as an unprivileged user and can use sudo to run privileged
commands.

Swift processes also run under a separate user and group, set by configuration option, and referenced
as <your-user-name>:<your-group-name>. The default user is swift, which may not ex-
ist on your system. These instructions are intended to allow a developer to use his/her username for
<your-user-name>:<your-group-name>.

Note: For OpenSuse users, a users primary group is users, so you have 2 options:

• Change ${USER}:${USER} to ${USER}:users in all references of this guide; or

• Create a group for your username and add yourself to it:

sudo groupadd ${USER} && sudo gpasswd -a ${USER} ${USER} && newgrp $
↪→{USER}

4.2.3 Installing dependencies

• On apt based systems:

sudo apt-get update
sudo apt-get install curl gcc memcached rsync sqlite3 xfsprogs \

git-core libffi-dev python-setuptools \
liberasurecode-dev libssl-dev

sudo apt-get install python-coverage python-dev python-nose \
python-xattr python-eventlet \
python-greenlet python-pastedeploy \
python-netifaces python-pip python-dnspython \
python-mock

• On CentOS (requires additional repositories):

sudo yum update
sudo yum install epel-release
sudo yum-config-manager --enable epel extras
sudo yum install centos-release-openstack-train
sudo yum install curl gcc memcached rsync sqlite xfsprogs git-core \

libffi-devel xinetd liberasurecode-devel \
openssl-devel python-setuptools \
python-coverage python-devel python-nose \
pyxattr python-eventlet \
python-greenlet python-paste-deploy \
python-netifaces python-pip python-dns \
python-mock

• On Fedora:

sudo dnf update
sudo dnf install curl gcc memcached rsync-daemon sqlite xfsprogs git-
↪→core \

(continues on next page)

164 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

libffi-devel xinetd liberasurecode-devel \
openssl-devel python-setuptools \
python-coverage python-devel python-nose \
pyxattr python-eventlet \
python-greenlet python-paste-deploy \
python-netifaces python-pip python-dns \
python-mock

• On OpenSuse:

sudo zypper install curl gcc memcached rsync sqlite3 xfsprogs git-
↪→core \

libffi-devel liberasurecode-devel python2-
↪→setuptools \

libopenssl-devel
sudo zypper install python2-coverage python-devel python2-nose \

python-xattr python-eventlet python2-greenlet \
python2-netifaces python2-pip python2-dnspython \
python2-mock

Note: This installs necessary system dependencies and most of the python dependencies. Later in the
process setuptools/distribute or pip will install and/or upgrade packages.

4.2.4 Configuring storage

Swift requires some space on XFS filesystems to store data and run tests.

Choose either Using a partition for storage or Using a loopback device for storage.

Using a partition for storage

If you are going to use a separate partition for Swift data, be sure to add another device when creating
the VM, and follow these instructions:

Note: The disk does not have to be /dev/sdb1 (for example, it could be /dev/vdb1) however the
mount point should still be /mnt/sdb1.

1. Set up a single partition on the device (this will wipe the drive):

sudo parted /dev/sdb mklabel msdos mkpart p xfs 0% 100%

2. Create an XFS file system on the partition:

sudo mkfs.xfs /dev/sdb1

3. Find the UUID of the new partition:

sudo blkid

4.2. SAIO (Swift All In One) 165



Swift Documentation, Release 2.27.1.dev38

4. Edit /etc/fstab and add:

UUID="<UUID-from-output-above>" /mnt/sdb1 xfs noatime 0 0

5. Create the Swift data mount point and test that mounting works:

sudo mkdir /mnt/sdb1
sudo mount -a

6. Next, skip to Common Post-Device Setup.

Using a loopback device for storage

If you want to use a loopback device instead of another partition, follow these instructions:

1. Create the file for the loopback device:

sudo mkdir -p /srv
sudo truncate -s 1GB /srv/swift-disk
sudo mkfs.xfs /srv/swift-disk

Modify size specified in the truncate command to make a larger or smaller partition as needed.

2. Edit /etc/fstab and add:

/srv/swift-disk /mnt/sdb1 xfs loop,noatime 0 0

3. Create the Swift data mount point and test that mounting works:

sudo mkdir /mnt/sdb1
sudo mount -a

Common Post-Device Setup

1. Create the individualized data links:

sudo mkdir /mnt/sdb1/1 /mnt/sdb1/2 /mnt/sdb1/3 /mnt/sdb1/4
sudo chown ${USER}:${USER} /mnt/sdb1/*
for x in {1..4}; do sudo ln -s /mnt/sdb1/$x /srv/$x; done
sudo mkdir -p /srv/1/node/sdb1 /srv/1/node/sdb5 \

/srv/2/node/sdb2 /srv/2/node/sdb6 \
/srv/3/node/sdb3 /srv/3/node/sdb7 \
/srv/4/node/sdb4 /srv/4/node/sdb8

sudo mkdir -p /var/run/swift
sudo mkdir -p /var/cache/swift /var/cache/swift2 \

/var/cache/swift3 /var/cache/swift4
sudo chown -R ${USER}:${USER} /var/run/swift
sudo chown -R ${USER}:${USER} /var/cache/swift*
# **Make sure to include the trailing slash after /srv/$x/**
for x in {1..4}; do sudo chown -R ${USER}:${USER} /srv/$x/; done

Note: We create the mount points and mount the loopback file under /mnt/sdb1. This file will
contain one directory per simulated Swift node, each owned by the current Swift user.

166 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

We then create symlinks to these directories under /srv. If the disk sdb or loopback file is un-
mounted, files will not be written under /srv/*, because the symbolic link destination /mnt/sdb1/*
will not exist. This prevents disk sync operations from writing to the root partition in the event a
drive is unmounted.

2. Restore appropriate permissions on reboot.

• On traditional Linux systems, add the following lines to /etc/rc.local (before the
exit 0):

mkdir -p /var/cache/swift /var/cache/swift2 /var/cache/swift3 /
↪→var/cache/swift4
chown <your-user-name>:<your-group-name> /var/cache/swift*
mkdir -p /var/run/swift
chown <your-user-name>:<your-group-name> /var/run/swift

• On CentOS and Fedora we can use systemd (rc.local is deprecated):

cat << EOF |sudo tee /etc/tmpfiles.d/swift.conf
d /var/cache/swift 0755 ${USER} ${USER} - -
d /var/cache/swift2 0755 ${USER} ${USER} - -
d /var/cache/swift3 0755 ${USER} ${USER} - -
d /var/cache/swift4 0755 ${USER} ${USER} - -
d /var/run/swift 0755 ${USER} ${USER} - -
EOF

• On OpenSuse place the lines in /etc/init.d/boot.local.

Note: On some systems the rc file might need to be an executable shell script.

Creating an XFS tmp dir

Tests require having a directory available on an XFS filesystem. By default the tests use /tmp, however
this can be pointed elsewhere with the TMPDIR environment variable.

Note: If your root filesystem is XFS, you can skip this section if /tmp is just a directory and not a
mounted tmpfs. Or you could simply point to any existing directory owned by your user by specifying
it with the TMPDIR environment variable.

If your root filesystem is not XFS, you should create a loopback device, format it with XFS and mount
it. You can mount it over /tmp or to another location and specify it with the TMPDIR environment
variable.

• Create the file for the tmp loopback device:

sudo mkdir -p /srv
sudo truncate -s 1GB /srv/swift-tmp # create 1GB file for XFS in /srv
sudo mkfs.xfs /srv/swift-tmp

• To mount the tmp loopback device at /tmp, do the following:

4.2. SAIO (Swift All In One) 167



Swift Documentation, Release 2.27.1.dev38

sudo mount -o loop,noatime /srv/swift-tmp /tmp
sudo chmod -R 1777 /tmp

– To persist this, edit and add the following to /etc/fstab:

/srv/swift-tmp /tmp xfs rw,noatime,attr2,inode64,noquota 0 0

• To mount the tmp loopback at an alternate location (for example, /mnt/tmp), do the following:

sudo mkdir -p /mnt/tmp
sudo mount -o loop,noatime /srv/swift-tmp /mnt/tmp
sudo chown ${USER}:${USER} /mnt/tmp

– To persist this, edit and add the following to /etc/fstab:

/srv/swift-tmp /mnt/tmp xfs rw,noatime,attr2,inode64,noquota 0 0

– Set your TMPDIR environment dir so that Swift looks in the right location:

export TMPDIR=/mnt/tmp
echo "export TMPDIR=/mnt/tmp" >> $HOME/.bashrc

4.2.5 Getting the code

1. Check out the python-swiftclient repo:

cd $HOME; git clone https://github.com/openstack/python-swiftclient.
↪→git

2. Build a development installation of python-swiftclient:

cd $HOME/python-swiftclient; sudo python setup.py develop; cd -

Ubuntu 12.04 users need to install python-swiftclients dependencies before the installation of
python-swiftclient. This is due to a bug in an older version of setup tools:

cd $HOME/python-swiftclient; sudo pip install -r requirements.txt;
↪→sudo python setup.py develop; cd -

3. Check out the Swift repo:

git clone https://github.com/openstack/swift.git

4. Build a development installation of Swift:

cd $HOME/swift; sudo pip install --no-binary cryptography -r
↪→requirements.txt; sudo python setup.py develop; cd -

Note: Due to a difference in how libssl.so is named in OpenSuse vs. other Linux
distros the wheel/binary wont work; thus we use --no-binary cryptography to build
cryptography locally.

Fedora users might have to perform the following if development installation of Swift fails:

168 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

sudo pip install -U xattr

5. Install Swifts test dependencies:

cd $HOME/swift; sudo pip install -r test-requirements.txt

4.2.6 Setting up rsync

1. Create /etc/rsyncd.conf:

sudo cp $HOME/swift/doc/saio/rsyncd.conf /etc/
sudo sed -i "s/<your-user-name>/${USER}/" /etc/rsyncd.conf

Here is the default rsyncd.conf file contents maintained in the repo that is copied and fixed
up above:

uid = <your-user-name>
gid = <your-user-name>
log file = /var/log/rsyncd.log
pid file = /var/run/rsyncd.pid
address = 0.0.0.0

[account6212]
max connections = 25
path = /srv/1/node/
read only = false
lock file = /var/lock/account6212.lock

[account6222]
max connections = 25
path = /srv/2/node/
read only = false
lock file = /var/lock/account6222.lock

[account6232]
max connections = 25
path = /srv/3/node/
read only = false
lock file = /var/lock/account6232.lock

[account6242]
max connections = 25
path = /srv/4/node/
read only = false
lock file = /var/lock/account6242.lock

[container6211]
max connections = 25
path = /srv/1/node/
read only = false
lock file = /var/lock/container6211.lock

[container6221]
max connections = 25

(continues on next page)

4.2. SAIO (Swift All In One) 169



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

path = /srv/2/node/
read only = false
lock file = /var/lock/container6221.lock

[container6231]
max connections = 25
path = /srv/3/node/
read only = false
lock file = /var/lock/container6231.lock

[container6241]
max connections = 25
path = /srv/4/node/
read only = false
lock file = /var/lock/container6241.lock

[object6210]
max connections = 25
path = /srv/1/node/
read only = false
lock file = /var/lock/object6210.lock

[object6220]
max connections = 25
path = /srv/2/node/
read only = false
lock file = /var/lock/object6220.lock

[object6230]
max connections = 25
path = /srv/3/node/
read only = false
lock file = /var/lock/object6230.lock

[object6240]
max connections = 25
path = /srv/4/node/
read only = false
lock file = /var/lock/object6240.lock

2. Enable rsync daemon

• On Ubuntu, edit the following line in /etc/default/rsync:

RSYNC_ENABLE=true

Note: You might have to create the file to perform the edits.

• On CentOS and Fedora, enable the systemd service:

sudo systemctl enable rsyncd

• On OpenSuse, nothing needs to happen here.

3. On platforms with SELinux in Enforcing mode, either set to Permissive:

170 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

sudo setenforce Permissive
sudo sed -i 's/^SELINUX=.*/SELINUX=permissive/g' /etc/selinux/config

Or just allow rsync full access:

sudo setsebool -P rsync_full_access 1

4. Start the rsync daemon

• On Ubuntu 14.04, run:

sudo service rsync restart

• On Ubuntu 16.04, run:

sudo systemctl enable rsync
sudo systemctl start rsync

• On CentOS, Fedora and OpenSuse, run:

sudo systemctl start rsyncd

• On other xinetd based systems simply run:

sudo service xinetd restart

5. Verify rsync is accepting connections for all servers:

rsync rsync://pub@localhost/

You should see the following output from the above command:

account6212
account6222
account6232
account6242
container6211
container6221
container6231
container6241
object6210
object6220
object6230
object6240

4.2.7 Starting memcached

On non-Ubuntu distros you need to ensure memcached is running:

sudo service memcached start
sudo chkconfig memcached on

or:

4.2. SAIO (Swift All In One) 171



Swift Documentation, Release 2.27.1.dev38

sudo systemctl enable memcached
sudo systemctl start memcached

The tempauth middleware stores tokens in memcached. If memcached is not running, tokens cannot be
validated, and accessing Swift becomes impossible.

4.2.8 Optional: Setting up rsyslog for individual logging

Fedora and OpenSuse may not have rsyslog installed, in which case you will need to install it if you
want to use individual logging.

1. Install rsyslogd

• On Fedora:

sudo dnf install rsyslog

• On OpenSuse:

sudo zypper install rsyslog

2. Install the Swift rsyslogd configuration:

sudo cp $HOME/swift/doc/saio/rsyslog.d/10-swift.conf /etc/rsyslog.d/

Be sure to review that conf file to determine if you want all the logs in one file vs. all the logs
separated out, and if you want hourly logs for stats processing. For convenience, we provide its
default contents below:

# Uncomment the following to have a log containing all logs together
#local1,local2,local3,local4,local5.* /var/log/swift/all.log

# Uncomment the following to have hourly proxy logs for stats
↪→processing
#$template HourlyProxyLog,"/var/log/swift/hourly/%$YEAR%%$MONTH%%$DAY%
↪→%$HOUR%"
#local1.*;local1.!notice ?HourlyProxyLog

local1.*;local1.!notice /var/log/swift/proxy.log
local1.notice /var/log/swift/proxy.error
local1.* ~

local2.*;local2.!notice /var/log/swift/storage1.log
local2.notice /var/log/swift/storage1.error
local2.* ~

local3.*;local3.!notice /var/log/swift/storage2.log
local3.notice /var/log/swift/storage2.error
local3.* ~

local4.*;local4.!notice /var/log/swift/storage3.log
local4.notice /var/log/swift/storage3.error
local4.* ~

local5.*;local5.!notice /var/log/swift/storage4.log

(continues on next page)

172 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

local5.notice /var/log/swift/storage4.error
local5.* ~

local6.*;local6.!notice /var/log/swift/expirer.log
local6.notice /var/log/swift/expirer.error
local6.* ~

3. Edit /etc/rsyslog.conf and make the following change (usually in the GLOBAL DIREC-
TIVES section):

$PrivDropToGroup adm

4. If using hourly logs (see above) perform:

sudo mkdir -p /var/log/swift/hourly

Otherwise perform:

sudo mkdir -p /var/log/swift

5. Setup the logging directory and start syslog:

• On Ubuntu:

sudo chown -R syslog.adm /var/log/swift
sudo chmod -R g+w /var/log/swift
sudo service rsyslog restart

• On CentOS, Fedora and OpenSuse:

sudo chown -R root:adm /var/log/swift
sudo chmod -R g+w /var/log/swift
sudo systemctl restart rsyslog
sudo systemctl enable rsyslog

4.2.9 Configuring each node

After performing the following steps, be sure to verify that Swift has access to resulting configuration
files (sample configuration files are provided with all defaults in line-by-line comments).

1. Optionally remove an existing swift directory:

sudo rm -rf /etc/swift

2. Populate the /etc/swift directory itself:

cd $HOME/swift/doc; sudo cp -r saio/swift /etc/swift; cd -
sudo chown -R ${USER}:${USER} /etc/swift

3. Update <your-user-name> references in the Swift config files:

find /etc/swift/ -name \*.conf | xargs sudo sed -i "s/<your-user-name>
↪→/${USER}/"

4.2. SAIO (Swift All In One) 173



Swift Documentation, Release 2.27.1.dev38

The contents of the configuration files provided by executing the above commands are as follows:

1. /etc/swift/swift.conf

[swift-hash]
# random unique strings that can never change (DO NOT LOSE)
# Use only printable chars (python -c "import string; print(string.
↪→printable)")
swift_hash_path_prefix = changeme
swift_hash_path_suffix = changeme

[storage-policy:0]
name = gold
policy_type = replication
default = yes

[storage-policy:1]
name = silver
policy_type = replication

[storage-policy:2]
name = ec42
policy_type = erasure_coding
ec_type = liberasurecode_rs_vand
ec_num_data_fragments = 4
ec_num_parity_fragments = 2

2. /etc/swift/proxy-server.conf

[DEFAULT]
bind_ip = 127.0.0.1
bind_port = 8080
workers = 1
user = <your-user-name>
log_facility = LOG_LOCAL1
eventlet_debug = true

[pipeline:main]
# Yes, proxy-logging appears twice. This is so that
# middleware-originated requests get logged too.
pipeline = catch_errors gatekeeper healthcheck proxy-logging cache
↪→etag-quoter listing_formats bulk tempurl ratelimit crossdomain
↪→container_sync tempauth staticweb copy container-quotas account-
↪→quotas slo dlo versioned_writes symlink proxy-logging proxy-server

[filter:catch_errors]
use = egg:swift#catch_errors

[filter:healthcheck]
use = egg:swift#healthcheck

[filter:proxy-logging]
use = egg:swift#proxy_logging

[filter:bulk]
use = egg:swift#bulk

(continues on next page)

174 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

[filter:ratelimit]
use = egg:swift#ratelimit

[filter:crossdomain]
use = egg:swift#crossdomain

[filter:dlo]
use = egg:swift#dlo

[filter:slo]
use = egg:swift#slo
allow_async_delete = True

[filter:container_sync]
use = egg:swift#container_sync
current = //saio/saio_endpoint

[filter:tempurl]
use = egg:swift#tempurl

[filter:tempauth]
use = egg:swift#tempauth
user_admin_admin = admin .admin .reseller_admin
user_test_tester = testing .admin
user_test_tester2 = testing2 .admin
user_test_tester3 = testing3
user_test2_tester2 = testing2 .admin

[filter:staticweb]
use = egg:swift#staticweb

[filter:account-quotas]
use = egg:swift#account_quotas

[filter:container-quotas]
use = egg:swift#container_quotas

[filter:cache]
use = egg:swift#memcache

[filter:etag-quoter]
use = egg:swift#etag_quoter
enable_by_default = false

[filter:gatekeeper]
use = egg:swift#gatekeeper

[filter:versioned_writes]
use = egg:swift#versioned_writes
allow_versioned_writes = true
allow_object_versioning = true

[filter:copy]
use = egg:swift#copy

[filter:listing_formats]
(continues on next page)

4.2. SAIO (Swift All In One) 175



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

use = egg:swift#listing_formats

[filter:domain_remap]
use = egg:swift#domain_remap

[filter:symlink]
use = egg:swift#symlink

# To enable, add the s3api middleware to the pipeline before tempauth
[filter:s3api]
use = egg:swift#s3api
s3_acl = yes
check_bucket_owner = yes
cors_preflight_allow_origin = *

# Example to create root secret: `openssl rand -base64 32`
[filter:keymaster]
use = egg:swift#keymaster
encryption_root_secret = changeme/changeme/changeme/changeme/change/=

# To enable use of encryption add both middlewares to pipeline,
↪→example:
# <other middleware> keymaster encryption proxy-logging proxy-server
[filter:encryption]
use = egg:swift#encryption

[app:proxy-server]
use = egg:swift#proxy
allow_account_management = true
account_autocreate = true

3. /etc/swift/object-expirer.conf

[DEFAULT]
# swift_dir = /etc/swift
user = <your-user-name>
# You can specify default log routing here if you want:
log_name = object-expirer
log_facility = LOG_LOCAL6
log_level = INFO
#log_address = /dev/log
#
# comma separated list of functions to call to setup custom log
↪→handlers.
# functions get passed: conf, name, log_to_console, log_route, fmt,
↪→logger,
# adapted_logger
# log_custom_handlers =
#
# If set, log_udp_host will override log_address
# log_udp_host =
# log_udp_port = 514
#
# You can enable StatsD logging here:
# log_statsd_host =
# log_statsd_port = 8125

(continues on next page)

176 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

# log_statsd_default_sample_rate = 1.0
# log_statsd_sample_rate_factor = 1.0
# log_statsd_metric_prefix =

[object-expirer]
interval = 300
# report_interval = 300
# concurrency is the level of concurrency to use to do the work, this
↪→value
# must be set to at least 1
# concurrency = 1
# processes is how many parts to divide the work into, one part per
↪→process
# that will be doing the work
# processes set 0 means that a single process will be doing all the
↪→work
# processes can also be specified on the command line and will
↪→override the
# config value
# processes = 0
# process is which of the parts a particular process will work on
# process can also be specified on the command line and will override
↪→the config
# value
# process is "zero based", if you want to use 3 processes, you should
↪→run
# processes with process set to 0, 1, and 2
# process = 0

[pipeline:main]
pipeline = catch_errors cache proxy-server

[app:proxy-server]
use = egg:swift#proxy
# See proxy-server.conf-sample for options

[filter:cache]
use = egg:swift#memcache
# See proxy-server.conf-sample for options

[filter:catch_errors]
use = egg:swift#catch_errors
# See proxy-server.conf-sample for options

4. /etc/swift/container-reconciler.conf

[DEFAULT]
# swift_dir = /etc/swift
user = <your-user-name>
# You can specify default log routing here if you want:
# log_name = swift
# log_facility = LOG_LOCAL0
# log_level = INFO
# log_address = /dev/log
#
# comma separated list of functions to call to setup custom log
↪→handlers. (continues on next page)

4.2. SAIO (Swift All In One) 177



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

# functions get passed: conf, name, log_to_console, log_route, fmt,
↪→logger,
# adapted_logger
# log_custom_handlers =
#
# If set, log_udp_host will override log_address
# log_udp_host =
# log_udp_port = 514
#
# You can enable StatsD logging here:
# log_statsd_host =
# log_statsd_port = 8125
# log_statsd_default_sample_rate = 1.0
# log_statsd_sample_rate_factor = 1.0
# log_statsd_metric_prefix =

[container-reconciler]
# reclaim_age = 604800
# interval = 300
# request_tries = 3

[pipeline:main]
pipeline = catch_errors proxy-logging cache proxy-server

[app:proxy-server]
use = egg:swift#proxy
# See proxy-server.conf-sample for options

[filter:cache]
use = egg:swift#memcache
# See proxy-server.conf-sample for options

[filter:proxy-logging]
use = egg:swift#proxy_logging

[filter:catch_errors]
use = egg:swift#catch_errors
# See proxy-server.conf-sample for options

5. /etc/swift/container-sync-realms.conf

[saio]
key = changeme
key2 = changeme
cluster_saio_endpoint = http://127.0.0.1:8080/v1/

6. /etc/swift/account-server/1.conf

[DEFAULT]
devices = /srv/1/node
mount_check = false
disable_fallocate = true
bind_ip = 127.0.0.1
bind_port = 6212
workers = 1
user = <your-user-name>

(continues on next page)

178 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

log_facility = LOG_LOCAL2
recon_cache_path = /var/cache/swift
eventlet_debug = true

[pipeline:main]
pipeline = healthcheck recon account-server

[app:account-server]
use = egg:swift#account

[filter:recon]
use = egg:swift#recon

[filter:healthcheck]
use = egg:swift#healthcheck

[account-replicator]
rsync_module = {replication_ip}::account{replication_port}

[account-auditor]

[account-reaper]

7. /etc/swift/container-server/1.conf

[DEFAULT]
devices = /srv/1/node
mount_check = false
disable_fallocate = true
bind_ip = 127.0.0.1
bind_port = 6211
workers = 1
user = <your-user-name>
log_facility = LOG_LOCAL2
recon_cache_path = /var/cache/swift
eventlet_debug = true

[pipeline:main]
pipeline = healthcheck recon container-server

[app:container-server]
use = egg:swift#container

[filter:recon]
use = egg:swift#recon

[filter:healthcheck]
use = egg:swift#healthcheck

[container-replicator]
rsync_module = {replication_ip}::container{replication_port}

[container-updater]

[container-auditor]

(continues on next page)

4.2. SAIO (Swift All In One) 179



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

[container-sync]

[container-sharder]
auto_shard = true
rsync_module = {replication_ip}::container{replication_port}
# This is intentionally much smaller than the default of 1,000,000 so
↪→tests
# can run in a reasonable amount of time
shard_container_threshold = 100
# The probe tests make explicit assumptions about the batch sizes
shard_scanner_batch_size = 10
cleave_batch_size = 2

8. /etc/swift/object-server/1.conf

[DEFAULT]
devices = /srv/1/node
mount_check = false
disable_fallocate = true
bind_ip = 127.0.0.1
bind_port = 6210
workers = 1
user = <your-user-name>
log_facility = LOG_LOCAL2
recon_cache_path = /var/cache/swift
eventlet_debug = true

[pipeline:main]
pipeline = healthcheck recon object-server

[app:object-server]
use = egg:swift#object

[filter:recon]
use = egg:swift#recon

[filter:healthcheck]
use = egg:swift#healthcheck

[object-replicator]
rsync_module = {replication_ip}::object{replication_port}

[object-reconstructor]

[object-updater]

[object-auditor]

[object-relinker]

9. /etc/swift/account-server/2.conf

[DEFAULT]
devices = /srv/2/node
mount_check = false
disable_fallocate = true

(continues on next page)

180 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

bind_ip = 127.0.0.2
bind_port = 6222
workers = 1
user = <your-user-name>
log_facility = LOG_LOCAL3
recon_cache_path = /var/cache/swift2
eventlet_debug = true

[pipeline:main]
pipeline = healthcheck recon account-server

[app:account-server]
use = egg:swift#account

[filter:recon]
use = egg:swift#recon

[filter:healthcheck]
use = egg:swift#healthcheck

[account-replicator]
rsync_module = {replication_ip}::account{replication_port}

[account-auditor]

[account-reaper]

10. /etc/swift/container-server/2.conf

[DEFAULT]
devices = /srv/2/node
mount_check = false
disable_fallocate = true
bind_ip = 127.0.0.2
bind_port = 6221
workers = 1
user = <your-user-name>
log_facility = LOG_LOCAL3
recon_cache_path = /var/cache/swift2
eventlet_debug = true

[pipeline:main]
pipeline = healthcheck recon container-server

[app:container-server]
use = egg:swift#container

[filter:recon]
use = egg:swift#recon

[filter:healthcheck]
use = egg:swift#healthcheck

[container-replicator]
rsync_module = {replication_ip}::container{replication_port}

(continues on next page)

4.2. SAIO (Swift All In One) 181



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

[container-updater]

[container-auditor]

[container-sync]

[container-sharder]
auto_shard = true
rsync_module = {replication_ip}::container{replication_port}
# This is intentionally much smaller than the default of 1,000,000 so
↪→tests
# can run in a reasonable amount of time
shard_container_threshold = 100
# The probe tests make explicit assumptions about the batch sizes
shard_scanner_batch_size = 10
cleave_batch_size = 2

11. /etc/swift/object-server/2.conf

[DEFAULT]
devices = /srv/2/node
mount_check = false
disable_fallocate = true
bind_ip = 127.0.0.2
bind_port = 6220
workers = 1
user = <your-user-name>
log_facility = LOG_LOCAL3
recon_cache_path = /var/cache/swift2
eventlet_debug = true

[pipeline:main]
pipeline = healthcheck recon object-server

[app:object-server]
use = egg:swift#object

[filter:recon]
use = egg:swift#recon

[filter:healthcheck]
use = egg:swift#healthcheck

[object-replicator]
rsync_module = {replication_ip}::object{replication_port}

[object-reconstructor]

[object-updater]

[object-auditor]

[object-relinker]

12. /etc/swift/account-server/3.conf

182 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

[DEFAULT]
devices = /srv/3/node
mount_check = false
disable_fallocate = true
bind_ip = 127.0.0.3
bind_port = 6232
workers = 1
user = <your-user-name>
log_facility = LOG_LOCAL4
recon_cache_path = /var/cache/swift3
eventlet_debug = true

[pipeline:main]
pipeline = healthcheck recon account-server

[app:account-server]
use = egg:swift#account

[filter:recon]
use = egg:swift#recon

[filter:healthcheck]
use = egg:swift#healthcheck

[account-replicator]
rsync_module = {replication_ip}::account{replication_port}

[account-auditor]

[account-reaper]

13. /etc/swift/container-server/3.conf

[DEFAULT]
devices = /srv/3/node
mount_check = false
disable_fallocate = true
bind_ip = 127.0.0.3
bind_port = 6231
workers = 1
user = <your-user-name>
log_facility = LOG_LOCAL4
recon_cache_path = /var/cache/swift3
eventlet_debug = true

[pipeline:main]
pipeline = healthcheck recon container-server

[app:container-server]
use = egg:swift#container

[filter:recon]
use = egg:swift#recon

[filter:healthcheck]
use = egg:swift#healthcheck

(continues on next page)

4.2. SAIO (Swift All In One) 183



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

[container-replicator]
rsync_module = {replication_ip}::container{replication_port}

[container-updater]

[container-auditor]

[container-sync]

[container-sharder]
auto_shard = true
rsync_module = {replication_ip}::container{replication_port}
# This is intentionally much smaller than the default of 1,000,000 so
↪→tests
# can run in a reasonable amount of time
shard_container_threshold = 100
# The probe tests make explicit assumptions about the batch sizes
shard_scanner_batch_size = 10
cleave_batch_size = 2

14. /etc/swift/object-server/3.conf

[DEFAULT]
devices = /srv/3/node
mount_check = false
disable_fallocate = true
bind_ip = 127.0.0.3
bind_port = 6230
workers = 1
user = <your-user-name>
log_facility = LOG_LOCAL4
recon_cache_path = /var/cache/swift3
eventlet_debug = true

[pipeline:main]
pipeline = healthcheck recon object-server

[app:object-server]
use = egg:swift#object

[filter:recon]
use = egg:swift#recon

[filter:healthcheck]
use = egg:swift#healthcheck

[object-replicator]
rsync_module = {replication_ip}::object{replication_port}

[object-reconstructor]

[object-updater]

[object-auditor]

(continues on next page)

184 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

[object-relinker]

15. /etc/swift/account-server/4.conf

[DEFAULT]
devices = /srv/4/node
mount_check = false
disable_fallocate = true
bind_ip = 127.0.0.4
bind_port = 6242
workers = 1
user = <your-user-name>
log_facility = LOG_LOCAL5
recon_cache_path = /var/cache/swift4
eventlet_debug = true

[pipeline:main]
pipeline = healthcheck recon account-server

[app:account-server]
use = egg:swift#account

[filter:recon]
use = egg:swift#recon

[filter:healthcheck]
use = egg:swift#healthcheck

[account-replicator]
rsync_module = {replication_ip}::account{replication_port}

[account-auditor]

[account-reaper]

16. /etc/swift/container-server/4.conf

[DEFAULT]
devices = /srv/4/node
mount_check = false
disable_fallocate = true
bind_ip = 127.0.0.4
bind_port = 6241
workers = 1
user = <your-user-name>
log_facility = LOG_LOCAL5
recon_cache_path = /var/cache/swift4
eventlet_debug = true

[pipeline:main]
pipeline = healthcheck recon container-server

[app:container-server]
use = egg:swift#container

[filter:recon]
(continues on next page)

4.2. SAIO (Swift All In One) 185



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

use = egg:swift#recon

[filter:healthcheck]
use = egg:swift#healthcheck

[container-replicator]
rsync_module = {replication_ip}::container{replication_port}

[container-updater]

[container-auditor]

[container-sync]

[container-sharder]
auto_shard = true
rsync_module = {replication_ip}::container{replication_port}
# This is intentionally much smaller than the default of 1,000,000 so
↪→tests
# can run in a reasonable amount of time
shard_container_threshold = 100
# The probe tests make explicit assumptions about the batch sizes
shard_scanner_batch_size = 10
cleave_batch_size = 2

17. /etc/swift/object-server/4.conf

[DEFAULT]
devices = /srv/4/node
mount_check = false
disable_fallocate = true
bind_ip = 127.0.0.4
bind_port = 6240
workers = 1
user = <your-user-name>
log_facility = LOG_LOCAL5
recon_cache_path = /var/cache/swift4
eventlet_debug = true

[pipeline:main]
pipeline = healthcheck recon object-server

[app:object-server]
use = egg:swift#object

[filter:recon]
use = egg:swift#recon

[filter:healthcheck]
use = egg:swift#healthcheck

[object-replicator]
rsync_module = {replication_ip}::object{replication_port}

[object-reconstructor]

(continues on next page)

186 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

[object-updater]

[object-auditor]

[object-relinker]

4.2.10 Setting up scripts for running Swift

1. Copy the SAIO scripts for resetting the environment:

mkdir -p $HOME/bin
cd $HOME/swift/doc; cp saio/bin/* $HOME/bin; cd -
chmod +x $HOME/bin/*

2. Edit the $HOME/bin/resetswift script

The template resetswift script looks like the following:

#!/bin/bash

set -e

swift-init all kill
swift-orphans -a 0 -k KILL

# Remove the following line if you did not set up rsyslog for
↪→individual logging:
sudo find /var/log/swift -type f -exec rm -f {} \;
if cut -d' ' -f2 /proc/mounts | grep -q /mnt/sdb1 ; then

sudo umount /mnt/sdb1
fi
# If you are using a loopback device set SAIO_BLOCK_DEVICE to "/srv/
↪→swift-disk"
sudo mkfs.xfs -f ${SAIO_BLOCK_DEVICE:-/dev/sdb1}
sudo mount /mnt/sdb1
sudo mkdir /mnt/sdb1/1 /mnt/sdb1/2 /mnt/sdb1/3 /mnt/sdb1/4
sudo chown ${USER}:${USER} /mnt/sdb1/*
mkdir -p /srv/1/node/sdb1 /srv/1/node/sdb5 \

/srv/2/node/sdb2 /srv/2/node/sdb6 \
/srv/3/node/sdb3 /srv/3/node/sdb7 \
/srv/4/node/sdb4 /srv/4/node/sdb8

sudo rm -f /var/log/debug /var/log/messages /var/log/rsyncd.log /var/
↪→log/syslog
find /var/cache/swift* -type f -name *.recon -exec rm -f {} \;
if [ "`type -t systemctl`" == "file" ]; then

sudo systemctl restart rsyslog
sudo systemctl restart memcached

else
sudo service rsyslog restart
sudo service memcached restart

fi

If you did not set up rsyslog for individual logging, remove the find /var/log/swift...
line:

4.2. SAIO (Swift All In One) 187



Swift Documentation, Release 2.27.1.dev38

sed -i "/find \/var\/log\/swift/d" $HOME/bin/resetswift

3. Install the sample configuration file for running tests:

cp $HOME/swift/test/sample.conf /etc/swift/test.conf

The template test.conf looks like the following:

[s3api_test]
# You just enable advanced compatibility features to pass all tests.
↪→Add the
# following non-default options to the s3api section of your proxy-
↪→server.conf
# s3_acl = True
# check_bucket_owner = True
endpoint = http://127.0.0.1:8080
#ca_cert=/path/to/ca.crt
region = us-east-1
# First and second users should be account owners
access_key1 = test:tester
secret_key1 = testing
access_key2 = test:tester2
secret_key2 = testing2
# Third user should be unprivileged
access_key3 = test:tester3
secret_key3 = testing3

[func_test]
# Sample config for Swift with tempauth
auth_uri = http://127.0.0.1:8080/auth/v1.0
# Sample config for Swift with Keystone v2 API.
# For keystone v2 change auth_version to 2 and auth_prefix to /v2.0/.
# And "allow_account_management" should not be set "true".
#auth_version = 3
#auth_uri = http://localhost:5000/v3/

# Used by s3api functional tests, which don't contact auth directly
#s3_storage_url = http://127.0.0.1:8080/
#s3_region = us-east-1

# Primary functional test account (needs admin access to the account)
account = test
username = tester
password = testing
s3_access_key = test:tester
s3_secret_key = testing

# User on a second account (needs admin access to the account)
account2 = test2
username2 = tester2
password2 = testing2

# User on same account as first, but without admin access
username3 = tester3
password3 = testing3
# s3api requires the same account with the primary one and different
↪→users

(continues on next page)

188 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

# one swift owner:
s3_access_key2 = test:tester2
s3_secret_key2 = testing2
# one unprivileged:
s3_access_key3 = test:tester3
s3_secret_key3 = testing3

# Fourth user is required for keystone v3 specific tests.
# Account must be in a non-default domain.
#account4 = test4
#username4 = tester4
#password4 = testing4
#domain4 = test-domain

# Fifth user is required for service token-specific tests.
# The account must be different from the primary test account.
# The user must not have a group (tempauth) or role (keystoneauth) on
# the primary test account. The user must have a group/role that is
↪→unique
# and not given to the primary tester and is specified in the options
# <prefix>_require_group (tempauth) or <prefix>_service_roles
↪→(keystoneauth).
#account5 = test5
#username5 = tester5
#password5 = testing5

# The service_prefix option is used for service token-specific tests.
# If service_prefix or username5 above is not supplied, the tests are
↪→skipped.
# To set the value and enable the service token tests, look at the
# reseller_prefix option in /etc/swift/proxy-server.conf. There must
↪→be at
# least two prefixes. If not, add a prefix as follows (where we add
↪→SERVICE):
# reseller_prefix = AUTH, SERVICE
# The service_prefix must match the <prefix> used in <prefix>_require_
↪→group
# (tempauth) or <prefix>_service_roles (keystoneauth); for example:
# SERVICE_require_group = service
# SERVICE_service_roles = service
# Note: Do not enable service token tests if the first prefix in
# reseller_prefix is the empty prefix AND the primary functional test
# account contains an underscore.
#service_prefix = SERVICE

# Sixth user is required for access control tests.
# Account must have a role for reseller_admin_role(keystoneauth).
#account6 = test
#username6 = tester6
#password6 = testing6

collate = C

# Only necessary if a pre-existing server uses self-signed certificate
insecure = no

(continues on next page)

4.2. SAIO (Swift All In One) 189



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

# Tests that are dependent on domain_remap middleware being installed
↪→also
# require one of the domain_remap storage_domain values to be
↪→specified here,
# otherwise those tests will be skipped.
storage_domain =

[unit_test]
fake_syslog = False

[probe_test]
# check_server_timeout = 30
# validate_rsync = false
# proxy_base_url = http://localhost:8080

[swift-constraints]
# The functional test runner will try to use the constraint values
↪→provided in
# the swift-constraints section of test.conf.
#
# If a constraint value does not exist in that section, or because the
# swift-constraints section does not exist, the constraints values
↪→found in
# the /info API call (if successful) will be used.
#
# If a constraint value cannot be found in the /info results, either
↪→because
# the /info API call failed, or a value is not present, the
↪→constraint value
# used will fall back to those loaded by the constraints module at
↪→time of
# import (which will attempt to load /etc/swift/swift.conf, see the
# swift.common.constraints module for more information).
#
# Note that the cluster must have "sane" values for the test suite to
↪→pass
# (for some definition of sane).
#
#max_file_size = 5368709122
#max_meta_name_length = 128
#max_meta_value_length = 256
#max_meta_count = 90
#max_meta_overall_size = 4096
#max_header_size = 8192
#extra_header_count = 0
#max_object_name_length = 1024
#container_listing_limit = 10000
#account_listing_limit = 10000
#max_account_name_length = 256
#max_container_name_length = 256

# Newer swift versions default to strict cors mode, but older ones
↪→were the
# opposite.
#strict_cors_mode = true

190 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

4.2.11 Configure environment variables for Swift

1. Add an environment variable for running tests below:

echo "export SWIFT_TEST_CONFIG_FILE=/etc/swift/test.conf" >> $HOME/.
↪→bashrc

2. Be sure that your PATH includes the bin directory:

echo "export PATH=${PATH}:$HOME/bin" >> $HOME/.bashrc

3. If you are using a loopback device for Swift Storage, add an environment var to substitute /dev/
sdb1 with /srv/swift-disk:

echo "export SAIO_BLOCK_DEVICE=/srv/swift-disk" >> $HOME/.bashrc

4. If you are using a device other than /dev/sdb1 for Swift storage (for example, /dev/vdb1),
add an environment var to substitute it:

echo "export SAIO_BLOCK_DEVICE=/dev/vdb1" >> $HOME/.bashrc

5. If you are using a location other than /tmp for Swift tmp data (for example, /mnt/tmp), add
TMPDIR environment var to set it:

export TMPDIR=/mnt/tmp
echo "export TMPDIR=/mnt/tmp" >> $HOME/.bashrc

6. Source the above environment variables into your current environment:

. $HOME/.bashrc

4.2.12 Constructing initial rings

1. Construct the initial rings using the provided script:

remakerings

The remakerings script looks like the following:

#!/bin/bash

set -e

cd /etc/swift

rm -f *.builder *.ring.gz backups/*.builder backups/*.ring.gz

swift-ring-builder object.builder create 10 3 1
swift-ring-builder object.builder add r1z1-127.0.0.1:6210/sdb1 1
swift-ring-builder object.builder add r1z2-127.0.0.2:6220/sdb2 1
swift-ring-builder object.builder add r1z3-127.0.0.3:6230/sdb3 1
swift-ring-builder object.builder add r1z4-127.0.0.4:6240/sdb4 1
swift-ring-builder object.builder rebalance
swift-ring-builder object-1.builder create 10 2 1

(continues on next page)

4.2. SAIO (Swift All In One) 191



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

swift-ring-builder object-1.builder add r1z1-127.0.0.1:6210/sdb1 1
swift-ring-builder object-1.builder add r1z2-127.0.0.2:6220/sdb2 1
swift-ring-builder object-1.builder add r1z3-127.0.0.3:6230/sdb3 1
swift-ring-builder object-1.builder add r1z4-127.0.0.4:6240/sdb4 1
swift-ring-builder object-1.builder rebalance
swift-ring-builder object-2.builder create 10 6 1
swift-ring-builder object-2.builder add r1z1-127.0.0.1:6210/sdb1 1
swift-ring-builder object-2.builder add r1z1-127.0.0.1:6210/sdb5 1
swift-ring-builder object-2.builder add r1z2-127.0.0.2:6220/sdb2 1
swift-ring-builder object-2.builder add r1z2-127.0.0.2:6220/sdb6 1
swift-ring-builder object-2.builder add r1z3-127.0.0.3:6230/sdb3 1
swift-ring-builder object-2.builder add r1z3-127.0.0.3:6230/sdb7 1
swift-ring-builder object-2.builder add r1z4-127.0.0.4:6240/sdb4 1
swift-ring-builder object-2.builder add r1z4-127.0.0.4:6240/sdb8 1
swift-ring-builder object-2.builder rebalance
swift-ring-builder container.builder create 10 3 1
swift-ring-builder container.builder add r1z1-127.0.0.1:6211/sdb1 1
swift-ring-builder container.builder add r1z2-127.0.0.2:6221/sdb2 1
swift-ring-builder container.builder add r1z3-127.0.0.3:6231/sdb3 1
swift-ring-builder container.builder add r1z4-127.0.0.4:6241/sdb4 1
swift-ring-builder container.builder rebalance
swift-ring-builder account.builder create 10 3 1
swift-ring-builder account.builder add r1z1-127.0.0.1:6212/sdb1 1
swift-ring-builder account.builder add r1z2-127.0.0.2:6222/sdb2 1
swift-ring-builder account.builder add r1z3-127.0.0.3:6232/sdb3 1
swift-ring-builder account.builder add r1z4-127.0.0.4:6242/sdb4 1
swift-ring-builder account.builder rebalance

You can expect the output from this command to produce the following. Note that 3 object rings
are created in order to test storage policies and EC in the SAIO environment. The EC ring is
the only one with all 8 devices. There are also two replication rings, one for 3x replication and
another for 2x replication, but those rings only use 4 devices:

Device d0r1z1-127.0.0.1:6210R127.0.0.1:6210/sdb1_"" with 1.0 weight
↪→got id 0
Device d1r1z2-127.0.0.2:6220R127.0.0.2:6220/sdb2_"" with 1.0 weight
↪→got id 1
Device d2r1z3-127.0.0.3:6230R127.0.0.3:6230/sdb3_"" with 1.0 weight
↪→got id 2
Device d3r1z4-127.0.0.4:6240R127.0.0.4:6240/sdb4_"" with 1.0 weight
↪→got id 3
Reassigned 3072 (300.00%) partitions. Balance is now 0.00.
↪→Dispersion is now 0.00
Device d0r1z1-127.0.0.1:6210R127.0.0.1:6210/sdb1_"" with 1.0 weight
↪→got id 0
Device d1r1z2-127.0.0.2:6220R127.0.0.2:6220/sdb2_"" with 1.0 weight
↪→got id 1
Device d2r1z3-127.0.0.3:6230R127.0.0.3:6230/sdb3_"" with 1.0 weight
↪→got id 2
Device d3r1z4-127.0.0.4:6240R127.0.0.4:6240/sdb4_"" with 1.0 weight
↪→got id 3
Reassigned 2048 (200.00%) partitions. Balance is now 0.00.
↪→Dispersion is now 0.00
Device d0r1z1-127.0.0.1:6210R127.0.0.1:6210/sdb1_"" with 1.0 weight
↪→got id 0

(continues on next page)

192 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

Device d1r1z1-127.0.0.1:6210R127.0.0.1:6210/sdb5_"" with 1.0 weight
↪→got id 1
Device d2r1z2-127.0.0.2:6220R127.0.0.2:6220/sdb2_"" with 1.0 weight
↪→got id 2
Device d3r1z2-127.0.0.2:6220R127.0.0.2:6220/sdb6_"" with 1.0 weight
↪→got id 3
Device d4r1z3-127.0.0.3:6230R127.0.0.3:6230/sdb3_"" with 1.0 weight
↪→got id 4
Device d5r1z3-127.0.0.3:6230R127.0.0.3:6230/sdb7_"" with 1.0 weight
↪→got id 5
Device d6r1z4-127.0.0.4:6240R127.0.0.4:6240/sdb4_"" with 1.0 weight
↪→got id 6
Device d7r1z4-127.0.0.4:6240R127.0.0.4:6240/sdb8_"" with 1.0 weight
↪→got id 7
Reassigned 6144 (600.00%) partitions. Balance is now 0.00.
↪→Dispersion is now 0.00
Device d0r1z1-127.0.0.1:6211R127.0.0.1:6211/sdb1_"" with 1.0 weight
↪→got id 0
Device d1r1z2-127.0.0.2:6221R127.0.0.2:6221/sdb2_"" with 1.0 weight
↪→got id 1
Device d2r1z3-127.0.0.3:6231R127.0.0.3:6231/sdb3_"" with 1.0 weight
↪→got id 2
Device d3r1z4-127.0.0.4:6241R127.0.0.4:6241/sdb4_"" with 1.0 weight
↪→got id 3
Reassigned 3072 (300.00%) partitions. Balance is now 0.00.
↪→Dispersion is now 0.00
Device d0r1z1-127.0.0.1:6212R127.0.0.1:6212/sdb1_"" with 1.0 weight
↪→got id 0
Device d1r1z2-127.0.0.2:6222R127.0.0.2:6222/sdb2_"" with 1.0 weight
↪→got id 1
Device d2r1z3-127.0.0.3:6232R127.0.0.3:6232/sdb3_"" with 1.0 weight
↪→got id 2
Device d3r1z4-127.0.0.4:6242R127.0.0.4:6242/sdb4_"" with 1.0 weight
↪→got id 3
Reassigned 3072 (300.00%) partitions. Balance is now 0.00.
↪→Dispersion is now 0.00

2. Read more about Storage Policies and your SAIO Adding Storage Policies to an Existing SAIO

4.2.13 Testing Swift

1. Verify the unit tests run:

$HOME/swift/.unittests

Note that the unit tests do not require any Swift daemons running.

2. Start the main Swift daemon processes (proxy, account, container, and object):

startmain

(The Unable to increase file descriptor limit. Running as
non-root? warnings are expected and ok.)

The startmain script looks like the following:

4.2. SAIO (Swift All In One) 193



Swift Documentation, Release 2.27.1.dev38

#!/bin/bash

set -e

swift-init main start

3. Get an X-Storage-Url and X-Auth-Token:

curl -v -H 'X-Storage-User: test:tester' -H 'X-Storage-Pass: testing'
↪→http://127.0.0.1:8080/auth/v1.0

4. Check that you can GET account:

curl -v -H 'X-Auth-Token: <token-from-x-auth-token-above>' <url-from-
↪→x-storage-url-above>

5. Check that swift command provided by the python-swiftclient package works:

swift -A http://127.0.0.1:8080/auth/v1.0 -U test:tester -K testing
↪→stat

6. Verify the functional tests run:

$HOME/swift/.functests

(Note: functional tests will first delete everything in the configured accounts.)

7. Verify the probe tests run:

$HOME/swift/.probetests

(Note: probe tests will reset your environment as they call resetswift for each test.)

4.2.14 Debugging Issues

If all doesnt go as planned, and tests fail, or you cant auth, or something doesnt work, here are some
good starting places to look for issues:

1. Everything is logged using system facilities usually in /var/log/syslog, but possibly in /
var/log/messages on e.g. Fedora so that is a good first place to look for errors (most likely
python tracebacks).

2. Make sure all of the server processes are running. For the base functionality, the Proxy, Account,
Container, and Object servers should be running.

3. If one of the servers are not running, and no errors are logged to syslog, it may be useful
to try to start the server manually, for example: swift-object-server /etc/swift/
object-server/1.conf will start the object server. If there are problems not showing up in
syslog, then you will likely see the traceback on startup.

4. If you need to, you can turn off syslog for unit tests. This can be useful for environments where /
dev/log is unavailable, or which cannot rate limit (unit tests generate a lot of logs very quickly).
Open the file SWIFT_TEST_CONFIG_FILE points to, and change the value of fake_syslog
to True.

194 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

5. If you encounter a 401 Unauthorized when following Step 12 where you check that you
can GET account, use sudo service memcached status and check if memcache is run-
ning. If memcache is not running, start it using sudo service memcached start. Once
memcache is running, rerun GET account.

4.2.15 Known Issues

Listed here are some gotchas that you may run into when using or testing your SAIO:

1. fallocate_reserve - in most cases a SAIO doesnt have a very large XFS partition so having fallocate
enabled and fallocate_reserve set can cause issues, specifically when trying to run the functional
tests. For this reason fallocate has been turned off on the object-servers in the SAIO. If you want to
play with the fallocate_reserve settings then know that functional tests will fail unless you change
the max_file_size constraint to something more reasonable then the default (5G). Ideally youd
make it 1/4 of your XFS file system size so the tests can pass.

4.3 First Contribution to Swift

4.3.1 Getting Swift

Swifts source code is hosted on github and managed with git. The current trunk can be checked out like
this:

git clone https://github.com/openstack/swift.git

This will clone the Swift repository under your account.

A source tarball for the latest release of Swift is available on the launchpad project page.

Prebuilt packages for Ubuntu and RHEL variants are available.

• Swift Ubuntu Packages

• Swift RDO Packages

4.3.2 Source Control Setup

Swift uses git for source control. The OpenStack Developers Guide describes the steps for setting up
Git and all the necessary accounts for contributing code to Swift.

4.3.3 Changes to Swift

Once you have the source code and source control set up, you can make your changes to Swift.

4.3. First Contribution to Swift 195

https://launchpad.net/swift
https://launchpad.net/ubuntu/+source/swift
https://www.rdoproject.org/documentation/repositories/
http://docs.openstack.org/infra/manual/developers.html


Swift Documentation, Release 2.27.1.dev38

4.3.4 Testing

The Development Guidelines describe the testing requirements before submitting Swift code.

In summary, you can execute tox from the swift home directory (where you checked out the source
code):

tox

Tox will present tests results. Notice that in the beginning, it is very common to break many coding style
guidelines.

4.3.5 Proposing changes to Swift

The OpenStack Developers Guide describes the most common git commands that you will need.

Following is a list of the commands that you need to know for your first contribution to Swift:

To clone a copy of Swift:

git clone https://github.com/openstack/swift.git

Under the swift directory, set up the Gerrit repository. The following command configures the repository
to know about Gerrit and installs the Change-Id commit hook. You only need to do this once:

git review -s

To create your development branch (substitute branch_name for a name of your choice:

git checkout -b <branch_name>

To check the files that have been updated in your branch:

git status

To check the differences between your branch and the repository:

git diff

Assuming you have not added new files, you commit all your changes using:

git commit -a

Read the Summary of Git commit message structure for best practices on writing the commit message.
When you are ready to send your changes for review use:

git review

If successful, Git response message will contain a URL you can use to track your changes.

If you need to make further changes to the same review, you can commit them using:

git commit -a --amend

This will commit the changes under the same set of changes you issued earlier. Notice that in order to
send your latest version for review, you will still need to call:

196 Chapter 4. Developer Documentation

http://docs.openstack.org/infra/manual/developers.html
https://wiki.openstack.org/wiki/GitCommitMessages?%22Summary%20of%20Git%20commit%20message%20structure%22#Summary_of_Git_commit_message_structure


Swift Documentation, Release 2.27.1.dev38

git review

4.3.6 Tracking your changes

After proposing changes to Swift, you can track them at https://review.opendev.org. After logging in,
you will see a dashboard of Outgoing reviews for changes you have proposed, Incoming reviews for
changes you are reviewing, and Recently closed changes for which you were either a reviewer or owner.

4.3.7 Post rebase instructions

After rebasing, the following steps should be performed to rebuild the swift installation. Note that these
commands should be performed from the root of the swift repo directory (e.g. $HOME/swift/):

sudo python setup.py develop
sudo pip install -r test-requirements.txt

If using TOX, depending on the changes made during the rebase, you may need to rebuild the TOX
environment (generally this will be the case if test-requirements.txt was updated such that a new version
of a package is required), this can be accomplished using the -r argument to the TOX cli:

tox -r

You can include any of the other TOX arguments as well, for example, to run the pep8 suite and rebuild
the TOX environment the following can be used:

tox -r -e pep8

The rebuild option only needs to be specified once for a particular build (e.g. pep8), that is further
invocations of the same build will not require this until the next rebase.

4.3.8 Troubleshooting

You may run into the following errors when starting Swift if you rebase your commit using:

git rebase

Traceback (most recent call last):
File "/usr/local/bin/swift-init", line 5, in <module>

from pkg_resources import require
File "/usr/lib/python2.7/dist-packages/pkg_resources.py", line 2749,

↪→in <module>
working_set = WorkingSet._build_master()

File "/usr/lib/python2.7/dist-packages/pkg_resources.py", line 446, in
↪→_build_master

return cls._build_from_requirements(__requires__)
File "/usr/lib/python2.7/dist-packages/pkg_resources.py", line 459, in

↪→_build_from_requirements
dists = ws.resolve(reqs, Environment())

File "/usr/lib/python2.7/dist-packages/pkg_resources.py", line 628, in
↪→resolve

(continues on next page)

4.3. First Contribution to Swift 197

https://review.opendev.org


Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

raise DistributionNotFound(req)
pkg_resources.DistributionNotFound: swift==2.3.1.devXXX

(where XXX represents a dev version of Swift).

Traceback (most recent call last):
File "/usr/local/bin/swift-proxy-server", line 10, in <module>

execfile(__file__)
File "/home/swift/swift/bin/swift-proxy-server", line 23, in <module>

sys.exit(run_wsgi(conf_file, 'proxy-server', **options))
File "/home/swift/swift/swift/common/wsgi.py", line 888, in run_wsgi

loadapp(conf_path, global_conf=global_conf)
File "/home/swift/swift/swift/common/wsgi.py", line 390, in loadapp

func(PipelineWrapper(ctx))
File "/home/swift/swift/swift/proxy/server.py", line 602, in modify_

↪→wsgi_pipeline
ctx = pipe.create_filter(filter_name)

File "/home/swift/swift/swift/common/wsgi.py", line 329, in create_
↪→filter

global_conf=self.context.global_conf)
File "/usr/lib/python2.7/dist-packages/paste/deploy/loadwsgi.py", line

↪→296, in loadcontext
global_conf=global_conf)

File "/usr/lib/python2.7/dist-packages/paste/deploy/loadwsgi.py", line
↪→328, in _loadegg

return loader.get_context(object_type, name, global_conf)
File "/usr/lib/python2.7/dist-packages/paste/deploy/loadwsgi.py", line

↪→620, in get_context
object_type, name=name)

File "/usr/lib/python2.7/dist-packages/paste/deploy/loadwsgi.py", line
↪→659, in find_egg_entry_point

for prot in protocol_options] or '(no entry points)'))))
LookupError: Entry point 'versioned_writes' not found in egg 'swift' (dir:
↪→/home/swift/swift; protocols: paste.filter_factory, paste.filter_app_
↪→factory; entry_points: )

This happens because git rebase will retrieve code for a different version of Swift in the develop-
ment stream, but the start scripts under /usr/local/bin have not been updated. The solution is to
follow the steps described in the Post rebase instructions section.

4.4 Adding Storage Policies to an Existing SAIO

Depending on when you downloaded your SAIO environment, it may already be prepared with two
storage policies that enable some basic functional tests. In the event that you are adding a storage policy
to an existing installation, however, the following section will walk you through the steps for setting up
Storage Policies. Note that configuring more than one storage policy on your development environment
is recommended but optional. Enabling multiple Storage Policies is very easy regardless of whether you
are working with an existing installation or starting a brand new one.

Now we will create two policies - the first one will be a standard triple replication policy that we will
also explicitly set as the default and the second will be setup for reduced replication using a factor of 2x.
We will call the first one gold and the second one silver. In this example both policies map to the same
devices because its also important for this sample implementation to be simple and easy to understand

198 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

and adding a bunch of new devices isnt really required to implement a usable set of policies.

1. To define your policies, add the following to your /etc/swift/swift.conf file:

[storage-policy:0]
name = gold
aliases = yellow, orange
default = yes

[storage-policy:1]
name = silver

See Storage Policies for detailed information on swift.conf policy options.

2. To create the object ring for the silver policy (index 1), add the following to your bin/
remakerings script and re-run it (your script may already have these changes):

swift-ring-builder object-1.builder create 10 2 1
swift-ring-builder object-1.builder add r1z1-127.0.0.1:6210/sdb1 1
swift-ring-builder object-1.builder add r1z2-127.0.0.1:6220/sdb2 1
swift-ring-builder object-1.builder add r1z3-127.0.0.1:6230/sdb3 1
swift-ring-builder object-1.builder add r1z4-127.0.0.1:6240/sdb4 1
swift-ring-builder object-1.builder rebalance

Note that the reduced replication of the silver policy is only a function of the replication
parameter in the swift-ring-builder create command and is not specified in /
etc/swift/swift.conf.

3. Copy etc/container-reconciler.conf-sample to /etc/swift/
container-reconciler.conf and fix the user option:

cp etc/container-reconciler.conf-sample /etc/swift/container-
↪→reconciler.conf
sed -i "s/# user.*/user = $USER/g" /etc/swift/container-reconciler.
↪→conf

4.4.1 Using Policies

Setting up Storage Policies was very simple, and using them is even simpler. In this section, we will run
some commands to create a few containers with different policies and store objects in them and see how
Storage Policies effect placement of data in Swift.

1. We will be using the list_endpoints middleware to confirm object locations, so enable that now in
your proxy-server.conf file by adding it to the pipeline and including the filter section as
shown below (be sure to restart your proxy after making these changes):

pipeline = catch_errors gatekeeper healthcheck proxy-logging cache
↪→bulk \
slo dlo ratelimit crossdomain list-endpoints tempurl tempauth

↪→staticweb \
container-quotas account-quotas proxy-logging proxy-server

[filter:list-endpoints]
use = egg:swift#list_endpoints

2. Check to see that your policies are reported via /info:

4.4. Adding Storage Policies to an Existing SAIO 199



Swift Documentation, Release 2.27.1.dev38

swift -A http://127.0.0.1:8080/auth/v1.0 -U test:tester -K testing
↪→info

You should see this: (only showing the policy output here):

policies: [{'aliases': 'gold, yellow, orange', 'default': True,
'name': 'gold'}, {'aliases': 'silver', 'name': 'silver'}]

3. Now create a container without specifying a policy, it will use the default, gold and then put a test
object in it (create the file file0.txt with your favorite editor with some content):

curl -v -X PUT -H 'X-Auth-Token: <your auth token>' \
http://127.0.0.1:8080/v1/AUTH_test/myCont0

curl -X PUT -v -T file0.txt -H 'X-Auth-Token: <your auth token>' \
http://127.0.0.1:8080/v1/AUTH_test/myCont0/file0.txt

4. Now confirm placement of the object with the List Endpoints middleware:

curl -X GET -v http://127.0.0.1:8080/endpoints/AUTH_test/myCont0/
↪→file0.txt

You should see this: (note placement on expected devices):

["http://127.0.0.1:6230/sdb3/761/AUTH_test/myCont0/file0.txt",
"http://127.0.0.1:6210/sdb1/761/AUTH_test/myCont0/file0.txt",
"http://127.0.0.1:6220/sdb2/761/AUTH_test/myCont0/file0.txt"]

5. Create a container using policy silver and put a different file in it:

curl -v -X PUT -H 'X-Auth-Token: <your auth token>' -H \
"X-Storage-Policy: silver" \
http://127.0.0.1:8080/v1/AUTH_test/myCont1

curl -X PUT -v -T file1.txt -H 'X-Auth-Token: <your auth token>' \
http://127.0.0.1:8080/v1/AUTH_test/myCont1/

6. Confirm placement of the object for policy silver:

curl -X GET -v http://127.0.0.1:8080/endpoints/AUTH_test/myCont1/
↪→file1.txt

You should see this: (note placement on expected devices):

["http://127.0.0.1:6210/sdb1/32/AUTH_test/myCont1/file1.txt",
"http://127.0.0.1:6240/sdb4/32/AUTH_test/myCont1/file1.txt"]

7. Confirm account information with HEAD, make sure that your container-updater service is run-
ning and has executed once since you performed the PUTs or the account database wont be up-
dated yet:

curl -i -X HEAD -H 'X-Auth-Token: <your auth token>' \
http://127.0.0.1:8080/v1/AUTH_test

You should see something like this (note that total and per policy stats object sizes will
vary):

200 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

HTTP/1.1 204 No Content
Content-Length: 0
X-Account-Object-Count: 2
X-Account-Bytes-Used: 174
X-Account-Container-Count: 2
X-Account-Storage-Policy-Gold-Object-Count: 1
X-Account-Storage-Policy-Gold-Bytes-Used: 84
X-Account-Storage-Policy-Silver-Object-Count: 1
X-Account-Storage-Policy-Silver-Bytes-Used: 90
X-Timestamp: 1397230339.71525
Content-Type: text/plain; charset=utf-8
Accept-Ranges: bytes
X-Trans-Id: tx96e7496b19bb44abb55a3-0053482c75
X-Openstack-Request-Id: tx96e7496b19bb44abb55a3-0053482c75
Date: Fri, 11 Apr 2014 17:55:01 GMT

4.5 Auth Server and Middleware

4.5.1 Creating Your Own Auth Server and Middleware

The included swift/common/middleware/tempauth.py is a good example of how to create an auth sub-
system with proxy server auth middleware. The main points are that the auth middleware can reject
requests up front, before they ever get to the Swift Proxy application, and afterwards when the proxy
issues callbacks to verify authorization.

Its generally good to separate the authentication and authorization procedures. Authentication verifies
that a request actually comes from who it says it does. Authorization verifies the who has access to the
resource(s) the request wants.

Authentication is performed on the request before it ever gets to the Swift Proxy application. The identity
information is gleaned from the request, validated in some way, and the validation information is added
to the WSGI environment as needed by the future authorization procedure. What exactly is added to
the WSGI environment is solely dependent on what the installed authorization procedures need; the
Swift Proxy application itself needs no specific information, it just passes it along. Convention has
environ[REMOTE_USER] set to the authenticated user string but often more information is needed than
just that.

The included TempAuth will set the REMOTE_USER to a comma separated list of groups the user
belongs to. The first group will be the users group, a group that only the user belongs to. The second
group will be the accounts group, a group that includes all users for that auth account (different than the
storage account). The third group is optional and is the storage account string. If the user does not have
admin access to the account, the third group will be omitted.

It is highly recommended that authentication server implementers prefix their tokens and Swift storage
accounts they create with a configurable reseller prefix (AUTH_ by default with the included TempAuth).
This prefix will avoid conflicts with other authentication servers that might be using the same Swift
cluster. Otherwise, the Swift cluster will have to try all the resellers until one validates a token or all fail.

A restriction with group names is that no group name should begin with a period . as that is reserved for
internal Swift use (such as the .r for referrer designations as youll see later).

Example Authentication with TempAuth:

• Token AUTH_tkabcd is given to the TempAuth middleware in a requests X-Auth-Token header.

4.5. Auth Server and Middleware 201



Swift Documentation, Release 2.27.1.dev38

• The TempAuth middleware validates the token AUTH_tkabcd and discovers it matches the tester
user within the test account for the storage account AUTH_storage_xyz.

• The TempAuth middleware sets the REMOTE_USER to test:tester,test,AUTH_storage_xyz

• Now this user will have full access (via authorization procedures later) to the AUTH_storage_xyz
Swift storage account and access to containers in other storage accounts, provided the storage
account begins with the same AUTH_ reseller prefix and the container has an ACL specifying at
least one of those three groups.

Authorization is performed through callbacks by the Swift Proxy server to the WSGI environments
swift.authorize value, if one is set. The swift.authorize value should simply be a function that takes a Re-
quest as an argument and returns None if access is granted or returns a callable(environ, start_response)
if access is denied. This callable is a standard WSGI callable. Generally, you should return 403 For-
bidden for requests by an authenticated user and 401 Unauthorized for an unauthenticated request. For
example, heres an authorize function that only allows GETs (in this case youd probably return 405
Method Not Allowed, but ignore that for the moment).:

from swift.common.swob import HTTPForbidden, HTTPUnauthorized

def authorize(req):
if req.method == 'GET':

return None
if req.remote_user:

return HTTPForbidden(request=req)
else:

return HTTPUnauthorized(request=req)

Adding the swift.authorize callback is often done by the authentication middleware as authentication
and authorization are often paired together. But, you could create separate authorization middleware
that simply sets the callback before passing on the request. To continue our example above:

from swift.common.swob import HTTPForbidden, HTTPUnauthorized

class Authorization(object):

def __init__(self, app, conf):
self.app = app
self.conf = conf

def __call__(self, environ, start_response):
environ['swift.authorize'] = self.authorize
return self.app(environ, start_response)

def authorize(self, req):
if req.method == 'GET':

return None
if req.remote_user:

return HTTPForbidden(request=req)
else:

return HTTPUnauthorized(request=req)

def filter_factory(global_conf, **local_conf):

(continues on next page)

202 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

conf = global_conf.copy()
conf.update(local_conf)
def auth_filter(app):

return Authorization(app, conf)
return auth_filter

The Swift Proxy server will call swift.authorize after some initial work, but before truly trying to process
the request. Positive authorization at this point will cause the request to be fully processed immediately.
A denial at this point will immediately send the denial response for most operations.

But for some operations that might be approved with more information, the additional information will
be gathered and added to the WSGI environment and then swift.authorize will be called once more.
These are called delay_denial requests and currently include container read requests and object read
and write requests. For these requests, the read or write access control string (X-Container-Read and
X-Container-Write) will be fetched and set as the acl attribute in the Request passed to swift.authorize.

The delay_denial procedures allow skipping possibly expensive access control string retrievals for re-
quests that can be approved without that information, such as administrator or account owner requests.

To further our example, we now will approve all requests that have the access control string set to same
value as the authenticated user string. Note that you probably wouldnt do this exactly as the access
control string represents a list rather than a single user, but itll suffice for this example:

from swift.common.swob import HTTPForbidden, HTTPUnauthorized

class Authorization(object):

def __init__(self, app, conf):
self.app = app
self.conf = conf

def __call__(self, environ, start_response):
environ['swift.authorize'] = self.authorize
return self.app(environ, start_response)

def authorize(self, req):
# Allow anyone to perform GET requests
if req.method == 'GET':

return None
# Allow any request where the acl equals the authenticated user
if getattr(req, 'acl', None) == req.remote_user:

return None
if req.remote_user:

return HTTPForbidden(request=req)
else:

return HTTPUnauthorized(request=req)

def filter_factory(global_conf, **local_conf):
conf = global_conf.copy()
conf.update(local_conf)
def auth_filter(app):

return Authorization(app, conf)
return auth_filter

4.5. Auth Server and Middleware 203



Swift Documentation, Release 2.27.1.dev38

The access control string has a standard format included with Swift, though this can be overridden if
desired. The standard format can be parsed with swift.common.middleware.acl.parse_acl which con-
verts the string into two arrays of strings: (referrers, groups). The referrers allow comparing the requests
Referer header to control access. The groups allow comparing the request.remote_user (or other sources
of group information) to control access. Checking referrer access can be accomplished by using the
swift.common.middleware.acl.referrer_allowed function. Checking group access is usually a simple
string comparison.

Lets continue our example to use parse_acl and referrer_allowed. Now well only allow GETs after a
referrer check and any requests after a group check:

from swift.common.middleware.acl import parse_acl, referrer_allowed
from swift.common.swob import HTTPForbidden, HTTPUnauthorized

class Authorization(object):

def __init__(self, app, conf):
self.app = app
self.conf = conf

def __call__(self, environ, start_response):
environ['swift.authorize'] = self.authorize
return self.app(environ, start_response)

def authorize(self, req):
if hasattr(req, 'acl'):

referrers, groups = parse_acl(req.acl)
if req.method == 'GET' and referrer_allowed(req, referrers):

return None
if req.remote_user and groups and req.remote_user in groups:

return None
if req.remote_user:

return HTTPForbidden(request=req)
else:

return HTTPUnauthorized(request=req)

def filter_factory(global_conf, **local_conf):
conf = global_conf.copy()
conf.update(local_conf)
def auth_filter(app):

return Authorization(app, conf)
return auth_filter

The access control strings are set with PUTs and POSTs to containers with the X-Container-Read and
X-Container-Write headers. Swift allows these strings to be set to any value, though its very useful to
validate that the strings meet the desired format and return a useful error to the user if they dont.

To support this validation, the Swift Proxy application will call the WSGI environments swift.clean_acl
callback whenever one of these headers is to be written. The callback should take a header name and
value as its arguments. It should return the cleaned value to save if valid or raise a ValueError with a
reasonable error message if not.

There is an included swift.common.middleware.acl.clean_acl that validates the standard Swift format.
Lets improve our example by making use of that:

204 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

from swift.common.middleware.acl import \
clean_acl, parse_acl, referrer_allowed

from swift.common.swob import HTTPForbidden, HTTPUnauthorized

class Authorization(object):

def __init__(self, app, conf):
self.app = app
self.conf = conf

def __call__(self, environ, start_response):
environ['swift.authorize'] = self.authorize
environ['swift.clean_acl'] = clean_acl
return self.app(environ, start_response)

def authorize(self, req):
if hasattr(req, 'acl'):

referrers, groups = parse_acl(req.acl)
if req.method == 'GET' and referrer_allowed(req, referrers):

return None
if req.remote_user and groups and req.remote_user in groups:

return None
if req.remote_user:

return HTTPForbidden(request=req)
else:

return HTTPUnauthorized(request=req)

def filter_factory(global_conf, **local_conf):
conf = global_conf.copy()
conf.update(local_conf)
def auth_filter(app):

return Authorization(app, conf)
return auth_filter

Now, if you want to override the format for access control strings youll have to provide your own
clean_acl function and youll have to do your own parsing and authorization checking for that format. Its
highly recommended you use the standard format simply to support the widest range of external tools,
but sometimes thats less important than meeting certain ACL requirements.

4.5.2 Integrating With repoze.what

Heres an example of integration with repoze.what, though honestly Im no repoze.what expert by any
stretch; this is just included here to hopefully give folks a start on their own code if they want to use
repoze.what:

from time import time

from eventlet.timeout import Timeout
from repoze.what.adapters import BaseSourceAdapter
from repoze.what.middleware import setup_auth
from repoze.what.predicates import in_any_group, NotAuthorizedError
from swift.common.bufferedhttp import http_connect_raw as http_connect
from swift.common.middleware.acl import clean_acl, parse_acl, referrer_
↪→allowed (continues on next page)

4.5. Auth Server and Middleware 205



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

from swift.common.utils import cache_from_env, split_path
from swift.common.swob import HTTPForbidden, HTTPUnauthorized

class DevAuthorization(object):

def __init__(self, app, conf):
self.app = app
self.conf = conf

def __call__(self, environ, start_response):
environ['swift.authorize'] = self.authorize
environ['swift.clean_acl'] = clean_acl
return self.app(environ, start_response)

def authorize(self, req):
version, account, container, obj = split_path(req.path, 1, 4, True)
if not account:

return self.denied_response(req)
referrers, groups = parse_acl(getattr(req, 'acl', None))
if referrer_allowed(req, referrers):

return None
try:

in_any_group(account, *groups).check_authorization(req.environ)
except NotAuthorizedError:

return self.denied_response(req)
return None

def denied_response(self, req):
if req.remote_user:

return HTTPForbidden(request=req)
else:

return HTTPUnauthorized(request=req)

class DevIdentifier(object):

def __init__(self, conf):
self.conf = conf

def identify(self, env):
return {'token':

env.get('HTTP_X_AUTH_TOKEN', env.get('HTTP_X_STORAGE_TOKEN
↪→'))}

def remember(self, env, identity):
return []

def forget(self, env, identity):
return []

class DevAuthenticator(object):

def __init__(self, conf):
self.conf = conf

(continues on next page)

206 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

self.auth_host = conf.get('ip', '127.0.0.1')
self.auth_port = int(conf.get('port', 11000))
self.ssl = \

conf.get('ssl', 'false').lower() in ('true', 'on', '1', 'yes')
self.auth_prefix = conf.get('prefix', '/')
self.timeout = float(conf.get('node_timeout', 10))

def authenticate(self, env, identity):
token = identity.get('token')
if not token:

return None
memcache_client = cache_from_env(env)
key = 'devauth/%s' % token
cached_auth_data = memcache_client.get(key)
if cached_auth_data:

start, expiration, user = cached_auth_data
if time() - start <= expiration:

return user
with Timeout(self.timeout):

conn = http_connect(self.auth_host, self.auth_port, 'GET',
'%stoken/%s' % (self.auth_prefix, token), ssl=self.ssl)

resp = conn.getresponse()
resp.read()
conn.close()

if resp.status == 204:
expiration = float(resp.getheader('x-auth-ttl'))
user = resp.getheader('x-auth-user')
memcache_client.set(key, (time(), expiration, user),

time=expiration)
return user

return None

class DevChallenger(object):

def __init__(self, conf):
self.conf = conf

def challenge(self, env, status, app_headers, forget_headers):
def no_challenge(env, start_response):

start_response(str(status), [])
return []

return no_challenge

class DevGroupSourceAdapter(BaseSourceAdapter):

def __init__(self, *args, **kwargs):
super(DevGroupSourceAdapter, self).__init__(*args, **kwargs)
self.sections = {}

def _get_all_sections(self):
return self.sections

def _get_section_items(self, section):
return self.sections[section]

(continues on next page)

4.5. Auth Server and Middleware 207



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

def _find_sections(self, credentials):
return credentials['repoze.what.userid'].split(',')

def _include_items(self, section, items):
self.sections[section] |= items

def _exclude_items(self, section, items):
for item in items:

self.sections[section].remove(item)

def _item_is_included(self, section, item):
return item in self.sections[section]

def _create_section(self, section):
self.sections[section] = set()

def _edit_section(self, section, new_section):
self.sections[new_section] = self.sections[section]
del self.sections[section]

def _delete_section(self, section):
del self.sections[section]

def _section_exists(self, section):
return self.sections.has_key(section)

class DevPermissionSourceAdapter(BaseSourceAdapter):

def __init__(self, *args, **kwargs):
super(DevPermissionSourceAdapter, self).__init__(*args, **kwargs)
self.sections = {}

def _get_all_sections(self):
return self.sections

def _get_section_items(self, section):
return self.sections[section]

def _find_sections(self, group_name):
return set([n for (n, p) in self.sections.items()

if group_name in p])

def _include_items(self, section, items):
self.sections[section] |= items

def _exclude_items(self, section, items):
for item in items:

self.sections[section].remove(item)

def _item_is_included(self, section, item):
return item in self.sections[section]

def _create_section(self, section):
self.sections[section] = set()

(continues on next page)

208 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

def _edit_section(self, section, new_section):
self.sections[new_section] = self.sections[section]
del self.sections[section]

def _delete_section(self, section):
del self.sections[section]

def _section_exists(self, section):
return self.sections.has_key(section)

def filter_factory(global_conf, **local_conf):
conf = global_conf.copy()
conf.update(local_conf)
def auth_filter(app):

return setup_auth(DevAuthorization(app, conf),
group_adapters={'all_groups': DevGroupSourceAdapter()},
permission_adapters={'all_perms': DevPermissionSourceAdapter()}

↪→,
identifiers=[('devauth', DevIdentifier(conf))],
authenticators=[('devauth', DevAuthenticator(conf))],
challengers=[('devauth', DevChallenger(conf))])

return auth_filter

4.5.3 Allowing CORS with Auth

Cross Origin Resource Sharing (CORS) require that the auth system allow the OPTIONS method to
pass through without a token. The preflight request will make an OPTIONS call against the object or
container and will not work if the auth system stops it. See TempAuth for an example of how OPTIONS
requests are handled.

4.6 Middleware and Metadata

4.6.1 Using Middleware

Python WSGI Middleware (or just middleware) can be used to wrap the request and response of a
Python WSGI application (i.e. a webapp, or REST/HTTP API), like Swifts WSGI servers (proxy-server,
account-server, container-server, object-server). Swift uses middleware to add (sometimes optional)
behaviors to the Swift WSGI servers.

Middleware can be added to the Swift WSGI servers by modifying their paste configuration file. The
majority of Swift middleware is applied to the Proxy Server.

Given the following basic configuration:

[DEFAULT]
log_level = DEBUG
user = <your-user-name>

[pipeline:main]

(continues on next page)

4.6. Middleware and Metadata 209

http://www.python.org/dev/peps/pep-0333/#middleware-components-that-play-both-sides
http://pythonpaste.org/


Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

pipeline = proxy-server

[app:proxy-server]
use = egg:swift#proxy

You could add the Healthcheck middleware by adding a section for that filter and adding it to the pipeline:

[DEFAULT]
log_level = DEBUG
user = <your-user-name>

[pipeline:main]
pipeline = healthcheck proxy-server

[filter:healthcheck]
use = egg:swift#healthcheck

[app:proxy-server]
use = egg:swift#proxy

Some middleware is required and will be inserted into your pipeline automatically by core swift code
(e.g. the proxy-server will insert CatchErrors and GateKeeper at the start of the pipeline if they are
not already present). You can see which features are available on a given Swift endpoint (including
middleware) using the Discoverability interface.

4.6.2 Creating Your Own Middleware

The best way to see how to write middleware is to look at examples.

Many optional features in Swift are implemented as Middleware and provided in swift.common.
middleware, but Swift middleware may be packaged and distributed as a separate project. Some
examples are listed on the Associated Projects page.

A contrived middleware example that modifies request behavior by inspecting custom HTTP headers
(e.g. X-Webhook) and uses System Metadata to persist data to backend storage as well as common
patterns like a get_container_info() cache/query and wsgify() decorator is presented below:

from swift.common.http import is_success
from swift.common.swob import wsgify
from swift.common.utils import split_path, get_logger
from swift.common.request_helpers import get_sys_meta_prefix
from swift.proxy.controllers.base import get_container_info
from eventlet import Timeout
import six
if six.PY3:

from eventlet.green.urllib import request as urllib2
else:

from eventlet.green import urllib2

# x-container-sysmeta-webhook
SYSMETA_WEBHOOK = get_sys_meta_prefix('container') + 'webhook'

class WebhookMiddleware(object):

(continues on next page)

210 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

def __init__(self, app, conf):
self.app = app
self.logger = get_logger(conf, log_route='webhook')

@wsgify
def __call__(self, req):

obj = None
try:

(version, account, container, obj) = \
split_path(req.path_info, 4, 4, True)

except ValueError:
# not an object request
pass

if 'x-webhook' in req.headers:
# translate user's request header to sysmeta
req.headers[SYSMETA_WEBHOOK] = \

req.headers['x-webhook']
if 'x-remove-webhook' in req.headers:

# empty value will tombstone sysmeta
req.headers[SYSMETA_WEBHOOK] = ''

# account and object storage will ignore x-container-sysmeta-*
resp = req.get_response(self.app)
if obj and is_success(resp.status_int) and req.method == 'PUT':

container_info = get_container_info(req.environ, self.app)
# container_info may have our new sysmeta key
webhook = container_info['sysmeta'].get('webhook')
if webhook:

# create a POST request with obj name as body
webhook_req = urllib2.Request(webhook, data=obj)
with Timeout(20):

try:
urllib2.urlopen(webhook_req).read()

except (Exception, Timeout):
self.logger.exception(

'failed POST to webhook %s' % webhook)
else:

self.logger.info(
'successfully called webhook %s' % webhook)

if 'x-container-sysmeta-webhook' in resp.headers:
# translate sysmeta from the backend resp to
# user-visible client resp header
resp.headers['x-webhook'] = resp.headers[SYSMETA_WEBHOOK]

return resp

def webhook_factory(global_conf, **local_conf):
conf = global_conf.copy()
conf.update(local_conf)

def webhook_filter(app):
return WebhookMiddleware(app, conf)

return webhook_filter

In practice this middleware will call the URL stored on the container as X-Webhook on all successful
object uploads.

If this example was at <swift-repo>/swift/common/middleware/webhook.py - you

4.6. Middleware and Metadata 211



Swift Documentation, Release 2.27.1.dev38

could add it to your proxy by creating a new filter section and adding it to the pipeline:

[DEFAULT]
log_level = DEBUG
user = <your-user-name>

[pipeline:main]
pipeline = healthcheck webhook proxy-server

[filter:webhook]
paste.filter_factory = swift.common.middleware.webhook:webhook_factory

[filter:healthcheck]
use = egg:swift#healthcheck

[app:proxy-server]
use = egg:swift#proxy

Most python packages expose middleware as entrypoints. See PasteDeploy documentation for more
information about the syntax of the use option. All middleware included with Swift is installed to
support the egg:swift syntax.

Middleware may advertize its availability and capabilities via Swifts Discoverability support by using
register_swift_info():

from swift.common.utils import register_swift_info
def webhook_factory(global_conf, **local_conf):

register_swift_info('webhook')
def webhook_filter(app):

return WebhookMiddleware(app)
return webhook_filter

4.6.3 Swift Metadata

Generally speaking metadata is information about a resource that is associated with the resource but is
not the data contained in the resource itself - which is set and retrieved via HTTP headers. (e.g. the
Content-Type of a Swift object that is returned in HTTP response headers)

All user resources in Swift (i.e. account, container, objects) can have user metadata associated with
them. Middleware may also persist custom metadata to accounts and containers safely using System
Metadata. Some core Swift features which predate sysmeta have added exceptions for custom non-user
metadata headers (e.g. ACLs, Large Object Support)

User Metadata

User metadata takes the form of X-<type>-Meta-<key>: <value>, where <type> depends
on the resources type (i.e. Account, Container, Object) and <key> and <value> are set by the client.

User metadata should generally be reserved for use by the client or client applications. A perfect example
use-case for user metadata is python-swiftclients X-Object-Meta-Mtime which it stores on object
it uploads to implement its --changed option which will only upload files that have changed since the
last upload.

212 Chapter 4. Developer Documentation

http://pythonpaste.org/deploy/#egg-uris
https://github.com/openstack/python-swiftclient


Swift Documentation, Release 2.27.1.dev38

New middleware should avoid storing metadata within the User Metadata namespace to avoid potential
conflict with existing user metadata when introducing new metadata keys. An example of legacy mid-
dleware that borrows the user metadata namespace is TempURL. An example of middleware which uses
custom non-user metadata to avoid the user metadata namespace is Static Large Objects.

User metadata that is stored by a PUT or POST request to a container or account resource
persists until it is explicitly removed by a subsequent PUT or POST request that includes a
header X-<type>-Meta-<key> with no value or a header X-Remove-<type>-Meta-<key>:
<ignored-value>. In the latter case the <ignored-value> is not stored. All user metadata
stored with an account or container resource is deleted when the account or container is deleted.

User metadata that is stored with an object resource has a different semantic; object user metadata
persists until any subsequent PUT or POST request is made to the same object, at which point all user
metadata stored with that object is deleted en-masse and replaced with any user metadata included with
the PUT or POST request. As a result, it is not possible to update a subset of the user metadata items
stored with an object while leaving some items unchanged.

System Metadata

System metadata takes the form of X-<type>-Sysmeta-<key>: <value>, where <type> de-
pends on the resources type (i.e. Account, Container, Object) and <key> and <value> are set by
trusted code running in a Swift WSGI Server.

All headers on client requests in the form of X-<type>-Sysmeta-<key> will be dropped from the
request before being processed by any middleware. All headers on responses from back-end systems in
the form of X-<type>-Sysmeta-<key> will be removed after all middlewares have processed the
response but before the response is sent to the client. See GateKeeper middleware for more information.

System metadata provides a means to store potentially private custom metadata with associated Swift
resources in a safe and secure fashion without actually having to plumb custom metadata through the
core swift servers. The incoming filtering ensures that the namespace can not be modified directly by
client requests, and the outgoing filter ensures that removing middleware that uses a specific system
metadata key renders it benign. New middleware should take advantage of system metadata.

System metadata may be set on accounts and containers by including headers with a PUT or POST
request. Where a header name matches the name of an existing item of system metadata, the value of
the existing item will be updated. Otherwise existing items are preserved. A system metadata header
with an empty value will cause any existing item with the same name to be deleted.

System metadata may be set on objects using only PUT requests. All items of existing system metadata
will be deleted and replaced en-masse by any system metadata headers included with the PUT request.
System metadata is neither updated nor deleted by a POST request: updating individual items of system
metadata with a POST request is not yet supported in the same way that updating individual items of
user metadata is not supported. In cases where middleware needs to store its own metadata with a POST
request, it may use Object Transient Sysmeta.

4.6. Middleware and Metadata 213



Swift Documentation, Release 2.27.1.dev38

Object Transient-Sysmeta

If middleware needs to store object metadata with a POST request it may do so using headers of the
form X-Object-Transient-Sysmeta-<key>: <value>.

All headers on client requests in the form of X-Object-Transient-Sysmeta-<key> will be
dropped from the request before being processed by any middleware. All headers on responses from
back-end systems in the form of X-Object-Transient-Sysmeta-<key> will be removed after
all middlewares have processed the response but before the response is sent to the client. See GateKeeper
middleware for more information.

Transient-sysmeta updates on an object have the same semantic as user metadata updates on an object
(see User Metadata) i.e. whenever any PUT or POST request is made to an object, all existing items of
transient-sysmeta are deleted en-masse and replaced with any transient-sysmeta included with the PUT
or POST request. Transient-sysmeta set by a middleware is therefore prone to deletion by a subsequent
client-generated POST request unless the middleware is careful to include its transient-sysmeta with
every POST. Likewise, user metadata set by a client is prone to deletion by a subsequent middleware-
generated POST request, and for that reason middleware should avoid generating POST requests that
are independent of any client request.

Transient-sysmeta deliberately uses a different header prefix to user metadata so that middlewares can
avoid potential conflict with user metadata keys.

Transient-sysmeta deliberately uses a different header prefix to system metadata to emphasize the fact
that the data is only persisted until a subsequent POST.

4.7 Pluggable On-Disk Back-end APIs

The internal REST API used between the proxy server and the account, container and object server is
almost identical to public Swift REST API, but with a few internal extensions (for example, update an
account with a new container).

The pluggable back-end APIs for the three REST API servers (account, container, object) abstracts the
needs for servicing the various REST APIs from the details of how data is laid out and stored on-disk.

The APIs are documented in the reference implementations for all three servers. For historical reasons,
the object server backend reference implementation module is named diskfile, while the account and
container server backend reference implementation modules are named appropriately.

This API is still under development and not yet finalized.

4.7.1 Back-end API for Account Server REST APIs

Pluggable Back-end for Account Server

class swift.account.backend.AccountBroker(db_file, timeout=25, log-
ger=None, account=None,
container=None, pend-
ing_timeout=None,
stale_reads_ok=False,
skip_commits=False)

Encapsulates working with an account database.

214 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

create_account_stat_table(conn, put_timestamp)
Create account_stat table which is specific to the account DB. Not a part of Pluggable Back-
ends, internal to the baseline code.

Parameters

• conn DB connection object

• put_timestamp put timestamp

create_container_table(conn)
Create container table which is specific to the account DB.

Parameters conn DB connection object

create_policy_stat_table(conn)
Create policy_stat table which is specific to the account DB. Not a part of Pluggable Back-
ends, internal to the baseline code.

Parameters conn DB connection object

empty()
Check if the account DB is empty.

Returns True if the database has no active containers.

get_info()
Get global data for the account.

Returns dict with keys: account, created_at, put_timestamp, delete_timestamp,
status_changed_at, container_count, object_count, bytes_used, hash, id

get_policy_stats(do_migrations=False)
Get global policy stats for the account.

Parameters do_migrations boolean, if True the policy stat dicts will al-
ways include the container_count key; otherwise it may be omitted on legacy
databases until they are migrated.

Returns dict of policy stats where the key is the policy index and the value is a
dictionary like {object_count: M, bytes_used: N, container_count: L}

is_status_deleted()
Only returns true if the status field is set to DELETED.

list_containers_iter(limit, marker, end_marker, prefix, delimiter, reverse=False,
allow_reserved=False)

Get a list of containers sorted by name starting at marker onward, up to limit entries. Entries
will begin with the prefix and will not have the delimiter after the prefix.

Parameters

• limit maximum number of entries to get

• marker marker query

• end_marker end marker query

• prefix prefix query

• delimiter delimiter for query

• reverse reverse the result order.

4.7. Pluggable On-Disk Back-end APIs 215



Swift Documentation, Release 2.27.1.dev38

• allow_reserved exclude names with reserved-byte by default

Returns list of tuples of (name, object_count, bytes_used, put_timestamp, 0)

make_tuple_for_pickle(record)
Turn this db record dict into the format this service uses for pending pickles.

merge_items(item_list, source=None)
Merge items into the container table.

Parameters

• item_list list of dictionaries of {name, put_timestamp,
delete_timestamp, object_count, bytes_used, deleted, stor-
age_policy_index}

• source if defined, update incoming_sync with the source

put_container(name, put_timestamp, delete_timestamp, object_count, bytes_used,
storage_policy_index)

Create a container with the given attributes.

Parameters

• name name of the container to create (a native string)

• put_timestamp put_timestamp of the container to create

• delete_timestamp delete_timestamp of the container to create

• object_count number of objects in the container

• bytes_used number of bytes used by the container

• storage_policy_index the storage policy for this container

4.7.2 Back-end API for Container Server REST APIs

Pluggable Back-ends for Container Server

class swift.container.backend.ContainerBroker(db_file, timeout=25, log-
ger=None, account=None,
container=None, pend-
ing_timeout=None,
stale_reads_ok=False,
skip_commits=False,
force_db_file=False)

Encapsulates working with a container database.

Note that this may involve multiple on-disk DB files if the container becomes sharded:

• _db_file is the path to the legacy container DB name, i.e. <hash>.db. This file should
exist for an initialised broker that has never been sharded, but will not exist once a container
has been sharded.

• db_files is a list of existing db files for the broker. This list should have at least one entry
for an initialised broker, and should have two entries while a broker is in SHARDING state.

• db_file is the path to whichever db is currently authoritative for the container. Depend-
ing on the containers state, this may not be the same as the db_file argument given to

216 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

__init__(), unless force_db_file is True in which case db_file is always equal
to the db_file argument given to __init__().

• pending_file is always equal to _db_file extended with .pending, i.e. <hash>.
db.pending.

classmethod create_broker(device_path, part, account, container, log-
ger=None, epoch=None, put_timestamp=None,
storage_policy_index=None)

Create a ContainerBroker instance. If the db doesnt exist, initialize the db file.

Parameters

• device_path device path

• part partition number

• account account name string

• container container name string

• logger a logger instance

• epoch a timestamp to include in the db filename

• put_timestamp initial timestamp if broker needs to be initialized

• storage_policy_index the storage policy index

Returns a swift.container.backend.ContainerBroker instance

create_container_info_table(conn, put_timestamp, storage_policy_index)
Create the container_info table which is specific to the container DB. Not a part of Pluggable
Back-ends, internal to the baseline code. Also creates the container_stat view.

Parameters

• conn DB connection object

• put_timestamp put timestamp

• storage_policy_index storage policy index

create_object_table(conn)
Create the object table which is specific to the container DB. Not a part of Pluggable Back-
ends, internal to the baseline code.

Parameters conn DB connection object

create_policy_stat_table(conn, storage_policy_index=0)
Create policy_stat table.

Parameters

• conn DB connection object

• storage_policy_index the policy_index the container is being cre-
ated with

create_shard_range_table(conn)
Create the shard_range table which is specific to the container DB.

Parameters conn DB connection object

4.7. Pluggable On-Disk Back-end APIs 217



Swift Documentation, Release 2.27.1.dev38

property db_file
Get the path to the primary db file for this broker. This is typically the db file for the most
recent sharding epoch. However, if no db files exist on disk, or if force_db_file was
True when the broker was constructed, then the primary db file is the file passed to the broker
constructor.

Returns A path to a db file; the file does not necessarily exist.

property db_files
Gets the cached list of valid db files that exist on disk for this broker.

The cached list may be refreshed by calling reload_db_files().

Returns A list of paths to db files ordered by ascending epoch; the list may be
empty.

delete_object(name, timestamp, storage_policy_index=0)
Mark an object deleted.

Parameters

• name object name to be deleted

• timestamp timestamp when the object was marked as deleted

• storage_policy_index the storage policy index for the object

empty()
Check if container DB is empty.

This method uses more stringent checks on object count than is_deleted(): this method
checks that there are no objects in any policy; if the container is in the process of sharding
then both fresh and retiring databases are checked to be empty; if a root container has shard
ranges then they are checked to be empty.

Returns True if the database has no active objects, False otherwise

enable_sharding(epoch)
Updates this brokers own shard range with the given epoch, sets its state to SHARDING and
persists it in the DB.

Parameters epoch a Timestamp

Returns the brokers updated own shard range.

find_shard_ranges(shard_size, limit=- 1, existing_ranges=None)
Scans the container db for shard ranges. Scanning will start at the upper bound of the any
existing_ranges that are given, otherwise at ShardRange.MIN. Scanning will stop
when limit shard ranges have been found or when no more shard ranges can be found. In
the latter case, the upper bound of the final shard range will be equal to the upper bound of
the container namespace.

This method does not modify the state of the db; callers are responsible for persisting any
shard range data in the db.

Parameters

• shard_size the size of each shard range

• limit the maximum number of shard points to be found; a negative value
(default) implies no limit.

218 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

• existing_ranges an optional list of existing ShardRanges; if given,
this list should be sorted in order of upper bounds; the scan for new shard
ranges will start at the upper bound of the last existing ShardRange.

Returns a tuple; the first value in the tuple is a list of dicts each having keys
{index, lower, upper, object_count} in order of ascending upper; the second
value in the tuple is a boolean which is True if the last shard range has been
found, False otherwise.

get_all_shard_range_data()
Returns a list of all shard range data, including own shard range and deleted shard ranges.

Returns A list of dict representations of a ShardRange.

get_brokers()
Return a list of brokers for component dbs. The list has two entries while the db state is
sharding: the first entry is a broker for the retiring db with skip_commits set to True;
the second entry is a broker for the fresh db with skip_commits set to False. For any
other db state the list has one entry.

Returns a list of ContainerBroker

get_db_state()
Returns the current state of on disk db files.

get_info()
Get global data for the container.

Returns dict with keys: account, container, created_at, put_timestamp,
delete_timestamp, status_changed_at, object_count, bytes_used, re-
ported_put_timestamp, reported_delete_timestamp, reported_object_count,
reported_bytes_used, hash, id, x_container_sync_point1,
x_container_sync_point2, and storage_policy_index, db_state.

get_info_is_deleted()
Get the is_deleted status and info for the container.

Returns a tuple, in the form (info, is_deleted) info is a dict as returned by get_info
and is_deleted is a boolean.

get_misplaced_since(start, count)
Get a list of objects which are in a storage policy different from the containers storage policy.

Parameters

• start last reconciler sync point

• count maximum number of entries to get

Returns list of dicts with keys: name, created_at, size, content_type, etag, stor-
age_policy_index

get_objects(limit=None, marker=”, end_marker=”, include_deleted=None,
since_row=None)

Returns a list of objects, including deleted objects, in all policies. Each object in the list
is described by a dict with keys {name, created_at, size, content_type, etag, deleted, stor-
age_policy_index}.

Parameters

4.7. Pluggable On-Disk Back-end APIs 219



Swift Documentation, Release 2.27.1.dev38

• limit maximum number of entries to get

• marker if set, objects with names less than or equal to this value will not
be included in the list.

• end_marker if set, objects with names greater than or equal to this value
will not be included in the list.

• include_deleted if True, include only deleted objects; if False, in-
clude only undeleted objects; otherwise (default), include both deleted and
undeleted objects.

• since_row include only items whose ROWID is greater than the given
row id; by default all rows are included.

Returns a list of dicts, each describing an object.

get_own_shard_range(no_default=False)
Returns a shard range representing this brokers own shard range. If no such range has been
persisted in the brokers shard ranges table then a default shard range representing the entire
namespace will be returned.

The returned shard range will be updated with the current object stats for this broker and a
meta timestamp set to the current time. For these values to be persisted the caller must merge
the shard range.

Parameters no_default if True and the brokers own shard range is not found
in the shard ranges table then None is returned, otherwise a default shard range
is returned.

Returns an instance of ShardRange

get_replication_info()
Get information about the DB required for replication.

Returns dict containing keys from get_info plus max_row and metadata

Note:: get_infos <db_contains_type>_count is translated to just count and metadata is
the raw string.

get_shard_ranges(marker=None, end_marker=None, includes=None, re-
verse=False, include_deleted=False, states=None, in-
clude_own=False, exclude_others=False, fill_gaps=False)

Returns a list of persisted shard ranges.

Parameters

• marker restricts the returned list to shard ranges whose namespace in-
cludes or is greater than the marker value.

• end_marker restricts the returned list to shard ranges whose namespace
includes or is less than the end_marker value.

• includes restricts the returned list to the shard range that includes the
given value; if includes is specified then marker and end_marker
are ignored.

• reverse reverse the result order.

• include_deleted include items that have the delete marker set

220 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

• states if specified, restricts the returned list to shard ranges that have the
given state(s); can be a list of ints or a single int.

• include_own boolean that governs whether the row whose name
matches the brokers path is included in the returned list. If True, that row is
included, otherwise it is not included. Default is False.

• exclude_others boolean that governs whether the rows whose names
do not match the brokers path are included in the returned list. If True, those
rows are not included, otherwise they are included. Default is False.

• fill_gaps if True, insert own shard range to fill any gaps in at the tail of
other shard ranges.

Returns a list of instances of swift.common.utils.ShardRange

get_shard_usage()
Get the aggregate object stats for all shard ranges in states ACTIVE, SHARDING or
SHRINKING.

Returns a dict with keys {bytes_used, object_count}

get_sharding_sysmeta(key=None)
Returns sharding specific info from the brokers metadata.

Parameters key if given the value stored under key in the sharding info will be
returned.

Returns either a dict of sharding info or the value stored under key in that dict.

get_sharding_sysmeta_with_timestamps()
Returns sharding specific info from the brokers metadata with timestamps.

Parameters key if given the value stored under key in the sharding info will be
returned.

Returns a dict of sharding info with their timestamps.

is_reclaimable(now, reclaim_age)
Check if the broker abstraction is empty, and has been marked deleted for at least a reclaim
age.

is_root_container()
Returns True if this container is a root container, False otherwise.

A root container is a container that is not a shard of another container.

list_objects_iter(limit, marker, end_marker, prefix, delimiter, path=None,
storage_policy_index=0, reverse=False, include_deleted=False,
since_row=None, transform_func=None, all_policies=False, al-
low_reserved=False)

Get a list of objects sorted by name starting at marker onward, up to limit entries. Entries
will begin with the prefix and will not have the delimiter after the prefix.

Parameters

• limit maximum number of entries to get

• marker marker query

• end_marker end marker query

4.7. Pluggable On-Disk Back-end APIs 221



Swift Documentation, Release 2.27.1.dev38

• prefix prefix query

• delimiter delimiter for query

• path if defined, will set the prefix and delimiter based on the path

• storage_policy_index storage policy index for query

• reverse reverse the result order.

• include_deleted if True, include only deleted objects; if False (de-
fault), include only undeleted objects; otherwise, include both deleted and
undeleted objects.

• since_row include only items whose ROWID is greater than the given
row id; by default all rows are included.

• transform_func an optional function that if given will be called for
each object to get a transformed version of the object to include in the list-
ing; should have same signature as _transform_record(); defaults to
_transform_record().

• all_policies if True, include objects for all storage policies ignoring
any value given for storage_policy_index

• allow_reserved exclude names with reserved-byte by default

Returns list of tuples of (name, created_at, size, content_type, etag, deleted)

make_tuple_for_pickle(record)
Turn this db record dict into the format this service uses for pending pickles.

merge_items(item_list, source=None)
Merge items into the object table.

Parameters

• item_list list of dictionaries of {name, created_at, size, content_type,
etag, deleted, storage_policy_index, ctype_timestamp, meta_timestamp}

• source if defined, update incoming_sync with the source

merge_shard_ranges(shard_ranges)
Merge shard ranges into the shard range table.

Parameters shard_ranges a shard range or a list of shard ranges; each shard
range should be an instance of ShardRange or a dict representation of a
shard range having SHARD_RANGE_KEYS.

put_object(name, timestamp, size, content_type, etag, deleted=0, stor-
age_policy_index=0, ctype_timestamp=None, meta_timestamp=None)

Creates an object in the DB with its metadata.

Parameters

• name object name to be created

• timestamp timestamp of when the object was created

• size object size

• content_type object content-type

222 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

• etag object etag

• deleted if True, marks the object as deleted and sets the deleted_at times-
tamp to timestamp

• storage_policy_index the storage policy index for the object

• ctype_timestamp timestamp of when content_type was last updated

• meta_timestamp timestamp of when metadata was last updated

reload_db_files()
Reloads the cached list of valid on disk db files for this broker.

remove_objects(lower, upper, max_row=None)
Removes object records in the given namespace range from the object table.

Note that objects are removed regardless of their storage_policy_index.

Parameters

• lower defines the lower bound of object names that will be removed;
names greater than this value will be removed; names less than or equal
to this value will not be removed.

• upper defines the upper bound of object names that will be removed;
names less than or equal to this value will be removed; names greater than
this value will not be removed. The empty string is interpreted as there being
no upper bound.

• max_row if specified only rows less than or equal to max_row will be
removed

reported(put_timestamp, delete_timestamp, object_count, bytes_used)
Update reported stats, available with containers get_info.

Parameters

• put_timestamp put_timestamp to update

• delete_timestamp delete_timestamp to update

• object_count object_count to update

• bytes_used bytes_used to update

classmethod resolve_shard_range_states(states)
Given a list of values each of which may be the name of a state, the number of a state, or an
alias, return the set of state numbers described by the list.

The following alias values are supported: listing maps to all states that are considered valid
when listing objects; updating maps to all states that are considered valid for redirecting an
object update; auditing maps to all states that are considered valid for a shard container that
is updating its own shard range table from a root (this currently maps to all states except
FOUND).

Parameters states a list of values each of which may be the name of a state,
the number of a state, or an alias

Returns a set of integer state numbers, or None if no states are given

4.7. Pluggable On-Disk Back-end APIs 223



Swift Documentation, Release 2.27.1.dev38

Raises ValueError if any value in the given list is neither a valid state nor a
valid alias

set_sharded_state()
Unlinks the brokers retiring DB file.

Returns True if the retiring DB was successfully unlinked, False otherwise.

set_sharding_state()
Creates and initializes a fresh DB file in preparation for sharding a retiring DB. The brokers
own shard range must have an epoch timestamp for this method to succeed.

Returns True if the fresh DB was successfully created, False otherwise.

set_sharding_sysmeta(key, value)
Updates the brokers metadata stored under the given key prefixed with a sharding specific
namespace.

Parameters

• key metadata key in the sharding metadata namespace.

• value metadata value

set_storage_policy_index(policy_index, timestamp=None)
Update the container_stat policy_index and status_changed_at.

sharding_initiated()
Returns True if a broker has shard range state that would be necessary for sharding to have
been initiated, False otherwise.

sharding_required()
Returns True if a broker has shard range state that would be necessary for sharding to have
been initiated but has not yet completed sharding, False otherwise.

swift.container.backend.merge_shards(shard_data, existing)
Compares shard_data with existing and updates shard_data with any items of
existing that take precedence over the corresponding item in shard_data.

Parameters

• shard_data a dict representation of shard range that may be modified by
this method.

• existing a dict representation of shard range.

Returns True if shard data has any item(s) that are considered to take precedence
over the corresponding item in existing

swift.container.backend.update_new_item_from_existing(new_item, exist-
ing)

Compare the data and meta related timestamps of a new object item with the timestamps of an
existing object record, and update the new item with data and/or meta related attributes from the
existing record if their timestamps are newer.

The multiple timestamps are encoded into a single string for storing in the created_at column of
the objects db table.

Parameters

• new_item A dict of object update attributes

224 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

• existing A dict of existing object attributes

Returns True if any attributes of the new item dict were found to be newer than the
existing and therefore not updated, otherwise False implying that the updated item
is equal to the existing.

4.7.3 Back-end API for Object Server REST APIs

Disk File Interface for the Swift Object Server

The DiskFile, DiskFileWriter and DiskFileReader classes combined define the on-disk abstraction layer
for supporting the object server REST API interfaces (excluding REPLICATE). Other implementations
wishing to provide an alternative backend for the object server must implement the three classes. An
example alternative implementation can be found in the mem_server.py and mem_diskfile.py modules
along size this one.

The DiskFileManager is a reference implemenation specific class and is not part of the backend API.

The remaining methods in this module are considered implementation specific and are also not consid-
ered part of the backend API.

class swift.obj.diskfile.AuditLocation(path, device, partition, policy)
Represents an object location to be audited.

Other than being a bucket of data, the only useful thing this does is stringify to a filesystem path
so the auditors logs look okay.

class swift.obj.diskfile.BaseDiskFile(mgr, device_path, partition, ac-
count=None, container=None,
obj=None, _datadir=None, pol-
icy=None, use_splice=False,
pipe_size=None, open_expired=False,
next_part_power=None, **kwargs)

Manage object files.

This specific implementation manages object files on a disk formatted with a POSIX-compliant
file system that supports extended attributes as metadata on a file or directory.

Note: The arguments to the constructor are considered implementation specific. The API does
not define the constructor arguments.

The following path format is used for data file locations: <de-
vices_path/<device_dir>/<datadir>/<partdir>/<suffixdir>/<hashdir>/ <datafile>.<ext>

Parameters

• mgr associated DiskFileManager instance

• device_path path to the target device or drive

• partition partition on the device in which the object lives

• account account name for the object

• container container name for the object

• obj object name for the object

4.7. Pluggable On-Disk Back-end APIs 225



Swift Documentation, Release 2.27.1.dev38

• _datadir override the full datadir otherwise constructed here

• policy the StoragePolicy instance

• use_splice if true, use zero-copy splice() to send data

• pipe_size size of pipe buffer used in zero-copy operations

• open_expired if True, open() will not raise a DiskFileExpired if object is
expired

• next_part_power the next partition power to be used

create(size=None)
Context manager to create a file. We create a temporary file first, and then return a Disk-
FileWriter object to encapsulate the state.

Note: An implementation is not required to perform on-disk preallocations even if the
parameter is specified. But if it does and it fails, it must raise a DiskFileNoSpace exception.

Parameters size optional initial size of file to explicitly allocate on disk

Raises DiskFileNoSpace if a size is specified and allocation fails

delete(timestamp)
Delete the object.

This implementation creates a tombstone file using the given timestamp, and removes any
older versions of the object file. Any file that has an older timestamp than timestamp will be
deleted.

Note: An implementation is free to use or ignore the timestamp parameter.

Parameters timestamp timestamp to compare with each file

Raises DiskFileError this implementation will raise the same errors as the
create() method.

property durable_timestamp
Provides the timestamp of the newest data file found in the object directory.

Returns A Timestamp instance, or None if no data file was found.

Raises DiskFileNotOpen if the open() method has not been previously called
on this instance.

get_datafile_metadata()
Provide the datafile metadata for a previously opened object as a dictionary. This is metadata
that was included when the object was first PUT, and does not include metadata set by any
subsequent POST.

Returns objects datafile metadata dictionary

Raises DiskFileNotOpen if the swift.obj.diskfile.DiskFile.
open() method was not previously invoked

226 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

get_metadata()
Provide the metadata for a previously opened object as a dictionary.

Returns objects metadata dictionary

Raises DiskFileNotOpen if the swift.obj.diskfile.DiskFile.
open() method was not previously invoked

get_metafile_metadata()
Provide the metafile metadata for a previously opened object as a dictionary. This is metadata
that was written by a POST and does not include any persistent metadata that was set by the
original PUT.

Returns objects .meta file metadata dictionary, or None if there is no .meta file

Raises DiskFileNotOpen if the swift.obj.diskfile.DiskFile.
open() method was not previously invoked

open(modernize=False, current_time=None)
Open the object.

This implementation opens the data file representing the object, reads the associated meta-
data in the extended attributes, additionally combining metadata from fast-POST .meta files.

Parameters

• modernize if set, update this diskfile to the latest format. Currently, this
means adding metadata checksums if none are present.

• current_time Unix time used in checking expiration. If not present,
the current time will be used.

Note: An implementation is allowed to raise any of the following exceptions, but is only
required to raise DiskFileNotExist when the object representation does not exist.

Raises

• DiskFileCollision on name mis-match with metadata

• DiskFileNotExist if the object does not exist

• DiskFileDeleted if the object was previously deleted

• DiskFileQuarantined if while reading metadata of the file some data
did pass cross checks

Returns itself for use as a context manager

read_metadata(current_time=None)
Return the metadata for an object without requiring the caller to open the object first.

Parameters current_time Unix time used in checking expiration. If not
present, the current time will be used.

Returns metadata dictionary for an object

Raises DiskFileError this implementation will raise the same errors as the
open() method.

4.7. Pluggable On-Disk Back-end APIs 227



Swift Documentation, Release 2.27.1.dev38

reader(keep_cache=False, _quarantine_hook=<function BaseDiskFile.<lambda»)
Return a swift.common.swob.Response class compatible app_iter object as defined
by swift.obj.diskfile.DiskFileReader.

For this implementation, the responsibility of closing the open file is passed to the swift.
obj.diskfile.DiskFileReader object.

Parameters

• keep_cache callers preference for keeping data read in the OS buffer
cache

• _quarantine_hook 1-arg callable called when obj quarantined; the arg
is the reason for quarantine. Default is to ignore it. Not needed by the REST
layer.

Returns a swift.obj.diskfile.DiskFileReader object

write_metadata(metadata)
Write a block of metadata to an object without requiring the caller to create the object first.
Supports fast-POST behavior semantics.

Parameters metadata dictionary of metadata to be associated with the object

Raises DiskFileError this implementation will raise the same errors as the
create() method.

class swift.obj.diskfile.BaseDiskFileManager(conf, logger)
Management class for devices, providing common place for shared parameters and methods not
provided by the DiskFile class (which primarily services the object server REST API layer).

The get_diskfile() method is how this implementation creates a DiskFile object.

Note: This class is reference implementation specific and not part of the pluggable on-disk
backend API.

Note: TODO(portante): Not sure what the right name to recommend here, as manager seemed
generic enough, though suggestions are welcome.

Parameters

• conf caller provided configuration object

• logger caller provided logger

cleanup_ondisk_files(hsh_path, **kwargs)
Clean up on-disk files that are obsolete and gather the set of valid on-disk files for an object.

Parameters

• hsh_path object hash path

• frag_index if set, search for a specific fragment index .data file, other-
wise accept the first valid .data file

228 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

Returns a dict that may contain: valid on disk files keyed by their filename ex-
tension; a list of obsolete files stored under the key obsolete; a list of files
remaining in the directory, reverse sorted, stored under the key files.

construct_dev_path(device)
Construct the path to a device without checking if it is mounted.

Parameters device name of target device

Returns full path to the device

get_dev_path(device, mount_check=None)
Return the path to a device, first checking to see if either it is a proper mount point, or at
least a directory depending on the mount_check configuration option.

Parameters

• device name of target device

• mount_check whether or not to check mountedness of device. Defaults
to bool(self.mount_check).

Returns full path to the device, None if the path to the device is not a proper mount
point or directory.

get_diskfile(device, partition, account, container, obj, policy, **kwargs)
Returns a BaseDiskFile instance for an object based on the objects partition, path parts and
policy.

Parameters

• device name of target device

• partition partition on device in which the object lives

• account account name for the object

• container container name for the object

• obj object name for the object

• policy the StoragePolicy instance

get_diskfile_from_audit_location(audit_location)
Returns a BaseDiskFile instance for an object at the given AuditLocation.

Parameters audit_location object location to be audited

get_diskfile_from_hash(device, partition, object_hash, policy, **kwargs)
Returns a DiskFile instance for an object at the given object_hash. Just in case someone
thinks of refactoring, be sure DiskFileDeleted is not raised, but the DiskFile instance repre-
senting the tombstoned object is returned instead.

Parameters

• device name of target device

• partition partition on the device in which the object lives

• object_hash the hash of an object path

• policy the StoragePolicy instance

Raises DiskFileNotExist if the object does not exist

4.7. Pluggable On-Disk Back-end APIs 229



Swift Documentation, Release 2.27.1.dev38

Returns an instance of BaseDiskFile

get_hashes(device, partition, suffixes, policy, skip_rehash=False)

Parameters

• device name of target device

• partition partition name

• suffixes a list of suffix directories to be recalculated

• policy the StoragePolicy instance

• skip_rehash just mark the suffixes dirty; return None

Returns a dictionary that maps suffix directories

get_ondisk_files(files, datadir, verify=True, policy=None, **kwargs)
Given a simple list of files names, determine the files that constitute a valid fileset i.e. a set
of files that defines the state of an object, and determine the files that are obsolete and could
be deleted. Note that some files may fall into neither category.

If a file is considered part of a valid fileset then its info dict will be added to the results dict,
keyed by <extension>_info. Any files that are no longer required will have their info dicts
added to a list stored under the key obsolete.

The results dict will always contain entries with keys ts_file, data_file and meta_file. Their
values will be the fully qualified path to a file of the corresponding type if there is such a file
in the valid fileset, or None.

Parameters

• files a list of file names.

• datadir directory name files are from; this is used to construct file paths
in the results, but the datadir is not modified by this method.

• verify if True verify that the ondisk file contract has not been violated,
otherwise do not verify.

• policy storage policy used to store the files. Used to validate fragment
indexes for EC policies.

Returns

a dict that will contain keys: ts_file -> path to a .ts file or None data_file ->
path to a .data file or None meta_file -> path to a .meta file or None ctype_file
-> path to a .meta file or None

and may contain keys: ts_info -> a file info dict for a .ts file data_info ->
a file info dict for a .data file meta_info -> a file info dict for a .meta file
ctype_info -> a file info dict for a .meta file which contains the content-type
value unexpected -> a list of file paths for unexpected files possible_reclaim
-> a list of file info dicts for possible reclaimable files obsolete -> a list of
file info dicts for obsolete files

make_on_disk_filename(timestamp, ext=None, ctype_timestamp=None, *a, **kw)
Returns filename for given timestamp.

Parameters

230 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

• timestamp the object timestamp, an instance of Timestamp

• ext an optional string representing a file extension to be appended to the
returned file name

• ctype_timestamp an optional content-type timestamp, an instance of
Timestamp

Returns a file name

object_audit_location_generator(policy, device_dirs=None, audi-
tor_type=’ALL’)

Yield an AuditLocation for all objects stored under device_dirs.

Parameters

• policy the StoragePolicy instance

• device_dirs directory of target device

• auditor_type either ALL or ZBF

parse_on_disk_filename(filename, policy)
Parse an on disk file name.

Parameters

• filename the file name including extension

• policy storage policy used to store the file

Returns

a dict, with keys for timestamp, ext and ctype_timestamp:

• timestamp is a Timestamp

• ctype_timestamp is a Timestamp or None for .meta files, otherwise None

• ext is a string, the file extension including the leading dot or the empty string
if the filename has no extension.

Subclasses may override this method to add further keys to the returned dict.

Raises DiskFileError if any part of the filename is not able to be validated.

partition_lock(device, policy, partition, name=None, timeout=None)
A context manager that will lock on the partition given.

Parameters

• device device targeted by the lock request

• policy policy targeted by the lock request

• partition partition targeted by the lock request

Raises PartitionLockTimeout If the lock on the partition cannot be
granted within the configured timeout.

pickle_async_update(device, account, container, obj, data, timestamp, policy)
Write data describing a container update notification to a pickle file in the async_pending
directory.

Parameters

4.7. Pluggable On-Disk Back-end APIs 231



Swift Documentation, Release 2.27.1.dev38

• device name of target device

• account account name for the object

• container container name for the object

• obj object name for the object

• data update data to be written to pickle file

• timestamp a Timestamp

• policy the StoragePolicy instance

replication_lock(device, policy, partition)
A context manager that will lock on the partition and, if configured to do so, on the device
given.

Parameters

• device name of target device

• policy policy targeted by the replication request

• partition partition targeted by the replication request

Raises ReplicationLockTimeout If the lock on the device cannot be
granted within the configured timeout.

yield_hashes(device, partition, policy, suffixes=None, **kwargs)
Yields tuples of (hash_only, timestamps) for object information stored for the given device,
partition, and (optionally) suffixes. If suffixes is None, all stored suffixes will be searched
for object hashes. Note that if suffixes is not None but empty, such as [], then nothing will
be yielded.

timestamps is a dict which may contain items mapping:

• ts_data -> timestamp of data or tombstone file,

• ts_meta -> timestamp of meta file, if one exists

• ts_ctype -> timestamp of meta file containing most recent content-type value, if
one exists

• durable -> True if data file at ts_data is durable, False otherwise

where timestamps are instances of Timestamp

Parameters

• device name of target device

• partition partition name

• policy the StoragePolicy instance

• suffixes optional list of suffix directories to be searched

yield_suffixes(device, partition, policy)
Yields tuples of (full_path, suffix_only) for suffixes stored on the given device and partition.

Parameters

• device name of target device

232 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

• partition partition name

• policy the StoragePolicy instance

class swift.obj.diskfile.BaseDiskFileReader(fp, data_file, obj_size,
etag, disk_chunk_size,
keep_cache_size, device_path,
logger, quarantine_hook,
use_splice, pipe_size, diskfile,
keep_cache=False)

Encapsulation of the WSGI read context for servicing GET REST API requests. Serves as
the context manager object for the swift.obj.diskfile.DiskFile classs swift.obj.
diskfile.DiskFile.reader() method.

Note: The quarantining behavior of this method is considered implementation specific, and is
not required of the API.

Note: The arguments to the constructor are considered implementation specific. The API does
not define the constructor arguments.

Parameters

• fp open file object pointer reference

• data_file on-disk data file name for the object

• obj_size verified on-disk size of the object

• etag expected metadata etag value for entire file

• disk_chunk_size size of reads from disk in bytes

• keep_cache_size maximum object size that will be kept in cache

• device_path on-disk device path, used when quarantining an obj

• logger logger caller wants this object to use

• quarantine_hook 1-arg callable called w/reason when quarantined

• use_splice if true, use zero-copy splice() to send data

• pipe_size size of pipe buffer used in zero-copy operations

• diskfile the diskfile creating this DiskFileReader instance

• keep_cache should resulting reads be kept in the buffer cache

app_iter_range(start, stop)
Returns an iterator over the data file for range (start, stop)

app_iter_ranges(ranges, content_type, boundary, size)
Returns an iterator over the data file for a set of ranges

close()
Close the open file handle if present.

For this specific implementation, this method will handle quarantining the file if necessary.

4.7. Pluggable On-Disk Back-end APIs 233



Swift Documentation, Release 2.27.1.dev38

zero_copy_send(wsockfd)
Does some magic with splice() and tee() to move stuff from disk to network without ever
touching userspace.

Parameters wsockfd file descriptor (integer) of the socket out which to send
data

class swift.obj.diskfile.BaseDiskFileWriter(name, datadir, size,
bytes_per_sync, diskfile,
next_part_power)

Encapsulation of the write context for servicing PUT REST API requests. Serves as the
context manager object for the swift.obj.diskfile.DiskFile classs swift.obj.
diskfile.DiskFile.create() method.

Note: It is the responsibility of the swift.obj.diskfile.DiskFile.create()method
context manager to close the open file descriptor.

Note: The arguments to the constructor are considered implementation specific. The API does
not define the constructor arguments.

Parameters

• name name of object from REST API

• datadir on-disk directory object will end up in on swift.obj.
diskfile.DiskFileWriter.put()

• fd open file descriptor of temporary file to receive data

• tmppath full path name of the opened file descriptor

• bytes_per_sync number bytes written between sync calls

• diskfile the diskfile creating this DiskFileWriter instance

• next_part_power the next partition power to be used

chunks_finished()
Expose internal stats about written chunks.

Returns a tuple, (upload_size, etag)

commit(timestamp)
Perform any operations necessary to mark the object as durable. For replication policy type
this is a no-op.

Parameters timestamp object put timestamp, an instance of Timestamp

put(metadata)
Finalize writing the file on disk.

Parameters metadata dictionary of metadata to be associated with the object

write(chunk)
Write a chunk of data to disk. All invocations of this method must come before invoking the
:func:

234 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

For this implementation, the data is written into a temporary file.

Parameters chunk the chunk of data to write as a string object

class swift.obj.diskfile.DiskFile(mgr, device_path, partition, account=None,
container=None, obj=None, _datadir=None,
policy=None, use_splice=False,
pipe_size=None, open_expired=False,
next_part_power=None, **kwargs)

reader_cls
alias of swift.obj.diskfile.DiskFileReader

writer_cls
alias of swift.obj.diskfile.DiskFileWriter

class swift.obj.diskfile.DiskFileManager(conf, logger)

diskfile_cls
alias of swift.obj.diskfile.DiskFile

class swift.obj.diskfile.DiskFileReader(fp, data_file, obj_size, etag,
disk_chunk_size, keep_cache_size,
device_path, logger, quaran-
tine_hook, use_splice, pipe_size,
diskfile, keep_cache=False)

class swift.obj.diskfile.DiskFileWriter(name, datadir, size, bytes_per_sync,
diskfile, next_part_power)

put(metadata)
Finalize writing the file on disk.

Parameters metadata dictionary of metadata to be associated with the object

class swift.obj.diskfile.ECDiskFile(*args, **kwargs)

property durable_timestamp
Provides the timestamp of the newest durable file found in the object directory.

Returns A Timestamp instance, or None if no durable file was found.

Raises DiskFileNotOpen if the open() method has not been previously called
on this instance.

property fragments
Provides information about all fragments that were found in the object directory, including
fragments without a matching durable file, and including any fragment chosen to construct
the opened diskfile.

Returns A dict mapping <Timestamp instance> -> <list of frag indexes>, or None
if the diskfile has not been opened or no fragments were found.

purge(timestamp, frag_index)
Remove a tombstone file matching the specified timestamp or datafile matching the specified
timestamp and fragment index from the object directory.

4.7. Pluggable On-Disk Back-end APIs 235



Swift Documentation, Release 2.27.1.dev38

This provides the EC reconstructor/ssync process with a way to remove a tombstone or
fragment from a handoff node after reverting it to its primary node.

The hash will be invalidated, and if empty the hsh_path will be removed immediately.

Parameters

• timestamp the object timestamp, an instance of Timestamp

• frag_index fragment archive index, must be a whole number or None.

reader_cls
alias of swift.obj.diskfile.ECDiskFileReader

writer_cls
alias of swift.obj.diskfile.ECDiskFileWriter

class swift.obj.diskfile.ECDiskFileManager(conf, logger)

diskfile_cls
alias of swift.obj.diskfile.ECDiskFile

make_on_disk_filename(timestamp, ext=None, frag_index=None,
ctype_timestamp=None, durable=False, *a, **kw)

Returns the EC specific filename for given timestamp.

Parameters

• timestamp the object timestamp, an instance of Timestamp

• ext an optional string representing a file extension to be appended to the
returned file name

• frag_index a fragment archive index, used with .data extension only,
must be a whole number.

• ctype_timestamp an optional content-type timestamp, an instance of
Timestamp

• durable if True then include a durable marker in data filename.

Returns a file name

Raises DiskFileError if ext==.data and the kwarg frag_index is not a whole
number

parse_on_disk_filename(filename, policy)
Returns timestamp(s) and other info extracted from a policy specific file name. For EC
policy the data file name includes a fragment index and possibly a durable marker, both of
which must be stripped off to retrieve the timestamp.

Parameters filename the file name including extension

Returns

a dict, with keys for timestamp, frag_index, durable, ext and
ctype_timestamp:

• timestamp is a Timestamp

• frag_index is an int or None

236 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

• ctype_timestamp is a Timestamp or None for .meta files, otherwise None

• ext is a string, the file extension including the leading dot or the empty string
if the filename has no extension

• durable is a boolean that is True if the filename is a data file that includes a
durable marker

Raises DiskFileError if any part of the filename is not able to be validated.

validate_fragment_index(frag_index, policy=None)
Return int representation of frag_index, or raise a DiskFileError if frag_index is not a whole
number.

Parameters

• frag_index a fragment archive index

• policy storage policy used to validate the index against

class swift.obj.diskfile.ECDiskFileReader(fp, data_file, obj_size,
etag, disk_chunk_size,
keep_cache_size, device_path,
logger, quarantine_hook,
use_splice, pipe_size, diskfile,
keep_cache=False)

class swift.obj.diskfile.ECDiskFileWriter(name, datadir, size,
bytes_per_sync, diskfile,
next_part_power)

commit(timestamp)
Finalize put by renaming the object data file to include a durable marker. We do this for EC
policy because it requires a 2-phase put commit confirmation.

Parameters timestamp object put timestamp, an instance of Timestamp

Raises DiskFileError if the diskfile frag_index has not been set (either dur-
ing initialisation or a call to put())

put(metadata)
The only difference between this method and the replication policy DiskFileWriter method
is adding the frag index to the metadata.

Parameters metadata dictionary of metadata to be associated with object

swift.obj.diskfile.consolidate_hashes(partition_dir)
Take whats in hashes.pkl and hashes.invalid, combine them, write the result back to hashes.pkl,
and clear out hashes.invalid.

Parameters partition_dir absolute path to partition dir containing hashes.pkl
and hashes.invalid

Returns a dict, the suffix hashes (if any), the key valid will be False if hashes.pkl is
corrupt, cannot be read or does not exist

swift.obj.diskfile.extract_policy(obj_path)
Extracts the policy for an object (based on the name of the objects directory) given the device-
relative path to the object. Returns None in the event that the path is malformed in some way.

4.7. Pluggable On-Disk Back-end APIs 237



Swift Documentation, Release 2.27.1.dev38

The device-relative path is everything after the mount point; for example:

/srv/node/d42/objects-5/30/179/ 485dc017205a81df3af616d917c90179/1401811134.873649.data

would have device-relative path:

objects-5/30/179/485dc017205a81df3af616d917c90179/1401811134.873649.data

Parameters obj_path device-relative path of an object, or the full path

Returns a BaseStoragePolicy or None

swift.obj.diskfile.get_async_dir(policy_or_index)
Get the async dir for the given policy.

Parameters policy_or_index StoragePolicy instance, or an index (string
or int); if None, the legacy Policy-0 is assumed.

Returns async_pending or async_pending-<N> as appropriate

swift.obj.diskfile.get_data_dir(policy_or_index)
Get the data dir for the given policy.

Parameters policy_or_index StoragePolicy instance, or an index (string
or int); if None, the legacy Policy-0 is assumed.

Returns objects or objects-<N> as appropriate

swift.obj.diskfile.get_part_path(dev_path, policy, partition)
Given the device path, policy, and partition, returns the full path to the partition

swift.obj.diskfile.get_tmp_dir(policy_or_index)
Get the temp dir for the given policy.

Parameters policy_or_index StoragePolicy instance, or an index (string
or int); if None, the legacy Policy-0 is assumed.

Returns tmp or tmp-<N> as appropriate

swift.obj.diskfile.invalidate_hash(suffix_dir)
Invalidates the hash for a suffix_dir in the partitions hashes file.

Parameters suffix_dir absolute path to suffix dir whose hash needs invalidating

swift.obj.diskfile.object_audit_location_generator(devices, datadir,
mount_check=True,
logger=None, de-
vice_dirs=None, au-
ditor_type=’ALL’)

Given a devices path (e.g. /srv/node), yield an AuditLocation for all objects stored under that
directory for the given datadir (policy), if device_dirs isnt set. If device_dirs is set, only yield
AuditLocation for the objects under the entries in device_dirs. The AuditLocation only knows
the path to the hash directory, not to the .data file therein (if any). This is to avoid a double
listdir(hash_dir); the DiskFile object will always do one, so we dont.

Parameters

• devices parent directory of the devices to be audited

• datadir objects directory

238 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

• mount_check flag to check if a mount check should be performed on de-
vices

• logger a logger object

• device_dirs a list of directories under devices to traverse

• auditor_type either ALL or ZBF

swift.obj.diskfile.quarantine_renamer(device_path, corrupted_file_path)
In the case that a file is corrupted, move it to a quarantined area to allow replication to fix it.

Params device_path The path to the device the corrupted file is on.

Params corrupted_file_path The path to the file you want quarantined.

Returns path (str) of directory the file was moved to

Raises OSError re-raises non errno.EEXIST / errno.ENOTEMPTY exceptions
from rename

swift.obj.diskfile.read_hashes(partition_dir)
Read the existing hashes.pkl

Returns a dict, the suffix hashes (if any), the key valid will be False if hashes.pkl is
corrupt, cannot be read or does not exist

swift.obj.diskfile.read_metadata(fd, add_missing_checksum=False)
Helper function to read the pickled metadata from an object file.

Parameters

• fd file descriptor or filename to load the metadata from

• add_missing_checksum if set and checksum is missing, add it

Returns dictionary of metadata

swift.obj.diskfile.relink_paths(target_path, new_target_path)
Hard-links a file located in target_path using the second path new_target_path. Creates interme-
diate directories if required.

Parameters

• target_path current absolute filename

• new_target_path new absolute filename for the hardlink

Raises OSError if the hard link could not be created, unless the intended hard link
already exists or the target_path does not exist.

Returns True if the link was created by the call to this method, False otherwise.

swift.obj.diskfile.strip_self(f)
Wrapper to attach module level functions to base class.

swift.obj.diskfile.write_hashes(partition_dir, hashes)
Write hashes to hashes.pkl

The updated key is added to hashes before it is written.

swift.obj.diskfile.write_metadata(fd, metadata, xattr_size=65536)
Helper function to write pickled metadata for an object file.

4.7. Pluggable On-Disk Back-end APIs 239



Swift Documentation, Release 2.27.1.dev38

Parameters

• fd file descriptor or filename to write the metadata

• metadata metadata to write

4.8 Auditor Watchers

4.8.1 Overview

The duty of auditors is to guard Swift against corruption in the storage media. But because auditors
crawl all objects, they can be used to program Swift to operate on every object. It is done through an
API known as watcher.

Watchers do not have any private view into the cluster. An operator can write a standalone program
that walks the directories and performs any desired inspection or maintenance. What watcher brings to
the table is a framework to do the same job easily, under resource restrictions already in place for the
auditor.

Operations performed by watchers are often site-specific, or else they would be incorporated into Swift
already. However, the code in the tree provides a reference implementation for convenience. It is located
in swift/obj/watchers/dark_data.py and implements so-called Dark Data Watcher.

Currently, only object auditor supports the watchers.

4.8.2 The API class

The implementation of a watcher is a Python class that may look like this:

class MyWatcher(object):

def __init__(self, conf, logger, **kwargs):
pass

def start(self, audit_type, **kwargs):
pass

def see_object(self, object_metadata, policy_index, partition,
data_file_path, **kwargs):

pass

def end(self, **kwargs):
pass

Arguments to watcher methods are passed as keyword arguments, and methods are expected to consume
new, unknown arguments.

The method __init__() is used to save configuration and logger at the start of the plug-in.

The method start() is invoked when auditor starts a pass. It usually resets counters. The argument
auditor_type is string of ALL or ZBF, according to the type of the auditor running the watcher. Watchers
that talk to the network tend to hang off the ALL-type auditor, the lightweight ones are okay with the
ZBF-type.

240 Chapter 4. Developer Documentation



Swift Documentation, Release 2.27.1.dev38

The method end() is the closing bracket for start(). It is typically used to log something, or dump some
statistics.

The method see_object() is called when auditor completed an audit of an object. This is where most of
the work is done.

The protocol for see_object() allows it to raise a special exception, QuarantienRequested. Auditor
catches it and quarantines the object. In general, its okay for watcher methods to throw exceptions,
so an author of a watcher plugin does not have to catch them explicitly with a try:; they can be just
permitted to bubble up naturally.

4.8.3 Loading the plugins

Swift auditor loads watcher classes from eggs, so it is necessary to wrap the class and provide it an entry
point:

$ cat /usr/lib/python3.8/site-p*/mywatcher*egg-info/entry_points.txt
[mywatcher.mysection]
mywatcherentry = mywatcher:MyWatcher

Operator tells Swift auditor what plugins to load by adding them to object-server.conf in the section
[object-auditor]. It is also possible to pass parameters, arriving in the argument conf{} of method start():

[object-auditor]
watchers = mywatcher#mywatcherentry,swift#dark_data

[object-auditor:watcher:mywatcher#mywatcherentry]
myparam=testing2020

Do not forget to remove the watcher from auditors when done. Although the API itself is very
lightweight, it is common for watchers to incur a significant performance penalty: they can talk to
networked services or access additional objects.

4.8.4 Dark Data Watcher

The watcher API is assumed to be under development. Operators who need extensions are welcome to
report any needs for more arguments to see_object(). For now, start by copying the provided template
watcher swift/obj/watchers/dark_data.py and see if it is sufficient.

The name of Dark Data refers to the scientific hypothesis of Dark Matter, which supposes that the
universe contains a lot of matter than we cannot observe. The Dark Data in Swift is the name of objects
that are not accounted in the containers.

The experience of running large scale clusters suggests that Swift does not have any particular bugs that
trigger creation of dark data. So, this is an excercise in writing watchers, with a plausible function.

When enabled, Dark Data watcher definitely drags down the clusters overall performance, as mentioned
above. Of course, the load increase can be mitigated as usual, but at the expense of the total time taken
by the pass of auditor.

Finally, keep in mind that Dark Data watcher needs the container ring to operate, but runs on an object
node. This can come up if cluster has nodes separated by function.

4.8. Auditor Watchers 241



Swift Documentation, Release 2.27.1.dev38

242 Chapter 4. Developer Documentation



CHAPTER

FIVE

ADMINISTRATOR DOCUMENTATION

5.1 Instructions for a Multiple Server Swift Installation

Please refer to the latest official OpenStack Installation Guides for the most up-to-date documentation.

5.1.1 Current Install Guides

• Object Storage installation guide for OpenStack Ocata

• Object Storage installation guide for OpenStack Newton

5.2 Deployment Guide

This document provides general guidance for deploying and configuring Swift. Detailed descriptions of
configuration options can be found in the configuration documentation.

5.2.1 Hardware Considerations

Swift is designed to run on commodity hardware. RAID on the storage drives is not required and not
recommended. Swifts disk usage pattern is the worst case possible for RAID, and performance degrades
very quickly using RAID 5 or 6.

5.2.2 Deployment Options

The Swift services run completely autonomously, which provides for a lot of flexibility when architect-
ing the hardware deployment for Swift. The 4 main services are:

1. Proxy Services

2. Object Services

3. Container Services

4. Account Services

The Proxy Services are more CPU and network I/O intensive. If you are using 10g networking to the
proxy, or are terminating SSL traffic at the proxy, greater CPU power will be required.

The Object, Container, and Account Services (Storage Services) are more disk and network I/O inten-
sive.

243

https://docs.openstack.org/latest/install/
https://docs.openstack.org/project-install-guide/object-storage/ocata/
https://docs.openstack.org/project-install-guide/object-storage/newton/


Swift Documentation, Release 2.27.1.dev38

The easiest deployment is to install all services on each server. There is nothing wrong with doing this,
as it scales each service out horizontally.

Alternatively, one set of servers may be dedicated to the Proxy Services and a different set of servers
dedicated to the Storage Services. This allows faster networking to be configured to the proxy than the
storage servers, and keeps load balancing to the proxies more manageable. Storage Services scale out
horizontally as storage servers are added, and the overall API throughput can be scaled by adding more
proxies.

If you need more throughput to either Account or Container Services, they may each be deployed to
their own servers. For example you might use faster (but more expensive) SAS or even SSD drives to
get faster disk I/O to the databases.

A high-availability (HA) deployment of Swift requires that multiple proxy servers are deployed and
requests are load-balanced between them. Each proxy server instance is stateless and able to respond to
requests for the entire cluster.

Load balancing and network design is left as an exercise to the reader, but this is a very important part
of the cluster, so time should be spent designing the network for a Swift cluster.

5.2.3 Web Front End Options

Swift comes with an integral web front end. However, it can also be deployed as a request processor of
an Apache2 using mod_wsgi as described in Apache Deployment Guide.

5.2.4 Preparing the Ring

The first step is to determine the number of partitions that will be in the ring. We recommend that there
be a minimum of 100 partitions per drive to insure even distribution across the drives. A good starting
point might be to figure out the maximum number of drives the cluster will contain, and then multiply
by 100, and then round up to the nearest power of two.

For example, imagine we are building a cluster that will have no more than 5,000 drives. That would
mean that we would have a total number of 500,000 partitions, which is pretty close to 2^19, rounded
up.

It is also a good idea to keep the number of partitions small (relatively). The more partitions there are,
the more work that has to be done by the replicators and other backend jobs and the more memory the
rings consume in process. The goal is to find a good balance between small rings and maximum cluster
size.

The next step is to determine the number of replicas to store of the data. Currently it is recommended
to use 3 (as this is the only value that has been tested). The higher the number, the more storage that is
used but the less likely you are to lose data.

It is also important to determine how many zones the cluster should have. It is recommended to start
with a minimum of 5 zones. You can start with fewer, but our testing has shown that having at least five
zones is optimal when failures occur. We also recommend trying to configure the zones at as high a level
as possible to create as much isolation as possible. Some example things to take into consideration can
include physical location, power availability, and network connectivity. For example, in a small cluster
you might decide to split the zones up by cabinet, with each cabinet having its own power and network
connectivity. The zone concept is very abstract, so feel free to use it in whatever way best isolates your
data from failure. Each zone exists in a region.

244 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

A region is also an abstract concept that may be used to distinguish between geographically separated
areas as well as can be used within same datacenter. Regions and zones are referenced by a positive
integer.

You can now start building the ring with:

swift-ring-builder <builder_file> create <part_power> <replicas> <min_part_
↪→hours>

This will start the ring build process creating the <builder_file> with 2^<part_power> partitions.
<min_part_hours> is the time in hours before a specific partition can be moved in succession (24 is
a good value for this).

Devices can be added to the ring with:

swift-ring-builder <builder_file> add r<region>z<zone>-<ip>:<port>/<device_
↪→name>_<meta> <weight>

This will add a device to the ring where <builder_file> is the name of the builder file that was created
previously, <region> is the number of the region the zone is in, <zone> is the number of the zone this
device is in, <ip> is the ip address of the server the device is in, <port> is the port number that the server
is running on, <device_name> is the name of the device on the server (for example: sdb1), <meta> is a
string of metadata for the device (optional), and <weight> is a float weight that determines how many
partitions are put on the device relative to the rest of the devices in the cluster (a good starting point is
100.0 x TB on the drive).Add each device that will be initially in the cluster.

Once all of the devices are added to the ring, run:

swift-ring-builder <builder_file> rebalance

This will distribute the partitions across the drives in the ring. It is important whenever making changes
to the ring to make all the changes required before running rebalance. This will ensure that the ring stays
as balanced as possible, and as few partitions are moved as possible.

The above process should be done to make a ring for each storage service (Account, Container and
Object). The builder files will be needed in future changes to the ring, so it is very important that these
be kept and backed up. The resulting .tar.gz ring file should be pushed to all of the servers in the cluster.
For more information about building rings, running swift-ring-builder with no options will display help
text with available commands and options. More information on how the ring works internally can be
found in the Ring Overview.

5.2.5 Running object-servers Per Disk

The lack of true asynchronous file I/O on Linux leaves the object-server workers vulnerable to mis-
behaving disks. Because any object-server worker can service a request for any disk, and a slow I/O
request blocks the eventlet hub, a single slow disk can impair an entire storage node. This also prevents
object servers from fully utilizing all their disks during heavy load.

Another way to get full I/O isolation is to give each disk on a storage node a different port in the storage
policy rings. Then set the servers_per_port option in the object-server config. NOTE: while the purpose
of this config setting is to run one or more object-server worker processes per disk, the implementation
just runs object-servers per unique port of local devices in the rings. The deployer must combine this
option with appropriately-configured rings to benefit from this feature.

Heres an example (abbreviated) old-style ring (2 node cluster with 2 disks each):

5.2. Deployment Guide 245



Swift Documentation, Release 2.27.1.dev38

Devices: id region zone ip address port replication ip
↪→replication port name

0 1 1 1.1.0.1 6200 1.1.0.1
↪→ 6200 d1

1 1 1 1.1.0.1 6200 1.1.0.1
↪→ 6200 d2

2 1 2 1.1.0.2 6200 1.1.0.2
↪→ 6200 d3

3 1 2 1.1.0.2 6200 1.1.0.2
↪→ 6200 d4

And heres the same ring set up for servers_per_port:

Devices: id region zone ip address port replication ip
↪→replication port name

0 1 1 1.1.0.1 6200 1.1.0.1
↪→ 6200 d1

1 1 1 1.1.0.1 6201 1.1.0.1
↪→ 6201 d2

2 1 2 1.1.0.2 6200 1.1.0.2
↪→ 6200 d3

3 1 2 1.1.0.2 6201 1.1.0.2
↪→ 6201 d4

When migrating from normal to servers_per_port, perform these steps in order:

1. Upgrade Swift code to a version capable of doing servers_per_port.

2. Enable servers_per_port with a value greater than zero.

3. Restart swift-object-server processes with a SIGHUP. At this point, you will have the
servers_per_port number of swift-object-server processes serving all requests for
all disks on each node. This preserves availability, but you should perform the next step as quickly
as possible.

4. Push out new rings that actually have different ports per disk on each server. One of the ports in
the new ring should be the same as the port used in the old ring (6200 in the example above). This
will cover existing proxy-server processes who havent loaded the new ring yet. They can still talk
to any storage node regardless of whether or not that storage node has loaded the ring and started
object-server processes on the new ports.

If you do not run a separate object-server for replication, then this setting must be available to the object-
replicator and object-reconstructor (i.e. appear in the [DEFAULT] config section).

5.2.6 General Service Configuration

Most Swift services fall into two categories. Swifts wsgi servers and background daemons.

For more information specific to the configuration of Swifts wsgi servers with paste deploy see General
Server Configuration.

Configuration for servers and daemons can be expressed together in the same file for each type of server,
or separately. If a required section for the service trying to start is missing there will be an error. The
sections not used by the service are ignored.

Consider the example of an object storage node. By convention, configuration for the object-server,

246 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

object-updater, object-replicator, object-auditor, and object-reconstructor exist in a single file /etc/
swift/object-server.conf:

[DEFAULT]
reclaim_age = 604800

[pipeline:main]
pipeline = object-server

[app:object-server]
use = egg:swift#object

[object-replicator]

[object-updater]

[object-auditor]

Swift services expect a configuration path as the first argument:

$ swift-object-auditor
Usage: swift-object-auditor CONFIG [options]

Error: missing config path argument

If you omit the object-auditor section this file could not be used as the configuration path when starting
the swift-object-auditor daemon:

$ swift-object-auditor /etc/swift/object-server.conf
Unable to find object-auditor config section in /etc/swift/object-server.
↪→conf

If the configuration path is a directory instead of a file all of the files in the directory with the file
extension .conf will be combined to generate the configuration object which is delivered to the Swift
service. This is referred to generally as directory based configuration.

Directory based configuration leverages ConfigParsers native multi-file support. Files ending in .conf in
the given directory are parsed in lexicographical order. Filenames starting with . are ignored. A mixture
of file and directory configuration paths is not supported - if the configuration path is a file only that file
will be parsed.

The Swift service management tool swift-init has adopted the convention of looking for /etc/
swift/{type}-server.conf.d/ if the file /etc/swift/{type}-server.conf file does
not exist.

When using directory based configuration, if the same option under the same section appears more than
once in different files, the last value parsed is said to override previous occurrences. You can ensure
proper override precedence by prefixing the files in the configuration directory with numerical values.:

/etc/swift/
default.base
object-server.conf.d/

000_default.conf -> ../default.base
001_default-override.conf
010_server.conf
020_replicator.conf

(continues on next page)

5.2. Deployment Guide 247



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

030_updater.conf
040_auditor.conf

You can inspect the resulting combined configuration object using the swift-config command line
tool

5.2.7 General Server Configuration

Swift uses paste.deploy (https://pypi.org/project/Paste/) to manage server configurations. Detailed de-
scriptions of configuration options can be found in the configuration documentation.

Default configuration options are set in the [DEFAULT] section, and any options specified there can be
overridden in any of the other sections BUT ONLY BY USING THE SYNTAX set option_name
= value. This is the unfortunate way paste.deploy works and Ill try to explain it in full.

First, heres an example paste.deploy configuration file:

[DEFAULT]
name1 = globalvalue
name2 = globalvalue
name3 = globalvalue
set name4 = globalvalue

[pipeline:main]
pipeline = myapp

[app:myapp]
use = egg:mypkg#myapp
name2 = localvalue
set name3 = localvalue
set name5 = localvalue
name6 = localvalue

The resulting configuration that myapp receives is:

global {'__file__': '/etc/mypkg/wsgi.conf', 'here': '/etc/mypkg',
'name1': 'globalvalue',
'name2': 'globalvalue',
'name3': 'localvalue',
'name4': 'globalvalue',
'name5': 'localvalue',
'set name4': 'globalvalue'}

local {'name6': 'localvalue'}

So, name1 got the global value which is fine since its only in the DEFAULT section anyway.

name2 got the global value from DEFAULT even though it appears to be overridden in the app:myapp
subsection. This is just the unfortunate way paste.deploy works (at least at the time of this writing.)

name3 got the local value from the app:myapp subsection because it is using the special paste.deploy
syntax of set option_name = value. So, if you want a default value for most app/filters but
want to override it in one subsection, this is how you do it.

name4 got the global value from DEFAULT since its only in that section anyway. But, since we used
the set syntax in the DEFAULT section even though we shouldnt, notice we also got a set name4

248 Chapter 5. Administrator Documentation

https://pypi.org/project/Paste/


Swift Documentation, Release 2.27.1.dev38

variable. Weird, but probably not harmful.

name5 got the local value from the app:myapp subsection since its only there anyway, but notice that
it is in the global configuration and not the local configuration. This is because we used the set syntax
to set the value. Again, weird, but not harmful since Swift just treats the two sets of configuration values
as one set anyway.

name6 got the local value from app:myapp subsection since its only there, and since we didnt use the
set syntax, its only in the local configuration and not the global one. Though, as indicated above, there
is no special distinction with Swift.

Thats quite an explanation for something that should be so much simpler, but it might be important to
know how paste.deploy interprets configuration files. The main rule to remember when working with
Swift configuration files is:

Note: Use the set option_name = value syntax in subsections if the option is also set in the
[DEFAULT] section. Dont get in the habit of always using the set syntax or youll probably mess up
your non-paste.deploy configuration files.

Per policy configuration

Some proxy-server configuration options may be overridden for individual Storage Policies by including
per-policy config section(s). These options are:

• sorting_method

• read_affinity

• write_affinity

• write_affinity_node_count

• write_affinity_handoff_delete_count

The per-policy config section name must be of the form:

[proxy-server:policy:<policy index>]

Note: The per-policy config section name should refer to the policy index, not the policy name.

Note: The first part of proxy-server config section name must match the name of the proxy-server
config section. This is typically proxy-server as shown above, but if different then the names of
any per-policy config sections must be changed accordingly.

The value of an option specified in a per-policy section will override any value given in the proxy-server
section for that policy only. Otherwise the value of these options will be that specified in the proxy-server
section.

For example, the following section provides policy-specific options for a policy with index 3:

5.2. Deployment Guide 249



Swift Documentation, Release 2.27.1.dev38

[proxy-server:policy:3]
sorting_method = affinity
read_affinity = r2=1
write_affinity = r2
write_affinity_node_count = 1 * replicas
write_affinity_handoff_delete_count = 2

Note: It is recommended that per-policy config options are not included in the [DEFAULT] section. If
they are then the following behavior applies.

Per-policy config sections will inherit options in the [DEFAULT] section of the config file, and any
such inheritance will take precedence over inheriting options from the proxy-server config section.

Per-policy config section options will override options in the [DEFAULT] section. Unlike the behavior
described under General Server Configuration for paste-deploy filter and app sections, the set
keyword is not required for options to override in per-policy config sections.

For example, given the following settings in a config file:

[DEFAULT]
sorting_method = affinity
read_affinity = r0=100
write_affinity = r0

[app:proxy-server]
use = egg:swift#proxy
# use of set keyword here overrides [DEFAULT] option
set read_affinity = r1=100
# without set keyword, [DEFAULT] option overrides in a paste-deploy section
write_affinity = r1

[proxy-server:policy:0]
sorting_method = affinity
# set keyword not required here to override [DEFAULT] option
write_affinity = r1

would result in policy with index 0 having settings:

• read_affinity = r0=100 (inherited from the [DEFAULT] section)

• write_affinity = r1 (specified in the policy 0 section)

and any other policy would have the default settings of:

• read_affinity = r1=100 (set in the proxy-server section)

• write_affinity = r0 (inherited from the [DEFAULT] section)

250 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

Proxy Middlewares

Many features in Swift are implemented as middleware in the proxy-server pipeline. See Middleware
and the proxy-server.conf-sample file for more information. In particular, the use of some
type of authentication and authorization middleware is highly recommended.

5.2.8 Memcached Considerations

Several of the Services rely on Memcached for caching certain types of lookups, such as auth tokens, and
container/account existence. Swift does not do any caching of actual object data. Memcached should be
able to run on any servers that have available RAM and CPU. Typically Memcached is run on the proxy
servers. The memcache_servers config option in the proxy-server.conf should contain all
memcached servers.

Shard Range Listing Cache

When a container gets sharded the root container will still be the primary entry point to many container
requests, as it provides the list of shards. To take load off the root container Swift by default caches the
list of shards returned.

As the number of shards for a root container grows to more than 3k the memcache default max size of
1MB can be reached.

If you over-run your max configured memcache size youll see messages like:

Error setting value in memcached: 127.0.0.1:11211: SERVER_ERROR object too
↪→large for cache

When you see these messages your root containers are getting hammered and probably returning 503
reponses to clients. Override the default 1MB limit to 5MB with something like:

/usr/bin/memcached -I 5000000 ...

Memcache has a stats sizes option that can point out the current size usage. As this reaches the
current max an increase might be in order:

# telnet <memcache server> 11211
> stats sizes
STAT 160 2
STAT 448 1
STAT 576 1
END

5.2. Deployment Guide 251



Swift Documentation, Release 2.27.1.dev38

5.2.9 System Time

Time may be relative but it is relatively important for Swift! Swift uses timestamps to determine which
is the most recent version of an object. It is very important for the system time on each server in the
cluster to by synced as closely as possible (more so for the proxy server, but in general it is a good idea
for all the servers). Typical deployments use NTP with a local NTP server to ensure that the system
times are as close as possible. This should also be monitored to ensure that the times do not vary too
much.

5.2.10 General Service Tuning

Most services support either a workers or concurrency value in the settings. This allows the
services to make effective use of the cores available. A good starting point is to set the concurrency level
for the proxy and storage services to 2 times the number of cores available. If more than one service is
sharing a server, then some experimentation may be needed to find the best balance.

For example, one operator reported using the following settings in a production Swift cluster:

• Proxy servers have dual quad core processors (i.e. 8 cores); testing has shown 16 workers to be a
pretty good balance when saturating a 10g network and gives good CPU utilization.

• Storage server processes all run together on the same servers. These servers have dual quad core
processors, for 8 cores total. The Account, Container, and Object servers are run with 8 workers
each. Most of the background jobs are run at a concurrency of 1, with the exception of the
replicators which are run at a concurrency of 2.

The max_clients parameter can be used to adjust the number of client requests an individual worker
accepts for processing. The fewer requests being processed at one time, the less likely a request that
consumes the workers CPU time, or blocks in the OS, will negatively impact other requests. The more
requests being processed at one time, the more likely one worker can utilize network and disk capacity.

On systems that have more cores, and more memory, where one can afford to run more workers, raising
the number of workers and lowering the maximum number of clients serviced per worker can lessen the
impact of CPU intensive or stalled requests.

The nice_priority parameter can be used to set program scheduling priority. The
ionice_class and ionice_priority parameters can be used to set I/O scheduling class and
priority on the systems that use an I/O scheduler that supports I/O priorities. As at kernel 2.6.17 the only
such scheduler is the Completely Fair Queuing (CFQ) I/O scheduler. If you run your Storage servers all
together on the same servers, you can slow down the auditors or prioritize object-server I/O via these
parameters (but probably do not need to change it on the proxy). It is a new feature and the best practices
are still being developed. On some systems it may be required to run the daemons as root. For more info
also see setpriority(2) and ioprio_set(2).

The above configuration setting should be taken as suggestions and testing of configuration settings
should be done to ensure best utilization of CPU, network connectivity, and disk I/O.

252 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

5.2.11 Filesystem Considerations

Swift is designed to be mostly filesystem agnosticthe only requirement being that the filesystem supports
extended attributes (xattrs). After thorough testing with our use cases and hardware configurations, XFS
was the best all-around choice. If you decide to use a filesystem other than XFS, we highly recommend
thorough testing.

For distros with more recent kernels (for example Ubuntu 12.04 Precise), we recommend using the
default settings (including the default inode size of 256 bytes) when creating the file system:

mkfs.xfs -L D1 /dev/sda1

In the last couple of years, XFS has made great improvements in how inodes are allocated and used.
Using the default inode size no longer has an impact on performance.

For distros with older kernels (for example Ubuntu 10.04 Lucid), some settings can dramatically impact
performance. We recommend the following when creating the file system:

mkfs.xfs -i size=1024 -L D1 /dev/sda1

Setting the inode size is important, as XFS stores xattr data in the inode. If the metadata is too large to
fit in the inode, a new extent is created, which can cause quite a performance problem. Upping the inode
size to 1024 bytes provides enough room to write the default metadata, plus a little headroom.

The following example mount options are recommended when using XFS:

mount -t xfs -o noatime -L D1 /srv/node/d1

We do not recommend running Swift on RAID, but if you are using RAID it is also important to make
sure that the proper sunit and swidth settings get set so that XFS can make most efficient use of the
RAID array.

For a standard Swift install, all data drives are mounted directly under /srv/node (as can be seen in
the above example of mounting label D1 as /srv/node/d1). If you choose to mount the drives in
another directory, be sure to set the devices config option in all of the server configs to point to the
correct directory.

The mount points for each drive in /srv/node/ should be owned by the root user almost exclusively
(root:root 755). This is required to prevent rsync from syncing files into the root drive in the event
a drive is unmounted.

Swift uses system calls to reserve space for new objects being written into the system. If
your filesystem does not support fallocate() or posix_fallocate(), be sure to set the
disable_fallocate = true config parameter in account, container, and object server configs.

Most current Linux distributions ship with a default installation of updatedb. This tool runs periodically
and updates the file name database that is used by the GNU locate tool. However, including Swift object
and container database files is most likely not required and the periodic update affects the performance
quite a bit. To disable the inclusion of these files add the path where Swift stores its data to the setting
PRUNEPATHS in /etc/updatedb.conf:

PRUNEPATHS="... /tmp ... /var/spool ... /srv/node"

5.2. Deployment Guide 253



Swift Documentation, Release 2.27.1.dev38

5.2.12 General System Tuning

The following changes have been found to be useful when running Swift on Ubuntu Server 10.04.

The following settings should be in /etc/sysctl.conf:

# disable TIME_WAIT.. wait..
net.ipv4.tcp_tw_recycle=1
net.ipv4.tcp_tw_reuse=1

# disable syn cookies
net.ipv4.tcp_syncookies = 0

# double amount of allowed conntrack
net.ipv4.netfilter.ip_conntrack_max = 262144

To load the updated sysctl settings, run sudo sysctl -p.

A note about changing the TIME_WAIT values. By default the OS will hold a port open for 60 seconds
to ensure that any remaining packets can be received. During high usage, and with the number of
connections that are created, it is easy to run out of ports. We can change this since we are in control
of the network. If you are not in control of the network, or do not expect high loads, then you may not
want to adjust those values.

5.2.13 Logging Considerations

Swift is set up to log directly to syslog. Every service can be configured with the log_facility
option to set the syslog log facility destination. We recommended using syslog-ng to route the logs to
specific log files locally on the server and also to remote log collecting servers. Additionally, custom log
handlers can be used via the custom_log_handlers setting.

5.3 Apache Deployment Guide

5.3.1 Web Front End Considerations

Swift can be configured to work both using an integral web front-end and using a full-fledged Web
Server such as the Apache2 (HTTPD) web server. The integral web front-end is a wsgi mini Web Server
which opens up its own socket and serves http requests directly. The incoming requests accepted by
the integral web front-end are then forwarded to a wsgi application (the core swift) for further handling,
possibly via wsgi middleware sub-components.

client<->integral web front-end<->middleware<->core swift

To gain full advantage of Apache2, Swift can alternatively be configured to work as a request processor
of the Apache2 server. This alternative deployment scenario uses mod_wsgi of Apache2 to forward
requests to the swift wsgi application and middleware.

client<->Apache2 with mod_wsgi<>middleware<->core swift

The integral web front-end offers simplicity and requires minimal configuration. It is also the web
front-end most commonly used with Swift. Additionally, the integral web front-end includes support for
receiving chunked transfer encoding from a client, presently not supported by Apache2 in the operation
mode described here.

254 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

The use of Apache2 offers new ways to extend Swift and integrate it with existing authentication, ad-
ministration and control systems. A single Apache2 server can serve as the web front end of any number
of swift servers residing on a swift node. For example when a storage node offers account, container
and object services, a single Apache2 server can serve as the web front end of all three services.

The apache variant described here was tested as part of an IBM research work. It was found that fol-
lowing tuning, the Apache2 offer generally equivalent performance to that offered by the integral web
front-end. Alternative to Apache2, other web servers may be used, but were never tested.

5.3.2 Apache2 Setup

Both Apache2 and mod-wsgi needs to be installed on the system. Ubuntu comes with Apache2 installed.
Install mod-wsgi using:

sudo apt-get install libapache2-mod-wsgi

Create a directory for the Apache2 wsgi files:

sudo mkdir /srv/www/swift

Create a working directory for the wsgi processes:

sudo mkdir -m 2770 /var/lib/swift
sudo chown swift:swift /var/lib/swift

Create a file for each service under /srv/www/swift.

For a proxy service create /srv/www/swift/proxy-server.wsgi:

from swift.common.wsgi import init_request_processor
application, conf, logger, log_name = \

init_request_processor('/etc/swift/proxy-server.conf','proxy-server')

For an account service create /srv/www/swift/account-server.wsgi:

from swift.common.wsgi import init_request_processor
application, conf, logger, log_name = \

init_request_processor('/etc/swift/account-server.conf',
'account-server')

For an container service create /srv/www/swift/container-server.wsgi:

from swift.common.wsgi import init_request_processor
application, conf, logger, log_name = \

init_request_processor('/etc/swift/container-server.conf',
'container-server')

For an object service create /srv/www/swift/object-server.wsgi:

from swift.common.wsgi import init_request_processor
application, conf, logger, log_name = \

init_request_processor('/etc/swift/object-server.conf',
'object-server')

5.3. Apache Deployment Guide 255



Swift Documentation, Release 2.27.1.dev38

Create a /etc/apache2/conf.d/swift_wsgi.conf configuration file that will define a port
and Virtual Host per each local service. For example an Apache2 serving as a web front end of a proxy
service:

# Proxy
Listen 8080

<VirtualHost *:8080>
ServerName proxy-server

LimitRequestBody 5368709122
LimitRequestFields 200

WSGIDaemonProcess proxy-server processes=5 threads=1 user=swift
↪→group=swift display-name=%{GROUP}

WSGIProcessGroup proxy-server
WSGIScriptAlias / /srv/www/swift/proxy-server.wsgi
LogLevel debug
CustomLog /var/log/apache2/proxy.log combined
ErrorLog /var/log/apache2/proxy-server

</VirtualHost>

Notice that when using Apache the limit on the maximal object size should be imposed by Apache using
the LimitRequestBody rather by the swift proxy. Note also that the LimitRequestBody should indicate the
same value as indicated by max_file_size located in both /etc/swift/swift.conf and in /etc/
swift/test.conf. The Swift default value for max_file_size (when not present) is 5368709122.
For example an Apache2 serving as a web front end of a storage node:

# Object Service
Listen 6200

<VirtualHost *:6200>
ServerName object-server

LimitRequestFields 200

WSGIDaemonProcess object-server processes=5 threads=1 user=swift
↪→group=swift display-name=%{GROUP}

WSGIProcessGroup object-server
WSGIScriptAlias / /srv/www/swift/object-server.wsgi
LogLevel debug
CustomLog /var/log/apache2/access.log combined
ErrorLog /var/log/apache2/object-server

</VirtualHost>

# Container Service
Listen 6201

<VirtualHost *:6201>
ServerName container-server

LimitRequestFields 200

WSGIDaemonProcess container-server processes=5 threads=1 user=swift
↪→group=swift display-name=%{GROUP}

WSGIProcessGroup container-server

(continues on next page)

256 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

WSGIScriptAlias / /srv/www/swift/container-server.wsgi
LogLevel debug
CustomLog /var/log/apache2/access.log combined
ErrorLog /var/log/apache2/container-server

</VirtualHost>

# Account Service
Listen 6202

<VirtualHost *:6202>
ServerName account-server

LimitRequestFields 200

WSGIDaemonProcess account-server processes=5 threads=1 user=swift
↪→group=swift display-name=%{GROUP}

WSGIProcessGroup account-server
WSGIScriptAlias / /srv/www/swift/account-server.wsgi
LogLevel debug
CustomLog /var/log/apache2/access.log combined
ErrorLog /var/log/apache2/account-server

</VirtualHost>

Enable the newly configured Virtual Hosts:

a2ensite swift_wsgi.conf

Next, stop, test and start Apache2 again:

# stop it
systemctl stop apache2.service

# test the configuration
apache2ctl -t

# start it if the test succeeds
systemctl start apache2.service

Edit the tests config file and add:

web_front_end = apache2
normalized_urls = True

Also check to see that the file includes max_file_size of the same value as used for the LimitRequestBody
in the apache config file above.

We are done. You may run functional tests to test - e.g.:

cd ~swift/swift
./.functests

5.3. Apache Deployment Guide 257



Swift Documentation, Release 2.27.1.dev38

5.4 Administrators Guide

5.4.1 Defining Storage Policies

Defining your Storage Policies is very easy to do with Swift. It is important that the administrator
understand the concepts behind Storage Policies before actually creating and using them in order to get
the most benefit out of the feature and, more importantly, to avoid having to make unnecessary changes
once a set of policies have been deployed to a cluster.

It is highly recommended that the reader fully read and comprehend Storage Policies before proceeding
with administration of policies. Plan carefully and it is suggested that experimentation be done first on
a non-production cluster to be certain that the desired configuration meets the needs of the users. See
Upgrading and Confirming Functionality before planning the upgrade of your existing deployment.

Following is a high level view of the very few steps it takes to configure policies once you have decided
what you want to do:

1. Define your policies in /etc/swift/swift.conf

2. Create the corresponding object rings

3. Communicate the names of the Storage Policies to cluster users

For a specific example that takes you through these steps, please see Adding Storage Policies to an
Existing SAIO

5.4.2 Managing the Rings

You may build the storage rings on any server with the appropriate version of Swift installed. Once
built or changed (rebalanced), you must distribute the rings to all the servers in the cluster. Storage
rings contain information about all the Swift storage partitions and how they are distributed between the
different nodes and disks.

Swift 1.6.0 is the last version to use a Python pickle format. Subsequent versions use a different seri-
alization format. Rings generated by Swift versions 1.6.0 and earlier may be read by any version,
but rings generated after 1.6.0 may only be read by Swift versions greater than 1.6.0. So when
upgrading from version 1.6.0 or earlier to a version greater than 1.6.0, either upgrade Swift on your ring
building server last after all Swift nodes have been successfully upgraded, or refrain from generating
rings until all Swift nodes have been successfully upgraded.

If you need to downgrade from a version of Swift greater than 1.6.0 to a version less than or equal to
1.6.0, first downgrade your ring-building server, generate new rings, push them out, then continue with
the rest of the downgrade.

For more information see The Rings.

Removing a device from the ring:

swift-ring-builder <builder-file> remove <ip_address>/<device_name>

Removing a server from the ring:

swift-ring-builder <builder-file> remove <ip_address>

Adding devices to the ring:

258 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

See Preparing the Ring

See what devices for a server are in the ring:

swift-ring-builder <builder-file> search <ip_address>

Once you are done with all changes to the ring, the changes need to be committed:

swift-ring-builder <builder-file> rebalance

Once the new rings are built, they should be pushed out to all the servers in the cluster.

Optionally, if invoked as swift-ring-builder-safe the directory containing the specified builder file will
be locked (via a .lock file in the parent directory). This provides a basic safe guard against multiple
instances of the swift-ring-builder (or other utilities that observe this lock) from attempting to write to
or read the builder/ring files while operations are in progress. This can be useful in environments where
ring management has been automated but the operator still needs to interact with the rings manually.

If the ring builder is not producing the balances that you are expecting, you can gain visibility into what
its doing with the --debug flag.:

swift-ring-builder <builder-file> rebalance --debug

This produces a great deal of output that is mostly useful if you are either (a) attempting to fix the ring
builder, or (b) filing a bug against the ring builder.

You may notice in the rebalance output a dispersion number. What this number means is explained in
Dispersion but in essence is the percentage of partitions in the ring that have too many replicas within a
particular failure domain. You can ask swift-ring-builder what the dispersion is with:

swift-ring-builder <builder-file> dispersion

This will give you the percentage again, if you want a detailed view of the dispersion simply add a
--verbose:

swift-ring-builder <builder-file> dispersion --verbose

This will not only display the percentage but will also display a dispersion table that lists partition
dispersion by tier. You can use this table to figure out were you need to add capacity or to help tune an
Overload value.

Now lets take an example with 1 region, 3 zones and 4 devices. Each device has the same weight, and
the dispersion --verbose might show the following:

Dispersion is 16.666667, Balance is 0.000000, Overload is 0.00%
Required overload is 33.333333%
Worst tier is 33.333333 (r1z3)
--------------------------------------------------------------------------
Tier Parts % Max 0 1 2 3
--------------------------------------------------------------------------
r1 768 0.00 3 0 0 0 256
r1z1 192 0.00 1 64 192 0 0
r1z1-127.0.0.1 192 0.00 1 64 192 0 0
r1z1-127.0.0.1/sda 192 0.00 1 64 192 0 0
r1z2 192 0.00 1 64 192 0 0
r1z2-127.0.0.2 192 0.00 1 64 192 0 0

(continues on next page)

5.4. Administrators Guide 259



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

r1z2-127.0.0.2/sda 192 0.00 1 64 192 0 0
r1z3 384 33.33 1 0 128 128 0
r1z3-127.0.0.3 384 33.33 1 0 128 128 0
r1z3-127.0.0.3/sda 192 0.00 1 64 192 0 0
r1z3-127.0.0.3/sdb 192 0.00 1 64 192 0 0

The first line reports that there are 256 partitions with 3 copies in region 1; and this is an expected output
in this case (single region with 3 replicas) as reported by the Max value.

However, there is some imbalance in the cluster, more precisely in zone 3. The Max reports a maximum
of 1 copy in this zone; however 50.00% of the partitions are storing 2 replicas in this zone (which is
somewhat expected, because there are more disks in this zone).

You can now either add more capacity to the other zones, decrease the total weight in zone 3 or set the
overload to a value greater than 33.333333% - only as much overload as needed will be used.

5.4.3 Scripting Ring Creation

You can create scripts to create the account and container rings and rebalance. Heres an example script
for the Account ring. Use similar commands to create a make-container-ring.sh script on the proxy
server node.

1. Create a script file called make-account-ring.sh on the proxy server node with the following con-
tent:

#!/bin/bash
cd /etc/swift
rm -f account.builder account.ring.gz backups/account.builder backups/
↪→account.ring.gz
swift-ring-builder account.builder create 18 3 1
swift-ring-builder account.builder add r1z1-<account-server-1>:6202/
↪→sdb1 1
swift-ring-builder account.builder add r1z2-<account-server-2>:6202/
↪→sdb1 1
swift-ring-builder account.builder rebalance

You need to replace the values of <account-server-1>, <account-server-2>, etc. with the IP ad-
dresses of the account servers used in your setup. You can have as many account servers as you
need. All account servers are assumed to be listening on port 6202, and have a storage device
called sdb1 (this is a directory name created under /drives when we setup the account server). The
z1, z2, etc. designate zones, and you can choose whether you put devices in the same or different
zones. The r1 designates the region, with different regions specified as r1, r2, etc.

2. Make the script file executable and run it to create the account ring file:

chmod +x make-account-ring.sh
sudo ./make-account-ring.sh

3. Copy the resulting ring file /etc/swift/account.ring.gz to all the account server nodes in your Swift
environment, and put them in the /etc/swift directory on these nodes. Make sure that every time
you change the account ring configuration, you copy the resulting ring file to all the account nodes.

260 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

5.4.4 Handling System Updates

It is recommended that system updates and reboots are done a zone at a time. This allows the update to
happen, and for the Swift cluster to stay available and responsive to requests. It is also advisable when
updating a zone, let it run for a while before updating the other zones to make sure the update doesnt
have any adverse effects.

5.4.5 Handling Drive Failure

In the event that a drive has failed, the first step is to make sure the drive is unmounted. This will make it
easier for Swift to work around the failure until it has been resolved. If the drive is going to be replaced
immediately, then it is just best to replace the drive, format it, remount it, and let replication fill it up.

After the drive is unmounted, make sure the mount point is owned by root (root:root 755). This ensures
that rsync will not try to replicate into the root drive once the failed drive is unmounted.

If the drive cant be replaced immediately, then it is best to leave it unmounted, and set the device weight
to 0. This will allow all the replicas that were on that drive to be replicated elsewhere until the drive is
replaced. Once the drive is replaced, the device weight can be increased again. Setting the device weight
to 0 instead of removing the drive from the ring gives Swift the chance to replicate data from the failing
disk too (in case it is still possible to read some of the data).

Setting the device weight to 0 (or removing a failed drive from the ring) has another benefit: all partitions
that were stored on the failed drive are distributed over the remaining disks in the cluster, and each disk
only needs to store a few new partitions. This is much faster compared to replicating all partitions to a
single, new disk. It decreases the time to recover from a degraded number of replicas significantly, and
becomes more and more important with bigger disks.

5.4.6 Handling Server Failure

If a server is having hardware issues, it is a good idea to make sure the Swift services are not running.
This will allow Swift to work around the failure while you troubleshoot.

If the server just needs a reboot, or a small amount of work that should only last a couple of hours,
then it is probably best to let Swift work around the failure and get the machine fixed and back online.
When the machine comes back online, replication will make sure that anything that is missing during
the downtime will get updated.

If the server has more serious issues, then it is probably best to remove all of the servers devices from
the ring. Once the server has been repaired and is back online, the servers devices can be added back
into the ring. It is important that the devices are reformatted before putting them back into the ring as it
is likely to be responsible for a different set of partitions than before.

5.4. Administrators Guide 261



Swift Documentation, Release 2.27.1.dev38

5.4.7 Detecting Failed Drives

It has been our experience that when a drive is about to fail, error messages will spew into
/var/log/kern.log. There is a script called swift-drive-audit that can be run via cron to watch for bad
drives. If errors are detected, it will unmount the bad drive, so that Swift can work around it. The script
takes a configuration file with the following settings:

[drive-audit]

Option Default Description
user swift Drop privileges to this user for non-root tasks
log_facility LOG_LOCAL0Syslog log facility
log_level INFO Log level
device_dir /srv/node Directory devices are mounted under
minutes 60 Number of minutes to look back in /var/log/kern.log
error_limit 1 Number of errors to find before a device is unmounted
log_file_pattern /var/log/kern* Location of the log file with globbing pattern to check against device

errors
regex_pattern_X(see below) Regular expression patterns to be used to locate device blocks with

errors in the log file

The default regex pattern used to locate device blocks with errors are berrorb.*b(sd[a-z]{1,2}d?)b and
b(sd[a-z]{1,2}d?)b.*berrorb. One is able to overwrite the default above by providing new expressions
using the format regex_pattern_X = regex_expression, where X is a number.

This script has been tested on Ubuntu 10.04 and Ubuntu 12.04, so if you are using a different distro or
OS, some care should be taken before using in production.

5.4.8 Preventing Disk Full Scenarios

Prevent disk full scenarios by ensuring that the proxy-server blocks PUT requests and rsync pre-
vents replication to the specific drives.

You can prevent proxy-server PUT requests to low space disks by ensuring fallocate_reserve
is set in account-server.conf, container-server.conf, and object-server.conf.
By default, fallocate_reserve is set to 1%. In the object server, this blocks PUT requests that
would leave the free disk space below 1% of the disk. In the account and container servers, this blocks
operations that will increase account or container database size once the free disk space falls below 1%.

Setting fallocate_reserve is highly recommended to avoid filling disks to 100%. When Swifts
disks are completely full, all requests involving those disks will fail, including DELETE requests that
would otherwise free up space. This is because object deletion includes the creation of a zero-byte
tombstone (.ts) to record the time of the deletion for replication purposes; this happens prior to deletion
of the objects data. On a completely-full filesystem, that zero-byte .ts file cannot be created, so the
DELETE request will fail and the disk will remain completely full. If fallocate_reserve is set,
then the filesystem will have enough space to create the zero-byte .ts file, and thus the deletion of the
object will succeed and free up some space.

In order to prevent rsync replication to specific drives, firstly setup rsync_module per disk in your
object-replicator. Set this in object-server.conf:

262 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

[object-replicator]
rsync_module = {replication_ip}::object_{device}

Set the individual drives in rsync.conf. For example:

[object_sda]
max connections = 4
lock file = /var/lock/object_sda.lock

[object_sdb]
max connections = 4
lock file = /var/lock/object_sdb.lock

Finally, monitor the disk space of each disk and adjust the rsync max connections per drive to -1.
We recommend utilising your existing monitoring solution to achieve this. The following is an example
script:

#!/usr/bin/env python
import os
import errno

RESERVE = 500 * 2 ** 20 # 500 MiB

DEVICES = '/srv/node1'

path_template = '/etc/rsync.d/disable_%s.conf'
config_template = '''
[object_%s]
max connections = -1
'''

def disable_rsync(device):
with open(path_template % device, 'w') as f:

f.write(config_template.lstrip() % device)

def enable_rsync(device):
try:

os.unlink(path_template % device)
except OSError as e:

# ignore file does not exist
if e.errno != errno.ENOENT:

raise

for device in os.listdir(DEVICES):
path = os.path.join(DEVICES, device)
st = os.statvfs(path)
free = st.f_bavail * st.f_frsize
if free < RESERVE:

disable_rsync(device)
else:

enable_rsync(device)

For the above script to work, ensure /etc/rsync.d/ conf files are included, by specifying
&include in your rsync.conf file:

5.4. Administrators Guide 263



Swift Documentation, Release 2.27.1.dev38

&include /etc/rsync.d

Use this in conjunction with a cron job to periodically run the script, for example:

# /etc/cron.d/devicecheck

* * * * * root /some/path/to/disable_rsync.py

5.4.9 Dispersion Report

There is a swift-dispersion-report tool for measuring overall cluster health. This is accomplished by
checking if a set of deliberately distributed containers and objects are currently in their proper places
within the cluster.

For instance, a common deployment has three replicas of each object. The health of that object can be
measured by checking if each replica is in its proper place. If only 2 of the 3 is in place the objects heath
can be said to be at 66.66%, where 100% would be perfect.

A single objects health, especially an older object, usually reflects the health of that entire partition the
object is in. If we make enough objects on a distinct percentage of the partitions in the cluster, we can
get a pretty valid estimate of the overall cluster health. In practice, about 1% partition coverage seems
to balance well between accuracy and the amount of time it takes to gather results.

The first thing that needs to be done to provide this health value is create a new account solely for this
usage. Next, we need to place the containers and objects throughout the system so that they are on
distinct partitions. The swift-dispersion-populate tool does this by making up random container and
object names until they fall on distinct partitions. Last, and repeatedly for the life of the cluster, we need
to run the swift-dispersion-report tool to check the health of each of these containers and objects.

These tools need direct access to the entire cluster and to the ring files (installing them on a proxy server
will probably do). Both swift-dispersion-populate and swift-dispersion-report use the same configura-
tion file, /etc/swift/dispersion.conf. Example conf file:

[dispersion]
auth_url = http://localhost:8080/auth/v1.0
auth_user = test:tester
auth_key = testing
endpoint_type = internalURL

There are also options for the conf file for specifying the dispersion coverage (defaults to 1%), retries,
concurrency, etc. though usually the defaults are fine. If you want to use keystone v3 for authentication
there are options like auth_version, user_domain_name, project_domain_name and project_name.

Once the configuration is in place, run swift-dispersion-populate to populate the containers and objects
throughout the cluster.

Now that those containers and objects are in place, you can run swift-dispersion-report to get a dispersion
report, or the overall health of the cluster. Here is an example of a cluster in perfect health:

$ swift-dispersion-report
Queried 2621 containers for dispersion reporting, 19s, 0 retries
100.00% of container copies found (7863 of 7863)
Sample represents 1.00% of the container partition space

Queried 2619 objects for dispersion reporting, 7s, 0 retries

(continues on next page)

264 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

100.00% of object copies found (7857 of 7857)
Sample represents 1.00% of the object partition space

Now Ill deliberately double the weight of a device in the object ring (with replication turned off) and
rerun the dispersion report to show what impact that has:

$ swift-ring-builder object.builder set_weight d0 200
$ swift-ring-builder object.builder rebalance
...
$ swift-dispersion-report
Queried 2621 containers for dispersion reporting, 8s, 0 retries
100.00% of container copies found (7863 of 7863)
Sample represents 1.00% of the container partition space

Queried 2619 objects for dispersion reporting, 7s, 0 retries
There were 1763 partitions missing one copy.
77.56% of object copies found (6094 of 7857)
Sample represents 1.00% of the object partition space

You can see the health of the objects in the cluster has gone down significantly. Of course, I only have
four devices in this test environment, in a production environment with many many devices the impact
of one device change is much less. Next, Ill run the replicators to get everything put back into place and
then rerun the dispersion report:

... start object replicators and monitor logs until they're caught up ...
$ swift-dispersion-report
Queried 2621 containers for dispersion reporting, 17s, 0 retries
100.00% of container copies found (7863 of 7863)
Sample represents 1.00% of the container partition space

Queried 2619 objects for dispersion reporting, 7s, 0 retries
100.00% of object copies found (7857 of 7857)
Sample represents 1.00% of the object partition space

You can also run the report for only containers or objects:

$ swift-dispersion-report --container-only
Queried 2621 containers for dispersion reporting, 17s, 0 retries
100.00% of container copies found (7863 of 7863)
Sample represents 1.00% of the container partition space

$ swift-dispersion-report --object-only
Queried 2619 objects for dispersion reporting, 7s, 0 retries
100.00% of object copies found (7857 of 7857)
Sample represents 1.00% of the object partition space

Alternatively, the dispersion report can also be output in JSON format. This allows it to be more easily
consumed by third party utilities:

$ swift-dispersion-report -j
{"object": {"retries:": 0, "missing_two": 0, "copies_found": 7863,
↪→"missing_one": 0, "copies_expected": 7863, "pct_found": 100.0,
↪→"overlapping": 0, "missing_all": 0}, "container": {"retries:": 0,
↪→"missing_two": 0, "copies_found": 12534, "missing_one": 0, "copies_
↪→expected": 12534, "pct_found": 100.0, "overlapping": 15, "missing_all":
↪→0}} (continues on next page)

5.4. Administrators Guide 265



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

Note that you may select which storage policy to use by setting the option policy-name silver or -P
silver (silver is the example policy name here). If no policy is specified, the default will be used per the
swift.conf file. When you specify a policy the containers created also include the policy index, thus even
when running a container_only report, you will need to specify the policy not using the default.

5.4.10 Geographically Distributed Swift Considerations

Swift provides two features that may be used to distribute replicas of objects across multiple geographi-
cally distributed data-centers: with Global Clusters object replicas may be dispersed across devices from
different data-centers by using regions in ring device descriptors; with Container to Container Synchro-
nization objects may be copied between independent Swift clusters in each data-center. The operation
and configuration of each are described in their respective documentation. The following points should
be considered when selecting the feature that is most appropriate for a particular use case:

1. Global Clusters allows the distribution of object replicas across data-centers to be controlled by
the cluster operator on per-policy basis, since the distribution is determined by the assignment of
devices from each data-center in each policys ring file. With Container Sync the end user controls
the distribution of objects across clusters on a per-container basis.

2. Global Clusters requires an operator to coordinate ring deployments across multiple data-centers.
Container Sync allows for independent management of separate Swift clusters in each data-center,
and for existing Swift clusters to be used as peers in Container Sync relationships without deploy-
ing new policies/rings.

3. Global Clusters seamlessly supports features that may rely on cross-container operations such as
large objects and versioned writes. Container Sync requires the end user to ensure that all required
containers are syncd for these features to work in all data-centers.

4. Global Clusters makes objects available for GET or HEAD requests in both data-centers even
if a replica of the object has not yet been asynchronously migrated between data-centers, by
forwarding requests between data-centers. Container Sync is unable to serve requests for an object
in a particular data-center until the asynchronous sync process has copied the object to that data-
center.

5. Global Clusters may require less storage capacity than Container Sync to achieve equivalent dura-
bility of objects in each data-center. Global Clusters can restore replicas that are lost or corrupted
in one data-center using replicas from other data-centers. Container Sync requires each data-
center to independently manage the durability of objects, which may result in each data-center
storing more replicas than with Global Clusters.

6. Global Clusters execute all account/container metadata updates synchronously to ac-
count/container replicas in all data-centers, which may incur delays when making updates across
WANs. Container Sync only copies objects between data-centers and all Swift internal traffic is
confined to each data-center.

7. Global Clusters does not yet guarantee the availability of objects stored in Erasure Coded policies
when one data-center is offline. With Container Sync the availability of objects in each data-center
is independent of the state of other data-centers once objects have been synced. Container Sync
also allows objects to be stored using different policy types in different data-centers.

266 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

Checking handoff partition distribution

You can check if handoff partitions are piling up on a server by comparing the expected number of
partitions with the actual number on your disks. First get the number of partitions that are currently
assigned to a server using the dispersion command from swift-ring-builder:

swift-ring-builder sample.builder dispersion --verbose
Dispersion is 0.000000, Balance is 0.000000, Overload is 0.00%
Required overload is 0.000000%
--------------------------------------------------------------------------
Tier Parts % Max 0 1 2 3
--------------------------------------------------------------------------
r1 8192 0.00 2 0 0 8192 0
r1z1 4096 0.00 1 4096 4096 0 0
r1z1-172.16.10.1 4096 0.00 1 4096 4096 0 0
r1z1-172.16.10.1/sda1 4096 0.00 1 4096 4096 0 0
r1z2 4096 0.00 1 4096 4096 0 0
r1z2-172.16.10.2 4096 0.00 1 4096 4096 0 0
r1z2-172.16.10.2/sda1 4096 0.00 1 4096 4096 0 0
r1z3 4096 0.00 1 4096 4096 0 0
r1z3-172.16.10.3 4096 0.00 1 4096 4096 0 0
r1z3-172.16.10.3/sda1 4096 0.00 1 4096 4096 0 0
r1z4 4096 0.00 1 4096 4096 0 0
r1z4-172.16.20.4 4096 0.00 1 4096 4096 0 0
r1z4-172.16.20.4/sda1 4096 0.00 1 4096 4096 0 0
r2 8192 0.00 2 0 8192 0 0
r2z1 4096 0.00 1 4096 4096 0 0
r2z1-172.16.20.1 4096 0.00 1 4096 4096 0 0
r2z1-172.16.20.1/sda1 4096 0.00 1 4096 4096 0 0
r2z2 4096 0.00 1 4096 4096 0 0
r2z2-172.16.20.2 4096 0.00 1 4096 4096 0 0
r2z2-172.16.20.2/sda1 4096 0.00 1 4096 4096 0 0

As you can see from the output, each server should store 4096 partitions, and each region should store
8192 partitions. This example used a partition power of 13 and 3 replicas.

With write_affinity enabled it is expected to have a higher number of partitions on disk compared to
the value reported by the swift-ring-builder dispersion command. The number of additional (handoff)
partitions in region r1 depends on your cluster size, the amount of incoming data as well as the replication
speed.

Lets use the example from above with 6 nodes in 2 regions, and write_affinity configured to write to
region r1 first. swift-ring-builder reported that each node should store 4096 partitions:

Expected partitions for region r2:
↪→8192
Handoffs stored across 4 nodes in region r1: 8192 / 4
↪→=ă2048
Maximum number of partitions on each server in region r1: 2048 + 4096 =
↪→6144

Worst case is that handoff partitions in region 1 are populated with new object replicas faster than
replication is able to move them to region 2. In that case you will see ~ 6144 partitions per server in
region r1. Your actual number should be lower and between 4096 and 6144 partitions (preferably on the
lower side).

Now count the number of object partitions on a given server in region 1, for example on 172.16.10.1.

5.4. Administrators Guide 267



Swift Documentation, Release 2.27.1.dev38

Note that the pathnames might be different; /srv/node/ is the default mount location, and objects applies
only to storage policy 0 (storage policy 1 would use objects-1 and so on):

find -L /srv/node/ -maxdepth 3 -type d -wholename "*objects/*" | wc -l

If this number is always on the upper end of the expected partition number range (4096 to 6144) or in-
creasing you should check your replication speed and maybe even disable write_affinity. Please refer to
the next section how to collect metrics from Swift, and especially swift-recon -r how to check replication
stats.

5.4.11 Cluster Telemetry and Monitoring

Various metrics and telemetry can be obtained from the account, container, and object servers using the
recon server middleware and the swift-recon cli. To do so update your account, container, or object
servers pipelines to include recon and add the associated filter config.

object-server.conf sample:

[pipeline:main]
pipeline = recon object-server

[filter:recon]
use = egg:swift#recon
recon_cache_path = /var/cache/swift

container-server.conf sample:

[pipeline:main]
pipeline = recon container-server

[filter:recon]
use = egg:swift#recon
recon_cache_path = /var/cache/swift

account-server.conf sample:

[pipeline:main]
pipeline = recon account-server

[filter:recon]
use = egg:swift#recon
recon_cache_path = /var/cache/swift

The recon_cache_path simply sets the directory where stats for a few items will be stored. Depending
on the method of deployment you may need to create this directory manually and ensure that Swift has
read/write access.

Finally, if you also wish to track asynchronous pending on your object servers you will need to setup a
cronjob to run the swift-recon-cron script periodically on your object servers:

*/5 * * * * swift /usr/bin/swift-recon-cron /etc/swift/object-server.conf

Once the recon middleware is enabled, a GET request for /recon/<metric> to the backend object server
will return a JSON-formatted response:

268 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

fhines@ubuntu:~$ curl -i http://localhost:6230/recon/async
HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 20
Date: Tue, 18 Oct 2011 21:03:01 GMT

{"async_pending": 0}

Note that the default port for the object server is 6200, except on a Swift All-In-One installation, which
uses 6210, 6220, 6230, and 6240.

The following metrics and telemetry are currently exposed:

Request URI Description
/recon/load returns 1,5, and 15 minute load average
/recon/mem returns /proc/meminfo
/recon/mounted returns ALL currently mounted filesystems
/recon/unmounted returns all unmounted drives if mount_check = True
/recon/diskusage returns disk utilization for storage devices
/recon/driveaudit returns # of drive audit errors
/recon/ringmd5 returns object/container/account ring md5sums
/recon/swiftconfmd5 returns swift.conf md5sum
/recon/quarantined returns # of quarantined objects/accounts/containers
/recon/sockstat returns consumable info from /proc/net/sockstat|6
/recon/devices returns list of devices and devices dir i.e. /srv/node
/recon/async returns count of async pending
/recon/replication returns object replication info (for backward compatibility)
/re-
con/replication/<type>

returns replication info for given type (account, container, object)

/recon/auditor/<type> returns auditor stats on last reported scan for given type (account, container,
object)

/recon/updater/<type> returns last updater sweep times for given type (container, object)
/recon/expirer/object returns time elapsed and number of objects deleted during last object ex-

pirer sweep
/recon/version returns Swift version
/recon/time returns node time

Note that object_replication_last and object_replication_time in object replication info are considered to
be transitional and will be removed in the subsequent releases. Use replication_last and replication_time
instead.

This information can also be queried via the swift-recon command line utility:

fhines@ubuntu:~$ swift-recon -h
Usage:

usage: swift-recon <server_type> [-v] [--suppress] [-a] [-r] [-u]
↪→[-d]

[-l] [-T] [--md5] [--auditor] [--updater] [--expirer] [--sockstat]

<server_type> account|container|object
Defaults to object server.

(continues on next page)

5.4. Administrators Guide 269



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

ex: swift-recon container -l --auditor

Options:
-h, --help show this help message and exit
-v, --verbose Print verbose info
--suppress Suppress most connection related errors
-a, --async Get async stats
-r, --replication Get replication stats
--auditor Get auditor stats
--updater Get updater stats
--expirer Get expirer stats
-u, --unmounted Check cluster for unmounted devices
-d, --diskusage Get disk usage stats
-l, --loadstats Get cluster load average stats
-q, --quarantined Get cluster quarantine stats
--md5 Get md5sum of servers ring and compare to local

↪→copy
--sockstat Get cluster socket usage stats
-T, --time Check time synchronization
--all Perform all checks. Equal to

-arudlqT --md5 --sockstat --auditor --updater
--expirer --driveaudit --validate-servers

-z ZONE, --zone=ZONE Only query servers in specified zone
-t SECONDS, --timeout=SECONDS

Time to wait for a response from a server
--swiftdir=SWIFTDIR Default = /etc/swift

For example, to obtain container replication info from all hosts in zone 3:

fhines@ubuntu:~$ swift-recon container -r --zone 3
===============================================================================
--> Starting reconnaissance on 1 hosts
===============================================================================
[2012-04-02 02:45:48] Checking on replication
[failure] low: 0.000, high: 0.000, avg: 0.000, reported: 1
[success] low: 486.000, high: 486.000, avg: 486.000, reported: 1
[replication_time] low: 20.853, high: 20.853, avg: 20.853, reported: 1
[attempted] low: 243.000, high: 243.000, avg: 243.000, reported: 1

5.4.12 Reporting Metrics to StatsD

If you have a StatsD server running, Swift may be configured to send it real-time operational metrics.
To enable this, set the following configuration entries (see the sample configuration files):

log_statsd_host = localhost
log_statsd_port = 8125
log_statsd_default_sample_rate = 1.0
log_statsd_sample_rate_factor = 1.0
log_statsd_metric_prefix = [empty-string]

If log_statsd_host is not set, this feature is disabled. The default values for the other settings are given
above. The log_statsd_host can be a hostname, an IPv4 address, or an IPv6 address (not surrounded
with brackets, as this is unnecessary since the port is specified separately). If a hostname resolves to an

270 Chapter 5. Administrator Documentation

https://codeascraft.com/2011/02/15/measure-anything-measure-everything/


Swift Documentation, Release 2.27.1.dev38

IPv4 address, an IPv4 socket will be used to send StatsD UDP packets, even if the hostname would also
resolve to an IPv6 address.

The sample rate is a real number between 0 and 1 which defines the probability of sending a sample for
any given event or timing measurement. This sample rate is sent with each sample to StatsD and used to
multiply the value. For example, with a sample rate of 0.5, StatsD will multiply that counters value by 2
when flushing the metric to an upstream monitoring system (Graphite, Ganglia, etc.).

Some relatively high-frequency metrics have a default sample rate less than one. If you want to override
the default sample rate for all metrics whose default sample rate is not specified in the Swift source, you
may set log_statsd_default_sample_rate to a value less than one. This is NOT recommended (see next
paragraph). A better way to reduce StatsD load is to adjust log_statsd_sample_rate_factor to a value
less than one. The log_statsd_sample_rate_factor is multiplied to any sample rate (either the global
default or one specified by the actual metric logging call in the Swift source) prior to handling. In other
words, this one tunable can lower the frequency of all StatsD logging by a proportional amount.

To get the best data, start with the default log_statsd_default_sample_rate and
log_statsd_sample_rate_factor values of 1 and only lower log_statsd_sample_rate_factor if needed.
The log_statsd_default_sample_rate should not be used and remains for backward compatibility only.

The metric prefix will be prepended to every metric sent to the StatsD server For example, with:

log_statsd_metric_prefix = proxy01

the metric proxy-server.errors would be sent to StatsD as proxy01.proxy-server.errors. This is use-
ful for differentiating different servers when sending statistics to a central StatsD server. If you
run a local StatsD server per node, you could configure a per-node metrics prefix there and leave
log_statsd_metric_prefix blank.

Note that metrics reported to StatsD are counters or timing data (which are sent in units of millisec-
onds). StatsD usually expands timing data out to min, max, avg, count, and 90th percentile per timing
metric, but the details of this behavior will depend on the configuration of your StatsD server. Some
important gauge metrics may still need to be collected using another method. For example, the object-
server.async_pendings StatsD metric counts the generation of async_pendings in real-time, but will not
tell you the current number of async_pending container updates on disk at any point in time.

Note also that the set of metrics collected, their names, and their semantics are not locked down and will
change over time.

Metrics for account-auditor:

Metric Name Description
account-auditor.errors Count of audit runs (across all account databases) which caught an Excep-

tion.
account-auditor.passes Count of individual account databases which passed audit.
account-
auditor.failures

Count of individual account databases which failed audit.

account-auditor.timing Timing data for individual account database audits.

Metrics for account-reaper:

5.4. Administrators Guide 271

http://graphiteapp.org/
http://ganglia.sourceforge.net/


Swift Documentation, Release 2.27.1.dev38

Metric Name Description
account-
reaper.errors

Count of devices failing the mount check.

account-
reaper.timing

Timing data for each reap_account() call.

account-
reaper.return_codes.X

Count of HTTP return codes from various operations (e.g. object listing,
container deletion, etc.). The value for X is the first digit of the return code (2
for 201, 4 for 404, etc.).

account-
reaper.containers_failures

Count of failures to delete a container.

account-
reaper.containers_deleted

Count of containers successfully deleted.

account-
reaper.containers_remaining

Count of containers which failed to delete with zero successes.

account-
reaper.containers_possibly_remaining

Count of containers which failed to delete with at least one success.

account-
reaper.objects_failures

Count of failures to delete an object.

account-
reaper.objects_deleted

Count of objects successfully deleted.

account-
reaper.objects_remaining

Count of objects which failed to delete with zero successes.

account-
reaper.objects_possibly_remaining

Count of objects which failed to delete with at least one success.

Metrics for account-server (Not Found is not considered an error and requests which increment errors
are not included in the timing data):

272 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

Metric Name Description
account-
server.DELETE.errors.timing

Timing data for each DELETE request resulting in an error: bad request, not
mounted, missing timestamp.

account-
server.DELETE.timing

Timing data for each DELETE request not resulting in an error.

account-
server.PUT.errors.timing

Timing data for each PUT request resulting in an error: bad request, not
mounted, conflict, recently-deleted.

account-
server.PUT.timing

Timing data for each PUT request not resulting in an error.

account-
server.HEAD.errors.timing

Timing data for each HEAD request resulting in an error: bad request, not
mounted.

account-
server.HEAD.timing

Timing data for each HEAD request not resulting in an error.

account-
server.GET.errors.timing

Timing data for each GET request resulting in an error: bad request, not
mounted, bad delimiter, account listing limit too high, bad accept header.

account-
server.GET.timing

Timing data for each GET request not resulting in an error.

account-
server.REPLICATE.errors.timing

Timing data for each REPLICATE request resulting in an error: bad request,
not mounted.

account-
server.REPLICATE.timing

Timing data for each REPLICATE request not resulting in an error.

account-
server.POST.errors.timing

Timing data for each POST request resulting in an error: bad request, bad or
missing timestamp, not mounted.

account-
server.POST.timing

Timing data for each POST request not resulting in an error.

Metrics for account-replicator:

5.4. Administrators Guide 273



Swift Documentation, Release 2.27.1.dev38

Metric Name Description
account-
replicator.diffs

Count of syncs handled by sending differing rows.

account-
replicator.diff_caps

Count of diffs operations which failed because max_diffs was hit.

account-
replicator.no_changes

Count of accounts found to be in sync.

account-
replicator.hashmatches

Count of accounts found to be in sync via hash comparison (broker.merge_syncs was
called).

account-
replicator.rsyncs

Count of completely missing accounts which were sent via rsync.

account-
replicator.remote_merges

Count of syncs handled by sending entire database via rsync.

account-
replicator.attempts

Count of database replication attempts.

account-
replicator.failures

Count of database replication attempts which failed due to corruption (quarantined)
or inability to read as well as attempts to individual nodes which failed.

account-
replicator.removes.<device>

Count of databases on <device> deleted because the delete_timestamp was greater
than the put_timestamp and the database had no rows or because it was successfully
synced to other locations and doesnt belong here anymore.

account-
replicator.successes

Count of replication attempts to an individual node which were successful.

account-
replicator.timing

Timing data for each database replication attempt not resulting in a failure.

Metrics for container-auditor:

Metric Name Description
container-
auditor.errors

Incremented when an Exception is caught in an audit pass (only once per
pass, max).

container-
auditor.passes

Count of individual containers passing an audit.

container-
auditor.failures

Count of individual containers failing an audit.

container-
auditor.timing

Timing data for each container audit.

Metrics for container-replicator:

274 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

Metric Name Description
container-
replicator.diffs

Count of syncs handled by sending differing rows.

container-
replicator.diff_caps

Count of diffs operations which failed because max_diffs was hit.

container-
replicator.no_changes

Count of containers found to be in sync.

container-
replicator.hashmatches

Count of containers found to be in sync via hash comparison (broker.merge_syncs
was called).

container-
replicator.rsyncs

Count of completely missing containers where were sent via rsync.

container-
replicator.remote_merges

Count of syncs handled by sending entire database via rsync.

container-
replicator.attempts

Count of database replication attempts.

container-
replicator.failures

Count of database replication attempts which failed due to corruption (quarantined)
or inability to read as well as attempts to individual nodes which failed.

container-
replicator.removes.<device>

Count of databases deleted on <device> because the delete_timestamp was greater
than the put_timestamp and the database had no rows or because it was successfully
synced to other locations and doesnt belong here anymore.

container-
replicator.successes

Count of replication attempts to an individual node which were successful.

container-
replicator.timing

Timing data for each database replication attempt not resulting in a failure.

Metrics for container-server (Not Found is not considered an error and requests which increment errors
are not included in the timing data):

5.4. Administrators Guide 275



Swift Documentation, Release 2.27.1.dev38

Metric Name Description
container-
server.DELETE.errors.timing

Timing data for DELETE request errors: bad request, not mounted,
missing timestamp, conflict.

container-
server.DELETE.timing

Timing data for each DELETE request not resulting in an error.

container-
server.PUT.errors.timing

Timing data for PUT request errors: bad request, missing timestamp,
not mounted, conflict.

container-server.PUT.timing Timing data for each PUT request not resulting in an error.
container-
server.HEAD.errors.timing

Timing data for HEAD request errors: bad request, not mounted.

container-
server.HEAD.timing

Timing data for each HEAD request not resulting in an error.

container-
server.GET.errors.timing

Timing data for GET request errors: bad request, not mounted, pa-
rameters not utf8, bad accept header.

container-server.GET.timing Timing data for each GET request not resulting in an error.
container-
server.REPLICATE.errors.timing

Timing data for REPLICATE request errors: bad request, not
mounted.

container-
server.REPLICATE.timing

Timing data for each REPLICATE request not resulting in an error.

container-
server.POST.errors.timing

Timing data for POST request errors: bad request, bad x-container-
sync-to, not mounted.

container-
server.POST.timing

Timing data for each POST request not resulting in an error.

Metrics for container-sync:

Metric Name Description
container-sync.skips Count of containers skipped because they dont have syncing enabled.
container-sync.failures Count of failures syncing of individual containers.
container-sync.syncs Count of individual containers synced successfully.
container-sync.deletes Count of container database rows synced by deletion.
container-
sync.deletes.timing

Timing data for each container database row synchronization via dele-
tion.

container-sync.puts Count of container database rows synced by Putting.
container-sync.puts.timing Timing data for each container database row synchronization via

Putting.

Metrics for container-updater:

Metric Name Description
container-
updater.successes

Count of containers which successfully updated their account.

container-
updater.failures

Count of containers which failed to update their account.

container-
updater.no_changes

Count of containers which didnt need to update their account.

container-
updater.timing

Timing data for processing a container; only includes timing for containers which
needed to update their accounts (i.e. successes and failures but not no_changes).

276 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

Metrics for object-auditor:

Metric
Name

Description

object-
auditor.quarantines

Count of objects failing audit and quarantined.

object-
auditor.errors

Count of errors encountered while auditing objects.

object-
auditor.timing

Timing data for each object audit (does not include any rate-limiting sleep
time for max_files_per_second, but does include rate-limiting sleep time for
max_bytes_per_second).

Metrics for object-expirer:

Metric Name Description
object-
expirer.objects

Count of objects expired.

object-
expirer.errors

Count of errors encountered while attempting to expire an object.

object-
expirer.timing

Timing data for each object expiration attempt, including ones resulting in an
error.

Metrics for object-reconstructor:

Metric Name Description
object-
reconstructor.partition.delete.count.<device>

A count of partitions on <device> which were reconstructed and synced to an-
other node because they didnt belong on this node. This metric is tracked per-
device to allow for quiescence detection for object reconstruction activity on each
device.

object-
reconstructor.partition.delete.timing

Timing data for partitions reconstructed and synced to another node because they
didnt belong on this node. This metric is not tracked per device.

object-
reconstructor.partition.update.count.<device>

A count of partitions on <device> which were reconstructed and synced to an-
other node, but also belong on this node. As with delete.count, this metric is
tracked per-device.

object-
reconstructor.partition.update.timing

Timing data for partitions reconstructed which also belong on this node. This
metric is not tracked per-device.

object-
reconstructor.suffix.hashes

Count of suffix directories whose hash (of filenames) was recalculated.

object-
reconstructor.suffix.syncs

Count of suffix directories reconstructed with ssync.

Metrics for object-replicator:

5.4. Administrators Guide 277



Swift Documentation, Release 2.27.1.dev38

Metric Name Description
object-
replicator.partition.delete.count.<device>

A count of partitions on <device> which were replicated to another node because
they didnt belong on this node. This metric is tracked per-device to allow for
quiescence detection for object replication activity on each device.

object-
replicator.partition.delete.timing

Timing data for partitions replicated to another node because they didnt belong
on this node. This metric is not tracked per device.

object-
replicator.partition.update.count.<device>

A count of partitions on <device> which were replicated to another node, but
also belong on this node. As with delete.count, this metric is tracked per-device.

object-
replicator.partition.update.timing

Timing data for partitions replicated which also belong on this node. This metric
is not tracked per-device.

object-
replicator.suffix.hashes

Count of suffix directories whose hash (of filenames) was recalculated.

object-
replicator.suffix.syncs

Count of suffix directories replicated with rsync.

Metrics for object-server:

278 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

Metric Name Description
object-
server.quarantines

Count of objects (files) found bad and moved to quarantine.

object-
server.async_pendings

Count of container updates saved as async_pendings (may result from PUT or
DELETE requests).

object-
server.POST.errors.timing

Timing data for POST request errors: bad request, missing timestamp, delete-at
in past, not mounted.

object-
server.POST.timing

Timing data for each POST request not resulting in an error.

object-
server.PUT.errors.timing

Timing data for PUT request errors: bad request, not mounted, missing times-
tamp, object creation constraint violation, delete-at in past.

object-
server.PUT.timeouts

Count of object PUTs which exceeded max_upload_time.

object-
server.PUT.timing

Timing data for each PUT request not resulting in an error.

object-
server.PUT.<device>.timing

Timing data per kB transferred (ms/kB) for each non-zero-byte PUT request on
each device. Monitoring problematic devices, higher is bad.

object-
server.GET.errors.timing

Timing data for GET request errors: bad request, not mounted, header times-
tamps before the epoch, precondition failed. File errors resulting in a quarantine
are not counted here.

object-
server.GET.timing

Timing data for each GET request not resulting in an error. Includes requests
which couldnt find the object (including disk errors resulting in file quarantine).

object-
server.HEAD.errors.timing

Timing data for HEAD request errors: bad request, not mounted.

object-
server.HEAD.timing

Timing data for each HEAD request not resulting in an error. Includes requests
which couldnt find the object (including disk errors resulting in file quarantine).

object-
server.DELETE.errors.timing

Timing data for DELETE request errors: bad request, missing timestamp, not
mounted, precondition failed. Includes requests which couldnt find or match the
object.

object-
server.DELETE.timing

Timing data for each DELETE request not resulting in an error.

object-
server.REPLICATE.errors.timing

Timing data for REPLICATE request errors: bad request, not mounted.

object-
server.REPLICATE.timing

Timing data for each REPLICATE request not resulting in an error.

Metrics for object-updater:

5.4. Administrators Guide 279



Swift Documentation, Release 2.27.1.dev38

Metric
Name

Description

object-
updater.errors

Count of drives not mounted or async_pending files with an unexpected name.

object-
updater.timing

Timing data for object sweeps to flush async_pending container updates. Does not
include object sweeps which did not find an existing async_pending storage directory.

object-
updater.quarantines

Count of async_pending container updates which were corrupted and moved to quar-
antine.

object-
updater.successes

Count of successful container updates.

object-
updater.failures

Count of failed container updates.

object-
updater.unlinks

Count of async_pending files unlinked. An async_pending file is unlinked either
when it is successfully processed or when the replicator sees that there is a newer
async_pending file for the same object.

Metrics for proxy-server (in the table, <type> is the proxy-server controller responsible for the request
and will be one of account, container, or object):

Metric Name Description
proxy-
server.errors

Count of errors encountered while serving requests before the controller type is
determined. Includes invalid Content-Length, errors finding the internal controller
to handle the request, invalid utf8, and bad URLs.

proxy-
server.<type>.handoff_count

Count of node hand-offs; only tracked if log_handoffs is set in the proxy-server
config.

proxy-
server.<type>.handoff_all_count

Count of times only hand-off locations were utilized; only tracked if log_handoffs
is set in the proxy-server config.

proxy-
server.<type>.client_timeouts

Count of client timeouts (client did not read within client_timeout seconds during
a GET or did not supply data within client_timeout seconds during a PUT).

proxy-
server.<type>.client_disconnects

Count of detected client disconnects during PUT operations (does NOT include
caught Exceptions in the proxy-server which caused a client disconnect).

Metrics for proxy-logging middleware (in the table, <type> is either the proxy-server controller re-
sponsible for the request: account, container, object, or the string SOS if the request came from
the Swift Origin Server middleware. The <verb> portion will be one of GET, HEAD, POST, PUT,
DELETE, COPY, OPTIONS, or BAD_METHOD. The list of valid HTTP methods is configurable via
the log_statsd_valid_http_methods config variable and the default setting yields the above behavior):

Metric Name Description
proxy-
server.<type>.<verb>.<status>.timing

Timing data for requests, start to finish. The <status> portion is the numeric
HTTP status code for the request (e.g. 200 or 404).

proxy-
server.<type>.GET.<status>.first-
byte.timing

Timing data up to completion of sending the response headers (only for GET
requests). <status> and <type> are as for the main timing metric.

proxy-
server.<type>.<verb>.<status>.xfer

This counter metric is the sum of bytes transferred in (from clients) and out
(to clients) for requests. The <type>, <verb>, and <status> portions of the
metric are just like the main timing metric.

The proxy-logging middleware also groups these metrics by policy. The <policy-index> portion repre-

280 Chapter 5. Administrator Documentation

https://github.com/dpgoetz/sos


Swift Documentation, Release 2.27.1.dev38

sents a policy index):

Metric Name Description
proxy-server.object.policy.<policy-
index>.<verb>.<status>.timing

Timing data for requests, aggregated by policy index.

proxy-server.object.policy.<policy-
index>.GET.<status>.first-byte.timing

Timing data up to completion of sending the response
headers, aggregated by policy index.

proxy-server.object.policy.<policy-
index>.<verb>.<status>.xfer

Sum of bytes transferred in and out, aggregated by pol-
icy index.

Metrics for tempauth middleware (in the table, <reseller_prefix> represents the actual configured re-
seller_prefix or NONE if the reseller_prefix is the empty string):

Metric Name Description
tem-
pauth.<reseller_prefix>.unauthorized

Count of regular requests which were denied with HTTPU-
nauthorized.

tem-
pauth.<reseller_prefix>.forbidden

Count of regular requests which were denied with HTTPFor-
bidden.

tem-
pauth.<reseller_prefix>.token_denied

Count of token requests which were denied.

tempauth.<reseller_prefix>.errors Count of errors.

5.4.13 Debugging Tips and Tools

When a request is made to Swift, it is given a unique transaction id. This id should be in every log line
that has to do with that request. This can be useful when looking at all the services that are hit by a
single request.

If you need to know where a specific account, container or object is in the cluster, swift-get-nodes will
show the location where each replica should be.

If you are looking at an object on the server and need more info, swift-object-info will display the
account, container, replica locations and metadata of the object.

If you are looking at a container on the server and need more info, swift-container-info will display all
the information like the account, container, replica locations and metadata of the container.

If you are looking at an account on the server and need more info, swift-account-info will display the
account, replica locations and metadata of the account.

If you want to audit the data for an account, swift-account-audit can be used to crawl the account,
checking that all containers and objects can be found.

5.4. Administrators Guide 281



Swift Documentation, Release 2.27.1.dev38

5.4.14 Managing Services

Swift services are generally managed with swift-init. the general usage is swift-init
<service> <command>, where service is the Swift service to manage (for example object, con-
tainer, account, proxy) and command is one of:

Command Description
start Start the service
stop Stop the service
restart Restart the service
shutdown Attempt to gracefully shutdown the service
reload Attempt to gracefully restart the service
reload-seamless Attempt to seamlessly restart the service

A graceful shutdown or reload will allow all server workers to finish any current requests before exiting.
The parent server process exits immediately.

A seamless reload will make new configuration settings active, with no window where client requests
fail due to there being no active listen socket. The parent server process will re-exec itself, retaining its
existing PID. After the re-execed parent server process binds its listen sockets, the old listen sockets are
closed and old server workers finish any current requests before exiting.

There is also a special case of swift-init all <command>, which will run the command for all
swift services.

In cases where there are multiple configs for a service, a specific config can be managed with
swift-init <service>.<config> <command>. For example, when a separate replication
network is used, there might be /etc/swift/object-server/public.conf for the object
server and /etc/swift/object-server/replication.conf for the replication services.
In this case, the replication services could be restarted with swift-init object-server.
replication restart.

5.4.15 Object Auditor

On system failures, the XFS file system can sometimes truncate files its trying to write and produce
zero-byte files. The object-auditor will catch these problems but in the case of a system crash it would
be advisable to run an extra, less rate limited sweep to check for these specific files. You can run this
command as follows:

swift-object-auditor /path/to/object-server/config/file.conf once -z 1000

-z means to only check for zero-byte files at 1000 files per second.

At times it is useful to be able to run the object auditor on a specific device or set of devices. You can
run the object-auditor as follows:

swift-object-auditor /path/to/object-server/config/file.conf once --
↪→devices=sda,sdb

This will run the object auditor on only the sda and sdb devices. This param accepts a comma separated
list of values.

282 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

5.4.16 Object Replicator

At times it is useful to be able to run the object replicator on a specific device or partition. You can run
the object-replicator as follows:

swift-object-replicator /path/to/object-server/config/file.conf once --
↪→devices=sda,sdb

This will run the object replicator on only the sda and sdb devices. You can likewise run that command
with --partitions. Both params accept a comma separated list of values. If both are specified they
will be ANDed together. These can only be run in once mode.

5.4.17 Swift Orphans

Swift Orphans are processes left over after a reload of a Swift server.

For example, when upgrading a proxy server you would probably finish with a swift-init
proxy-server reload or /etc/init.d/swift-proxy reload. This kills the parent
proxy server process and leaves the child processes running to finish processing whatever requests they
might be handling at the time. It then starts up a new parent proxy server process and its children to
handle new incoming requests. This allows zero-downtime upgrades with no impact to existing requests.

The orphaned child processes may take a while to exit, depending on the length of the requests they
were handling. However, sometimes an old process can be hung up due to some bug or hardware issue.
In these cases, these orphaned processes will hang around forever. swift-orphans can be used to
find and kill these orphans.

swift-orphans with no arguments will just list the orphans it finds that were started more than 24
hours ago. You shouldnt really check for orphans until 24 hours after you perform a reload, as some
requests can take a long time to process. swift-orphans -k TERM will send the SIG_TERM
signal to the orphans processes, or you can kill -TERM the pids yourself if you prefer.

You can run swift-orphans --help for more options.

5.4.18 Swift Oldies

Swift Oldies are processes that have just been around for a long time. Theres nothing necessarily wrong
with this, but it might indicate a hung process if you regularly upgrade and reload/restart services. You
might have so many servers that you dont notice when a reload/restart fails; swift-oldies can help
with this.

For example, if you upgraded and reloaded/restarted everything 2 days ago, and youve already cleaned
up any orphans with swift-orphans, you can run swift-oldies -a 48 to find any Swift pro-
cesses still around that were started more than 2 days ago and then investigate them accordingly.

5.4. Administrators Guide 283



Swift Documentation, Release 2.27.1.dev38

5.4.19 Custom Log Handlers

Swift supports setting up custom log handlers for services by specifying a comma-separated list of
functions to invoke when logging is setup. It does so via the log_custom_handlers configuration
option. Logger hooks invoked are passed the same arguments as Swifts get_logger function (as well as
the getLogger and LogAdapter object):

Name Description
conf Configuration dict to read settings from
name Name of the logger received
log_to_console (optional) Write log messages to console on stderr
log_route Route for the logging received
fmt Override log format received
logger The logging.getLogger object
adapted_logger The LogAdapter object

A basic example that sets up a custom logger might look like the following:

def my_logger(conf, name, log_to_console, log_route, fmt, logger,
adapted_logger):

my_conf_opt = conf.get('some_custom_setting')
my_handler = third_party_logstore_handler(my_conf_opt)
logger.addHandler(my_handler)

See Custom Logger Hooks for sample use cases.

5.4.20 Securing OpenStack Swift

Please refer to the security guide at https://docs.openstack.org/security-guide and in particular the Object
Storage section.

5.5 Dedicated replication network

5.5.1 Summary

Swifts replication process is essential for consistency and availability of data. By default, replication ac-
tivity will use the same network interface as other cluster operations. However, if a replication interface
is set in the ring for a node, that node will send replication traffic on its designated separate replication
network interface. Replication traffic includes REPLICATE requests and rsync traffic.

To separate the cluster-internal replication traffic from client traffic, separate replication servers can be
used. These replication servers are based on the standard storage servers, but they listen on the replica-
tion IP and only respond to REPLICATE requests. Storage servers can serve REPLICATE requests, so
an operator can transition to using a separate replication network with no cluster downtime.

Replication IP and port information is stored in the ring on a per-node basis. These parameters will be
used if they are present, but they are not required. If this information does not exist or is empty for a
particular node, the nodes standard IP and port will be used for replication.

284 Chapter 5. Administrator Documentation

https://docs.openstack.org/security-guide
https://docs.openstack.org/security-guide/object-storage.html
https://docs.openstack.org/security-guide/object-storage.html


Swift Documentation, Release 2.27.1.dev38

5.5.2 For SAIO replication

1. Create new script in ~/bin/ (for example: remakerings_new):

#!/bin/bash
set -e
cd /etc/swift
rm -f *.builder *.ring.gz backups/*.builder backups/*.ring.gz
swift-ring-builder object.builder create 10 3 1
swift-ring-builder object.builder add z1-127.0.0.1:6210R127.0.0.
↪→1:6250/sdb1 1
swift-ring-builder object.builder add z2-127.0.0.1:6220R127.0.0.
↪→1:6260/sdb2 1
swift-ring-builder object.builder add z3-127.0.0.1:6230R127.0.0.
↪→1:6270/sdb3 1
swift-ring-builder object.builder add z4-127.0.0.1:6240R127.0.0.
↪→1:6280/sdb4 1
swift-ring-builder object.builder rebalance
swift-ring-builder object-1.builder create 10 2 1
swift-ring-builder object-1.builder add z1-127.0.0.1:6210R127.0.0.
↪→1:6250/sdb1 1
swift-ring-builder object-1.builder add z2-127.0.0.1:6220R127.0.0.
↪→1:6260/sdb2 1
swift-ring-builder object-1.builder add z3-127.0.0.1:6230R127.0.0.
↪→1:6270/sdb3 1
swift-ring-builder object-1.builder add z4-127.0.0.1:6240R127.0.0.
↪→1:6280/sdb4 1
swift-ring-builder object-1.builder rebalance
swift-ring-builder object-2.builder create 10 6 1
swift-ring-builder object-2.builder add z1-127.0.0.1:6210R127.0.0.
↪→1:6250/sdb1 1
swift-ring-builder object-2.builder add z1-127.0.0.1:6210R127.0.0.
↪→1:6250/sdb5 1
swift-ring-builder object-2.builder add z2-127.0.0.1:6220R127.0.0.
↪→1:6260/sdb2 1
swift-ring-builder object-2.builder add z2-127.0.0.1:6220R127.0.0.
↪→1:6260/sdb6 1
swift-ring-builder object-2.builder add z3-127.0.0.1:6230R127.0.0.
↪→1:6270/sdb3 1
swift-ring-builder object-2.builder add z3-127.0.0.1:6230R127.0.0.
↪→1:6270/sdb7 1
swift-ring-builder object-2.builder add z4-127.0.0.1:6240R127.0.0.
↪→1:6280/sdb4 1
swift-ring-builder object-2.builder add z4-127.0.0.1:6240R127.0.0.
↪→1:6280/sdb8 1
swift-ring-builder object-2.builder rebalance
swift-ring-builder container.builder create 10 3 1
swift-ring-builder container.builder add z1-127.0.0.1:6211R127.0.0.
↪→1:6251/sdb1 1
swift-ring-builder container.builder add z2-127.0.0.1:6221R127.0.0.
↪→1:6261/sdb2 1
swift-ring-builder container.builder add z3-127.0.0.1:6231R127.0.0.
↪→1:6271/sdb3 1
swift-ring-builder container.builder add z4-127.0.0.1:6241R127.0.0.
↪→1:6281/sdb4 1
swift-ring-builder container.builder rebalance
swift-ring-builder account.builder create 10 3 1

(continues on next page)

5.5. Dedicated replication network 285



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

swift-ring-builder account.builder add z1-127.0.0.1:6212R127.0.0.
↪→1:6252/sdb1 1
swift-ring-builder account.builder add z2-127.0.0.1:6222R127.0.0.
↪→1:6262/sdb2 1
swift-ring-builder account.builder add z3-127.0.0.1:6232R127.0.0.
↪→1:6272/sdb3 1
swift-ring-builder account.builder add z4-127.0.0.1:6242R127.0.0.
↪→1:6282/sdb4 1
swift-ring-builder account.builder rebalance

Note: Syntax of adding device has been changed:
R<ip_replication>:<port_replication> was added between
z<zone>-<ip>:<port> and /<device_name>_<meta> <weight>. Added de-
vices will use <ip_replication> and <port_replication> for replication activities.

2. Add next rows in /etc/rsyncd.conf:

[account6252]
max connections = 25
path = /srv/1/node/
read only = false
lock file = /var/lock/account6252.lock

[account6262]
max connections = 25
path = /srv/2/node/
read only = false
lock file = /var/lock/account6262.lock

[account6272]
max connections = 25
path = /srv/3/node/
read only = false
lock file = /var/lock/account6272.lock

[account6282]
max connections = 25
path = /srv/4/node/
read only = false
lock file = /var/lock/account6282.lock

[container6251]
max connections = 25
path = /srv/1/node/
read only = false
lock file = /var/lock/container6251.lock

[container6261]
max connections = 25
path = /srv/2/node/
read only = false
lock file = /var/lock/container6261.lock

(continues on next page)

286 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

[container6271]
max connections = 25
path = /srv/3/node/
read only = false
lock file = /var/lock/container6271.lock

[container6281]
max connections = 25
path = /srv/4/node/
read only = false
lock file = /var/lock/container6281.lock

[object6250]
max connections = 25
path = /srv/1/node/
read only = false
lock file = /var/lock/object6250.lock

[object6260]
max connections = 25
path = /srv/2/node/
read only = false
lock file = /var/lock/object6260.lock

[object6270]
max connections = 25
path = /srv/3/node/
read only = false
lock file = /var/lock/object6270.lock

[object6280]
max connections = 25
path = /srv/4/node/
read only = false
lock file = /var/lock/object6280.lock

3. Restart rsync daemon:

service rsync restart

4. Update configuration files in directories:

• /etc/swift/object-server(files: 1.conf, 2.conf, 3.conf, 4.conf)

• /etc/swift/container-server(files: 1.conf, 2.conf, 3.conf, 4.conf)

• /etc/swift/account-server(files: 1.conf, 2.conf, 3.conf, 4.conf)

delete all configuration options in section [<*>-replicator]

5. Add configuration files for object-server, in /etc/swift/object-server/

• 5.conf:

5.5. Dedicated replication network 287



Swift Documentation, Release 2.27.1.dev38

[DEFAULT]
devices = /srv/1/node
mount_check = false
disable_fallocate = true
bind_port = 6250
user = swift
log_facility = LOG_LOCAL2
recon_cache_path = /var/cache/swift

[pipeline:main]
pipeline = recon object-server

[app:object-server]
use = egg:swift#object
replication_server = True

[filter:recon]
use = egg:swift#recon

[object-replicator]
rsync_module = {replication_ip}::object{replication_port}

• 6.conf:

[DEFAULT]
devices = /srv/2/node
mount_check = false
disable_fallocate = true
bind_port = 6260
user = swift
log_facility = LOG_LOCAL3
recon_cache_path = /var/cache/swift2

[pipeline:main]
pipeline = recon object-server

[app:object-server]
use = egg:swift#object
replication_server = True

[filter:recon]
use = egg:swift#recon

[object-replicator]
rsync_module = {replication_ip}::object{replication_port}

• 7.conf:

[DEFAULT]
devices = /srv/3/node
mount_check = false
disable_fallocate = true
bind_port = 6270
user = swift
log_facility = LOG_LOCAL4
recon_cache_path = /var/cache/swift3

(continues on next page)

288 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

[pipeline:main]
pipeline = recon object-server

[app:object-server]
use = egg:swift#object
replication_server = True

[filter:recon]
use = egg:swift#recon

[object-replicator]
rsync_module = {replication_ip}::object{replication_port}

• 8.conf:

[DEFAULT]
devices = /srv/4/node
mount_check = false
disable_fallocate = true
bind_port = 6280
user = swift
log_facility = LOG_LOCAL5
recon_cache_path = /var/cache/swift4

[pipeline:main]
pipeline = recon object-server

[app:object-server]
use = egg:swift#object
replication_server = True

[filter:recon]
use = egg:swift#recon

[object-replicator]
rsync_module = {replication_ip}::object{replication_port}

6. Add configuration files for container-server, in /etc/swift/container-server/

• 5.conf:

[DEFAULT]
devices = /srv/1/node
mount_check = false
disable_fallocate = true
bind_port = 6251
user = swift
log_facility = LOG_LOCAL2
recon_cache_path = /var/cache/swift

[pipeline:main]
pipeline = recon container-server

[app:container-server]
use = egg:swift#container

(continues on next page)

5.5. Dedicated replication network 289



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

replication_server = True

[filter:recon]
use = egg:swift#recon

[container-replicator]
rsync_module = {replication_ip}::container{replication_port}

• 6.conf:

[DEFAULT]
devices = /srv/2/node
mount_check = false
disable_fallocate = true
bind_port = 6261
user = swift
log_facility = LOG_LOCAL3
recon_cache_path = /var/cache/swift2

[pipeline:main]
pipeline = recon container-server

[app:container-server]
use = egg:swift#container
replication_server = True

[filter:recon]
use = egg:swift#recon

[container-replicator]
rsync_module = {replication_ip}::container{replication_port}

• 7.conf:

[DEFAULT]
devices = /srv/3/node
mount_check = false
disable_fallocate = true
bind_port = 6271
user = swift
log_facility = LOG_LOCAL4
recon_cache_path = /var/cache/swift3

[pipeline:main]
pipeline = recon container-server

[app:container-server]
use = egg:swift#container
replication_server = True

[filter:recon]
use = egg:swift#recon

[container-replicator]
rsync_module = {replication_ip}::container{replication_port}

290 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

• 8.conf:

[DEFAULT]
devices = /srv/4/node
mount_check = false
disable_fallocate = true
bind_port = 6281
user = swift
log_facility = LOG_LOCAL5
recon_cache_path = /var/cache/swift4

[pipeline:main]
pipeline = recon container-server

[app:container-server]
use = egg:swift#container
replication_server = True

[filter:recon]
use = egg:swift#recon

[container-replicator]
rsync_module = {replication_ip}::container{replication_port}

7. Add configuration files for account-server, in /etc/swift/account-server/

• 5.conf:

[DEFAULT]
devices = /srv/1/node
mount_check = false
disable_fallocate = true
bind_port = 6252
user = swift
log_facility = LOG_LOCAL2
recon_cache_path = /var/cache/swift

[pipeline:main]
pipeline = recon account-server

[app:account-server]
use = egg:swift#account
replication_server = True

[filter:recon]
use = egg:swift#recon

[account-replicator]
rsync_module = {replication_ip}::account{replication_port}

• 6.conf:

[DEFAULT]
devices = /srv/2/node
mount_check = false
disable_fallocate = true
bind_port = 6262

(continues on next page)

5.5. Dedicated replication network 291



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

user = swift
log_facility = LOG_LOCAL3
recon_cache_path = /var/cache/swift2

[pipeline:main]
pipeline = recon account-server

[app:account-server]
use = egg:swift#account
replication_server = True

[filter:recon]
use = egg:swift#recon

[account-replicator]
rsync_module = {replication_ip}::account{replication_port}

• 7.conf:

[DEFAULT]
devices = /srv/3/node
mount_check = false
disable_fallocate = true
bind_port = 6272
user = swift
log_facility = LOG_LOCAL4
recon_cache_path = /var/cache/swift3

[pipeline:main]
pipeline = recon account-server

[app:account-server]
use = egg:swift#account
replication_server = True

[filter:recon]
use = egg:swift#recon

[account-replicator]
rsync_module = {replication_ip}::account{replication_port}

• 8.conf:

[DEFAULT]
devices = /srv/4/node
mount_check = false
disable_fallocate = true
bind_port = 6282
user = swift
log_facility = LOG_LOCAL5
recon_cache_path = /var/cache/swift4

[pipeline:main]
pipeline = recon account-server

[app:account-server]
(continues on next page)

292 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

use = egg:swift#account
replication_server = True

[filter:recon]
use = egg:swift#recon

[account-replicator]
rsync_module = {replication_ip}::account{replication_port}

5.5.3 For a Multiple Server replication

1. Move configuration file.

• Configuration file for object-server from /etc/swift/object-server.conf to /etc/swift/object-
server/1.conf

• Configuration file for container-server from /etc/swift/container-server.conf to
/etc/swift/container-server/1.conf

• Configuration file for account-server from /etc/swift/account-server.conf to
/etc/swift/account-server/1.conf

2. Add changes in configuration files in directories:

• /etc/swift/object-server(files: 1.conf)

• /etc/swift/container-server(files: 1.conf)

• /etc/swift/account-server(files: 1.conf)

delete all configuration options in section [<*>-replicator]

3. Add configuration files for object-server, in /etc/swift/object-server/2.conf:

[DEFAULT]
bind_ip = $STORAGE_LOCAL_NET_IP
workers = 2

[pipeline:main]
pipeline = object-server

[app:object-server]
use = egg:swift#object
replication_server = True

[object-replicator]

4. Add configuration files for container-server, in /etc/swift/container-server/2.conf:

[DEFAULT]
bind_ip = $STORAGE_LOCAL_NET_IP
workers = 2

[pipeline:main]
pipeline = container-server

(continues on next page)

5.5. Dedicated replication network 293



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

[app:container-server]
use = egg:swift#container
replication_server = True

[container-replicator]

5. Add configuration files for account-server, in /etc/swift/account-server/2.conf:

[DEFAULT]
bind_ip = $STORAGE_LOCAL_NET_IP
workers = 2

[pipeline:main]
pipeline = account-server

[app:account-server]
use = egg:swift#account
replication_server = True

[account-replicator]

5.6 Logs

Swift has quite verbose logging, and the generated logs can be used for cluster monitoring, utilization
calculations, audit records, and more. As an overview, Swifts logs are sent to syslog and organized by
log level and syslog facility. All log lines related to the same request have the same transaction id. This
page documents the log formats used in the system.

Note: By default, Swift will log full log lines. However, with the log_max_line_length
setting and depending on your logging server software, lines may be truncated or shortened. With
log_max_line_length < 7, the log line will be truncated. With log_max_line_length
>= 7, the log line will be shortened: about half the max length followed by followed by the other half
the max length. Unless you use exceptionally short values, you are unlikely to run across this with the
following documented log lines, but you may see it with debugging and error log lines.

5.6.1 Proxy Logs

The proxy logs contain the record of all external API requests made to the proxy server. Swifts proxy
servers log requests using a custom format designed to provide robust information and simple process-
ing. It is possible to change this format with the log_msg_template config parameter. The default
log format is:

{client_ip} {remote_addr} {end_time.datetime} {method} {path} {protocol}
{status_int} {referer} {user_agent} {auth_token} {bytes_recvd}
{bytes_sent} {client_etag} {transaction_id} {headers} {request_time}
{source} {log_info} {start_time} {end_time} {policy_index}

Some keywords, signaled by the (anonymizable) flag, can be anonymized by using the transformer
anonymized. The data are applied the hashing method of log_anonymization_method and an optional

294 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

salt log_anonymization_salt.

Some keywords, signaled by the (timestamp) flag, can be converted to standard dates formats using the
matching transformers: datetime, asctime or iso8601. Other transformers for timestamps are s, ms, us
and ns for seconds, milliseconds, microseconds and nanoseconds. Pythons strftime directives can also
be used as tranformers (a, A, b, B, c, d, H, I, j, m, M, p, S, U, w, W, x, X, y, Y, Z).

Example {client_ip.anonymized} {remote_addr.anonymized} {start_time.iso8601}
{end_time.H}:{end_time.M} {method} acc:{account} cnt:{container} obj:{object.anonymized}

Log
Field

Value

client_ip Swifts guess at the end-client IP, taken from various headers in the request. (anonymiz-
able)

re-
mote_addr

The IP address of the other end of the TCP connection. (anonymizable)

end_time Timestamp of the request. (timestamp)
method The HTTP verb in the request.
path The path portion of the request. (anonymizable)
protocol The transport protocol used (currently one of http or https).
sta-
tus_int

The response code for the request.

referer The value of the HTTP Referer header. (anonymizable)
user_agent The value of the HTTP User-Agent header. (anonymizable)
auth_token The value of the auth token. This may be truncated or otherwise obscured.
bytes_recvdThe number of bytes read from the client for this request.
bytes_sent The number of bytes sent to the client in the body of the response. This is how many

bytes were yielded to the WSGI server.
client_etag The etag header value given by the client. (anonymizable)
transac-
tion_id

The transaction id of the request.

headers The headers given in the request. (anonymizable)
re-
quest_time

The duration of the request.

source The source of the request. This may be set for requests that are generated in order to
fulfill client requests, e.g. bulk uploads.

log_info Various info that may be useful for diagnostics, e.g. the value of any x-delete-at header.
start_time High-resolution timestamp from the start of the request. (timestamp)
end_time High-resolution timestamp from the end of the request. (timestamp)
ttfb Duration between the request and the first bytes is sent.
pol-
icy_index

The value of the storage policy index.

account The account part extracted from the path of the request. (anonymizable)
con-
tainer

The container part extracted from the path of the request. (anonymizable)

object The object part extracted from the path of the request. (anonymizable)
pid PID of the process emitting the log line.
wire_status_intThe status sent to the client, which may be different than the logged response code if

there was an error during the body of the request or a disconnect.

In one log line, all of the above fields are space-separated and url-encoded. If any value is empty, it

5.6. Logs 295



Swift Documentation, Release 2.27.1.dev38

will be logged as a -. This allows for simple parsing by splitting each line on whitespace. New values
may be placed at the end of the log line from time to time, but the order of the existing values will not
change. Swift log processing utilities should look for the first N fields they require (e.g. in Python using
something like log_line.split()[:14] to get up through the transaction id).

Note: Some log fields (like the request path) are already url quoted, so the logged value will be double-
quoted. For example, if a client uploads an object name with a : in it, it will be url-quoted as %3A. The
log module will then quote this value as %253A.

Swift Source

The source value in the proxy logs is used to identify the originator of a request in the system. For
example, if the client initiates a bulk upload, the proxy server may end up doing many requests. The
initial bulk upload request will be logged as normal, but all of the internal child requests will have a
source value indicating they came from the bulk functionality.

Logged Source Value Originator of the Request
FP FormPost
SLO Static Large Objects
SW StaticWeb
TU TempURL
BD Bulk Operations (Delete and Archive Auto Extraction) (delete)
EA Bulk Operations (Delete and Archive Auto Extraction) (extract)
AQ Account Quotas
CQ Container Quotas
CS Container Sync Middleware
TA TempAuth
DLO Dynamic Large Objects
LE List Endpoints
KS KeystoneAuth
RL Rate Limiting
RO Read Only
VW Versioned Writes
SSC Server Side Copy
SYM Symlink
SH Container Sharding
S3 AWS S3 Api
OV Object Versioning
EQ Etag Quoter

296 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

5.6.2 Storage Node Logs

Swifts account, container, and object server processes each log requests that they receive, if they have
been configured to do so with the log_requests config parameter (which defaults to true). The
format for these log lines is:

remote_addr - - [datetime] "request_method request_path" status_int
content_length "referer" "transaction_id" "user_agent" request_time
additional_info server_pid policy_index

Log
Field

Value

re-
mote_addr

The IP address of the other end of the TCP connection.

date-
time

Timestamp of the request, in day/month/year:hour:minute:second +0000 format.

re-
quest_method

The HTTP verb in the request.

re-
quest_path

The path portion of the request.

sta-
tus_int

The response code for the request.

con-
tent_length

The value of the Content-Length header in the response.

ref-
erer

The value of the HTTP Referer header.

trans-
ac-
tion_id

The transaction id of the request.

user_agentThe value of the HTTP User-Agent header. Swift services report a user-agent string of
the service name followed by the process ID, such as "proxy-server <pid of the
proxy>" or "object-updater <pid of the object updater>".

re-
quest_time

The time between request received and response started. Note: This includes transfer time
on PUT, but not GET.

addi-
tional_info

Additional useful information.

server_pidThe process id of the server
pol-
icy_index

The value of the storage policy index.

5.7 Swift Ops Runbook

This document contains operational procedures that Hewlett Packard Enterprise (HPE) uses to operate
and monitor the Swift system within the HPE Helion Public Cloud. This document is an excerpt of a
larger product-specific handbook. As such, the material may appear incomplete. The suggestions and
recommendations made in this document are for our particular environment, and may not be suitable
for your environment or situation. We make no representations concerning the accuracy, adequacy,
completeness or suitability of the information, suggestions or recommendations. This document are
provided for reference only. We are not responsible for your use of any information, suggestions or

5.7. Swift Ops Runbook 297



Swift Documentation, Release 2.27.1.dev38

recommendations contained herein.

5.7.1 Identifying issues and resolutions

Is the system up?

If you have a report that Swift is down, perform the following basic checks:

1. Run swift functional tests.

2. From a server in your data center, use curl to check /healthcheck (see below).

3. If you have a monitoring system, check your monitoring system.

4. Check your hardware load balancers infrastructure.

5. Run swift-recon on a proxy node.

Functional tests usage

We would recommend that you set up the functional tests to run against your production system. Run
regularly this can be a useful tool to validate that the system is configured correctly. In addition, it can
provide early warning about failures in your system (if the functional tests stop working, user applica-
tions will also probably stop working).

A script for running the function tests is located in swift/.functests.

External monitoring

We use pingdom.com to monitor the external Swift API. We suggest the following:

• Do a GET on /healthcheck

• Create a container, make it public (x-container-read: .r*,.rlistings), create a small file in the con-
tainer; do a GET on the object

Diagnose: General approach

• Look at service status in your monitoring system.

• In addition to system monitoring tools and issue logging by users, swift errors will often result in
log entries (see Diagnose: Interpreting messages in /var/log/swift/ files).

• Look at any logs your deployment tool produces.

• Log files should be reviewed for error signatures (see below) that may point to a known issue, or
root cause issues reported by the diagnostics tools, prior to escalation.

298 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

Dependencies

The Swift software is dependent on overall system health. Operating system level issues with network
connectivity, domain name resolution, user management, hardware and system configuration and capac-
ity in terms of memory and free disk space, may result is secondary Swift issues. System level issues
should be resolved prior to diagnosis of swift issues.

Diagnose: Swift-dispersion-report

The swift-dispersion-report is a useful tool to gauge the general health of the system. Configure the
swift-dispersion report to cover at a minimum every disk drive in your system (usually 1%
coverage). See Dispersion Report for details of how to configure and use the dispersion reporting tool.

The swift-dispersion-report tool can take a long time to run, especially if any servers are
down. We suggest you run it regularly (e.g., in a cron job) and save the results. This makes it easy to
refer to the last report without having to wait for a long-running command to complete.

Diagnose: Is system responding to /healthcheck?

When you want to establish if a swift endpoint is running, run curl -k against https:
//[ENDPOINT]/healthcheck.

Diagnose: Interpreting messages in /var/log/swift/ files

Note: In the Hewlett Packard Enterprise Helion Public Cloud we send logs to proxy.log (proxy-
server logs), server.log (object-server, account-server, container-server logs), background.log
(all other servers [object-replicator, etc]).

The following table lists known issues:

5.7. Swift Ops Runbook 299

https://
https://


Swift Documentation, Release 2.27.1.dev38

Logfile Signature Issue Steps to take
/var/log/syslog kernel: [] sd . [csbu:sd]

Sense Key: Medium
Error

Suggests disk surface
issues

Run
swift-drive-audit
on the target node to
check for disk errors,
repair disk errors

/var/log/syslog kernel: [] sd . [csbu:sd]
Sense Key: Hardware
Error

Suggests storage hard-
ware issues

Run diagnostics on the
target node to check
for disk failures, re-
place failed disks

/var/log/syslog kernel: [] . I/O error,
dev sd. ,sector .

Run diagnostics on the
target node to check
for disk errors

/var/log/syslog pound: NULL
get_thr_arg

Multiple threads woke
up

Noise, safe to ignore

/var/log/swift/proxy.log . ERROR . Connec-
tionTimeout .

A storage node is not
responding in a timely
fashion

Check if node is down,
not running Swift,
unconfigured, storage
off-line or for net-
work issues between
the proxy and non
responding node

/var/log/swift/proxy.log proxy-server .
HTTP/1.0 500 .

A proxy server has
reported an internal
server error

Examine the logs for
any errors at the time
the error was reported
to attempt to under-
stand the cause of the
error.

/var/log/swift/server.log . ERROR . Connec-
tionTimeout .

A storage server is not
responding in a timely
fashion

Check if node is down,
not running Swift,
unconfigured, storage
off-line or for net-
work issues between
the server and non
responding node

/var/log/swift/server.log . ERROR . Remote I/O
error: /srv/node/disk.

A storage device is not
responding as expected

Run
swift-drive-audit
and check the filesys-
tem named in the error
for corruption (un-
mount & xfs_repair).
Check if the filesys-
tem is mounted and
working.

/var/log/swift/background.logobject-server ERROR
container update failed
. Connection refused

A container server
node could not be
contacted

Check if node is down,
not running Swift,
unconfigured, storage
off-line or for net-
work issues between
the server and non
responding node

/var/log/swift/background.logobject-updater ER-
ROR with remote .
ConnectionTimeout

The remote container
server is busy

If the container is very
large, some errors up-
dating it can be ex-
pected. However, this
error can also occur if
there is a networking
issue.

/var/log/swift/background.logaccount-reaper STD-
OUT: . error: ECON-
NREFUSED

Network connectivity
issue or the target
server is down.

Resolve network issue
or reboot the target
server

/var/log/swift/background.log. ERROR . Connec-
tionTimeout

A storage server is not
responding in a timely
fashion

The target server may
be busy. However, this
error can also occur if
there is a networking
issue.

/var/log/swift/background.log. ERROR syncing .
Timeout

A timeout occurred
syncing data to another
node.

The target server may
be busy. However, this
error can also occur if
there is a networking
issue.

/var/log/swift/background.log. ERROR Remote
drive not mounted .

A storage server disk is
unavailable

Repair and remount
the file system (on the
remote node)

/var/log/swift/background.logobject-replicator . re-
sponded as unmounted

A storage server disk is
unavailable

Repair and remount
the file system (on the
remote node)

/var/log/swift/*.log STDOUT: EXCEP-
TION IN

A unexpected error oc-
curred

Read the Traceback
details, if it matches
known issues (e.g.
active network/disk
issues), check for
re-ocurrences after the
primary issues have
been resolved

/var/log/rsyncd.log rsync: mkdir
/disk.failed: No
such file or directory.

A local storage server
disk is unavailable

Run diagnostics on the
node to check for a
failed or unmounted
disk

/var/log/swift* Exception: Could not
bind to 0.0.0.0:6xxx

Possible Swift process
restart issue. This indi-
cates an old swift pro-
cess is still running.

Restart Swift ser-
vices. If some swift
services are reported
down, check if they
left residual process
behind.

300 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

Diagnose: Parted reports the backup GPT table is corrupt

• If a GPT table is broken, a message like the following should be observed when the following
command is run:

$ sudo parted -l

Error: The backup GPT table is corrupt, but the primary appears OK,
so that will be used.

OK/Cancel?

To fix, go to Fix broken GPT table (broken disk partition)

Diagnose: Drives diagnostic reports a FS label is not acceptable

If diagnostics reports something like FS label: obj001dsk011 is not acceptable, it indicates that a parti-
tion has a valid disk label, but an invalid filesystem label. In such cases proceed as follows:

1. Verify that the disk labels are correct:

FS=/dev/sd#1

sudo parted -l | grep object

2. If partition labels are inconsistent then, resolve the disk label issues before proceeding:

sudo parted -s ${FS} name ${PART_NO} ${PART_NAME} #Partition Label
#PART_NO is 1 for object disks and 3 for OS disks
#PART_NAME follows the convention seen in "sudo parted -l | grep
↪→object"

3. If the Filesystem label is missing then create it with care:

sudo xfs_admin -l ${FS} #Filesystem label (12 Char limit)

#Check for the existence of a FS label

OBJNO=<3 Length Object No.>

#I.E OBJNO for sw-stbaz3-object0007 would be 007

DISKNO=<3 Length Disk No.>

#I.E DISKNO for /dev/sdb would be 001, /dev/sdc would be 002 etc.

sudo xfs_admin -L "obj${OBJNO}dsk${DISKNO}" ${FS}

#Create a FS Label

5.7. Swift Ops Runbook 301



Swift Documentation, Release 2.27.1.dev38

Diagnose: Failed LUNs

Note: The HPE Helion Public Cloud uses direct attach SmartArray controllers/drives. The information
here is specific to that environment. The hpacucli utility mentioned here may be called hpssacli in your
environment.

The swift_diagnostics mount checks may return a warning that a LUN has failed, typically
accompanied by DriveAudit check failures and device errors.

Such cases are typically caused by a drive failure, and if drive check also reports a failed status for the
underlying drive, then follow the procedure to replace the disk.

Otherwise the lun can be re-enabled as follows:

1. Generate a hpssacli diagnostic report. This report allows the DC team to troubleshoot potential
cabling or hardware issues so it is imperative that you run it immediately when troubleshooting a
failed LUN. You will come back later and grep this file for more details, but just generate it for
now.

sudo hpssacli controller all diag file=/tmp/hpacu.diag ris=on xml=off
↪→zip=off

Export the following variables using the below instructions before proceeding further.

1. Print a list of logical drives and their numbers and take note of the failed drives number and array
value (example output: array A logicaldrive 1 would be exported as LDRIVE=1):

sudo hpssacli controller slot=1 ld all show

2. Export the number of the logical drive that was retrieved from the previous command into the
LDRIVE variable:

export LDRIVE=<LogicalDriveNumber>

3. Print the array value and Port:Box:Bay for all drives and take note of the Port:Box:Bay for the
failed drive (example output: array A physicaldrive 2C:1:1 would be exported as PBOX=2C:1:1).
Match the array value of this output with the array value obtained from the previous command to
be sure you are working on the same drive. Also, the array value usually matches the device name
(For example, /dev/sdc in the case of array c), but we will run a different command to be sure we
are operating on the correct device.

sudo hpssacli controller slot=1 pd all show

Note: Sometimes a LUN may appear to be failed as it is not and cannot be mounted but the
hpssacli/parted commands may show no problems with the LUNS/drives. In this case, the filesystem
may be corrupt and may be necessary to run sudo xfs_check /dev/sd[a-l][1-2] to see if
there is an xfs issue. The results of running this command may require that xfs_repair is run.

1. Export the Port:Box:Bay for the failed drive into the PBOX variable:

export PBOX=<Port:Box:Bay>

302 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

2. Print the physical device information and take note of the Disk Name (example output: Disk
Name: /dev/sdk would be exported as DEV=/dev/sdk):

sudo hpssacli controller slot=1 ld ${LDRIVE} show detail | grep -i
↪→"Disk Name"

3. Export the device name variable from the preceding command (example: /dev/sdk):

export DEV=<Device>

4. Export the filesystem variable. Disks that are split between the operating system and data storage,
typically sda and sdb, should only have repairs done on their data filesystem, usually /dev/sda2 and
/dev/sdb2, Other data only disks have just one partition on the device, so the filesystem will be 1.
In any case you should verify the data filesystem by running df -h | grep /srv/node and
using the listed data filesystem for the device in question as the export. For example: /dev/sdk1.

export FS=<Filesystem>

5. Verify the LUN is failed, and the device is not:

sudo hpssacli controller slot=1 ld all show
sudo hpssacli controller slot=1 pd all show
sudo hpssacli controller slot=1 ld ${LDRIVE} show detail
sudo hpssacli controller slot=1 pd ${PBOX} show detail

6. Stop the swift and rsync service:

sudo service rsync stop
sudo swift-init shutdown all

7. Unmount the problem drive, fix the LUN and the filesystem:

sudo umount ${FS}

8. If umount fails, you should run lsof search for the mountpoint and kill any lingering processes
before repeating the unpount:

sudo hpacucli controller slot=1 ld ${LDRIVE} modify reenable
sudo xfs_repair ${FS}

9. If the xfs_repair complains about possible journal data, use the xfs_repair -L option to
zeroise the journal log.

10. Once complete test-mount the filesystem, and tidy up its lost and found area.

sudo mount ${FS} /mnt
sudo rm -rf /mnt/lost+found/
sudo umount /mnt

11. Mount the filesystem and restart swift and rsync.

12. Run the following to determine if a DC ticket is needed to check the cables on the node:

grep -y media.exchanged /tmp/hpacu.diag
grep -y hot.plug.count /tmp/hpacu.diag

5.7. Swift Ops Runbook 303



Swift Documentation, Release 2.27.1.dev38

13. If the output reports any non 0x00 values, it suggests that the cables should be checked. For
example, log a DC ticket to check the sas cables between the drive and the expander.

Diagnose: Slow disk devices

Note: collectl is an open-source performance gathering/analysis tool.

If the diagnostics report a message such as sda: drive is slow, you should log onto the node
and run the following command (remove -c 1 option to continuously monitor the data):

$ /usr/bin/collectl -s D -c 1
waiting for 1 second sample...
# DISK STATISTICS (/sec)
# <---------reads---------><---------writes---------><--------
↪→averages--------> Pct
#Name KBytes Merged IOs Size KBytes Merged IOs Size RWSize QLen
↪→ Wait SvcTim Util
sdb 204 0 33 6 43 0 4 11 6 1
↪→ 7 6 23
sda 84 0 13 6 108 21 6 18 10 1
↪→ 7 7 13
sdc 100 0 16 6 0 0 0 0 6 1
↪→ 7 6 9
sdd 140 0 22 6 22 0 2 11 6 1
↪→ 9 9 22
sde 76 0 12 6 255 0 52 5 5 1
↪→ 2 1 10
sdf 276 0 44 6 0 0 0 0 6 1
↪→ 11 8 38
sdg 112 0 17 7 18 0 2 9 6 1
↪→ 7 7 13
sdh 3552 0 73 49 0 0 0 0 48 1
↪→ 9 8 62
sdi 72 0 12 6 0 0 0 0 6 1
↪→ 8 8 10
sdj 112 0 17 7 22 0 2 11 7 1
↪→ 10 9 18
sdk 120 0 19 6 21 0 2 11 6 1
↪→ 8 8 16
sdl 144 0 22 7 18 0 2 9 6 1
↪→ 9 7 18
dm-0 0 0 0 0 0 0 0 0 0 0
↪→ 0 0 0
dm-1 0 0 0 0 60 0 15 4 4 0
↪→ 0 0 0
dm-2 0 0 0 0 48 0 12 4 4 0
↪→ 0 0 0
dm-3 0 0 0 0 0 0 0 0 0 0
↪→ 0 0 0
dm-4 0 0 0 0 0 0 0 0 0 0
↪→ 0 0 0
dm-5 0 0 0 0 0 0 0 0 0 0
↪→ 0 0 0

304 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

Look at the Wait and SvcTime values. It is not normal for these values to exceed 50msec. This is
known to impact customer performance (upload/download). For a controller problem, many/all drives
will show long wait and service times. A reboot may correct the problem; otherwise hardware replace-
ment is needed.

Another way to look at the data is as follows:

$ /opt/hp/syseng/disk-anal.pl -d
Disk: sda Wait: 54580 371 65 25 12 6 6 0 1 2 0 46
Disk: sdb Wait: 54532 374 96 36 16 7 4 1 0 2 0 46
Disk: sdc Wait: 54345 554 105 29 15 4 7 1 4 4 0 46
Disk: sdd Wait: 54175 553 254 31 20 11 6 6 2 2 1 53
Disk: sde Wait: 54923 66 56 15 8 7 7 0 1 0 2 29
Disk: sdf Wait: 50952 941 565 403 426 366 442 447 338 99 38 97
Disk: sdg Wait: 50711 689 808 562 642 675 696 185 43 14 7 82
Disk: sdh Wait: 51018 668 688 483 575 542 692 275 55 22 9 87
Disk: sdi Wait: 51012 1011 849 672 568 240 344 280 38 13 6 81
Disk: sdj Wait: 50724 743 770 586 662 509 684 283 46 17 11 79
Disk: sdk Wait: 50886 700 585 517 633 511 729 352 89 23 8 81
Disk: sdl Wait: 50106 617 794 553 604 504 532 501 288 234 165 216
Disk: sda Time: 55040 22 16 6 1 1 13 0 0 0 3 12

Disk: sdb Time: 55014 41 19 8 3 1 8 0 0 0 3 17
Disk: sdc Time: 55032 23 14 8 9 2 6 1 0 0 0 19
Disk: sdd Time: 55022 29 17 12 6 2 11 0 0 0 1 14
Disk: sde Time: 55018 34 15 11 12 1 9 0 0 0 2 12
Disk: sdf Time: 54809 250 45 7 1 0 0 0 0 0 1 1
Disk: sdg Time: 55070 36 6 2 0 0 0 0 0 0 0 0
Disk: sdh Time: 55079 33 2 0 0 0 0 0 0 0 0 0
Disk: sdi Time: 55074 28 7 2 0 0 2 0 0 0 0 1
Disk: sdj Time: 55067 35 10 0 1 0 0 0 0 0 0 1
Disk: sdk Time: 55068 31 10 3 0 0 1 0 0 0 0 1
Disk: sdl Time: 54905 130 61 7 3 4 1 0 0 0 0 3

This shows the historical distribution of the wait and service times over a day. This is how you read it:

• sda did 54580 operations with a short wait time, 371 operations with a longer wait time and 65
with an even longer wait time.

• sdl did 50106 operations with a short wait time, but as you can see many took longer.

There is a clear pattern that sdf to sdl have a problem. Actually, sda to sde would more normally have
lots of zeros in their data. But maybe this is a busy system. In this example it is worth changing the
controller as the individual drives may be ok.

After the controller is changed, use collectl -s D as described above to see if the problem has cleared.
disk-anal.pl will continue to show historical data. You can look at recent data as follows. It only looks
at data from 13:15 to 14:15. As you can see, this is a relatively clean system (few if any long wait or
service times):

$ /opt/hp/syseng/disk-anal.pl -d -t 13:15-14:15
Disk: sda Wait: 3600 0 0 0 0 0 0 0 0 0 0 0
Disk: sdb Wait: 3600 0 0 0 0 0 0 0 0 0 0 0
Disk: sdc Wait: 3600 0 0 0 0 0 0 0 0 0 0 0
Disk: sdd Wait: 3600 0 0 0 0 0 0 0 0 0 0 0
Disk: sde Wait: 3600 0 0 0 0 0 0 0 0 0 0 0
Disk: sdf Wait: 3600 0 0 0 0 0 0 0 0 0 0 0

(continues on next page)

5.7. Swift Ops Runbook 305



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

Disk: sdg Wait: 3594 6 0 0 0 0 0 0 0 0 0 0
Disk: sdh Wait: 3600 0 0 0 0 0 0 0 0 0 0 0
Disk: sdi Wait: 3600 0 0 0 0 0 0 0 0 0 0 0
Disk: sdj Wait: 3600 0 0 0 0 0 0 0 0 0 0 0
Disk: sdk Wait: 3600 0 0 0 0 0 0 0 0 0 0 0
Disk: sdl Wait: 3599 1 0 0 0 0 0 0 0 0 0 0
Disk: sda Time: 3600 0 0 0 0 0 0 0 0 0 0 0
Disk: sdb Time: 3600 0 0 0 0 0 0 0 0 0 0 0
Disk: sdc Time: 3600 0 0 0 0 0 0 0 0 0 0 0
Disk: sdd Time: 3600 0 0 0 0 0 0 0 0 0 0 0
Disk: sde Time: 3600 0 0 0 0 0 0 0 0 0 0 0
Disk: sdf Time: 3600 0 0 0 0 0 0 0 0 0 0 0
Disk: sdg Time: 3594 6 0 0 0 0 0 0 0 0 0 0
Disk: sdh Time: 3600 0 0 0 0 0 0 0 0 0 0 0
Disk: sdi Time: 3600 0 0 0 0 0 0 0 0 0 0 0
Disk: sdj Time: 3600 0 0 0 0 0 0 0 0 0 0 0
Disk: sdk Time: 3600 0 0 0 0 0 0 0 0 0 0 0
Disk: sdl Time: 3599 1 0 0 0 0 0 0 0 0 0 0

For long wait times, where the service time appears normal is to check the logical drive cache status.
While the cache may be enabled, it can be disabled on a per-drive basis.

Diagnose: Slow network link - Measuring network performance

Network faults can cause performance between Swift nodes to degrade. Testing with netperf is
recommended. Other methods (such as copying large files) may also work, but can produce inconclusive
results.

Install netperf on all systems if not already installed. Check that the UFW rules for its control port
are in place. However, there are no pre-opened ports for netperfs data connection. Pick a port number.
In this example, 12866 is used because it is one higher than netperfs default control port number, 12865.
If you get very strange results including zero values, you may not have gotten the data port opened in
UFW at the target or may have gotten the netperf command-line wrong.

Pick a source and target node. The source is often a proxy node and the target is often an object
node. Using the same source proxy you can test communication to different object nodes in different
AZs to identity possible bottlenecks.

Running tests

1. Prepare the target node as follows:

sudo iptables -I INPUT -p tcp -j ACCEPT

Or, do:

sudo ufw allow 12866/tcp

2. On the source node, run the following command to check throughput. Note the double-
dash before the -P option. The command takes 10 seconds to complete. The target node is
192.168.245.5.

306 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

$ netperf -H 192.168.245.5 -- -P 12866
MIGRATED TCP STREAM TEST from 0.0.0.0 (0.0.0.0) port 12866 AF_INET to
<redacted>.72.4 (<redacted>.72.4) port 12866 AF_INET : demo
Recv Send Send
Socket Socket Message Elapsed
Size Size Size Time Throughput
bytes bytes bytes secs. 10^6bits/sec
87380 16384 16384 10.02 923.69

3. On the source node, run the following command to check latency:

$ netperf -H 192.168.245.5 -t TCP_RR -- -P 12866
MIGRATED TCP REQUEST/RESPONSE TEST from 0.0.0.0 (0.0.0.0) port 12866
AF_INET to <redacted>.72.4 (<redacted>.72.4) port 12866 AF_INET : demo
: first burst 0
Local Remote Socket Size Request Resp. Elapsed Trans.
Send Recv Size Size Time Rate
bytes Bytes bytes bytes secs. per sec
16384 87380 1 1 10.00 11753.37
16384 87380

Expected results

Faults will show up as differences between different pairs of nodes. However, for reference, here are
some expected numbers:

• For throughput, proxy to proxy, expect ~9300 Mbit/sec (proxies have a 10Ge link).

• For throughout, proxy to object, expect ~920 Mbit/sec (at time of writing this, object nodes have
a 1Ge link).

• For throughput, object to object, expect ~920 Mbit/sec.

• For latency (all types), expect ~11000 transactions/sec.

Diagnose: Remapping sectors experiencing UREs

1. Find the bad sector, device, and filesystem in kern.log.

2. Set the environment variables SEC, DEV & FS, for example:

SEC=2930954256
DEV=/dev/sdi
FS=/dev/sdi1

3. Verify that the sector is bad:

sudo dd if=${DEV} of=/dev/null bs=512 count=1 skip=${SEC}

4. If the sector is bad this command will output an input/output error:

dd: reading `/dev/sdi`: Input/output error
0+0 records in
0+0 records out

5.7. Swift Ops Runbook 307



Swift Documentation, Release 2.27.1.dev38

5. Prevent chef from attempting to re-mount the filesystem while the repair is in progress:

sudo mv /etc/chef/client.pem /etc/chef/xx-client.xx-pem

6. Stop the swift and rsync service:

sudo service rsync stop
sudo swift-init shutdown all

7. Unmount the problem drive:

sudo umount ${FS}

8. Overwrite/remap the bad sector:

sudo dd_rescue -d -A -m8b -s ${SEC}b ${DEV} ${DEV}

9. This command should report an input/output error the first time it is run. Run the command a
second time, if it successfully remapped the bad sector it should not report an input/output error.

10. Verify the sector is now readable:

sudo dd if=${DEV} of=/dev/null bs=512 count=1 skip=${SEC}

11. If the sector is now readable this command should not report an input/output error.

12. If more than one problem sector is listed, set the SEC environment variable to the next sector in
the list:

SEC=123456789

13. Repeat from step 8.

14. Repair the filesystem:

sudo xfs_repair ${FS}

15. If xfs_repair reports that the filesystem has valuable filesystem changes:

sudo xfs_repair ${FS}
Phase 1 - find and verify superblock...
Phase 2 - using internal log

- zero log...
ERROR: The filesystem has valuable metadata changes in a log which
needs to be replayed.
Mount the filesystem to replay the log, and unmount it before
re-running xfs_repair.
If you are unable to mount the filesystem, then use the -L option to
destroy the log and attempt a repair. Note that destroying the log may
cause corruption -- please attempt a mount of the filesystem before
doing this.

16. You should attempt to mount the filesystem, and clear the lost+found area:

sudo mount $FS /mnt
sudo rm -rf /mnt/lost+found/*
sudo umount /mnt

308 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

17. If the filesystem fails to mount then you will need to use the xfs_repair -L option to force
log zeroing. Repeat step 11.

18. If xfs_repair reports that an additional input/output error has been encountered, get the sector
details as follows:

sudo grep "I/O error" /var/log/kern.log | grep sector | tail -1

19. If new input/output error is reported then set the SEC environment variable to the problem sector
number:

SEC=234567890

20. Repeat from step 8

21. Remount the filesystem and restart swift and rsync.

• If all UREs in the kern.log have been fixed and you are still unable to have xfs_repair disk,
it is possible that the UREs have corrupted the filesystem or possibly destroyed the drive
altogether. In this case, the first step is to re-format the filesystem and if this fails, get the
disk replaced.

Diagnose: High system latency

Note: The latency measurements described here are specific to the HPE Helion Public Cloud.

• A bad NIC on a proxy server. However, as explained above, this usually causes the peak to rise,
but average should remain near normal parameters. A quick fix is to shutdown the proxy.

• A stuck memcache server. Accepts connections, but then will not respond. Expect to see timeout
messages in /var/log/proxy.log (port 11211). Swift Diags will also report this as a failed
node/port. A quick fix is to shutdown the proxy server.

• A bad/broken object server can also cause problems if the accounts used by the monitor program
happen to live on the bad object server.

• A general network problem within the data canter. Compare the results with the Pingdom monitors
to see if they also have a problem.

Diagnose: Interface reports errors

Should a network interface on a Swift node begin reporting network errors, it may well indicate a cable,
switch, or network issue.

Get an overview of the interface with:

sudo ifconfig eth{n}
sudo ethtool eth{n}

The Link Detected: indicator will read yes if the nic is cabled.

Establish the adapter type with:

5.7. Swift Ops Runbook 309



Swift Documentation, Release 2.27.1.dev38

sudo ethtool -i eth{n}

Gather the interface statistics with:

sudo ethtool -S eth{n}

If the nick supports self test, this can be performed with:

sudo ethtool -t eth{n}

Self tests should read PASS if the nic is operating correctly.

Nic module drivers can be re-initialised by carefully removing and re-installing the modules (this avoids
rebooting the server). For example, mellanox drivers use a two part driver mlx4_en and mlx4_core.
To reload these you must carefully remove the mlx4_en (ethernet) then the mlx4_core modules, and
reinstall them in the reverse order.

As the interface will be disabled while the modules are unloaded, you must be very careful not to lock
yourself out so it may be better to script this.

Diagnose: Hung swift object replicator

A replicator reports in its log that remaining time exceeds 100 hours. This may indicate that the swift
object-replicator is stuck and not making progress. Another useful way to check this is with the
swift-recon -r command on a swift proxy server:

sudo swift-recon -r
===============================================================================

--> Starting reconnaissance on 384 hosts
===============================================================================
[2013-07-17 12:56:19] Checking on replication
[replication_time] low: 2, high: 80, avg: 28.8, total: 11037, Failed: 0.0%,
↪→ no_result: 0, reported: 383
Oldest completion was 2013-06-12 22:46:50 (12 days ago) by 192.168.245.
↪→3:6200.
Most recent completion was 2013-07-17 12:56:19 (5 seconds ago) by 192.168.
↪→245.5:6200.
===============================================================================

The Oldest completion line in this example indicates that the object-replicator on swift object
server 192.168.245.3 has not completed the replication cycle in 12 days. This replicator is stuck. The
object replicator cycle is generally less than 1 hour. Though an replicator cycle of 15-20 hours can occur
if nodes are added to the system and a new ring has been deployed.

You can further check if the object replicator is stuck by logging on the object server and checking the
object replicator progress with the following command:

# sudo grep object-rep /var/log/swift/background.log | grep -e "Starting
↪→object replication" -e "Object replication complete" -e "partitions rep"
Jul 16 06:25:46 192.168.245.4 object-replicator 15344/16450 (93.28%)
↪→partitions replicated in 69018.48s (0.22/sec, 22h remaining)
Jul 16 06:30:46 192.168.245.4object-replicator 15344/16450 (93.28%)
↪→partitions replicated in 69318.58s (0.22/sec, 22h remaining)

(continues on next page)

310 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

Jul 16 06:35:46 192.168.245.4 object-replicator 15344/16450 (93.28%)
↪→partitions replicated in 69618.63s (0.22/sec, 23h remaining)
Jul 16 06:40:46 192.168.245.4 object-replicator 15344/16450 (93.28%)
↪→partitions replicated in 69918.73s (0.22/sec, 23h remaining)
Jul 16 06:45:46 192.168.245.4 object-replicator 15348/16450 (93.30%)
↪→partitions replicated in 70218.75s (0.22/sec, 24h remaining)
Jul 16 06:50:47 192.168.245.4object-replicator 15348/16450 (93.30%)
↪→partitions replicated in 70518.85s (0.22/sec, 24h remaining)
Jul 16 06:55:47 192.168.245.4 object-replicator 15348/16450 (93.30%)
↪→partitions replicated in 70818.95s (0.22/sec, 25h remaining)
Jul 16 07:00:47 192.168.245.4 object-replicator 15348/16450 (93.30%)
↪→partitions replicated in 71119.05s (0.22/sec, 25h remaining)
Jul 16 07:05:47 192.168.245.4 object-replicator 15348/16450 (93.30%)
↪→partitions replicated in 71419.15s (0.21/sec, 26h remaining)
Jul 16 07:10:47 192.168.245.4object-replicator 15348/16450 (93.30%)
↪→partitions replicated in 71719.25s (0.21/sec, 26h remaining)
Jul 16 07:15:47 192.168.245.4 object-replicator 15348/16450 (93.30%)
↪→partitions replicated in 72019.27s (0.21/sec, 27h remaining)
Jul 16 07:20:47 192.168.245.4object-replicator 15348/16450 (93.30%)
↪→partitions replicated in 72319.37s (0.21/sec, 27h remaining)
Jul 16 07:25:47 192.168.245.4 object-replicator 15348/16450 (93.30%)
↪→partitions replicated in 72619.47s (0.21/sec, 28h remaining)
Jul 16 07:30:47 192.168.245.4 object-replicator 15348/16450 (93.30%)
↪→partitions replicated in 72919.56s (0.21/sec, 28h remaining)
Jul 16 07:35:47 192.168.245.4 object-replicator 15348/16450 (93.30%)
↪→partitions replicated in 73219.67s (0.21/sec, 29h remaining)
Jul 16 07:40:47 192.168.245.4 object-replicator 15348/16450 (93.30%)
↪→partitions replicated in 73519.76s (0.21/sec, 29h remaining)

The above status is output every 5 minutes to /var/log/swift/background.log.

Note: The remaining time is increasing as time goes on, normally the time remaining should be de-
creasing. Also note the partition number. For example, 15344 remains the same for several status lines.
Eventually the object replicator detects the hang and attempts to make progress by killing the problem
thread. The replicator then progresses to the next partition but quite often it again gets stuck on the same
partition.

One of the reasons for the object replicator hanging like this is filesystem corruption on the drive. The
following is a typical log entry of a corrupted filesystem detected by the object replicator:

# sudo bzgrep "Remote I/O error" /var/log/swift/background.log* |grep srv
↪→| - tail -1
Jul 12 03:33:30 192.168.245.4 object-replicator STDOUT: ERROR:root:Error
↪→hashing suffix#012Traceback (most recent call last):#012 File
"/usr/lib/python2.7/dist-packages/swift/obj/replicator.py", line 199, in
↪→get_hashes#012 hashes[suffix] = hash_suffix(suffix_dir,
reclaim_age)#012 File "/usr/lib/python2.7/dist-packages/swift/obj/
↪→replicator.py", line 84, in hash_suffix#012 path_contents =
sorted(os.listdir(path))#012OSError: [Errno 121] Remote I/O error: '/srv/
↪→node/disk4/objects/1643763/b51'

An ls of the problem file or directory usually shows something like the following:

5.7. Swift Ops Runbook 311



Swift Documentation, Release 2.27.1.dev38

# ls -l /srv/node/disk4/objects/1643763/b51
ls: cannot access /srv/node/disk4/objects/1643763/b51: Remote I/O error

If no entry with Remote I/O error occurs in the background.log it is not possible to determine
why the object-replicator is hung. It may be that the Remote I/O error entry is older than 7 days
and so has been rotated out of the logs. In this scenario it may be best to simply restart the object-
replicator.

1. Stop the object-replicator:

# sudo swift-init object-replicator stop

2. Make sure the object replicator has stopped, if it has hung, the stop command will not stop the
hung process:

# ps auxww | - grep swift-object-replicator

3. If the previous ps shows the object-replicator is still running, kill the process:

# kill -9 <pid-of-swift-object-replicator>

4. Start the object-replicator:

# sudo swift-init object-replicator start

If the above grep did find an Remote I/O error then it may be possible to repair the problem
filesystem.

1. Stop swift and rsync:

# sudo swift-init all shutdown
# sudo service rsync stop

2. Make sure all swift process have stopped:

# ps auxww | grep swift | grep python

3. Kill any swift processes still running.

4. Unmount the problem filesystem:

# sudo umount /srv/node/disk4

5. Repair the filesystem:

# sudo xfs_repair -P /dev/sde1

6. If the xfs_repair fails then it may be necessary to re-format the filesystem. See Procedure:
Fix broken XFS filesystem. If the xfs_repair is successful, re-enable chef using the following
command and replication should commence again.

312 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

Diagnose: High CPU load

The CPU load average on an object server, as shown with the uptime command, is typically under 10
when the server is lightly-moderately loaded:

$ uptime
07:59:26 up 99 days, 5:57, 1 user, load average: 8.59, 8.39, 8.32

During times of increased activity, due to user transactions or object replication, the CPU load average
can increase to to around 30.

However, sometimes the CPU load average can increase significantly. The following is an example of
an object server that has extremely high CPU load:

$ uptime
07:44:02 up 18:22, 1 user, load average: 407.12, 406.36, 404.59

Further issues and resolutions

Note: The urgency levels in each Action column indicates whether or not it is required to take imme-
diate action, or if the problem can be worked on during business hours.

5.7. Swift Ops Runbook 313



Swift Documentation, Release 2.27.1.dev38

Scenario Description Action
/healthcheck latency is
high.

The /healthcheck test does
not tax the proxy very much
so any drop in value is prob-
ably related to network issues,
rather than the proxies being
very busy. A very slow proxy
might impact the average num-
ber, but it would need to be very
slow to shift the number that
much.

Check networks. Do
a curl https://
<ip-address>:<port>/
healthcheck where
ip-address is individ-
ual proxy IP address. Repeat
this for every proxy server to
see if you can pin point the
problem.
Urgency: If there are other indi-
cations that your system is slow,
you should treat this as an ur-
gent problem.

Swift process is not running. You can use swift-init sta-
tus to check if swift processes
are running on any given server.

Run this command:
sudo swift-init all
↪→start

Examine messages in the swift
log files to see if there are any
error messages related to any
of the swift processes since the
time you ran the swift-init
command.
Take any corrective actions that
seem necessary.
Urgency: If this only affects
one server, and you have more
than one, identifying and fixing
the problem can wait until busi-
ness hours. If this same prob-
lem affects many servers, then
you need to take corrective ac-
tion immediately.

ntpd is not running. NTP is not running. Configure and start NTP.
Urgency: For proxy servers,
this is vital.

Host clock is not syncd to an
NTP server.

Node time settings does not
match NTP server time. This
may take some time to sync af-
ter a reboot.

Assuming NTP is configured
and running, you have to wait
until the times sync.

A swift process has hundreds,
to thousands of open file de-
scriptors.

May happen to any of the swift
processes. Known to have hap-
pened with a rsyslod restart
and where /tmp was hanging.

Restart the swift processes on
the affected node:
% sudo swift-init all
↪→reload

Urgency: If known per-
formance problem:
Immediate
If system seems fine:
Medium

A swift process is not owned by
the swift user.

If the UID of the swift user
has changed, then the processes
might not be owned by that
UID.

Urgency: If this only affects
one server, and you have more
than one, identifying and fixing
the problem can wait until busi-
ness hours. If this same prob-
lem affects many servers, then
you need to take corrective ac-
tion immediately.

Object account or container
files not owned by swift.

This typically happens if dur-
ing a reinstall or a re-image of a
server that the UID of the swift
user was changed. The data
files in the object account and
container directories are owned
by the original swift UID. As
a result, the current swift user
does not own these files.

Correct the UID of the swift
user to reflect that of the orig-
inal UID. An alternate action is
to change the ownership of ev-
ery file on all file systems. This
alternate action is often imprac-
tical and will take considerable
time.
Urgency: If this only affects
one server, and you have more
than one, identifying and fixing
the problem can wait until busi-
ness hours. If this same prob-
lem affects many servers, then
you need to take corrective ac-
tion immediately.

A disk drive has a high IO wait
or service time.

If high wait IO times are seen
for a single disk, then the disk
drive is the problem. If most/all
devices are slow, the controller
is probably the source of the
problem. The controller cache
may also be miss configured
which will cause similar long
wait or service times.

As a first step, if your con-
trollers have a cache, check
that it is enabled and their bat-
tery/capacitor is working.
Second, reboot the server. If
problem persists, file a DC
ticket to have the drive or con-
troller replaced. See Diagnose:
Slow disk devices on how to
check the drive wait or service
times.
Urgency: Medium

The network interface is not up. Use the ifconfig and
ethtool commands to
determine the network state.

You can try restarting the inter-
face. However, generally the
interface (or cable) is probably
broken, especially if the inter-
face is flapping.
Urgency: If this only affects
one server, and you have more
than one, identifying and fixing
the problem can wait until busi-
ness hours. If this same prob-
lem affects many servers, then
you need to take corrective ac-
tion immediately.

Network interface card (NIC)
is not operating at the expected
speed.

The NIC is running at a slower
speed than its nominal rated
speed. For example, it is run-
ning at 100 Mb/s and the NIC
is a 1Ge NIC.

1. Try resetting the interface
with:

sudo ethtool -s eth0
↪→speed 1000

and then run:
sudo lshw -class

See if size goes to the expected
speed. Failing that, check hard-
ware (NIC cable/switch port).

2. If persistent, consider
shutting down the server
(especially if a proxy)
until the problem is
identified and resolved.
If you leave this server
running it can have a
large impact on overall
performance.

Urgency: High
The interface RX/TX error
count is non-zero.

A value of 0 is typical, but
counts of 1 or 2 do not indicate
a problem.

1. For low numbers (For ex-
ample, 1 or 2), you can
simply ignore. Numbers
in the range 3-30 proba-
bly indicate that the error
count has crept up slowly
over a long time. Con-
sider rebooting the server
to remove the report from
the noise.
Typically, when a ca-
ble or interface is bad,
the error count goes to
400+. For example, it
stands out. There may
be other symptoms such
as the interface going up
and down or not running
at correct speed. A server
with a high error count
should be watched.

2. If the error count con-
tinues to climb, consider
taking the server down
until it can be properly
investigated. In any case,
a reboot should be done
to clear the error count.

Urgency: High, if the error
count increasing.

In a swift log you see a message
that a process has not replicated
in over 24 hours.

The replicator has not success-
fully completed a run in the last
24 hours. This indicates that the
replicator has probably hung.

Use swift-init to stop and
then restart the replicator pro-
cess.
Urgency: Low. However if you
recently added or replaced disk
drives then you should treat this
urgently.

Container Updater has not run
in 4 hour(s).

The service may appear to be
running however, it may be
hung. Examine their swift logs
to see if there are any error mes-
sages relating to the container
updater. This may potentially
explain why the container is not
running.

Urgency: Medium This may
have been triggered by a re-
cent restart of the rsyslog dae-
mon. Restart the service with:
.. code:
sudo swift-init
↪→<service> reload

Object replicator: Reports the
remaining time and that time is
more than 100 hours.

Each replication cycle the ob-
ject replicator writes a log mes-
sage to its log reporting statis-
tics about the current cycle.
This includes an estimate for
the remaining time needed to
replicate all objects. If this time
is longer than 100 hours, there
is a problem with the replica-
tion process.

Urgency: Medium Restart the
service with: .. code:
sudo swift-init object-
↪→replicator reload

Check that the remaining repli-
cation time is going down.

314 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

5.7.2 Software configuration procedures

Fix broken GPT table (broken disk partition)

• If a GPT table is broken, a message like the following should be observed when the command

$ sudo parted -l

• is run.

...
Error: The backup GPT table is corrupt, but the primary appears OK,
↪→so that will
be used.
OK/Cancel?

1. To fix this, firstly install the gdisk program to fix this:

$ sudo aptitude install gdisk

2. Run gdisk for the particular drive with the damaged partition:

3. On the command prompt, type r (recovery and transformation options), followed by d (use main
GPT header) , v (verify disk) and finally w (write table to disk and exit). Will also need to enter Y
when prompted in order to confirm actions.

Command (? for help): r

Recovery/transformation command (? for help): d

Recovery/transformation command (? for help): v

Caution: The CRC for the backup partition table is invalid. This
↪→table may
be corrupt. This program will automatically create a new backup
↪→partition
table when you save your partitions.

Caution: Partition 1 doesn't begin on a 8-sector boundary. This may
result in degraded performance on some modern (2009 and later) hard
↪→disks.

Caution: Partition 2 doesn't begin on a 8-sector boundary. This may
result in degraded performance on some modern (2009 and later) hard
↪→disks.

Caution: Partition 3 doesn't begin on a 8-sector boundary. This may
result in degraded performance on some modern (2009 and later) hard
↪→disks.

Identified 1 problems!

Recovery/transformation command (? for help): w

Final checks complete. About to write GPT data. THIS WILL OVERWRITE
↪→EXISTING

(continues on next page)

5.7. Swift Ops Runbook 315



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

PARTITIONS!!

Do you want to proceed, possibly destroying your data? (Y/N): Y

OK; writing new GUID partition table (GPT).
The operation has completed successfully.

4. Running the command:

$ sudo parted /dev/sd#

5. Should now show that the partition is recovered and healthy again.

6. Finally, uninstall gdisk from the node:

$ sudo aptitude remove gdisk

Procedure: Fix broken XFS filesystem

1. A filesystem may be corrupt or broken if the following output is observed when checking its label:

$ sudo xfs_admin -l /dev/sd#
cache_node_purge: refcount was 1, not zero (node=0x25d5ee0)
xfs_admin: cannot read root inode (117)
cache_node_purge: refcount was 1, not zero (node=0x25d92b0)
xfs_admin: cannot read realtime bitmap inode (117)
bad sb magic # 0 in AG 1
failed to read label in AG 1

2. Run the following commands to remove the broken/corrupt filesystem and replace. (This example
uses the filesystem /dev/sdb2) Firstly need to replace the partition:

$ sudo parted
GNU Parted 2.3
Using /dev/sda
Welcome to GNU Parted! Type 'help' to view a list of commands.
(parted) select /dev/sdb
Using /dev/sdb
(parted) p
Model: HP LOGICAL VOLUME (scsi)
Disk /dev/sdb: 2000GB
Sector size (logical/physical): 512B/512B
Partition Table: gpt

Number Start End Size File system Name Flags
1 17.4kB 1024MB 1024MB ext3 boot
2 1024MB 1751GB 1750GB xfs sw-aw2az1-object045-disk1
3 1751GB 2000GB 249GB lvm

(parted) rm 2
(parted) mkpart primary 2 -1
Warning: You requested a partition from 2000kB to 2000GB.
The closest location we can manage is 1024MB to 1751GB.
Is this still acceptable to you?

(continues on next page)

316 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

Yes/No? Yes
Warning: The resulting partition is not properly aligned for best
↪→performance.
Ignore/Cancel? Ignore
(parted) p
Model: HP LOGICAL VOLUME (scsi)
Disk /dev/sdb: 2000GB
Sector size (logical/physical): 512B/512B
Partition Table: gpt

Number Start End Size File system Name Flags
1 17.4kB 1024MB 1024MB ext3 boot
2 1024MB 1751GB 1750GB xfs primary
3 1751GB 2000GB 249GB lvm

(parted) quit

3. Next step is to scrub the filesystem and format:

$ sudo dd if=/dev/zero of=/dev/sdb2 bs=$((1024*1024)) count=1
1+0 records in
1+0 records out
1048576 bytes (1.0 MB) copied, 0.00480617 s, 218 MB/s
$ sudo /sbin/mkfs.xfs -f -i size=1024 /dev/sdb2
meta-data=/dev/sdb2 isize=1024 agcount=4,

↪→agsize=106811524 blks
= sectsz=512 attr=2, projid32bit=0

data = bsize=4096 blocks=427246093,
↪→imaxpct=5

= sunit=0 swidth=0 blks
naming =version 2 bsize=4096 ascii-ci=0
log =internal log bsize=4096 blocks=208616, version=2

= sectsz=512 sunit=0 blks, lazy-
↪→count=1
realtime =none extsz=4096 blocks=0, rtextents=0

4. You should now label and mount your filesystem.

5. Can now check to see if the filesystem is mounted using the command:

$ mount

Procedure: Checking if an account is okay

Note: swift-direct is only available in the HPE Helion Public Cloud. Use swiftly as an
alternate (or use swift-get-nodes as explained here).

You must know the tenant/project ID. You can check if the account is okay as follows from a proxy.

$ sudo -u swift /opt/hp/swift/bin/swift-direct show AUTH_<project-id>

The response will either be similar to a swift list of the account containers, or an error indicating that the
resource could not be found.

5.7. Swift Ops Runbook 317



Swift Documentation, Release 2.27.1.dev38

Alternatively, you can use swift-get-nodes to find the account database files. Run the following
on a proxy:

$ sudo swift-get-nodes /etc/swift/account.ring.gz AUTH_<project-id>

The response will print curl/ssh commands that will list the replicated account databases. Use the indi-
cated curl or ssh commands to check the status and existence of the account.

Procedure: Getting swift account stats

Note: swift-direct is specific to the HPE Helion Public Cloud. Go look at swifty for an
alternate or use swift-get-nodes as explained in Procedure: Checking if an account is okay.

This procedure describes how you determine the swift usage for a given swift account, that is the number
of containers, number of objects and total bytes used. To do this you will need the project ID.

Log onto one of the swift proxy servers.

Use swift-direct to show this accounts usage:

$ sudo -u swift /opt/hp/swift/bin/swift-direct show AUTH_<project-id>
Status: 200

Content-Length: 0
Accept-Ranges: bytes
X-Timestamp: 1379698586.88364
X-Account-Bytes-Used: 67440225625994
X-Account-Container-Count: 1
Content-Type: text/plain; charset=utf-8
X-Account-Object-Count: 8436776
Status: 200
name: my_container count: 8436776 bytes: 67440225625994

This account has 1 container. That container has 8436776 objects. The total bytes used is
67440225625994.

Procedure: Revive a deleted account

Swift accounts are normally not recreated. If a tenant/project is deleted, the account can then be deleted.
If the user wishes to use Swift again, the normal process is to create a new tenant/project and hence a
new Swift account.

However, if the Swift account is deleted, but the tenant/project is not deleted from Keystone, the user
can no longer access the account. This is because the account is marked deleted in Swift. You can revive
the account as described in this process.

Note: The containers and objects in the old account cannot be listed anymore. In addition, if the
Account Reaper process has not finished reaping the containers and objects in the old account, these are
effectively orphaned and it is virtually impossible to find and delete them to free up disk space.

The solution is to delete the account database files and re-create the account as follows:

318 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

1. You must know the tenant/project ID. The account name is AUTH_<project-id>. In this example,
the tenant/project is 4ebe3039674d4864a11fe0864ae4d905 so the Swift account name is
AUTH_4ebe3039674d4864a11fe0864ae4d905.

2. Use swift-get-nodes to locate the accounts database files (on three servers). The output has
been truncated so we can focus on the import pieces of data:

$ sudo swift-get-nodes /etc/swift/account.ring.gz AUTH_
↪→4ebe3039674d4864a11fe0864ae4d905
...
curl -I -XHEAD "http://192.168.245.5:6202/disk1/3934/AUTH_
↪→4ebe3039674d4864a11fe0864ae4d905"
curl -I -XHEAD "http://192.168.245.3:6202/disk0/3934/AUTH_
↪→4ebe3039674d4864a11fe0864ae4d905"
curl -I -XHEAD "http://192.168.245.4:6202/disk1/3934/AUTH_
↪→4ebe3039674d4864a11fe0864ae4d905"
...
Use your own device location of servers:
such as "export DEVICE=/srv/node"
ssh 192.168.245.5 "ls -lah ${DEVICE:-/srv/node*}/disk1/accounts/3934/
↪→052/f5ecf8b40de3e1b0adb0dbe576874052"
ssh 192.168.245.3 "ls -lah ${DEVICE:-/srv/node*}/disk0/accounts/3934/
↪→052/f5ecf8b40de3e1b0adb0dbe576874052"
ssh 192.168.245.4 "ls -lah ${DEVICE:-/srv/node*}/disk1/accounts/3934/
↪→052/f5ecf8b40de3e1b0adb0dbe576874052"
...
note: `/srv/node*` is used as default value of `devices`, the real
↪→value is set in the config file on each storage node.

3. Before proceeding check that the account is really deleted by using curl. Execute the commands
printed by swift-get-nodes. For example:

$ curl -I -XHEAD "http://192.168.245.5:6202/disk1/3934/AUTH_
↪→4ebe3039674d4864a11fe0864ae4d905"
HTTP/1.1 404 Not Found
Content-Length: 0
Content-Type: text/html; charset=utf-8

Repeat for the other two servers (192.168.245.3 and 192.168.245.4). A 404 Not Found indi-
cates that the account is deleted (or never existed).

If you get a 204 No Content response, do not proceed.

4. Use the ssh commands printed by swift-get-nodes to check if database files exist. For
example:

$ ssh 192.168.245.5 "ls -lah ${DEVICE:-/srv/node*}/disk1/accounts/
↪→3934/052/f5ecf8b40de3e1b0adb0dbe576874052"
total 20K
drwxr-xr-x 2 swift swift 110 Mar 9 10:22 .
drwxr-xr-x 3 swift swift 45 Mar 9 10:18 ..
-rw------- 1 swift swift 17K Mar 9 10:22
↪→f5ecf8b40de3e1b0adb0dbe576874052.db
-rw-r--r-- 1 swift swift 0 Mar 9 10:22
↪→f5ecf8b40de3e1b0adb0dbe576874052.db.pending
-rwxr-xr-x 1 swift swift 0 Mar 9 10:18 .lock

Repeat for the other two servers (192.168.245.3 and 192.168.245.4).

5.7. Swift Ops Runbook 319



Swift Documentation, Release 2.27.1.dev38

If no files exist, no further action is needed.

5. Stop Swift processes on all nodes listed by swift-get-nodes (In this example, that is
192.168.245.3, 192.168.245.4 and 192.168.245.5).

6. We recommend you make backup copies of the database files.

7. Delete the database files. For example:

$ ssh 192.168.245.5
$ cd /srv/node/disk1/accounts/3934/052/
↪→f5ecf8b40de3e1b0adb0dbe576874052
$ sudo rm *

Repeat for the other two servers (192.168.245.3 and 192.168.245.4).

8. Restart Swift on all three servers

At this stage, the account is fully deleted. If you enable the auto-create option, the next time the user
attempts to access the account, the account will be created. You may also use swiftly to recreate the
account.

Procedure: Temporarily stop load balancers from directing traffic to a proxy server

You can stop the load balancers sending requests to a proxy server as follows. This can be useful when a
proxy is misbehaving but you need Swift running to help diagnose the problem. By removing from the
load balancers, customers are not impacted by the misbehaving proxy.

1. Ensure that in /etc/swift/proxy-server.conf the disable_path variable is set to /etc/swift/
disabled-by-file.

2. Log onto the proxy node.

3. Shut down Swift as follows:

sudo swift-init proxy shutdown

Note: Shutdown, not stop.

4. Create the /etc/swift/disabled-by-file file. For example:

sudo touch /etc/swift/disabled-by-file

5. Optional, restart Swift:

sudo swift-init proxy start

It works because the healthcheck middleware looks for /etc/swift/disabled-by-file. If it exists, the mid-
dleware will return 503/error instead of 200/OK. This means the load balancer should stop sending traffic
to the proxy.

320 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

Procedure: Ad-Hoc disk performance test

You can get an idea whether a disk drive is performing as follows:

sudo dd bs=1M count=256 if=/dev/zero conv=fdatasync of=/srv/node/disk11/
↪→remember-to-delete-this-later

You can expect ~600MB/sec. If you get a low number, repeat many times as Swift itself may also read
or write to the disk, hence giving a lower number.

5.7.3 Server maintenance

General assumptions

• It is assumed that anyone attempting to replace hardware components will have already read and
understood the appropriate maintenance and service guides.

• It is assumed that where servers need to be taken off-line for hardware replacement, that this will
be done in series, bringing the server back on-line before taking the next off-line.

• It is assumed that the operations directed procedure will be used for identifying hardware for
replacement.

Assessing the health of swift

You can run the swift-recon tool on a Swift proxy node to get a quick check of how Swift is doing. Please
note that the numbers below are necessarily somewhat subjective. Sometimes parameters for which we
say low values are good will have pretty high values for a time. Often if you wait a while things get
better.

For example:

sudo swift-recon -rla
===============================================================================
[2012-03-10 12:57:21] Checking async pendings on 384 hosts...
Async stats: low: 0, high: 1, avg: 0, total: 1
===============================================================================

[2012-03-10 12:57:22] Checking replication times on 384 hosts...
[Replication Times] shortest: 1.4113877813, longest: 36.8293570836, avg: 4.
↪→86278064749
===============================================================================

[2012-03-10 12:57:22] Checking load avg's on 384 hosts...
[5m load average] lowest: 2.22, highest: 9.5, avg: 4.59578125
[15m load average] lowest: 2.36, highest: 9.45, avg: 4.62622395833
[1m load average] lowest: 1.84, highest: 9.57, avg: 4.5696875
===============================================================================

In the example above we ask for information on replication times (-r), load averages (-l) and async
pendings (-a). This is a healthy Swift system. Rules-of-thumb for good recon output are:

• Nodes that respond are up and running Swift. If all nodes respond, that is a good sign. But some
nodes may time out. For example:

5.7. Swift Ops Runbook 321



Swift Documentation, Release 2.27.1.dev38

-> [http://<redacted>.29:6200/recon/load:] <urlopen error [Errno 111]
↪→ECONNREFUSED>
-> [http://<redacted>.31:6200/recon/load:] <urlopen error timed out>

• That could be okay or could require investigation.

• Low values (say < 10 for high and average) for async pendings are good. Higher values occur
when disks are down and/or when the system is heavily loaded. Many simultaneous PUTs to the
same container can drive async pendings up. This may be normal, and may resolve itself after a
while. If it persists, one way to track down the problem is to find a node with high async pendings
(with swift-recon -av | sort -n -k4), then check its Swift logs, Often async pend-
ings are high because a node cannot write to a container on another node. Often this is because
the node or disk is offline or bad. This may be okay if we know about it.

• Low values for replication times are good. These values rise when new rings are pushed, and
when nodes and devices are brought back on line.

• Our high load average values are typically in the 9-15 range. If they are a lot bigger it is worth
having a look at the systems pushing the average up. Run swift-recon -av to get the in-
dividual averages. To sort the entries with the highest at the end, run swift-recon -av |
sort -n -k4.

For comparison here is the recon output for the same system above when two entire racks of Swift are
down:

[2012-03-10 16:56:33] Checking async pendings on 384 hosts...
-> http://<redacted>.22:6200/recon/async: <urlopen error timed out>
-> http://<redacted>.18:6200/recon/async: <urlopen error timed out>
-> http://<redacted>.16:6200/recon/async: <urlopen error timed out>
-> http://<redacted>.13:6200/recon/async: <urlopen error timed out>
-> http://<redacted>.30:6200/recon/async: <urlopen error timed out>
-> http://<redacted>.6:6200/recon/async: <urlopen error timed out>
.........
-> http://<redacted>.5:6200/recon/async: <urlopen error timed out>
-> http://<redacted>.15:6200/recon/async: <urlopen error timed out>
-> http://<redacted>.9:6200/recon/async: <urlopen error timed out>
-> http://<redacted>.27:6200/recon/async: <urlopen error timed out>
-> http://<redacted>.4:6200/recon/async: <urlopen error timed out>
-> http://<redacted>.8:6200/recon/async: <urlopen error timed out>
Async stats: low: 243, high: 659, avg: 413, total: 132275
===============================================================================
[2012-03-10 16:57:48] Checking replication times on 384 hosts...
-> http://<redacted>.22:6200/recon/replication: <urlopen error timed out>
-> http://<redacted>.18:6200/recon/replication: <urlopen error timed out>
-> http://<redacted>.16:6200/recon/replication: <urlopen error timed out>
-> http://<redacted>.13:6200/recon/replication: <urlopen error timed out>
-> http://<redacted>.30:6200/recon/replication: <urlopen error timed out>
-> http://<redacted>.6:6200/recon/replication: <urlopen error timed out>
............
-> http://<redacted>.5:6200/recon/replication: <urlopen error timed out>
-> http://<redacted>.15:6200/recon/replication: <urlopen error timed out>
-> http://<redacted>.9:6200/recon/replication: <urlopen error timed out>
-> http://<redacted>.27:6200/recon/replication: <urlopen error timed out>
-> http://<redacted>.4:6200/recon/replication: <urlopen error timed out>
-> http://<redacted>.8:6200/recon/replication: <urlopen error timed out>
[Replication Times] shortest: 1.38144306739, longest: 112.620954418, avg:
↪→10.285

(continues on next page)

322 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

9475361
===============================================================================
[2012-03-10 16:59:03] Checking load avg's on 384 hosts...
-> http://<redacted>.22:6200/recon/load: <urlopen error timed out>
-> http://<redacted>.18:6200/recon/load: <urlopen error timed out>
-> http://<redacted>.16:6200/recon/load: <urlopen error timed out>
-> http://<redacted>.13:6200/recon/load: <urlopen error timed out>
-> http://<redacted>.30:6200/recon/load: <urlopen error timed out>
-> http://<redacted>.6:6200/recon/load: <urlopen error timed out>
............
-> http://<redacted>.15:6200/recon/load: <urlopen error timed out>
-> http://<redacted>.9:6200/recon/load: <urlopen error timed out>
-> http://<redacted>.27:6200/recon/load: <urlopen error timed out>
-> http://<redacted>.4:6200/recon/load: <urlopen error timed out>
-> http://<redacted>.8:6200/recon/load: <urlopen error timed out>
[5m load average] lowest: 1.71, highest: 4.91, avg: 2.486375
[15m load average] lowest: 1.79, highest: 5.04, avg: 2.506125
[1m load average] lowest: 1.46, highest: 4.55, avg: 2.4929375
===============================================================================

Note: The replication times and load averages are within reasonable parameters, even with 80 object
stores down. Async pendings, however is quite high. This is due to the fact that the containers on the
servers which are down cannot be updated. When those servers come back up, async pendings should
drop. If async pendings were at this level without an explanation, we have a problem.

Recon examples

Here is an example of noting and tracking down a problem with recon.

Running reccon shows some async pendings:

bob@notso:~/swift-1.4.4/swift$ ssh -q <redacted>.132.7 sudo swift-recon -
↪→alr
===============================================================================
[2012-03-14 17:25:55] Checking async pendings on 384 hosts...
Async stats: low: 0, high: 23, avg: 8, total: 3356
===============================================================================
[2012-03-14 17:25:55] Checking replication times on 384 hosts...
[Replication Times] shortest: 1.49303831657, longest: 39.6982825994, avg:
↪→4.2418222066
===============================================================================
[2012-03-14 17:25:56] Checking load avg's on 384 hosts...
[5m load average] lowest: 2.35, highest: 8.88, avg: 4.45911458333
[15m load average] lowest: 2.41, highest: 9.11, avg: 4.504765625
[1m load average] lowest: 1.95, highest: 8.56, avg: 4.40588541667

↪→===============================================================================

Why? Running recon again with -av swift (not shown here) tells us that the node with the highest (23)
is <redacted>.72.61. Looking at the log files on <redacted>.72.61 we see:

5.7. Swift Ops Runbook 323



Swift Documentation, Release 2.27.1.dev38

souzab@<redacted>:~$ sudo tail -f /var/log/swift/background.log | - grep -
↪→i ERROR
Mar 14 17:28:06 <redacted> container-replicator ERROR Remote drive not
↪→mounted
{'zone': 5, 'weight': 1952.0, 'ip': '<redacted>.204.119', 'id': 5481, 'meta
↪→': '', 'device': 'disk6', 'port': 6201}
Mar 14 17:28:06 <redacted> container-replicator ERROR Remote drive not
↪→mounted
{'zone': 5, 'weight': 1952.0, 'ip': '<redacted>.204.119', 'id': 5481, 'meta
↪→': '', 'device': 'disk6', 'port': 6201}
Mar 14 17:28:09 <redacted> container-replicator ERROR Remote drive not
↪→mounted
{'zone': 5, 'weight': 1952.0, 'ip': '<redacted>.204.20', 'id': 2311, 'meta
↪→': '', 'device': 'disk5', 'port': 6201}
Mar 14 17:28:11 <redacted> container-replicator ERROR Remote drive not
↪→mounted
{'zone': 5, 'weight': 1952.0, 'ip': '<redacted>.204.20', 'id': 2311, 'meta
↪→': '', 'device': 'disk5', 'port': 6201}
Mar 14 17:28:13 <redacted> container-replicator ERROR Remote drive not
↪→mounted
{'zone': 5, 'weight': 1952.0, 'ip': '<redacted>.204.119', 'id': 5481, 'meta
↪→': '', 'device': 'disk6', 'port': 6201}
Mar 14 17:28:13 <redacted> container-replicator ERROR Remote drive not
↪→mounted
{'zone': 5, 'weight': 1952.0, 'ip': '<redacted>.204.119', 'id': 5481, 'meta
↪→': '', 'device': 'disk6', 'port': 6201}
Mar 14 17:28:15 <redacted> container-replicator ERROR Remote drive not
↪→mounted
{'zone': 5, 'weight': 1952.0, 'ip': '<redacted>.204.20', 'id': 2311, 'meta
↪→': '', 'device': 'disk5', 'port': 6201}
Mar 14 17:28:15 <redacted> container-replicator ERROR Remote drive not
↪→mounted
{'zone': 5, 'weight': 1952.0, 'ip': '<redacted>.204.20', 'id': 2311, 'meta
↪→': '', 'device': 'disk5', 'port': 6201}
Mar 14 17:28:19 <redacted> container-replicator ERROR Remote drive not
↪→mounted
{'zone': 5, 'weight': 1952.0, 'ip': '<redacted>.204.20', 'id': 2311, 'meta
↪→': '', 'device': 'disk5', 'port': 6201}
Mar 14 17:28:19 <redacted> container-replicator ERROR Remote drive not
↪→mounted
{'zone': 5, 'weight': 1952.0, 'ip': '<redacted>.204.20', 'id': 2311, 'meta
↪→': '', 'device': 'disk5', 'port': 6201}
Mar 14 17:28:20 <redacted> container-replicator ERROR Remote drive not
↪→mounted
{'zone': 5, 'weight': 1952.0, 'ip': '<redacted>.204.119', 'id': 5481, 'meta
↪→': '', 'device': 'disk6', 'port': 6201}
Mar 14 17:28:21 <redacted> container-replicator ERROR Remote drive not
↪→mounted
{'zone': 5, 'weight': 1952.0, 'ip': '<redacted>.204.20', 'id': 2311, 'meta
↪→': '', 'device': 'disk5', 'port': 6201}
Mar 14 17:28:21 <redacted> container-replicator ERROR Remote drive not
↪→mounted
{'zone': 5, 'weight': 1952.0, 'ip': '<redacted>.204.20', 'id': 2311, 'meta
↪→': '', 'device': 'disk5', 'port': 6201}
Mar 14 17:28:22 <redacted> container-replicator ERROR Remote drive not
↪→mounted
{'zone': 5, 'weight': 1952.0, 'ip': '<redacted>.204.20', 'id': 2311, 'meta
↪→': '', 'device': 'disk5', 'port': 6201} (continues on next page)

324 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

That is why this node has a lot of async pendings: a bunch of disks that are not mounted on <redacted>
and <redacted>. There may be other issues, but clearing this up will likely drop the async pendings a
fair bit, as other nodes will be having the same problem.

Assessing the availability risk when multiple storage servers are down

Note: This procedure will tell you if you have a problem, however, in practice you will find that you
will not use this procedure frequently.

If three storage nodes (or, more precisely, three disks on three different storage nodes) are down, there
is a small but nonzero probability that user objects, containers, or accounts will not be available.

Procedure

Note: swift has three rings: one each for objects, containers and accounts. This procedure should be
run three times, each time specifying the appropriate *.builder file.

1. Determine whether all three nodes are in different Swift zones by running the ring builder on a
proxy node to determine which zones the storage nodes are in. For example:

% sudo swift-ring-builder /etc/swift/object.builder
/etc/swift/object.builder, build version 1467
2097152 partitions, 3 replicas, 5 zones, 1320 devices, 0.02 balance
The minimum number of hours before a partition can be reassigned is 24
Devices: id zone ip address port name weight
↪→partitions balance meta

0 1 <redacted>.4 6200 disk0 1708.00
↪→4259 -0.00

1 1 <redacted>.4 6200 disk1 1708.00
↪→4260 0.02

2 1 <redacted>.4 6200 disk2 1952.00
↪→4868 0.01

3 1 <redacted>.4 6200 disk3 1952.00
↪→4868 0.01

4 1 <redacted>.4 6200 disk4 1952.00
↪→4867 -0.01

2. Here, node <redacted>.4 is in zone 1. If two or more of the three nodes under consideration are
in the same Swift zone, they do not have any ring partitions in common; there is little/no data
availability risk if all three nodes are down.

3. If the nodes are in three distinct Swift zones it is necessary to whether the nodes have ring parti-
tions in common. Run swift-ring builder again, this time with the list_parts option and
specify the nodes under consideration. For example:

5.7. Swift Ops Runbook 325



Swift Documentation, Release 2.27.1.dev38

% sudo swift-ring-builder /etc/swift/object.builder list_parts
↪→<redacted>.8 <redacted>.15 <redacted>.72.2
Partition Matches
91 2
729 2
3754 2
3769 2
3947 2
5818 2
7918 2
8733 2
9509 2
10233 2

4. The list_parts option to the ring builder indicates how many ring partitions the nodes have
in common. If, as in this case, the first entry in the list has a Matches column of 2 or less, there is
no data availability risk if all three nodes are down.

5. If the Matches column has entries equal to 3, there is some data availability risk if all three nodes
are down. The risk is generally small, and is proportional to the number of entries that have a 3 in
the Matches column. For example:

Partition Matches
26865 3
362367 3
745940 3
778715 3
797559 3
820295 3
822118 3
839603 3
852332 3
855965 3
858016 3

6. A quick way to count the number of rows with 3 matches is:

% sudo swift-ring-builder /etc/swift/object.builder list_parts
↪→<redacted>.8 <redacted>.15 <redacted>.72.2 | grep "3$" | wc -l

30

7. In this case the nodes have 30 out of a total of 2097152 partitions in common; about 0.001%. In
this case the risk is small/nonzero. Recall that a partition is simply a portion of the ring mapping
space, not actual data. So having partitions in common is a necessary but not sufficient condition
for data unavailability.

Note: We should not bring down a node for repair if it shows Matches entries of 3 with other
nodes that are also down.

If three nodes that have 3 partitions in common are all down, there is a nonzero probability that
data are unavailable and we should work to bring some or all of the nodes up ASAP.

326 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

Swift startup/shutdown

• Use reload - not stop/start/restart.

• Try to roll sets of servers (especially proxy) in groups of less than 20% of your servers.

5.7.4 Troubleshooting tips

Diagnose: Customer complains they receive a HTTP status 500 when trying to browse
containers

This entry is prompted by a real customer issue and exclusively focused on how that problem was iden-
tified. There are many reasons why a http status of 500 could be returned. If there are no obvious
problems with the swift object store, then it may be necessary to take a closer look at the users trans-
actions. After finding the users swift account, you can search the swift proxy logs on each swift proxy
server for transactions from this user. The linux bzgrep command can be used to search all the proxy
log files on a node including the .bz2 compressed files. For example:

$ PDSH_SSH_ARGS_APPEND="-o StrictHostKeyChecking=no" pdsh -l <yourusername>
↪→ -R ssh \
-w <redacted>.68.[4-11,132-139 4-11,132-139],<redacted>.132.[4-11,132-

↪→139] \
'sudo bzgrep -w AUTH_redacted-4962-4692-98fb-52ddda82a5af /var/log/swift/

↪→proxy.log*' | dshbak -c
.
.
----------------
<redacted>.132.6
----------------
Feb 29 08:51:57 sw-aw2az2-proxy011 proxy-server <redacted>.16.132
<redacted>.66.8 29/Feb/2012/08/51/57 GET /v1.0/AUTH_redacted-4962-4692-
↪→98fb-52ddda82a5af
/%3Fformat%3Djson HTTP/1.0 404 - - <REDACTED>_4f4d50c5e4b064d88bd7ab82 - -
↪→ -
tx429fc3be354f434ab7f9c6c4206c1dc3 - 0.0130

This shows a GET operation on the users account.

Note: The HTTP status returned is 404, Not found, rather than 500 as reported by the user.

Using the transaction ID, tx429fc3be354f434ab7f9c6c4206c1dc3 you can search the swift
object servers log files for this transaction ID:

$ PDSH_SSH_ARGS_APPEND="-o StrictHostKeyChecking=no" pdsh -l <yourusername>
↪→ -R ssh \
-w <redacted>.72.[4-67|4-67],<redacted>.[4-67|4-67],<redacted>.[4-67|4-

↪→67],<redacted>.204.[4-131] \
'sudo bzgrep tx429fc3be354f434ab7f9c6c4206c1dc3 /var/log/swift/server.

↪→log*' | dshbak -c
.
.
----------------
<redacted>.72.16

(continues on next page)

5.7. Swift Ops Runbook 327



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

----------------
Feb 29 08:51:57 sw-aw2az1-object013 account-server <redacted>.132.6 - -

[29/Feb/2012:08:51:57 +0000|] "GET /disk9/198875/AUTH_redacted-4962-4692-
↪→98fb-52ddda82a5af"
404 - "tx429fc3be354f434ab7f9c6c4206c1dc3" "-" "-"

0.0016 ""
----------------
<redacted>.31
----------------
Feb 29 08:51:57 node-az2-object060 account-server <redacted>.132.6 - -
[29/Feb/2012:08:51:57 +0000|] "GET /disk6/198875/AUTH_redacted-4962-
4692-98fb-52ddda82a5af" 404 - "tx429fc3be354f434ab7f9c6c4206c1dc3" "-" "-"
↪→0.0011 ""
----------------
<redacted>.204.70
----------------

Feb 29 08:51:57 sw-aw2az3-object0067 account-server <redacted>.132.6 - -
[29/Feb/2012:08:51:57 +0000|] "GET /disk6/198875/AUTH_redacted-4962-
4692-98fb-52ddda82a5af" 404 - "tx429fc3be354f434ab7f9c6c4206c1dc3" "-" "-"
↪→0.0014 ""

Note: The 3 GET operations to 3 different object servers that hold the 3 replicas of this users account.
Each GET returns a HTTP status of 404, Not found.

Next, use the swift-get-nodes command to determine exactly where the users account data is
stored:

$ sudo swift-get-nodes /etc/swift/account.ring.gz AUTH_redacted-4962-4692-
↪→98fb-52ddda82a5af
Account AUTH_redacted-4962-4692-98fb-52ddda82a5af
Container None
Object None

Partition 198875
Hash 1846d99185f8a0edaf65cfbf37439696

Server:Port Device <redacted>.31:6202 disk6
Server:Port Device <redacted>.204.70:6202 disk6
Server:Port Device <redacted>.72.16:6202 disk9
Server:Port Device <redacted>.204.64:6202 disk11 [Handoff]
Server:Port Device <redacted>.26:6202 disk11 [Handoff]
Server:Port Device <redacted>.72.27:6202 disk11 [Handoff]

curl -I -XHEAD "`http://<redacted>.31:6202/disk6/198875/AUTH_redacted-4962-
↪→4692-98fb-52ddda82a5af"
<http://15.185.138.31:6202/disk6/198875/AUTH_db0050ad-4962-4692-98fb-
↪→52ddda82a5af>`_
curl -I -XHEAD "`http://<redacted>.204.70:6202/disk6/198875/AUTH_redacted-
↪→4962-4692-98fb-52ddda82a5af"
<http://15.185.204.70:6202/disk6/198875/AUTH_db0050ad-4962-4692-98fb-
↪→52ddda82a5af>`_

(continues on next page)

328 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

curl -I -XHEAD "`http://<redacted>.72.16:6202/disk9/198875/AUTH_redacted-
↪→4962-4692-98fb-52ddda82a5af"
<http://15.185.72.16:6202/disk9/198875/AUTH_db0050ad-4962-4692-98fb-
↪→52ddda82a5af>`_
curl -I -XHEAD "`http://<redacted>.204.64:6202/disk11/198875/AUTH_redacted-
↪→4962-4692-98fb-52ddda82a5af"
<http://15.185.204.64:6202/disk11/198875/AUTH_db0050ad-4962-4692-98fb-
↪→52ddda82a5af>`_ # [Handoff]
curl -I -XHEAD "`http://<redacted>.26:6202/disk11/198875/AUTH_redacted-
↪→4962-4692-98fb-52ddda82a5af"
<http://15.185.136.26:6202/disk11/198875/AUTH_db0050ad-4962-4692-98fb-
↪→52ddda82a5af>`_ # [Handoff]
curl -I -XHEAD "`http://<redacted>.72.27:6202/disk11/198875/AUTH_redacted-
↪→4962-4692-98fb-52ddda82a5af"
<http://15.185.72.27:6202/disk11/198875/AUTH_db0050ad-4962-4692-98fb-
↪→52ddda82a5af>`_ # [Handoff]

ssh <redacted>.31 "ls -lah /srv/node/disk6/accounts/198875/696/
↪→1846d99185f8a0edaf65cfbf37439696/"
ssh <redacted>.204.70 "ls -lah /srv/node/disk6/accounts/198875/696/
↪→1846d99185f8a0edaf65cfbf37439696/"
ssh <redacted>.72.16 "ls -lah /srv/node/disk9/accounts/198875/696/
↪→1846d99185f8a0edaf65cfbf37439696/"
ssh <redacted>.204.64 "ls -lah /srv/node/disk11/accounts/198875/696/
↪→1846d99185f8a0edaf65cfbf37439696/" # [Handoff]
ssh <redacted>.26 "ls -lah /srv/node/disk11/accounts/198875/696/
↪→1846d99185f8a0edaf65cfbf37439696/" # [Handoff]
ssh <redacted>.72.27 "ls -lah /srv/node/disk11/accounts/198875/696/
↪→1846d99185f8a0edaf65cfbf37439696/" # [Handoff]

Check each of the primary servers, <redacted>.31, <redacted>.204.70 and <redacted>.72.16, for this
users account. For example on <redacted>.72.16:

$ ls -lah /srv/node/disk9/accounts/198875/696/
↪→1846d99185f8a0edaf65cfbf37439696/
total 1.0M
drwxrwxrwx 2 swift swift 98 2012-02-23 14:49 .
drwxrwxrwx 3 swift swift 45 2012-02-03 23:28 ..
-rw------- 1 swift swift 15K 2012-02-23 14:49
↪→1846d99185f8a0edaf65cfbf37439696.db
-rw-rw-rw- 1 swift swift 0 2012-02-23 14:49
↪→1846d99185f8a0edaf65cfbf37439696.db.pending

So this users account db, an sqlite db is present. Use sqlite to checkout the account:

$ sudo cp /srv/node/disk9/accounts/198875/696/
↪→1846d99185f8a0edaf65cfbf37439696/1846d99185f8a0edaf65cfbf37439696.db /tmp
$ sudo sqlite3 /tmp/1846d99185f8a0edaf65cfbf37439696.db
sqlite> .mode line
sqlite> select * from account_stat;
account = AUTH_redacted-4962-4692-98fb-52ddda82a5af
created_at = 1328311738.42190
put_timestamp = 1330000873.61411
delete_timestamp = 1330001026.00514
container_count = 0

(continues on next page)

5.7. Swift Ops Runbook 329



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

object_count = 0
bytes_used = 0
hash = eb7e5d0ea3544d9def940b19114e8b43
id = 2de8c8a8-cef9-4a94-a421-2f845802fe90
status = DELETED
status_changed_at = 1330001026.00514
metadata =

Next try and find the DELETE operation for this account in the proxy server logs:

$ PDSH_SSH_ARGS_APPEND="-o StrictHostKeyChecking=no" pdsh -l <yourusername>
↪→ -R ssh \
-w <redacted>.68.[4-11,132-139 4-11,132-139],<redacted>.132.[4-11,132-

↪→139|4-11,132-139] \
'sudo bzgrep AUTH_redacted-4962-4692-98fb-52ddda82a5af /var/log/swift/

↪→proxy.log* \
| grep -w DELETE | awk "{print $3,$10,$12}"' |- dshbak -c

.

.
Feb 23 12:43:46 sw-aw2az2-proxy001 proxy-server <redacted> <redacted>.66.7
↪→23/Feb/2012/12/43/46 DELETE /v1.0/AUTH_redacted-4962-4692-98fb-
52ddda82a5af/ HTTP/1.0 204 - Apache-HttpClient/4.1.2%20%28java%201.5%29
↪→<REDACTED>_4f458ee4e4b02a869c3aad02 - - -
tx4471188b0b87406899973d297c55ab53 - 0.0086

From this you can see the operation that resulted in the account being deleted.

Procedure: Deleting objects

Simple case - deleting small number of objects and containers

Note: swift-direct is specific to the Hewlett Packard Enterprise Helion Public Cloud. Use
swiftly as an alternative.

Note: Object and container names are in UTF8. Swift direct accepts UTF8 directly, not URL-encoded
UTF8 (the REST API expects UTF8 and then URL-encoded). In practice cut and paste of foreign
language strings to a terminal window will produce the right result.

Hint: Use the head command before any destructive commands.

To delete a small number of objects, log into any proxy node and proceed as follows:

Examine the object in question:

$ sudo -u swift /opt/hp/swift/bin/swift-direct head 132345678912345
↪→container_name obj_name

See if X-Object-Manifest or X-Static-Large-Object is set, then this is the manifest object
and segment objects may be in another container.

330 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

If the X-Object-Manifest attribute is set, you need to find the name of the objects this means it is a
DLO. For example, if X-Object-Manifest is container2/seg-blah, list the contents of the
container container2 as follows:

$ sudo -u swift /opt/hp/swift/bin/swift-direct show 132345678912345
↪→container2

Pick out the objects whose names start with seg-blah. Delete the segment objects as follows:

$ sudo -u swift /opt/hp/swift/bin/swift-direct delete 132345678912345
↪→container2 seg-blah01
$ sudo -u swift /opt/hp/swift/bin/swift-direct delete 132345678912345
↪→container2 seg-blah02
etc

If X-Static-Large-Object is set, you need to read the contents. Do this by:

• Using swift-get-nodes to get the details of the objects location.

• Change the -X HEAD to -X GET and run curl against one copy.

• This lists a JSON body listing containers and object names

• Delete the objects as described above for DLO segments

Once the segments are deleted, you can delete the object using swift-direct as described above.

Finally, use swift-direct to delete the container.

Procedure: Decommissioning swift nodes

Should Swift nodes need to be decommissioned (e.g.„ where they are being re-purposed), it is very
important to follow the following steps.

1. In the case of object servers, follow the procedure for removing the node from the rings.

2. In the case of swift proxy servers, have the network team remove the node from the load balancers.

3. Open a network ticket to have the node removed from network firewalls.

4. Make sure that you remove the /etc/swift directory and everything in it.

5.8 OpenStack Swift Administrator Guide

5.8.1 Introduction to Object Storage

OpenStack Object Storage (swift) is used for redundant, scalable data storage using clusters of standard-
ized servers to store petabytes of accessible data. It is a long-term storage system for large amounts of
static data which can be retrieved and updated. Object Storage uses a distributed architecture with no
central point of control, providing greater scalability, redundancy, and permanence. Objects are written
to multiple hardware devices, with the OpenStack software responsible for ensuring data replication and
integrity across the cluster. Storage clusters scale horizontally by adding new nodes. Should a node fail,
OpenStack works to replicate its content from other active nodes. Because OpenStack uses software
logic to ensure data replication and distribution across different devices, inexpensive commodity hard
drives and servers can be used in lieu of more expensive equipment.

5.8. OpenStack Swift Administrator Guide 331



Swift Documentation, Release 2.27.1.dev38

Object Storage is ideal for cost effective, scale-out storage. It provides a fully distributed, API-accessible
storage platform that can be integrated directly into applications or used for backup, archiving, and data
retention.

5.8.2 Features and benefits

Features Benefits
Leverages com-
modity hardware

No lock-in, lower price/GB.

HDD/node
failure agnostic

Self-healing, reliable, data redundancy protects from failures.

Unlimited stor-
age

Large and flat namespace, highly scalable read/write access, able to serve content
directly from storage system.

Multi-
dimensional
scalability

Scale-out architecture: Scale vertically and horizontally-distributed storage.
Backs up and archives large amounts of data with linear performance.

Ac-
count/container/object
structure

No nesting, not a traditional file system: Optimized for scale, it scales to multiple
petabytes and billions of objects.

Built-in repli-
cation 3 + data
redundancy
(compared with 2
on RAID)

A configurable number of accounts, containers and object copies for high avail-
ability.

Easily add capac-
ity (unlike RAID
resize)

Elastic data scaling with ease.

No central
database

Higher performance, no bottlenecks.

RAID not re-
quired

Handle many small, random reads and writes efficiently.

Built-in manage-
ment utilities

Account management: Create, add, verify, and delete users; Container manage-
ment: Upload, download, and verify; Monitoring: Capacity, host, network, log
trawling, and cluster health.

Drive auditing Detect drive failures preempting data corruption.
Expiring objects Users can set an expiration time or a TTL on an object to control access.
Direct object ac-
cess

Enable direct browser access to content, such as for a control panel.

Realtime visibil-
ity into client re-
quests

Know what users are requesting.

Supports S3 API Utilize tools that were designed for the popular S3 API.
Restrict contain-
ers per account

Limit access to control usage by user.

332 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

5.8.3 Object Storage characteristics

The key characteristics of Object Storage are that:

• All objects stored in Object Storage have a URL.

• Storage Policies may be used to define different levels of durability for objects stored in the cluster.
These policies support not only complete replicas but also erasure-coded fragments.

• All replicas or fragments for an object are stored in as-unique-as-possible zones to increase dura-
bility and availability.

• All objects have their own metadata.

• Developers interact with the object storage system through a RESTful HTTP API.

• Object data can be located anywhere in the cluster.

• The cluster scales by adding additional nodes without sacrificing performance, which allows a
more cost-effective linear storage expansion than fork-lift upgrades.

• Data does not have to be migrated to an entirely new storage system.

• New nodes can be added to the cluster without downtime.

• Failed nodes and disks can be swapped out without downtime.

• It runs on industry-standard hardware, such as Dell, HP, and Supermicro.

Object Storage (swift)

Developers can either write directly to the Swift API or use one of the many client libraries that exist
for all of the popular programming languages, such as Java, Python, Ruby, and C#. Amazon S3 and
RackSpace Cloud Files users should be very familiar with Object Storage. Users new to object storage
systems will have to adjust to a different approach and mindset than those required for a traditional
filesystem.

5.8.4 Components

Object Storage uses the following components to deliver high availability, high durability, and high
concurrency:

• Proxy servers - Handle all of the incoming API requests.

• Rings - Map logical names of data to locations on particular disks.

• Zones - Isolate data from other zones. A failure in one zone does not impact the rest of the cluster
as data replicates across zones.

5.8. OpenStack Swift Administrator Guide 333



Swift Documentation, Release 2.27.1.dev38

• Accounts and containers - Each account and container are individual databases that are dis-
tributed across the cluster. An account database contains the list of containers in that account. A
container database contains the list of objects in that container.

• Objects - The data itself.

• Partitions - A partition stores objects, account databases, and container databases and helps man-
age locations where data lives in the cluster.

Object Storage building blocks

Proxy servers

Proxy servers are the public face of Object Storage and handle all of the incoming API requests. Once
a proxy server receives a request, it determines the storage node based on the objects URL, for exam-
ple: https://swift.example.com/v1/account/container/object. Proxy servers also
coordinate responses, handle failures, and coordinate timestamps.

Proxy servers use a shared-nothing architecture and can be scaled as needed based on projected work-
loads. A minimum of two proxy servers should be deployed behind a separately-managed load balancer.
If one proxy server fails, the others take over.

334 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

Rings

A ring represents a mapping between the names of entities stored in the cluster and their physical loca-
tions on disks. There are separate rings for accounts, containers, and objects. When components of the
system need to perform an operation on an object, container, or account, they need to interact with the
corresponding ring to determine the appropriate location in the cluster.

The ring maintains this mapping using zones, devices, partitions, and replicas. Each partition in the ring
is replicated, by default, three times across the cluster, and partition locations are stored in the mapping
maintained by the ring. The ring is also responsible for determining which devices are used as handoffs
in failure scenarios.

Data can be isolated into zones in the ring. Each partition replica will try to reside in a different zone. A
zone could represent a drive, a server, a cabinet, a switch, or even a data center.

The partitions of the ring are distributed among all of the devices in the Object Storage installation.
When partitions need to be moved around (for example, if a device is added to the cluster), the ring
ensures that a minimum number of partitions are moved at a time, and only one replica of a partition is
moved at a time.

You can use weights to balance the distribution of partitions on drives across the cluster. This can be
useful, for example, when differently sized drives are used in a cluster.

The ring is used by the proxy server and several background processes (like replication).

The ring

These rings are externally managed. The server processes themselves do not modify the rings, they are
instead given new rings modified by other tools.

The ring uses a configurable number of bits from an MD5 hash for a path as a partition index that
designates a device. The number of bits kept from the hash is known as the partition power, and 2 to the
partition power indicates the partition count. Partitioning the full MD5 hash ring allows other parts of the
cluster to work in batches of items at once which ends up either more efficient or at least less complex
than working with each item separately or the entire cluster all at once.

Another configurable value is the replica count, which indicates how many of the partition-device as-
signments make up a single ring. For a given partition index, each replicas device will not be in the
same zone as any other replicas device. Zones can be used to group devices based on physical locations,
power separations, network separations, or any other attribute that would improve the availability of
multiple replicas at the same time.

5.8. OpenStack Swift Administrator Guide 335



Swift Documentation, Release 2.27.1.dev38

Zones

Object Storage allows configuring zones in order to isolate failure boundaries. If possible, each data
replica resides in a separate zone. At the smallest level, a zone could be a single drive or a grouping of
a few drives. If there were five object storage servers, then each server would represent its own zone.
Larger deployments would have an entire rack (or multiple racks) of object servers, each representing a
zone. The goal of zones is to allow the cluster to tolerate significant outages of storage servers without
losing all replicas of the data.

Zones

Accounts and containers

Each account and container is an individual SQLite database that is distributed across the cluster. An
account database contains the list of containers in that account. A container database contains the list of
objects in that container.

Accounts and containers

To keep track of object data locations, each account in the system has a database that references all of
its containers, and each container database references each object.

Partitions

A partition is a collection of stored data. This includes account databases, container databases, and
objects. Partitions are core to the replication system.

Think of a partition as a bin moving throughout a fulfillment center warehouse. Individual orders get
thrown into the bin. The system treats that bin as a cohesive entity as it moves throughout the system. A
bin is easier to deal with than many little things. It makes for fewer moving parts throughout the system.

System replicators and object uploads/downloads operate on partitions. As the system scales up, its
behavior continues to be predictable because the number of partitions is a fixed number.

Implementing a partition is conceptually simple: a partition is just a directory sitting on a disk with a
corresponding hash table of what it contains.

336 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

Partitions

Replicators

In order to ensure that there are three copies of the data everywhere, replicators continuously examine
each partition. For each local partition, the replicator compares it against the replicated copies in the
other zones to see if there are any differences.

The replicator knows if replication needs to take place by examining hashes. A hash file is created for
each partition, which contains hashes of each directory in the partition. For a given partition, the hash
files for each of the partitions copies are compared. If the hashes are different, then it is time to replicate,
and the directory that needs to be replicated is copied over.

This is where partitions come in handy. With fewer things in the system, larger chunks of data are trans-
ferred around (rather than lots of little TCP connections, which is inefficient) and there is a consistent
number of hashes to compare.

The cluster has an eventually-consistent behavior where old data may be served from partitions that
missed updates, but replication will cause all partitions to converge toward the newest data.

Replication

If a zone goes down, one of the nodes containing a replica notices and proactively copies data to a
handoff location.

Use cases

The following sections show use cases for object uploads and downloads and introduce the components.

5.8. OpenStack Swift Administrator Guide 337



Swift Documentation, Release 2.27.1.dev38

Upload

A client uses the REST API to make a HTTP request to PUT an object into an existing container. The
cluster receives the request. First, the system must figure out where the data is going to go. To do this,
the account name, container name, and object name are all used to determine the partition where this
object should live.

Then a lookup in the ring figures out which storage nodes contain the partitions in question.

The data is then sent to each storage node where it is placed in the appropriate partition. At least two of
the three writes must be successful before the client is notified that the upload was successful.

Next, the container database is updated asynchronously to reflect that there is a new object in it.

Object Storage in use

Download

A request comes in for an account/container/object. Using the same consistent hashing, the partition
index is determined. A lookup in the ring reveals which storage nodes contain that partition. A request
is made to one of the storage nodes to fetch the object and, if that fails, requests are made to the other
nodes.

338 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

5.8.5 Ring-builder

Use the swift-ring-builder utility to build and manage rings. This utility assigns partitions to devices and
writes an optimized Python structure to a gzipped, serialized file on disk for transmission to the servers.
The server processes occasionally check the modification time of the file and reload in-memory copies
of the ring structure as needed. If you use a slightly older version of the ring, one of the three replicas
for a partition subset will be incorrect because of the way the ring-builder manages changes to the ring.
You can work around this issue.

The ring-builder also keeps its own builder file with the ring information and additional data required
to build future rings. It is very important to keep multiple backup copies of these builder files. One
option is to copy the builder files out to every server while copying the ring files themselves. Another
is to upload the builder files into the cluster itself. If you lose the builder file, you have to create a new
ring from scratch. Nearly all partitions would be assigned to different devices and, therefore, nearly all
of the stored data would have to be replicated to new locations. So, recovery from a builder file loss is
possible, but data would be unreachable for an extended time.

Ring data structure

The ring data structure consists of three top level fields: a list of devices in the cluster, a list of lists of
device ids indicating partition to device assignments, and an integer indicating the number of bits to shift
an MD5 hash to calculate the partition for the hash.

Partition assignment list

This is a list of array('H') of devices ids. The outermost list contains an array('H') for each
replica. Each array('H') has a length equal to the partition count for the ring. Each integer in the
array('H') is an index into the above list of devices. The partition list is known internally to the
Ring class as _replica2part2dev_id.

So, to create a list of device dictionaries assigned to a partition, the Python code would look like:

devices = [self.devs[part2dev_id[partition]] for
part2dev_id in self._replica2part2dev_id]

That code is a little simplistic because it does not account for the removal of duplicate devices. If a ring
has more replicas than devices, a partition will have more than one replica on a device.

array('H') is used for memory conservation as there may be millions of partitions.

Overload

The ring builder tries to keep replicas as far apart as possible while still respecting device weights. When
it can not do both, the overload factor determines what happens. Each device takes an extra fraction of
its desired partitions to allow for replica dispersion; after that extra fraction is exhausted, replicas are
placed closer together than optimal.

The overload factor lets the operator trade off replica dispersion (durability) against data dispersion
(uniform disk usage).

The default overload factor is 0, so device weights are strictly followed.

5.8. OpenStack Swift Administrator Guide 339



Swift Documentation, Release 2.27.1.dev38

With an overload factor of 0.1, each device accepts 10% more partitions than it otherwise would, but
only if it needs to maintain partition dispersion.

For example, consider a 3-node cluster of machines with equal-size disks; node A has 12 disks, node B
has 12 disks, and node C has 11 disks. The ring has an overload factor of 0.1 (10%).

Without the overload, some partitions would end up with replicas only on nodes A and B. However, with
the overload, every device can accept up to 10% more partitions for the sake of dispersion. The missing
disk in C means there is one disks worth of partitions to spread across the remaining 11 disks, which
gives each disk in C an extra 9.09% load. Since this is less than the 10% overload, there is one replica
of each partition on each node.

However, this does mean that the disks in node C have more data than the disks in nodes A and B. If
80% full is the warning threshold for the cluster, node Cs disks reach 80% full while A and Bs disks are
only 72.7% full.

Replica counts

To support the gradual change in replica counts, a ring can have a real number of replicas and is not
restricted to an integer number of replicas.

A fractional replica count is for the whole ring and not for individual partitions. It indicates the average
number of replicas for each partition. For example, a replica count of 3.2 means that 20 percent of
partitions have four replicas and 80 percent have three replicas.

The replica count is adjustable. For example:

$ swift-ring-builder account.builder set_replicas 4
$ swift-ring-builder account.builder rebalance

You must rebalance the replica ring in globally distributed clusters. Operators of these clusters generally
want an equal number of replicas and regions. Therefore, when an operator adds or removes a region,
the operator adds or removes a replica. Removing unneeded replicas saves on the cost of disks.

You can gradually increase the replica count at a rate that does not adversely affect cluster performance.
For example:

$ swift-ring-builder object.builder set_replicas 3.01
$ swift-ring-builder object.builder rebalance
<distribute rings and wait>...

$ swift-ring-builder object.builder set_replicas 3.02
$ swift-ring-builder object.builder rebalance
<distribute rings and wait>...

Changes take effect after the ring is rebalanced. Therefore, if you intend to change from 3 replicas to
3.01 but you accidentally type 2.01, no data is lost.

Additionally, the swift-ring-builder X.builder create command can now take a decimal
argument for the number of replicas.

340 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

Partition shift value

The partition shift value is known internally to the Ring class as _part_shift. This value is used to
shift an MD5 hash to calculate the partition where the data for that hash should reside. Only the top four
bytes of the hash is used in this process. For example, to compute the partition for the /account/
container/object path using Python:

partition = unpack_from('>I',
md5('/account/container/object').digest())[0] >>
self._part_shift

For a ring generated with part_power P, the partition shift value is 32 - P.

Build the ring

The ring builder process includes these high-level steps:

1. The utility calculates the number of partitions to assign to each device based on the weight of the
device. For example, for a partition at the power of 20, the ring has 1,048,576 partitions. One
thousand devices of equal weight each want 1,048.576 partitions. The devices are sorted by the
number of partitions they desire and kept in order throughout the initialization process.

Note: Each device is also assigned a random tiebreaker value that is used when two devices
desire the same number of partitions. This tiebreaker is not stored on disk anywhere, and so two
different rings created with the same parameters will have different partition assignments. For
repeatable partition assignments, RingBuilder.rebalance() takes an optional seed value
that seeds the Python pseudo-random number generator.

2. The ring builder assigns each partition replica to the device that requires most partitions at that
point while keeping it as far away as possible from other replicas. The ring builder prefers to
assign a replica to a device in a region that does not already have a replica. If no such region is
available, the ring builder searches for a device in a different zone, or on a different server. If it
does not find one, it looks for a device with no replicas. Finally, if all options are exhausted, the
ring builder assigns the replica to the device that has the fewest replicas already assigned.

Note: The ring builder assigns multiple replicas to one device only if the ring has fewer devices
than it has replicas.

3. When building a new ring from an old ring, the ring builder recalculates the desired number of
partitions that each device wants.

4. The ring builder unassigns partitions and gathers these partitions for reassignment, as follows:

• The ring builder unassigns any assigned partitions from any removed devices and adds these
partitions to the gathered list.

• The ring builder unassigns any partition replicas that can be spread out for better durability
and adds these partitions to the gathered list.

• The ring builder unassigns random partitions from any devices that have more partitions than
they need and adds these partitions to the gathered list.

5.8. OpenStack Swift Administrator Guide 341



Swift Documentation, Release 2.27.1.dev38

5. The ring builder reassigns the gathered partitions to devices by using a similar method to the one
described previously.

6. When the ring builder reassigns a replica to a partition, the ring builder records the time of the
reassignment. The ring builder uses this value when it gathers partitions for reassignment so that
no partition is moved twice in a configurable amount of time. The RingBuilder class knows this
configurable amount of time as min_part_hours. The ring builder ignores this restriction for
replicas of partitions on removed devices because removal of a device happens on device failure
only, and reassignment is the only choice.

These steps do not always perfectly rebalance a ring due to the random nature of gathering partitions for
reassignment. To help reach a more balanced ring, the rebalance process is repeated until near perfect
(less than 1 percent off) or when the balance does not improve by at least 1 percent (indicating we
probably cannot get perfect balance due to wildly imbalanced zones or too many partitions recently
moved).

5.8.6 Cluster architecture

Access tier

Large-scale deployments segment off an access tier, which is considered the Object Storage systems
central hub. The access tier fields the incoming API requests from clients and moves data in and out of
the system. This tier consists of front-end load balancers, ssl-terminators, and authentication services. It
runs the (distributed) brain of the Object Storage system: the proxy server processes.

Note: If you want to use OpenStack Identity API v3 for authentication, you have the following op-
tions available in /etc/swift/dispersion.conf: auth_version, user_domain_name,
project_domain_name, and project_name.

Object Storage architecture

Because access servers are collocated in their own tier, you can scale out read/write access regardless of
the storage capacity. For example, if a cluster is on the public Internet, requires SSL termination, and
has a high demand for data access, you can provision many access servers. However, if the cluster is on
a private network and used primarily for archival purposes, you need fewer access servers.

Since this is an HTTP addressable storage service, you may incorporate a load balancer into the access
tier.

Typically, the tier consists of a collection of 1U servers. These machines use a moderate amount of
RAM and are network I/O intensive. Since these systems field each incoming API request, you should
provision them with two high-throughput (10GbE) interfaces - one for the incoming front-end requests
and the other for the back-end access to the object storage nodes to put and fetch data.

342 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

Factors to consider

For most publicly facing deployments as well as private deployments available across a wide-reaching
corporate network, you use SSL to encrypt traffic to the client. SSL adds significant processing load to
establish sessions between clients, which is why you have to provision more capacity in the access layer.
SSL may not be required for private deployments on trusted networks.

Storage nodes

In most configurations, each of the five zones should have an equal amount of storage capacity. Storage
nodes use a reasonable amount of memory and CPU. Metadata needs to be readily available to return
objects quickly. The object stores run services not only to field incoming requests from the access tier,
but to also run replicators, auditors, and reapers. You can provision storage nodes with single gigabit or
10 gigabit network interface depending on the expected workload and desired performance, although it
may be desirable to isolate replication traffic with a second interface.

Object Storage (swift)

Currently, a 2ăTB or 3ăTB SATA disk delivers good performance for the price. You can use desktop-
grade drives if you have responsive remote hands in the datacenter and enterprise-grade drives if you
dont.

5.8. OpenStack Swift Administrator Guide 343



Swift Documentation, Release 2.27.1.dev38

Factors to consider

You should keep in mind the desired I/O performance for single-threaded requests. This system does not
use RAID, so a single disk handles each request for an object. Disk performance impacts single-threaded
response rates.

To achieve apparent higher throughput, the object storage system is designed to handle concurrent up-
loads/downloads. The network I/O capacity (1GbE, bonded 1GbE pair, or 10GbE) should match your
desired concurrent throughput needs for reads and writes.

5.8.7 Replication

Because each replica in Object Storage functions independently and clients generally require only a
simple majority of nodes to respond to consider an operation successful, transient failures like network
partitions can quickly cause replicas to diverge. These differences are eventually reconciled by asyn-
chronous, peer-to-peer replicator processes. The replicator processes traverse their local file systems and
concurrently perform operations in a manner that balances load across physical disks.

Replication uses a push model, with records and files generally only being copied from local to remote
replicas. This is important because data on the node might not belong there (as in the case of hand
offs and ring changes), and a replicator cannot know which data it should pull in from elsewhere in the
cluster. Any node that contains data must ensure that data gets to where it belongs. The ring handles
replica placement.

To replicate deletions in addition to creations, every deleted record or file in the system is marked

344 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

by a tombstone. The replication process cleans up tombstones after a time period known as the
consistency window. This window defines the duration of the replication and how long tran-
sient failure can remove a node from the cluster. Tombstone cleanup must be tied to replication to reach
replica convergence.

If a replicator detects that a remote drive has failed, the replicator uses the get_more_nodes interface
for the ring to choose an alternate node with which to synchronize. The replicator can maintain desired
levels of replication during disk failures, though some replicas might not be in an immediately usable
location.

Note: The replicator does not maintain desired levels of replication when failures such as entire node
failures occur; most failures are transient.

The main replication types are:

• Database replication Replicates containers and objects.

• Object replication Replicates object data.

Database replication

Database replication completes a low-cost hash comparison to determine whether two replicas already
match. Normally, this check can quickly verify that most databases in the system are already synchro-
nized. If the hashes differ, the replicator synchronizes the databases by sharing records added since the
last synchronization point.

This synchronization point is a high water mark that notes the last record at which two databases were
known to be synchronized, and is stored in each database as a tuple of the remote database ID and
record ID. Database IDs are unique across all replicas of the database, and record IDs are monotonically
increasing integers. After all new records are pushed to the remote database, the entire synchronization
table of the local database is pushed, so the remote database can guarantee that it is synchronized with
everything with which the local database was previously synchronized.

If a replica is missing, the whole local database file is transmitted to the peer by using rsync(1) and is
assigned a new unique ID.

In practice, database replication can process hundreds of databases per concurrency setting per second
(up to the number of available CPUs or disks) and is bound by the number of database transactions that
must be performed.

Object replication

The initial implementation of object replication performed an rsync to push data from a local partition
to all remote servers where it was expected to reside. While this worked at small scale, replication times
skyrocketed once directory structures could no longer be held in RAM. This scheme was modified to
save a hash of the contents for each suffix directory to a per-partition hashes file. The hash for a suffix
directory is no longer valid when the contents of that suffix directory is modified.

The object replication process reads in hash files and calculates any invalidated hashes. Then, it transmits
the hashes to each remote server that should hold the partition, and only suffix directories with differing
hashes on the remote server are rsynced. After pushing files to the remote server, the replication process
notifies it to recalculate hashes for the rsynced suffix directories.

5.8. OpenStack Swift Administrator Guide 345



Swift Documentation, Release 2.27.1.dev38

The number of uncached directories that object replication must traverse, usually as a result of inval-
idated suffix directory hashes, impedes performance. To provide acceptable replication speeds, object
replication is designed to invalidate around 2 percent of the hash space on a normal node each day.

5.8.8 Large object support

Object Storage (swift) uses segmentation to support the upload of large objects. By default, Object
Storage limits the download size of a single object to 5GB. Using segmentation, uploading a single object
is virtually unlimited. The segmentation process works by fragmenting the object, and automatically
creating a file that sends the segments together as a single object. This option offers greater upload
speed with the possibility of parallel uploads.

Large objects

The large object is comprised of two types of objects:

• Segment objects store the object content. You can divide your content into segments, and upload
each segment into its own segment object. Segment objects do not have any special features. You
create, update, download, and delete segment objects just as you would normal objects.

• A manifest object links the segment objects into one logical large object. When you download
a manifest object, Object Storage concatenates and returns the contents of the segment objects in
the response body of the request. The manifest object types are:

– Static large objects

– Dynamic large objects

To find out more information on large object support, see Large Object Support in the developer docu-
mentation.

5.8.9 Object Auditor

On system failures, the XFS file system can sometimes truncate files it is trying to write and produce
zero-byte files. The object-auditor will catch these problems but in the case of a system crash it is
advisable to run an extra, less rate limited sweep, to check for these specific files. You can run this
command as follows:

$ swift-object-auditor /path/to/object-server/config/file.conf once -z 1000

Note: -z means to only check for zero-byte files at 1000 files per second.

It is useful to run the object auditor on a specific device or set of devices. You can run the object-auditor
once as follows:

$ swift-object-auditor /path/to/object-server/config/file.conf once \
--devices=sda,sdb

346 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

Note: This will run the object auditor on only the sda and sdb devices. This parameter accepts a
comma-separated list of values.

5.8.10 Erasure coding

Erasure coding is a set of algorithms that allows the reconstruction of missing data from a set of original
data. In theory, erasure coding uses less capacity with similar durability characteristics as replicas. From
an application perspective, erasure coding support is transparent. Object Storage (swift) implements
erasure coding as a Storage Policy. See Storage Policies for more details.

There is no external API related to erasure coding. Create a container using a Storage Policy; the
interaction with the cluster is the same as any other durability policy. Because support implements as
a Storage Policy, you can isolate all storage devices that associate with your clusters erasure coding
capability. It is entirely possible to share devices between storage policies, but for erasure coding it may
make more sense to use not only separate devices but possibly even entire nodes dedicated for erasure
coding.

5.8.11 Account reaper

The purpose of the account reaper is to remove data from the deleted accounts.

A reseller marks an account for deletion by issuing a DELETE request on the accounts storage URL.
This action sets the status column of the account_stat table in the account database and replicas to
DELETED, marking the accounts data for deletion.

Typically, a specific retention time or undelete are not provided. However, you can set a
delay_reaping value in the [account-reaper] section of the account-server.conf file
to delay the actual deletion of data. At this time, to undelete you have to update the account database
replicas directly, set the status column to an empty string and update the put_timestamp to be greater
than the delete_timestamp.

Note: It is on the development to-do list to write a utility that performs this task, preferably through a
REST call.

The account reaper runs on each account server and scans the server occasionally for account databases
marked for deletion. It only fires up on the accounts for which the server is the primary node, so
that multiple account servers arent trying to do it simultaneously. Using multiple servers to delete one
account might improve the deletion speed but requires coordination to avoid duplication. Speed really
is not a big concern with data deletion, and large accounts arent deleted often.

Deleting an account is simple. For each account container, all objects are deleted and then the container
is deleted. Deletion requests that fail will not stop the overall process but will cause the overall process
to fail eventually (for example, if an object delete times out, you will not be able to delete the container
or the account). The account reaper keeps trying to delete an account until it is empty, at which point
the database reclaim process within the db_replicator will remove the database files.

A persistent error state may prevent the deletion of an object or container. If this happens, you will see
a message in the log, for example:

5.8. OpenStack Swift Administrator Guide 347



Swift Documentation, Release 2.27.1.dev38

Account <name> has not been reaped since <date>

You can control when this is logged with the reap_warn_after value in the [account-reaper]
section of the account-server.conf file. The default value is 30 days.

5.8.12 Configure project-specific image locations with Object Storage

For some deployers, it is not ideal to store all images in one place to enable all projects and users to access
them. You can configure the Image service to store image data in project-specific image locations. Then,
only the following projects can use the Image service to access the created image:

• The project who owns the image

• Projects that are defined in swift_store_admin_tenants and that have admin-level ac-
counts

To configure project-specific image locations

1. Configure swift as your default_store in the glance-api.conf file.

2. Set these configuration options in the glance-api.conf file:

• swift_store_multi_tenant Set to True to enable tenant-specific storage locations. Default
is False.

• swift_store_admin_tenants Specify a list of tenant IDs that can grant read and write access
to all Object Storage containers that are created by the Image service.

With this configuration, images are stored in an Object Storage service (swift) endpoint that is pulled
from the service catalog for the authenticated user.

5.8.13 Object Storage monitoring

Note: This section was excerpted from a blog post by Darrell Bishop and has since been edited.

An OpenStack Object Storage cluster is a collection of many daemons that work together across many
nodes. With so many different components, you must be able to tell what is going on inside the cluster.
Tracking server-level meters like CPU utilization, load, memory consumption, disk usage and utilization,
and so on is necessary, but not sufficient.

Swift Recon

The Swift Recon middleware (see Cluster Telemetry and Monitoring) provides general machine statis-
tics, such as load average, socket statistics, /proc/meminfo contents, as well as Swift-specific me-
ters:

• The MD5 sum of each ring file.

• The most recent object replication time.

• Count of each type of quarantined file: Account, container, or object.

• Count of async_pendings (deferred container updates) on disk.

348 Chapter 5. Administrator Documentation

https://swiftstack.com/blog/2012/04/11/swift-monitoring-with-statsd


Swift Documentation, Release 2.27.1.dev38

Swift Recon is middleware that is installed in the object servers pipeline and takes one required option:
A local cache directory. To track async_pendings, you must set up an additional cron job for each
object server. You access data by either sending HTTP requests directly to the object server or using the
swift-recon command-line client.

There are Object Storage cluster statistics but the typical server meters overlap with existing server
monitoring systems. To get the Swift-specific meters into a monitoring system, they must be polled.
Swift Recon acts as a middleware meters collector. The process that feeds meters to your statistics
system, such as collectd and gmond, should already run on the storage node. You can choose to
either talk to Swift Recon or collect the meters directly.

Swift-Informant

Swift-Informant middleware (see swift-informant) has real-time visibility into Object Storage client
requests. It sits in the pipeline for the proxy server, and after each request to the proxy server it sends
three meters to a StatsD server:

• A counter increment for a meter like obj.GET.200 or cont.PUT.404.

• Timing data for a meter like acct.GET.200 or obj.GET.200. [The README says the
meters look like duration.acct.GET.200, but I do not see the duration in the code. I
am not sure what the Etsy server does but our StatsD server turns timing meters into five derivative
meters with new segments appended, so it probably works as coded. The first meter turns into
acct.GET.200.lower, acct.GET.200.upper, acct.GET.200.mean, acct.GET.
200.upper_90, and acct.GET.200.count].

• A counter increase by the bytes transferred for a meter like tfer.obj.PUT.201.

This is used for receiving information on the quality of service clients experience with the timing meters,
as well as sensing the volume of the various modifications of a request server type, command, and re-
sponse code. Swift-Informant requires no change to core Object Storage code because it is implemented
as middleware. However, it gives no insight into the workings of the cluster past the proxy server. If the
responsiveness of one storage node degrades, you can only see that some of the requests are bad, either
as high latency or error status codes.

Statsdlog

The Statsdlog project increments StatsD counters based on logged events. Like Swift-Informant, it is
also non-intrusive, however statsdlog can track events from all Object Storage daemons, not just proxy-
server. The daemon listens to a UDP stream of syslog messages, and StatsD counters are incremented
when a log line matches a regular expression. Meter names are mapped to regex match patterns in a
JSON file, allowing flexible configuration of what meters are extracted from the log stream.

Currently, only the first matching regex triggers a StatsD counter increment, and the counter is always
incremented by one. There is no way to increment a counter by more than one or send timing data to
StatsD based on the log line content. The tool could be extended to handle more meters for each line and
data extraction, including timing data. But a coupling would still exist between the log textual format
and the log parsing regexes, which would themselves be more complex to support multiple matches for
each line and data extraction. Also, log processing introduces a delay between the triggering event and
sending the data to StatsD. It would be preferable to increment error counters where they occur and send
timing data as soon as it is known to avoid coupling between a log string and a parsing regex and prevent
a time delay between events and sending data to StatsD.

The next section describes another method for gathering Object Storage operational meters.

5.8. OpenStack Swift Administrator Guide 349

https://github.com/pandemicsyn/swift-informant
https://github.com/pandemicsyn/statsdlog


Swift Documentation, Release 2.27.1.dev38

Swift StatsD logging

StatsD (see Measure Anything, Measure Everything) was designed for application code to be deeply
instrumented. Meters are sent in real-time by the code that just noticed or did something. The overhead
of sending a meter is extremely low: a sendto of one UDP packet. If that overhead is still too high,
the StatsD client library can send only a random portion of samples and StatsD approximates the actual
number when flushing meters upstream.

To avoid the problems inherent with middleware-based monitoring and after-the-fact log processing, the
sending of StatsD meters is integrated into Object Storage itself. Details of the meters tracked are in the
Administrators Guide.

The sending of meters is integrated with the logging framework. To enable, configure
log_statsd_host in the relevant config file. You can also specify the port and a default sample
rate. The specified default sample rate is used unless a specific call to a statsd logging method (see the
list below) overrides it. Currently, no logging calls override the sample rate, but it is conceivable that
some meters may require accuracy (sample_rate=1) while others may not.

[DEFAULT]
# ...
log_statsd_host = 127.0.0.1
log_statsd_port = 8125
log_statsd_default_sample_rate = 1

Then the LogAdapter object returned by get_logger(), usually stored in self.logger, has these
new methods:

• set_statsd_prefix(self, prefix) Sets the client library stat prefix value which gets
prefixed to every meter. The default prefix is the name of the logger such as object-server,
container-auditor, and so on. This is currently used to turn proxy-server into one of
proxy-server.Account, proxy-server.Container, or proxy-server.Object
as soon as the Controller object is determined and instantiated for the request.

• update_stats(self, metric, amount, sample_rate=1) Increments the sup-
plied meter by the given amount. This is used when you need to add or subtract more that one
from a counter, like incrementing suffix.hashes by the number of computed hashes in the
object replicator.

• increment(self, metric, sample_rate=1) Increments the given counter meter by
one.

• decrement(self, metric, sample_rate=1) Lowers the given counter meter by one.

• timing(self, metric, timing_ms, sample_rate=1) Record that the given meter
took the supplied number of milliseconds.

• timing_since(self, metric, orig_time, sample_rate=1) Convenience
method to record a timing meter whose value is now minus an existing timestamp.

Note: These logging methods may safely be called anywhere you have a logger object. If StatsD
logging has not been configured, the methods are no-ops. This avoids messy conditional logic each
place a meter is recorded. These example usages show the new logging methods:

# swift/obj/replicator.py
def update(self, job):

(continues on next page)

350 Chapter 5. Administrator Documentation

https://codeascraft.com/2011/02/15/measure-anything-measure-everything/


Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

# ...
begin = time.time()
try:

hashed, local_hash = tpool.execute(tpooled_get_hashes, job['path'],
do_listdir=(self.replication_count % 10) == 0,
reclaim_age=self.reclaim_age)

# See tpooled_get_hashes "Hack".
if isinstance(hashed, BaseException):

raise hashed
self.suffix_hash += hashed
self.logger.update_stats('suffix.hashes', hashed)
# ...

finally:
self.partition_times.append(time.time() - begin)
self.logger.timing_since('partition.update.timing', begin)

# swift/container/updater.py
def process_container(self, dbfile):

# ...
start_time = time.time()
# ...

for event in events:
if 200 <= event.wait() < 300:

successes += 1
else:

failures += 1
if successes > failures:

self.logger.increment('successes')
# ...

else:
self.logger.increment('failures')
# ...

# Only track timing data for attempted updates:
self.logger.timing_since('timing', start_time)

else:
self.logger.increment('no_changes')
self.no_changes += 1

5.8.14 System administration for Object Storage

By understanding Object Storage concepts, you can better monitor and administer your storage solution.
The majority of the administration information is maintained in the developer documentation.

See the OpenStack Configuration Reference for a list of configuration options for Object Storage.

5.8. OpenStack Swift Administrator Guide 351

https://docs.openstack.org/ocata/config-reference/object-storage.html


Swift Documentation, Release 2.27.1.dev38

5.8.15 Troubleshoot Object Storage

For Object Storage, everything is logged in /var/log/syslog (or messages on some distros).
Several settings enable further customization of logging, such as log_name, log_facility, and
log_level, within the object server configuration files.

Drive failure

Problem

Drive failure can prevent Object Storage performing replication.

Solution

In the event that a drive has failed, the first step is to make sure the drive is unmounted. This will make
it easier for Object Storage to work around the failure until it has been resolved. If the drive is going to
be replaced immediately, then it is just best to replace the drive, format it, remount it, and let replication
fill it up.

If you cannot replace the drive immediately, then it is best to leave it unmounted, and remove the drive
from the ring. This will allow all the replicas that were on that drive to be replicated elsewhere until the
drive is replaced. Once the drive is replaced, it can be re-added to the ring.

You can look at error messages in the /var/log/kern.log file for hints of drive failure.

Server failure

Problem

The server is potentially offline, and may have failed, or require a reboot.

Solution

If a server is having hardware issues, it is a good idea to make sure the Object Storage services are not
running. This will allow Object Storage to work around the failure while you troubleshoot.

If the server just needs a reboot, or a small amount of work that should only last a couple of hours, then it
is probably best to let Object Storage work around the failure and get the machine fixed and back online.
When the machine comes back online, replication will make sure that anything that is missing during
the downtime will get updated.

If the server has more serious issues, then it is probably best to remove all of the servers devices from
the ring. Once the server has been repaired and is back online, the servers devices can be added back
into the ring. It is important that the devices are reformatted before putting them back into the ring as it
is likely to be responsible for a different set of partitions than before.

352 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

Detect failed drives

Problem

When drives fail, it can be difficult to detect that a drive has failed, and the details of the failure.

Solution

It has been our experience that when a drive is about to fail, error messages appear in the /var/log/
kern.log file. There is a script called swift-drive-audit that can be run via cron to watch for
bad drives. If errors are detected, it will unmount the bad drive, so that Object Storage can work around
it. The script takes a configuration file with the following settings:

Table 1: Description of configuration options for [drive-audit]
in drive-audit.conf

Configuration option = Default
value

Description

device_dir = /srv/node Directory devices are mounted under
error_limit = 1 Number of errors to find before a device is unmounted
log_address = /dev/log Location where syslog sends the logs to
log_facility = LOG_LOCAL0 Syslog log facility
log_file_pattern = /var/
log/kern.*[!.][!g][!z]

Location of the log file with globbing pattern to check
against device errors locate device blocks with errors in the
log file

log_level = INFO Logging level
log_max_line_length = 0 Caps the length of log lines to the value given; no limit if set

to 0, the default.
log_to_console = False No help text available for this option.
minutes = 60 Number of minutes to look back in /var/log/kern.

log
recon_cache_path = /var/
cache/swift

Directory where stats for a few items will be stored

regex_pattern_1 = \
berror\b.*\b(dm-[0-9]{1,
2}\d?)\b

No help text available for this option.

unmount_failed_device =
True

No help text available for this option.

Warning: This script has only been tested on Ubuntu 10.04; use with caution on other operating
systems in production.

5.8. OpenStack Swift Administrator Guide 353



Swift Documentation, Release 2.27.1.dev38

Emergency recovery of ring builder files

Problem

An emergency might prevent a successful backup from restoring the cluster to operational status.

Solution

You should always keep a backup of swift ring builder files. However, if an emergency occurs, this
procedure may assist in returning your cluster to an operational state.

Using existing swift tools, there is no way to recover a builder file from a ring.gz file. However, if
you have a knowledge of Python, it is possible to construct a builder file that is pretty close to the one
you have lost.

Warning: This procedure is a last-resort for emergency circumstances. It requires knowledge of
the swift python code and may not succeed.

1. Load the ring and a new ringbuilder object in a Python REPL:

>>> from swift.common.ring import RingData, RingBuilder
>>> ring = RingData.load('/path/to/account.ring.gz')

2. Start copying the data we have in the ring into the builder:

>>> import math
>>> partitions = len(ring._replica2part2dev_id[0])
>>> replicas = len(ring._replica2part2dev_id)

>>> builder = RingBuilder(int(math.log(partitions, 2)), replicas, 1)
>>> builder.devs = ring.devs
>>> builder._replica2part2dev = ring._replica2part2dev_id
>>> builder._last_part_moves_epoch = 0
>>> from array import array
>>> builder._last_part_moves = array('B', (0 for _ in
↪→range(partitions)))
>>> builder._set_parts_wanted()
>>> for d in builder._iter_devs():

d['parts'] = 0
>>> for p2d in builder._replica2part2dev:

for dev_id in p2d:
builder.devs[dev_id]['parts'] += 1

This is the extent of the recoverable fields.

3. For min_part_hours you either have to remember what the value you used was, or just make
up a new one:

>>> builder.change_min_part_hours(24) # or whatever you want it to be

4. Validate the builder. If this raises an exception, check your previous code:

354 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

>>> builder.validate()

5. After it validates, save the builder and create a new account.builder:

>>> import pickle
>>> pickle.dump(builder.to_dict(), open('account.builder', 'wb'),
↪→protocol=2)
>>> exit ()

6. You should now have a file called account.builder in the current working directory.
Run swift-ring-builder account.builder write_ring and compare the new
account.ring.gz to the account.ring.gz that you started from. They probably are not
byte-for-byte identical, but if you load them in a REPL and their _replica2part2dev_id
and devs attributes are the same (or nearly so), then you are in good shape.

7. Repeat the procedure for container.ring.gz and object.ring.gz, and you might get
usable builder files.

5.9 Object Storage Install Guide

5.9.1 Object Storage service overview

The OpenStack Object Storage is a multi-tenant object storage system. It is highly scalable and can
manage large amounts of unstructured data at low cost through a RESTful HTTP API.

It includes the following components:

Proxy servers (swift-proxy-server) Accepts OpenStack Object Storage API and raw HTTP requests
to upload files, modify metadata, and create containers. It also serves file or container listings to
web browsers. To improve performance, the proxy server can use an optional cache that is usually
deployed with memcache.

Account servers (swift-account-server) Manages accounts defined with Object Storage.

Container servers (swift-container-server) Manages the mapping of containers or folders, within Ob-
ject Storage.

Object servers (swift-object-server) Manages actual objects, such as files, on the storage nodes.

Various periodic processes Performs housekeeping tasks on the large data store. The replication ser-
vices ensure consistency and availability through the cluster. Other periodic processes include
auditors, updaters, and reapers.

WSGI middleware Handles authentication and is usually OpenStack Identity.

swift client Enables users to submit commands to the REST API through a command-line client autho-
rized as either a admin user, reseller user, or swift user.

swift-init Script that initializes the building of the ring file, takes daemon names as parameter
and offers commands. Documented in https://docs.openstack.org/swift/latest/admin_guide.html#
managing-services.

swift-recon A cli tool used to retrieve various metrics and telemetry information about a cluster that
has been collected by the swift-recon middleware.

5.9. Object Storage Install Guide 355

https://docs.openstack.org/swift/latest/admin_guide.html#managing-services
https://docs.openstack.org/swift/latest/admin_guide.html#managing-services


Swift Documentation, Release 2.27.1.dev38

swift-ring-builder Storage ring build and rebalance utility. Documented in https://docs.openstack.org/
swift/latest/admin_guide.html#managing-the-rings.

5.9.2 Configure networking

Before you start deploying the Object Storage service in your OpenStack environment, configure net-
working for two additional storage nodes.

First node

Configure network interfaces

• Configure the management interface:

– IP address: 10.0.0.51

– Network mask: 255.255.255.0 (or /24)

– Default gateway: 10.0.0.1

Configure name resolution

1. Set the hostname of the node to object1.

2. Edit the /etc/hosts file to contain the following:

# controller
10.0.0.11 controller

# compute1
10.0.0.31 compute1

# block1
10.0.0.41 block1

# object1
10.0.0.51 object1

# object2
10.0.0.52 object2

3. Reboot the system to activate the changes.

356 Chapter 5. Administrator Documentation

https://docs.openstack.org/swift/latest/admin_guide.html#managing-the-rings
https://docs.openstack.org/swift/latest/admin_guide.html#managing-the-rings


Swift Documentation, Release 2.27.1.dev38

Second node

Configure network interfaces

• Configure the management interface:

– IP address: 10.0.0.52

– Network mask: 255.255.255.0 (or /24)

– Default gateway: 10.0.0.1

Configure name resolution

1. Set the hostname of the node to object2.

2. Edit the /etc/hosts file to contain the following:

# controller
10.0.0.11 controller

# compute1
10.0.0.31 compute1

# block1
10.0.0.41 block1

# object1
10.0.0.51 object1

# object2
10.0.0.52 object2

3. Reboot the system to activate the changes.

Warning: Some distributions add an extraneous entry in the /etc/hosts file that resolves the
actual hostname to another loopback IP address such as 127.0.1.1. You must comment out or
remove this entry to prevent name resolution problems. Do not remove the 127.0.0.1 entry.

Note: To reduce complexity of this guide, we add host entries for optional services regardless of
whether you choose to deploy them.

5.9. Object Storage Install Guide 357



Swift Documentation, Release 2.27.1.dev38

5.9.3 Install and configure the controller node

This section describes how to install and configure the proxy service that handles requests for the ac-
count, container, and object services operating on the storage nodes.

Note that installation and configuration vary by distribution.

Install and configure the controller node for openSUSE and SUSE Linux Enterprise

This section describes how to install and configure the proxy service that handles requests for the ac-
count, container, and object services operating on the storage nodes. For simplicity, this guide installs
and configures the proxy service on the controller node. However, you can run the proxy service on any
node with network connectivity to the storage nodes. Additionally, you can install and configure the
proxy service on multiple nodes to increase performance and redundancy. For more information, see the
Deployment Guide.

This section applies to openSUSE Leap 42.2 and SUSE Linux Enterprise Server 12 SP2.

Prerequisites

The proxy service relies on an authentication and authorization mechanism such as the Identity service.
However, unlike other services, it also offers an internal mechanism that allows it to operate without
any other OpenStack services. Before you configure the Object Storage service, you must create service
credentials and an API endpoint.

Note: The Object Storage service does not use an SQL database on the controller node. Instead, it uses
distributed SQLite databases on each storage node.

1. Source the admin credentials to gain access to admin-only CLI commands:

$ . admin-openrc

2. To create the Identity service credentials, complete these steps:

• Create the swift user:

$ openstack user create --domain default --password-prompt swift
User Password:
Repeat User Password:
+-----------+----------------------------------+
| Field | Value |
+-----------+----------------------------------+
| domain_id | default |
| enabled | True |
| id | d535e5cbd2b74ac7bfb97db9cced3ed6 |
| name | swift |
+-----------+----------------------------------+

• Add the admin role to the swift user:

$ openstack role add --project service --user swift admin

358 Chapter 5. Administrator Documentation

https://docs.openstack.org/swift/latest/deployment_guide.html


Swift Documentation, Release 2.27.1.dev38

Note: This command provides no output.

• Create the swift service entity:

$ openstack service create --name swift \
--description "OpenStack Object Storage" object-store

+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
| description | OpenStack Object Storage |
| enabled | True |
| id | 75ef509da2c340499d454ae96a2c5c34 |
| name | swift |
| type | object-store |
+-------------+----------------------------------+

3. Create the Object Storage service API endpoints:

$ openstack endpoint create --region RegionOne \
object-store public http://controller:8080/v1/AUTH_%\(project_id\)s

+--------------+----------------------------------------------+
| Field | Value |
+--------------+----------------------------------------------+
| enabled | True |
| id | 12bfd36f26694c97813f665707114e0d |
| interface | public |
| region | RegionOne |
| region_id | RegionOne |
| service_id | 75ef509da2c340499d454ae96a2c5c34 |
| service_name | swift |
| service_type | object-store |
| url | http://controller:8080/v1/AUTH_%(project_id)s |
+--------------+----------------------------------------------+

$ openstack endpoint create --region RegionOne \
object-store internal http://controller:8080/v1/AUTH_%\(project_id\

↪→)s
+--------------+----------------------------------------------+
| Field | Value |
+--------------+----------------------------------------------+
| enabled | True |
| id | 7a36bee6733a4b5590d74d3080ee6789 |
| interface | internal |
| region | RegionOne |
| region_id | RegionOne |
| service_id | 75ef509da2c340499d454ae96a2c5c34 |
| service_name | swift |
| service_type | object-store |
| url | http://controller:8080/v1/AUTH_%(project_id)s |
+--------------+----------------------------------------------+

$ openstack endpoint create --region RegionOne \
object-store admin http://controller:8080/v1

+--------------+----------------------------------+
| Field | Value |

(continues on next page)

5.9. Object Storage Install Guide 359



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

+--------------+----------------------------------+
| enabled | True |
| id | ebb72cd6851d4defabc0b9d71cdca69b |
| interface | admin |
| region | RegionOne |
| region_id | RegionOne |
| service_id | 75ef509da2c340499d454ae96a2c5c34 |
| service_name | swift |
| service_type | object-store |
| url | http://controller:8080/v1 |
+--------------+----------------------------------+

Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (...) in the configuration snippets
indicates potential default configuration options that you should retain.

1. Install the packages:

# zypper install openstack-swift-proxy python-swiftclient \
python-keystoneclient python-keystonemiddleware \
python-xml memcached

Note: Complete OpenStack environments already include some of these packages.

2. Edit the /etc/swift/proxy-server.conf file and complete the following actions:

• In the [DEFAULT] section, configure the bind port, user, and configuration directory:

[DEFAULT]
...
bind_port = 8080
user = swift
swift_dir = /etc/swift

• In the [pipeline:main] section, remove the tempurl and tempauth modules
and add the authtoken and keystoneauth modules:

[pipeline:main]
pipeline = catch_errors gatekeeper healthcheck proxy-logging
↪→cache container_sync bulk ratelimit authtoken keystoneauth
↪→container-quotas account-quotas slo dlo versioned_writes
↪→proxy-logging proxy-server

Note: Do not change the order of the modules.

360 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

Note: For more information on other modules that enable additional features, see the
Deployment Guide.

• In the [app:proxy-server] section, enable automatic account creation:

[app:proxy-server]
use = egg:swift#proxy
...
account_autocreate = True

• In the [filter:keystoneauth] section, configure the operator roles:

[filter:keystoneauth]
use = egg:swift#keystoneauth
...
operator_roles = admin,user

• In the [filter:authtoken] section, configure Identity service access:

[filter:authtoken]
paste.filter_factory = keystonemiddleware.auth_token:filter_
↪→factory
...
www_authenticate_uri = http://controller:5000
auth_url = http://controller:5000
memcached_servers = controller:11211
auth_type = password
project_domain_id = default
user_domain_id = default
project_name = service
username = swift
password = SWIFT_PASS
delay_auth_decision = True

Replace SWIFT_PASS with the password you chose for the swift user in the Identity
service.

Note: Comment out or remove any other options in the [filter:authtoken]
section.

• In the [filter:cache] section, configure the memcached location:

[filter:cache]
use = egg:swift#memcache
...
memcache_servers = controller:11211

5.9. Object Storage Install Guide 361

https://docs.openstack.org/swift/latest/deployment_guide.html


Swift Documentation, Release 2.27.1.dev38

Install and configure the controller node for Red Hat Enterprise Linux and CentOS

This section describes how to install and configure the proxy service that handles requests for the ac-
count, container, and object services operating on the storage nodes. For simplicity, this guide installs
and configures the proxy service on the controller node. However, you can run the proxy service on any
node with network connectivity to the storage nodes. Additionally, you can install and configure the
proxy service on multiple nodes to increase performance and redundancy. For more information, see the
Deployment Guide.

This section applies to Red Hat Enterprise Linux 7 and CentOS 7.

Prerequisites

The proxy service relies on an authentication and authorization mechanism such as the Identity service.
However, unlike other services, it also offers an internal mechanism that allows it to operate without
any other OpenStack services. Before you configure the Object Storage service, you must create service
credentials and an API endpoint.

Note: The Object Storage service does not use an SQL database on the controller node. Instead, it uses
distributed SQLite databases on each storage node.

1. Source the admin credentials to gain access to admin-only CLI commands:

$ . admin-openrc

2. To create the Identity service credentials, complete these steps:

• Create the swift user:

$ openstack user create --domain default --password-prompt swift
User Password:
Repeat User Password:
+-----------+----------------------------------+
| Field | Value |
+-----------+----------------------------------+
| domain_id | default |
| enabled | True |
| id | d535e5cbd2b74ac7bfb97db9cced3ed6 |
| name | swift |
+-----------+----------------------------------+

• Add the admin role to the swift user:

$ openstack role add --project service --user swift admin

Note: This command provides no output.

• Create the swift service entity:

$ openstack service create --name swift \
--description "OpenStack Object Storage" object-store

(continues on next page)

362 Chapter 5. Administrator Documentation

https://docs.openstack.org/swift/latest/deployment_guide.html


Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
| description | OpenStack Object Storage |
| enabled | True |
| id | 75ef509da2c340499d454ae96a2c5c34 |
| name | swift |
| type | object-store |
+-------------+----------------------------------+

3. Create the Object Storage service API endpoints:

$ openstack endpoint create --region RegionOne \
object-store public http://controller:8080/v1/AUTH_%\(project_id\)s

+--------------+----------------------------------------------+
| Field | Value |
+--------------+----------------------------------------------+
| enabled | True |
| id | 12bfd36f26694c97813f665707114e0d |
| interface | public |
| region | RegionOne |
| region_id | RegionOne |
| service_id | 75ef509da2c340499d454ae96a2c5c34 |
| service_name | swift |
| service_type | object-store |
| url | http://controller:8080/v1/AUTH_%(project_id)s |
+--------------+----------------------------------------------+

$ openstack endpoint create --region RegionOne \
object-store internal http://controller:8080/v1/AUTH_%\(project_id\

↪→)s
+--------------+----------------------------------------------+
| Field | Value |
+--------------+----------------------------------------------+
| enabled | True |
| id | 7a36bee6733a4b5590d74d3080ee6789 |
| interface | internal |
| region | RegionOne |
| region_id | RegionOne |
| service_id | 75ef509da2c340499d454ae96a2c5c34 |
| service_name | swift |
| service_type | object-store |
| url | http://controller:8080/v1/AUTH_%(project_id)s |
+--------------+----------------------------------------------+

$ openstack endpoint create --region RegionOne \
object-store admin http://controller:8080/v1

+--------------+----------------------------------+
| Field | Value |
+--------------+----------------------------------+
| enabled | True |
| id | ebb72cd6851d4defabc0b9d71cdca69b |
| interface | admin |
| region | RegionOne |
| region_id | RegionOne |
| service_id | 75ef509da2c340499d454ae96a2c5c34 |

(continues on next page)

5.9. Object Storage Install Guide 363



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

| service_name | swift |
| service_type | object-store |
| url | http://controller:8080/v1 |
+--------------+----------------------------------+

Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (...) in the configuration snippets
indicates potential default configuration options that you should retain.

1. Install the packages:

# yum install openstack-swift-proxy python-swiftclient \
python-keystoneclient python-keystonemiddleware \
memcached

Note: Complete OpenStack environments already include some of these packages.

2. Obtain the proxy service configuration file from the Object Storage source repository:

# curl -o /etc/swift/proxy-server.conf https://opendev.org/
↪→openstack/swift/raw/branch/master/etc/proxy-server.conf-sample

3. Edit the /etc/swift/proxy-server.conf file and complete the following actions:

• In the [DEFAULT] section, configure the bind port, user, and configuration directory:

[DEFAULT]
...
bind_port = 8080
user = swift
swift_dir = /etc/swift

• In the [pipeline:main] section, remove the tempurl and tempauth modules
and add the authtoken and keystoneauth modules:

[pipeline:main]
pipeline = catch_errors gatekeeper healthcheck proxy-logging
↪→cache container_sync bulk ratelimit authtoken keystoneauth
↪→container-quotas account-quotas slo dlo versioned_writes
↪→proxy-logging proxy-server

Note: Do not change the order of the modules.

Note: For more information on other modules that enable additional features, see the

364 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

Deployment Guide.

• In the [app:proxy-server] section, enable automatic account creation:

[app:proxy-server]
use = egg:swift#proxy
...
account_autocreate = True

• In the [filter:keystoneauth] section, configure the operator roles:

[filter:keystoneauth]
use = egg:swift#keystoneauth
...
operator_roles = admin,user

• In the [filter:authtoken] section, configure Identity service access:

[filter:authtoken]
paste.filter_factory = keystonemiddleware.auth_token:filter_
↪→factory
...
www_authenticate_uri = http://controller:5000
auth_url = http://controller:5000
memcached_servers = controller:11211
auth_type = password
project_domain_id = default
user_domain_id = default
project_name = service
username = swift
password = SWIFT_PASS
delay_auth_decision = True

Replace SWIFT_PASS with the password you chose for the swift user in the Identity
service.

Note: Comment out or remove any other options in the [filter:authtoken]
section.

• In the [filter:cache] section, configure the memcached location:

[filter:cache]
use = egg:swift#memcache
...
memcache_servers = controller:11211

5.9. Object Storage Install Guide 365

https://docs.openstack.org/swift/latest/deployment_guide.html


Swift Documentation, Release 2.27.1.dev38

Install and configure the controller node for Ubuntu

This section describes how to install and configure the proxy service that handles requests for the ac-
count, container, and object services operating on the storage nodes. For simplicity, this guide installs
and configures the proxy service on the controller node. However, you can run the proxy service on any
node with network connectivity to the storage nodes. Additionally, you can install and configure the
proxy service on multiple nodes to increase performance and redundancy. For more information, see the
Deployment Guide.

This section applies to Ubuntu 14.04 (LTS).

Prerequisites

The proxy service relies on an authentication and authorization mechanism such as the Identity service.
However, unlike other services, it also offers an internal mechanism that allows it to operate without
any other OpenStack services. Before you configure the Object Storage service, you must create service
credentials and an API endpoint.

Note: The Object Storage service does not use an SQL database on the controller node. Instead, it uses
distributed SQLite databases on each storage node.

1. Source the admin credentials to gain access to admin-only CLI commands:

$ . admin-openrc

2. To create the Identity service credentials, complete these steps:

• Create the swift user:

$ openstack user create --domain default --password-prompt swift
User Password:
Repeat User Password:
+-----------+----------------------------------+
| Field | Value |
+-----------+----------------------------------+
| domain_id | default |
| enabled | True |
| id | d535e5cbd2b74ac7bfb97db9cced3ed6 |
| name | swift |
+-----------+----------------------------------+

• Add the admin role to the swift user:

$ openstack role add --project service --user swift admin

Note: This command provides no output.

• Create the swift service entity:

$ openstack service create --name swift \
--description "OpenStack Object Storage" object-store

(continues on next page)

366 Chapter 5. Administrator Documentation

https://docs.openstack.org/swift/latest/deployment_guide.html


Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
| description | OpenStack Object Storage |
| enabled | True |
| id | 75ef509da2c340499d454ae96a2c5c34 |
| name | swift |
| type | object-store |
+-------------+----------------------------------+

3. Create the Object Storage service API endpoints:

$ openstack endpoint create --region RegionOne \
object-store public http://controller:8080/v1/AUTH_%\(project_id\)s

+--------------+----------------------------------------------+
| Field | Value |
+--------------+----------------------------------------------+
| enabled | True |
| id | 12bfd36f26694c97813f665707114e0d |
| interface | public |
| region | RegionOne |
| region_id | RegionOne |
| service_id | 75ef509da2c340499d454ae96a2c5c34 |
| service_name | swift |
| service_type | object-store |
| url | http://controller:8080/v1/AUTH_%(project_id)s |
+--------------+----------------------------------------------+

$ openstack endpoint create --region RegionOne \
object-store internal http://controller:8080/v1/AUTH_%\(project_id\

↪→)s
+--------------+----------------------------------------------+
| Field | Value |
+--------------+----------------------------------------------+
| enabled | True |
| id | 7a36bee6733a4b5590d74d3080ee6789 |
| interface | internal |
| region | RegionOne |
| region_id | RegionOne |
| service_id | 75ef509da2c340499d454ae96a2c5c34 |
| service_name | swift |
| service_type | object-store |
| url | http://controller:8080/v1/AUTH_%(project_id)s |
+--------------+----------------------------------------------+

$ openstack endpoint create --region RegionOne \
object-store admin http://controller:8080/v1

+--------------+----------------------------------+
| Field | Value |
+--------------+----------------------------------+
| enabled | True |
| id | ebb72cd6851d4defabc0b9d71cdca69b |
| interface | admin |
| region | RegionOne |
| region_id | RegionOne |
| service_id | 75ef509da2c340499d454ae96a2c5c34 |

(continues on next page)

5.9. Object Storage Install Guide 367



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

| service_name | swift |
| service_type | object-store |
| url | http://controller:8080/v1 |
+--------------+----------------------------------+

Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (...) in the configuration snippets
indicates potential default configuration options that you should retain.

1. Install the packages:

# apt-get install swift swift-proxy python-swiftclient \
python-keystoneclient python-keystonemiddleware \
memcached

Note: Complete OpenStack environments already include some of these packages.

2. Create the /etc/swift directory.

3. Obtain the proxy service configuration file from the Object Storage source repository:

# curl -o /etc/swift/proxy-server.conf https://opendev.org/
↪→openstack/swift/raw/branch/master/etc/proxy-server.conf-sample

4. Edit the /etc/swift/proxy-server.conf file and complete the following actions:

• In the [DEFAULT] section, configure the bind port, user, and configuration directory:

[DEFAULT]
...
bind_port = 8080
user = swift
swift_dir = /etc/swift

• In the [pipeline:main] section, remove the tempurl and tempauth modules
and add the authtoken and keystoneauth modules:

[pipeline:main]
pipeline = catch_errors gatekeeper healthcheck proxy-logging
↪→cache container_sync bulk ratelimit authtoken keystoneauth
↪→container-quotas account-quotas slo dlo versioned_writes
↪→proxy-logging proxy-server

Note: Do not change the order of the modules.

368 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

Note: For more information on other modules that enable additional features, see the
Deployment Guide.

• In the [app:proxy-server] section, enable automatic account creation:

[app:proxy-server]
use = egg:swift#proxy
...
account_autocreate = True

• In the [filter:keystoneauth] section, configure the operator roles:

[filter:keystoneauth]
use = egg:swift#keystoneauth
...
operator_roles = admin,user

• In the [filter:authtoken] section, configure Identity service access:

[filter:authtoken]
paste.filter_factory = keystonemiddleware.auth_token:filter_
↪→factory
...
www_authenticate_uri = http://controller:5000
auth_url = http://controller:5000
memcached_servers = controller:11211
auth_type = password
project_domain_id = default
user_domain_id = default
project_name = service
username = swift
password = SWIFT_PASS
delay_auth_decision = True

Replace SWIFT_PASS with the password you chose for the swift user in the Identity
service.

Note: Comment out or remove any other options in the [filter:authtoken]
section.

• In the [filter:cache] section, configure the memcached location:

[filter:cache]
use = egg:swift#memcache
...
memcache_servers = controller:11211

5.9. Object Storage Install Guide 369

https://docs.openstack.org/swift/latest/deployment_guide.html


Swift Documentation, Release 2.27.1.dev38

Install and configure the controller node for Debian

This section describes how to install and configure the proxy service that handles requests for the ac-
count, container, and object services operating on the storage nodes. For simplicity, this guide installs
and configures the proxy service on the controller node. However, you can run the proxy service on any
node with network connectivity to the storage nodes. Additionally, you can install and configure the
proxy service on multiple nodes to increase performance and redundancy. For more information, see the
Deployment Guide.

This section applies to Debian.

Prerequisites

The proxy service relies on an authentication and authorization mechanism such as the Identity service.
However, unlike other services, it also offers an internal mechanism that allows it to operate without
any other OpenStack services. Before you configure the Object Storage service, you must create service
credentials and an API endpoint.

Note: The Object Storage service does not use an SQL database on the controller node. Instead, it uses
distributed SQLite databases on each storage node.

1. Source the admin credentials to gain access to admin-only CLI commands:

$ . admin-openrc

2. To create the Identity service credentials, complete these steps:

• Create the swift user:

$ openstack user create --domain default --password-prompt swift
User Password:
Repeat User Password:
+-----------+----------------------------------+
| Field | Value |
+-----------+----------------------------------+
| domain_id | default |
| enabled | True |
| id | d535e5cbd2b74ac7bfb97db9cced3ed6 |
| name | swift |
+-----------+----------------------------------+

• Add the admin role to the swift user:

$ openstack role add --project service --user swift admin

Note: This command provides no output.

• Create the swift service entity:

$ openstack service create --name swift \
--description "OpenStack Object Storage" object-store

(continues on next page)

370 Chapter 5. Administrator Documentation

https://docs.openstack.org/swift/latest/deployment_guide.html


Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
| description | OpenStack Object Storage |
| enabled | True |
| id | 75ef509da2c340499d454ae96a2c5c34 |
| name | swift |
| type | object-store |
+-------------+----------------------------------+

3. Create the Object Storage service API endpoints:

$ openstack endpoint create --region RegionOne \
object-store public http://controller:8080/v1/AUTH_%\(project_id\)s

+--------------+----------------------------------------------+
| Field | Value |
+--------------+----------------------------------------------+
| enabled | True |
| id | 12bfd36f26694c97813f665707114e0d |
| interface | public |
| region | RegionOne |
| region_id | RegionOne |
| service_id | 75ef509da2c340499d454ae96a2c5c34 |
| service_name | swift |
| service_type | object-store |
| url | http://controller:8080/v1/AUTH_%(project_id)s |
+--------------+----------------------------------------------+

$ openstack endpoint create --region RegionOne \
object-store internal http://controller:8080/v1/AUTH_%\(project_id\

↪→)s
+--------------+----------------------------------------------+
| Field | Value |
+--------------+----------------------------------------------+
| enabled | True |
| id | 7a36bee6733a4b5590d74d3080ee6789 |
| interface | internal |
| region | RegionOne |
| region_id | RegionOne |
| service_id | 75ef509da2c340499d454ae96a2c5c34 |
| service_name | swift |
| service_type | object-store |
| url | http://controller:8080/v1/AUTH_%(project_id)s |
+--------------+----------------------------------------------+

$ openstack endpoint create --region RegionOne \
object-store admin http://controller:8080/v1

+--------------+----------------------------------+
| Field | Value |
+--------------+----------------------------------+
| enabled | True |
| id | ebb72cd6851d4defabc0b9d71cdca69b |
| interface | admin |
| region | RegionOne |
| region_id | RegionOne |
| service_id | 75ef509da2c340499d454ae96a2c5c34 |

(continues on next page)

5.9. Object Storage Install Guide 371



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

| service_name | swift |
| service_type | object-store |
| url | http://controller:8080/v1 |
+--------------+----------------------------------+

Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (...) in the configuration snippets
indicates potential default configuration options that you should retain.

1. Install the packages:

# apt-get install swift swift-proxy python-swiftclient \
python-keystoneclient python-keystonemiddleware \
memcached

Note: Complete OpenStack environments already include some of these packages.

2. Create the /etc/swift directory.

3. Obtain the proxy service configuration file from the Object Storage source repository:

# curl -o /etc/swift/proxy-server.conf https://opendev.org/
↪→openstack/swift/raw/branch/master/etc/proxy-server.conf-sample

4. Edit the /etc/swift/proxy-server.conf file and complete the following actions:

• In the [DEFAULT] section, configure the bind port, user, and configuration directory:

[DEFAULT]
...
bind_port = 8080
user = swift
swift_dir = /etc/swift

• In the [pipeline:main] section, remove the tempurl and tempauth modules
and add the authtoken and keystoneauth modules:

[pipeline:main]
pipeline = catch_errors gatekeeper healthcheck proxy-logging
↪→cache container_sync bulk ratelimit authtoken keystoneauth
↪→container-quotas account-quotas slo dlo versioned_writes
↪→proxy-logging proxy-server

Note: Do not change the order of the modules.

372 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

Note: For more information on other modules that enable additional features, see the
Deployment Guide.

• In the [app:proxy-server] section, enable automatic account creation:

[app:proxy-server]
use = egg:swift#proxy
...
account_autocreate = True

• In the [filter:keystoneauth] section, configure the operator roles:

[filter:keystoneauth]
use = egg:swift#keystoneauth
...
operator_roles = admin,user

• In the [filter:authtoken] section, configure Identity service access:

[filter:authtoken]
paste.filter_factory = keystonemiddleware.auth_token:filter_
↪→factory
...
www_authenticate_uri = http://controller:5000
auth_url = http://controller:5000
memcached_servers = controller:11211
auth_type = password
project_domain_id = default
user_domain_id = default
project_name = service
username = swift
password = SWIFT_PASS
delay_auth_decision = True

Replace SWIFT_PASS with the password you chose for the swift user in the Identity
service.

Note: Comment out or remove any other options in the [filter:authtoken]
section.

• In the [filter:cache] section, configure the memcached location:

[filter:cache]
use = egg:swift#memcache
...
memcache_servers = controller:11211

5.9. Object Storage Install Guide 373

https://docs.openstack.org/swift/latest/deployment_guide.html


Swift Documentation, Release 2.27.1.dev38

5.9.4 Install and configure the storage nodes

This section describes how to install and configure storage nodes that operate the account, container, and
object services.

Note that installation and configuration vary by distribution.

Install and configure the storage nodes for openSUSE and SUSE Linux Enterprise

This section describes how to install and configure storage nodes that operate the account, container,
and object services. For simplicity, this configuration references two storage nodes, each containing
two empty local block storage devices. The instructions use /dev/sdb and /dev/sdc, but you can
substitute different values for your particular nodes.

Although Object Storage supports any file system with extended attributes (xattr), testing and bench-
marking indicate the best performance and reliability on XFS. For more information on horizontally
scaling your environment, see the Deployment Guide.

This section applies to openSUSE Leap 42.2 and SUSE Linux Enterprise Server 12 SP2.

Prerequisites

Before you install and configure the Object Storage service on the storage nodes, you must prepare the
storage devices.

Note: Perform these steps on each storage node.

1. Install the supporting utility packages:

# zypper install xfsprogs rsync

2. Format the /dev/sdb and /dev/sdc devices as XFS:

# mkfs.xfs /dev/sdb
# mkfs.xfs /dev/sdc

3. Create the mount point directory structure:

# mkdir -p /srv/node/sdb
# mkdir -p /srv/node/sdc

4. Find the UUID of the new partitions:

# blkid

5. Edit the /etc/fstab file and add the following to it:

UUID="<UUID-from-output-above>" /srv/node/sdb xfs noatime 0 2
UUID="<UUID-from-output-above>" /srv/node/sdc xfs noatime 0 2

6. Mount the devices:

374 Chapter 5. Administrator Documentation

https://docs.openstack.org/swift/latest/deployment_guide.html


Swift Documentation, Release 2.27.1.dev38

# mount /srv/node/sdb
# mount /srv/node/sdc

7. Create or edit the /etc/rsyncd.conf file to contain the following:

uid = swift
gid = swift
log file = /var/log/rsyncd.log
pid file = /var/run/rsyncd.pid
address = MANAGEMENT_INTERFACE_IP_ADDRESS

[account]
max connections = 2
path = /srv/node/
read only = False
lock file = /var/lock/account.lock

[container]
max connections = 2
path = /srv/node/
read only = False
lock file = /var/lock/container.lock

[object]
max connections = 2
path = /srv/node/
read only = False
lock file = /var/lock/object.lock

Replace MANAGEMENT_INTERFACE_IP_ADDRESS with the IP address of the management
network on the storage node.

Note: The rsync service requires no authentication, so consider running it on a private network
in production environments.

7. Start the rsyncd service and configure it to start when the system boots:

# systemctl enable rsyncd.service
# systemctl start rsyncd.service

Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (...) in the configuration snippets
indicates potential default configuration options that you should retain.

Note: Perform these steps on each storage node.

1. Install the packages:

5.9. Object Storage Install Guide 375



Swift Documentation, Release 2.27.1.dev38

# zypper install openstack-swift-account \
openstack-swift-container openstack-swift-object python-xml

2. Edit the /etc/swift/account-server.conf file and complete the following actions:

• In the [DEFAULT] section, configure the bind IP address, bind port, user, configuration
directory, and mount point directory:

[DEFAULT]
...
bind_ip = MANAGEMENT_INTERFACE_IP_ADDRESS
bind_port = 6202
user = swift
swift_dir = /etc/swift
devices = /srv/node
mount_check = True

Replace MANAGEMENT_INTERFACE_IP_ADDRESS with the IP address of the manage-
ment network on the storage node.

• In the [pipeline:main] section, enable the appropriate modules:

[pipeline:main]
pipeline = healthcheck recon account-server

Note: For more information on other modules that enable additional features, see the De-
ployment Guide.

• In the [filter:recon] section, configure the recon (meters) cache directory:

[filter:recon]
use = egg:swift#recon
...
recon_cache_path = /var/cache/swift

3. Edit the /etc/swift/container-server.conf file and complete the following actions:

• In the [DEFAULT] section, configure the bind IP address, bind port, user, configuration
directory, and mount point directory:

[DEFAULT]
...
bind_ip = MANAGEMENT_INTERFACE_IP_ADDRESS
bind_port = 6201
user = swift
swift_dir = /etc/swift
devices = /srv/node
mount_check = True

Replace MANAGEMENT_INTERFACE_IP_ADDRESS with the IP address of the manage-
ment network on the storage node.

• In the [pipeline:main] section, enable the appropriate modules:

376 Chapter 5. Administrator Documentation

https://docs.openstack.org/swift/latest/deployment_guide.html
https://docs.openstack.org/swift/latest/deployment_guide.html


Swift Documentation, Release 2.27.1.dev38

[pipeline:main]
pipeline = healthcheck recon container-server

Note: For more information on other modules that enable additional features, see the De-
ployment Guide.

• In the [filter:recon] section, configure the recon (meters) cache directory:

[filter:recon]
use = egg:swift#recon
...
recon_cache_path = /var/cache/swift

4. Edit the /etc/swift/object-server.conf file and complete the following actions:

• In the [DEFAULT] section, configure the bind IP address, bind port, user, configuration
directory, and mount point directory:

[DEFAULT]
...
bind_ip = MANAGEMENT_INTERFACE_IP_ADDRESS
bind_port = 6200
user = swift
swift_dir = /etc/swift
devices = /srv/node
mount_check = True

Replace MANAGEMENT_INTERFACE_IP_ADDRESS with the IP address of the manage-
ment network on the storage node.

• In the [pipeline:main] section, enable the appropriate modules:

[pipeline:main]
pipeline = healthcheck recon object-server

Note: For more information on other modules that enable additional features, see the De-
ployment Guide.

• In the [filter:recon] section, configure the recon (meters) cache and lock directories:

[filter:recon]
use = egg:swift#recon
...
recon_cache_path = /var/cache/swift
recon_lock_path = /var/lock

5. Ensure proper ownership of the mount point directory structure:

# chown -R swift:swift /srv/node

5.9. Object Storage Install Guide 377

https://docs.openstack.org/swift/latest/deployment_guide.html
https://docs.openstack.org/swift/latest/deployment_guide.html
https://docs.openstack.org/swift/latest/deployment_guide.html
https://docs.openstack.org/swift/latest/deployment_guide.html


Swift Documentation, Release 2.27.1.dev38

Install and configure the storage nodes for Red Hat Enterprise Linux and CentOS

This section describes how to install and configure storage nodes that operate the account, container,
and object services. For simplicity, this configuration references two storage nodes, each containing
two empty local block storage devices. The instructions use /dev/sdb and /dev/sdc, but you can
substitute different values for your particular nodes.

Although Object Storage supports any file system with extended attributes (xattr), testing and bench-
marking indicate the best performance and reliability on XFS. For more information on horizontally
scaling your environment, see the Deployment Guide.

This section applies to Red Hat Enterprise Linux 7 and CentOS 7.

Prerequisites

Before you install and configure the Object Storage service on the storage nodes, you must prepare the
storage devices.

Note: Perform these steps on each storage node.

1. Install the supporting utility packages:

# yum install xfsprogs rsync

2. Format the /dev/sdb and /dev/sdc devices as XFS:

# mkfs.xfs /dev/sdb
# mkfs.xfs /dev/sdc

3. Create the mount point directory structure:

# mkdir -p /srv/node/sdb
# mkdir -p /srv/node/sdc

4. Find the UUID of the new partitions:

# blkid

5. Edit the /etc/fstab file and add the following to it:

UUID="<UUID-from-output-above>" /srv/node/sdb xfs noatime 0 2
UUID="<UUID-from-output-above>" /srv/node/sdc xfs noatime 0 2

6. Mount the devices:

# mount /srv/node/sdb
# mount /srv/node/sdc

7. Create or edit the /etc/rsyncd.conf file to contain the following:

uid = swift
gid = swift
log file = /var/log/rsyncd.log

(continues on next page)

378 Chapter 5. Administrator Documentation

https://docs.openstack.org/swift/latest/deployment_guide.html


Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

pid file = /var/run/rsyncd.pid
address = MANAGEMENT_INTERFACE_IP_ADDRESS

[account]
max connections = 2
path = /srv/node/
read only = False
lock file = /var/lock/account.lock

[container]
max connections = 2
path = /srv/node/
read only = False
lock file = /var/lock/container.lock

[object]
max connections = 2
path = /srv/node/
read only = False
lock file = /var/lock/object.lock

Replace MANAGEMENT_INTERFACE_IP_ADDRESS with the IP address of the management
network on the storage node.

Note: The rsync service requires no authentication, so consider running it on a private network
in production environments.

7. Start the rsyncd service and configure it to start when the system boots:

# systemctl enable rsyncd.service
# systemctl start rsyncd.service

Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (...) in the configuration snippets
indicates potential default configuration options that you should retain.

Note: Perform these steps on each storage node.

1. Install the packages:

# yum install openstack-swift-account openstack-swift-container \
openstack-swift-object

2. Obtain the accounting, container, and object service configuration files from the Object Storage
source repository:

5.9. Object Storage Install Guide 379



Swift Documentation, Release 2.27.1.dev38

# curl -o /etc/swift/account-server.conf https://opendev.org/
↪→openstack/swift/raw/branch/master/etc/account-server.conf-sample
# curl -o /etc/swift/container-server.conf https://opendev.org/
↪→openstack/swift/raw/branch/master/etc/container-server.conf-sample
# curl -o /etc/swift/object-server.conf https://opendev.org/openstack/
↪→swift/raw/branch/master/etc/object-server.conf-sample

3. Edit the /etc/swift/account-server.conf file and complete the following actions:

• In the [DEFAULT] section, configure the bind IP address, bind port, user, configuration
directory, and mount point directory:

[DEFAULT]
...
bind_ip = MANAGEMENT_INTERFACE_IP_ADDRESS
bind_port = 6202
user = swift
swift_dir = /etc/swift
devices = /srv/node
mount_check = True

Replace MANAGEMENT_INTERFACE_IP_ADDRESS with the IP address of the manage-
ment network on the storage node.

• In the [pipeline:main] section, enable the appropriate modules:

[pipeline:main]
pipeline = healthcheck recon account-server

Note: For more information on other modules that enable additional features, see the De-
ployment Guide.

• In the [filter:recon] section, configure the recon (meters) cache directory:

[filter:recon]
use = egg:swift#recon
...
recon_cache_path = /var/cache/swift

4. Edit the /etc/swift/container-server.conf file and complete the following actions:

• In the [DEFAULT] section, configure the bind IP address, bind port, user, configuration
directory, and mount point directory:

[DEFAULT]
...
bind_ip = MANAGEMENT_INTERFACE_IP_ADDRESS
bind_port = 6201
user = swift
swift_dir = /etc/swift
devices = /srv/node
mount_check = True

Replace MANAGEMENT_INTERFACE_IP_ADDRESS with the IP address of the manage-
ment network on the storage node.

380 Chapter 5. Administrator Documentation

https://docs.openstack.org/swift/latest/deployment_guide.html
https://docs.openstack.org/swift/latest/deployment_guide.html


Swift Documentation, Release 2.27.1.dev38

• In the [pipeline:main] section, enable the appropriate modules:

[pipeline:main]
pipeline = healthcheck recon container-server

Note: For more information on other modules that enable additional features, see the De-
ployment Guide.

• In the [filter:recon] section, configure the recon (meters) cache directory:

[filter:recon]
use = egg:swift#recon
...
recon_cache_path = /var/cache/swift

5. Edit the /etc/swift/object-server.conf file and complete the following actions:

• In the [DEFAULT] section, configure the bind IP address, bind port, user, configuration
directory, and mount point directory:

[DEFAULT]
...
bind_ip = MANAGEMENT_INTERFACE_IP_ADDRESS
bind_port = 6200
user = swift
swift_dir = /etc/swift
devices = /srv/node
mount_check = True

Replace MANAGEMENT_INTERFACE_IP_ADDRESS with the IP address of the manage-
ment network on the storage node.

• In the [pipeline:main] section, enable the appropriate modules:

[pipeline:main]
pipeline = healthcheck recon object-server

Note: For more information on other modules that enable additional features, see the De-
ployment Guide.

• In the [filter:recon] section, configure the recon (meters) cache and lock directories:

[filter:recon]
use = egg:swift#recon
...
recon_cache_path = /var/cache/swift
recon_lock_path = /var/lock

6. Ensure proper ownership of the mount point directory structure:

# chown -R swift:swift /srv/node

7. Create the recon directory and ensure proper ownership of it:

5.9. Object Storage Install Guide 381

https://docs.openstack.org/swift/latest/deployment_guide.html
https://docs.openstack.org/swift/latest/deployment_guide.html
https://docs.openstack.org/swift/latest/deployment_guide.html
https://docs.openstack.org/swift/latest/deployment_guide.html


Swift Documentation, Release 2.27.1.dev38

# mkdir -p /var/cache/swift
# chown -R root:swift /var/cache/swift
# chmod -R 775 /var/cache/swift

8. Enable necessary access in the firewall

# firewall-cmd --permanent --add-port=6200/tcp
# firewall-cmd --permanent --add-port=6201/tcp
# firewall-cmd --permanent --add-port=6202/tcp

The rsync service includes its own firewall configuration. Connect from one node to another to
ensure that access is allowed.

Install and configure the storage nodes for Ubuntu and Debian

This section describes how to install and configure storage nodes that operate the account, container,
and object services. For simplicity, this configuration references two storage nodes, each containing
two empty local block storage devices. The instructions use /dev/sdb and /dev/sdc, but you can
substitute different values for your particular nodes.

Although Object Storage supports any file system with extended attributes (xattr), testing and bench-
marking indicate the best performance and reliability on XFS. For more information on horizontally
scaling your environment, see the Deployment Guide.

This section applies to Ubuntu 14.04 (LTS) and Debian.

Prerequisites

Before you install and configure the Object Storage service on the storage nodes, you must prepare the
storage devices.

Note: Perform these steps on each storage node.

1. Install the supporting utility packages:

# apt-get install xfsprogs rsync

2. Format the /dev/sdb and /dev/sdc devices as XFS:

# mkfs.xfs /dev/sdb
# mkfs.xfs /dev/sdc

3. Create the mount point directory structure:

# mkdir -p /srv/node/sdb
# mkdir -p /srv/node/sdc

4. Find the UUID of the new partitions:

# blkid

5. Edit the /etc/fstab file and add the following to it:

382 Chapter 5. Administrator Documentation

https://docs.openstack.org/swift/latest/deployment_guide.html


Swift Documentation, Release 2.27.1.dev38

UUID="<UUID-from-output-above>" /srv/node/sdb xfs noatime 0 2
UUID="<UUID-from-output-above>" /srv/node/sdc xfs noatime 0 2

6. Mount the devices:

# mount /srv/node/sdb
# mount /srv/node/sdc

7. Create or edit the /etc/rsyncd.conf file to contain the following:

uid = swift
gid = swift
log file = /var/log/rsyncd.log
pid file = /var/run/rsyncd.pid
address = MANAGEMENT_INTERFACE_IP_ADDRESS

[account]
max connections = 2
path = /srv/node/
read only = False
lock file = /var/lock/account.lock

[container]
max connections = 2
path = /srv/node/
read only = False
lock file = /var/lock/container.lock

[object]
max connections = 2
path = /srv/node/
read only = False
lock file = /var/lock/object.lock

Replace MANAGEMENT_INTERFACE_IP_ADDRESS with the IP address of the management
network on the storage node.

Note: The rsync service requires no authentication, so consider running it on a private network
in production environments.

7. Edit the /etc/default/rsync file and enable the rsync service:

RSYNC_ENABLE=true

8. Start the rsync service:

# service rsync start

5.9. Object Storage Install Guide 383



Swift Documentation, Release 2.27.1.dev38

Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (...) in the configuration snippets
indicates potential default configuration options that you should retain.

Note: Perform these steps on each storage node.

1. Install the packages:

# apt-get install swift swift-account swift-container swift-object

2. Obtain the accounting, container, and object service configuration files from the Object Storage
source repository:

# curl -o /etc/swift/account-server.conf https://opendev.org/
↪→openstack/swift/raw/branch/master/etc/account-server.conf-sample
# curl -o /etc/swift/container-server.conf https://opendev.org/
↪→openstack/swift/raw/branch/master/etc/container-server.conf-sample
# curl -o /etc/swift/object-server.conf https://opendev.org/openstack/
↪→swift/raw/branch/master/etc/object-server.conf-sample

3. Edit the /etc/swift/account-server.conf file and complete the following actions:

• In the [DEFAULT] section, configure the bind IP address, bind port, user, configuration
directory, and mount point directory:

[DEFAULT]
...
bind_ip = MANAGEMENT_INTERFACE_IP_ADDRESS
bind_port = 6202
user = swift
swift_dir = /etc/swift
devices = /srv/node
mount_check = True

Replace MANAGEMENT_INTERFACE_IP_ADDRESS with the IP address of the manage-
ment network on the storage node.

• In the [pipeline:main] section, enable the appropriate modules:

[pipeline:main]
pipeline = healthcheck recon account-server

Note: For more information on other modules that enable additional features, see the De-
ployment Guide.

• In the [filter:recon] section, configure the recon (meters) cache directory:

384 Chapter 5. Administrator Documentation

https://docs.openstack.org/swift/latest/deployment_guide.html
https://docs.openstack.org/swift/latest/deployment_guide.html


Swift Documentation, Release 2.27.1.dev38

[filter:recon]
use = egg:swift#recon
...
recon_cache_path = /var/cache/swift

4. Edit the /etc/swift/container-server.conf file and complete the following actions:

• In the [DEFAULT] section, configure the bind IP address, bind port, user, configuration
directory, and mount point directory:

[DEFAULT]
...
bind_ip = MANAGEMENT_INTERFACE_IP_ADDRESS
bind_port = 6201
user = swift
swift_dir = /etc/swift
devices = /srv/node
mount_check = True

Replace MANAGEMENT_INTERFACE_IP_ADDRESS with the IP address of the manage-
ment network on the storage node.

• In the [pipeline:main] section, enable the appropriate modules:

[pipeline:main]
pipeline = healthcheck recon container-server

Note: For more information on other modules that enable additional features, see the De-
ployment Guide.

• In the [filter:recon] section, configure the recon (meters) cache directory:

[filter:recon]
use = egg:swift#recon
...
recon_cache_path = /var/cache/swift

5. Edit the /etc/swift/object-server.conf file and complete the following actions:

• In the [DEFAULT] section, configure the bind IP address, bind port, user, configuration
directory, and mount point directory:

[DEFAULT]
...
bind_ip = MANAGEMENT_INTERFACE_IP_ADDRESS
bind_port = 6200
user = swift
swift_dir = /etc/swift
devices = /srv/node
mount_check = True

Replace MANAGEMENT_INTERFACE_IP_ADDRESS with the IP address of the manage-
ment network on the storage node.

• In the [pipeline:main] section, enable the appropriate modules:

5.9. Object Storage Install Guide 385

https://docs.openstack.org/swift/latest/deployment_guide.html
https://docs.openstack.org/swift/latest/deployment_guide.html


Swift Documentation, Release 2.27.1.dev38

[pipeline:main]
pipeline = healthcheck recon object-server

Note: For more information on other modules that enable additional features, see the De-
ployment Guide.

• In the [filter:recon] section, configure the recon (meters) cache and lock directories:

[filter:recon]
use = egg:swift#recon
...
recon_cache_path = /var/cache/swift
recon_lock_path = /var/lock

6. Ensure proper ownership of the mount point directory structure:

# chown -R swift:swift /srv/node

7. Create the recon directory and ensure proper ownership of it:

# mkdir -p /var/cache/swift
# chown -R root:swift /var/cache/swift
# chmod -R 775 /var/cache/swift

5.9.5 Create and distribute initial rings

Before starting the Object Storage services, you must create the initial account, container, and object
rings. The ring builder creates configuration files that each node uses to determine and deploy the storage
architecture. For simplicity, this guide uses one region and two zones with 2^10 (1024) maximum
partitions, 3 replicas of each object, and 1 hour minimum time between moving a partition more than
once. For Object Storage, a partition indicates a directory on a storage device rather than a conventional
partition table. For more information, see the Deployment Guide.

Note: Perform these steps on the controller node.

Create account ring

The account server uses the account ring to maintain lists of containers.

1. Change to the /etc/swift directory.

2. Create the base account.builder file:

# swift-ring-builder account.builder create 10 3 1

Note: This command provides no output.

3. Add each storage node to the ring:

386 Chapter 5. Administrator Documentation

https://docs.openstack.org/swift/latest/deployment_guide.html
https://docs.openstack.org/swift/latest/deployment_guide.html
https://docs.openstack.org/swift/latest/deployment_guide.html


Swift Documentation, Release 2.27.1.dev38

# swift-ring-builder account.builder \
add --region 1 --zone 1 --ip STORAGE_NODE_MANAGEMENT_INTERFACE_IP_

↪→ADDRESS --port 6202 \
--device DEVICE_NAME --weight DEVICE_WEIGHT

Replace STORAGE_NODE_MANAGEMENT_INTERFACE_IP_ADDRESS with the IP address of
the management network on the storage node. Replace DEVICE_NAME with a storage device
name on the same storage node. For example, using the first storage node in Install and configure
the storage nodes with the /dev/sdb storage device and weight of 100:

# swift-ring-builder account.builder add \
--region 1 --zone 1 --ip 10.0.0.51 --port 6202 --device sdb --

↪→weight 100

Repeat this command for each storage device on each storage node. In the example architecture,
use the command in four variations:

# swift-ring-builder account.builder add \
--region 1 --zone 1 --ip 10.0.0.51 --port 6202 --device sdb --

↪→weight 100
Device d0r1z1-10.0.0.51:6202R10.0.0.51:6202/sdb_"" with 100.0 weight
↪→got id 0
# swift-ring-builder account.builder add \
--region 1 --zone 1 --ip 10.0.0.51 --port 6202 --device sdc --

↪→weight 100
Device d1r1z2-10.0.0.51:6202R10.0.0.51:6202/sdc_"" with 100.0 weight
↪→got id 1
# swift-ring-builder account.builder add \
--region 1 --zone 2 --ip 10.0.0.52 --port 6202 --device sdb --

↪→weight 100
Device d2r1z3-10.0.0.52:6202R10.0.0.52:6202/sdb_"" with 100.0 weight
↪→got id 2
# swift-ring-builder account.builder add \
--region 1 --zone 2 --ip 10.0.0.52 --port 6202 --device sdc --

↪→weight 100
Device d3r1z4-10.0.0.52:6202R10.0.0.52:6202/sdc_"" with 100.0 weight
↪→got id 3

4. Verify the ring contents:

# swift-ring-builder account.builder
account.builder, build version 4
1024 partitions, 3.000000 replicas, 1 regions, 2 zones, 4 devices,
↪→100.00 balance, 0.00 dispersion
The minimum number of hours before a partition can be reassigned is 1
The overload factor is 0.00% (0.000000)
Devices: id region zone ip address port replication ip
↪→replication port name weight partitions balance meta

0 1 1 10.0.0.51 6202 10.0.0.51
↪→ 6202 sdb 100.00 0 -100.00

1 1 1 10.0.0.51 6202 10.0.0.51
↪→ 6202 sdc 100.00 0 -100.00

2 1 2 10.0.0.52 6202 10.0.0.52
↪→ 6202 sdb 100.00 0 -100.00

3 1 2 10.0.0.52 6202 10.0.0.52
↪→ 6202 sdc 100.00 0 -100.00

5.9. Object Storage Install Guide 387



Swift Documentation, Release 2.27.1.dev38

5. Rebalance the ring:

# swift-ring-builder account.builder rebalance
Reassigned 1024 (100.00%) partitions. Balance is now 0.00.
↪→Dispersion is now 0.00

Create container ring

The container server uses the container ring to maintain lists of objects. However, it does not track object
locations.

1. Change to the /etc/swift directory.

2. Create the base container.builder file:

# swift-ring-builder container.builder create 10 3 1

Note: This command provides no output.

3. Add each storage node to the ring:

# swift-ring-builder container.builder \
add --region 1 --zone 1 --ip STORAGE_NODE_MANAGEMENT_INTERFACE_IP_

↪→ADDRESS --port 6201 \
--device DEVICE_NAME --weight DEVICE_WEIGHT

Replace STORAGE_NODE_MANAGEMENT_INTERFACE_IP_ADDRESS with the IP address of
the management network on the storage node. Replace DEVICE_NAME with a storage device
name on the same storage node. For example, using the first storage node in Install and configure
the storage nodes with the /dev/sdb storage device and weight of 100:

# swift-ring-builder container.builder add \
--region 1 --zone 1 --ip 10.0.0.51 --port 6201 --device sdb --

↪→weight 100

Repeat this command for each storage device on each storage node. In the example architecture,
use the command in four variations:

# swift-ring-builder container.builder add \
--region 1 --zone 1 --ip 10.0.0.51 --port 6201 --device sdb --

↪→weight 100
Device d0r1z1-10.0.0.51:6201R10.0.0.51:6201/sdb_"" with 100.0 weight
↪→got id 0
# swift-ring-builder container.builder add \
--region 1 --zone 1 --ip 10.0.0.51 --port 6201 --device sdc --

↪→weight 100
Device d1r1z2-10.0.0.51:6201R10.0.0.51:6201/sdc_"" with 100.0 weight
↪→got id 1
# swift-ring-builder container.builder add \
--region 1 --zone 2 --ip 10.0.0.52 --port 6201 --device sdb --

↪→weight 100
Device d2r1z3-10.0.0.52:6201R10.0.0.52:6201/sdb_"" with 100.0 weight
↪→got id 2

(continues on next page)

388 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

# swift-ring-builder container.builder add \
--region 1 --zone 2 --ip 10.0.0.52 --port 6201 --device sdc --

↪→weight 100
Device d3r1z4-10.0.0.52:6201R10.0.0.52:6201/sdc_"" with 100.0 weight
↪→got id 3

4. Verify the ring contents:

# swift-ring-builder container.builder
container.builder, build version 4
1024 partitions, 3.000000 replicas, 1 regions, 2 zones, 4 devices,
↪→100.00 balance, 0.00 dispersion
The minimum number of hours before a partition can be reassigned is 1
The overload factor is 0.00% (0.000000)
Devices: id region zone ip address port replication ip
↪→replication port name weight partitions balance meta

0 1 1 10.0.0.51 6201 10.0.0.51
↪→ 6201 sdb 100.00 0 -100.00

1 1 1 10.0.0.51 6201 10.0.0.51
↪→ 6201 sdc 100.00 0 -100.00

2 1 2 10.0.0.52 6201 10.0.0.52
↪→ 6201 sdb 100.00 0 -100.00

3 1 2 10.0.0.52 6201 10.0.0.52
↪→ 6201 sdc 100.00 0 -100.00

5. Rebalance the ring:

# swift-ring-builder container.builder rebalance
Reassigned 1024 (100.00%) partitions. Balance is now 0.00.
↪→Dispersion is now 0.00

Create object ring

The object server uses the object ring to maintain lists of object locations on local devices.

1. Change to the /etc/swift directory.

2. Create the base object.builder file:

# swift-ring-builder object.builder create 10 3 1

Note: This command provides no output.

3. Add each storage node to the ring:

# swift-ring-builder object.builder \
add --region 1 --zone 1 --ip STORAGE_NODE_MANAGEMENT_INTERFACE_IP_

↪→ADDRESS --port 6200 \
--device DEVICE_NAME --weight DEVICE_WEIGHT

Replace STORAGE_NODE_MANAGEMENT_INTERFACE_IP_ADDRESS with the IP address of
the management network on the storage node. Replace DEVICE_NAME with a storage device

5.9. Object Storage Install Guide 389



Swift Documentation, Release 2.27.1.dev38

name on the same storage node. For example, using the first storage node in Install and configure
the storage nodes with the /dev/sdb storage device and weight of 100:

# swift-ring-builder object.builder add \
--region 1 --zone 1 --ip 10.0.0.51 --port 6200 --device sdb --

↪→weight 100

Repeat this command for each storage device on each storage node. In the example architecture,
use the command in four variations:

# swift-ring-builder object.builder add \
--region 1 --zone 1 --ip 10.0.0.51 --port 6200 --device sdb --

↪→weight 100
Device d0r1z1-10.0.0.51:6200R10.0.0.51:6200/sdb_"" with 100.0 weight
↪→got id 0
# swift-ring-builder object.builder add \
--region 1 --zone 1 --ip 10.0.0.51 --port 6200 --device sdc --

↪→weight 100
Device d1r1z2-10.0.0.51:6200R10.0.0.51:6200/sdc_"" with 100.0 weight
↪→got id 1
# swift-ring-builder object.builder add \
--region 1 --zone 2 --ip 10.0.0.52 --port 6200 --device sdb --

↪→weight 100
Device d2r1z3-10.0.0.52:6200R10.0.0.52:6200/sdb_"" with 100.0 weight
↪→got id 2
# swift-ring-builder object.builder add \
--region 1 --zone 2 --ip 10.0.0.52 --port 6200 --device sdc --

↪→weight 100
Device d3r1z4-10.0.0.52:6200R10.0.0.52:6200/sdc_"" with 100.0 weight
↪→got id 3

4. Verify the ring contents:

# swift-ring-builder object.builder
object.builder, build version 4
1024 partitions, 3.000000 replicas, 1 regions, 2 zones, 4 devices,
↪→100.00 balance, 0.00 dispersion
The minimum number of hours before a partition can be reassigned is 1
The overload factor is 0.00% (0.000000)
Devices: id region zone ip address port replication ip
↪→replication port name weight partitions balance meta

0 1 1 10.0.0.51 6200 10.0.0.51
↪→ 6200 sdb 100.00 0 -100.00

1 1 1 10.0.0.51 6200 10.0.0.51
↪→ 6200 sdc 100.00 0 -100.00

2 1 2 10.0.0.52 6200 10.0.0.52
↪→ 6200 sdb 100.00 0 -100.00

3 1 2 10.0.0.52 6200 10.0.0.52
↪→ 6200 sdc 100.00 0 -100.00

5. Rebalance the ring:

# swift-ring-builder object.builder rebalance
Reassigned 1024 (100.00%) partitions. Balance is now 0.00.
↪→Dispersion is now 0.00

390 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

Distribute ring configuration files

• Copy the account.ring.gz, container.ring.gz, and object.ring.gz files to the
/etc/swift directory on each storage node and any additional nodes running the proxy service.

5.9.6 Finalize installation

Finalizing installation varies by distribution.

Finalize installation for openSUSE and SUSE Linux Enterprise

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (...) in the configuration snippets
indicates potential default configuration options that you should retain.

This section applies to openSUSE Leap 42.2 and SUSE Linux Enterprise Server 12 SP2.

1. Edit the /etc/swift/swift.conf file and complete the following actions:

• In the [swift-hash] section, configure the hash path prefix and suffix for your environ-
ment.

[swift-hash]
...
swift_hash_path_suffix = HASH_PATH_SUFFIX
swift_hash_path_prefix = HASH_PATH_PREFIX

Replace HASH_PATH_PREFIX and HASH_PATH_SUFFIX with unique values.

Warning: Keep these values secret and do not change or lose them.

• In the [storage-policy:0] section, configure the default storage policy:

[storage-policy:0]
...
name = Policy-0
default = yes

2. Copy the swift.conf file to the /etc/swift directory on each storage node and any addi-
tional nodes running the proxy service.

3. On all nodes, ensure proper ownership of the configuration directory:

# chown -R root:swift /etc/swift

4. On the controller node and any other nodes running the proxy service, start the Object Storage
proxy service including its dependencies and configure them to start when the system boots:

# systemctl enable openstack-swift-proxy.service memcached.service
# systemctl start openstack-swift-proxy.service memcached.service

5.9. Object Storage Install Guide 391



Swift Documentation, Release 2.27.1.dev38

5. On the storage nodes, start the Object Storage services and configure them to start when the system
boots:

# systemctl enable openstack-swift-account.service openstack-swift-
↪→account-auditor.service \
openstack-swift-account-reaper.service openstack-swift-account-

↪→replicator.service
# systemctl start openstack-swift-account.service openstack-swift-
↪→account-auditor.service \
openstack-swift-account-reaper.service openstack-swift-account-

↪→replicator.service
# systemctl enable openstack-swift-container.service openstack-swift-
↪→container-auditor.service \
openstack-swift-container-replicator.service openstack-swift-

↪→container-updater.service
# systemctl start openstack-swift-container.service openstack-swift-
↪→container-auditor.service \
openstack-swift-container-replicator.service openstack-swift-

↪→container-updater.service
# systemctl enable openstack-swift-object.service openstack-swift-
↪→object-auditor.service \
openstack-swift-object-replicator.service openstack-swift-object-

↪→updater.service
# systemctl start openstack-swift-object.service openstack-swift-
↪→object-auditor.service \
openstack-swift-object-replicator.service openstack-swift-object-

↪→updater.service

Finalize installation for Red Hat Enterprise Linux and CentOS

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (...) in the configuration snippets
indicates potential default configuration options that you should retain.

This section applies to Red Hat Enterprise Linux 7 and CentOS 7.

1. Obtain the /etc/swift/swift.conf file from the Object Storage source repository:

# curl -o /etc/swift/swift.conf \
https://opendev.org/openstack/swift/raw/branch/master/etc/swift.

↪→conf-sample

2. Edit the /etc/swift/swift.conf file and complete the following actions:

• In the [swift-hash] section, configure the hash path prefix and suffix for your environ-
ment.

[swift-hash]
...
swift_hash_path_suffix = HASH_PATH_SUFFIX
swift_hash_path_prefix = HASH_PATH_PREFIX

Replace HASH_PATH_PREFIX and HASH_PATH_SUFFIX with unique values.

392 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

Warning: Keep these values secret and do not change or lose them.

• In the [storage-policy:0] section, configure the default storage policy:

[storage-policy:0]
...
name = Policy-0
default = yes

3. Copy the swift.conf file to the /etc/swift directory on each storage node and any addi-
tional nodes running the proxy service.

4. On all nodes, ensure proper ownership of the configuration directory:

# chown -R root:swift /etc/swift

5. On the controller node and any other nodes running the proxy service, start the Object Storage
proxy service including its dependencies and configure them to start when the system boots:

# systemctl enable openstack-swift-proxy.service memcached.service
# systemctl start openstack-swift-proxy.service memcached.service

6. On the storage nodes, start the Object Storage services and configure them to start when the system
boots:

# systemctl enable openstack-swift-account.service openstack-swift-
↪→account-auditor.service \
openstack-swift-account-reaper.service openstack-swift-account-

↪→replicator.service
# systemctl start openstack-swift-account.service openstack-swift-
↪→account-auditor.service \
openstack-swift-account-reaper.service openstack-swift-account-

↪→replicator.service
# systemctl enable openstack-swift-container.service \
openstack-swift-container-auditor.service openstack-swift-container-

↪→replicator.service \
openstack-swift-container-updater.service

# systemctl start openstack-swift-container.service \
openstack-swift-container-auditor.service openstack-swift-container-

↪→replicator.service \
openstack-swift-container-updater.service

# systemctl enable openstack-swift-object.service openstack-swift-
↪→object-auditor.service \
openstack-swift-object-replicator.service openstack-swift-object-

↪→updater.service
# systemctl start openstack-swift-object.service openstack-swift-
↪→object-auditor.service \
openstack-swift-object-replicator.service openstack-swift-object-

↪→updater.service

5.9. Object Storage Install Guide 393



Swift Documentation, Release 2.27.1.dev38

Finalize installation for Ubuntu and Debian

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (...) in the configuration snippets
indicates potential default configuration options that you should retain.

This section applies to Ubuntu 14.04 (LTS) and Debian.

1. Obtain the /etc/swift/swift.conf file from the Object Storage source repository:

# curl -o /etc/swift/swift.conf \
https://opendev.org/openstack/swift/raw/branch/master/etc/swift.

↪→conf-sample

2. Edit the /etc/swift/swift.conf file and complete the following actions:

• In the [swift-hash] section, configure the hash path prefix and suffix for your environ-
ment.

[swift-hash]
...
swift_hash_path_suffix = HASH_PATH_SUFFIX
swift_hash_path_prefix = HASH_PATH_PREFIX

Replace HASH_PATH_PREFIX and HASH_PATH_SUFFIX with unique values.

Warning: Keep these values secret and do not change or lose them.

• In the [storage-policy:0] section, configure the default storage policy:

[storage-policy:0]
...
name = Policy-0
default = yes

3. Copy the swift.conf file to the /etc/swift directory on each storage node and any addi-
tional nodes running the proxy service.

4. On all nodes, ensure proper ownership of the configuration directory:

# chown -R root:swift /etc/swift

5. On the controller node and any other nodes running the proxy service, restart the Object Storage
proxy service including its dependencies:

# service memcached restart
# service swift-proxy restart

6. On the storage nodes, start the Object Storage services:

# swift-init all start

394 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

Note: The storage node runs many Object Storage services and the swift-init command
makes them easier to manage. You can ignore errors from services not running on the storage
node.

5.9.7 Verify operation

Verify operation of the Object Storage service.

Note: Perform these steps on the controller node.

Warning: If you are using Red Hat Enterprise Linux 7 or CentOS 7 and one or more of these steps
do not work, check the /var/log/audit/audit.log file for SELinux messages indicating
denial of actions for the swift processes. If present, change the security context of the /srv/
node directory to the lowest security level (s0) for the swift_data_t type, object_r role and
the system_u user:

# chcon -R system_u:object_r:swift_data_t:s0 /srv/node

1. Source the demo credentials:

$ . demo-openrc

2. Show the service status:

$ swift stat
Account: AUTH_ed0b60bf607743088218b0a533d5943f

Containers: 0
Objects: 0

Bytes: 0
X-Account-Project-Domain-Id: default

X-Timestamp: 1444143887.71539
X-Trans-Id: tx1396aeaf17254e94beb34-0056143bde

X-Openstack-Request-Id: tx1396aeaf17254e94beb34-0056143bde
Content-Type: text/plain; charset=utf-8

Accept-Ranges: bytes

3. Create container1 container:

$ openstack container create container1
+---------------------------------------+------------+----------------
↪→--------------------+
| account | container | x-trans-id
↪→ |
+---------------------------------------+------------+----------------
↪→--------------------+
| AUTH_ed0b60bf607743088218b0a533d5943f | container1 |
↪→tx8c4034dc306c44dd8cd68-0056f00a4a |
+---------------------------------------+------------+----------------
↪→--------------------+

5.9. Object Storage Install Guide 395



Swift Documentation, Release 2.27.1.dev38

4. Upload a test file to the container1 container:

$ openstack object create container1 FILE
+--------+------------+----------------------------------+
| object | container | etag |
+--------+------------+----------------------------------+
| FILE | container1 | ee1eca47dc88f4879d8a229cc70a07c6 |
+--------+------------+----------------------------------+

Replace FILE with the name of a local file to upload to the container1 container.

5. List files in the container1 container:

$ openstack object list container1
+------+
| Name |
+------+
| FILE |
+------+

6. Download a test file from the container1 container:

$ openstack object save container1 FILE

Replace FILE with the name of the file uploaded to the container1 container.

Note: This command provides no output.

5.9.8 Next steps

Your OpenStack environment now includes Object Storage.

To add more services, see the additional documentation on installing OpenStack .

The Object Storage services (swift) work together to provide object storage and retrieval through a REST
API.

This chapter assumes a working setup of OpenStack following the OpenStack Installation Tutorial.

Your environment must at least include the Identity service (keystone) prior to deploying Object Storage.

5.10 Configuration Documentation

5.10.1 Common configuration

This document describes the configuration options common to all swift servers. Documentation for
other swift configuration options can be found at Configuration Documentation.

An example of common configuration file can be found at etc/swift.conf-sample

The following configuration options are available:

396 Chapter 5. Administrator Documentation

https://docs.openstack.org/latest/install/
https://docs.openstack.org/latest/install/


Swift Documentation, Release 2.27.1.dev38

Op-
tion

De-
fault

Description

max_header_size8192 max_header_size is the max number of bytes in the utf8 encoding of each header.
Using 8192 as default because eventlet use 8192 as max size of header line. This
value may need to be increased when using identity v3 API tokens including more
than 7 catalog entries. See also include_service_catalog in proxy-server.conf-sample
(documented in overview_auth.rst).

ex-
tra_header_count

0 By default the maximum number of allowed headers depends on the number of max
allowed metadata settings plus a default value of 32 for regular http headers. If for
some reason this is not enough (custom middleware for example) it can be increased
with the extra_header_count constraint.

auto_create_account_prefix. Prefix used when automatically creating accounts.

5.10.2 Proxy Server Configuration

This document describes the configuration options available for the proxy server. Some proxy server
options may be configured on a per-policy basis. Additional documentation for proxy-server middleware
can be found at Middleware and The Auth System.

Documentation for other swift configuration options can be found at Configuration Documentation.

An example Proxy Server configuration can be found at etc/proxy-server.conf-sample in the source code
repository.

The following configuration sections are available:

• [DEFAULT]

• [proxy-server]

[DEFAULT]

Option Default Description
bind_ip 0.0.0.0 IP Address for server to bind to
bind_port 80 Port for server to bind to
keep_idle 600 Value to set for socket TCP_KEEPIDLE
bind_timeout 30 Seconds to attempt bind before giving up
backlog 4096 Maximum number of allowed pending connections
swift_dir /etc/swift Swift configuration directory
workers auto Override the number of pre-forked workers that will accept connections. If set it should be an integer, zero means no fork. If unset, it will try to default to the number of effective cpu cores and fallback to one. See General Service Tuning.
max_clients 1024 Maximum number of clients one worker can process simultaneously (it will actually accept(2) N + 1). Setting this to one (1) will only handle one request at a time, without accepting another request concurrently.
user swift User to run as
cert_file Path to the ssl .crt. This should be enabled for testing purposes only.
key_file Path to the ssl .key. This should be enabled for testing purposes only.
cors_allow_origin List of origin hosts that are allowed for CORS requests in addition to what the container has set.
strict_cors_mode True If True (default) then CORS requests are only allowed if their Origin header matches an allowed origin. Otherwise, any Origin is allowed.
cors_expose_headers This is a list of headers that are included in the header Access-Control-Expose-Headers in addition to what the container has set.
client_timeout 60
trans_id_suffix This optional suffix (default is empty) that would be appended to the swift transaction id allows one to easily figure out from which cluster that X-Trans-Id belongs to. This is very useful when one is managing more than one swift cluster.

continues on next page

5.10. Configuration Documentation 397



Swift Documentation, Release 2.27.1.dev38

Table 2 – continued from previous page
log_name swift Label used when logging
log_facility LOG_LOCAL0 Syslog log facility
log_level INFO Logging level
log_headers False
log_address /dev/log Logging directory
log_max_line_length 0 Caps the length of log lines to the value given; no limit if set to 0, the default.
log_custom_handlers None Comma separated list of functions to call to setup custom log handlers.
log_udp_host Override log_address
log_udp_port 514 UDP log port
log_statsd_host None Enables StatsD logging; IPv4/IPv6 address or a hostname. If a hostname resolves to an IPv4 and IPv6 address, the IPv4 address will be used.
log_statsd_port 8125
log_statsd_default_sample_rate 1.0
log_statsd_sample_rate_factor 1.0
log_statsd_metric_prefix
eventlet_debug false If true, turn on debug logging for eventlet
expose_info true Enables exposing configuration settings via HTTP GET /info.
admin_key Key to use for admin calls that are HMAC signed. Default is empty, which will disable admin calls to /info.
disallowed_sections swift.valid_api_versions Allows the ability to withhold sections from showing up in the public calls to /info. You can withhold subsections by separating the dict level with a ..
expiring_objects_container_divisor 86400
expiring_objects_account_name expiring_objects
nice_priority None Scheduling priority of server processes. Niceness values range from -20 (most favorable to the process) to 19 (least favorable to the process). The default does not modify priority.
ionice_class None I/O scheduling class of server processes. I/O niceness class values are IOPRIO_CLASS_RT (realtime), IOPRIO_CLASS_BE (best-effort) and IOPRIO_CLASS_IDLE (idle). The default does not modify class and priority. Linux supports io scheduling priorities and classes since 2.6.13 with the CFQ io scheduler. Work only with ionice_priority.
ionice_priority None I/O scheduling priority of server processes. I/O niceness priority is a number which goes from 0 to 7. The higher the value, the lower the I/O priority of the process. Work only with ionice_class. Ignored if IOPRIO_CLASS_IDLE is set.

[proxy-server]

Option Default Description
use Entry point for paste.deploy for the proxy server. For most cases, this should be egg:swift#proxy.
set log_name proxy-server Label used when logging
set log_facility LOG_LOCAL0 Syslog log facility
set log_level INFO Log level
set log_headers True If True, log headers in each request
set log_handoffs True If True, the proxy will log whenever it has to failover to a handoff node
recheck_account_existence 60 Cache timeout in seconds to send memcached for account existence
recheck_container_existence 60 Cache timeout in seconds to send memcached for container existence
object_chunk_size 65536 Chunk size to read from object servers
client_chunk_size 65536 Chunk size to read from clients
memcache_servers 127.0.0.1:11211 Comma separated list of memcached servers ip:port or [ipv6addr]:port
memcache_max_connections 2 Max number of connections to each memcached server per worker
node_timeout 10 Request timeout to external services
recoverable_node_timeout node_timeout Request timeout to external services for requests that, on failure, can be recovered from. For example, object GET.
client_timeout 60 Timeout to read one chunk from a client
conn_timeout 0.5 Connection timeout to external services
error_suppression_interval 60 Time in seconds that must elapse since the last error for a node to be considered no longer error limited
error_suppression_limit 10 Error count to consider a node error limited
allow_account_management false Whether account PUTs and DELETEs are even callable

continues on next page

398 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

Table 3 – continued from previous page
account_autocreate false If set to true authorized accounts that do not yet exist within the Swift cluster will be automatically created.
max_containers_per_account 0 If set to a positive value, trying to create a container when the account already has at least this maximum containers will result in a 403 Forbidden. Note: This is a soft limit, meaning a user might exceed the cap for recheck_account_existence before the 403s kick in.
max_containers_whitelist This is a comma separated list of account names that ignore the max_containers_per_account cap.
rate_limit_after_segment 10 Rate limit the download of large object segments after this segment is downloaded.
rate_limit_segments_per_sec 1 Rate limit large object downloads at this rate.
request_node_count 2 * replicas Set to the number of nodes to contact for a normal request. You can use * replicas at the end to have it use the number given times the number of replicas for the ring being used for the request.
swift_owner_headers <see the sample conf file for the list of default headers> These are the headers whose values will only be shown to swift_owners. The exact definition of a swift_owner is up to the auth system in use, but usually indicates administrative responsibilities.
sorting_method shuffle Storage nodes can be chosen at random (shuffle), by using timing measurements (timing), or by using an explicit match (affinity). Using timing measurements may allow for lower overall latency, while using affinity allows for finer control. In both the timing and affinity cases, equally-sorting nodes are still randomly chosen to spread load. This option may be overridden in a per-policy configuration section.
timing_expiry 300 If the timing sorting_method is used, the timings will only be valid for the number of seconds configured by timing_expiry.
concurrent_gets off Use replica count number of threads concurrently during a GET/HEAD and return with the first successful response. In the EC case, this parameter only affects an EC HEAD as an EC GET behaves differently.
concurrency_timeout conn_timeout This parameter controls how long to wait before firing off the next concurrent_get thread. A value of 0 would we fully concurrent, any other number will stagger the firing of the threads. This number should be between 0 and node_timeout. The default is conn_timeout (0.5).
nice_priority None Scheduling priority of server processes. Niceness values range from -20 (most favorable to the process) to 19 (least favorable to the process). The default does not modify priority.
ionice_class None I/O scheduling class of server processes. I/O niceness class values are IOPRIO_CLASS_RT (realtime), IOPRIO_CLASS_BE (best-effort), and IOPRIO_CLASS_IDLE (idle). The default does not modify class and priority. Linux supports io scheduling priorities and classes since 2.6.13 with the CFQ io scheduler. Work only with ionice_priority.
ionice_priority None I/O scheduling priority of server processes. I/O niceness priority is a number which goes from 0 to 7. The higher the value, the lower the I/O priority of the process. Work only with ionice_class. Ignored if IOPRIO_CLASS_IDLE is set.
read_affinity None Specifies which backend servers to prefer on reads; used in conjunction with the sorting_method option being set to affinity. Format is a comma separated list of affinity descriptors of the form <selection>=<priority>. The <selection> may be r<N> for selecting nodes in region N or r<N>z<M> for selecting nodes in region N, zone M. The <priority> value should be a whole number that represents the priority to be given to the selection; lower numbers are higher priority. Default is empty, meaning no preference. This option may be overridden in a per-policy configuration section.
write_affinity None Specifies which backend servers to prefer on writes. Format is a comma separated list of affinity descriptors of the form r<N> for region N or r<N>z<M> for region N, zone M. Default is empty, meaning no preference. This option may be overridden in a per-policy configuration section.
write_affinity_node_count 2 * replicas The number of local (as governed by the write_affinity setting) nodes to attempt to contact first on writes, before any non-local ones. The value should be an integer number, or use * replicas at the end to have it use the number given times the number of replicas for the ring being used for the request. This option may be overridden in a per-policy configuration section.
write_affinity_handoff_delete_count auto The number of local (as governed by the write_affinity setting) handoff nodes to attempt to contact on deletion, in addition to primary nodes. Example: in geographically distributed deployment, If replicas=3, sometimes there may be 1 primary node and 2 local handoff nodes in one region holding the object after uploading but before object replicated to the appropriate locations in other regions. In this case, include these handoff nodes to send request when deleting object could help make correct decision for the response. The default value auto means Swift will calculate the number automatically, the default value is (replicas - len(local_primary_nodes)). This option may be overridden in a per-policy configuration section.

5.10.3 Account Server Configuration

This document describes the configuration options available for the account server. Documentation for
other swift configuration options can be found at Configuration Documentation.

An example Account Server configuration can be found at etc/account-server.conf-sample in the source
code repository.

The following configuration sections are available:

• [DEFAULT]

• [account-server]

• [account-replicator]

• [account-auditor]

• [account-reaper]

[DEFAULT]

Option Default Description
swift_dir /etc/swift Swift configuration directory
devices /srv/node Parent directory or where devices are mounted
mount_check true Whether or not check if the devices are mounted to prevent accidentally writing to the root device
bind_ip 0.0.0.0 IP Address for server to bind to
bind_port 6202 Port for server to bind to
keep_idle 600 Value to set for socket TCP_KEEPIDLE
bind_timeout 30 Seconds to attempt bind before giving up
backlog 4096 Maximum number of allowed pending connections

continues on next page

5.10. Configuration Documentation 399



Swift Documentation, Release 2.27.1.dev38

Table 4 – continued from previous page
workers auto Override the number of pre-forked workers that will accept connections. If set it should be an integer, zero means no fork. If unset, it will try to default to the number of effective cpu cores and fallback to one. Increasing the number of workers may reduce the possibility of slow file system operations in one request from negatively impacting other requests. See General Service Tuning.
max_clients 1024 Maximum number of clients one worker can process simultaneously (it will actually accept(2) N + 1). Setting this to one (1) will only handle one request at a time, without accepting another request concurrently.
user swift User to run as
db_preallocation off If you dont mind the extra disk space usage in overhead, you can turn this on to preallocate disk space with SQLite databases to decrease fragmentation.
disable_fallocate false Disable fast fail fallocate checks if the underlying filesystem does not support it.
log_name swift Label used when logging
log_facility LOG_LOCAL0 Syslog log facility
log_level INFO Logging level
log_address /dev/log Logging directory
log_max_line_length 0 Caps the length of log lines to the value given; no limit if set to 0, the default.
log_custom_handlers None Comma-separated list of functions to call to setup custom log handlers.
log_udp_host Override log_address
log_udp_port 514 UDP log port
log_statsd_host None Enables StatsD logging; IPv4/IPv6 address or a hostname. If a hostname resolves to an IPv4 and IPv6 address, the IPv4 address will be used.
log_statsd_port 8125
log_statsd_default_sample_rate 1.0
log_statsd_sample_rate_factor 1.0
log_statsd_metric_prefix
eventlet_debug false If true, turn on debug logging for eventlet
fallocate_reserve 1% You can set fallocate_reserve to the number of bytes or percentage of disk space youd like fallocate to reserve, whether there is space for the given file size or not. Percentage will be used if the value ends with a %. This is useful for systems that behave badly when they completely run out of space; you can make the services pretend theyre out of space early.
nice_priority None Scheduling priority of server processes. Niceness values range from -20 (most favorable to the process) to 19 (least favorable to the process). The default does not modify priority.
ionice_class None I/O scheduling class of server processes. I/O niceness class values are IOPRIO_CLASS_RT (realtime), IOPRIO_CLASS_BE (best-effort), and IOPRIO_CLASS_IDLE (idle). The default does not modify class and priority. Linux supports io scheduling priorities and classes since 2.6.13 with the CFQ io scheduler. Work only with ionice_priority.
ionice_priority None I/O scheduling priority of server processes. I/O niceness priority is a number which goes from 0 to 7. The higher the value, the lower the I/O priority of the process. Work only with ionice_class. Ignored if IOPRIO_CLASS_IDLE is set.

400 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

[account-server]

Op-
tion

De-
fault

Description

use Entry point for paste.deploy for the account server. For most cases, this should be
egg:swift#account.

set
log_name

account-
server

Label used when logging

set
log_facility

LOG_LOCAL0Syslog log facility

set
log_level

INFO Logging level

set
log_requests

True Whether or not to log each request

set
log_address

/dev/logLogging directory

repli-
ca-
tion_server

Configure parameter for creating specific server. To handle all verbs, including repli-
cation verbs, do not specify replication_server (this is the default). To only handle
replication, set to a True value (e.g. True or 1). To handle only non-replication verbs,
set to False. Unless you have a separate replication network, you should not specify any
value for replication_server.

nice_priorityNone Scheduling priority of server processes. Niceness values range from -20 (most favorable
to the process) to 19 (least favorable to the process). The default does not modify
priority.

ion-
ice_class

None I/O scheduling class of server processes. I/O niceness class values are IO-
PRIO_CLASS_RT (realtime), IOPRIO_CLASS_BE (best-effort), and IO-
PRIO_CLASS_IDLE (idle). The default does not modify class and priority.
Linux supports io scheduling priorities and classes since 2.6.13 with the CFQ io
scheduler. Work only with ionice_priority.

ion-
ice_priority

None I/O scheduling priority of server processes. I/O niceness priority is a number which
goes from 0 to 7. The higher the value, the lower the I/O priority of the process. Work
only with ionice_class. Ignored if IOPRIO_CLASS_IDLE is set.

5.10. Configuration Documentation 401



Swift Documentation, Release 2.27.1.dev38

[account-replicator]

Op-
tion

De-
fault

Description

log_nameaccount-
replicator

Label used when logging

log_facilityLOG_LOCAL0Syslog log facility
log_levelINFO Logging level
log_address/dev/log Logging directory
per_diff1000 Maximum number of database rows that will be syncd in a single HTTP replication

request. Databases with less than or equal to this number of differing rows will
always be syncd using an HTTP replication request rather than using rsync.

max_diffs100 Maximum number of HTTP replication requests attempted on each replication pass
for any one container. This caps how long the replicator will spend trying to sync a
given database per pass so the other databases dont get starved.

con-
cur-
rency

8 Number of replication workers to spawn

inter-
val

30 Time in seconds to wait between replication passes

databases_per_second50 Maximum databases to process per second. Should be tuned according to individual
system specs. 0 is unlimited.

node_timeout10 Request timeout to external services
conn_timeout0.5 Connection timeout to external services
re-
claim_age

604800 Time elapsed in seconds before an account can be reclaimed

rsync_module{repli-
ca-
tion_ip}::account

Format of the rsync module where the replicator will send data. The configuration
value can include some variables that will be extracted from the ring. Variables
must follow the format {NAME} where NAME is one of: ip, port, replication_ip,
replication_port, region, zone, device, meta. See etc/rsyncd.conf-sample for some
examples.

rsync_compressno Allow rsync to compress data which is transmitted to destination node during sync.
However, this is applicable only when destination node is in a different region than
the local one. NOTE: Objects that are already compressed (for example: .tar.gz,
mp3) might slow down the syncing process.

re-
con_cache_path

/var/cache/swiftPath to recon cache

nice_priorityNone Scheduling priority of server processes. Niceness values range from -20 (most fa-
vorable to the process) to 19 (least favorable to the process). The default does not
modify priority.

ion-
ice_class

None I/O scheduling class of server processes. I/O niceness class values are
IOPRIO_CLASS_RT (realtime), IOPRIO_CLASS_BE (best-effort), and IO-
PRIO_CLASS_IDLE (idle). The default does not modify class and priority. Linux
supports io scheduling priorities and classes since 2.6.13 with the CFQ io scheduler.
Work only with ionice_priority.

ion-
ice_priority

None I/O scheduling priority of server processes. I/O niceness priority is a number which
goes from 0 to 7. The higher the value, the lower the I/O priority of the process.
Work only with ionice_class. Ignored if IOPRIO_CLASS_IDLE is set.

402 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

[account-auditor]

Op-
tion

De-
fault

Description

log_nameaccount-
auditor

Label used when logging

log_facilityLOG_LOCAL0Syslog log facility
log_levelINFO Logging level
log_address/dev/logLogging directory
in-
ter-
val

1800 Minimum time for a pass to take

ac-
counts_per_second

200 Maximum accounts audited per second. Should be tuned according to individual sys-
tem specs. 0 is unlimited.

re-
con_cache_path

/var/cache/swiftPath to recon cache

nice_priorityNone Scheduling priority of server processes. Niceness values range from -20 (most favor-
able to the process) to 19 (least favorable to the process). The default does not modify
priority.

ion-
ice_class

None I/O scheduling class of server processes. I/O niceness class values are
IOPRIO_CLASS_RT (realtime), IOPRIO_CLASS_BE (best-effort), and IO-
PRIO_CLASS_IDLE (idle). The default does not modify class and priority. Linux
supports io scheduling priorities and classes since 2.6.13 with the CFQ io scheduler.
Work only with ionice_priority.

ion-
ice_priority

None I/O scheduling priority of server processes. I/O niceness priority is a number which
goes from 0 to 7. The higher the value, the lower the I/O priority of the process. Work
only with ionice_class. Ignored if IOPRIO_CLASS_IDLE is set.

5.10. Configuration Documentation 403



Swift Documentation, Release 2.27.1.dev38

[account-reaper]

Op-
tion

De-
fault

Description

log_nameaccount-
reaper

Label used when logging

log_facilityLOG_LOCAL0Syslog log facility
log_levelINFO Logging level
log_address/dev/logLogging directory
con-
cur-
rency

25 Number of replication workers to spawn

in-
ter-
val

3600 Minimum time for a pass to take

node_timeout10 Request timeout to external services
conn_timeout0.5 Connection timeout to external services
de-
lay_reaping

0 Normally, the reaper begins deleting account information for deleted accounts imme-
diately; you can set this to delay its work however. The value is in seconds, 2592000
= 30 days, for example. The sum of this value and the container-updater interval
should be less than the account-replicator reclaim_age. This ensures that once the
account-reaper has deleted a container there is sufficient time for the container-updater
to report to the account before the account DB is removed.

reap_warn_after2892000If the account fails to be reaped due to a persistent error, the account reaper will log a
message such as: Account <name> has not been reaped since <date> You can search
logs for this message if space is not being reclaimed after you delete account(s). This is
in addition to any time requested by delay_reaping.

nice_priorityNone Scheduling priority of server processes. Niceness values range from -20 (most favor-
able to the process) to 19 (least favorable to the process). The default does not modify
priority.

ion-
ice_class

None I/O scheduling class of server processes. I/O niceness class values are IO-
PRIO_CLASS_RT (realtime), IOPRIO_CLASS_BE (best-effort), and IO-
PRIO_CLASS_IDLE (idle). The default does not modify class and priority. Linux
supports io scheduling priorities and classes since 2.6.13 with the CFQ io scheduler.
Work only with ionice_priority.

ion-
ice_priority

None I/O scheduling priority of server processes. I/O niceness priority is a number which goes
from 0 to 7. The higher the value, the lower the I/O priority of the process. Work only
with ionice_class. Ignored if IOPRIO_CLASS_IDLE is set.

5.10.4 Container Server Configuration

This document describes the configuration options available for the container server. Documentation for
other swift configuration options can be found at Configuration Documentation.

An example Container Server configuration can be found at etc/container-server.conf-sample in the
source code repository.

The following configuration sections are available:

• [DEFAULT]

404 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

• [container-server]

• [container-replicator]

• [container-sharder]

• [container-updater]

• [container-auditor]

[DEFAULT]

Option Default Description
swift_dir /etc/swift Swift configuration directory
devices /srv/node Parent directory of where devices are mounted
mount_check true Whether or not check if the devices are mounted to prevent accidentally writing to the root device
bind_ip 0.0.0.0 IP Address for server to bind to
bind_port 6201 Port for server to bind to
keep_idle 600 Value to set for socket TCP_KEEPIDLE
bind_timeout 30 Seconds to attempt bind before giving up
backlog 4096 Maximum number of allowed pending connections
workers auto Override the number of pre-forked workers that will accept connections. If set it should be an integer, zero means no fork. If unset, it will try to default to the number of effective cpu cores and fallback to one. Increasing the number of workers may reduce the possibility of slow file system operations in one request from negatively impacting other requests. See General Service Tuning.
max_clients 1024 Maximum number of clients one worker can process simultaneously (it will actually accept(2) N + 1). Setting this to one (1) will only handle one request at a time, without accepting another request concurrently.
user swift User to run as
disable_fallocate false Disable fast fail fallocate checks if the underlying filesystem does not support it.
log_name swift Label used when logging
log_facility LOG_LOCAL0 Syslog log facility
log_level INFO Logging level
log_address /dev/log Logging directory
log_max_line_length 0 Caps the length of log lines to the value given; no limit if set to 0, the default.
log_custom_handlers None Comma-separated list of functions to call to setup custom log handlers.
log_udp_host Override log_address
log_udp_port 514 UDP log port
log_statsd_host None Enables StatsD logging; IPv4/IPv6 address or a hostname. If a hostname resolves to an IPv4 and IPv6 address, the IPv4 address will be used.
log_statsd_port 8125
log_statsd_default_sample_rate 1.0
log_statsd_sample_rate_factor 1.0
log_statsd_metric_prefix
eventlet_debug false If true, turn on debug logging for eventlet
fallocate_reserve 1% You can set fallocate_reserve to the number of bytes or percentage of disk space youd like fallocate to reserve, whether there is space for the given file size or not. Percentage will be used if the value ends with a %. This is useful for systems that behave badly when they completely run out of space; you can make the services pretend theyre out of space early.
db_preallocation off If you dont mind the extra disk space usage in overhead, you can turn this on to preallocate disk space with SQLite databases to decrease fragmentation.
nice_priority None Scheduling priority of server processes. Niceness values range from -20 (most favorable to the process) to 19 (least favorable to the process). The default does not modify priority.
ionice_class None I/O scheduling class of server processes. I/O niceness class values are IOPRIO_CLASS_RT (realtime), IOPRIO_CLASS_BE (best-effort), and IOPRIO_CLASS_IDLE (idle). The default does not modify class and priority. Linux supports io scheduling priorities and classes since 2.6.13 with the CFQ io scheduler. Work only with ionice_priority.
ionice_priority None I/O scheduling priority of server processes. I/O niceness priority is a number which goes from 0 to 7. The higher the value, the lower the I/O priority of the process. Work only with ionice_class. Ignored if IOPRIO_CLASS_IDLE is set.

5.10. Configuration Documentation 405



Swift Documentation, Release 2.27.1.dev38

[container-server]

Op-
tion

De-
fault

Description

use paste.deploy entry point for the container server. For most cases, this should be
egg:swift#container.

set
log_name

container-
server

Label used when logging

set
log_facility

LOG_LOCAL0Syslog log facility

set
log_level

INFO Logging level

set
log_requests

True Whether or not to log each request

set
log_address

/dev/logLogging directory

node_timeout3 Request timeout to external services
conn_timeout0.5 Connection timeout to external services
al-
low_versions

false Enable/Disable object versioning feature

repli-
ca-
tion_server

Configure parameter for creating specific server. To handle all verbs, including repli-
cation verbs, do not specify replication_server (this is the default). To only handle
replication, set to a True value (e.g. True or 1). To handle only non-replication verbs,
set to False. Unless you have a separate replication network, you should not specify
any value for replication_server.

nice_priorityNone Scheduling priority of server processes. Niceness values range from -20 (most favorable
to the process) to 19 (least favorable to the process). The default does not modify
priority.

ion-
ice_class

None I/O scheduling class of server processes. I/O niceness class values are IO-
PRIO_CLASS_RT (realtime), IOPRIO_CLASS_BE (best-effort), and IO-
PRIO_CLASS_IDLE (idle). The default does not modify class and priority.
Linux supports io scheduling priorities and classes since 2.6.13 with the CFQ io
scheduler. Work only with ionice_priority.

ion-
ice_priority

None I/O scheduling priority of server processes. I/O niceness priority is a number which
goes from 0 to 7. The higher the value, the lower the I/O priority of the process. Work
only with ionice_class. Ignored if IOPRIO_CLASS_IDLE is set.

406 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

[container-replicator]

Op-
tion

De-
fault

Description

log_namecontainer-
replicator

Label used when logging

log_facilityLOG_LOCAL0Syslog log facility
log_levelINFO Logging level
log_address/dev/log Logging directory
per_diff1000 Maximum number of database rows that will be syncd in a single HTTP replication

request. Databases with less than or equal to this number of differing rows will
always be syncd using an HTTP replication request rather than using rsync.

max_diffs100 Maximum number of HTTP replication requests attempted on each replication pass
for any one container. This caps how long the replicator will spend trying to sync a
given database per pass so the other databases dont get starved.

con-
cur-
rency

8 Number of replication workers to spawn

in-
ter-
val

30 Time in seconds to wait between replication passes

databases_per_second50 Maximum databases to process per second. Should be tuned according to individual
system specs. 0 is unlimited.

node_timeout10 Request timeout to external services
conn_timeout0.5 Connection timeout to external services
re-
claim_age

604800 Time elapsed in seconds before a container can be reclaimed

rsync_module{repli-
ca-
tion_ip}::container

Format of the rsync module where the replicator will send data. The configuration
value can include some variables that will be extracted from the ring. Variables
must follow the format {NAME} where NAME is one of: ip, port, replication_ip,
replication_port, region, zone, device, meta. See etc/rsyncd.conf-sample for some
examples.

rsync_compressno Allow rsync to compress data which is transmitted to destination node during sync.
However, this is applicable only when destination node is in a different region than
the local one. NOTE: Objects that are already compressed (for example: .tar.gz,
mp3) might slow down the syncing process.

re-
con_cache_path

/var/cache/swiftPath to recon cache

nice_priorityNone Scheduling priority of server processes. Niceness values range from -20 (most fa-
vorable to the process) to 19 (least favorable to the process). The default does not
modify priority.

ion-
ice_class

None I/O scheduling class of server processes. I/O niceness class values are
IOPRIO_CLASS_RT (realtime), IOPRIO_CLASS_BE (best-effort), and IO-
PRIO_CLASS_IDLE (idle). The default does not modify class and priority. Linux
supports io scheduling priorities and classes since 2.6.13 with the CFQ io scheduler.
Work only with ionice_priority.

ion-
ice_priority

None I/O scheduling priority of server processes. I/O niceness priority is a number which
goes from 0 to 7. The higher the value, the lower the I/O priority of the process.
Work only with ionice_class. Ignored if IOPRIO_CLASS_IDLE is set.

5.10. Configuration Documentation 407



Swift Documentation, Release 2.27.1.dev38

[container-sharder]

The container-sharder re-uses features of the container-replicator and inherits the following configura-
tion options defined for the [container-replicator]:

• interval

• databases_per_second

• per_diff

• max_diffs

• concurrency

• node_timeout

• conn_timeout

• reclaim_age

• rsync_compress

• rsync_module

• recon_cache_path

408 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

Op-
tion

De-
fault

Description

log_namecontainer-
sharder

Label used when logging

log_facilityLOG_LOCAL0Syslog log facility
log_levelINFO Logging level
log_address/dev/logLogging directory
auto_shardfalse If the auto_shard option is true then the sharder will automatically select containers to

shard, scan for shard ranges, and select shards to shrink. Warning: auto-sharding is still
under development and should not be used in production; do not set this option to true
in a production cluster.

shard_container_threshold1000000When auto-sharding is enabled this defines the object count at which a container with
container-sharding enabled will start to shard. This also indirectly determines the ini-
tial nominal size of shard containers, which is shard_container_threshold//2, as well as
determining the thresholds for shrinking and merging shard containers.

shard_shrink_point10 When auto-sharding is enabled this defines the object count below which a donor
shard container will be considered for shrinking into another acceptor shard container.
shard_shrink_point is a percentage of shard_container_threshold e.g. the default value
of 10 means 10% of the shard_container_threshold.

shard_shrink_merge_point75 When auto-sharding is enabled this defines the maximum allowed size of an acceptor
shard container after having a donor merged into it. Shard_shrink_merge_point is a
percentage of shard_container_threshold. e.g. the default value of 75 means that the
projected sum of a donor object count and acceptor count must be less than 75% of
shard_container_threshold for the donor to be allowed to merge into the acceptor.
For example, if shard_container_threshold is 1 million, shard_shrink_point is 5, and
shard_shrink_merge_point is 75 then a shard will be considered for shrinking if it has
less than or equal to 50 thousand objects but will only merge into an acceptor if the
combined object count would be less than or equal to 750 thousand objects.

shard_scanner_batch_size10 When auto-sharding is enabled this defines the maximum number of shard ranges that
will be found each time the sharder daemon visits a sharding container. If necessary
the sharder daemon will continue to search for more shard ranges each time it visits the
container.

cleave_batch_size2 Defines the number of shard ranges that will be cleaved each time the sharder daemon
visits a sharding container.

cleave_row_batch_size10000Defines the size of batches of object rows read from a sharding container and merged to
a shard container during cleaving.

shard_replication_quorumauto Defines the number of successfully replicated shard dbs required when cleaving a pre-
viously uncleaved shard range before the sharder will progress to the next shard range.
The value should be less than or equal to the container ring replica count. The default of
auto causes the container ring quorum value to be used. This option only applies to the
container-sharder replication and does not affect the number of shard container replicas
that will eventually be replicated by the container-replicator.

ex-
ist-
ing_shard_replication_quorum

auto Defines the number of successfully replicated shard dbs required when cleaving a shard
range that has been previously cleaved on another node before the sharder will progress
to the next shard range. The value should be less than or equal to the container ring
replica count. The default of auto causes the shard_replication_quorum value to be used.
This option only applies to the container-sharder replication and does not affect the
number of shard container replicas that will eventually be replicated by the container-
replicator.

in-
ter-
nal_client_conf_path

see
de-
scrip-
tion

The sharder uses an internal client to create and make requests to containers. The ab-
solute path to the client config file can be configured. Defaults to /etc/swift/internal-
client.conf

re-
quest_tries

3 The number of time the internal client will retry requests.

re-
con_candidates_limit

5 Each time the sharder dumps stats to the recon cache file it includes a list of containers
that appear to need sharding but are not yet sharding. By default this list is limited to
the top 5 containers, ordered by object count. The limit may be changed by setting
recon_candidates_limit to an integer value. A negative value implies no limit.

bro-
ker_timeout

60 Large databases tend to take a while to work with, but we want to make sure we write
down our progress. Use a larger-than-normal broker timeout to make us less likely to
bomb out on a LockTimeout.

5.10. Configuration Documentation 409



Swift Documentation, Release 2.27.1.dev38

[container-updater]

Op-
tion

De-
fault

Description

log_namecontainer-
updater

Label used when logging

log_facilityLOG_LOCAL0Syslog log facility
log_levelINFO Logging level
log_address/dev/logLogging directory
inter-
val

300 Minimum time for a pass to take

con-
cur-
rency

4 Number of updater workers to spawn

node_timeout3 Request timeout to external services
conn_timeout0.5 Connection timeout to external services
con-
tain-
ers_per_second

50 Maximum containers updated per second. Should be tuned according to individual
system specs. 0 is unlimited.

slow-
down

0.01 Time in seconds to wait between containers. Deprecated in favor of contain-
ers_per_second.

ac-
count_suppression_time

60 Seconds to suppress updating an account that has generated an error (timeout, not
yet found, etc.)

re-
con_cache_path

/var/cache/swiftPath to recon cache

nice_priorityNone Scheduling priority of server processes. Niceness values range from -20 (most fa-
vorable to the process) to 19 (least favorable to the process). The default does not
modify priority.

ion-
ice_class

None I/O scheduling class of server processes. I/O niceness class values are
IOPRIO_CLASS_RT (realtime), IOPRIO_CLASS_BE (best-effort), and IO-
PRIO_CLASS_IDLE (idle). The default does not modify class and priority. Linux
supports io scheduling priorities and classes since 2.6.13 with the CFQ io scheduler.
Work only with ionice_priority.

ion-
ice_priority

None I/O scheduling priority of server processes. I/O niceness priority is a number which
goes from 0 to 7. The higher the value, the lower the I/O priority of the process.
Work only with ionice_class. Ignored if IOPRIO_CLASS_IDLE is set.

410 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

[container-auditor]

Op-
tion

De-
fault

Description

log_namecontainer-
auditor

Label used when logging

log_facilityLOG_LOCAL0Syslog log facility
log_levelINFO Logging level
log_address/dev/logLogging directory
inter-
val

1800 Minimum time for a pass to take

con-
tain-
ers_per_second

200 Maximum containers audited per second. Should be tuned according to individual
system specs. 0 is unlimited.

re-
con_cache_path

/var/cache/swiftPath to recon cache

nice_priorityNone Scheduling priority of server processes. Niceness values range from -20 (most favor-
able to the process) to 19 (least favorable to the process). The default does not modify
priority.

ion-
ice_class

None I/O scheduling class of server processes. I/O niceness class values are
IOPRIO_CLASS_RT (realtime), IOPRIO_CLASS_BE (best-effort), and IO-
PRIO_CLASS_IDLE (idle). The default does not modify class and priority. Linux
supports io scheduling priorities and classes since 2.6.13 with the CFQ io scheduler.
Work only with ionice_priority.

ion-
ice_priority

None I/O scheduling priority of server processes. I/O niceness priority is a number which
goes from 0 to 7. The higher the value, the lower the I/O priority of the process. Work
only with ionice_class. Ignored if IOPRIO_CLASS_IDLE is set.

5.10.5 Object Server Configuration

This document describes the configuration options available for the object server. Documentation for
other swift configuration options can be found at Configuration Documentation.

An Example Object Server configuration can be found at etc/object-server.conf-sample in the source
code repository.

The following configuration sections are available:

• [DEFAULT]

• [object-server]

• [object-replicator]

• [object-reconstructor]

• [object-updater]

• [object-auditor]

• [object-expirer]

5.10. Configuration Documentation 411



Swift Documentation, Release 2.27.1.dev38

[DEFAULT]

Option Default Description
swift_dir /etc/swift Swift configuration directory
devices /srv/node Parent directory of where devices are mounted
mount_check true Whether or not check if the devices are mounted to prevent accidentally writing to the root device
bind_ip 0.0.0.0 IP Address for server to bind to
bind_port 6200 Port for server to bind to
keep_idle 600 Value to set for socket TCP_KEEPIDLE
bind_timeout 30 Seconds to attempt bind before giving up
backlog 4096 Maximum number of allowed pending connections
workers auto Override the number of pre-forked workers that will accept connections. If set it should be an integer, zero means no fork. If unset, it will try to default to the number of effective cpu cores and fallback to one. Increasing the number of workers helps slow filesystem operations in one request from negatively impacting other requests, but only the servers_per_port option provides complete I/O isolation with no measurable overhead.
servers_per_port 0 If each disk in each storage policy ring has unique port numbers for its ip value, you can use this setting to have each object-server worker only service requests for the single disk matching the port in the ring. The value of this setting determines how many worker processes run for each port (disk) in the ring. If you have 24 disks per server, and this setting is 4, then each storage node will have 1 + (24 * 4) = 97 total object-server processes running. This gives complete I/O isolation, drastically reducing the impact of slow disks on storage node performance. The object-replicator and object-reconstructor need to see this setting too, so it must be in the [DEFAULT] section. See Running object-servers Per Disk.
max_clients 1024 Maximum number of clients one worker can process simultaneously (it will actually accept(2) N + 1). Setting this to one (1) will only handle one request at a time, without accepting another request concurrently.
disable_fallocate false Disable fast fail fallocate checks if the underlying filesystem does not support it.
log_name swift Label used when logging
log_facility LOG_LOCAL0 Syslog log facility
log_level INFO Logging level
log_address /dev/log Logging directory
log_max_line_length 0 Caps the length of log lines to the value given; no limit if set to 0, the default.
log_custom_handlers None Comma-separated list of functions to call to setup custom log handlers.
log_udp_host Override log_address
log_udp_port 514 UDP log port
log_statsd_host None Enables StatsD logging; IPv4/IPv6 address or a hostname. If a hostname resolves to an IPv4 and IPv6 address, the IPv4 address will be used.
log_statsd_port 8125
log_statsd_default_sample_rate 1.0
log_statsd_sample_rate_factor 1.0
log_statsd_metric_prefix
eventlet_debug false If true, turn on debug logging for eventlet
fallocate_reserve 1% You can set fallocate_reserve to the number of bytes or percentage of disk space youd like fallocate to reserve, whether there is space for the given file size or not. Percentage will be used if the value ends with a %. This is useful for systems that behave badly when they completely run out of space; you can make the services pretend theyre out of space early.
conn_timeout 0.5 Time to wait while attempting to connect to another backend node.
node_timeout 3 Time to wait while sending each chunk of data to another backend node.
client_timeout 60 Time to wait while receiving each chunk of data from a client or another backend node
network_chunk_size 65536 Size of chunks to read/write over the network
disk_chunk_size 65536 Size of chunks to read/write to disk
container_update_timeout 1 Time to wait while sending a container update on object update.
reclaim_age 604800 Time elapsed in seconds before the tombstone file representing a deleted object can be reclaimed. This is the maximum window for your consistency engine. If a node that was disconnected from the cluster because of a fault is reintroduced into the cluster after this window without having its data purged it will result in dark data. This setting should be consistent across all object services.
nice_priority None Scheduling priority of server processes. Niceness values range from -20 (most favorable to the process) to 19 (least favorable to the process). The default does not modify priority.
ionice_class None I/O scheduling class of server processes. I/O niceness class values are IOPRIO_CLASS_RT (realtime), IOPRIO_CLASS_BE (best-effort), and IOPRIO_CLASS_IDLE (idle). The default does not modify class and priority. Linux supports io scheduling priorities and classes since 2.6.13 with the CFQ io scheduler. Work only with ionice_priority.
ionice_priority None I/O scheduling priority of server processes. I/O niceness priority is a number which goes from 0 to 7. The higher the value, the lower the I/O priority of the process. Work only with ionice_class. Ignored if IOPRIO_CLASS_IDLE is set.

412 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

5.10. Configuration Documentation 413



Swift Documentation, Release 2.27.1.dev38

[object-server]

Op-
tion

Default Description

use paste.deploy entry point for the object server. For most cases, this
should be egg:swift#object.

set
log_name

object-server Label used when logging

set
log_facility

LOG_LOCAL0 Syslog log facility

set
log_level

INFO Logging level

set
log_requests

True Whether or not to log each request

set
log_address

/dev/log Logging directory

user swift User to run as
max_upload_time86400 Maximum time allowed to upload an object
slow 0 If > 0, Minimum time in seconds for a PUT or DELETE request to

complete. This is only useful to simulate slow devices during testing
and development.

mb_per_sync512 On PUT requests, sync file every n MB
keep_cache_size5242880 Largest object size to keep in buffer cache
keep_cache_privatefalse Allow non-public objects to stay in kernels buffer cache
al-
lowed_headers

Content-Disposition,
Content-Encoding,
X-Delete-At, X-
Object-Manifest, X-
Static-Large-Object
Cache-Control,
Content-Language,
Expires, X-Robots-
Tag

Comma separated list of headers that can be set in metadata on an
object. This list is in addition to X-Object-Meta-* headers and can-
not include Content-Type, etag, Content-Length, or deleted

repli-
ca-
tion_server

Configure parameter for creating specific server. To handle all verbs,
including replication verbs, do not specify replication_server (this
is the default). To only handle replication, set to a True value (e.g.
True or 1). To handle only non-replication verbs, set to False. Unless
you have a separate replication network, you should not specify any
value for replication_server.

repli-
ca-
tion_concurrency

4 Set to restrict the number of concurrent incoming SSYNC requests;
set to 0 for unlimited

repli-
ca-
tion_concurrency_per_device

1 Set to restrict the number of concurrent incoming SSYNC requests
per device; set to 0 for unlimited requests per devices. This can
help control I/O to each device. This does not override replica-
tion_concurrency described above, so you may need to adjust both
parameters depending on your hardware or network capacity.

repli-
ca-
tion_lock_timeout

15 Number of seconds to wait for an existing replication device lock
before giving up.

repli-
ca-
tion_failure_threshold

100 The number of subrequest failures before the replica-
tion_failure_ratio is checked

repli-
ca-
tion_failure_ratio

1.0 If the value of failures / successes of SSYNC subrequests exceeds
this ratio, the overall SSYNC request will be aborted

splice no Use splice() for zero-copy object GETs. This requires Linux kernel
version 3.0 or greater. If you set splice = yes but the kernel does
not support it, error messages will appear in the object server logs at
startup, but your object servers should continue to function.

nice_priorityNone Scheduling priority of server processes. Niceness values range from
-20 (most favorable to the process) to 19 (least favorable to the pro-
cess). The default does not modify priority.

ion-
ice_class

None I/O scheduling class of server processes. I/O niceness class values
are IOPRIO_CLASS_RT (realtime), IOPRIO_CLASS_BE (best-
effort), and IOPRIO_CLASS_IDLE (idle). The default does not
modify class and priority. Linux supports io scheduling priorities
and classes since 2.6.13 with the CFQ io scheduler. Work only with
ionice_priority.

ion-
ice_priority

None I/O scheduling priority of server processes. I/O niceness priority is a
number which goes from 0 to 7. The higher the value, the lower the
I/O priority of the process. Work only with ionice_class. Ignored if
IOPRIO_CLASS_IDLE is set.

event-
let_tpool_num_threads

auto The number of threads in eventlets thread pool. Most IO will oc-
cur in the object servers main thread, but certain heavy IO op-
erations will occur in separate IO threads, managed by eventlet.
The default value is auto, whose actual value is dependent on the
servers_per_port value. If servers_per_port is zero then it uses
eventlets default (currently 20 threads). If the servers_per_port is
nonzero then itll only use 1 thread per process. This value can be
overridden with an integer value.

414 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

5.10. Configuration Documentation 415



Swift Documentation, Release 2.27.1.dev38

[object-replicator]

Op-
tion

De-
fault

Description

log_nameobject-
replicator

Label used when logging

log_facilityLOG_LOCAL0Syslog log facility
log_level INFO Logging level
log_address/dev/log Logging directory
dae-
mo-
nize

yes Whether or not to run replication as a daemon

inter-
val

30 Time in seconds to wait between replication passes

con-
cur-
rency

1 Number of replication jobs to run per worker process

repli-
ca-
tor_workers

0 Number of worker processes to use. No matter how big this number is, at most one
worker per disk will be used. The default value of 0 means no forking; all work is
done in the main process.

sync_methodrsync The sync method to use; default is rsync but you can use ssync to try the EXPER-
IMENTAL all-swift-code-no-rsync-callouts method. Once ssync is verified as or
better than, rsync, we plan to deprecate rsync so we can move on with more features
for replication.

rsync_timeout900 Max duration of a partition rsync
rsync_bwlimit0 Bandwidth limit for rsync in kB/s. 0 means unlimited.
rsync_io_timeout30 Timeout value sent to rsync timeout and contimeout options
rsync_compressno Allow rsync to compress data which is transmitted to destination node during sync.

However, this is applicable only when destination node is in a different region than
the local one. NOTE: Objects that are already compressed (for example: .tar.gz,
.mp3) might slow down the syncing process.

stats_interval300 Interval in seconds between logging replication statistics
hand-
offs_first

false If set to True, partitions that are not supposed to be on the node will be replicated
first. The default setting should not be changed, except for extreme situations.

hand-
off_delete

auto By default handoff partitions will be removed when it has successfully replicated
to all the canonical nodes. If set to an integer n, it will remove the partition if it
is successfully replicated to n nodes. The default setting should not be changed,
except for extreme situations.

node_timeoutDE-
FAULT
or 10

Request timeout to external services. This uses whats set here, or whats set in the
DEFAULT section, or 10 (though other sections use 3 as the final default).

http_timeout60 Max duration of an http request. This is for REPLICATE finalization calls and so
should be longer than node_timeout.

lockup_timeout1800 Attempts to kill all workers if nothing replicates for lockup_timeout seconds
rsync_module{repli-

ca-
tion_ip}::object

Format of the rsync module where the replicator will send data. The configuration
value can include some variables that will be extracted from the ring. Variables
must follow the format {NAME} where NAME is one of: ip, port, replication_ip,
replication_port, region, zone, device, meta. See etc/rsyncd.conf-sample for some
examples.

rsync_error_log_line_length0 Limits how long rsync error log lines are
ring_check_interval15 Interval for checking new ring file
re-
con_cache_path

/var/cache/swiftPath to recon cache

nice_priorityNone Scheduling priority of server processes. Niceness values range from -20 (most
favorable to the process) to 19 (least favorable to the process). The default does not
modify priority.

ion-
ice_class

None I/O scheduling class of server processes. I/O niceness class values are
IOPRIO_CLASS_RT (realtime), IOPRIO_CLASS_BE (best-effort), and IO-
PRIO_CLASS_IDLE (idle). The default does not modify class and priority. Linux
supports io scheduling priorities and classes since 2.6.13 with the CFQ io sched-
uler. Work only with ionice_priority.

ion-
ice_priority

None I/O scheduling priority of server processes. I/O niceness priority is a number which
goes from 0 to 7. The higher the value, the lower the I/O priority of the process.
Work only with ionice_class. Ignored if IOPRIO_CLASS_IDLE is set.

416 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

5.10. Configuration Documentation 417



Swift Documentation, Release 2.27.1.dev38

[object-reconstructor]

Op-
tion

De-
fault

Description

log_nameobject-
reconstructor

Label used when logging

log_facilityLOG_LOCAL0Syslog log facility
log_levelINFO Logging level
log_address/dev/logLogging directory
dae-
mo-
nize

yes Whether or not to run reconstruction as a daemon

in-
ter-
val

30 Time in seconds to wait between reconstruction passes

re-
con-
struc-
tor_workers

0 Maximum number of worker processes to spawn. Each worker will handle a subset of
devices. Devices will be assigned evenly among the workers so that workers cycle at
similar intervals (which can lead to fewer workers than requested). You can not have
more workers than devices. If you have no devices only a single worker is spawned.

con-
cur-
rency

1 Number of reconstruction threads to spawn per reconstructor process.

stats_interval300 Interval in seconds between logging reconstruction statistics
hand-
offs_only

false The handoffs_only mode option is for special case emergency situations during rebal-
ance such as disk full in the cluster. This option SHOULD NOT BE CHANGED, except
for extreme situations. When handoffs_only mode is enabled the reconstructor will only
revert fragments from handoff nodes to primary nodes and will not sync primary nodes
with neighboring primary nodes. This will force the reconstructor to sync and delete
handoffs fragments more quickly and minimize the time of the rebalance by limiting the
number of rebuilds. The handoffs_only option is only for temporary use and should be
disabled as soon as the emergency situation has been resolved.

node_timeoutDE-
FAULT
or
10

Request timeout to external services. The value used is the value set in this section, or
the value set in the DEFAULT section, or 10.

http_timeout60 Max duration of an http request. This is for REPLICATE finalization calls and so should
be longer than node_timeout.

lockup_timeout1800 Attempts to kill all threads if no fragment has been reconstructed for lockup_timeout
seconds.

ring_check_interval15 Interval for checking new ring file
re-
con_cache_path

/var/cache/swiftPath to recon cache

nice_priorityNone Scheduling priority of server processes. Niceness values range from -20 (most favor-
able to the process) to 19 (least favorable to the process). The default does not modify
priority.

ion-
ice_class

None I/O scheduling class of server processes. I/O niceness class values are IO-
PRIO_CLASS_RT (realtime), IOPRIO_CLASS_BE (best-effort), and IO-
PRIO_CLASS_IDLE (idle). The default does not modify class and priority. Linux
supports io scheduling priorities and classes since 2.6.13 with the CFQ io scheduler.
Work only with ionice_priority.

ion-
ice_priority

None I/O scheduling priority of server processes. I/O niceness priority is a number which goes
from 0 to 7. The higher the value, the lower the I/O priority of the process. Work only
with ionice_class. Ignored if IOPRIO_CLASS_IDLE is set.418 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

[object-updater]

Op-
tion

De-
fault

Description

log_nameobject-
updater

Label used when logging

log_facilityLOG_LOCAL0Syslog log facility
log_levelINFO Logging level
log_address/dev/logLogging directory
in-
ter-
val

300 Minimum time for a pass to take

up-
dater_workers

1 Number of worker processes

con-
cur-
rency

8 Number of updates to run concurrently in each worker process

node_timeoutDE-
FAULT
or
10

Request timeout to external services. This uses whats set here, or whats set in the
DEFAULT section, or 10 (though other sections use 3 as the final default).

ob-
jects_per_second

50 Maximum objects updated per second. Should be tuned according to individual system
specs. 0 is unlimited.

slow-
down

0.01 Time in seconds to wait between objects. Deprecated in favor of objects_per_second.

re-
port_interval

300 Interval in seconds between logging statistics about the current update pass.

re-
con_cache_path

/var/cache/swiftPath to recon cache

nice_priorityNone Scheduling priority of server processes. Niceness values range from -20 (most favor-
able to the process) to 19 (least favorable to the process). The default does not modify
priority.

ion-
ice_class

None I/O scheduling class of server processes. I/O niceness class values are IO-
PRIO_CLASS_RT (realtime), IOPRIO_CLASS_BE (best-effort), and IO-
PRIO_CLASS_IDLE (idle). The default does not modify class and priority.
Linux supports io scheduling priorities and classes since 2.6.13 with the CFQ io
scheduler. Work only with ionice_priority.

ion-
ice_priority

None I/O scheduling priority of server processes. I/O niceness priority is a number which
goes from 0 to 7. The higher the value, the lower the I/O priority of the process. Work
only with ionice_class. Ignored if IOPRIO_CLASS_IDLE is set.

5.10. Configuration Documentation 419



Swift Documentation, Release 2.27.1.dev38

[object-auditor]

Op-
tion

De-
fault

Description

log_nameobject-
auditor

Label used when logging

log_facilityLOG_LOCAL0Syslog log facility
log_level INFO Logging level
log_address/dev/logLogging directory
log_time 3600 Frequency of status logs in seconds.
inter-
val

30 Time in seconds to wait between auditor passes

disk_chunk_size65536 Size of chunks read during auditing
files_per_second20 Maximum files audited per second per auditor process. Should be tuned according

to individual system specs. 0 is unlimited.
bytes_per_second10000000Maximum bytes audited per second per auditor process. Should be tuned according

to individual system specs. 0 is unlimited.
con-
cur-
rency

1 The number of parallel processes to use for checksum auditing.

zero_byte_files_per_second50
ob-
ject_size_stats
re-
con_cache_path

/var/cache/swiftPath to recon cache

rsync_tempfile_timeoutauto Time elapsed in seconds before rsync tempfiles will be unlinked. Config value of
auto try to use object-replicators rsync_timeout + 900 or fallback to 86400 (1 day).

nice_priorityNone Scheduling priority of server processes. Niceness values range from -20 (most fa-
vorable to the process) to 19 (least favorable to the process). The default does not
modify priority.

ion-
ice_class

None I/O scheduling class of server processes. I/O niceness class values are
IOPRIO_CLASS_RT (realtime), IOPRIO_CLASS_BE (best-effort), and IO-
PRIO_CLASS_IDLE (idle). The default does not modify class and priority. Linux
supports io scheduling priorities and classes since 2.6.13 with the CFQ io scheduler.
Work only with ionice_priority.

ion-
ice_priority

None I/O scheduling priority of server processes. I/O niceness priority is a number which
goes from 0 to 7. The higher the value, the lower the I/O priority of the process.
Work only with ionice_class. Ignored if IOPRIO_CLASS_IDLE is set.

420 Chapter 5. Administrator Documentation



Swift Documentation, Release 2.27.1.dev38

[object-expirer]

Option De-
fault

Description

log_name object-
expirer

Label used when logging

log_facilityLOG_LOCAL0Syslog log facility
log_level INFO Logging level
log_address/dev/logLogging directory
interval 300 Time in seconds to wait between expirer passes
re-
port_interval

300 Frequency of status logs in seconds.

concur-
rency

1 Level of concurrency to use to do the work, this value must be set to at least 1

expir-
ing_objects_account_name

ex-
pir-
ing_objects

name for legacy expirer task queue

de-
queue_from_legacy

False This service will look for jobs on the legacy expirer task queue.

pro-
cesses

0 How many parts to divide the legacy work into, one part per process that will be
doing the work. When set 0 means that a single legacy process will be doing all the
work. This can only be used in conjunction with dequeue_from_legacy.

process 0 Which of the parts a particular legacy process will work on. It is zero based, if you
want to use 3 processes, you should run processes with process set to 0, 1, and 2.
This can only be used in conjunction with dequeue_from_legacy.

re-
claim_age

604800How long an un-processable expired object marker will be retried before it is aban-
doned. It is not coupled with the tombstone reclaim age in the consistency engine.

re-
quest_tries

3 The number of times the expirers internal client will attempt any given request in
the event of failure

re-
con_cache_path

/var/cache/swiftPath to recon cache

nice_priorityNone Scheduling priority of server processes. Niceness values range from -20 (most fa-
vorable to the process) to 19 (least favorable to the process). The default does not
modify priority.

ion-
ice_class

None I/O scheduling class of server processes. I/O niceness class values are
IOPRIO_CLASS_RT (realtime), IOPRIO_CLASS_BE (best-effort), and IO-
PRIO_CLASS_IDLE (idle). The default does not modify class and priority. Linux
supports io scheduling priorities and classes since 2.6.13 with the CFQ io scheduler.
Work only with ionice_priority.

ion-
ice_priority

None I/O scheduling priority of server processes. I/O niceness priority is a number which
goes from 0 to 7. The higher the value, the lower the I/O priority of the process.
Work only with ionice_class. Ignored if IOPRIO_CLASS_IDLE is set.

Configuration options for middleware can be found at:

• Middleware

• The Auth System

5.10. Configuration Documentation 421



Swift Documentation, Release 2.27.1.dev38

422 Chapter 5. Administrator Documentation



CHAPTER

SIX

OBJECT STORAGE V1 REST API DOCUMENTATION

See Complete Reference for the Object Storage REST API

The following provides supporting information for the REST API:

6.1 Discoverability

Your Object Storage system might not enable all features that you read about because your service
provider chooses which features to enable.

To discover which features are enabled in your Object Storage system, use the /info request. However,
your service provider might have disabled the /info request, or you might be using an older version
that does not support the /info request.

To use the /info request, send a GET request using the /info path to the Object Store endpoint as
shown in this example:

# curl https://storage.clouddrive.com/info

This example shows a truncated response body:

{
"swift":{

"version":"1.11.0"
},
"staticweb":{

},
"tempurl":{

}
}

This output shows that the Object Storage system has enabled the static website and temporary URL
features.

423

https://docs.openstack.org/api-ref/object-store/


Swift Documentation, Release 2.27.1.dev38

6.2 Authentication

The owner of an Object Storage account controls access to that account and its containers and objects.
An owner is the user who has the admin role for that tenant. The tenant is also known as the project
or account. As the account owner, you can modify account metadata and create, modify, and delete
containers and objects.

To identify yourself as the account owner, include an authentication token in the X-Auth-Token header
in the API request.

Depending on the token value in the X-Auth-Token header, one of the following actions occur:

• X-Auth-Token contains the token for the account owner.

The request is permitted and has full access to make changes to the account.

• The X-Auth-Token header is omitted or it contains a token for a non-owner or a token that is not
valid.

The request fails with a 401 Unauthorized or 403 Forbidden response.

You have no access to accounts or containers, unless an access control list (ACL) explicitly grants
access.

The account owner can grant account and container access to users through access control lists
(ACLs).

In addition, it is possible to provide an additional token in the X-Service-Token header. More informa-
tion about how this is used is in Using Swift as Backing Store for Service Data.

The following list describes the authentication services that you can use with Object Storage:

• OpenStack Identity (keystone): For Object Storage, account is synonymous with project or tenant
ID.

• Tempauth middleware: Object Storage includes this middleware. User and account management
is performed in Object Storage itself.

• Swauth middleware: Stored in github, this custom middleware is modeled on Tempauth. Usage is
similar to Tempauth.

• Other custom middleware: Write it yourself to fit your environment.

Specifically, you use the X-Auth-Token header to pass an authentication token to an API request.

Authentication tokens expire after a time period that the authentication service defines. When a token
expires, use of the token causes requests to fail with a 401 Unauthorized response. To continue, you
must obtain a new token.

424 Chapter 6. Object Storage v1 REST API Documentation



Swift Documentation, Release 2.27.1.dev38

6.3 Container quotas

You can set quotas on the size and number of objects stored in a container by setting the following
metadata:

• X-Container-Meta-Quota-Bytes. The size, in bytes, of objects that can be stored in a
container.

• X-Container-Meta-Quota-Count. The number of objects that can be stored in a con-
tainer.

When you exceed a container quota, subsequent requests to create objects fail with a 413 Request Entity
Too Large error.

The Object Storage system uses an eventual consistency model. When you create a new object, the
container size and object count might not be immediately updated. Consequently, you might be allowed
to create objects even though you have actually exceeded the quota.

At some later time, the system updates the container size and object count to the actual val-
ues. At this time, subsequent requests fails. In addition, if you are currently under the
X-Container-Meta-Quota-Bytes limit and a request uses chunked transfer encoding, the sys-
tem cannot know if the request will exceed the quota so the system allows the request. However, once
the quota is exceeded, any subsequent uploads that use chunked transfer encoding fail.

6.4 Object versioning

You can store multiple versions of your content so that you can recover from unintended overwrites.
Object versioning is an easy way to implement version control, which you can use with any type of
content.

Note: You cannot version a large-object manifest file, but the large-object manifest file can point to
versioned segments.

Note: It is strongly recommended that you put non-current objects in a different container than the
container where current object versions reside.

To allow object versioning within a cluster, the cloud provider should add the versioned_writes
filter to the pipeline and set the allow_versioned_writes option to true in the
[filter:versioned_writes] section of the proxy-server configuration file.

To enable object versioning for a container, you must specify an archive container that will retain non-
current versions via either the X-Versions-Location or X-History-Location header. These
two headers enable two distinct modes of operation. Either mode may be used within a cluster, but only
one mode may be active for any given container. You must UTF-8-encode and then URL-encode the
container name before you include it in the header.

For both modes, PUT requests will archive any pre-existing objects before writing new data, and GET
requests will serve the current version. COPY requests behave like a GET followed by a PUT; that is,
if the copy source is in a versioned container then the current version will be copied, and if the copy
destination is in a versioned container then any pre-existing object will be archived before writing new
data.

6.3. Container quotas 425



Swift Documentation, Release 2.27.1.dev38

If object versioning was enabled using X-History-Location, then object DELETE requests will
copy the current version to the archive container then remove it from the versioned container.

If object versioning was enabled using X-Versions-Location, then object DELETE requests will
restore the most-recent version from the archive container, overwriting the current version.

6.4.1 Example Using X-Versions-Location

1. Create the current container:

# curl -i $publicURL/current -X PUT -H "Content-Length: 0" -H "X-
↪→Auth-Token: $token" -H "X-Versions-Location: archive"

HTTP/1.1 201 Created
Content-Length: 0
Content-Type: text/html; charset=UTF-8
X-Trans-Id: txb91810fb717347d09eec8-0052e18997
X-Openstack-Request-Id: txb91810fb717347d09eec8-0052e18997
Date: Thu, 23 Jan 2014 21:28:55 GMT

1. Create the first version of an object in the current container:

# curl -i $publicURL/current/my_object --data-binary 1 -X PUT -H
↪→"Content-Length: 0" -H "X-Auth-Token: $token"

HTTP/1.1 201 Created
Last-Modified: Thu, 23 Jan 2014 21:31:22 GMT
Content-Length: 0
Etag: d41d8cd98f00b204e9800998ecf8427e
Content-Type: text/html; charset=UTF-8
X-Trans-Id: tx5992d536a4bd4fec973aa-0052e18a2a
X-Openstack-Request-Id: tx5992d536a4bd4fec973aa-0052e18a2a
Date: Thu, 23 Jan 2014 21:31:22 GMT

Nothing is written to the non-current version container when you initially PUT an object in the
current container. However, subsequent PUT requests that edit an object trigger the creation
of a version of that object in the archive container.

These non-current versions are named as follows:

<length><object_name>/<timestamp>

Where length is the 3-character, zero-padded hexadecimal character length of the object,
<object_name> is the object name, and <timestamp> is the time when the object was
initially created as a current version.

2. Create a second version of the object in the current container:

# curl -i $publicURL/current/my_object --data-binary 2 -X PUT -H
↪→"Content-Length: 0" -H "X-Auth-Token: $token"

HTTP/1.1 201 Created
Last-Modified: Thu, 23 Jan 2014 21:41:32 GMT
Content-Length: 0

(continues on next page)

426 Chapter 6. Object Storage v1 REST API Documentation



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

Etag: d41d8cd98f00b204e9800998ecf8427e
Content-Type: text/html; charset=UTF-8
X-Trans-Id: tx468287ce4fc94eada96ec-0052e18c8c
X-Openstack-Request-Id: tx468287ce4fc94eada96ec-0052e18c8c
Date: Thu, 23 Jan 2014 21:41:32 GMT

3. Issue a GET request to a versioned object to get the current version of the object. You do not have
to do any request redirects or metadata lookups.

List older versions of the object in the archive container:

# curl -i $publicURL/archive?prefix=009my_object -X GET -H "X-Auth-
↪→Token: $token"

HTTP/1.1 200 OK
Content-Length: 30
X-Container-Object-Count: 1
Accept-Ranges: bytes
X-Timestamp: 1390513280.79684
X-Container-Bytes-Used: 0
Content-Type: text/plain; charset=utf-8
X-Trans-Id: tx9a441884997542d3a5868-0052e18d8e
X-Openstack-Request-Id: tx9a441884997542d3a5868-0052e18d8e
Date: Thu, 23 Jan 2014 21:45:50 GMT

009my_object/1390512682.92052

Note: A POST request to a versioned object updates only the metadata for the object and does
not create a new version of the object. New versions are created only when the content of the
object changes.

4. Issue a DELETE request to a versioned object to remove the current version of the object and
replace it with the next-most current version in the non-current container.

# curl -i $publicURL/current/my_object -X DELETE -H "X-Auth-Token:
↪→$token"

HTTP/1.1 204 No Content
Content-Length: 0
Content-Type: text/html; charset=UTF-8
X-Trans-Id: tx006d944e02494e229b8ee-0052e18edd
X-Openstack-Request-Id: tx006d944e02494e229b8ee-0052e18edd
Date: Thu, 23 Jan 2014 21:51:25 GMT

List objects in the archive container to show that the archived object was moved back to the
current container:

# curl -i $publicURL/archive?prefix=009my_object -X GET -H "X-Auth-
↪→Token: $token"

HTTP/1.1 204 No Content
Content-Length: 0

(continues on next page)

6.4. Object versioning 427



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

X-Container-Object-Count: 0
Accept-Ranges: bytes
X-Timestamp: 1390513280.79684
X-Container-Bytes-Used: 0
Content-Type: text/html; charset=UTF-8
X-Trans-Id: tx044f2a05f56f4997af737-0052e18eed
X-Openstack-Request-Id: tx044f2a05f56f4997af737-0052e18eed
Date: Thu, 23 Jan 2014 21:51:41 GMT

This next-most current version carries with it any metadata last set on it. If want to completely
remove an object and you have five versions of it, you must DELETE it five times.

6.4.2 Example Using X-History-Location

1. Create the current container:

# curl -i $publicURL/current -X PUT -H "Content-Length: 0" -H "X-
↪→Auth-Token: $token" -H "X-History-Location: archive"

HTTP/1.1 201 Created
Content-Length: 0
Content-Type: text/html; charset=UTF-8
X-Trans-Id: txb91810fb717347d09eec8-0052e18997
X-Openstack-Request-Id: txb91810fb717347d09eec8-0052e18997
Date: Thu, 23 Jan 2014 21:28:55 GMT

1. Create the first version of an object in the current container:

# curl -i $publicURL/current/my_object --data-binary 1 -X PUT -H
↪→"Content-Length: 0" -H "X-Auth-Token: $token"

HTTP/1.1 201 Created
Last-Modified: Thu, 23 Jan 2014 21:31:22 GMT
Content-Length: 0
Etag: d41d8cd98f00b204e9800998ecf8427e
Content-Type: text/html; charset=UTF-8
X-Trans-Id: tx5992d536a4bd4fec973aa-0052e18a2a
X-Openstack-Request-Id: tx5992d536a4bd4fec973aa-0052e18a2a
Date: Thu, 23 Jan 2014 21:31:22 GMT

Nothing is written to the non-current version container when you initially PUT an object in the
current container. However, subsequent PUT requests that edit an object trigger the creation
of a version of that object in the archive container.

These non-current versions are named as follows:

<length><object_name>/<timestamp>

Where length is the 3-character, zero-padded hexadecimal character length of the object,
<object_name> is the object name, and <timestamp> is the time when the object was
initially created as a current version.

2. Create a second version of the object in the current container:

428 Chapter 6. Object Storage v1 REST API Documentation



Swift Documentation, Release 2.27.1.dev38

# curl -i $publicURL/current/my_object --data-binary 2 -X PUT -H
↪→"Content-Length: 0" -H "X-Auth-Token: $token"

HTTP/1.1 201 Created
Last-Modified: Thu, 23 Jan 2014 21:41:32 GMT
Content-Length: 0
Etag: d41d8cd98f00b204e9800998ecf8427e
Content-Type: text/html; charset=UTF-8
X-Trans-Id: tx468287ce4fc94eada96ec-0052e18c8c
X-Openstack-Request-Id: tx468287ce4fc94eada96ec-0052e18c8c
Date: Thu, 23 Jan 2014 21:41:32 GMT

3. Issue a GET request to a versioned object to get the current version of the object. You do not have
to do any request redirects or metadata lookups.

List older versions of the object in the archive container:

# curl -i $publicURL/archive?prefix=009my_object -X GET -H "X-Auth-
↪→Token: $token"

HTTP/1.1 200 OK
Content-Length: 30
X-Container-Object-Count: 1
Accept-Ranges: bytes
X-Timestamp: 1390513280.79684
X-Container-Bytes-Used: 0
Content-Type: text/plain; charset=utf-8
X-Trans-Id: tx9a441884997542d3a5868-0052e18d8e
X-Openstack-Request-Id: tx9a441884997542d3a5868-0052e18d8e
Date: Thu, 23 Jan 2014 21:45:50 GMT

009my_object/1390512682.92052

Note: A POST request to a versioned object updates only the metadata for the object and does
not create a new version of the object. New versions are created only when the content of the
object changes.

4. Issue a DELETE request to a versioned object to copy the current version of the object to the
archive container then delete it from the current container. Subsequent GET requests to the object
in the current container will return 404 Not Found.

# curl -i $publicURL/current/my_object -X DELETE -H "X-Auth-Token:
↪→$token"

HTTP/1.1 204 No Content
Content-Length: 0
Content-Type: text/html; charset=UTF-8
X-Trans-Id: tx006d944e02494e229b8ee-0052e18edd
X-Openstack-Request-Id: tx006d944e02494e229b8ee-0052e18edd
Date: Thu, 23 Jan 2014 21:51:25 GMT

List older versions of the object in the archive container:

6.4. Object versioning 429



Swift Documentation, Release 2.27.1.dev38

.. code::

# curl -i $publicURL/archive?prefix=009my_object -X GET -H X-Auth-Token: $token

HTTP/1.1 200 OK
Content-Length: 90
X-Container-Object-Count: 3
Accept-Ranges: bytes
X-Timestamp: 1390513280.79684
X-Container-Bytes-Used: 0
Content-Type: text/html; charset=UTF-8
X-Trans-Id: tx044f2a05f56f4997af737-0052e18eed
X-Openstack-Request-Id: tx044f2a05f56f4997af737-0052e18eed
Date: Thu, 23 Jan 2014 21:51:41 GMT

009my_object/1390512682.92052
009my_object/1390512692.23062
009my_object/1390513885.67732

In addition to the two previous versions of the object, the archive container has a delete marker to
record when the object was deleted.

To permanently delete a previous version, issue a DELETE to the version in the archive container.

6.4.3 Disabling Object Versioning

To disable object versioning for the current container, remove its X-Versions-Location meta-
data header by sending an empty key value.

# curl -i $publicURL/current -X PUT -H "Content-Length: 0" -H "X-Auth-
↪→Token: $token" -H "X-Versions-Location: "

HTTP/1.1 202 Accepted
Content-Length: 76
Content-Type: text/html; charset=UTF-8
X-Trans-Id: txe2476de217134549996d0-0052e19038
X-Openstack-Request-Id: txe2476de217134549996d0-0052e19038
Date: Thu, 23 Jan 2014 21:57:12 GMT

<html><h1>Accepted</h1><p>The request is accepted for processing.</p></
↪→html>

6.5 Large objects

By default, the content of an object cannot be greater than 5 GB. However, you can use a number of
smaller objects to construct a large object. The large object is comprised of two types of objects:

• Segment objects store the object content. You can divide your content into segments, and upload
each segment into its own segment object. Segment objects do not have any special features. You
create, update, download, and delete segment objects just as you would normal objects.

• A manifest object links the segment objects into one logical large object. When you download a
manifest object, Object Storage concatenates and returns the contents of the segment objects in the

430 Chapter 6. Object Storage v1 REST API Documentation



Swift Documentation, Release 2.27.1.dev38

response body of the request. This behavior extends to the response headers returned by GET and
HEAD requests. The Content-Length response header value is the total size of all segment
objects. Object Storage calculates the ETag response header value by taking the ETag value of
each segment, concatenating them together, and returning the MD5 checksum of the result. The
manifest object types are:

Static large objects The manifest object content is an ordered list of the names of the segment
objects in JSON format.

Dynamic large objects The manifest object has a X-Object-Manifest metadata header.
The value of this header is {container}/{prefix}, where {container} is the
name of the container where the segment objects are stored, and {prefix} is a string that
all segment objects have in common. The manifest object should have no content. However,
this is not enforced.

6.5.1 Note

If you make a COPY request by using a manifest object as the source, the new object is a normal, and
not a segment, object. If the total size of the source segment objects exceeds 5 GB, the COPY request
fails. However, you can make a duplicate of the manifest object and this new object can be larger than 5
GB.

6.5.2 Static large objects

To create a static large object, divide your content into pieces and create (upload) a segment object to
contain each piece.

Create a manifest object. Include the multipart-manifest=put query parameter at the end of the
manifest object name to indicate that this is a manifest object.

The body of the PUT request on the manifest object comprises a json list, where each element is an
object representing a segment. These objects may contain the following attributes:

• path (required). The container and object name in the format: {container-name}/
{object-name}

• etag (optional). If provided, this value must match the ETag of the segment object. This was
included in the response headers when the segment was created. Generally, this will be the MD5
sum of the segment.

• size_bytes (optional). The size of the segment object. If provided, this value must match the
Content-Length of that object.

• range (optional). The subset of the referenced object that should be used for segment data. This
behaves similar to the Range header. If omitted, the entire object will be used.

Providing the optional etag and size_bytes attributes for each segment ensures that the upload
cannot corrupt your data.

Example Static large object manifest list

This example shows three segment objects. You can use several containers and the object names do not
have to conform to a specific pattern, in contrast to dynamic large objects.

6.5. Large objects 431



Swift Documentation, Release 2.27.1.dev38

[
{

"path": "mycontainer/objseg1",
"etag": "0228c7926b8b642dfb29554cd1f00963",
"size_bytes": 1468006

},
{

"path": "mycontainer/pseudodir/seg-obj2",
"etag": "5bfc9ea51a00b790717eeb934fb77b9b",
"size_bytes": 1572864

},
{

"path": "other-container/seg-final",
"etag": "b9c3da507d2557c1ddc51f27c54bae51",
"size_bytes": 256

}
]

The Content-Length request header must contain the length of the json contentnot the length of the
segment objects. However, after the PUT operation completes, the Content-Length metadata is set
to the total length of all the object segments. When using the ETag request header in a PUT operation,
it must contain the MD5 checksum of the concatenated ETag values of the object segments. You can
also set the Content-Type request header and custom object metadata.

When the PUT operation sees the multipart-manifest=put query parameter, it reads the request
body and verifies that each segment object exists and that the sizes and ETags match. If there is a
mismatch, the PUT operation fails.

This verification process can take a long time to complete, particularly as the number of segments in-
creases. You may include a heartbeat=on query parameter to have the server:

1. send a 202 Accepted response before it begins validating segments,

2. periodically send whitespace characters to keep the connection alive, and

3. send a final response code in the body.

Note: The server may still immediately respond with 400 Bad Request if it can determine that the
request is invalid before making backend requests.

If everything matches, the manifest object is created. The X-Static-Large-Object metadata is
set to true indicating that this is a static object manifest.

Normally when you perform a GET operation on the manifest object, the response body con-
tains the concatenated content of the segment objects. To download the manifest list, use the
multipart-manifest=get query parameter. The resulting list is not formatted the same as the
manifest you originally used in the PUT operation.

If you use the DELETE operation on a manifest object, the manifest object is deleted. The segment
objects are not affected. However, if you add the multipart-manifest=delete query parameter,
the segment objects are deleted and if all are successfully deleted, the manifest object is also deleted.

432 Chapter 6. Object Storage v1 REST API Documentation



Swift Documentation, Release 2.27.1.dev38

To change the manifest, use a PUT operation with the multipart-manifest=put query parameter.
This request creates a manifest object. You can also update the object metadata in the usual way.

6.5.3 Dynamic large objects

You must segment objects that are larger than 5 GB before you can upload them. You then upload
the segment objects like you would any other object and create a dynamic large manifest object. The
manifest object tells Object Storage how to find the segment objects that comprise the large object. The
segments remain individually addressable, but retrieving the manifest object streams all the segments
concatenated. There is no limit to the number of segments that can be a part of a single large object, but
Content-Length is included in GET or HEAD response only if the number of segments is smaller
than container listing limit. In other words, the number of segments that fit within a single container
listing page.

To ensure the download works correctly, you must upload all the object segments to the same container
and ensure that each object name is prefixed in such a way that it sorts in the order in which it should
be concatenated. You also create and upload a manifest file. The manifest file is a zero-byte file with
the extra X-Object-Manifest {container}/{prefix} header, where {container} is the
container the object segments are in and {prefix} is the common prefix for all the segments. You must
UTF-8-encode and then URL-encode the container and common prefix in the X-Object-Manifest
header.

It is best to upload all the segments first and then create or update the manifest. With this method, the
full object is not available for downloading until the upload is complete. Also, you can upload a new
set of segments to a second location and update the manifest to point to this new location. During the
upload of the new segments, the original manifest is still available to download the first set of segments.

Note: When updating a manifest object using a POST request, a X-Object-Manifest header must
be included for the object to continue to behave as a manifest object.

Example Upload segment of large object request: HTTP

PUT /{api_version}/{account}/{container}/{object} HTTP/1.1
Host: storage.clouddrive.com
X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb
ETag: 8a964ee2a5e88be344f36c22562a6486
Content-Length: 1
X-Object-Meta-PIN: 1234

No response body is returned. A status code of 2“nn“ (between 200 and 299, inclusive) indicates a suc-
cessful write; status 411 Length Required denotes a missing Content-Length or Content-Type
header in the request. If the MD5 checksum of the data written to the storage system does NOT match
the (optionally) supplied ETag value, a 422 Unprocessable Entity response is returned.

You can continue uploading segments like this example shows, prior to uploading the manifest.

Example Upload next segment of large object request: HTTP

PUT /{api_version}/{account}/{container}/{object} HTTP/1.1
Host: storage.clouddrive.com
X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb
ETag: 8a964ee2a5e88be344f36c22562a6486

(continues on next page)

6.5. Large objects 433



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

Content-Length: 1
X-Object-Meta-PIN: 1234

Next, upload the manifest you created that indicates the container the object segments reside within.
Note that uploading additional segments after the manifest is created causes the concatenated object to
be that much larger but you do not need to recreate the manifest file for subsequent additional segments.

Example Upload manifest request: HTTP

PUT /{api_version}/{account}/{container}/{object} HTTP/1.1
Host: storage.clouddrive.com
X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb
Content-Length: 0
X-Object-Meta-PIN: 1234
X-Object-Manifest: {container}/{prefix}

Example Upload manifest response: HTTP

[...]

The Content-Type in the response for a GET or HEAD on the manifest is the same as the
Content-Type set during the PUT request that created the manifest. You can easily change the
Content-Type by reissuing the PUT request.

6.5.4 Comparison of static and dynamic large objects

While static and dynamic objects have similar behavior, here are their differences:

End-to-end integrity

With static large objects, integrity can be assured. The list of segments may include the MD5 checksum
(ETag) of each segment. You cannot upload the manifest object if the ETag in the list differs from
the uploaded segment object. If a segment is somehow lost, an attempt to download the manifest object
results in an error.

With dynamic large objects, integrity is not guaranteed. The eventual consistency model means that
although you have uploaded a segment object, it might not appear in the container listing until later.
If you download the manifest before it appears in the container, it does not form part of the content
returned in response to a GET request.

Upload Order

With static large objects, you must upload the segment objects before you upload the manifest object.

With dynamic large objects, you can upload manifest and segment objects in any order. In case a
premature download of the manifest occurs, we recommend users upload the manifest object after the
segments. However, the system does not enforce the order.

434 Chapter 6. Object Storage v1 REST API Documentation



Swift Documentation, Release 2.27.1.dev38

Removal or addition of segment objects

With static large objects, you cannot add or remove segment objects from the manifest. However, you
can create a completely new manifest object of the same name with a different manifest list.

With dynamic large objects, you can upload new segment objects or remove existing segments. The
names must simply match the {prefix} supplied in X-Object-Manifest.

Segment object size and number

With static large objects, the segment objects must be at least 1 byte in size. However, if the segment
objects are less than 1MB (by default), the SLO download is (by default) rate limited. At most, 1000
segments are supported (by default) and the manifest has a limit (by default) of 2MB in size.

With dynamic large objects, segment objects can be any size.

Segment object container name

With static large objects, the manifest list includes the container name of each object. Segment objects
can be in different containers.

With dynamic large objects, all segment objects must be in the same container.

Manifest object metadata

With static large objects, the manifest object has X-Static-Large-Object set to true. You do
not set this metadata directly. Instead the system sets it when you PUT a static manifest object.

With dynamic large objects, the X-Object-Manifest value is the {container}/{prefix},
which indicates where the segment objects are located. You supply this request header in the PUT
operation.

Copying the manifest object

The semantics are the same for both static and dynamic large objects. When copying large objects, the
COPY operation does not create a manifest object but a normal object with content same as what you
would get on a GET request to the original manifest object.

To copy the manifest object, you include the multipart-manifest=get query parameter in the
COPY request. The new object contains the same manifest as the original. The segment objects are not
copied. Instead, both the original and new manifest objects share the same set of segment objects.

6.5. Large objects 435



Swift Documentation, Release 2.27.1.dev38

6.6 Temporary URL middleware

To discover whether your Object Storage system supports this feature, check with your service provider
or send a GET request using the /info path.

A temporary URL gives users temporary access to objects. For example, a website might want to
provide a link to download a large object in Object Storage, but the Object Storage account has no
public access. The website can generate a URL that provides time-limited GET access to the object.
When the web browser user clicks on the link, the browser downloads the object directly from Object
Storage, eliminating the need for the website to act as a proxy for the request.

Furthermore, a temporary URL can be prefix-based. These URLs contain a signature which is valid for
all objects which share a common prefix. They are useful for sharing a set of objects.

Ask your cloud administrator to enable the temporary URL feature. For information, see TempURL in
the Source Documentation.

6.6.1 Note

To use POST requests to upload objects to specific Object Storage locations, use Form POST middle-
ware instead of temporary URL middleware.

6.6.2 Temporary URL format

A temporary URL is comprised of the URL for an object with added query parameters:

Example Temporary URL format

https://swift-cluster.example.com/v1/my_account/container/object
?temp_url_sig=da39a3ee5e6b4b0d3255bfef95601890afd80709
&temp_url_expires=1323479485
&filename=My+Test+File.pdf

The example shows these elements:

Object URL: Required. The full path URL to the object.

temp_url_sig: Required. An HMAC-SHA1 cryptographic signature that defines the allowed HTTP
method, expiration date, full path to the object, and the secret key for the temporary URL.

temp_url_expires: Required. An expiration date as a UNIX Epoch timestamp or ISO 8601 UTC times-
tamp. For example, 1390852007 or 2014-01-27T19:46:47Z can be used to represent Mon, 27
Jan 2014 19:46:47 GMT.

For more information, see Epoch & Unix Timestamp Conversion Tools.

filename: Optional. Overrides the default file name. Object Storage generates a default file name
for GET temporary URLs that is based on the object name. Object Storage returns this value in the
Content-Disposition response header. Browsers can interpret this file name value as a file at-
tachment to be saved.

A prefix-based temporary URL is similar but requires the parameter temp_url_prefix, which must
be equal to the common prefix shared by all object names for which the URL is valid.

436 Chapter 6. Object Storage v1 REST API Documentation

https://www.epochconverter.com/


Swift Documentation, Release 2.27.1.dev38

https://swift-cluster.example.com/v1/my_account/container/my_prefix/object
?temp_url_sig=da39a3ee5e6b4b0d3255bfef95601890afd80709
&temp_url_expires=2011-12-10T01:11:25Z
&temp_url_prefix=my_prefix

6.6.3 Secret Keys

The cryptographic signature used in Temporary URLs and also in Form POST middleware uses a secret
key. Object Storage allows you to store two secret key values per account, and two per container. When
validating a request, Object Storage checks signatures against all keys. Using two keys at each level
enables key rotation without invalidating existing temporary URLs.

To set the keys at the account level, set one or both of the following request headers to arbitrary values
on a POST request to the account:

• X-Account-Meta-Temp-URL-Key

• X-Account-Meta-Temp-URL-Key-2

To set the keys at the container level, set one or both of the following request headers to arbitrary values
on a POST or PUT request to the container:

• X-Container-Meta-Temp-URL-Key

• X-Container-Meta-Temp-URL-Key-2

The arbitrary values serve as the secret keys.

For example, use the swift post command to set the secret key to “MYKEY“:

$ swift post -m "Temp-URL-Key:MYKEY"

6.6.4 Note

Changing these headers invalidates any previously generated temporary URLs within 60 seconds, which
is the memcache time for the key.

6.6.5 HMAC-SHA1 signature for temporary URLs

Temporary URL middleware uses an HMAC-SHA1 cryptographic signature. This signature includes
these elements:

• The allowed method. Typically, GET or PUT.

• Expiry time. In the example for the HMAC-SHA1 signature for temporary URLs below, the
expiry time is set to 86400 seconds (or 1 day) into the future. Please be aware that you have to
use a UNIX timestamp for generating the signature (in the API request it is also allowed to use an
ISO 8601 UTC timestamp).

• The path. Starting with /v1/ onwards and including a container name and object. The path
for prefix-based signatures must start with prefix:/v1/. Do not URL-encode the path at this
stage.

• The secret key. Use one of the key values as described in Secret Keys.

6.6. Temporary URL middleware 437



Swift Documentation, Release 2.27.1.dev38

These sample Python codes show how to compute a signature for use with temporary URLs:

Example HMAC-SHA1 signature for object-based temporary URLs

import hmac
from hashlib import sha1
from time import time
method = 'GET'
duration_in_seconds = 60*60*24
expires = int(time() + duration_in_seconds)
path = '/v1/my_account/container/object'
key = 'MYKEY'
hmac_body = '%s\n%s\n%s' % (method, expires, path)
signature = hmac.new(key, hmac_body, sha1).hexdigest()

Example HMAC-SHA1 signature for prefix-based temporary URLs

import hmac
from hashlib import sha1
from time import time
method = 'GET'
duration_in_seconds = 60*60*24
expires = int(time() + duration_in_seconds)
path = 'prefix:/v1/my_account/container/my_prefix'
key = 'MYKEY'
hmac_body = '%s\n%s\n%s' % (method, expires, path)
signature = hmac.new(key, hmac_body, sha1).hexdigest()

Do not URL-encode the path when you generate the HMAC-SHA1 signature. However, when you make
the actual HTTP request, you should properly URL-encode the URL.

The “MYKEY“ value is one of the key values as described in Secret Keys.

For more information, see RFC 2104: HMAC: Keyed-Hashing for Message Authentication.

If you want to transform a UNIX timestamp into an ISO 8601 UTC timestamp, you can use following
code snippet:

import time
time.strftime('%Y-%m-%dT%H:%M:%SZ', time.gmtime(timestamp))

6.6.6 Using the swift tool to generate a Temporary URL

The swift tool provides the tempurl option that auto-generates the “temp_url_sig“ and
“temp_url_expires“ query parameters. For example, you might run this command:

$ swift tempurl GET 3600 /v1/my_account/container/object MYKEY

This command returns the path:

/v1/my_account/container/object
?temp_url_sig=5c4cc8886f36a9d0919d708ade98bf0cc71c9e91
&temp_url_expires=1374497657

To create the temporary URL, prefix this path with the Object Storage storage host name. For example,
prefix the path with https://swift-cluster.example.com, as follows:

438 Chapter 6. Object Storage v1 REST API Documentation

http://www.ietf.org/rfc/rfc2104.txt
https://docs.openstack.org/python-swiftclient/latest/cli/index.html#swift-tempurl


Swift Documentation, Release 2.27.1.dev38

https://swift-cluster.example.com/v1/my_account/container/object
?temp_url_sig=5c4cc8886f36a9d0919d708ade98bf0cc71c9e91
&temp_url_expires=1374497657

Note that if the above example is copied exactly, and used in a command shell, then the ampersand is
interpreted as an operator and the URL will be truncated. Enclose the URL in quotation marks to avoid
this.

6.7 Form POST middleware

To discover whether your Object Storage system supports this feature, check with your service provider
or send a GET request using the /info path.

You can upload objects directly to the Object Storage system from a browser by using the form POST
middleware. This middleware uses account or container secret keys to generate a cryptographic signature
for the request. This means that you do not need to send an authentication token in the X-Auth-Token
header to perform the request.

The form POST middleware uses the same secret keys as the temporary URL middleware uses. For
information about how to set these keys, see Secret Keys.

For information about the form POST middleware configuration options, see FormPost in the Source
Documentation.

6.7.1 Form POST format

To upload objects to a cluster, you can use an HTML form POST request.

The format of the form POST request is:

Example 1.14. Form POST format

<![CDATA[
<form action="SWIFT_URL"

method="POST"
enctype="multipart/form-data">
<input type="hidden" name="redirect" value="REDIRECT_URL"/>
<input type="hidden" name="max_file_size" value="BYTES"/>
<input type="hidden" name="max_file_count" value="COUNT"/>
<input type="hidden" name="expires" value="UNIX_TIMESTAMP"/>
<input type="hidden" name="signature" value="HMAC"/>
<input type="file" name="FILE_NAME"/>
<br/>
<input type="submit"/>

</form>
]]>

action=SWIFT_URL

Set to full URL where the objects are to be uploaded. The names of uploaded files are appended to the
specified SWIFT_URL. So, you can upload directly to the root of a container with a URL like:

https://swift-cluster.example.com/v1/my_account/container/

6.7. Form POST middleware 439



Swift Documentation, Release 2.27.1.dev38

Optionally, you can include an object prefix to separate uploads, such as:

https://swift-cluster.example.com/v1/my_account/container/OBJECT_PREFIX

method=POST

Must be POST.

enctype=multipart/form-data

Must be multipart/form-data.

name=redirect value=REDIRECT_URL

Redirects the browser to the REDIRECT_URL after the upload completes. The URL has status and
message query parameters added to it, which specify the HTTP status code for the upload and an optional
error message. The 2nn status code indicates success.

The REDIRECT_URL can be an empty string. If so, the Location response header is not set.

name=max_file_size value=BYTES

Required. Indicates the size, in bytes, of the maximum single file upload.

name=max_file_count value= COUNT

Required. Indicates the maximum number of files that can be uploaded with the form.

name=expires value=UNIX_TIMESTAMP

The UNIX timestamp that specifies the time before which the form must be submitted before it becomes
no longer valid.

name=signature value=HMAC

The HMAC-SHA1 signature of the form.

type=file name=FILE_NAME

File name of the file to be uploaded. You can include from one to the max_file_count value of files.

The file attributes must appear after the other attributes to be processed correctly.

If attributes appear after the file attributes, they are not sent with the sub-request because all attributes
in the file cannot be parsed on the server side unless the whole file is read into memory; the server does
not have enough memory to service these requests. Attributes that follow the file attributes are ignored.

Optionally, if you want the uploaded files to be temporary you can set x-delete-at or x-delete-after
attributes by adding one of these as a form input:

<input type="hidden" name="x_delete_at" value="<unix-timestamp>" />
<input type="hidden" name="x_delete_after" value="<seconds>" />

type= submit

Must be submit.

440 Chapter 6. Object Storage v1 REST API Documentation



Swift Documentation, Release 2.27.1.dev38

6.7.2 HMAC-SHA1 signature for form POST

Form POST middleware uses an HMAC-SHA1 cryptographic signature. This signature includes these
elements from the form:

• The path. Starting with /v1/ onwards and including a container name and, optionally, an
object prefix. In Example 1.15, HMAC-SHA1 signature for form POST the path is /v1/
my_account/container/object_prefix. Do not URL-encode the path at this stage.

• A redirect URL. If there is no redirect URL, use the empty string.

• Maximum file size. In Example 1.15, HMAC-SHA1 signature for form POST the
max_file_size is 104857600 bytes.

• The maximum number of objects to upload. In Example 1.15, HMAC-SHA1 signature for form
POST max_file_count is 10.

• Expiry time. In Example 1.15, HMAC-SHA1 signature for form POST the expiry time is set to
“600‘ seconds into the future.

• The secret key. Set as the X-Account-Meta-Temp-URL-Key header value for accounts or
X-Container-Meta-Temp-URL-Key header value for containers. See Secret Keys for more
information.

The following example code generates a signature for use with form POST:

Example 1.15. HMAC-SHA1 signature for form POST

import hmac
from hashlib import sha1
from time import time
path = '/v1/my_account/container/object_prefix'
redirect = 'https://myserver.com/some-page'
max_file_size = 104857600
max_file_count = 10
expires = int(time() + 600)
key = 'MYKEY'
hmac_body = '%s\n%s\n%s\n%s\n%s' % (path, redirect,
max_file_size, max_file_count, expires)
signature = hmac.new(key, hmac_body, sha1).hexdigest()

For more information, see RFC 2104: HMAC: Keyed-Hashing for Message Authentication.

6.7.3 Form POST example

The following example shows how to submit a form by using a cURL command. In this example, the
object prefix is photos/ and the file being uploaded is called flower.jpg.

This example uses the swift-form-signature script to compute the expires and signature values.

$ bin/swift-form-signature /v1/my_account/container/photos/ https://
↪→example.com/done.html 5373952000 1 200 MYKEY
Expires: 1390825338
Signature: 35129416ebda2f1a21b3c2b8939850dfc63d8f43

6.7. Form POST middleware 441

http://www.ietf.org/rfc/rfc2104.txt


Swift Documentation, Release 2.27.1.dev38

$ curl -i https://swift-cluster.example.com/v1/my_account/container/photos/
↪→ -X POST \

-F max_file_size=5373952000 -F max_file_count=1 -F
↪→expires=1390825338 \

-F signature=35129416ebda2f1a21b3c2b8939850dfc63d8f43 \
-F redirect=https://example.com/done.html \
-F file=@flower.jpg

6.8 Use Content-Encoding metadata

When you create an object or update its metadata, you can optionally set the Content-Encoding
metadata. This metadata enables you to indicate that the object content is compressed without losing the
identity of the underlying media type (Content-Type) of the file, such as a video.

Example Content-Encoding header request: HTTP

This example assigns an attachment type to the Content-Encoding header that indicates how the
file is downloaded:

PUT /<api version>/<account>/<container>/<object> HTTP/1.1
Host: storage.clouddrive.com
X-Auth-Token: eaaafd18-0fed-4b3a-81b4-663c99ec1cbb
Content-Type: video/mp4
Content-Encoding: gzip

6.9 Use the Content-Disposition metadata

To override the default behavior for a browser, use the Content-Disposition header to specify
the override behavior and assign this header to an object. For example, this header might specify that
the browser use a download program to save this file rather than show the file, which is the default.

Example Override browser default behavior request: HTTP

This example assigns an attachment type to the Content-Disposition header. This attachment
type indicates that the file is to be downloaded as goodbye.txt:

# curl -i $publicURL/marktwain/goodbye -X POST -H "X-Auth-Token: $token" -
↪→H "Content-Length: 14" -H "Content-Type: application/octet-stream" -H
↪→"Content-Disposition: attachment; filename=goodbye.txt"

HTTP/1.1 202 Accepted
Content-Length: 76
Content-Type: text/html; charset=UTF-8
X-Trans-Id: txa9b5e57d7f354d7ea9f57-0052e17e13
X-Openstack-Request-Id: txa9b5e57d7f354d7ea9f57-0052e17e13
Date: Thu, 23 Jan 2014 20:39:47 GMT

<html><h1>Accepted</h1><p>The request is accepted for processing.</p></
↪→html>

442 Chapter 6. Object Storage v1 REST API Documentation



Swift Documentation, Release 2.27.1.dev38

6.10 Pseudo-hierarchical folders and directories

Although you cannot nest directories in OpenStack Object Storage, you can simulate a hierarchical
structure within a single container by adding forward slash characters (/) in the object name. To navigate
the pseudo-directory structure, you can use the delimiter query parameter. This example shows you
how to use pseudo-hierarchical folders and directories.

Note: In this example, the objects reside in a container called backups. Within that container, the
objects are organized in a pseudo-directory called photos. The container name is not displayed in the
example, but it is a part of the object URLs. For instance, the URL of the picture me.jpg is https:/
/swift.example.com/v1/CF_xer7_343/backups/photos/me.jpg.

6.10.1 List pseudo-hierarchical folders request: HTTP

To display a list of all the objects in the storage container, use GET without a delimiter or prefix.

$ curl -X GET -i -H "X-Auth-Token: $token" \
$publicurl/v1/AccountString/backups

The system returns status code 2xx (between 200 and 299, inclusive) and the requested list of the objects.

photos/animals/cats/persian.jpg
photos/animals/cats/siamese.jpg
photos/animals/dogs/corgi.jpg
photos/animals/dogs/poodle.jpg
photos/animals/dogs/terrier.jpg
photos/me.jpg
photos/plants/fern.jpg
photos/plants/rose.jpg

Use the delimiter parameter to limit the displayed results. To use delimiter with pseudo-directories,
you must use the parameter slash (/).

$ curl -X GET -i -H "X-Auth-Token: $token" \
$publicurl/v1/AccountString/backups?delimiter=/

The system returns status code 2xx (between 200 and 299, inclusive) and the requested matching objects.
Because you use the slash, only the pseudo-directory photos/ displays. The returned values from a
slash delimiter query are not real objects. The value will refer to a real object if it does not end with
a slash. The pseudo-directories have no content-type, rather, each pseudo-directory has its own subdir
entry in the response of JSON and XML results. For example:

[
{

"subdir": "photos/"
}

]

<?xml version="1.0" encoding="UTF-8"?>
<container name="backups">

<subdir name="photos/">
(continues on next page)

6.10. Pseudo-hierarchical folders and directories 443



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

<name>photos/</name>
</subdir>

</container>

Use the prefix and delimiter parameters to view the objects inside a pseudo-directory, including
further nested pseudo-directories.

$ curl -X GET -i -H "X-Auth-Token: $token" \
$publicurl/v1/AccountString/backups?prefix=photos/&delimiter=/

The system returns status code 2xx (between 200 and 299, inclusive) and the objects and pseudo-
directories within the top level pseudo-directory.

photos/animals/
photos/me.jpg
photos/plants/

[
{

"subdir": "photos/animals/"
},
{

"hash": "b249a153f8f38b51e92916bbc6ea57ad",
"last_modified": "2015-12-03T17:31:28.187370",
"bytes": 2906,
"name": "photos/me.jpg",
"content_type": "image/jpeg"

},
{

"subdir": "photos/plants/"
}

]

<?xml version="1.0" encoding="UTF-8"?>
<container name="backups">

<subdir name="photos/animals/">
<name>photos/animals/</name>

</subdir>
<object>

<name>photos/me.jpg</name>
<hash>b249a153f8f38b51e92916bbc6ea57ad</hash>
<bytes>2906</bytes>
<content_type>image/jpeg</content_type>
<last_modified>2015-12-03T17:31:28.187370</last_modified>

</object>
<subdir name="photos/plants/">

<name>photos/plants/</name>
</subdir>

</container>

You can create an unlimited number of nested pseudo-directories. To navigate through them, use a
longer prefix parameter coupled with the delimiter parameter. In this sample output, there is a
pseudo-directory called dogs within the pseudo-directory animals. To navigate directly to the files
contained within dogs, enter the following command:

444 Chapter 6. Object Storage v1 REST API Documentation



Swift Documentation, Release 2.27.1.dev38

$ curl -X GET -i -H "X-Auth-Token: $token" \
$publicurl/v1/AccountString/backups?prefix=photos/animals/dogs/&
↪→delimiter=/

The system returns status code 2xx (between 200 and 299, inclusive) and the objects and pseudo-
directories within the nested pseudo-directory.

photos/animals/dogs/corgi.jpg
photos/animals/dogs/poodle.jpg
photos/animals/dogs/terrier.jpg

6.11 Page through large lists of containers or objects

If you have a large number of containers or objects, you can use the marker, limit, and
end_marker parameters to control how many items are returned in a list and where the list starts
or ends.

• marker When you request a list of containers or objects, Object Storage returns a maximum of
10,000 names for each request. To get subsequent names, you must make another request
with the marker parameter. Set the marker parameter to the name of the last item returned
in the previous list. You must URL-encode the marker value before you send the HTTP
request. Object Storage returns a maximum of 10,000 names starting after the last item
returned.

• limit To return fewer than 10,000 names, use the limit parameter. If the number of names
returned equals the specified limit (or 10,000 if you omit the limit parameter), you can
assume there are more names to list. If the number of names in the list is exactly divisible
by the limit value, the last request has no content.

• end_marker Limits the result set to names that are less than the end_marker parameter value.
You must URL-encode the end_marker value before you send the HTTP request.

6.11.1 To page through a large list of containers

Assume the following list of container names:

apples
bananas
kiwis
oranges
pears

1. Use a limit of two:

# curl -i $publicURL/?limit=2 -X GET -H "X-Auth-Token: $token"

apples
bananas

Because two container names are returned, there are more names to list.

2. Make another request with a marker parameter set to the name of the last item returned:

6.11. Page through large lists of containers or objects 445



Swift Documentation, Release 2.27.1.dev38

# curl -i $publicURL/?limit=2&amp;marker=bananas -X GET -H \
X-Auth-Token: $token"

kiwis
oranges

Again, two items are returned, and there might be more.

3. Make another request with a marker of the last item returned:

# curl -i $publicURL/?limit=2&amp;marker=oranges -X GET -H \"
X-Auth-Token: $token"

pears

You receive a one-item response, which is fewer than the limit number of names. This indicates
that this is the end of the list.

4. Use the end_marker parameter to limit the result set to object names that are less than the
end_marker parameter value:

# curl -i $publicURL/?end_marker=oranges -X GET -H \"
X-Auth-Token: $token"

apples
bananas
kiwis

You receive a result set of all container names before the end-marker value.

6.12 Serialized response formats

By default, the Object Storage API uses a text/plain response format. In addition, both JSON and
XML data serialization response formats are supported.

To define the response format, use one of these methods:

Method Description
format= format query parameter Append this parameter to the URL for a GET re-

quest, where format is json or xml.
Accept request header Include this header in the GET request. The valid

header values are:
text/plain Plain text response format. The de-

fault.
application/jsontext JSON data serialization

response format.
application/xml XML data serialization re-

sponse format.
text/xml XML data serialization response for-

mat.

446 Chapter 6. Object Storage v1 REST API Documentation



Swift Documentation, Release 2.27.1.dev38

6.12.1 Exampleă1.ăJSON example with format query parameter

For example, this request uses the format query parameter to ask for a JSON response:

$ curl -i $publicURL?format=json -X GET -H "X-Auth-Token: $token"

HTTP/1.1 200 OK
Content-Length: 96
X-Account-Object-Count: 1
X-Timestamp: 1389453423.35964
X-Account-Meta-Subject: Literature
X-Account-Bytes-Used: 14
X-Account-Container-Count: 2
Content-Type: application/json; charset=utf-8
Accept-Ranges: bytes
X-Trans-Id: tx274a77a8975c4a66aeb24-0052d95365
Date: Fri, 17 Jan 2014 15:59:33 GMT

Object Storage lists container names with additional information in JSON format:

[
{

"count":0,
"bytes":0,
"name":"janeausten"

},
{

"count":1,
"bytes":14,
"name":"marktwain"

}
]

6.12.2 Exampleă2.ăXML example with Accept header

This request uses the Accept request header to ask for an XML response:

$ curl -i $publicURL -X GET -H "X-Auth-Token: $token" -H \
"Accept: application/xml; charset=utf-8"

HTTP/1.1 200 OK
Content-Length: 263
X-Account-Object-Count: 3
X-Account-Meta-Book: MobyDick
X-Timestamp: 1389453423.35964
X-Account-Bytes-Used: 47
X-Account-Container-Count: 2
Content-Type: application/xml; charset=utf-8
Accept-Ranges: bytes
X-Trans-Id: txf0b4c9727c3e491694019-0052e03420
Date: Wed, 22 Jan 2014 21:12:00 GMT

Object Storage lists container names with additional information in XML format:

6.12. Serialized response formats 447



Swift Documentation, Release 2.27.1.dev38

<?xml version="1.0" encoding="UTF-8"?>
<account name="AUTH_73f0aa26640f4971864919d0eb0f0880">

<container>
<name>janeausten</name>
<count>2</count>
<bytes>33</bytes>

</container>
<container>

<name>marktwain</name>
<count>1</count>
<bytes>14</bytes>

</container>
</account>

The remainder of the examples in this guide use standard, non-serialized responses. However, all GET
requests that perform list operations accept the format query parameter or Accept request header.

6.13 Create static website

To discover whether your Object Storage system supports this feature, see Discoverability. Alternatively,
check with your service provider.

You can use your Object Storage account to create a static website. This static website is created with
Static Web middleware and serves container data with a specified index file, error file resolution, and
optional file listings. This mode is normally active only for anonymous requests, which provide no
authentication token. To use it with authenticated requests, set the header X-Web-Mode to TRUE on
the request.

The Static Web filter must be added to the pipeline in your /etc/swift/proxy-server.conf
file below any authentication middleware. You must also add a Static Web middleware configuration
section.

Your publicly readable containers are checked for two headers, X-Container-Meta-Web-Index
and X-Container-Meta-Web-Error. The X-Container-Meta-Web-Error header is dis-
cussed below, in the section called Set error pages for static website.

Use X-Container-Meta-Web-Index to determine the index file (or default page served, such
as index.html) for your website. When someone initially enters your site, the index.html file
displays automatically. If you create sub-directories for your site by creating pseudo-directories in your
container, the index page for each sub-directory is displayed by default. If your pseudo-directory does
not have a file with the same name as your index file, visits to the sub-directory return a 404 error.

You also have the option of displaying a list of files in your pseudo-directory instead of a web page. To
do this, set the X-Container-Meta-Web-Listings header to TRUE. You may add styles to your
file listing by setting X-Container-Meta-Web-Listings-CSS to a style sheet (for example,
lists.css).

448 Chapter 6. Object Storage v1 REST API Documentation



Swift Documentation, Release 2.27.1.dev38

6.13.1 Static Web middleware through Object Storage

The following sections show how to use Static Web middleware through Object Storage.

Make container publicly readable

Make the container publicly readable. Once the container is publicly readable, you can access your
objects directly, but you must set the index file to browse the main site URL and its sub-directories.

$ swift post -r '.r:*,.rlistings' container

Set site index file

Set the index file. In this case, index.html is the default file displayed when the site appears.

$ swift post -m 'web-index:index.html' container

Enable file listing

Turn on file listing. If you do not set the index file, the URL displays a list of the objects in the container.
Instructions on styling the list with a CSS follow.

$ swift post -m 'web-listings: true' container

Enable CSS for file listing

Style the file listing using a CSS.

$ swift post -m 'web-listings-css:listings.css' container

Set error pages for static website

You can create and set custom error pages for visitors to your website; currently, only 401
(Unauthorized) and 404 (Not Found) errors are supported. To do this, set the metadata header,
X-Container-Meta-Web-Error.

Error pages are served with the status code pre-pended to the name of the error page you set. For
instance, if you set X-Container-Meta-Web-Error to error.html, 401 errors will display the
page 401error.html. Similarly, 404 errors will display 404error.html. You must have both of
these pages created in your container when you set the X-Container-Meta-Web-Error metadata,
or your site will display generic error pages.

You only have to set the X-Container-Meta-Web-Error metadata once for your entire static
website.

6.13. Create static website 449



Swift Documentation, Release 2.27.1.dev38

Set error pages for static website request

$ swift post -m 'web-error:error.html' container

Any 2nn response indicates success.

6.14 Object expiration

You can schedule Object Storage (swift) objects to expire by setting the X-Delete-At or
X-Delete-After header. Once the object is deleted, swift will no longer serve the object and it
will be deleted from the cluster shortly thereafter.

• Set an object to expire at an absolute time (in Unix time). You can get the current Unix time by
running date +'%s'.

$ swift post CONTAINER OBJECT_FILENAME -H "X-Delete-At:UNIX_TIME"

Verify the X-Delete-At header has posted to the object:

$ swift stat CONTAINER OBJECT_FILENAME

• Set an object to expire after a relative amount of time (in seconds):

$ swift post CONTAINER OBJECT_FILENAME -H "X-Delete-After:SECONDS"

The X-Delete-After header will be converted to X-Delete-At. Verify the
X-Delete-At header has posted to the object:

$ swift stat CONTAINER OBJECT_FILENAME

If you no longer want to expire the object, you can remove the X-Delete-At header:

$ swift post CONTAINER OBJECT_FILENAME -H "X-Remove-Delete-At:"

Note: In order for object expiration to work properly, the swift-object-expirer daemon will
need access to all backend servers in the cluster. The daemon does not need access to the proxy-server
or public network.

6.15 Bulk delete

To discover whether your Object Storage system supports this feature, see Discoverability. Alternatively,
check with your service provider.

With bulk delete, you can delete up to 10,000 objects or containers (configurable) in one request.

450 Chapter 6. Object Storage v1 REST API Documentation



Swift Documentation, Release 2.27.1.dev38

6.15.1 Bulk delete request

To perform a bulk delete operation, add the bulk-delete query parameter to the path of a POST or
DELETE operation.

Note: The DELETE operation is supported for backwards compatibility.

The path is the account, such as /v1/12345678912345, that contains the objects and containers.

In the request body of the POST or DELETE operation, list the objects or containers to be deleted. Sep-
arate each name with a newline character. You can include a maximum of 10,000 items (configurable)
in the list.

In addition, you must:

• UTF-8-encode and then URL-encode the names.

• To indicate an object, specify the container and object name as:
CONTAINER_NAME/OBJECT_NAME.

• To indicate a container, specify the container name as: CONTAINER_NAME. Make sure that the
container is empty. If it contains objects, Object Storage cannot delete the container.

• Set the Content-Type request header to text/plain.

6.15.2 Bulk delete response

When Object Storage processes the request, it performs multiple sub-operations. Even if all sub-
operations fail, the operation returns a 200 status. The bulk operation returns a response body that
contains details that indicate which sub-operations have succeeded and failed. Some sub-operations
might succeed while others fail. Examine the response body to determine the results of each delete
sub-operation.

You can set the Accept request header to one of the following values to define the response format:

text/plain Formats response as plain text. If you omit the Accept header, text/plain is the
default.

application/json Formats response as JSON.

application/xml or text/xml Formats response as XML.

The response body contains the following information:

• The number of files actually deleted.

• The number of not found objects.

• Errors. A list of object names and associated error statuses for the objects that failed to delete.
The format depends on the value that you set in the Accept header.

The following bulk delete response is in application/xml format. In this example, the
mycontainer container is not empty, so it cannot be deleted.

<delete>
<number_deleted>2</number_deleted>
<number_not_found>4</number_not_found>

(continues on next page)

6.15. Bulk delete 451



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

<errors>
<object>

<name>/v1/12345678912345/mycontainer</name>
<status>409 Conflict</status>

</object>
</errors>

</delete>

452 Chapter 6. Object Storage v1 REST API Documentation



CHAPTER

SEVEN

S3 COMPATIBILITY INFO

7.1 S3/Swift REST API Comparison Matrix

7.1.1 General compatibility statement

S3 is a product from Amazon, and as such, it includes features that are outside the scope of Swift itself.
For example, Swift doesnt have anything to do with billing, whereas S3 buckets can be tied to Amazons
billing system. Similarly, log delivery is a service outside of Swift. Its entirely possible for a Swift
deployment to provide that functionality, but it is not part of Swift itself. Likewise, a Swift deployment
can provide similar geographic availability as S3, but this is tied to the deployers willingness to build
the infrastructure and support systems to do so.

7.1.2 Amazon S3 operations

S3 REST API method Category Swift S3 API
GET Object Core-API Yes
HEAD Object Core-API Yes
PUT Object Core-API Yes
PUT Object Copy Core-API Yes
DELETE Object Core-API Yes
Initiate Multipart Upload Core-API Yes
Upload Part Core-API Yes
Upload Part Copy Core-API Yes
Complete Multipart Upload Core-API Yes
Abort Multipart Upload Core-API Yes
List Parts Core-API Yes
GET Object ACL Core-API Yes
PUT Object ACL Core-API Yes
PUT Bucket Core-API Yes
GET Bucket List Objects Core-API Yes
HEAD Bucket Core-API Yes
DELETE Bucket Core-API Yes
List Multipart Uploads Core-API Yes
GET Bucket acl Core-API Yes
PUT Bucket acl Core-API Yes
Versioning Versioning Yes

continues on next page

453

http://docs.amazonwebservices.com/AmazonS3/latest/API/RESTObjectGET.html
http://docs.amazonwebservices.com/AmazonS3/latest/API/RESTObjectHEAD.html
http://docs.amazonwebservices.com/AmazonS3/latest/API/RESTObjectPUT.html
http://docs.amazonwebservices.com/AmazonS3/latest/API/RESTObjectCOPY.html
http://docs.amazonwebservices.com/AmazonS3/latest/API/RESTObjectDELETE.html
http://docs.amazonwebservices.com/AmazonS3/latest/API/mpUploadInitiate.html
http://docs.amazonwebservices.com/AmazonS3/latest/API/mpUploadUploadPart.html
http://docs.amazonwebservices.com/AmazonS3/latest/API/mpUploadUploadPartCopy.html
http://docs.amazonwebservices.com/AmazonS3/latest/API/mpUploadComplete.html
http://docs.amazonwebservices.com/AmazonS3/latest/API/mpUploadAbort.html
http://docs.amazonwebservices.com/AmazonS3/latest/API/mpUploadListParts.html
http://docs.amazonwebservices.com/AmazonS3/latest/API/RESTObjectGETacl.html
http://docs.amazonwebservices.com/AmazonS3/latest/API/RESTObjectPUTacl.html
http://docs.amazonwebservices.com/AmazonS3/latest/API/RESTBucketPUT.html
http://docs.amazonwebservices.com/AmazonS3/latest/API/RESTBucketGET.html
http://docs.amazonwebservices.com/AmazonS3/latest/API/RESTBucketHEAD.html
http://docs.amazonwebservices.com/AmazonS3/latest/API/RESTBucketDELETE.html
http://docs.amazonwebservices.com/AmazonS3/latest/API/mpUploadListMPUpload.html
http://docs.amazonwebservices.com/AmazonS3/latest/API/RESTBucketGETacl.html
http://docs.amazonwebservices.com/AmazonS3/latest/API/RESTBucketPUTacl.html
http://docs.amazonwebservices.com/AmazonS3/latest/API/RESTBucketGETversioningStatus.html


Swift Documentation, Release 2.27.1.dev38

Table 1 – continued from previous page
S3 REST API method Category Swift S3 API
Bucket notification Notifications No
Bucket Lifecycle123456 Bucket Lifecycle No
Bucket policy Advanced ACLs No
Public website78910 Public Website No
Billing1112 Billing No
GET Bucket location Advanced Feature Yes
Delete Multiple Objects Advanced Feature Yes
Object tagging Advanced Feature No
GET Object torrent Advanced Feature No
Bucket inventory Advanced Feature No
GET Bucket service Advanced Feature No
Bucket accelerate CDN Integration No

1 POST restore
2 Bucket lifecycle
3 Bucket logging
4 Bucket analytics
5 Bucket metrics
6 Bucket replication
7 OPTIONS object
8 Object POST from HTML form
9 Bucket public website

10 Bucket CORS
11 Request payment
12 Bucket tagging

454 Chapter 7. S3 Compatibility Info

http://docs.amazonwebservices.com/AmazonS3/latest/API/RESTBucketGETnotification.html
http://docs.amazonwebservices.com/AmazonS3/latest/API/RESTBucketGETpolicy.html
http://docs.amazonwebservices.com/AmazonS3/latest/API/RESTBucketGETlocation.html
http://docs.amazonwebservices.com/AmazonS3/latest/API/multiobjectdeleteapi.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGETtagging.html
http://docs.amazonwebservices.com/AmazonS3/latest/API/RESTObjectGETtorrent.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETInventoryConfig.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTServiceGET.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETaccelerate.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPOSTrestore.html
http://docs.amazonwebservices.com/AmazonS3/latest/API/RESTBucketGETlifecycle.html
http://docs.amazonwebservices.com/AmazonS3/latest/API/RESTBucketGETlogging.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETAnalyticsConfig.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETMetricConfiguration.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETreplication.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTOPTIONSobject.html
http://docs.amazonwebservices.com/AmazonS3/latest/API/RESTObjectPOST.html
http://docs.amazonwebservices.com/AmazonS3/latest/API/RESTBucketGETwebsite.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETcors.html
http://docs.amazonwebservices.com/AmazonS3/latest/API/RESTrequestPaymentPUT.html
http://docs.aws.amazon.com/AmazonS3/latest/API/RESTBucketGETtagging.html


CHAPTER

EIGHT

OPENSTACK END USER GUIDE

The OpenStack End User Guide has additional information on using Swift. See the Manage objects and
containers section.

455

http://docs.openstack.org/user-guide
http://docs.openstack.org/user-guide/managing-openstack-object-storage-with-swift-cli.html
http://docs.openstack.org/user-guide/managing-openstack-object-storage-with-swift-cli.html


Swift Documentation, Release 2.27.1.dev38

456 Chapter 8. OpenStack End User Guide



CHAPTER

NINE

SOURCE DOCUMENTATION

9.1 Partitioned Consistent Hash Ring

9.1.1 Ring

class swift.common.ring.ring.Ring(serialized_path, reload_time=15,
ring_name=None, valida-
tion_hook=<function Ring.<lambda»)

Bases: object

Partitioned consistent hashing ring.

Parameters

• serialized_path path to serialized RingData instance

• reload_time time interval in seconds to check for a ring change

• ring_name ring name string (basically specified from policy)

• validation_hook hook point to validate ring configuration ontime

Raises RingLoadError if the loaded ring data violates its constraint

property assigned_device_count
Number of devices with assignments in the ring.

property device_count
Number of devices in the ring.

property devs
devices in the ring

get_more_nodes(part)
Generator to get extra nodes for a partition for hinted handoff.

The handoff nodes will try to be in zones other than the primary zones, will take into account
the device weights, and will usually keep the same sequences of handoffs even with ring
changes.

Parameters part partition to get handoff nodes for

Returns generator of node dicts

See get_nodes() for a description of the node dicts.

457



Swift Documentation, Release 2.27.1.dev38

get_nodes(account, container=None, obj=None)
Get the partition and nodes for an account/container/object. If a node is responsible for more
than one replica, it will only appear in the output once.

Parameters

• account account name

• container container name

• obj object name

Returns a tuple of (partition, list of node dicts)

Each node dict will have at least the following keys:

id unique integer identifier amongst devices
in-
dex

offset into the primary node list for the partition

weighta float of the relative weight of this device as compared to others; this indicates
how many partitions the builder will try to assign to this device

zone integer indicating which zone the device is in; a given partition will not be assigned
to multiple devices within the same zone

ip the ip address of the device
port the tcp port of the device
de-
vice

the devices name on disk (sdb1, for example)

meta general use extra field; for example: the online date, the hardware description

get_part(account, container=None, obj=None)
Get the partition for an account/container/object.

Parameters

• account account name

• container container name

• obj object name

Returns the partition number

get_part_nodes(part)
Get the nodes that are responsible for the partition. If one node is responsible for more than
one replica of the same partition, it will only appear in the output once.

Parameters part partition to get nodes for

Returns list of node dicts

See get_nodes() for a description of the node dicts.

has_changed()
Check to see if the ring on disk is different than the current one in memory.

Returns True if the ring on disk has changed, False otherwise

property md5

property next_part_power

458 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

property part_power

property partition_count
Number of partitions in the ring.

property raw_size

property replica_count
Number of replicas (full or partial) used in the ring.

property size

property version

property weighted_device_count
Number of devices with weight in the ring.

class swift.common.ring.ring.RingData(replica2part2dev_id, devs, part_shift,
next_part_power=None, ver-
sion=None)

Bases: object

Partitioned consistent hashing ring data (used for serialization).

classmethod deserialize_v1(gz_file, metadata_only=False)
Deserialize a v1 ring file into a dictionary with devs, part_shift, and replica2part2dev_id
keys.

If the optional kwarg metadata_only is True, then the replica2part2dev_id is not loaded and
that key in the returned dictionary just has the value [].

Parameters

• gz_file (file) An opened file-like object which has already consumed
the 6 bytes of magic and version.

• metadata_only (bool) If True, only load devs and part_shift

Returns A dict containing devs, part_shift, and replica2part2dev_id

classmethod load(filename, metadata_only=False)
Load ring data from a file.

Parameters

• filename Path to a file serialized by the save() method.

• metadata_only (bool) If True, only load devs and part_shift.

Returns A RingData instance containing the loaded data.

property replica_count
Number of replicas (full or partial) used in the ring.

save(filename, mtime=1300507380.0)
Serialize this RingData instance to disk.

Parameters

• filename File into which this instance should be serialized.

• mtime time used to override mtime for gzip, default or None if the caller
wants to include time

9.1. Partitioned Consistent Hash Ring 459



Swift Documentation, Release 2.27.1.dev38

serialize_v1(file_obj)

to_dict()

class swift.common.ring.ring.RingReader(filename)
Bases: object

chunk_size = 65536

property close

property md5

read(amount=- 1)

readinto(buffer)

readline()

seek(pos, ref=0)

swift.common.ring.ring.calc_replica_count(replica2part2dev_id)

9.1.2 Ring Builder

class swift.common.ring.builder.RingBuilder(part_power, replicas,
min_part_hours)

Bases: object

Used to build swift.common.ring.RingData instances to be written to disk and used with
swift.common.ring.Ring instances. See bin/swift-ring-builder for example usage.

The instance variable devs_changed indicates if the device information has changed since the last
balancing. This can be used by tools to know whether a rebalance request is an isolated request or
due to added, changed, or removed devices.

Parameters

• part_power number of partitions = 2**part_power.

• replicas number of replicas for each partition

• min_part_hours minimum number of hours between partition changes

add_dev(dev)
Add a device to the ring. This device dict should have a minimum of the following keys:

460 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

id unique integer identifier amongst devices. Defaults to the next id if the id key is
not provided in the dict

weighta float of the relative weight of this device as compared to others; this indicates
how many partitions the builder will try to assign to this device

re-
gion

integer indicating which region the device is in

zone integer indicating which zone the device is in; a given partition will not be assigned
to multiple devices within the same (region, zone) pair if there is any alternative

ip the ip address of the device
port the tcp port of the device
de-
vice

the devices name on disk (sdb1, for example)

meta general use extra field; for example: the online date, the hardware description

Note: This will not rebalance the ring immediately as you may want to make multiple
changes for a single rebalance.

Parameters dev device dict

Returns id of device (not used in the tree anymore, but unknown users may depend
on it)

cancel_increase_partition_power()
Cancels a ring partition power increasement.

This sets the next_part_power to the current part_power. Object replicators will still skip
replication, and a cleanup is still required. Finally, a finish_increase_partition_power needs
to be run.

Returns False if next_part_power was not set or is equal to current part_power,
otherwise True.

change_min_part_hours(min_part_hours)
Changes the value used to decide if a given partition can be moved again. This restriction is
to give the overall system enough time to settle a partition to its new location before moving
it to yet another location. While no data would be lost if a partition is moved several times
quickly, it could make that data unreachable for a short period of time.

This should be set to at least the average full partition replication time. Starting it at 24 hours
and then lowering it to what the replicator reports as the longest partition cycle is best.

Parameters min_part_hours new value for min_part_hours

copy_from(builder)
Reinitializes this RingBuilder instance from data obtained from the builder dict given. Code
example:

b = RingBuilder(1, 1, 1) # Dummy values
b.copy_from(builder)

This is to restore a RingBuilder that has had its b.to_dict() previously saved.

9.1. Partitioned Consistent Hash Ring 461



Swift Documentation, Release 2.27.1.dev38

debug()
Temporarily enables debug logging, useful in tests, e.g.

with rb.debug(): rb.rebalance()

property ever_rebalanced

finish_increase_partition_power()
Finish the partition power increase.

The hard links from the old object locations should be removed by now.

classmethod from_dict(builder_data)

get_balance()
Get the balance of the ring. The balance value is the highest percentage of the desired
amount of partitions a given device wants. For instance, if the worst device wants (based
on its weight relative to the sum of all the devices weights) 123 partitions and it has 124
partitions, the balance value would be 0.83 (1 extra / 123 wanted * 100 for percentage).

Returns balance of the ring

get_part_devices(part)
Get the devices that are responsible for the partition, filtering out duplicates.

Parameters part partition to get devices for

Returns list of device dicts

get_required_overload(weighted=None, wanted=None)
Returns the minimum overload value required to make the ring maximally dispersed.

The required overload is the largest percentage change of any single device from its weighted
replicanth to its wanted replicanth (note: under weighted devices have a negative percentage
change) to archive dispersion - that is to say a single device that must be overloaded by 5%
is worse than 5 devices in a single tier overloaded by 1%.

get_ring()
Get the ring, or more specifically, the swift.common.ring.RingData. This ring data is the
minimum required for use of the ring. The ring builder itself keeps additional data such as
when partitions were last moved.

property id

increase_partition_power()
Increases ring partition power by one.

Devices will be assigned to partitions like this:

OLD: 0, 3, 7, 5, 2, 1, NEW: 0, 0, 3, 3, 7, 7, 5, 5, 2, 2, 1, 1,

Returns False if next_part_power was not set or is equal to current part_power,
None if something went wrong, otherwise True.

classmethod load(builder_file, open=<built-in function open>, **kwargs)
Obtain RingBuilder instance of the provided builder file

Parameters builder_file path to builder file to load

Returns RingBuilder instance

462 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

property min_part_seconds_left
Get the total seconds until a rebalance can be performed

property part_shift

prepare_increase_partition_power()
Prepares a ring for partition power increase.

This makes it possible to compute the future location of any object based on the next partition
power.

In this phase object servers should create hard links when finalizing a write to the new
location as well. A relinker will be run after restarting object-servers, creating hard links to
all existing objects in their future location.

Returns False if next_part_power was not set, otherwise True.

pretend_min_part_hours_passed()
Override min_part_hours by marking all partitions as having been moved 255 hours ago and
last move epoch to the beginning of time. This can be used to force a full rebalance on the
next call to rebalance.

rebalance(seed=None)
Rebalance the ring.

This is the main work function of the builder, as it will assign and reassign partitions to
devices in the ring based on weights, distinct zones, recent reassignments, etc.

The process doesnt always perfectly assign partitions (thatd take a lot more analysis and
therefore a lot more time I had code that did that before). Because of this, it keeps rebal-
ancing until the device skew (number of partitions a device wants compared to what it has)
gets below 1% or doesnt change by more than 1% (only happens with a ring that cant be
balanced no matter what).

Parameters seed a value for the random seed (optional)

Returns (number_of_partitions_altered, resulting_balance, num-
ber_of_removed_devices)

remove_dev(dev_id)
Remove a device from the ring.

Note: This will not rebalance the ring immediately as you may want to make multiple
changes for a single rebalance.

Parameters dev_id device id

save(builder_file)
Serialize this RingBuilder instance to disk.

Parameters builder_file path to builder file to save

search_devs(search_values)
Search devices by parameters.

9.1. Partitioned Consistent Hash Ring 463



Swift Documentation, Release 2.27.1.dev38

Parameters search_values a dictionary with search values to filter devices,
supported parameters are id, region, zone, ip, port, replication_ip, replica-
tion_port, device, weight, meta

Returns list of device dicts

set_dev_region(dev_id, region)
Set the region of a device. This should be called rather than just altering the region key in
the device dict directly, as the builder will need to rebuild some internal state to reflect the
change.

Note: This will not rebalance the ring immediately as you may want to make multiple
changes for a single rebalance.

Parameters

• dev_id device id

• region new region for device

set_dev_weight(dev_id, weight)
Set the weight of a device. This should be called rather than just altering the weight key in
the device dict directly, as the builder will need to rebuild some internal state to reflect the
change.

Note: This will not rebalance the ring immediately as you may want to make multiple
changes for a single rebalance.

Parameters

• dev_id device id

• weight new weight for device

set_dev_zone(dev_id, zone)
Set the zone of a device. This should be called rather than just altering the zone key in
the device dict directly, as the builder will need to rebuild some internal state to reflect the
change.

Note: This will not rebalance the ring immediately as you may want to make multiple
changes for a single rebalance.

Parameters

• dev_id device id

• zone new zone for device

set_overload(overload)

464 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

set_replicas(new_replica_count)
Changes the number of replicas in this ring.

If the new replica count is sufficiently different that self._replica2part2dev will change size,
sets self.devs_changed. This is so tools like bin/swift-ring-builder can know to write out the
new ring rather than bailing out due to lack of balance change.

to_dict()
Returns a dict that can be used later with copy_from to restore a RingBuilder. swift-ring-
builder uses this to pickle.dump the dict to a file and later load that dict into copy_from.

validate(stats=False)
Validate the ring.

This is a safety function to try to catch any bugs in the building process. It ensures partitions
have been assigned to real devices, arent doubly assigned, etc. It can also optionally check
the even distribution of partitions across devices.

Parameters stats if True, check distribution of partitions across devices

Returns if stats is True, a tuple of (device_usage, worst_stat), else (None, None).
device_usage[dev_id] will equal the number of partitions assigned to that de-
vice. worst_stat will equal the number of partitions the worst device is skewed
from the number it should have.

Raises RingValidationError problem was found with the ring.

weight_of_one_part()
Returns the weight of each partition as calculated from the total weight of all the devices.

exception swift.common.ring.builder.RingValidationWarning
Bases: Warning

9.1.3 Composite Ring Builder

A standard ring built using the ring-builder will attempt to randomly disperse replicas or erasure-coded
fragments across failure domains, but does not provide any guarantees such as placing at least one
replica of every partition into each region. Composite rings are intended to provide operators with
greater control over the dispersion of object replicas or fragments across a cluster, in particular when
there is a desire to have strict guarantees that some replicas or fragments are placed in certain failure
domains. This is particularly important for policies with duplicated erasure-coded fragments.

A composite ring comprises two or more component rings that are combined to form a single ring with
a replica count equal to the sum of replica counts from the component rings. The component rings are
built independently, using distinct devices in distinct regions, which means that the dispersion of replicas
between the components can be guaranteed. The composite_builder utilities may then be used to
combine components into a composite ring.

For example, consider a normal ring ring0 with replica count of 4 and devices in two regions r1 and
r2. Despite the best efforts of the ring-builder, it is possible for there to be three replicas of a particular
partition placed in one region and only one replica placed in the other region. For example:

part_n -> r1z1h110/sdb r1z2h12/sdb r1z3h13/sdb r2z1h21/sdb

Now consider two normal rings each with replica count of 2: ring1 has devices in only r1; ring2
has devices in only r2. When these rings are combined into a composite ring then every partition is
guaranteed to be mapped to two devices in each of r1 and r2, for example:

9.1. Partitioned Consistent Hash Ring 465



Swift Documentation, Release 2.27.1.dev38

part_n -> r1z1h10/sdb r1z2h20/sdb r2z1h21/sdb r2z2h22/sdb
|_____________________| |_____________________|

| |
ring1 ring2

The dispersion of partition replicas across failure domains within each of the two component rings may
change as they are modified and rebalanced, but the dispersion of replicas between the two regions is
guaranteed by the use of a composite ring.

For rings to be formed into a composite they must satisfy the following requirements:

• All component rings must have the same part power (and therefore number of partitions)

• All component rings must have an integer replica count

• Each region may only be used in one component ring

• Each device may only be used in one component ring

Under the hood, the composite ring has a _replica2part2dev_id table that is the union of the
tables from the component rings. Whenever the component rings are rebalanced, the composite ring
must be rebuilt. There is no dynamic rebuilding of the composite ring.

Note: The order in which component rings are combined into a composite ring is very significant
because it determines the order in which the Ring.get_part_nodes() method will provide primary nodes
for the composite ring and consequently the node indexes assigned to the primary nodes. For an erasure-
coded policy, inadvertent changes to the primary node indexes could result in large amounts of data
movement due to fragments being moved to their new correct primary.

The id of each component RingBuilder is therefore stored in metadata of the composite and used to
check for the component ordering when the same composite ring is re-composed. RingBuilder ids are
normally assigned when a RingBuilder instance is first saved. Older RingBuilder instances loaded from
file may not have an id assigned and will need to be saved before they can be used as components of a
composite ring. This can be achieved by, for example:

swift-ring-builder <builder-file> rebalance --force

class swift.common.ring.composite_builder.CompositeRingBuilder(builder_files=None)
Bases: object

Provides facility to create, persist, load, rebalance and update composite rings, for example:

# create a CompositeRingBuilder instance with a list of
# component builder files
crb = CompositeRingBuilder(["region1.builder", "region2.builder"])

# perform a cooperative rebalance of the component builders
crb.rebalance()

# call compose which will make a new RingData instance
ring_data = crb.compose()

# save the composite ring file
ring_data.save("composite_ring.gz")

(continues on next page)

466 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

# save the composite metadata file
crb.save("composite_builder.composite")

# load the persisted composite metadata file
crb = CompositeRingBuilder.load("composite_builder.composite")

# compose (optionally update the paths to the component builder files)
crb.compose(["/path/to/region1.builder", "/path/to/region2.builder"])

Composite ring metadata is persisted to file in JSON format. The metadata has the structure shown
below (using example values):

{
"version": 4,
"components": [

{
"version": 3,
"id": "8e56f3b692d43d9a666440a3d945a03a",
"replicas": 1

},
{

"version": 5,
"id": "96085923c2b644999dbfd74664f4301b",
"replicas": 1

}
]
"component_builder_files": {

"8e56f3b692d43d9a666440a3d945a03a": "/etc/swift/region1.builder
↪→",

"96085923c2b644999dbfd74664f4301b": "/etc/swift/region2.builder
↪→",
}
"serialization_version": 1,
"saved_path": "/etc/swift/multi-ring-1.composite",

}

version is an integer representing the current version of the composite ring, which increments each
time the ring is successfully (re)composed.

components is a list of dicts, each of which describes relevant properties of a component ring

component_builder_files is a dict that maps component ring builder ids to the file from which that
component ring builder was loaded.

serialization_version is an integer constant.

saved_path is the path to which the metadata was written.

Params builder_files a list of paths to builder files that will be used as components of
the composite ring.

can_part_move(part)
Check with all component builders that it is ok to move a partition.

Parameters part The partition to check.

Returns True if all component builders agree that the partition can be moved,
False otherwise.

9.1. Partitioned Consistent Hash Ring 467



Swift Documentation, Release 2.27.1.dev38

compose(builder_files=None, force=False, require_modified=False)
Builds a composite ring using component ring builders loaded from a list of builder files and
updates composite ring metadata.

If a list of component ring builder files is given then that will be used to load component ring
builders. Otherwise, component ring builders will be loaded using the list of builder files
that was set when the instance was constructed.

In either case, if metadata for an existing composite ring has been loaded then the component
ring builders are verified for consistency with the existing composition of builders, unless
the optional force flag if set True.

Parameters

• builder_files Optional list of paths to ring builder files that will be
used to load the component ring builders. Typically the list of component
builder files will have been set when the instance was constructed, for ex-
ample when using the load() class method. However, this parameter may be
used if the component builder file paths have moved, or, in conjunction with
the force parameter, if a new list of component builders is to be used.

• force if True then do not verify given builders are consistent with any
existing composite ring (default is False).

• require_modified if True and force is False, then verify that at least
one of the given builders has been modified since the composite ring was last
built (default is False).

Returns An instance of swift.common.ring.ring.RingData

Raises ValueError if the component ring builders are not suitable for composing
with each other, or are inconsistent with any existing composite ring, or if
require_modified is True and there has been no change with respect to the
existing ring.

classmethod load(path_to_file)
Load composite ring metadata.

Parameters path_to_file Absolute path to a composite ring JSON file.

Returns an instance of CompositeRingBuilder

Raises

• IOError if there is a problem opening the file

• ValueError if the file does not contain valid composite ring metadata

load_components(builder_files=None, force=False, require_modified=False)
Loads component ring builders from builder files. Previously loaded component ring
builders will discarded and reloaded.

If a list of component ring builder files is given then that will be used to load component ring
builders. Otherwise, component ring builders will be loaded using the list of builder files
that was set when the instance was constructed.

In either case, if metadata for an existing composite ring has been loaded then the component
ring builders are verified for consistency with the existing composition of builders, unless
the optional force flag if set True.

468 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

Parameters

• builder_files Optional list of paths to ring builder files that will be
used to load the component ring builders. Typically the list of component
builder files will have been set when the instance was constructed, for ex-
ample when using the load() class method. However, this parameter may be
used if the component builder file paths have moved, or, in conjunction with
the force parameter, if a new list of component builders is to be used.

• force if True then do not verify given builders are consistent with any
existing composite ring (default is False).

• require_modified if True and force is False, then verify that at least
one of the given builders has been modified since the composite ring was last
built (default is False).

Returns A tuple of (builder files, loaded builders)

Raises ValueError if the component ring builders are not suitable for composing
with each other, or are inconsistent with any existing composite ring, or if
require_modified is True and there has been no change with respect to the
existing ring.

rebalance()
Cooperatively rebalances all component ring builders.

This method does not change the state of the composite ring; a subsequent call to
compose() is required to generate updated composite RingData.

Returns

A list of dicts, one per component builder, each having the following keys:

• builder_file maps to the component builder file;

• builder maps to the corresponding instance of swift.common.ring.
builder.RingBuilder;

• result maps to the results of the rebalance of that component i.e.
a tuple of: (number_of_partitions_altered, resulting_balance, num-
ber_of_removed_devices)

The list has the same order as components in the composite ring.

Raises RingBuilderError if there is an error while rebalancing any compo-
nent builder.

save(path_to_file)
Save composite ring metadata to given file. See CompositeRingBuilder for details of
the persisted metadata format.

Parameters path_to_file Absolute path to a composite ring file

Raises ValueError if no composite ring has been built yet with this instance

to_dict()
Transform the composite ring attributes to a dict. See CompositeRingBuilder for
details of the persisted metadata format.

Returns a composite ring metadata dict

9.1. Partitioned Consistent Hash Ring 469



Swift Documentation, Release 2.27.1.dev38

update_last_part_moves()
Updates the record of how many hours ago each partition was moved in all component
builders.

class swift.common.ring.composite_builder.CooperativeRingBuilder(part_power,
repli-
cas,
min_part_hours,
par-
ent_builder)

Bases: swift.common.ring.builder.RingBuilder

A subclass of RingBuilder that participates in cooperative rebalance.

During rebalance this subclass will consult with its parent_builder before moving a partition. The
parent_builder may in turn check with co-builders (including this instance) to verify that none
have moved that partition in the last min_part_hours.

Parameters

• part_power number of partitions = 2**part_power.

• replicas number of replicas for each partition.

• min_part_hours minimum number of hours between partition changes.

• parent_builder an instance of CompositeRingBuilder.

can_part_move(part)
Check that in the context of this builder alone it is ok to move a partition.

Parameters part The partition to check.

Returns True if the partition can be moved, False otherwise.

update_last_part_moves()
Updates the record of how many hours ago each partition was moved in in this builder.

swift.common.ring.composite_builder.check_against_existing(old_composite_meta,
new_composite_meta)

Check that the given builders and their order are the same as that used to build an existing com-
posite ring. Return True if any of the given builders has been modified with respect to its state
when the given component_meta was created.

Parameters

• old_composite_meta a dict of the form returned by
_make_composite_meta()

• new_composite_meta a dict of the form returned by
_make_composite_meta()

Returns True if any of the components has been modified, False otherwise.

Raises Value Error if proposed new components do not match any existing com-
ponents.

swift.common.ring.composite_builder.check_builder_ids(builders)
Check that all builders in the given list have ids assigned and that no id appears more than once in
the list.

470 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

Parameters builders a list instances of swift.common.ring.builder.
RingBuilder

Raises ValueError if any builder id is missing or repeated

swift.common.ring.composite_builder.check_for_dev_uniqueness(builders)
Check that no device appears in more than one of the given list of builders.

Parameters builders a list of swift.common.ring.builder.
RingBuilder instances

Raises ValueError if the same device is found in more than one builder

swift.common.ring.composite_builder.check_same_builder(old_component,
new_component)

Check that the given new_component metadata describes the same builder as the given
old_component metadata. The new_component builder does not necessarily need to be in the
same state as when the old_component metadata was created to satisfy this check e.g. it may have
changed devs and been rebalanced.

Parameters

• old_component a dict of metadata describing a component builder

• new_component a dict of metadata describing a component builder

Raises ValueError if the new_component is not the same as that described by the
old_component

swift.common.ring.composite_builder.compose_rings(builders)
Given a list of component ring builders, perform validation on the list of builders and return a
composite RingData instance.

Parameters builders a list of swift.common.ring.builder.
RingBuilder instances

Returns a new RingData instance built from the component builders

Raises ValueError if the builders are invalid with respect to each other

swift.common.ring.composite_builder.is_builder_newer(old_component,
new_component)

Return True if the given builder has been modified with respect to its state when the given com-
ponent_meta was created.

Parameters

• old_component a dict of metadata describing a component ring

• new_component a dict of metadata describing a component ring

Returns True if the builder has been modified, False otherwise.

Raises ValueError if the version of the new_component is older than the version
of the existing component.

swift.common.ring.composite_builder.pre_validate_all_builders(builders)
Pre-validation for all component ring builders that are to be included in the composite ring. Checks
that all component rings are valid with respect to each other.

Parameters builders a list of swift.common.ring.builder.
RingBuilder instances

9.1. Partitioned Consistent Hash Ring 471



Swift Documentation, Release 2.27.1.dev38

Raises ValueError if the builders are invalid with respect to each other

9.2 Proxy

9.2.1 Proxy Controllers

Base

class swift.proxy.controllers.base.ByteCountEnforcer(file_like, nbytes)
Bases: object

Enforces that successive calls to file_like.read() give at least <nbytes> bytes before exhaustion.

If file_like fails to do so, ShortReadError is raised.

If more than <nbytes> bytes are read, we dont care.

read(amt=None)

class swift.proxy.controllers.base.Controller(app)
Bases: object

Base WSGI controller class for the proxy

GET(req)
Handler for HTTP GET requests.

Parameters req The client request

Returns the response to the client

GETorHEAD_base(req, server_type, node_iter, partition, path, concurrency=1, pol-
icy=None, client_chunk_size=None)

Base handler for HTTP GET or HEAD requests.

Parameters

• req swob.Request object

• server_type server type used in logging

• node_iter an iterator to obtain nodes from

• partition partition

• path path for the request

• concurrency number of requests to run concurrently

• policy the policy instance, or None if Account or Container

• client_chunk_size chunk size for response body iterator

Returns swob.Response object

HEAD(req)
Handler for HTTP HEAD requests.

Parameters req The client request

Returns the response to the client

472 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

OPTIONS(req)
Base handler for OPTIONS requests

Parameters req swob.Request object

Returns swob.Response object

account_info(account, req)
Get account information, and also verify that the account exists.

Parameters

• account native str name of the account to get the info for

• req callers HTTP request context object

Returns tuple of (account partition, account nodes, container_count) or (None,
None, None) if it does not exist

property allowed_methods

autocreate_account(req, account)
Autocreate an account

Parameters

• req request leading to this autocreate

• account the unquoted account name

best_response(req, statuses, reasons, bodies, server_type, etag=None, headers=None,
overrides=None, quorum_size=None)

Given a list of responses from several servers, choose the best to return to the API.

Parameters

• req swob.Request object

• statuses list of statuses returned

• reasons list of reasons for each status

• bodies bodies of each response

• server_type type of server the responses came from

• etag etag

• headers headers of each response

• overrides overrides to apply when lacking quorum

• quorum_size quorum size to use

Returns swob.Response object with the correct status, body, etc. set

container_info(account, container, req)
Get container information and thusly verify container existence. This will also verify account
existence.

Parameters

• account native-str account name for the container

• container native-str container name to look up

9.2. Proxy 473



Swift Documentation, Release 2.27.1.dev38

• req callers HTTP request context object

Returns dict containing at least container partition (partition), container nodes
(containers), container read acl (read_acl), container write acl (write_acl), and
container sync key (sync_key). Values are set to None if the container does not
exist.

generate_request_headers(orig_req=None, additional=None, transfer=False)
Create a list of headers to be used in backend requests

Parameters

• orig_req the original request sent by the client to the proxy

• additional additional headers to send to the backend

• transfer If True, transfer headers from original client request

Returns a dictionary of headers

get_name_length_limit()

have_quorum(statuses, node_count, quorum=None)
Given a list of statuses from several requests, determine if a quorum response can already be
decided.

Parameters

• statuses list of statuses returned

• node_count number of nodes being queried (basically ring count)

• quorum number of statuses required for quorum

Returns True or False, depending on if quorum is established

is_origin_allowed(cors_info, origin)
Is the given Origin allowed to make requests to this resource

Parameters

• cors_info the resources CORS related metadata headers

• origin the origin making the request

Returns True or False

make_requests(req, ring, part, method, path, headers, query_string=”, over-
rides=None, node_count=None, node_iterator=None, body=None)

Sends an HTTP request to multiple nodes and aggregates the results. It attempts the primary
nodes concurrently, then iterates over the handoff nodes as needed.

Parameters

• req a request sent by the client

• ring the ring used for finding backend servers

• part the partition number

• method the method to send to the backend

• path the path to send to the backend (full path ends up being /<$de-
vice>/<$part>/<$path>)

474 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

• headers a list of dicts, where each dict represents one backend request
that should be made.

• query_string optional query string to send to the backend

• overrides optional return status override map used to override the re-
turned status of a request.

• node_count optional number of nodes to send request to.

• node_iterator optional node iterator.

Returns a swob.Response object

pass_through_headers = []

property private_methods

server_type = 'Base'

transfer_headers(src_headers, dst_headers)
Transfer legal headers from an original client request to dictionary that will be used as head-
ers by the backend request

Parameters

• src_headers A dictionary of the original client request headers

• dst_headers A dictionary of the backend request headers

class swift.proxy.controllers.base.GetOrHeadHandler(app, req,
server_type,
node_iter, par-
tition, path,
backend_headers,
concurrency=1,
policy=None,
client_chunk_size=None,
newest=None)

Bases: object

fast_forward(num_bytes)
Will skip num_bytes into the current ranges.

Params num_bytes the number of bytes that have already been read on this re-
quest. This will change the Range header so that the next req will start where
it left off.

Raises

• HTTPRequestedRangeNotSatisfiable if begin + num_bytes >
end of range + 1

• RangeAlreadyComplete if begin + num_bytes == end of range + 1

get_working_response(req)

is_good_source(src)
Indicates whether or not the request made to the backend found what it was looking for.

Parameters src the response from the backend

Returns True if found, False if not

9.2. Proxy 475



Swift Documentation, Release 2.27.1.dev38

property last_headers

property last_status

learn_size_from_content_range(start, end, length)
If client_chunk_size is set, makes sure we yield things starting on chunk boundaries based
on the Content-Range header in the response.

Sets our Range headers first byterange to the value learned from the Content-Range header in
the response; if we were given a fully-specified range (e.g. bytes=123-456), this is a no-op.

If we were given a half-specified range (e.g. bytes=123- or bytes=-456), then this changes
the Range header to a semantically-equivalent one and it lets us resume on a proper boundary
instead of just in the middle of a piece somewhere.

pop_range()
Remove the first byterange from our Range header.

This is used after a byterange has been completely sent to the client; this way, should we
need to resume the download from another object server, we do not re-fetch byteranges that
the client already has.

If we have no Range header, this is a no-op.

class swift.proxy.controllers.base.NodeIter(app, ring, partition,
node_iter=None, pol-
icy=None)

Bases: object

Yields nodes for a ring partition, skipping over error limited nodes and stopping at the configurable
number of nodes. If a node yielded subsequently gets error limited, an extra node will be yielded
to take its place.

Note that if youre going to iterate over this concurrently from multiple greenthreads, youll want
to use a swift.common.utils.GreenthreadSafeIterator to serialize access. Otherwise, you may get
ValueErrors from concurrent access. (You also may not, depending on how logging is configured,
the vagaries of socket IO and eventlet, and the phase of the moon.)

Parameters

• app a proxy app

• ring ring to get yield nodes from

• partition ring partition to yield nodes for

• node_iter optional iterable of nodes to try. Useful if you want to filter or
reorder the nodes.

• policy an instance of BaseStoragePolicy. This should be None for
an account or container ring.

log_handoffs(handoffs)
Log handoff requests if handoff logging is enabled and the handoff was not expected.

We only log handoffs when weve pushed the handoff count further than we would normally
have expected under normal circumstances, that is (request_node_count - num_primaries),
when handoffs goes higher than that it means one of the primaries must have been skipped
because of error limiting before we consumed all of our nodes_left.

next()

476 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

property primaries_left

set_node_provider(callback)
Install a callback function that will be used during a call to next() to get an alternate node
instead of returning the next node from the iterator.

Parameters callback A no argument function that should return a node dict
or None.

swift.proxy.controllers.base.bytes_to_skip(record_size, range_start)
Assume an object is composed of N records, where the first N-1 are all the same size and the last
is at most that large, but may be smaller.

When a range request is made, it might start with a partial record. This must be discarded, lest
the consumer get bad data. This is particularly true of suffix-byte-range requests, e.g. Range:
bytes=-12345 where the size of the object is unknown at the time the request is made.

This function computes the number of bytes that must be discarded to ensure only whole records
are yielded. Erasure-code decoding needs this.

This function could have been inlined, but it took enough tries to get right that some targeted unit
tests were desirable, hence its extraction.

swift.proxy.controllers.base.clear_info_cache(app, env, account, con-
tainer=None, shard=None)

Clear the cached info in both memcache and env

Parameters

• app the application object

• env the WSGI environment

• account the account name

• container the container name if clearing info for containers, or None

• shard the sharding state if clearing info for container shard ranges, or None

swift.proxy.controllers.base.close_swift_conn(src)
Force close the http connection to the backend.

Parameters src the response from the backend

swift.proxy.controllers.base.cors_validation(func)
Decorator to check if the request is a CORS request and if so, if its valid.

Parameters func function to check

swift.proxy.controllers.base.delay_denial(func)
Decorator to declare which methods should have any swift.authorize call delayed. This is so the
method can load the Request object up with additional information that may be needed by the
authorization system.

Parameters func function for which authorization will be delayed

swift.proxy.controllers.base.get_account_info(env, app,
swift_source=None)

Get the info structure for an account, based on env and app. This is useful to middlewares.

9.2. Proxy 477



Swift Documentation, Release 2.27.1.dev38

Note: This call bypasses auth. Success does not imply that the request has authorization to the
account.

Raises ValueError when path doesnt contain an account

swift.proxy.controllers.base.get_cache_key(account, container=None,
obj=None, shard=None)

Get the keys for both memcache and env[swift.infocache] (cache_key) where info about accounts,
containers, and objects is cached

Parameters

• account The name of the account

• container The name of the container (or None if account)

• obj The name of the object (or None if account or container)

• shard Sharding state for the container query; typically updating or listing
(Requires account and container; cannot use with obj)

Returns a (native) string cache_key

swift.proxy.controllers.base.get_container_info(env, app,
swift_source=None)

Get the info structure for a container, based on env and app. This is useful to middlewares.

Note: This call bypasses auth. Success does not imply that the request has authorization to the
container.

swift.proxy.controllers.base.get_info(app, env, account, container=None,
swift_source=None)

Get info about accounts or containers

Note: This call bypasses auth. Success does not imply that the request has authorization to
the info.

Parameters

• app the application object

• env the environment used by the current request

• account The unquoted name of the account

• container The unquoted name of the container (or None if account)

• swift_source swift source logged for any subrequests made while re-
trieving the account or container info

Returns information about the specified entity in a dictionary. See get_account_info
and get_container_info for details on whats in the dictionary.

swift.proxy.controllers.base.get_object_info(env, app, path=None,
swift_source=None)

Get the info structure for an object, based on env and app. This is useful to middlewares.

478 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

Note: This call bypasses auth. Success does not imply that the request has authorization to the
object.

swift.proxy.controllers.base.headers_from_container_info(info)
Construct a HeaderKeyDict from a container info dict.

Parameters info a dict of container metadata

Returns a HeaderKeyDict or None if info is None or any required headers could not
be constructed

swift.proxy.controllers.base.headers_to_account_info(headers, sta-
tus_int=200)

Construct a cacheable dict of account info based on response headers.

swift.proxy.controllers.base.headers_to_container_info(headers, sta-
tus_int=200)

Construct a cacheable dict of container info based on response headers.

swift.proxy.controllers.base.headers_to_object_info(headers, sta-
tus_int=200)

Construct a cacheable dict of object info based on response headers.

swift.proxy.controllers.base.set_info_cache(app, env, account, container,
resp)

Cache info in both memcache and env.

Parameters

• app the application object

• account the unquoted account name

• container the unquoted container name or None

• resp the response received or None if info cache should be cleared

Returns the info that was placed into the cache, or None if the request status was not
in (404, 410, 2xx).

swift.proxy.controllers.base.set_object_info_cache(app, env, account,
container, obj,
resp)

Cache object info in the WSGI environment, but not in memcache. Caching in memcache would
lead to cache pressure and mass evictions due to the large number of objects in a typical Swift
cluster. This is a per-request cache only.

Parameters

• app the application object

• env the environment used by the current request

• account the unquoted account name

• container the unquoted container name

• obj the unquoted object name

• resp a GET or HEAD response received from an object server, or None if
info cache should be cleared

9.2. Proxy 479



Swift Documentation, Release 2.27.1.dev38

Returns the object info

swift.proxy.controllers.base.source_key(resp)
Provide the timestamp of the swift http response as a floating point value. Used as a sort key.

Parameters resp bufferedhttp response object

swift.proxy.controllers.base.update_headers(response, headers)
Helper function to update headers in the response.

Parameters

• response swob.Response object

• headers dictionary headers

Account

class swift.proxy.controllers.account.AccountController(app, ac-
count_name,
**kwargs)

Bases: swift.proxy.controllers.base.Controller

WSGI controller for account requests

DELETE(req)
HTTP DELETE request handler.

GETorHEAD(req)
Handler for HTTP GET/HEAD requests.

POST(req)
HTTP POST request handler.

PUT(req)
HTTP PUT request handler.

add_acls_from_sys_metadata(resp)

server_type = 'Account'

Container

class swift.proxy.controllers.container.ContainerController(app,
ac-
count_name,
con-
tainer_name,
**kwargs)

Bases: swift.proxy.controllers.base.Controller

WSGI controller for container requests

DELETE(req)
HTTP DELETE request handler.

GET(req)
Handler for HTTP GET requests.

480 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

GETorHEAD(req)
Handler for HTTP GET/HEAD requests.

HEAD(req)
Handler for HTTP HEAD requests.

POST(req)
HTTP POST request handler.

PUT(req)
HTTP PUT request handler.

UPDATE(req)
HTTP UPDATE request handler.

Method to perform bulk operations on container DBs, similar to a merge_items REPLICATE
request.

Not client facing; internal clients or middlewares must include
X-Backend-Allow-Method: UPDATE header to access.

clean_acls(req)

pass_through_headers = ['x-container-read', 'x-container-write', 'x-container-sync-key', 'x-container-sync-to', 'x-versions-location']

server_type = 'Container'

Object

class swift.proxy.controllers.obj.BaseObjectController(app, ac-
count_name,
con-
tainer_name,
object_name,
**kwargs)

Bases: swift.proxy.controllers.base.Controller

Base WSGI controller for object requests.

DELETE(req)
HTTP DELETE request handler.

GET(req)
Handler for HTTP GET requests.

GETorHEAD(req)
Handle HTTP GET or HEAD requests.

HEAD(req)
Handler for HTTP HEAD requests.

POST(req)
HTTP POST request handler.

PUT(req)
HTTP PUT request handler.

iter_nodes_local_first(ring, partition, policy=None, lo-
cal_handoffs_first=False)

Yields nodes for a ring partition.

9.2. Proxy 481



Swift Documentation, Release 2.27.1.dev38

If the write_affinity setting is non-empty, then this will yield N local nodes (as defined by
the write_affinity setting) first, then the rest of the nodes as normal. It is a re-ordering of
the nodes such that the local ones come first; no node is omitted. The effect is that the
request will be serviced by local object servers first, but nonlocal ones will be employed if
not enough local ones are available.

Parameters

• ring ring to get nodes from

• partition ring partition to yield nodes for

• policy optional, an instance of BaseStoragePolicy

• local_handoffs_first optional, if True prefer primaries and local
handoff nodes first before looking elsewhere.

server_type = 'Object'

class swift.proxy.controllers.obj.ECAppIter(path, policy, inter-
nal_parts_iters, range_specs,
fa_length, obj_length, logger)

Bases: object

WSGI iterable that decodes EC fragment archives (or portions thereof) into the original object (or
portions thereof).

Parameters

• path objects path, sans v1 (e.g. /a/c/o)

• policy storage policy for this object

• internal_parts_iters list of the response-document-parts iterators
for the backend GET responses. For an M+K erasure code, the caller must
supply M such iterables.

• range_specs list of dictionaries describing the ranges requested by the
client. Each dictionary contains the start and end of the clients requested byte
range as well as the start and end of the EC segments containing that byte
range.

• fa_length length of the fragment archive, in bytes, if the response is a
200. If its a 206, then this is ignored.

• obj_length length of the object, in bytes. Learned from the headers in the
GET response from the object server.

• logger a logger

app_iter_range(start, end)

app_iter_ranges(ranges, content_type, boundary, content_size)

close()

kickoff(req, resp)
Start pulling data from the backends so that we can learn things like the real Content-Type
that might only be in the multipart/byteranges response body. Update our response accord-
ingly.

482 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

Also, this is the first point at which we can learn the MIME boundary that our response has
in the headers. We grab that so we can also use it in the body.

Returns None

Raises HTTPException on error

next()

class swift.proxy.controllers.obj.ECFragGetter(app, req, node_iter,
partition, policy, path,
backend_headers,
header_provider, log-
ger_thread_locals)

Bases: object

fast_forward(num_bytes)
Will skip num_bytes into the current ranges.

Params num_bytes the number of bytes that have already been read on this re-
quest. This will change the Range header so that the next req will start where
it left off.

Raises

• HTTPRequestedRangeNotSatisfiable if begin + num_bytes >
end of range + 1

• RangeAlreadyComplete if begin + num_bytes == end of range + 1

property last_headers

property last_status

learn_size_from_content_range(start, end, length)
If client_chunk_size is set, makes sure we yield things starting on chunk boundaries based
on the Content-Range header in the response.

Sets our Range headers first byterange to the value learned from the Content-Range header in
the response; if we were given a fully-specified range (e.g. bytes=123-456), this is a no-op.

If we were given a half-specified range (e.g. bytes=123- or bytes=-456), then this changes
the Range header to a semantically-equivalent one and it lets us resume on a proper boundary
instead of just in the middle of a piece somewhere.

pop_range()
Remove the first byterange from our Range header.

This is used after a byterange has been completely sent to the client; this way, should we
need to resume the download from another object server, we do not re-fetch byteranges that
the client already has.

If we have no Range header, this is a no-op.

response_parts_iter(req)

property source_and_node_iter

class swift.proxy.controllers.obj.ECGetResponseBucket(policy, times-
tamp)

Bases: object

9.2. Proxy 483



Swift Documentation, Release 2.27.1.dev38

A helper class to encapsulate the properties of buckets in which fragment getters and alternate
nodes are collected.

add_alternate_nodes(node, frag_indexes)

add_response(getter, parts_iter)
Add another response to this bucket. Response buckets can be for fragments with the same
timestamp, or for errors with the same status.

close_conns()
Close buckets responses; they wont be used for a client response.

property durable

get_responses()
Return a list of all useful sources. Where there are multiple sources associated with the same
frag_index then only one is included.

Returns a list of sources, each source being a tuple of form (ECFragGetter, iter)

set_durable()

property shortfall
The number of additional responses needed to complete this bucket; typically (ndata -
resp_count).

If the bucket has no durable responses, shortfall is extended out to replica count to ensure
the proxy makes additional primary requests.

property shortfall_with_alts

class swift.proxy.controllers.obj.ECGetResponseCollection(policy)
Bases: object

Manages all successful EC GET responses gathered by ECFragGetters.

A response comprises a tuple of (<getter instance>, <parts iterator>). All responses having the
same data timestamp are placed in an ECGetResponseBucket for that timestamp. The buckets are
stored in the buckets dict which maps timestamp-> bucket.

This class encapsulates logic for selecting the best bucket from the collection, and for choosing
alternate nodes.

add_bad_resp(get, parts_iter)

add_good_response(get, parts_iter)

add_response(get, parts_iter)
Add a response to the collection.

Parameters

• get An instance of ECFragGetter

• parts_iter An iterator over response body parts

Raises ValueError if the response etag or status code values do not match any
values previously received for the same timestamp

property best_bucket
Return the best bucket in the collection.

484 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

The best bucket is the newest timestamp with sufficient getters, or the closest to having
sufficient getters, unless it is bettered by a bucket with potential alternate nodes.

If there are no good buckets we return the least_bad bucket.

Returns An instance of ECGetResponseBucket or None if there are no buck-
ets in the collection.

choose_best_bucket()

property durable

get_extra_headers()

has_alternate_node()

property least_bad_bucket
Return the bad_bucket with the smallest shortfall

provide_alternate_node()
Callback function that is installed in a NodeIter. Called on every call to NodeIter.next(),
which means we can track the number of nodes to which GET requests have been made and
selectively inject an alternate node, if we have one.

Returns A dict describing a node to which the next GET request should be made.

property shortfall

class swift.proxy.controllers.obj.ECObjectController(app, ac-
count_name,
container_name,
object_name,
**kwargs)

Bases: swift.proxy.controllers.obj.BaseObjectController

feed_remaining_primaries(safe_iter, pile, req, partition, policy, buckets, feeder_q,
logger_thread_locals)

policy_type = 'erasure_coding'

class swift.proxy.controllers.obj.MIMEPutter(conn, node, resp, req,
connect_duration, watch-
dog, write_timeout,
send_exception_handler,
logger, mime_boundary,
multiphase=False)

Bases: swift.proxy.controllers.obj.Putter

Putter for backend PUT requests that use MIME.

This is here mostly to wrap up the fact that all multipart PUTs are chunked because of the mime
boundary footer trick and the first half of the two-phase PUT conversation handling.

An HTTP PUT request that supports streaming.

classmethod connect(node, part, req, headers, watchdog, conn_timeout,
node_timeout, write_timeout, send_exception_handler,
logger=None, need_multiphase=True, **kwargs)

Connect to a backend node and send the headers.

Override superclass method to notify object of need for support for multipart body with
footers and optionally multiphase commit, and verify object servers capabilities.

9.2. Proxy 485



Swift Documentation, Release 2.27.1.dev38

Parameters need_multiphase if True then multiphase support is required of
the object server

Raises

• FooterNotSupported if need_metadata_footer is set but backend node
cant process footers

• MultiphasePUTNotSupported if need_multiphase is set but backend
node cant handle multiphase PUT

end_of_object_data(footer_metadata=None)
Call when there is no more data to send.

Overrides superclass implementation to send any footer metadata after object data.

Parameters footer_metadata dictionary of metadata items to be sent as
footers.

send_commit_confirmation()
Call when there are > quorum 2XX responses received. Send commit confirmations to all
object nodes to finalize the PUT.

class swift.proxy.controllers.obj.ObjectControllerRouter
Bases: object

policy_type_to_controller_map = {'erasure_coding': <class 'swift.proxy.controllers.obj.ECObjectController'>, 'replication': <class 'swift.proxy.controllers.obj.ReplicatedObjectController'>}

classmethod register(policy_type)
Decorator for Storage Policy implementations to register their ObjectController implemen-
tations.

This also fills in a policy_type attribute on the class.

class swift.proxy.controllers.obj.Putter(conn, node, resp, path,
connect_duration, watch-
dog, write_timeout,
send_exception_handler, logger,
chunked=False)

Bases: object

Putter for backend PUT requests.

Encapsulates all the actions required to establish a connection with a storage node and stream data
to that node.

Parameters

• conn an HTTPConnection instance

• node dict describing storage node

• resp an HTTPResponse instance if connect() received final response

• path the object path to send to the storage node

• connect_duration time taken to initiate the HTTPConnection

• watchdog a spawned Watchdog instance that will enforce timeouts

• write_timeout time limit to write a chunk to the connection socket

486 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

• send_exception_handler callback called when an exception occured
writing to the connection socket

• logger a Logger instance

• chunked boolean indicating if the request encoding is chunked

await_response(timeout, informational=False)
Get 100-continue response indicating the end of 1st phase of a 2-phase commit or the final
response, i.e. the one with status >= 200.

Might or might not actually wait for anything. If we said Expect: 100-continue but got back
a non-100 response, thatll be the thing returned, and we wont do any network IO to get it.
OTOH, if we got a 100 Continue response and sent up the PUT requests body, then well
actually read the 2xx-5xx response off the network here.

Parameters

• timeout time to wait for a response

• informational if True then try to get a 100-continue response, other-
wise try to get a final response.

Returns HTTPResponse

Raises Timeout if the response took too long

close()

classmethod connect(node, part, path, headers, watchdog, conn_timeout,
node_timeout, write_timeout, send_exception_handler, log-
ger=None, chunked=False, **kwargs)

Connect to a backend node and send the headers.

Returns Putter instance

Raises

• ConnectionTimeout if initial connection timed out

• ResponseTimeout if header retrieval timed out

• InsufficientStorage on 507 response from node

• PutterConnectError on non-507 server error response from node

end_of_object_data(**kwargs)
Call when there is no more data to send.

send_chunk(chunk, timeout_at=None)

class swift.proxy.controllers.obj.ReplicatedObjectController(app,
ac-
count_name,
con-
tainer_name,
ob-
ject_name,
**kwargs)

Bases: swift.proxy.controllers.obj.BaseObjectController

policy_type = 'replication'

9.2. Proxy 487



Swift Documentation, Release 2.27.1.dev38

swift.proxy.controllers.obj.check_content_type(req)

swift.proxy.controllers.obj.chunk_transformer(policy)
A generator to transform a source chunk to erasure coded chunks for each send call. The number
of erasure coded chunks is as policy.ec_n_unique_fragments.

swift.proxy.controllers.obj.client_range_to_segment_range(client_start,
client_end,
seg-
ment_size)

Takes a byterange from the client and converts it into a byterange spanning the necessary seg-
ments.

Handles prefix, suffix, and fully-specified byte ranges.

Examples: client_range_to_segment_range(100, 700, 512) = (0, 1023)
client_range_to_segment_range(100, 700, 256) = (0, 767)
client_range_to_segment_range(300, None, 256) = (256, None)

Parameters

• client_start first byte of the range requested by the client

• client_end last byte of the range requested by the client

• segment_size size of an EC segment, in bytes

Returns

a 2-tuple (seg_start, seg_end) where

• seg_start is the first byte of the first segment, or None if this is a suffix byte
range

• seg_end is the last byte of the last segment, or None if this is a prefix byte
range

swift.proxy.controllers.obj.is_good_source(status)
Indicates whether or not the request made to the backend found what it was looking for.

Parameters status the response from the backend

Returns True if found, False if not

swift.proxy.controllers.obj.num_container_updates(container_replicas,
container_quorum,
object_replicas,
object_quorum)

We need to send container updates via enough object servers such that, if the object PUT suc-
ceeds, then the container update is durable (either its synchronously updated or written to async
pendings).

Define: Qc = the quorum size for the container ring Qo = the quorum size for the object ring Rc
= the replica count for the container ring Ro = the replica count (or EC N+K) for the object
ring

A durable container update is one thats made it to at least Qc nodes. To always be durable, we
have to send enough container updates so that, if only Qo object PUTs succeed, and all the failed
object PUTs had container updates, at least Qc updates remain. Since (Ro - Qo) object PUTs may
fail, we must have at least Qc + Ro - Qo container updates to ensure that Qc of them remain.

488 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

Also, each container replica is named in at least one object PUT request so that, when all requests
succeed, no work is generated for the container replicator. Thus, at least Rc updates are necessary.

Parameters

• container_replicas replica count for the container ring (Rc)

• container_quorum quorum size for the container ring (Qc)

• object_replicas replica count for the object ring (Ro)

• object_quorum quorum size for the object ring (Qo)

swift.proxy.controllers.obj.segment_range_to_fragment_range(segment_start,
seg-
ment_end,
seg-
ment_size,
frag-
ment_size)

Takes a byterange spanning some segments and converts that into a byterange spanning the corre-
sponding fragments within their fragment archives.

Handles prefix, suffix, and fully-specified byte ranges.

Parameters

• segment_start first byte of the first segment

• segment_end last byte of the last segment

• segment_size size of an EC segment, in bytes

• fragment_size size of an EC fragment, in bytes

Returns

a 2-tuple (frag_start, frag_end) where

• frag_start is the first byte of the first fragment, or None if this is a suffix byte
range

• frag_end is the last byte of the last fragment, or None if this is a prefix byte
range

swift.proxy.controllers.obj.trailing_metadata(policy, client_obj_hasher,
bytes_transferred_from_client,
fragment_archive_index)

9.2.2 Proxy Server

class swift.proxy.server.Application(conf, logger=None, account_ring=None,
container_ring=None)

Bases: object

WSGI application for the proxy server.

check_config()
Check the configuration for possible errors

9.2. Proxy 489



Swift Documentation, Release 2.27.1.dev38

error_limit(node, msg)
Mark a node as error limited. This immediately pretends the node received enough errors to
trigger error suppression. Use this for errors like Insufficient Storage. For other errors use
error_occurred().

Parameters

• node dictionary of node to error limit

• msg error message

error_limited(node)
Check if the node is currently error limited.

Parameters node dictionary of node to check

Returns True if error limited, False otherwise

error_occurred(node, msg)
Handle logging, and handling of errors.

Parameters

• node dictionary of node to handle errors for

• msg error message

exception_occurred(node, typ, additional_info, **kwargs)
Handle logging of generic exceptions.

Parameters

• node dictionary of node to log the error for

• typ server type

• additional_info additional information to log

get_controller(req)
Get the controller to handle a request.

Parameters req the request

Returns tuple of (controller class, path dictionary)

Raises ValueError (thrown by split_path) if given invalid path

get_object_ring(policy_idx)
Get the ring object to use to handle a request based on its policy.

Parameters policy_idx policy index as defined in swift.conf

Returns appropriate ring object

get_policy_options(policy)
Return policy specific options.

Parameters policy an instance of BaseStoragePolicy or None

Returns an instance of ProxyOverrideOptions

handle_request(req)
Entry point for proxy server. Should return a WSGI-style callable (such as swob.Response).

Parameters req swob.Request object

490 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

iter_nodes(ring, partition, node_iter=None, policy=None)

modify_wsgi_pipeline(pipe)
Called during WSGI pipeline creation. Modifies the WSGI pipeline context to ensure that
mandatory middleware is present in the pipeline.

Parameters pipe A PipelineWrapper object

set_node_timing(node, timing)

sort_nodes(nodes, policy=None)
Sorts nodes in-place (and returns the sorted list) according to the configured strategy. The
default sorting is to randomly shuffle the nodes. If the timing strategy is chosen, the nodes
are sorted according to the stored timing data.

Parameters

• nodes a list of nodes

• policy an instance of BaseStoragePolicy

update_request(req)

class swift.proxy.server.ProxyOverrideOptions(base_conf, override_conf,
app)

Bases: object

Encapsulates proxy server options that may be overridden e.g. for policy specific configurations.

Parameters

• conf the proxy-server config dict.

• override_conf a dict of overriding configuration options.

swift.proxy.server.app_factory(global_conf, **local_conf)
paste.deploy app factory for creating WSGI proxy apps.

swift.proxy.server.parse_per_policy_config(conf)
Search the config file for any per-policy config sections and load those sections to a dict mapping
policy reference (name or index) to policy options.

Parameters conf the proxy server conf dict

Returns a dict mapping policy reference -> dict of policy options

Raises ValueError if a policy config section has an invalid name

9.3 Account

9.3.1 Account Auditor

class swift.account.auditor.AccountAuditor(conf, logger=None)
Bases: swift.common.daemon.Daemon

Audit accounts.

account_audit(path)
Audits the given account path

9.3. Account 491



Swift Documentation, Release 2.27.1.dev38

Parameters path the path to an account db

run_forever(*args, **kwargs)
Run the account audit until stopped.

run_once(*args, **kwargs)
Run the account audit once.

validate_per_policy_counts(broker)

swift.account.auditor.random()→ x in the interval [0, 1).

9.3.2 Account Backend

Pluggable Back-end for Account Server

class swift.account.backend.AccountBroker(db_file, timeout=25, log-
ger=None, account=None,
container=None, pend-
ing_timeout=None,
stale_reads_ok=False,
skip_commits=False)

Bases: swift.common.db.DatabaseBroker

Encapsulates working with an account database.

create_account_stat_table(conn, put_timestamp)
Create account_stat table which is specific to the account DB. Not a part of Pluggable Back-
ends, internal to the baseline code.

Parameters

• conn DB connection object

• put_timestamp put timestamp

create_container_table(conn)
Create container table which is specific to the account DB.

Parameters conn DB connection object

create_policy_stat_table(conn)
Create policy_stat table which is specific to the account DB. Not a part of Pluggable Back-
ends, internal to the baseline code.

Parameters conn DB connection object

db_contains_type = 'container'

db_reclaim_timestamp = 'delete_timestamp'

db_type = 'account'

empty()
Check if the account DB is empty.

Returns True if the database has no active containers.

get_db_version(conn)

492 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

get_info()
Get global data for the account.

Returns dict with keys: account, created_at, put_timestamp, delete_timestamp,
status_changed_at, container_count, object_count, bytes_used, hash, id

get_policy_stats(do_migrations=False)
Get global policy stats for the account.

Parameters do_migrations boolean, if True the policy stat dicts will al-
ways include the container_count key; otherwise it may be omitted on legacy
databases until they are migrated.

Returns dict of policy stats where the key is the policy index and the value is a
dictionary like {object_count: M, bytes_used: N, container_count: L}

is_status_deleted()
Only returns true if the status field is set to DELETED.

list_containers_iter(limit, marker, end_marker, prefix, delimiter, reverse=False,
allow_reserved=False)

Get a list of containers sorted by name starting at marker onward, up to limit entries. Entries
will begin with the prefix and will not have the delimiter after the prefix.

Parameters

• limit maximum number of entries to get

• marker marker query

• end_marker end marker query

• prefix prefix query

• delimiter delimiter for query

• reverse reverse the result order.

• allow_reserved exclude names with reserved-byte by default

Returns list of tuples of (name, object_count, bytes_used, put_timestamp, 0)

make_tuple_for_pickle(record)
Turn this db record dict into the format this service uses for pending pickles.

merge_items(item_list, source=None)
Merge items into the container table.

Parameters

• item_list list of dictionaries of {name, put_timestamp,
delete_timestamp, object_count, bytes_used, deleted, stor-
age_policy_index}

• source if defined, update incoming_sync with the source

put_container(name, put_timestamp, delete_timestamp, object_count, bytes_used,
storage_policy_index)

Create a container with the given attributes.

Parameters

• name name of the container to create (a native string)

9.3. Account 493



Swift Documentation, Release 2.27.1.dev38

• put_timestamp put_timestamp of the container to create

• delete_timestamp delete_timestamp of the container to create

• object_count number of objects in the container

• bytes_used number of bytes used by the container

• storage_policy_index the storage policy for this container

9.3.3 Account Reaper

class swift.account.reaper.AccountReaper(conf, logger=None)
Bases: swift.common.daemon.Daemon

Removes data from status=DELETED accounts. These are accounts that have been asked to be
removed by the reseller via services remove_storage_account XMLRPC call.

The account is not deleted immediately by the services call, but instead the account is simply
marked for deletion by setting the status column in the account_stat table of the account database.
This account reaper scans for such accounts and removes the data in the background. The back-
ground deletion process will occur on the primary account server for the account.

Parameters

• server_conf The [account-server] dictionary of the account server con-
figuration file

• reaper_conf The [account-reaper] dictionary of the account server con-
figuration file

See the etc/account-server.conf-sample for information on the possible configuration parameters.

get_account_ring()
The account swift.common.ring.Ring for the cluster.

get_container_ring()
The container swift.common.ring.Ring for the cluster.

get_object_ring(policy_idx)
Get the ring identified by the policy index

Parameters policy_idx Storage policy index

Returns A ring matching the storage policy

reap_account(broker, partition, nodes, container_shard=None)
Called once per pass for each account this server is the primary for and attempts to delete the
data for the given account. The reaper will only delete one account at any given time. It will
call reap_container() up to sqrt(self.concurrency) times concurrently while reaping
the account.

If there is any exception while deleting a single container, the process will continue for any
other containers and the failed containers will be tried again the next time this function is
called with the same parameters.

If there is any exception while listing the containers for deletion, the process will stop (but
will obviously be tried again the next time this function is called with the same parameters).
This isnt likely since the listing comes from the local database.

494 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

After the process completes (successfully or not) statistics about what was accomplished
will be logged.

This function returns nothing and should raise no exception but only update various
self.stats_* values for what occurs.

Parameters

• broker The AccountBroker for the account to delete.

• partition The partition in the account ring the account is on.

• nodes The primary node dicts for the account to delete.

• container_shard int used to shard containers reaped. If None, will
reap all containers.

See also:

swift.account.backend.AccountBroker for the broker class.

See also:

swift.common.ring.Ring.get_nodes() for a description of the node dicts.

reap_container(account, account_partition, account_nodes, container)
Deletes the data and the container itself for the given container. This will call
reap_object() up to sqrt(self.concurrency) times concurrently for the objects in the
container.

If there is any exception while deleting a single object, the process will continue for any
other objects in the container and the failed objects will be tried again the next time this
function is called with the same parameters.

If there is any exception while listing the objects for deletion, the process will stop (but
will obviously be tried again the next time this function is called with the same parameters).
This is a possibility since the listing comes from querying just the primary remote container
server.

Once all objects have been attempted to be deleted, the container itself will be attempted to
be deleted by sending a delete request to all container nodes. The format of the delete request
is such that each container server will update a corresponding account server, removing the
container from the accounts listing.

This function returns nothing and should raise no exception but only update various
self.stats_* values for what occurs.

Parameters

• account The name of the account for the container.

• account_partition The partition for the account on the account ring.

• account_nodes The primary node dicts for the account.

• container The name of the container to delete.

• See also: swift.common.ring.Ring.get_nodes() for a description of the
account node dicts.

9.3. Account 495



Swift Documentation, Release 2.27.1.dev38

reap_device(device)
Called once per pass for each device on the server. This will scan the accounts directory
for the device, looking for partitions this device is the primary for, then looking for ac-
count databases that are marked status=DELETED and still have containers and calling
reap_account(). Account databases marked status=DELETED that no longer have
containers will eventually be permanently removed by the reclaim process within the ac-
count replicator (see swift.db_replicator).

Parameters device The device to look for accounts to be deleted.

reap_object(account, container, container_partition, container_nodes, obj, pol-
icy_index)

Deletes the given object by issuing a delete request to each node for the object. The format
of the delete request is such that each object server will update a corresponding container
server, removing the object from the containers listing.

This function returns nothing and should raise no exception but only update various
self.stats_* values for what occurs.

Parameters

• account The name of the account for the object.

• container The name of the container for the object.

• container_partition The partition for the container on the container
ring.

• container_nodes The primary node dicts for the container.

• obj The name of the object to delete.

• policy_index The storage policy index of the objects container

• See also: swift.common.ring.Ring.get_nodes() for a description of the
container node dicts.

reset_stats()

run_forever(*args, **kwargs)
Main entry point when running the reaper in normal daemon mode.

This repeatedly calls run_once() no quicker than the configuration interval.

run_once(*args, **kwargs)
Main entry point when running the reaper in once mode, where it will do a single pass over
all accounts on the server. This is called repeatedly by run_forever(). This will call
reap_device() once for each device on the server.

496 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

9.3.4 Account Server

class swift.account.server.AccountController(conf, logger=None)
Bases: swift.common.base_storage_server.BaseStorageServer

WSGI controller for the account server.

DELETE(req)
Handle HTTP DELETE request.

GET(req)
Handle HTTP GET request.

HEAD(req)
Handle HTTP HEAD request.

POST(req)
Handle HTTP POST request.

PUT(req)
Handle HTTP PUT request.

REPLICATE(req)
Handle HTTP REPLICATE request. Handler for RPC calls for account replication.

check_free_space(drive)

server_type = 'account-server'

swift.account.server.app_factory(global_conf, **local_conf)
paste.deploy app factory for creating WSGI account server apps

swift.account.server.get_account_name_and_placement(req)
Split and validate path for an account.

Parameters req a swob request

Returns a tuple of path parts as strings

swift.account.server.get_container_name_and_placement(req)
Split and validate path for a container.

Parameters req a swob request

Returns a tuple of path parts as strings

9.4 Container

9.4.1 Container Auditor

class swift.container.auditor.ContainerAuditor(conf, logger=None)
Bases: swift.common.daemon.Daemon

Audit containers.

container_audit(path)
Audits the given container path

Parameters path the path to a container db

9.4. Container 497



Swift Documentation, Release 2.27.1.dev38

run_forever(*args, **kwargs)
Run the container audit until stopped.

run_once(*args, **kwargs)
Run the container audit once.

swift.container.auditor.random()→ x in the interval [0, 1).

9.4.2 Container Backend

Pluggable Back-ends for Container Server

class swift.container.backend.ContainerBroker(db_file, timeout=25, log-
ger=None, account=None,
container=None, pend-
ing_timeout=None,
stale_reads_ok=False,
skip_commits=False,
force_db_file=False)

Bases: swift.common.db.DatabaseBroker

Encapsulates working with a container database.

Note that this may involve multiple on-disk DB files if the container becomes sharded:

• _db_file is the path to the legacy container DB name, i.e. <hash>.db. This file should
exist for an initialised broker that has never been sharded, but will not exist once a container
has been sharded.

• db_files is a list of existing db files for the broker. This list should have at least one entry
for an initialised broker, and should have two entries while a broker is in SHARDING state.

• db_file is the path to whichever db is currently authoritative for the container. Depend-
ing on the containers state, this may not be the same as the db_file argument given to
__init__(), unless force_db_file is True in which case db_file is always equal
to the db_file argument given to __init__().

• pending_file is always equal to _db_file extended with .pending, i.e. <hash>.
db.pending.

classmethod create_broker(device_path, part, account, container, log-
ger=None, epoch=None, put_timestamp=None,
storage_policy_index=None)

Create a ContainerBroker instance. If the db doesnt exist, initialize the db file.

Parameters

• device_path device path

• part partition number

• account account name string

• container container name string

• logger a logger instance

• epoch a timestamp to include in the db filename

• put_timestamp initial timestamp if broker needs to be initialized

498 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

• storage_policy_index the storage policy index

Returns a swift.container.backend.ContainerBroker instance

create_container_info_table(conn, put_timestamp, storage_policy_index)
Create the container_info table which is specific to the container DB. Not a part of Pluggable
Back-ends, internal to the baseline code. Also creates the container_stat view.

Parameters

• conn DB connection object

• put_timestamp put timestamp

• storage_policy_index storage policy index

create_object_table(conn)
Create the object table which is specific to the container DB. Not a part of Pluggable Back-
ends, internal to the baseline code.

Parameters conn DB connection object

create_policy_stat_table(conn, storage_policy_index=0)
Create policy_stat table.

Parameters

• conn DB connection object

• storage_policy_index the policy_index the container is being cre-
ated with

create_shard_range_table(conn)
Create the shard_range table which is specific to the container DB.

Parameters conn DB connection object

db_contains_type = 'object'

property db_epoch

property db_file
Get the path to the primary db file for this broker. This is typically the db file for the most
recent sharding epoch. However, if no db files exist on disk, or if force_db_file was
True when the broker was constructed, then the primary db file is the file passed to the broker
constructor.

Returns A path to a db file; the file does not necessarily exist.

property db_files
Gets the cached list of valid db files that exist on disk for this broker.

The cached list may be refreshed by calling reload_db_files().

Returns A list of paths to db files ordered by ascending epoch; the list may be
empty.

db_reclaim_timestamp = 'created_at'

db_type = 'container'

delete_meta_whitelist = ['x-container-sysmeta-shard-quoted-root', 'x-container-sysmeta-shard-root']

9.4. Container 499



Swift Documentation, Release 2.27.1.dev38

delete_object(name, timestamp, storage_policy_index=0)
Mark an object deleted.

Parameters

• name object name to be deleted

• timestamp timestamp when the object was marked as deleted

• storage_policy_index the storage policy index for the object

empty()
Check if container DB is empty.

This method uses more stringent checks on object count than is_deleted(): this method
checks that there are no objects in any policy; if the container is in the process of sharding
then both fresh and retiring databases are checked to be empty; if a root container has shard
ranges then they are checked to be empty.

Returns True if the database has no active objects, False otherwise

enable_sharding(epoch)
Updates this brokers own shard range with the given epoch, sets its state to SHARDING and
persists it in the DB.

Parameters epoch a Timestamp

Returns the brokers updated own shard range.

find_shard_ranges(shard_size, limit=- 1, existing_ranges=None)
Scans the container db for shard ranges. Scanning will start at the upper bound of the any
existing_ranges that are given, otherwise at ShardRange.MIN. Scanning will stop
when limit shard ranges have been found or when no more shard ranges can be found. In
the latter case, the upper bound of the final shard range will be equal to the upper bound of
the container namespace.

This method does not modify the state of the db; callers are responsible for persisting any
shard range data in the db.

Parameters

• shard_size the size of each shard range

• limit the maximum number of shard points to be found; a negative value
(default) implies no limit.

• existing_ranges an optional list of existing ShardRanges; if given,
this list should be sorted in order of upper bounds; the scan for new shard
ranges will start at the upper bound of the last existing ShardRange.

Returns a tuple; the first value in the tuple is a list of dicts each having keys
{index, lower, upper, object_count} in order of ascending upper; the second
value in the tuple is a boolean which is True if the last shard range has been
found, False otherwise.

get_all_shard_range_data()
Returns a list of all shard range data, including own shard range and deleted shard ranges.

Returns A list of dict representations of a ShardRange.

500 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

get_brokers()
Return a list of brokers for component dbs. The list has two entries while the db state is
sharding: the first entry is a broker for the retiring db with skip_commits set to True;
the second entry is a broker for the fresh db with skip_commits set to False. For any
other db state the list has one entry.

Returns a list of ContainerBroker

get_db_state()
Returns the current state of on disk db files.

get_db_version(conn)

get_info()
Get global data for the container.

Returns dict with keys: account, container, created_at, put_timestamp,
delete_timestamp, status_changed_at, object_count, bytes_used, re-
ported_put_timestamp, reported_delete_timestamp, reported_object_count,
reported_bytes_used, hash, id, x_container_sync_point1,
x_container_sync_point2, and storage_policy_index, db_state.

get_info_is_deleted()
Get the is_deleted status and info for the container.

Returns a tuple, in the form (info, is_deleted) info is a dict as returned by get_info
and is_deleted is a boolean.

get_misplaced_since(start, count)
Get a list of objects which are in a storage policy different from the containers storage policy.

Parameters

• start last reconciler sync point

• count maximum number of entries to get

Returns list of dicts with keys: name, created_at, size, content_type, etag, stor-
age_policy_index

get_objects(limit=None, marker=”, end_marker=”, include_deleted=None,
since_row=None)

Returns a list of objects, including deleted objects, in all policies. Each object in the list
is described by a dict with keys {name, created_at, size, content_type, etag, deleted, stor-
age_policy_index}.

Parameters

• limit maximum number of entries to get

• marker if set, objects with names less than or equal to this value will not
be included in the list.

• end_marker if set, objects with names greater than or equal to this value
will not be included in the list.

• include_deleted if True, include only deleted objects; if False, in-
clude only undeleted objects; otherwise (default), include both deleted and
undeleted objects.

9.4. Container 501



Swift Documentation, Release 2.27.1.dev38

• since_row include only items whose ROWID is greater than the given
row id; by default all rows are included.

Returns a list of dicts, each describing an object.

get_own_shard_range(no_default=False)
Returns a shard range representing this brokers own shard range. If no such range has been
persisted in the brokers shard ranges table then a default shard range representing the entire
namespace will be returned.

The returned shard range will be updated with the current object stats for this broker and a
meta timestamp set to the current time. For these values to be persisted the caller must merge
the shard range.

Parameters no_default if True and the brokers own shard range is not found
in the shard ranges table then None is returned, otherwise a default shard range
is returned.

Returns an instance of ShardRange

get_policy_stats()

get_reconciler_sync()

get_replication_info()
Get information about the DB required for replication.

Returns dict containing keys from get_info plus max_row and metadata

Note:: get_infos <db_contains_type>_count is translated to just count and metadata is
the raw string.

get_shard_ranges(marker=None, end_marker=None, includes=None, re-
verse=False, include_deleted=False, states=None, in-
clude_own=False, exclude_others=False, fill_gaps=False)

Returns a list of persisted shard ranges.

Parameters

• marker restricts the returned list to shard ranges whose namespace in-
cludes or is greater than the marker value.

• end_marker restricts the returned list to shard ranges whose namespace
includes or is less than the end_marker value.

• includes restricts the returned list to the shard range that includes the
given value; if includes is specified then marker and end_marker
are ignored.

• reverse reverse the result order.

• include_deleted include items that have the delete marker set

• states if specified, restricts the returned list to shard ranges that have the
given state(s); can be a list of ints or a single int.

• include_own boolean that governs whether the row whose name
matches the brokers path is included in the returned list. If True, that row is
included, otherwise it is not included. Default is False.

502 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

• exclude_others boolean that governs whether the rows whose names
do not match the brokers path are included in the returned list. If True, those
rows are not included, otherwise they are included. Default is False.

• fill_gaps if True, insert own shard range to fill any gaps in at the tail of
other shard ranges.

Returns a list of instances of swift.common.utils.ShardRange

get_shard_usage()
Get the aggregate object stats for all shard ranges in states ACTIVE, SHARDING or
SHRINKING.

Returns a dict with keys {bytes_used, object_count}

get_sharding_sysmeta(key=None)
Returns sharding specific info from the brokers metadata.

Parameters key if given the value stored under key in the sharding info will be
returned.

Returns either a dict of sharding info or the value stored under key in that dict.

get_sharding_sysmeta_with_timestamps()
Returns sharding specific info from the brokers metadata with timestamps.

Parameters key if given the value stored under key in the sharding info will be
returned.

Returns a dict of sharding info with their timestamps.

has_multiple_policies()

is_empty_enough_to_reclaim()

is_old_enough_to_reclaim(now, reclaim_age)

is_own_shard_range(shard_range)

is_reclaimable(now, reclaim_age)
Check if the broker abstraction is empty, and has been marked deleted for at least a reclaim
age.

is_root_container()
Returns True if this container is a root container, False otherwise.

A root container is a container that is not a shard of another container.

is_sharded()

list_objects_iter(limit, marker, end_marker, prefix, delimiter, path=None,
storage_policy_index=0, reverse=False, include_deleted=False,
since_row=None, transform_func=None, all_policies=False, al-
low_reserved=False)

Get a list of objects sorted by name starting at marker onward, up to limit entries. Entries
will begin with the prefix and will not have the delimiter after the prefix.

Parameters

• limit maximum number of entries to get

• marker marker query

9.4. Container 503



Swift Documentation, Release 2.27.1.dev38

• end_marker end marker query

• prefix prefix query

• delimiter delimiter for query

• path if defined, will set the prefix and delimiter based on the path

• storage_policy_index storage policy index for query

• reverse reverse the result order.

• include_deleted if True, include only deleted objects; if False (de-
fault), include only undeleted objects; otherwise, include both deleted and
undeleted objects.

• since_row include only items whose ROWID is greater than the given
row id; by default all rows are included.

• transform_func an optional function that if given will be called for
each object to get a transformed version of the object to include in the list-
ing; should have same signature as _transform_record(); defaults to
_transform_record().

• all_policies if True, include objects for all storage policies ignoring
any value given for storage_policy_index

• allow_reserved exclude names with reserved-byte by default

Returns list of tuples of (name, created_at, size, content_type, etag, deleted)

make_tuple_for_pickle(record)
Turn this db record dict into the format this service uses for pending pickles.

merge_items(item_list, source=None)
Merge items into the object table.

Parameters

• item_list list of dictionaries of {name, created_at, size, content_type,
etag, deleted, storage_policy_index, ctype_timestamp, meta_timestamp}

• source if defined, update incoming_sync with the source

merge_shard_ranges(shard_ranges)
Merge shard ranges into the shard range table.

Parameters shard_ranges a shard range or a list of shard ranges; each shard
range should be an instance of ShardRange or a dict representation of a
shard range having SHARD_RANGE_KEYS.

property path

put_object(name, timestamp, size, content_type, etag, deleted=0, stor-
age_policy_index=0, ctype_timestamp=None, meta_timestamp=None)

Creates an object in the DB with its metadata.

Parameters

• name object name to be created

• timestamp timestamp of when the object was created

504 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

• size object size

• content_type object content-type

• etag object etag

• deleted if True, marks the object as deleted and sets the deleted_at times-
tamp to timestamp

• storage_policy_index the storage policy index for the object

• ctype_timestamp timestamp of when content_type was last updated

• meta_timestamp timestamp of when metadata was last updated

reload_db_files()
Reloads the cached list of valid on disk db files for this broker.

remove_objects(lower, upper, max_row=None)
Removes object records in the given namespace range from the object table.

Note that objects are removed regardless of their storage_policy_index.

Parameters

• lower defines the lower bound of object names that will be removed;
names greater than this value will be removed; names less than or equal
to this value will not be removed.

• upper defines the upper bound of object names that will be removed;
names less than or equal to this value will be removed; names greater than
this value will not be removed. The empty string is interpreted as there being
no upper bound.

• max_row if specified only rows less than or equal to max_row will be
removed

reported(put_timestamp, delete_timestamp, object_count, bytes_used)
Update reported stats, available with containers get_info.

Parameters

• put_timestamp put_timestamp to update

• delete_timestamp delete_timestamp to update

• object_count object_count to update

• bytes_used bytes_used to update

classmethod resolve_shard_range_states(states)
Given a list of values each of which may be the name of a state, the number of a state, or an
alias, return the set of state numbers described by the list.

The following alias values are supported: listing maps to all states that are considered valid
when listing objects; updating maps to all states that are considered valid for redirecting an
object update; auditing maps to all states that are considered valid for a shard container that
is updating its own shard range table from a root (this currently maps to all states except
FOUND).

Parameters states a list of values each of which may be the name of a state,
the number of a state, or an alias

9.4. Container 505



Swift Documentation, Release 2.27.1.dev38

Returns a set of integer state numbers, or None if no states are given

Raises ValueError if any value in the given list is neither a valid state nor a
valid alias

property root_account

property root_container

property root_path

set_sharded_state()
Unlinks the brokers retiring DB file.

Returns True if the retiring DB was successfully unlinked, False otherwise.

set_sharding_state()
Creates and initializes a fresh DB file in preparation for sharding a retiring DB. The brokers
own shard range must have an epoch timestamp for this method to succeed.

Returns True if the fresh DB was successfully created, False otherwise.

set_sharding_sysmeta(key, value)
Updates the brokers metadata stored under the given key prefixed with a sharding specific
namespace.

Parameters

• key metadata key in the sharding metadata namespace.

• value metadata value

set_storage_policy_index(policy_index, timestamp=None)
Update the container_stat policy_index and status_changed_at.

set_x_container_sync_points(sync_point1, sync_point2)

sharding_initiated()
Returns True if a broker has shard range state that would be necessary for sharding to have
been initiated, False otherwise.

sharding_required()
Returns True if a broker has shard range state that would be necessary for sharding to have
been initiated but has not yet completed sharding, False otherwise.

property storage_policy_index

update_reconciler_sync(point)

swift.container.backend.merge_shards(shard_data, existing)
Compares shard_data with existing and updates shard_data with any items of
existing that take precedence over the corresponding item in shard_data.

Parameters

• shard_data a dict representation of shard range that may be modified by
this method.

• existing a dict representation of shard range.

Returns True if shard data has any item(s) that are considered to take precedence
over the corresponding item in existing

506 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

swift.container.backend.update_new_item_from_existing(new_item, exist-
ing)

Compare the data and meta related timestamps of a new object item with the timestamps of an
existing object record, and update the new item with data and/or meta related attributes from the
existing record if their timestamps are newer.

The multiple timestamps are encoded into a single string for storing in the created_at column of
the objects db table.

Parameters

• new_item A dict of object update attributes

• existing A dict of existing object attributes

Returns True if any attributes of the new item dict were found to be newer than the
existing and therefore not updated, otherwise False implying that the updated item
is equal to the existing.

9.4.3 Container Replicator

class swift.container.replicator.ContainerReplicator(conf, log-
ger=None)

Bases: swift.common.db_replicator.Replicator

brokerclass
alias of swift.container.backend.ContainerBroker

cleanup_post_replicate(broker, orig_info, responses)
Cleanup non primary database from disk if needed.

Parameters

• broker the broker for the database were replicating

• orig_info snapshot of the broker replication info dict taken before repli-
cation

• responses a list of boolean success values for each replication request to
other nodes

Return success returns False if deletion of the database was attempted but unsuc-
cessful, otherwise returns True.

datadir = 'containers'

default_port = 6201

delete_db(broker)
Ensure that reconciler databases are only cleaned up at the end of the replication run.

dump_to_reconciler(broker, point)
Look for object rows for objects updates in the wrong storage policy in broker with a ROWID
greater than the rowid given as point.

Parameters

• broker the container broker with misplaced objects

• point the last verified reconciler_sync_point

9.4. Container 507



Swift Documentation, Release 2.27.1.dev38

Returns the last successful enqueued rowid

feed_reconciler(container, item_list)
Add queue entries for rows in item_list to the local reconciler container database.

Parameters

• container the name of the reconciler container

• item_list the list of rows to enqueue

Returns True if successfully enqueued

find_local_handoff_for_part(part)
Look through devices in the ring for the first handoff device that was identified during job
creation as available on this node.

Returns a node entry from the ring

get_reconciler_broker(timestamp)
Get a local instance of the reconciler container broker that is appropriate to enqueue the
given timestamp.

Parameters timestamp the timestamp of the row to be enqueued

Returns a local reconciler broker

replicate_reconcilers()
Ensure any items merged to reconciler containers during replication are pushed out to correct
nodes and any reconciler containers that do not belong on this node are removed.

report_up_to_date(full_info)

run_once(*args, **kwargs)
Run a replication pass once.

server_type = 'container'

class swift.container.replicator.ContainerReplicatorRpc(root,
datadir, bro-
ker_class,
mount_check=True,
log-
ger=None)

Bases: swift.common.db_replicator.ReplicatorRpc

get_shard_ranges(broker, args)

merge_shard_ranges(broker, args)

508 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

9.4.4 Container Server

class swift.container.server.ContainerController(conf, logger=None)
Bases: swift.common.base_storage_server.BaseStorageServer

WSGI Controller for the container server.

DELETE(req)
Handle HTTP DELETE request.

GET(req)
Handle HTTP GET request.

The body of the response to a successful GET request contains a listing of either objects
or shard ranges. The exact content of the listing is determined by a combination of request
headers and query string parameters, as follows:

• The type of the listing is determined by the X-Backend-Record-Type header. If
this header has value shard then the response body will be a list of shard ranges; if
this header has value auto, and the container state is sharding or sharded, then
the listing will be a list of shard ranges; otherwise the response body will be a list of
objects.

• Both shard range and object listings may be filtered according to the constraints de-
scribed below. However, the X-Backend-Ignore-Shard-Name-Filter header
may be used to override the application of the marker, end_marker, includes
and reverse parameters to shard range listings. These parameters will be ignored if
the header has the value sharded and the current db sharding state is also sharded. Note
that this header does not override the states constraint on shard range listings.

• The order of both shard range and object listings may be reversed by using a reverse
query string parameter with a value in swift.common.utils.TRUE_VALUES.

• Both shard range and object listings may be constrained to a name range by the marker
and end_marker query string parameters. Object listings will only contain objects
whose names are greater than any marker value and less than any end_marker
value. Shard range listings will only contain shard ranges whose namespace is greater
than or includes any marker value and is less than or includes any end_marker
value.

• Shard range listings may also be constrained by an includes query string parameter.
If this parameter is present the listing will only contain shard ranges whose namespace
includes the value of the parameter; any marker or end_marker parameters are
ignored

• The length of an object listing may be constrained by the limit parameter. Object
listings may also be constrained by prefix, delimiter and path query string
parameters.

• Shard range listings will include deleted shard ranges if and only if the
X-Backend-Include-Deleted header value is one of swift.common.
utils.TRUE_VALUES. Object listings never include deleted objects.

• Shard range listings may be constrained to include only shard ranges whose state is
specified by a query string states parameter. If present, the states parame-
ter should be a comma separated list of either the string or integer representation of
STATES.

9.4. Container 509



Swift Documentation, Release 2.27.1.dev38

Two alias values may be used in a states parameter value: listing will cause the
listing to include all shard ranges in a state suitable for contributing to an object listing;
updating will cause the listing to include all shard ranges in a state suitable to accept
an object update.

If either of these aliases is used then the shard range listing will if necessary be extended
with a synthesised filler range in order to satisfy the requested name range when insuf-
ficient actual shard ranges are found. Any filler shard range will cover the otherwise
uncovered tail of the requested name range and will point back to the same container.

• Listings are not normally returned from a deleted container. However, the
X-Backend-Override-Deleted header may be used with a value in swift.
common.utils.TRUE_VALUES to force a shard range listing to be returned from a
deleted container whose DB file still exists.

Parameters req an instance of swift.common.swob.Request

Returns an instance of swift.common.swob.Response

HEAD(req)
Handle HTTP HEAD request.

POST(req)
Handle HTTP POST request.

PUT(req)
Handle HTTP PUT request.

REPLICATE(req)
Handle HTTP REPLICATE request (json-encoded RPC calls for replication.)

UPDATE(req)
Handle HTTP UPDATE request (merge_items RPCs coming from the proxy.)

account_update(req, account, container, broker)
Update the account server(s) with latest container info.

Parameters

• req swob.Request object

• account account name

• container container name

• broker container DB broker object

Returns if all the account requests return a 404 error code, HTTPNotFound re-
sponse object, if the account cannot be updated due to a malformed header, an
HTTPBadRequest response object, otherwise None.

allowed_sync_hosts
The list of hosts were allowed to send syncs to. This can be overridden by data in
self.realms_conf

check_free_space(drive)

create_listing(req, out_content_type, info, resp_headers, metadata, container_list,
container)

510 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

get_and_validate_policy_index(req)
Validate that the index supplied maps to a policy.

Returns policy index from request, or None if not present

Raises HTTPBadRequest if the supplied index is bogus

realms_conf
ContainerSyncCluster instance for validating sync-to values.

save_headers = ['x-container-read', 'x-container-write', 'x-container-sync-key', 'x-container-sync-to']

server_type = 'container-server'

update_data_record(record)
Perform any mutations to container listing records that are common to all serialization for-
mats, and returns it as a dict.

Converts created time to iso timestamp. Replaces size with swift_bytes content type param-
eter.

Params record object entry record

Returns modified record

swift.container.server.app_factory(global_conf, **local_conf)
paste.deploy app factory for creating WSGI container server apps

swift.container.server.gen_resp_headers(info, is_deleted=False)
Convert container info dict to headers.

swift.container.server.get_container_name_and_placement(req)
Split and validate path for a container.

Parameters req a swob request

Returns a tuple of path parts as strings

swift.container.server.get_obj_name_and_placement(req)
Split and validate path for an object.

Parameters req a swob request

Returns a tuple of path parts as strings

9.4.5 Container Reconciler

class swift.container.reconciler.ContainerReconciler(conf)
Bases: swift.common.daemon.Daemon

Move objects that are in the wrong storage policy.

ensure_object_in_right_location(q_policy_index, account, container, obj,
q_ts, path, container_policy_index,
source_ts, source_obj_status,
source_obj_info, source_obj_iter,
**kwargs)

Validate source object will satisfy the misplaced object queue entry and move to destination.

Parameters

9.4. Container 511



Swift Documentation, Release 2.27.1.dev38

• q_policy_index the policy_index for the source object

• account the account name of the misplaced object

• container the container name of the misplaced object

• obj the name of the misplaced object

• q_ts the timestamp of the misplaced object

• path the full path of the misplaced object for logging

• container_policy_index the policy_index of the destination

• source_ts the timestamp of the source object

• source_obj_status the HTTP status source object request

• source_obj_info the HTTP headers of the source object request

• source_obj_iter the body iter of the source object request

ensure_tombstone_in_right_location(q_policy_index, account, con-
tainer, obj, q_ts, path, con-
tainer_policy_index, source_ts,
**kwargs)

Issue a DELETE request against the destination to match the misplaced DELETE against
the source.

log_stats(force=False)
Dump stats to logger, noop when stats have been already been logged in the last minute.

pop_queue(container, obj, q_ts, q_record)
Issue a delete object request to the container for the misplaced object queue entry.

Parameters

• container the misplaced objects container

• obj the name of the misplaced object

• q_ts the timestamp of the misplaced object

• q_record the timestamp of the queue entry

N.B. q_ts will normally be the same time as q_record except when an object was manually
re-enqued.

reconcile()
Main entry point for processing misplaced objects.

Iterate over all queue entries and delegate to reconcile_object.

reconcile_object(info)
Process a possibly misplaced object write request. Determine correct destination storage pol-
icy by checking with primary containers. Check source and destination, copying or deleting
into destination and cleaning up the source as needed.

This method wraps _reconcile_object for exception handling.

Parameters info a queue entry dict

Returns True to indicate the request is fully processed successfully, otherwise
False.

512 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

run_forever(*args, **kwargs)
Override this to run forever

run_once(*args, **kwargs)
Process every entry in the queue.

stats_log(metric, msg, *args, **kwargs)
Update stats tracking for metric and emit log message.

throw_tombstones(account, container, obj, timestamp, policy_index, path)
Issue a delete object request to the given storage_policy.

Parameters

• account the account name

• container the container name

• obj the object name

• timestamp the timestamp of the object to delete

• policy_index the policy index to direct the request

• path the path to be used for logging

swift.container.reconciler.add_to_reconciler_queue(container_ring,
account, con-
tainer, obj,
obj_policy_index,
obj_timestamp,
op, force=False,
conn_timeout=5, re-
sponse_timeout=15)

Add an object to the container reconcilers queue. This will cause the container reconciler to move
it from its current storage policy index to the correct storage policy index.

Parameters

• container_ring container ring

• account the misplaced objects account

• container the misplaced objects container

• obj the misplaced object

• obj_policy_index the policy index where the misplaced object cur-
rently is

• obj_timestamp the misplaced objects X-Timestamp. We need this to
ensure that the reconciler doesnt overwrite a newer object with an older one.

• op the method of the operation (DELETE or PUT)

• force over-write queue entries newer than obj_timestamp

• conn_timeout max time to wait for connection to container server

• response_timeout max time to wait for response from container server

Returns .misplaced_object container name, False on failure. Success means a major-
ity of containers got the update.

9.4. Container 513



Swift Documentation, Release 2.27.1.dev38

swift.container.reconciler.best_policy_index(headers)

swift.container.reconciler.cmp_policy_info(info, remote_info)
You have to squint to see it, but the general strategy is just:

if either has been recreated: return the newest (of the recreated)

else return the oldest

I tried cleaning it up for awhile, but settled on just writing a bunch of tests instead. Once you get
an intuitive sense for the nuance here you can try and see theres a better way to spell the boolean
logic but it all ends up looking sorta hairy.

Returns -1 if info is correct, 1 if remote_info is better

swift.container.reconciler.direct_delete_container_entry(container_ring,
ac-
count_name,
con-
tainer_name,
ob-
ject_name,
head-
ers=None)

Talk directly to the primary container servers to delete a particular object listing. Does not talk to
object servers; use this only when a container entry does not actually have a corresponding object.

swift.container.reconciler.get_reconciler_container_name(obj_timestamp)
Get the name of a container into which a misplaced object should be enqueued. The name is the
objects last modified time rounded down to the nearest hour.

Parameters obj_timestamp a string representation of the objects created_at time
from its container db row.

Returns a container name

swift.container.reconciler.get_reconciler_content_type(op)

swift.container.reconciler.get_reconciler_obj_name(policy_index, ac-
count, container,
obj)

swift.container.reconciler.get_row_to_q_entry_translator(broker)

swift.container.reconciler.incorrect_policy_index(info, remote_info)
Compare remote_info to info and decide if the remote storage policy index should be used instead
of ours.

swift.container.reconciler.parse_raw_obj(obj_info)
Translate a reconciler container listing entry to a dictionary containing the parts of the misplaced
object queue entry.

Parameters obj_info an entry in an a container listing with the required keys:
name, content_type, and hash

Returns a queue entry dict with the keys: q_policy_index, account, container, obj,
q_op, q_ts, q_record, and path

swift.container.reconciler.slightly_later_timestamp(ts, offset=1)

swift.container.reconciler.translate_container_headers_to_info(headers)

514 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

9.4.6 Container Sharder

class swift.container.sharder.CleavingContext(ref, cursor=”,
max_row=None,
cleave_to_row=None,
last_cleave_to_row=None,
cleaving_done=False,
misplaced_done=False,
ranges_done=0,
ranges_todo=0)

Bases: object

property cursor

delete(broker)

done()

classmethod load(broker)
Returns a context dict for tracking the progress of cleaving this brokers retiring DB. The
context is persisted in sysmeta using a key that is based off the retiring db id and max row.
This form of key ensures that a cleaving context is only loaded for a db that matches the id
and max row when the context was created; if a db is modified such that its max row changes
then a different context, or no context, will be loaded.

Returns A dict to which cleave progress metadata may be added. The dict initially
has a key ref which should not be modified by any caller.

classmethod load_all(broker)
Returns all cleaving contexts stored in the broker.

Parameters broker

Returns list of tuples of (CleavingContext, timestamp)

property marker

range_done(new_cursor)

reset()

start()

store(broker)

class swift.container.sharder.ContainerSharder(conf, logger=None)
Bases: swift.container.replicator.ContainerReplicator

Shards containers.

run_forever(*args, **kwargs)
Run the container sharder until stopped.

run_once(*args, **kwargs)
Run the container sharder once.

yield_objects(broker, src_shard_range, since_row=None)
Iterates through all objects in src_shard_range in name order yielding them in lists of
up to CONTAINER_LISTING_LIMIT length.

Parameters

9.4. Container 515



Swift Documentation, Release 2.27.1.dev38

• broker A ContainerBroker.

• src_shard_range A ShardRange describing the source range.

• since_row include only items whose ROWID is greater than the given
row id; by default all rows are included.

Returns a generator of tuples of (list of objects, broker info dict)

yield_objects_to_shard_range(broker, src_shard_range, dest_shard_ranges)
Iterates through all objects in src_shard_range to place them in destination shard
ranges provided by the next_shard_range function. Yields tuples of (object list, des-
tination shard range in which those objects belong). Note that the same destination shard
range may be referenced in more than one yielded tuple.

Parameters

• broker A ContainerBroker.

• src_shard_range A ShardRange describing the source range.

• dest_shard_ranges A function which should return a list of destina-
tion shard ranges in name order.

Returns a generator of tuples of (object list, shard range, broker info dict)

swift.container.sharder.finalize_shrinking(broker, acceptor_ranges,
donor_ranges, timestamp)

Update donor shard ranges to shrinking state and merge donors and acceptors to broker.

Parameters

• broker A ContainerBroker.

• acceptor_ranges A list of ShardRange that are to be acceptors.

• donor_ranges A list of ShardRange that are to be donors; these will
have their state and timestamp updated.

• timestamp timestamp to use when updating donor state

swift.container.sharder.find_compactible_shard_sequences(broker,
shrink_threshold,
merge_size,
max_shrinking,
max_expanding,
in-
clude_shrinking=False)

Find sequences of shard ranges that could be compacted into a single acceptor shard range.

This function does not modify shard ranges.

Parameters

• broker A ContainerBroker.

• shrink_threshold the number of rows below which a shard may be
considered for shrinking into another shard

• merge_size the maximum number of rows that an acceptor shard range
should have after other shard ranges have been compacted into it

516 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

• max_shrinking the maximum number of shard ranges that should be
compacted into each acceptor; -1 implies unlimited.

• max_expanding the maximum number of acceptors to be found (i.e. the
maximum number of sequences to be returned); -1 implies unlimited.

Returns A list of ShardRangeList each containing a sequence of neighbouring
shard ranges that may be compacted; the final shard range in the list is the acceptor

swift.container.sharder.find_missing_ranges(shard_ranges)
Find any ranges in the entire object namespace that are not covered by any shard range in the
given list.

Parameters shard_ranges A list of ShardRange

Returns a list of missing ranges

swift.container.sharder.find_overlapping_ranges(shard_ranges)
Find all pairs of overlapping ranges in the given list.

Parameters shard_ranges A list of ShardRange

Returns a set of tuples, each tuple containing ranges that overlap with each other.

swift.container.sharder.find_sharding_candidates(broker, threshold,
shard_ranges=None)

swift.container.sharder.find_shrinking_candidates(broker,
shrink_threshold,
merge_size)

swift.container.sharder.is_sharding_candidate(shard_range, threshold)

swift.container.sharder.is_shrinking_candidate(shard_range,
shrink_threshold,
merge_size, states=None)

swift.container.sharder.make_shard_ranges(broker, shard_data,
shards_account_prefix)

swift.container.sharder.process_compactible_shard_sequences(broker,
se-
quences)

Transform the given sequences of shard ranges into a list of acceptors and a list of shrinking
donors. For each given sequence the final ShardRange in the sequence (the acceptor) is expanded
to accommodate the other ShardRanges in the sequence (the donors). The donors and acceptors
are then merged into the broker.

Parameters

• broker A ContainerBroker.

• sequences A list of ShardRangeList

swift.container.sharder.random()→ x in the interval [0, 1).

swift.container.sharder.sharding_enabled(broker)

9.4. Container 517



Swift Documentation, Release 2.27.1.dev38

9.4.7 Container Sync

class swift.container.sync.ContainerSync(conf, container_ring=None, log-
ger=None)

Bases: swift.common.daemon.Daemon

Daemon to sync syncable containers.

This is done by scanning the local devices for container databases and checking for x-container-
sync-to and x-container-sync-key metadata values. If they exist, newer rows since the last sync
will trigger PUTs or DELETEs to the other container.

The actual syncing is slightly more complicated to make use of the three (or number-of-replicas)
main nodes for a container without each trying to do the exact same work but also without missing
work if one node happens to be down.

Two sync points are kept per container database. All rows between the two sync points trigger
updates. Any rows newer than both sync points cause updates depending on the nodes position for
the container (primary nodes do one third, etc. depending on the replica count of course). After a
sync run, the first sync point is set to the newest ROWID known and the second sync point is set
to newest ROWID for which all updates have been sent.

An example may help. Assume replica count is 3 and perfectly matching ROWIDs starting at 1.

First sync run, database has 6 rows:

• SyncPoint1 starts as -1.

• SyncPoint2 starts as -1.

• No rows between points, so no all updates rows.

• Six rows newer than SyncPoint1, so a third of the rows are sent by node 1, another
third by node 2, remaining third by node 3.

• SyncPoint1 is set as 6 (the newest ROWID known).

• SyncPoint2 is left as -1 since no all updates rows were synced.

Next sync run, database has 12 rows:

• SyncPoint1 starts as 6.

• SyncPoint2 starts as -1.

• The rows between -1 and 6 all trigger updates (most of which should short-circuit
on the remote end as having already been done).

• Six more rows newer than SyncPoint1, so a third of the rows are sent by node 1,
another third by node 2, remaining third by node 3.

• SyncPoint1 is set as 12 (the newest ROWID known).

• SyncPoint2 is set as 6 (the newest all updates ROWID).

In this way, under normal circumstances each node sends its share of updates each run and just
sends a batch of older updates to ensure nothing was missed.

Parameters

• conf The dict of configuration values from the [container-sync] section of
the container-server.conf

518 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

• container_ring If None, the <swift_dir>/container.ring.gz will be
loaded. This is overridden by unit tests.

allowed_sync_hosts
The list of hosts were allowed to send syncs to. This can be overridden by data in
self.realms_conf

conf
The dict of configuration values from the [container-sync] section of the container-
server.conf.

container_deletes
Number of successful DELETEs triggered.

container_failures
Number of containers that had a failure of some type.

container_puts
Number of successful PUTs triggered.

container_report(start, end, sync_point1, sync_point2, info, max_row)

container_ring
swift.common.ring.Ring for locating containers.

container_skips
Number of containers whose sync has been turned off, but are not yet cleared from the sync
store.

container_stats
Per container stats. These are collected per container. puts - the number of puts that were
done for the container deletes - the number of deletes that were fot the container bytes - the
total number of bytes transferred per the container

container_sync(path)
Checks the given path for a container database, determines if syncing is turned on for that
database and, if so, sends any updates to the other container.

Parameters path the path to a container db

container_sync_row(row, sync_to, user_key, broker, info, realm, realm_key)
Sends the update the row indicates to the sync_to container. Update can be either delete or
put.

Parameters

• row The updated row in the local database triggering the sync update.

• sync_to The URL to the remote container.

• user_key The X-Container-Sync-Key to use when sending requests to
the other container.

• broker The local container database broker.

• info The get_info result from the local container database broker.

• realm The realm from self.realms_conf, if there is one. If None, fallback
to using the older allowed_sync_hosts way of syncing.

9.4. Container 519



Swift Documentation, Release 2.27.1.dev38

• realm_key The realm key from self.realms_conf, if there is one. If None,
fallback to using the older allowed_sync_hosts way of syncing.

Returns True on success

container_syncs
Number of containers with sync turned on that were successfully synced.

container_time
Maximum amount of time to spend syncing a container before moving on to the next one. If
a container sync hasnt finished in this time, itll just be resumed next scan.

devices
Path to the local device mount points.

interval
Minimum time between full scans. This is to keep the daemon from running wild on near
empty systems.

logger
Logger to use for container-sync log lines.

mount_check
Indicates whether mount points should be verified as actual mount points (normally true,
false for tests and SAIO).

realms_conf
ContainerSyncCluster instance for validating sync-to values.

report()
Writes a report of the stats to the logger and resets the stats for the next report.

reported
Time of last stats report.

run_forever(*args, **kwargs)
Runs container sync scans until stopped.

run_once(*args, **kwargs)
Runs a single container sync scan.

select_http_proxy()

sync_store
ContainerSyncStore instance for iterating over synced containers

swift.container.sync.random()→ x in the interval [0, 1).

9.4.8 Container Updater

class swift.container.updater.ContainerUpdater(conf, logger=None)
Bases: swift.common.daemon.Daemon

Update container information in account listings.

container_report(node, part, container, put_timestamp, delete_timestamp, count,
bytes, storage_policy_index)

Report container info to an account server.

Parameters

520 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

• node node dictionary from the account ring

• part partition the account is on

• container container name

• put_timestamp put timestamp

• delete_timestamp delete timestamp

• count object count in the container

• bytes bytes used in the container

• storage_policy_index the policy index for the container

container_sweep(path)
Walk the path looking for container DBs and process them.

Parameters path path to walk

get_account_ring()
Get the account ring. Load it if it hasnt been yet.

get_paths()
Get paths to all of the partitions on each drive to be processed.

Returns a list of paths

process_container(dbfile)
Process a container, and update the information in the account.

Parameters dbfile container DB to process

run_forever(*args, **kwargs)
Run the updater continuously.

run_once(*args, **kwargs)
Run the updater once.

swift.container.updater.random()→ x in the interval [0, 1).

9.5 Account DB and Container DB

9.5.1 DB

Database code for Swift

swift.common.db.BROKER_TIMEOUT = 25
Timeout for trying to connect to a DB

swift.common.db.DB_PREALLOCATION = False
Whether calls will be made to preallocate disk space for database files.

exception swift.common.db.DatabaseAlreadyExists(path)
Bases: sqlite3.DatabaseError

More friendly error messages for DB Errors.

9.5. Account DB and Container DB 521



Swift Documentation, Release 2.27.1.dev38

class swift.common.db.DatabaseBroker(db_file, timeout=25, log-
ger=None, account=None, con-
tainer=None, pending_timeout=None,
stale_reads_ok=False,
skip_commits=False)

Bases: object

Encapsulates working with a database.

property db_file

delete_db(timestamp)
Mark the DB as deleted

Parameters timestamp internalized delete timestamp

delete_meta_whitelist = []

empty()
Check if the broker abstraction contains any undeleted records.

get()
Use with the with statement; returns a database connection.

get_device_path()

get_info()

get_items_since(start, count)
Get a list of objects in the database between start and end.

Parameters

• start start ROWID

• count number to get

Returns list of objects between start and end

get_max_row(table=None)

get_raw_metadata()

get_replication_info()
Get information about the DB required for replication.

Returns dict containing keys from get_info plus max_row and metadata

Note:: get_infos <db_contains_type>_count is translated to just count and metadata is
the raw string.

get_sync(id, incoming=True)
Gets the most recent sync point for a server from the sync table.

Parameters

• id remote ID to get the sync_point for

• incoming if True, get the last incoming sync, otherwise get the last out-
going sync

Returns the sync point, or -1 if the id doesnt exist.

522 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

get_syncs(incoming=True)
Get a serialized copy of the sync table.

Parameters incoming if True, get the last incoming sync, otherwise get the last
outgoing sync

Returns list of {remote_id, sync_point}

initialize(put_timestamp=None, storage_policy_index=None)
Create the DB

The storage_policy_index is passed through to the subclasss _initialize method. It is
ignored by AccountBroker.

Parameters

• put_timestamp internalized timestamp of initial PUT request

• storage_policy_index only required for containers

is_deleted()
Check if the DB is considered to be deleted.

Returns True if the DB is considered to be deleted, False otherwise

is_reclaimable(now, reclaim_age)
Check if the broker abstraction is empty, and has been marked deleted for at least a reclaim
age.

lock()
Use with the with statement; locks a database.

make_tuple_for_pickle(record)
Turn this db record dict into the format this service uses for pending pickles.

maybe_get(conn)

merge_items(item_list, source=None)
Save :param:item_list to the database.

merge_syncs(sync_points, incoming=True)
Merge a list of sync points with the incoming sync table.

Parameters

• sync_points list of sync points where a sync point is a dict of
{sync_point, remote_id}

• incoming if True, get the last incoming sync, otherwise get the last out-
going sync

merge_timestamps(created_at, put_timestamp, delete_timestamp)
Used in replication to handle updating timestamps.

Parameters

• created_at create timestamp

• put_timestamp put timestamp

• delete_timestamp delete timestamp

9.5. Account DB and Container DB 523



Swift Documentation, Release 2.27.1.dev38

property metadata
Returns the metadata dict for the database. The metadata dict values are tuples of (value,
timestamp) where the timestamp indicates when that key was set to that value.

newid(remote_id)
Re-id the database. This should be called after an rsync.

Parameters remote_id the ID of the remote database being rsynced in

possibly_quarantine(exc_type, exc_value, exc_traceback)
Checks the exception info to see if it indicates a quarantine situation (malformed or cor-
rupted database). If not, the original exception will be reraised. If so, the database will be
quarantined and a new sqlite3.DatabaseError will be raised indicating the action taken.

put_record(record)
Put a record into the DB. If the DB has an associated pending file with space then the record
is appended to that file and a commit to the DB is deferred. If the DB is in-memory or its
pending file is full then the record will be committed immediately.

Parameters record a record to be added to the DB.

Raises

• DatabaseConnectionError if the DB file does not exist or if
skip_commits is True.

• LockTimeout if a timeout occurs while waiting to take a lock to write to
the pending file.

quarantine(reason)
The database will be quarantined and a sqlite3.DatabaseError will be raised indicating the
action taken.

reclaim(age_timestamp, sync_timestamp)
Delete reclaimable rows and metadata from the db.

By default this method will delete rows from the db_contains_type table that are marked
deleted and whose created_at timestamp is < age_timestamp, and deletes rows from in-
coming_sync and outgoing_sync where the updated_at timestamp is < sync_timestamp. In
addition, this calls the _reclaim_metadata() method.

Subclasses may reclaim other items by overriding _reclaim().

Parameters

• age_timestamp max created_at timestamp of object rows to delete

• sync_timestamp max update_at timestamp of sync rows to delete

update_metadata(metadata_updates, validate_metadata=False)
Updates the metadata dict for the database. The metadata dict values are tuples of (value,
timestamp) where the timestamp indicates when that key was set to that value. Key/values
will only be overwritten if the timestamp is newer. To delete a key, set its value to (, times-
tamp). These empty keys will eventually be removed by reclaim()

update_put_timestamp(timestamp)
Update the put_timestamp. Only modifies it if it is greater than the current timestamp.

Parameters timestamp internalized put timestamp

524 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

update_status_changed_at(timestamp)
Update the status_changed_at field in the stat table. Only modifies status_changed_at if the
timestamp is greater than the current status_changed_at timestamp.

Parameters timestamp internalized timestamp

updated_timeout(new_timeout)
Use with with statement; updates timeout within the block.

static validate_metadata(metadata)
Validates that metadata falls within acceptable limits.

Parameters metadata to be validated

Raises HTTPBadRequest if MAX_META_COUNT or
MAX_META_OVERALL_SIZE is exceeded, or if metadata contains
non-UTF-8 data

exception swift.common.db.DatabaseConnectionError(path, msg, time-
out=0)

Bases: sqlite3.DatabaseError

More friendly error messages for DB Errors.

class swift.common.db.GreenDBConnection(database, timeout=None, *args,
**kwargs)

Bases: sqlite3.Connection

SQLite DB Connection handler that plays well with eventlet.

commit()
Commit the current transaction.

cursor(cls=None)
Return a cursor for the connection.

class swift.common.db.GreenDBCursor(*args, **kwargs)
Bases: sqlite3.Cursor

SQLite Cursor handler that plays well with eventlet.

execute(*args, **kwargs)
Executes a SQL statement.

swift.common.db.PICKLE_PROTOCOL = 2
Pickle protocol to use

swift.common.db.QUERY_LOGGING = False
Whether calls will be made to log queries (py3 only)

swift.common.db.chexor(old, name, timestamp)
Each entry in the account and container databases is XORed by the 128-bit hash on insert or
delete. This serves as a rolling, order-independent hash of the contents. (check + XOR)

Parameters

• old hex representation of the current DB hash

• name name of the object or container being inserted

• timestamp internalized timestamp of the new record

Returns a hex representation of the new hash value

9.5. Account DB and Container DB 525



Swift Documentation, Release 2.27.1.dev38

swift.common.db.dict_factory(crs, row)
This should only be used when you need a real dict, i.e. when youre going to serialize the results.

swift.common.db.get_db_connection(path, timeout=30, logger=None,
okay_to_create=False)

Returns a properly configured SQLite database connection.

Parameters

• path path to DB

• timeout timeout for connection

• okay_to_create if True, create the DB if it doesnt exist

Returns DB connection object

swift.common.db.native_str_keys_and_values(metadata)

swift.common.db.utf8encode(*args)

swift.common.db.zero_like(count)
Weve cargo culted our consumers to be tolerant of various expressions of zero in our databases
for backwards compatibility with less disciplined producers.

9.5.2 DB replicator

class swift.common.db_replicator.ReplConnection(node, partition, hash_,
logger)

Bases: swift.common.bufferedhttp.BufferedHTTPConnection

Helper to simplify REPLICATEing to a remote server.

replicate(*args)
Make an HTTP REPLICATE request

Parameters args list of json-encodable objects

Returns bufferedhttp response object

class swift.common.db_replicator.Replicator(conf, logger=None)
Bases: swift.common.daemon.Daemon

Implements the logic for directing db replication.

cleanup_post_replicate(broker, orig_info, responses)
Cleanup non primary database from disk if needed.

Parameters

• broker the broker for the database were replicating

• orig_info snapshot of the broker replication info dict taken before repli-
cation

• responses a list of boolean success values for each replication request to
other nodes

Return success returns False if deletion of the database was attempted but unsuc-
cessful, otherwise returns True.

delete_db(broker)

526 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

extract_device(object_file)
Extract the device name from an object path. Returns UNKNOWN if the path could not be
extracted successfully for some reason.

Parameters object_file the path to a database file.

report_up_to_date(full_info)

roundrobin_datadirs(dirs)

run_forever(*args, **kwargs)
Replicate dbs under the given root in an infinite loop.

run_once(*args, **kwargs)
Run a replication pass once.

class swift.common.db_replicator.ReplicatorRpc(root, datadir,
broker_class,
mount_check=True,
logger=None)

Bases: object

Handle Replication RPC calls. TODO(redbo): document please :)

complete_rsync(drive, db_file, args)

debug_timing(name)

dispatch(replicate_args, args)

merge_items(broker, args)

merge_syncs(broker, args)

rsync_then_merge(drive, db_file, args)

sync(broker, args)

swift.common.db_replicator.looks_like_partition(dir_name)
True if the directory name is a valid partition number, False otherwise.

swift.common.db_replicator.quarantine_db(object_file, server_type)
In the case that a corrupt file is found, move it to a quarantined area to allow replication to fix it.

Parameters

• object_file path to corrupt file

• server_type type of file that is corrupt (container or account)

swift.common.db_replicator.roundrobin_datadirs(datadirs)
Generator to walk the data dirs in a round robin manner, evenly hitting each device on the system,
and yielding any .db files found (in their proper places). The partitions within each data dir are
walked randomly, however.

Parameters datadirs a list of tuples of (path, context, partition_filter) to walk.
The context may be any object; the context is not used by this function but is
included with each yielded tuple.

Returns A generator of (partition, path_to_db_file, context)

9.5. Account DB and Container DB 527



Swift Documentation, Release 2.27.1.dev38

9.6 Object

9.6.1 Object Auditor

class swift.obj.auditor.AuditorWorker(conf, logger, rcache, de-
vices, zero_byte_only_at_fps=0,
watcher_defs=None)

Bases: object

Walk through file system to audit objects

audit_all_objects(mode=’once’, device_dirs=None)

create_recon_nested_dict(top_level_key, device_list, item)

failsafe_object_audit(location)
Entrypoint to object_audit, with a failsafe generic exception handler.

object_audit(location)
Audits the given object location.

Parameters location an audit location (from disk-
file.object_audit_location_generator)

record_stats(obj_size)
Based on configs object_size_stats will keep track of how many objects fall into the specified
ranges. For example with the following:

object_size_stats = 10, 100, 1024

and your system has 3 objects of sizes: 5, 20, and 10000 bytes the log will look like: {10: 1,
100: 1, 1024: 0, OVER: 1}

class swift.obj.auditor.ObjectAuditor(conf, logger=None, **options)
Bases: swift.common.daemon.Daemon

Audit objects.

audit_loop(parent, zbo_fps, override_devices=None, **kwargs)
Parallel audit loop

clear_recon_cache(auditor_type)
Clear recon cache entries

fork_child(zero_byte_fps=False, sleep_between_zbf_scanner=False, **kwargs)
Child execution

run_audit(**kwargs)
Run the object audit

run_forever(*args, **kwargs)
Run the object audit until stopped.

run_once(*args, **kwargs)
Run the object audit once

class swift.obj.auditor.WatcherWrapper(watcher_class, watcher_name, conf,
logger)

Bases: object

Run the user-supplied watcher.

528 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

Simple and gets the job done. Note that we arent doing anything to isolate ourselves from hangs
or file descriptor leaks in the plugins.

end()

see_object(meta, data_file_path)

start(audit_type)

9.6.2 Object Backend

Disk File Interface for the Swift Object Server

The DiskFile, DiskFileWriter and DiskFileReader classes combined define the on-disk abstraction layer
for supporting the object server REST API interfaces (excluding REPLICATE). Other implementations
wishing to provide an alternative backend for the object server must implement the three classes. An
example alternative implementation can be found in the mem_server.py and mem_diskfile.py modules
along size this one.

The DiskFileManager is a reference implemenation specific class and is not part of the backend API.

The remaining methods in this module are considered implementation specific and are also not consid-
ered part of the backend API.

class swift.obj.diskfile.AuditLocation(path, device, partition, policy)
Bases: object

Represents an object location to be audited.

Other than being a bucket of data, the only useful thing this does is stringify to a filesystem path
so the auditors logs look okay.

class swift.obj.diskfile.BaseDiskFile(mgr, device_path, partition, ac-
count=None, container=None,
obj=None, _datadir=None, pol-
icy=None, use_splice=False,
pipe_size=None, open_expired=False,
next_part_power=None, **kwargs)

Bases: object

Manage object files.

This specific implementation manages object files on a disk formatted with a POSIX-compliant
file system that supports extended attributes as metadata on a file or directory.

Note: The arguments to the constructor are considered implementation specific. The API does
not define the constructor arguments.

The following path format is used for data file locations: <de-
vices_path/<device_dir>/<datadir>/<partdir>/<suffixdir>/<hashdir>/ <datafile>.<ext>

Parameters

• mgr associated DiskFileManager instance

• device_path path to the target device or drive

9.6. Object 529



Swift Documentation, Release 2.27.1.dev38

• partition partition on the device in which the object lives

• account account name for the object

• container container name for the object

• obj object name for the object

• _datadir override the full datadir otherwise constructed here

• policy the StoragePolicy instance

• use_splice if true, use zero-copy splice() to send data

• pipe_size size of pipe buffer used in zero-copy operations

• open_expired if True, open() will not raise a DiskFileExpired if object is
expired

• next_part_power the next partition power to be used

property account

property container

property content_length

property content_type

property content_type_timestamp

create(size=None)
Context manager to create a file. We create a temporary file first, and then return a Disk-
FileWriter object to encapsulate the state.

Note: An implementation is not required to perform on-disk preallocations even if the
parameter is specified. But if it does and it fails, it must raise a DiskFileNoSpace exception.

Parameters size optional initial size of file to explicitly allocate on disk

Raises DiskFileNoSpace if a size is specified and allocation fails

property data_timestamp

delete(timestamp)
Delete the object.

This implementation creates a tombstone file using the given timestamp, and removes any
older versions of the object file. Any file that has an older timestamp than timestamp will be
deleted.

Note: An implementation is free to use or ignore the timestamp parameter.

Parameters timestamp timestamp to compare with each file

Raises DiskFileError this implementation will raise the same errors as the
create() method.

530 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

property durable_timestamp
Provides the timestamp of the newest data file found in the object directory.

Returns A Timestamp instance, or None if no data file was found.

Raises DiskFileNotOpen if the open() method has not been previously called
on this instance.

property fragments

classmethod from_hash_dir(mgr, hash_dir_path, device_path, partition, policy)

get_datafile_metadata()
Provide the datafile metadata for a previously opened object as a dictionary. This is metadata
that was included when the object was first PUT, and does not include metadata set by any
subsequent POST.

Returns objects datafile metadata dictionary

Raises DiskFileNotOpen if the swift.obj.diskfile.DiskFile.
open() method was not previously invoked

get_metadata()
Provide the metadata for a previously opened object as a dictionary.

Returns objects metadata dictionary

Raises DiskFileNotOpen if the swift.obj.diskfile.DiskFile.
open() method was not previously invoked

get_metafile_metadata()
Provide the metafile metadata for a previously opened object as a dictionary. This is metadata
that was written by a POST and does not include any persistent metadata that was set by the
original PUT.

Returns objects .meta file metadata dictionary, or None if there is no .meta file

Raises DiskFileNotOpen if the swift.obj.diskfile.DiskFile.
open() method was not previously invoked

property manager

property obj

open(modernize=False, current_time=None)
Open the object.

This implementation opens the data file representing the object, reads the associated meta-
data in the extended attributes, additionally combining metadata from fast-POST .meta files.

Parameters

• modernize if set, update this diskfile to the latest format. Currently, this
means adding metadata checksums if none are present.

• current_time Unix time used in checking expiration. If not present,
the current time will be used.

Note: An implementation is allowed to raise any of the following exceptions, but is only
required to raise DiskFileNotExist when the object representation does not exist.

9.6. Object 531



Swift Documentation, Release 2.27.1.dev38

Raises

• DiskFileCollision on name mis-match with metadata

• DiskFileNotExist if the object does not exist

• DiskFileDeleted if the object was previously deleted

• DiskFileQuarantined if while reading metadata of the file some data
did pass cross checks

Returns itself for use as a context manager

read_metadata(current_time=None)
Return the metadata for an object without requiring the caller to open the object first.

Parameters current_time Unix time used in checking expiration. If not
present, the current time will be used.

Returns metadata dictionary for an object

Raises DiskFileError this implementation will raise the same errors as the
open() method.

reader(keep_cache=False, _quarantine_hook=<function BaseDiskFile.<lambda»)
Return a swift.common.swob.Response class compatible app_iter object as defined
by swift.obj.diskfile.DiskFileReader.

For this implementation, the responsibility of closing the open file is passed to the swift.
obj.diskfile.DiskFileReader object.

Parameters

• keep_cache callers preference for keeping data read in the OS buffer
cache

• _quarantine_hook 1-arg callable called when obj quarantined; the arg
is the reason for quarantine. Default is to ignore it. Not needed by the REST
layer.

Returns a swift.obj.diskfile.DiskFileReader object

reader_cls = None

property timestamp

write_metadata(metadata)
Write a block of metadata to an object without requiring the caller to create the object first.
Supports fast-POST behavior semantics.

Parameters metadata dictionary of metadata to be associated with the object

Raises DiskFileError this implementation will raise the same errors as the
create() method.

writer(size=None)

writer_cls = None

class swift.obj.diskfile.BaseDiskFileManager(conf, logger)
Bases: object

532 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

Management class for devices, providing common place for shared parameters and methods not
provided by the DiskFile class (which primarily services the object server REST API layer).

The get_diskfile() method is how this implementation creates a DiskFile object.

Note: This class is reference implementation specific and not part of the pluggable on-disk
backend API.

Note: TODO(portante): Not sure what the right name to recommend here, as manager seemed
generic enough, though suggestions are welcome.

Parameters

• conf caller provided configuration object

• logger caller provided logger

classmethod check_policy(policy)

cleanup_ondisk_files(hsh_path, **kwargs)
Clean up on-disk files that are obsolete and gather the set of valid on-disk files for an object.

Parameters

• hsh_path object hash path

• frag_index if set, search for a specific fragment index .data file, other-
wise accept the first valid .data file

Returns a dict that may contain: valid on disk files keyed by their filename ex-
tension; a list of obsolete files stored under the key obsolete; a list of files
remaining in the directory, reverse sorted, stored under the key files.

clear_auditor_status(policy, auditor_type=’ALL’)

consolidate_hashes(*args, **kwargs)

construct_dev_path(device)
Construct the path to a device without checking if it is mounted.

Parameters device name of target device

Returns full path to the device

diskfile_cls = None

get_dev_path(device, mount_check=None)
Return the path to a device, first checking to see if either it is a proper mount point, or at
least a directory depending on the mount_check configuration option.

Parameters

• device name of target device

• mount_check whether or not to check mountedness of device. Defaults
to bool(self.mount_check).

9.6. Object 533



Swift Documentation, Release 2.27.1.dev38

Returns full path to the device, None if the path to the device is not a proper mount
point or directory.

get_diskfile(device, partition, account, container, obj, policy, **kwargs)
Returns a BaseDiskFile instance for an object based on the objects partition, path parts and
policy.

Parameters

• device name of target device

• partition partition on device in which the object lives

• account account name for the object

• container container name for the object

• obj object name for the object

• policy the StoragePolicy instance

get_diskfile_from_audit_location(audit_location)
Returns a BaseDiskFile instance for an object at the given AuditLocation.

Parameters audit_location object location to be audited

get_diskfile_from_hash(device, partition, object_hash, policy, **kwargs)
Returns a DiskFile instance for an object at the given object_hash. Just in case someone
thinks of refactoring, be sure DiskFileDeleted is not raised, but the DiskFile instance repre-
senting the tombstoned object is returned instead.

Parameters

• device name of target device

• partition partition on the device in which the object lives

• object_hash the hash of an object path

• policy the StoragePolicy instance

Raises DiskFileNotExist if the object does not exist

Returns an instance of BaseDiskFile

get_hashes(device, partition, suffixes, policy, skip_rehash=False)

Parameters

• device name of target device

• partition partition name

• suffixes a list of suffix directories to be recalculated

• policy the StoragePolicy instance

• skip_rehash just mark the suffixes dirty; return None

Returns a dictionary that maps suffix directories

get_ondisk_files(files, datadir, verify=True, policy=None, **kwargs)
Given a simple list of files names, determine the files that constitute a valid fileset i.e. a set
of files that defines the state of an object, and determine the files that are obsolete and could
be deleted. Note that some files may fall into neither category.

534 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

If a file is considered part of a valid fileset then its info dict will be added to the results dict,
keyed by <extension>_info. Any files that are no longer required will have their info dicts
added to a list stored under the key obsolete.

The results dict will always contain entries with keys ts_file, data_file and meta_file. Their
values will be the fully qualified path to a file of the corresponding type if there is such a file
in the valid fileset, or None.

Parameters

• files a list of file names.

• datadir directory name files are from; this is used to construct file paths
in the results, but the datadir is not modified by this method.

• verify if True verify that the ondisk file contract has not been violated,
otherwise do not verify.

• policy storage policy used to store the files. Used to validate fragment
indexes for EC policies.

Returns

a dict that will contain keys: ts_file -> path to a .ts file or None data_file ->
path to a .data file or None meta_file -> path to a .meta file or None ctype_file
-> path to a .meta file or None

and may contain keys: ts_info -> a file info dict for a .ts file data_info ->
a file info dict for a .data file meta_info -> a file info dict for a .meta file
ctype_info -> a file info dict for a .meta file which contains the content-type
value unexpected -> a list of file paths for unexpected files possible_reclaim
-> a list of file info dicts for possible reclaimable files obsolete -> a list of
file info dicts for obsolete files

invalidate_hash(*args, **kwargs)

make_on_disk_filename(timestamp, ext=None, ctype_timestamp=None, *a, **kw)
Returns filename for given timestamp.

Parameters

• timestamp the object timestamp, an instance of Timestamp

• ext an optional string representing a file extension to be appended to the
returned file name

• ctype_timestamp an optional content-type timestamp, an instance of
Timestamp

Returns a file name

object_audit_location_generator(policy, device_dirs=None, audi-
tor_type=’ALL’)

Yield an AuditLocation for all objects stored under device_dirs.

Parameters

• policy the StoragePolicy instance

• device_dirs directory of target device

• auditor_type either ALL or ZBF

9.6. Object 535



Swift Documentation, Release 2.27.1.dev38

parse_on_disk_filename(filename, policy)
Parse an on disk file name.

Parameters

• filename the file name including extension

• policy storage policy used to store the file

Returns

a dict, with keys for timestamp, ext and ctype_timestamp:

• timestamp is a Timestamp

• ctype_timestamp is a Timestamp or None for .meta files, otherwise None

• ext is a string, the file extension including the leading dot or the empty string
if the filename has no extension.

Subclasses may override this method to add further keys to the returned dict.

Raises DiskFileError if any part of the filename is not able to be validated.

partition_lock(device, policy, partition, name=None, timeout=None)
A context manager that will lock on the partition given.

Parameters

• device device targeted by the lock request

• policy policy targeted by the lock request

• partition partition targeted by the lock request

Raises PartitionLockTimeout If the lock on the partition cannot be
granted within the configured timeout.

pickle_async_update(device, account, container, obj, data, timestamp, policy)
Write data describing a container update notification to a pickle file in the async_pending
directory.

Parameters

• device name of target device

• account account name for the object

• container container name for the object

• obj object name for the object

• data update data to be written to pickle file

• timestamp a Timestamp

• policy the StoragePolicy instance

policy = None

quarantine_renamer(*args, **kwargs)

replication_lock(device, policy, partition)
A context manager that will lock on the partition and, if configured to do so, on the device
given.

536 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

Parameters

• device name of target device

• policy policy targeted by the replication request

• partition partition targeted by the replication request

Raises ReplicationLockTimeout If the lock on the device cannot be
granted within the configured timeout.

yield_hashes(device, partition, policy, suffixes=None, **kwargs)
Yields tuples of (hash_only, timestamps) for object information stored for the given device,
partition, and (optionally) suffixes. If suffixes is None, all stored suffixes will be searched
for object hashes. Note that if suffixes is not None but empty, such as [], then nothing will
be yielded.

timestamps is a dict which may contain items mapping:

• ts_data -> timestamp of data or tombstone file,

• ts_meta -> timestamp of meta file, if one exists

• ts_ctype -> timestamp of meta file containing most recent content-type value, if
one exists

• durable -> True if data file at ts_data is durable, False otherwise

where timestamps are instances of Timestamp

Parameters

• device name of target device

• partition partition name

• policy the StoragePolicy instance

• suffixes optional list of suffix directories to be searched

yield_suffixes(device, partition, policy)
Yields tuples of (full_path, suffix_only) for suffixes stored on the given device and partition.

Parameters

• device name of target device

• partition partition name

• policy the StoragePolicy instance

class swift.obj.diskfile.BaseDiskFileReader(fp, data_file, obj_size,
etag, disk_chunk_size,
keep_cache_size, device_path,
logger, quarantine_hook,
use_splice, pipe_size, diskfile,
keep_cache=False)

Bases: object

Encapsulation of the WSGI read context for servicing GET REST API requests. Serves as
the context manager object for the swift.obj.diskfile.DiskFile classs swift.obj.
diskfile.DiskFile.reader() method.

9.6. Object 537



Swift Documentation, Release 2.27.1.dev38

Note: The quarantining behavior of this method is considered implementation specific, and is
not required of the API.

Note: The arguments to the constructor are considered implementation specific. The API does
not define the constructor arguments.

Parameters

• fp open file object pointer reference

• data_file on-disk data file name for the object

• obj_size verified on-disk size of the object

• etag expected metadata etag value for entire file

• disk_chunk_size size of reads from disk in bytes

• keep_cache_size maximum object size that will be kept in cache

• device_path on-disk device path, used when quarantining an obj

• logger logger caller wants this object to use

• quarantine_hook 1-arg callable called w/reason when quarantined

• use_splice if true, use zero-copy splice() to send data

• pipe_size size of pipe buffer used in zero-copy operations

• diskfile the diskfile creating this DiskFileReader instance

• keep_cache should resulting reads be kept in the buffer cache

app_iter_range(start, stop)
Returns an iterator over the data file for range (start, stop)

app_iter_ranges(ranges, content_type, boundary, size)
Returns an iterator over the data file for a set of ranges

can_zero_copy_send()

close()
Close the open file handle if present.

For this specific implementation, this method will handle quarantining the file if necessary.

property manager

zero_copy_send(wsockfd)
Does some magic with splice() and tee() to move stuff from disk to network without ever
touching userspace.

Parameters wsockfd file descriptor (integer) of the socket out which to send
data

538 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

class swift.obj.diskfile.BaseDiskFileWriter(name, datadir, size,
bytes_per_sync, diskfile,
next_part_power)

Bases: object

Encapsulation of the write context for servicing PUT REST API requests. Serves as the
context manager object for the swift.obj.diskfile.DiskFile classs swift.obj.
diskfile.DiskFile.create() method.

Note: It is the responsibility of the swift.obj.diskfile.DiskFile.create()method
context manager to close the open file descriptor.

Note: The arguments to the constructor are considered implementation specific. The API does
not define the constructor arguments.

Parameters

• name name of object from REST API

• datadir on-disk directory object will end up in on swift.obj.
diskfile.DiskFileWriter.put()

• fd open file descriptor of temporary file to receive data

• tmppath full path name of the opened file descriptor

• bytes_per_sync number bytes written between sync calls

• diskfile the diskfile creating this DiskFileWriter instance

• next_part_power the next partition power to be used

chunks_finished()
Expose internal stats about written chunks.

Returns a tuple, (upload_size, etag)

close()

commit(timestamp)
Perform any operations necessary to mark the object as durable. For replication policy type
this is a no-op.

Parameters timestamp object put timestamp, an instance of Timestamp

property logger

property manager

open()

put(metadata)
Finalize writing the file on disk.

Parameters metadata dictionary of metadata to be associated with the object

9.6. Object 539



Swift Documentation, Release 2.27.1.dev38

write(chunk)
Write a chunk of data to disk. All invocations of this method must come before invoking the
:func:

For this implementation, the data is written into a temporary file.

Parameters chunk the chunk of data to write as a string object

class swift.obj.diskfile.DiskFile(mgr, device_path, partition, account=None,
container=None, obj=None, _datadir=None,
policy=None, use_splice=False,
pipe_size=None, open_expired=False,
next_part_power=None, **kwargs)

Bases: swift.obj.diskfile.BaseDiskFile

reader_cls
alias of swift.obj.diskfile.DiskFileReader

writer_cls
alias of swift.obj.diskfile.DiskFileWriter

class swift.obj.diskfile.DiskFileManager(conf, logger)
Bases: swift.obj.diskfile.BaseDiskFileManager

diskfile_cls
alias of swift.obj.diskfile.DiskFile

policy = 'replication'

class swift.obj.diskfile.DiskFileReader(fp, data_file, obj_size, etag,
disk_chunk_size, keep_cache_size,
device_path, logger, quaran-
tine_hook, use_splice, pipe_size,
diskfile, keep_cache=False)

Bases: swift.obj.diskfile.BaseDiskFileReader

class swift.obj.diskfile.DiskFileRouter(*args, **kwargs)
Bases: object

class swift.obj.diskfile.DiskFileWriter(name, datadir, size, bytes_per_sync,
diskfile, next_part_power)

Bases: swift.obj.diskfile.BaseDiskFileWriter

put(metadata)
Finalize writing the file on disk.

Parameters metadata dictionary of metadata to be associated with the object

class swift.obj.diskfile.ECDiskFile(*args, **kwargs)
Bases: swift.obj.diskfile.BaseDiskFile

property durable_timestamp
Provides the timestamp of the newest durable file found in the object directory.

Returns A Timestamp instance, or None if no durable file was found.

Raises DiskFileNotOpen if the open() method has not been previously called
on this instance.

property fragments
Provides information about all fragments that were found in the object directory, including

540 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

fragments without a matching durable file, and including any fragment chosen to construct
the opened diskfile.

Returns A dict mapping <Timestamp instance> -> <list of frag indexes>, or None
if the diskfile has not been opened or no fragments were found.

purge(timestamp, frag_index)
Remove a tombstone file matching the specified timestamp or datafile matching the specified
timestamp and fragment index from the object directory.

This provides the EC reconstructor/ssync process with a way to remove a tombstone or
fragment from a handoff node after reverting it to its primary node.

The hash will be invalidated, and if empty the hsh_path will be removed immediately.

Parameters

• timestamp the object timestamp, an instance of Timestamp

• frag_index fragment archive index, must be a whole number or None.

reader_cls
alias of swift.obj.diskfile.ECDiskFileReader

writer_cls
alias of swift.obj.diskfile.ECDiskFileWriter

class swift.obj.diskfile.ECDiskFileManager(conf, logger)
Bases: swift.obj.diskfile.BaseDiskFileManager

diskfile_cls
alias of swift.obj.diskfile.ECDiskFile

make_on_disk_filename(timestamp, ext=None, frag_index=None,
ctype_timestamp=None, durable=False, *a, **kw)

Returns the EC specific filename for given timestamp.

Parameters

• timestamp the object timestamp, an instance of Timestamp

• ext an optional string representing a file extension to be appended to the
returned file name

• frag_index a fragment archive index, used with .data extension only,
must be a whole number.

• ctype_timestamp an optional content-type timestamp, an instance of
Timestamp

• durable if True then include a durable marker in data filename.

Returns a file name

Raises DiskFileError if ext==.data and the kwarg frag_index is not a whole
number

parse_on_disk_filename(filename, policy)
Returns timestamp(s) and other info extracted from a policy specific file name. For EC
policy the data file name includes a fragment index and possibly a durable marker, both of
which must be stripped off to retrieve the timestamp.

9.6. Object 541



Swift Documentation, Release 2.27.1.dev38

Parameters filename the file name including extension

Returns

a dict, with keys for timestamp, frag_index, durable, ext and
ctype_timestamp:

• timestamp is a Timestamp

• frag_index is an int or None

• ctype_timestamp is a Timestamp or None for .meta files, otherwise None

• ext is a string, the file extension including the leading dot or the empty string
if the filename has no extension

• durable is a boolean that is True if the filename is a data file that includes a
durable marker

Raises DiskFileError if any part of the filename is not able to be validated.

policy = 'erasure_coding'

validate_fragment_index(frag_index, policy=None)
Return int representation of frag_index, or raise a DiskFileError if frag_index is not a whole
number.

Parameters

• frag_index a fragment archive index

• policy storage policy used to validate the index against

class swift.obj.diskfile.ECDiskFileReader(fp, data_file, obj_size,
etag, disk_chunk_size,
keep_cache_size, device_path,
logger, quarantine_hook,
use_splice, pipe_size, diskfile,
keep_cache=False)

Bases: swift.obj.diskfile.BaseDiskFileReader

class swift.obj.diskfile.ECDiskFileWriter(name, datadir, size,
bytes_per_sync, diskfile,
next_part_power)

Bases: swift.obj.diskfile.BaseDiskFileWriter

commit(timestamp)
Finalize put by renaming the object data file to include a durable marker. We do this for EC
policy because it requires a 2-phase put commit confirmation.

Parameters timestamp object put timestamp, an instance of Timestamp

Raises DiskFileError if the diskfile frag_index has not been set (either dur-
ing initialisation or a call to put())

put(metadata)
The only difference between this method and the replication policy DiskFileWriter method
is adding the frag index to the metadata.

Parameters metadata dictionary of metadata to be associated with object

542 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

swift.obj.diskfile.clear_auditor_status(devices, datadir, audi-
tor_type=’ALL’)

swift.obj.diskfile.consolidate_hashes(partition_dir)
Take whats in hashes.pkl and hashes.invalid, combine them, write the result back to hashes.pkl,
and clear out hashes.invalid.

Parameters partition_dir absolute path to partition dir containing hashes.pkl
and hashes.invalid

Returns a dict, the suffix hashes (if any), the key valid will be False if hashes.pkl is
corrupt, cannot be read or does not exist

swift.obj.diskfile.extract_policy(obj_path)
Extracts the policy for an object (based on the name of the objects directory) given the device-
relative path to the object. Returns None in the event that the path is malformed in some way.

The device-relative path is everything after the mount point; for example:

/srv/node/d42/objects-5/30/179/ 485dc017205a81df3af616d917c90179/1401811134.873649.data

would have device-relative path:

objects-5/30/179/485dc017205a81df3af616d917c90179/1401811134.873649.data

Parameters obj_path device-relative path of an object, or the full path

Returns a BaseStoragePolicy or None

swift.obj.diskfile.get_async_dir(policy_or_index)
Get the async dir for the given policy.

Parameters policy_or_index StoragePolicy instance, or an index (string
or int); if None, the legacy Policy-0 is assumed.

Returns async_pending or async_pending-<N> as appropriate

swift.obj.diskfile.get_auditor_status(datadir_path, logger, auditor_type)

swift.obj.diskfile.get_data_dir(policy_or_index)
Get the data dir for the given policy.

Parameters policy_or_index StoragePolicy instance, or an index (string
or int); if None, the legacy Policy-0 is assumed.

Returns objects or objects-<N> as appropriate

swift.obj.diskfile.get_part_path(dev_path, policy, partition)
Given the device path, policy, and partition, returns the full path to the partition

swift.obj.diskfile.get_tmp_dir(policy_or_index)
Get the temp dir for the given policy.

Parameters policy_or_index StoragePolicy instance, or an index (string
or int); if None, the legacy Policy-0 is assumed.

Returns tmp or tmp-<N> as appropriate

swift.obj.diskfile.invalidate_hash(suffix_dir)
Invalidates the hash for a suffix_dir in the partitions hashes file.

Parameters suffix_dir absolute path to suffix dir whose hash needs invalidating

9.6. Object 543



Swift Documentation, Release 2.27.1.dev38

swift.obj.diskfile.object_audit_location_generator(devices, datadir,
mount_check=True,
logger=None, de-
vice_dirs=None, au-
ditor_type=’ALL’)

Given a devices path (e.g. /srv/node), yield an AuditLocation for all objects stored under that
directory for the given datadir (policy), if device_dirs isnt set. If device_dirs is set, only yield
AuditLocation for the objects under the entries in device_dirs. The AuditLocation only knows
the path to the hash directory, not to the .data file therein (if any). This is to avoid a double
listdir(hash_dir); the DiskFile object will always do one, so we dont.

Parameters

• devices parent directory of the devices to be audited

• datadir objects directory

• mount_check flag to check if a mount check should be performed on de-
vices

• logger a logger object

• device_dirs a list of directories under devices to traverse

• auditor_type either ALL or ZBF

swift.obj.diskfile.quarantine_renamer(device_path, corrupted_file_path)
In the case that a file is corrupted, move it to a quarantined area to allow replication to fix it.

Params device_path The path to the device the corrupted file is on.

Params corrupted_file_path The path to the file you want quarantined.

Returns path (str) of directory the file was moved to

Raises OSError re-raises non errno.EEXIST / errno.ENOTEMPTY exceptions
from rename

swift.obj.diskfile.read_hashes(partition_dir)
Read the existing hashes.pkl

Returns a dict, the suffix hashes (if any), the key valid will be False if hashes.pkl is
corrupt, cannot be read or does not exist

swift.obj.diskfile.read_metadata(fd, add_missing_checksum=False)
Helper function to read the pickled metadata from an object file.

Parameters

• fd file descriptor or filename to load the metadata from

• add_missing_checksum if set and checksum is missing, add it

Returns dictionary of metadata

swift.obj.diskfile.relink_paths(target_path, new_target_path)
Hard-links a file located in target_path using the second path new_target_path. Creates interme-
diate directories if required.

Parameters

• target_path current absolute filename

544 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

• new_target_path new absolute filename for the hardlink

Raises OSError if the hard link could not be created, unless the intended hard link
already exists or the target_path does not exist.

Returns True if the link was created by the call to this method, False otherwise.

swift.obj.diskfile.strip_self(f)
Wrapper to attach module level functions to base class.

swift.obj.diskfile.update_auditor_status(datadir_path, logger, partitions,
auditor_type)

swift.obj.diskfile.write_hashes(partition_dir, hashes)
Write hashes to hashes.pkl

The updated key is added to hashes before it is written.

swift.obj.diskfile.write_metadata(fd, metadata, xattr_size=65536)
Helper function to write pickled metadata for an object file.

Parameters

• fd file descriptor or filename to write the metadata

• metadata metadata to write

9.6.3 Object Replicator

class swift.obj.replicator.ObjectReplicator(conf, logger=None)
Bases: swift.common.daemon.Daemon

Replicate objects.

Encapsulates most logic and data needed by the object replication process. Each call to .replicate()
performs one replication pass. Its up to the caller to do this in a loop.

aggregate_recon_update()

build_replication_jobs(policy, ips, override_devices=None, over-
ride_partitions=None)

Helper function for collect_jobs to build jobs for replication using replication style storage
policy

check_ring(object_ring)
Check to see if the ring has been updated :param object_ring: the ring to check

Returns boolean indicating whether or not the ring has changed

collect_jobs(override_devices=None, override_partitions=None, over-
ride_policies=None)

Returns a sorted list of jobs (dictionaries) that specify the partitions, nodes, etc to be rsynced.

Parameters

• override_devices if set, only jobs on these devices will be returned

• override_partitions if set, only jobs on these partitions will be re-
turned

• override_policies if set, only jobs in these storage policies will be
returned

9.6. Object 545



Swift Documentation, Release 2.27.1.dev38

delete_handoff_objs(job, delete_objs)

delete_partition(path)

get_local_devices()
Returns a set of all local devices in all replication-type storage policies.

This is the device names, e.g. sdq or d1234 or something, not the full ring entries.

get_worker_args(once=False, **kwargs)
For each worker yield a (possibly empty) dict of kwargs to pass along to the daemons run()
method after fork. The length of elements returned from this method will determine the
number of processes created.

If the returned iterable is empty, the Strategy will fallback to run-inline strategy.

Parameters

• once False if the worker(s) will be daemonized, True if the worker(s) will
be run once

• kwargs plumbed through via command line argparser

Returns an iterable of dicts, each element represents the kwargs to be passed to a
single workers run() method after fork.

heartbeat()
Loop that runs in the background during replication. It periodically logs progress.

is_healthy()
Check whether our set of local devices remains the same.

If devices have been added or removed, then we return False here so that we can kill off any
worker processes and then distribute the new set of local devices across a new set of workers
so that all devices are, once again, being worked on.

This function may also cause recon stats to be updated.

Returns False if any local devices have been added or removed, True otherwise

load_object_ring(policy)
Make sure the policys rings are loaded.

Parameters policy the StoragePolicy instance

Returns appropriate ring object

post_multiprocess_run()
Override this to do something after running using multiple worker processes. This method
is called in the parent process.

This is probably only useful for run-once mode since there is no after running in run-forever
mode.

replicate(override_devices=None, override_partitions=None, over-
ride_policies=None, start_time=None)

Run a replication pass

rsync(node, job, suffixes)
Uses rsync to implement the sync method. This was the first sync method in Swift.

546 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

run_forever(multiprocess_worker_index=None, override_devices=None, *args,
**kwargs)

Override this to run forever

run_once(multiprocess_worker_index=None, have_overrides=False, *args, **kwargs)
Override this to run the script once

ssync(node, job, suffixes, remote_check_objs=None)

stats_line()
Logs various stats for the currently running replication pass.

sync(node, job, suffixes, *args, **kwargs)
Synchronize local suffix directories from a partition with a remote node.

Parameters

• node the dev entry for the remote node to sync with

• job information about the partition being synced

• suffixes a list of suffixes which need to be pushed

Returns boolean and dictionary, boolean indicating success or failure

property total_stats

update(job)
High-level method that replicates a single partition.

Parameters job a dict containing info about the partition to be replicated

update_deleted(job)
High-level method that replicates a single partition that doesnt belong on this node.

Parameters job a dict containing info about the partition to be replicated

update_recon(total, end_time, override_devices)

class swift.obj.replicator.Stats(attempted=0, failure=0, hashmatch=0,
remove=0, rsync=0, success=0, suf-
fix_count=0, suffix_hash=0, suffix_sync=0,
failure_nodes=None)

Bases: object

add_failure_stats(failures)
Note the failure of one or more devices.

Parameters failures a list of (ip, device-name) pairs that failed

fields = ['attempted', 'failure', 'hashmatch', 'remove', 'rsync', 'success', 'suffix_count', 'suffix_hash', 'suffix_sync', 'failure_nodes']

classmethod from_recon(dct)

to_recon()

class swift.obj.ssync_sender.Sender(daemon, node, job, suffixes,
remote_check_objs=None, in-
clude_non_durable=False)

Bases: object

Sends SSYNC requests to the object server.

9.6. Object 547



Swift Documentation, Release 2.27.1.dev38

These requests are eventually handled by ssync_receiver and full documentation about the
process is there.

connect()
Establishes a connection and starts an SSYNC request with the object server.

disconnect(connection)
Closes down the connection to the object server once done with the SSYNC request.

missing_check(connection, response)
Handles the sender-side of the MISSING_CHECK step of a SSYNC request.

Full documentation of this can be found at Receiver.missing_check().

send_delete(connection, url_path, timestamp)
Sends a DELETE subrequest with the given information.

send_post(connection, url_path, df)

send_put(connection, url_path, df, durable=True)
Sends a PUT subrequest for the url_path using the source df (DiskFile) and content_length.

send_subrequest(connection, method, url_path, headers, df)

updates(connection, response, send_map)
Handles the sender-side of the UPDATES step of an SSYNC request.

Full documentation of this can be found at Receiver.updates().

class swift.obj.ssync_sender.SsyncBufferedHTTPConnection(host,
port=None,
time-
out=<object
object>,
source_address=None)

Bases: swift.common.bufferedhttp.BufferedHTTPConnection

response_class
alias of swift.obj.ssync_sender.SsyncBufferedHTTPResponse

class swift.obj.ssync_sender.SsyncBufferedHTTPResponse(*args,
**kwargs)

Bases: swift.common.bufferedhttp.BufferedHTTPResponse, object

readline(size=1024)
Reads a line from the SSYNC response body.

httplib has no readline and will block on read(x) until x is read, so we have to do the work
ourselves. A bit of this is taken from Pythons httplib itself.

swift.obj.ssync_sender.decode_wanted(parts)
Parse missing_check line parts to determine which parts of local diskfile were wanted by the
receiver.

The encoder for parts is encode_wanted()

swift.obj.ssync_sender.encode_missing(object_hash, ts_data, ts_meta=None,
ts_ctype=None, **kwargs)

Returns a string representing the object hash, its data file timestamp, the delta for-
wards to its metafile and content-type timestamps, if non-zero, and its durability, in the

548 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

form: <hash> <ts_data> [m:<hex delta to ts_meta>[,t:<hex delta to
ts_ctype>] [,durable:False]

The decoder for this line is decode_missing()

class swift.obj.ssync_receiver.Receiver(app, request)
Bases: object

Handles incoming SSYNC requests to the object server.

These requests come from the object-replicator daemon that uses ssync_sender.

The number of concurrent SSYNC requests is restricted by use of a replication_semaphore and
can be configured with the object-server.conf [object-server] replication_concurrency setting.

An SSYNC request is really just an HTTP conduit for sender/receiver replication communication.
The overall SSYNC request should always succeed, but it will contain multiple requests within its
request and response bodies. This hack is done so that replication concurrency can be managed.

The general process inside an SSYNC request is:

1. Initialize the request: Basic request validation, mount check, acquire semaphore lock, etc..

2. Missing check: Sender sends the hashes and timestamps of the object information it can
send, receiver sends back the hashes it wants (doesnt have or has an older timestamp).

3. Updates: Sender sends the object information requested.

4. Close down: Release semaphore lock, etc.

initialize_request()
Basic validation of request and mount check.

This function will be called before attempting to acquire a replication semaphore lock, so
contains only quick checks.

missing_check()
Handles the receiver-side of the MISSING_CHECK step of a SSYNC request.

Receives a list of hashes and timestamps of object information the sender can provide and
responds with a list of hashes desired, either because theyre missing or have an older times-
tamp locally.

The process is generally:

1. Sender sends :MISSING_CHECK: START and begins sending hash timestamp lines.

2. Receiver gets :MISSING_CHECK: START and begins reading the hash timestamp lines,
collecting the hashes of those it desires.

3. Sender sends :MISSING_CHECK: END.

4. Receiver gets :MISSING_CHECK: END, responds with :MISSING_CHECK: START,
followed by the list of <wanted_hash> specifiers it collected as being wanted (one per
line), :MISSING_CHECK: END, and flushes any buffers.

Each <wanted_hash> specifier has the form <hash>[ <parts>] where <parts> is a string
containing characters d and/or m indicating that only data or meta part of object respec-
tively is required to be syncd.

5. Sender gets :MISSING_CHECK: START and reads the list of hashes desired by the
receiver until reading :MISSING_CHECK: END.

9.6. Object 549



Swift Documentation, Release 2.27.1.dev38

The collection and then response is so the sender doesnt have to read while it writes to ensure
network buffers dont fill up and block everything.

updates()
Handles the UPDATES step of an SSYNC request.

Receives a set of PUT and DELETE subrequests that will be routed to the object server itself
for processing. These contain the information requested by the MISSING_CHECK step.

The PUT and DELETE subrequests are formatted pretty much exactly like regular HTTP
requests, excepting the HTTP version on the first request line.

The process is generally:

1. Sender sends :UPDATES: START and begins sending the PUT and DELETE subre-
quests.

2. Receiver gets :UPDATES: START and begins routing the subrequests to the object
server.

3. Sender sends :UPDATES: END.

4. Receiver gets :UPDATES: END and sends :UPDATES: START and :UPDATES: END
(assuming no errors).

5. Sender gets :UPDATES: START and :UPDATES: END.

If too many subrequests fail, as configured by replication_failure_threshold and replica-
tion_failure_ratio, the receiver will hang up the request early so as to not waste any more
time.

At step 4, the receiver will send back an error if there were any failures (that didnt cause
a hangup due to the above thresholds) so the sender knows the whole was not entirely a
success. This is so the sender knows if it can remove an out of place partition, for example.

exception swift.obj.ssync_receiver.SsyncClientDisconnected
Bases: Exception

swift.obj.ssync_receiver.decode_missing(line)
Parse a string of the form generated by encode_missing() and return a dict with keys
object_hash, ts_data, ts_meta, ts_ctype, durable.

The encoder for this line is encode_missing()

swift.obj.ssync_receiver.encode_wanted(remote, local)
Compare a remote and local results and generate a wanted line.

Parameters

• remote a dict, with ts_data and ts_meta keys in the form returned by
decode_missing()

• local a dict, possibly empty, with ts_data and ts_meta keys in the form
returned Receiver._check_local()

The decoder for this line is decode_wanted()

550 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

9.6.4 Object Reconstructor

class swift.obj.reconstructor.ObjectReconstructor(conf, logger=None)
Bases: swift.common.daemon.Daemon

Reconstruct objects using erasure code. And also rebalance EC Fragment Archive objects off
handoff nodes.

Encapsulates most logic and data needed by the object reconstruction process. Each call to .re-
construct() performs one pass. Its up to the caller to do this in a loop.

aggregate_recon_update()
Aggregate per-disk rcache updates from child workers.

build_reconstruction_jobs(part_info)
Helper function for collect_jobs to build jobs for reconstruction using EC style storage policy

N.B. If this function ever returns an empty list of jobs the entire partition will be deleted.

check_ring(object_ring)
Check to see if the ring has been updated

Parameters object_ring the ring to check

Returns boolean indicating whether or not the ring has changed

collect_parts(override_devices=None, override_partitions=None)
Helper for getting partitions in the top level reconstructor

In handoffs_only mode primary partitions will not be included in the returned (possibly
empty) list.

delete_partition(path)

delete_reverted_objs(job, objects, frag_index)
For EC we can potentially revert only some of a partition so well delete reverted objects
here. Note that we delete the fragment index of the file we sent to the remote node.

Parameters

• job the job being processed

• objects a dict of objects to be deleted, each entry maps hash=>timestamp

• frag_index (int) the fragment index of data files to be deleted

detect_lockups()
In testing, the pool.waitall() call very occasionally failed to return. This is an attempt to
make sure the reconstructor finishes its reconstruction pass in some eventuality.

final_recon_dump(total, override_devices=None, **kwargs)
Add stats for this workers run to recon cache.

When in worker mode (per_disk_stats == True) this workers stats are added per device
instead of in the top level keys (aggregation is serialized in the parent process).

Parameters

• total the runtime of cycle in minutes

• override_devices (optional) list of device that are being reconstructed

9.6. Object 551



Swift Documentation, Release 2.27.1.dev38

get_local_devices()
Returns a set of all local devices in all EC policies.

get_policy2devices()

get_suffix_delta(local_suff, local_index, remote_suff, remote_index)
Compare the local suffix hashes with the remote suffix hashes for the given local and remote
fragment indexes. Return those suffixes which should be synced.

Parameters

• local_suff the local suffix hashes (from _get_hashes)

• local_index the local fragment index for the job

• remote_suff the remote suffix hashes (from remote REPLICATE re-
quest)

• remote_index the remote fragment index for the job

Returns a list of strings, the suffix dirs to sync

get_worker_args(once=False, **kwargs)
Take the set of all local devices for this node from all the EC policies rings, and distribute
them evenly into the number of workers to be spawned according to the configured worker
count. If devices is given in kwargs then distribute only those devices.

Parameters

• once False if the worker(s) will be daemonized, True if the worker(s) will
be run once

• kwargs optional overrides from the command line

heartbeat()
Loop that runs in the background during reconstruction. It periodically logs progress.

is_healthy()
Check whether rings have changed, and maybe do a recon update.

Returns False if any ec ring has changed

kill_coros()
Utility function that kills all coroutines currently running.

load_object_ring(policy)
Make sure the policys rings are loaded.

Parameters policy the StoragePolicy instance

Returns appropriate ring object

make_rebuilt_fragment_iter(responses, path, policy, frag_index)
Turn a set of connections from backend object servers into a generator that yields up the
rebuilt fragment archive for frag_index.

post_multiprocess_run()
Override this to do something after running using multiple worker processes. This method
is called in the parent process.

This is probably only useful for run-once mode since there is no after running in run-forever
mode.

552 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

process_job(job)
Sync the local partition with the remote node(s) according to the parameters of the job. For
primary nodes, the SYNC job type will define both left and right hand sync_to nodes to
ssync with as defined by this primary nodes index in the node list based on the fragment
index found in the partition. For non-primary nodes (either handoff revert, or rebalance)
the REVERT job will define a single node in sync_to which is the proper/new home for the
fragment index.

N.B. ring rebalancing can be time consuming and handoff nodes fragment indexes do not
have a stable order, its possible to have more than one REVERT job for a partition, and in
some rare failure conditions there may even also be a SYNC job for the same partition - but
each one will be processed separately because each job will define a separate list of node(s)
to sync_to.

Parameters job the job dict, with the keys defined in _get_job_info

reconstruct(**kwargs)
Run a reconstruction pass

reconstruct_fa(job, node, datafile_metadata)
Reconstructs a fragment archive - this method is called from ssync after a remote node
responds that is missing this object - the local diskfile is opened to provide metadata - but to
reconstruct the missing fragment archive we must connect to multiple object servers.

Parameters

• job job from ssync_sender

• node node that were rebuilding to

• datafile_metadata the datafile metadata to attach to the rebuilt frag-
ment archive

Returns a DiskFile like class for use by ssync

Raises DiskFileError if the fragment archive cannot be reconstructed

run_forever(multiprocess_worker_index=None, *args, **kwargs)
Override this to run forever

run_once(multiprocess_worker_index=None, *args, **kwargs)
Override this to run the script once

stats_line()
Logs various stats for the currently running reconstruction pass.

class swift.obj.reconstructor.RebuildingECDiskFileStream(datafile_metadata,
frag_index,
re-
built_fragment_iter)

Bases: object

This class wraps the reconstructed fragment archive data and metadata in the DiskFile interface
for ssync.

property content_length

get_datafile_metadata()

get_metadata()

9.6. Object 553



Swift Documentation, Release 2.27.1.dev38

reader()

9.6.5 Object Server

Object Server for Swift

class swift.obj.server.EventletPlungerString
Bases: bytes

Eventlet wont send headers until its accumulated at least event-
let.wsgi.MINIMUM_CHUNK_SIZE bytes or the app iter is exhausted. If we want to send
the response body behind Eventlets back, perhaps with some zero-copy wizardry, then we have to
unclog the plumbing in eventlet.wsgi to force the headers out, so we use an EventletPlungerString
to empty out all of Eventlets buffers.

class swift.obj.server.ObjectController(conf, logger=None)
Bases: swift.common.base_storage_server.BaseStorageServer

Implements the WSGI application for the Swift Object Server.

DELETE(request)
Handle HTTP DELETE requests for the Swift Object Server.

GET(request)
Handle HTTP GET requests for the Swift Object Server.

HEAD(request)
Handle HTTP HEAD requests for the Swift Object Server.

POST(request)
Handle HTTP POST requests for the Swift Object Server.

PUT(request)
Handle HTTP PUT requests for the Swift Object Server.

REPLICATE(request)
Handle REPLICATE requests for the Swift Object Server. This is used by the object repli-
cator to get hashes for directories.

Note that the name REPLICATE is preserved for historical reasons as this verb really just
returns the hashes information for the specified parameters and is used, for example, by both
replication and EC.

SSYNC(request)

async_update(op, account, container, obj, host, partition, contdevice, headers_out, ob-
jdevice, policy, logger_thread_locals=None, container_path=None)

Sends or saves an async update.

Parameters

• op operation performed (ex: PUT, or DELETE)

• account account name for the object

• container container name for the object

• obj object name

• host host that the container is on

554 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

• partition partition that the container is on

• contdevice device name that the container is on

• headers_out dictionary of headers to send in the container request

• objdevice device name that the object is in

• policy the associated BaseStoragePolicy instance

• logger_thread_locals The thread local values to be set on the
self.logger to retain transaction logging information.

• container_path optional path in the form <account/container> to
which the update should be sent. If given this path will be used instead
of constructing a path from the account and container params.

container_update(op, account, container, obj, request, headers_out, objdevice, pol-
icy)

Update the container when objects are updated.

Parameters

• op operation performed (ex: PUT, or DELETE)

• account account name for the object

• container container name for the object

• obj object name

• request the original request object driving the update

• headers_out dictionary of headers to send in the container request(s)

• objdevice device name that the object is in

• policy the BaseStoragePolicy instance

delete_at_update(op, delete_at, account, container, obj, request, objdevice, policy)
Update the expiring objects container when objects are updated.

Parameters

• op operation performed (ex: PUT, or DELETE)

• delete_at scheduled delete in UNIX seconds, int

• account account name for the object

• container container name for the object

• obj object name

• request the original request driving the update

• objdevice device name that the object is in

• policy the BaseStoragePolicy instance (used for tmp dir)

get_diskfile(device, partition, account, container, obj, policy, **kwargs)
Utility method for instantiating a DiskFile object supporting a given REST API.

An implementation of the object server that wants to use a different DiskFile class would
simply over-ride this method to provide that behavior.

9.6. Object 555



Swift Documentation, Release 2.27.1.dev38

server_type = 'object-server'

setup(conf)
Implementation specific setup. This method is called at the very end by the constructor to
allow a specific implementation to modify existing attributes or add its own attributes.

Parameters conf WSGI configuration parameter

swift.obj.server.app_factory(global_conf, **local_conf)
paste.deploy app factory for creating WSGI object server apps

swift.obj.server.drain(file_like, read_size, timeout)
Read and discard any bytes from file_like.

Parameters

• file_like file-like object to read from

• read_size how big a chunk to read at a time

• timeout how long to wait for a read (use None for no timeout)

Raises ChunkReadTimeout if no chunk was read in time

swift.obj.server.get_obj_name_and_placement(request)
Split and validate path for an object.

Parameters request a swob request

Returns a tuple of path parts and storage policy

swift.obj.server.global_conf_callback(preloaded_app_conf, global_conf)
Callback for swift.common.wsgi.run_wsgi during the global_conf creation so that we can add our
replication_semaphore, used to limit the number of concurrent SSYNC_REQUESTS across all
workers.

Parameters

• preloaded_app_conf The preloaded conf for the WSGI app. This conf
instance will go away, so just read from it, dont write.

• global_conf The global conf that will eventually be passed to the
app_factory function later. This conf is created before the worker subpro-
cesses are forked, so can be useful to set up semaphores, shared memory, etc.

swift.obj.server.iter_mime_headers_and_bodies(wsgi_input,
mime_boundary,
read_chunk_size)

9.6.6 Object Updater

class swift.obj.updater.ObjectUpdater(conf, logger=None)
Bases: swift.common.daemon.Daemon

Update object information in container listings.

get_container_ring()
Get the container ring. Load it, if it hasnt been yet.

object_sweep(device)
If there are async pendings on the device, walk each one and update.

556 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

Parameters device path to device

object_update(node, part, op, obj, headers_out)
Perform the object update to the container

Parameters

• node node dictionary from the container ring

• part partition that holds the container

• op operation performed (ex: PUT or DELETE)

• obj object name being updated

• headers_out headers to send with the update

Returns a tuple of (success, node_id, redirect) where success is
True if the update succeeded, node_id is the_id of the node updated and
redirect is either None or a tuple of (a path, a timestamp string).

process_object_update(update_path, device, policy)
Process the object information to be updated and update.

Parameters

• update_path path to pickled object update file

• device path to device

• policy storage policy of object update

run_forever(*args, **kwargs)
Run the updater continuously.

run_once(*args, **kwargs)
Run the updater once.

class swift.obj.updater.SweepStats(errors=0, failures=0, quarantines=0, suc-
cesses=0, unlinks=0, redirects=0)

Bases: object

Stats bucket for an update sweep

copy()

reset()

since(other)

swift.obj.updater.random()→ x in the interval [0, 1).

9.6. Object 557



Swift Documentation, Release 2.27.1.dev38

9.7 Misc

9.7.1 ACLs

swift.common.middleware.acl.acls_from_account_info(info)
Extract the account ACLs from the given account_info, and return the ACLs.

Parameters info a dict of the form returned by get_account_info

Returns None (no ACL system metadata is set), or a dict of the form:: {admin: [],
read-write: [], read-only: []}

Raises ValueError on a syntactically invalid header

swift.common.middleware.acl.clean_acl(name, value)
Returns a cleaned ACL header value, validating that it meets the formatting requirements for
standard Swift ACL strings.

The ACL format is:

[item[,item...]]

Each item can be a group name to give access to or a referrer designation to grant or deny based
on the HTTP Referer header.

The referrer designation format is:

.r:[-]value

The .r can also be .ref, .referer, or .referrer; though it will be shortened to just .r
for decreased character count usage.

The value can be * to specify any referrer host is allowed access, a specific host name like www.
example.com, or if it has a leading period . or leading *. it is a domain name specification,
like .example.com or *.example.com. The leading minus sign - indicates referrer hosts
that should be denied access.

Referrer access is applied in the order they are specified. For example, .r:.example.com,.r:-
thief.example.com would allow all hosts ending with .example.com except for the specific host
thief.example.com.

Example valid ACLs:

.r:*

.r:*,.r:-.thief.com

.r:*,.r:.example.com,.r:-thief.example.com

.r:*,.r:-.thief.com,bobs_account,sues_account:sue
bobs_account,sues_account:sue

Example invalid ACLs:

.r:

.r:-

By default, allowing read access via .r will not allow listing objects in the container just retrieving
objects from the container. To turn on listings, use the .rlistings directive.

Also, .r designations arent allowed in headers whose names include the word write.

558 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

ACLs that are messy will be cleaned up. Examples:

Original Cleaned
bob, sue bob,sue
bob , sue bob,sue
bob,,,sue bob,sue
.referrer : * .r:*
.ref:*.example.com .r:.example.com
.r:*, .rlistings .r:*,.rlistings

Parameters

• name The name of the header being cleaned, such as X-Container-Read or
X-Container-Write.

• value The value of the header being cleaned.

Returns The value, cleaned of extraneous formatting.

Raises ValueError If the value does not meet the ACL formatting requirements;
the error message will indicate why.

swift.common.middleware.acl.format_acl(version=1, **kwargs)
Compatibility wrapper to help migrate ACL syntax from version 1 to 2. Delegates to the appro-
priate version-specific format_acl method, defaulting to version 1 for backward compatibility.

Parameters kwargs keyword args appropriate for the selected ACL syntax version
(see format_acl_v1() or format_acl_v2())

swift.common.middleware.acl.format_acl_v1(groups=None, referrers=None,
header_name=None)

Returns a standard Swift ACL string for the given inputs.

Caller is responsible for ensuring that :referrers: parameter is only given if the ACL is being
generated for X-Container-Read. (X-Container-Write and the account ACL headers dont support
referrers.)

Parameters

• groups a list of groups (and/or members in most auth systems) to grant
access

• referrers a list of referrer designations (without the leading .r:)

• header_name (optional) header name of the ACL were preparing, for
clean_acl; if None, returned ACL wont be cleaned

Returns a Swift ACL string for use in X-Container-{Read,Write}, X-Account-
Access-Control, etc.

swift.common.middleware.acl.format_acl_v2(acl_dict)
Returns a version-2 Swift ACL JSON string.

HTTP headers for Version 2 ACLs have the following form: Header-Name: {arbi-
trary:json,encoded:string}

9.7. Misc 559



Swift Documentation, Release 2.27.1.dev38

JSON will be forced ASCII (containing six-char uNNNN sequences rather than UTF-8; UTF-
8 is valid JSON but clients vary in their support for UTF-8 headers), and without extraneous
whitespace.

Advantages over V1: forward compatibility (new keys dont cause parsing exceptions); Unicode
support; no reserved words (you can have a user named .rlistings if you want).

Parameters acl_dict dict of arbitrary data to put in the ACL; see specific auth
systems such as tempauth for supported values

Returns a JSON string which encodes the ACL

swift.common.middleware.acl.parse_acl(*args, **kwargs)
Compatibility wrapper to help migrate ACL syntax from version 1 to 2. Delegates to the appro-
priate version-specific parse_acl method, attempting to determine the version from the types of
args/kwargs.

Parameters

• args positional args for the selected ACL syntax version

• kwargs keyword args for the selected ACL syntax version (see
parse_acl_v1() or parse_acl_v2())

Returns the return value of parse_acl_v1() or parse_acl_v2()

swift.common.middleware.acl.parse_acl_v1(acl_string)
Parses a standard Swift ACL string into a referrers list and groups list.

See clean_acl() for documentation of the standard Swift ACL format.

Parameters acl_string The standard Swift ACL string to parse.

Returns A tuple of (referrers, groups) where referrers is a list of referrer designations
(without the leading .r:) and groups is a list of groups to allow access.

swift.common.middleware.acl.parse_acl_v2(data)
Parses a version-2 Swift ACL string and returns a dict of ACL info.

Parameters data string containing the ACL data in JSON format

Returns A dict (possibly empty) containing ACL info, e.g.: {groups: [], referrers: []}

Returns None if data is None, is not valid JSON or does not parse as a dict

Returns empty dictionary if data is an empty string

swift.common.middleware.acl.referrer_allowed(referrer, referrer_acl)
Returns True if the referrer should be allowed based on the referrer_acl list (as returned by
parse_acl()).

See clean_acl() for documentation of the standard Swift ACL format.

Parameters

• referrer The value of the HTTP Referer header.

• referrer_acl The list of referrer designations as returned by
parse_acl().

Returns True if the referrer should be allowed; False if not.

560 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

9.7.2 Buffered HTTP

Monkey Patch httplib.HTTPResponse to buffer reads of headers. This can improve performance when
making large numbers of small HTTP requests. This module also provides helper functions to make
HTTP connections using BufferedHTTPResponse.

Warning: If you use this, be sure that the libraries you are using do not access the socket directly
(xmlrpclib, Im looking at you :/), and instead make all calls through httplib.

class swift.common.bufferedhttp.BufferedHTTPConnection(host,
port=None,
time-
out=<object
object>,
source_address=None)

Bases: eventlet.green.http.client.HTTPConnection

HTTPConnection class that uses BufferedHTTPResponse

connect()
Connect to the host and port specified in __init__.

getresponse()
Get the response from the server.

If the HTTPConnection is in the correct state, returns an instance of HTTPResponse or of
whatever object is returned by the response_class variable.

If a request has not been sent or if a previous response has not be handled, Respon-
seNotReady is raised. If the HTTP response indicates that the connection should be closed,
then it will be closed before the response is returned. When the connection is closed, the
underlying socket is closed.

putheader(header, value)
Send a request header line to the server.

For example: h.putheader(Accept, text/html)

putrequest(method, url, skip_host=0, skip_accept_encoding=0)
Send a request to the server.

Parameters

• method specifies an HTTP request method, e.g. GET.

• url specifies the object being requested, e.g. /index.html.

• skip_host if True does not add automatically a Host: header

• skip_accept_encoding if True does not add automatically an
Accept-Encoding: header

response_class
alias of swift.common.bufferedhttp.BufferedHTTPResponse

9.7. Misc 561



Swift Documentation, Release 2.27.1.dev38

class swift.common.bufferedhttp.BufferedHTTPResponse(sock, debu-
glevel=0,
strict=0,
method=None)

Bases: eventlet.green.http.client.HTTPResponse

HTTPResponse class that buffers reading of headers

close()
Flush and close the IO object.

This method has no effect if the file is already closed.

nuke_from_orbit()
Terminate the socket with extreme prejudice.

Closes the underlying socket regardless of whether or not anyone else has references to it.
Use this when you are certain that nobody else you care about has a reference to this socket.

read(amt=None)
Read and return up to n bytes.

If the argument is omitted, None, or negative, reads and returns all data until EOF.

If the argument is positive, and the underlying raw stream is not interactive, multiple raw
reads may be issued to satisfy the byte count (unless EOF is reached first). But for interactive
raw streams (as well as sockets and pipes), at most one raw read will be issued, and a short
result does not imply that EOF is imminent.

Returns an empty bytes object on EOF.

Returns None if the underlying raw stream was open in non-blocking mode and no data is
available at the moment.

readline(size=1024)
Read and return a line from the stream.

If size is specified, at most size bytes will be read.

The line terminator is always bn for binary files; for text files, the newlines argument to open
can be used to select the line terminator(s) recognized.

swift.common.bufferedhttp.http_connect(ipaddr, port, device, partition,
method, path, headers=None,
query_string=None, ssl=False)

Helper function to create an HTTPConnection object. If ssl is set True, HTTPSConnection will
be used. However, if ssl=False, BufferedHTTPConnection will be used, which is buffered for
backend Swift services.

Parameters

• ipaddr IPv4 address to connect to

• port port to connect to

• device device of the node to query

• partition partition on the device

• method HTTP method to request (GET, PUT, POST, etc.)

• path request path

562 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

• headers dictionary of headers

• query_string request query string

• ssl set True if SSL should be used (default: False)

Returns HTTPConnection object

swift.common.bufferedhttp.http_connect_raw(ipaddr, port, method,
path, headers=None,
query_string=None, ssl=False)

Helper function to create an HTTPConnection object. If ssl is set True, HTTPSConnection will
be used. However, if ssl=False, BufferedHTTPConnection will be used, which is buffered for
backend Swift services.

Parameters

• ipaddr IPv4 address to connect to

• port port to connect to

• method HTTP method to request (GET, PUT, POST, etc.)

• path request path

• headers dictionary of headers

• query_string request query string

• ssl set True if SSL should be used (default: False)

Returns HTTPConnection object

9.7.3 Constraints

swift.common.constraints.check_account_format(req, name, *, tar-
get_type=’Account’)

Validate that the header contains valid account or container name.

Parameters

• req HTTP request object

• name header value to validate

• target_type which header is being validated (Account or Container)

Returns A properly encoded account name or container name

Raises HTTPPreconditionFailed if account header is not well formatted.

swift.common.constraints.check_container_format(req, name, *, tar-
get_type=’Container’)

Validate that the header contains valid account or container name.

Parameters

• req HTTP request object

• name header value to validate

• target_type which header is being validated (Account or Container)

Returns A properly encoded account name or container name

9.7. Misc 563



Swift Documentation, Release 2.27.1.dev38

Raises HTTPPreconditionFailed if account header is not well formatted.

swift.common.constraints.check_delete_headers(request)
Check that x-delete-after and x-delete-at headers have valid values. Values should be positive
integers and correspond to a time greater than the request timestamp.

If the x-delete-after header is found then its value is used to compute an x-delete-at value which
takes precedence over any existing x-delete-at header.

Parameters request the swob request object

Raises HTTPBadRequest in case of invalid values

Returns the swob request object

swift.common.constraints.check_dir(root, drive)
Verify that the path to the device is a directory and is a lesser constraint that is enforced when a
full mount_check isnt possible with, for instance, a VM using loopback or partitions.

Parameters

• root base path where the dir is

• drive drive name to be checked

Returns full path to the device

Raises ValueError if drive fails to validate

swift.common.constraints.check_drive(root, drive, mount_check)
Validate the path given by root and drive is a valid existing directory.

Parameters

• root base path where the devices are mounted

• drive drive name to be checked

• mount_check additionally require path is mounted

Returns full path to the device

Raises ValueError if drive fails to validate

swift.common.constraints.check_float(string)
Helper function for checking if a string can be converted to a float.

Parameters string string to be verified as a float

Returns True if the string can be converted to a float, False otherwise

swift.common.constraints.check_metadata(req, target_type)
Check metadata sent in the request headers. This should only check that the metadata in the
request given is valid. Checks against account/container overall metadata should be forwarded on
to its respective server to be checked.

Parameters

• req request object

• target_type str: one of: object, container, or account: indicates which
type the target storage for the metadata is

Returns HTTPBadRequest with bad metadata otherwise None

564 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

swift.common.constraints.check_mount(root, drive)
Verify that the path to the device is a mount point and mounted. This allows us to fast fail on
drives that have been unmounted because of issues, and also prevents us for accidentally filling up
the root partition.

Parameters

• root base path where the devices are mounted

• drive drive name to be checked

Returns full path to the device

Raises ValueError if drive fails to validate

swift.common.constraints.check_name_format(req, name, target_type)
Validate that the header contains valid account or container name.

Parameters

• req HTTP request object

• name header value to validate

• target_type which header is being validated (Account or Container)

Returns A properly encoded account name or container name

Raises HTTPPreconditionFailed if account header is not well formatted.

swift.common.constraints.check_object_creation(req, object_name)
Check to ensure that everything is alright about an object to be created.

Parameters

• req HTTP request object

• object_name name of object to be created

Returns HTTPRequestEntityTooLarge the object is too large

Returns HTTPLengthRequired missing content-length header and not a chunked re-
quest

Returns HTTPBadRequest missing or bad content-type header, or bad metadata

Returns HTTPNotImplemented unsupported transfer-encoding header value

swift.common.constraints.check_utf8(string, internal=False)
Validate if a string is valid UTF-8 str or unicode and that it does not contain any reserved charac-
ters.

Parameters

• string string to be validated

• internal boolean, allows reserved characters if True

Returns True if the string is valid utf-8 str or unicode and contains no null characters,
False otherwise

swift.common.constraints.reload_constraints()
Parse SWIFT_CONF_FILE and reset module level global constraint attrs, populating OVER-
RIDE_CONSTRAINTS AND EFFECTIVE_CONSTRAINTS along the way.

9.7. Misc 565



Swift Documentation, Release 2.27.1.dev38

swift.common.constraints.valid_api_version(version)
Checks if the requested version is valid.

Currently Swift only supports v1 and v1.0.

swift.common.constraints.valid_timestamp(request)
Helper function to extract a timestamp from requests that require one.

Parameters request the swob request object

Returns a valid Timestamp instance

Raises HTTPBadRequest on missing or invalid X-Timestamp

9.7.4 Container Sync Realms

class swift.common.container_sync_realms.ContainerSyncRealms(conf_path,
log-
ger)

Bases: object

Loads and parses the container-sync-realms.conf, occasionally checking the files mtime to see if
it needs to be reloaded.

clusters(realm)
Returns a list of clusters for the realm.

endpoint(realm, cluster)
Returns the endpoint for the cluster in the realm.

get_sig(request_method, path, x_timestamp, nonce, realm_key, user_key)
Returns the hexdigest string of the HMAC-SHA1 (RFC 2104) for the information given.

Parameters

• request_method HTTP method of the request.

• path The path to the resource (url-encoded).

• x_timestamp The X-Timestamp header value for the request.

• nonce A unique value for the request.

• realm_key Shared secret at the cluster operator level.

• user_key Shared secret at the users container level.

Returns hexdigest str of the HMAC-SHA1 for the request.

key(realm)
Returns the key for the realm.

key2(realm)
Returns the key2 for the realm.

realms()
Returns a list of realms.

reload()
Forces a reload of the conf file.

566 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

9.7.5 Direct Client

Internal client library for making calls directly to the servers rather than through the proxy.

exception swift.common.direct_client.DirectClientException(stype,
method,
node,
part,
path,
resp,
host=None)

Bases: swift.common.exceptions.ClientException

exception swift.common.direct_client.DirectClientReconException(method,
node,
path,
resp)

Bases: swift.common.exceptions.ClientException

swift.common.direct_client.direct_delete_account(node, part, account,
conn_timeout=5, re-
sponse_timeout=15,
headers=None)

swift.common.direct_client.direct_delete_container(node, part, ac-
count, container,
conn_timeout=5, re-
sponse_timeout=15,
headers=None)

Delete container directly from the container server.

Parameters

• node node dictionary from the ring

• part partition the container is on

• account account name

• container container name

• conn_timeout timeout in seconds for establishing the connection

• response_timeout timeout in seconds for getting the response

• headers dict to be passed into HTTPConnection headers

Raises ClientException HTTP DELETE request failed

swift.common.direct_client.direct_delete_container_object(node,
part,
account,
con-
tainer,
obj,
conn_timeout=5,
re-
sponse_timeout=15,
head-
ers=None)

9.7. Misc 567



Swift Documentation, Release 2.27.1.dev38

swift.common.direct_client.direct_delete_object(node, part, account,
container, obj,
conn_timeout=5, re-
sponse_timeout=15,
headers=None)

Delete object directly from the object server.

Parameters

• node node dictionary from the ring

• part partition the container is on

• account account name

• container container name

• obj object name

• conn_timeout timeout in seconds for establishing the connection

• response_timeout timeout in seconds for getting the response

Raises ClientException HTTP DELETE request failed

swift.common.direct_client.direct_get_account(node, part, ac-
count, marker=None,
limit=None, pre-
fix=None, delimiter=None,
conn_timeout=5, re-
sponse_timeout=15,
end_marker=None,
reverse=None, head-
ers=None)

Get listings directly from the account server.

Parameters

• node node dictionary from the ring

• part partition the account is on

• account account name

• marker marker query

• limit query limit

• prefix prefix query

• delimiter delimiter for the query

• conn_timeout timeout in seconds for establishing the connection

• response_timeout timeout in seconds for getting the response

• end_marker end_marker query

• reverse reverse the returned listing

Returns a tuple of (response headers, a list of containers) The response headers will
HeaderKeyDict.

568 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

swift.common.direct_client.direct_get_container(node, part, account, con-
tainer, marker=None,
limit=None, pre-
fix=None, de-
limiter=None,
conn_timeout=5, re-
sponse_timeout=15,
end_marker=None,
reverse=None, head-
ers=None)

Get container listings directly from the container server.

Parameters

• node node dictionary from the ring

• part partition the container is on

• account account name

• container container name

• marker marker query

• limit query limit

• prefix prefix query

• delimiter delimiter for the query

• conn_timeout timeout in seconds for establishing the connection

• response_timeout timeout in seconds for getting the response

• end_marker end_marker query

• reverse reverse the returned listing

• headers headers to be included in the request

Returns a tuple of (response headers, a list of objects) The response headers will be a
HeaderKeyDict.

swift.common.direct_client.direct_get_object(node, part, account, con-
tainer, obj, conn_timeout=5,
response_timeout=15,
resp_chunk_size=None,
headers=None)

Get object directly from the object server.

Parameters

• node node dictionary from the ring

• part partition the container is on

• account account name

• container container name

• obj object name

• conn_timeout timeout in seconds for establishing the connection

9.7. Misc 569



Swift Documentation, Release 2.27.1.dev38

• response_timeout timeout in seconds for getting the response

• resp_chunk_size if defined, chunk size of data to read.

• headers dict to be passed into HTTPConnection headers

Returns a tuple of (response headers, the objects contents) The response headers will
be a HeaderKeyDict.

Raises ClientException HTTP GET request failed

swift.common.direct_client.direct_get_recon(node, recon_command,
conn_timeout=5, re-
sponse_timeout=15, head-
ers=None)

Get recon json directly from the storage server.

Parameters

• node node dictionary from the ring

• recon_command recon string (post /recon/)

• conn_timeout timeout in seconds for establishing the connection

• response_timeout timeout in seconds for getting the response

• headers dict to be passed into HTTPConnection headers

Returns deserialized json response

Raises DirectClientReconException HTTP GET request failed

swift.common.direct_client.direct_get_suffix_hashes(node, part,
suffixes,
conn_timeout=5,
re-
sponse_timeout=15,
headers=None)

Get suffix hashes directly from the object server.

Note that unlike other direct_client functions, this one defaults to using the replication
network to make requests.

Parameters

• node node dictionary from the ring

• part partition the container is on

• conn_timeout timeout in seconds for establishing the connection

• response_timeout timeout in seconds for getting the response

• headers dict to be passed into HTTPConnection headers

Returns dict of suffix hashes

Raises ClientException HTTP REPLICATE request failed

570 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

swift.common.direct_client.direct_head_container(node, part, ac-
count, container,
conn_timeout=5, re-
sponse_timeout=15,
headers=None)

Request container information directly from the container server.

Parameters

• node node dictionary from the ring

• part partition the container is on

• account account name

• container container name

• conn_timeout timeout in seconds for establishing the connection

• response_timeout timeout in seconds for getting the response

Returns a dict containing the responses headers in a HeaderKeyDict

Raises ClientException HTTP HEAD request failed

swift.common.direct_client.direct_head_object(node, part, ac-
count, container, obj,
conn_timeout=5, re-
sponse_timeout=15, head-
ers=None)

Request object information directly from the object server.

Parameters

• node node dictionary from the ring

• part partition the container is on

• account account name

• container container name

• obj object name

• conn_timeout timeout in seconds for establishing the connection

• response_timeout timeout in seconds for getting the response

• headers dict to be passed into HTTPConnection headers

Returns a dict containing the responses headers in a HeaderKeyDict

Raises ClientException HTTP HEAD request failed

swift.common.direct_client.direct_post_object(node, part, account,
container, name, head-
ers, conn_timeout=5,
response_timeout=15)

Direct update to object metadata on object server.

Parameters

• node node dictionary from the ring

9.7. Misc 571



Swift Documentation, Release 2.27.1.dev38

• part partition the container is on

• account account name

• container container name

• name object name

• headers headers to store as metadata

• conn_timeout timeout in seconds for establishing the connection

• response_timeout timeout in seconds for getting the response

Raises ClientException HTTP POST request failed

swift.common.direct_client.direct_put_container(node, part, account, con-
tainer, conn_timeout=5,
response_timeout=15,
headers=None, con-
tents=None, con-
tent_length=None,
chunk_size=65535)

Make a PUT request to a container server.

Parameters

• node node dictionary from the ring

• part partition the container is on

• account account name

• container container name

• conn_timeout timeout in seconds for establishing the connection

• response_timeout timeout in seconds for getting the response

• headers additional headers to include in the request

• contents an iterable or string to send in request body (optional)

• content_length value to send as content-length header (optional)

• chunk_size chunk size of data to send (optional)

Raises ClientException HTTP PUT request failed

swift.common.direct_client.direct_put_container_object(node, part,
account, con-
tainer, obj,
conn_timeout=5,
re-
sponse_timeout=15,
head-
ers=None)

572 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

swift.common.direct_client.direct_put_object(node, part, account, con-
tainer, name, contents,
content_length=None,
etag=None, con-
tent_type=None, head-
ers=None, conn_timeout=5,
response_timeout=15,
chunk_size=65535)

Put object directly from the object server.

Parameters

• node node dictionary from the ring

• part partition the container is on

• account account name

• container container name

• name object name

• contents an iterable or string to read object data from

• content_length value to send as content-length header

• etag etag of contents

• content_type value to send as content-type header

• headers additional headers to include in the request

• conn_timeout timeout in seconds for establishing the connection

• response_timeout timeout in seconds for getting the response

• chunk_size if defined, chunk size of data to send.

Returns etag from the server response

Raises ClientException HTTP PUT request failed

swift.common.direct_client.gen_headers(hdrs_in=None, add_ts=True)
Get the headers ready for a request. All requests should have a User-Agent string, but if one is
passed in dont over-write it. Not all requests will need an X-Timestamp, but if one is passed in do
not over-write it.

Parameters

• headers dict or None, base for HTTP headers

• add_ts boolean, should be True for any unsafe HTTP request

Returns HeaderKeyDict based on headers and ready for the request

swift.common.direct_client.retry(func, *args, **kwargs)
Helper function to retry a given function a number of times.

Parameters

• func callable to be called

• retries number of retries

9.7. Misc 573



Swift Documentation, Release 2.27.1.dev38

• error_log logger for errors

• args arguments to send to func

• kwargs keyward arguments to send to func (if retries or error_log are sent,
they will be deleted from kwargs before sending on to func)

Returns result of func

Raises ClientException all retries failed

9.7.6 Exceptions

exception swift.common.exceptions.APIVersionError
Bases: swift.common.exceptions.SwiftException

exception swift.common.exceptions.ChunkReadError
Bases: swift.common.exceptions.SwiftException

exception swift.common.exceptions.ChunkReadTimeout(seconds=None, ex-
ception=None)

Bases: eventlet.timeout.Timeout

exception swift.common.exceptions.ChunkWriteTimeout(seconds=None, ex-
ception=None)

Bases: eventlet.timeout.Timeout

exception swift.common.exceptions.ClientException(msg, http_scheme=”,
http_host=”,
http_port=”,
http_path=”,
http_query=”,
http_status=None,
http_reason=”,
http_device=”,
http_response_content=”,
http_headers=None)

Bases: Exception

exception swift.common.exceptions.ConnectionTimeout(seconds=None, ex-
ception=None)

Bases: eventlet.timeout.Timeout

exception swift.common.exceptions.DeviceUnavailable
Bases: swift.common.exceptions.SwiftException

exception swift.common.exceptions.DiskFileBadMetadataChecksum
Bases: swift.common.exceptions.DiskFileError

exception swift.common.exceptions.DiskFileCollision
Bases: swift.common.exceptions.DiskFileError

exception swift.common.exceptions.DiskFileDeleted(metadata=None)
Bases: swift.common.exceptions.DiskFileNotExist

exception swift.common.exceptions.DiskFileDeviceUnavailable
Bases: swift.common.exceptions.DiskFileError

574 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

exception swift.common.exceptions.DiskFileError
Bases: swift.common.exceptions.SwiftException

exception swift.common.exceptions.DiskFileExpired(metadata=None)
Bases: swift.common.exceptions.DiskFileDeleted

exception swift.common.exceptions.DiskFileNoSpace
Bases: swift.common.exceptions.DiskFileError

exception swift.common.exceptions.DiskFileNotExist
Bases: swift.common.exceptions.DiskFileError

exception swift.common.exceptions.DiskFileNotOpen
Bases: swift.common.exceptions.DiskFileError

exception swift.common.exceptions.DiskFileQuarantined
Bases: swift.common.exceptions.DiskFileError

exception swift.common.exceptions.DiskFileXattrNotSupported
Bases: swift.common.exceptions.DiskFileError

exception swift.common.exceptions.DriveNotMounted
Bases: swift.common.exceptions.SwiftException

exception swift.common.exceptions.DuplicateDeviceError
Bases: swift.common.exceptions.RingBuilderError

exception swift.common.exceptions.EmptyRingError
Bases: swift.common.exceptions.RingBuilderError

exception swift.common.exceptions.EncryptionException
Bases: swift.common.exceptions.SwiftException

exception swift.common.exceptions.FileNotFoundError
Bases: swift.common.exceptions.SwiftException

exception swift.common.exceptions.FooterNotSupported
Bases: swift.common.exceptions.SwiftException

exception swift.common.exceptions.InsufficientStorage
Bases: swift.common.exceptions.SwiftException

exception swift.common.exceptions.InvalidAccountInfo
Bases: swift.common.exceptions.SwiftException

exception swift.common.exceptions.InvalidPidFileException
Bases: Exception

exception swift.common.exceptions.InvalidTimestamp
Bases: swift.common.exceptions.SwiftException

exception swift.common.exceptions.LinkIterError
Bases: swift.common.exceptions.SwiftException

exception swift.common.exceptions.ListingIterError
Bases: swift.common.exceptions.SwiftException

exception swift.common.exceptions.ListingIterNotAuthorized(aresp)
Bases: swift.common.exceptions.ListingIterError

9.7. Misc 575



Swift Documentation, Release 2.27.1.dev38

exception swift.common.exceptions.ListingIterNotFound
Bases: swift.common.exceptions.ListingIterError

exception swift.common.exceptions.LockTimeout(seconds=None,
msg=None)

Bases: swift.common.exceptions.MessageTimeout

exception swift.common.exceptions.MessageTimeout(seconds=None,
msg=None)

Bases: eventlet.timeout.Timeout

exception swift.common.exceptions.MimeInvalid
Bases: swift.common.exceptions.SwiftException

exception swift.common.exceptions.MultiphasePUTNotSupported
Bases: swift.common.exceptions.SwiftException

exception swift.common.exceptions.PartitionLockTimeout(seconds=None,
msg=None)

Bases: swift.common.exceptions.LockTimeout

exception swift.common.exceptions.PathNotDir
Bases: OSError

exception swift.common.exceptions.PermissionError
Bases: swift.common.exceptions.SwiftException

exception swift.common.exceptions.PutterConnectError(status=None)
Bases: Exception

exception swift.common.exceptions.QuarantineRequest
Bases: swift.common.exceptions.SwiftException

exception swift.common.exceptions.RangeAlreadyComplete
Bases: swift.common.exceptions.SwiftException

exception swift.common.exceptions.ReplicationException
Bases: Exception

exception swift.common.exceptions.ReplicationLockTimeout(seconds=None,
msg=None)

Bases: swift.common.exceptions.LockTimeout

exception swift.common.exceptions.ResponseTimeout(seconds=None,
exception=None)

Bases: eventlet.timeout.Timeout

exception swift.common.exceptions.RingBuilderError
Bases: swift.common.exceptions.SwiftException

exception swift.common.exceptions.RingLoadError
Bases: swift.common.exceptions.SwiftException

exception swift.common.exceptions.RingValidationError
Bases: swift.common.exceptions.RingBuilderError

exception swift.common.exceptions.SegmentError
Bases: swift.common.exceptions.SwiftException

exception swift.common.exceptions.ShortReadError
Bases: swift.common.exceptions.SwiftException

576 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

exception swift.common.exceptions.SuffixSyncError
Bases: swift.common.exceptions.SwiftException

exception swift.common.exceptions.SwiftException
Bases: Exception

exception swift.common.exceptions.UnPicklingError
Bases: swift.common.exceptions.SwiftException

exception swift.common.exceptions.UnknownSecretIdError
Bases: swift.common.exceptions.EncryptionException

9.7.7 Internal Client

class swift.common.internal_client.CompressingFileReader(file_obj,
com-
presslevel=9,
chunk_size=4096)

Bases: object

Wrapper for file object to compress object while reading.

Can be used to wrap file objects passed to InternalClient.upload_object().

Used in testing of InternalClient.

Parameters

• file_obj File object to wrap.

• compresslevel Compression level, defaults to 9.

• chunk_size Size of chunks read when iterating using object, defaults to
4096.

next()

read(*a, **kw)
Reads a chunk from the file object.

Params are passed directly to the underlying file objects read().

Returns Compressed chunk from file object.

seek(offset, whence=0)

set_initial_state()
Sets the object to the state needed for the first read.

class swift.common.internal_client.InternalClient(conf_path,
user_agent, re-
quest_tries, al-
low_modify_pipeline=False,
use_replication_network=False)

Bases: object

An internal client that uses a swift proxy app to make requests to Swift.

This client will exponentially slow down for retries.

Parameters

9.7. Misc 577



Swift Documentation, Release 2.27.1.dev38

• conf_path Full path to proxy config.

• user_agent User agent to be sent to requests to Swift.

• request_tries Number of tries before InternalClient.make_request()
gives up.

property account_ring

property auto_create_account_prefix

container_exists(account, container)
Checks to see if a container exists.

Parameters

• account The containers account.

• container Container to check.

Raises

• UnexpectedResponse Exception raised when requests fail to get a re-
sponse with an acceptable status

• Exception Exception is raised when code fails in an unexpected way.

Returns True if container exists, false otherwise.

property container_ring

create_account(account)
Creates an account.

Parameters account Account to create.

Raises

• UnexpectedResponse Exception raised when requests fail to get a re-
sponse with an acceptable status

• Exception Exception is raised when code fails in an unexpected way.

create_container(account, container, headers=None, acceptable_statuses=(2))
Creates container.

Parameters

• account The containers account.

• container Container to create.

• headers Defaults to empty dict.

• acceptable_statuses List of status for valid responses, defaults to
(2,).

Raises

• UnexpectedResponse Exception raised when requests fail to get a re-
sponse with an acceptable status

• Exception Exception is raised when code fails in an unexpected way.

578 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

delete_account(account, acceptable_statuses=(2, 404))
Deletes an account.

Parameters

• account Account to delete.

• acceptable_statuses List of status for valid responses, defaults to
(2, HTTP_NOT_FOUND).

Raises

• UnexpectedResponse Exception raised when requests fail to get a re-
sponse with an acceptable status

• Exception Exception is raised when code fails in an unexpected way.

delete_container(account, container, headers=None, acceptable_statuses=(2,
404))

Deletes a container.

Parameters

• account The containers account.

• container Container to delete.

• acceptable_statuses List of status for valid responses, defaults to
(2, HTTP_NOT_FOUND).

Raises

• UnexpectedResponse Exception raised when requests fail to get a re-
sponse with an acceptable status

• Exception Exception is raised when code fails in an unexpected way.

delete_object(account, container, obj, acceptable_statuses=(2, 404), head-
ers=None)

Deletes an object.

Parameters

• account The objects account.

• container The objects container.

• obj The object.

• acceptable_statuses List of status for valid responses, defaults to
(2, HTTP_NOT_FOUND).

• headers extra headers to send with request

Raises

• UnexpectedResponse Exception raised when requests fail to get a re-
sponse with an acceptable status

• Exception Exception is raised when code fails in an unexpected way.

get_account_info(account, acceptable_statuses=(2, 404))
Returns (container_count, object_count) for an account.

Parameters

9.7. Misc 579



Swift Documentation, Release 2.27.1.dev38

• account Account on which to get the information.

• acceptable_statuses List of status for valid responses, defaults to
(2, HTTP_NOT_FOUND).

Raises

• UnexpectedResponse Exception raised when requests fail to get a re-
sponse with an acceptable status

• Exception Exception is raised when code fails in an unexpected way.

get_account_metadata(account, metadata_prefix=”, acceptable_statuses=(2),
params=None)

Gets account metadata.

Parameters

• account Account on which to get the metadata.

• metadata_prefix Used to filter values from the headers returned. Will
strip that prefix from the keys in the dict returned. Defaults to .

• acceptable_statuses List of status for valid responses, defaults to
(2,).

Returns Returns dict of account metadata. Keys will be lowercase.

Raises

• UnexpectedResponse Exception raised when requests fail to get a re-
sponse with an acceptable status

• Exception Exception is raised when code fails in an unexpected way.

get_container_metadata(account, container, metadata_prefix=”, accept-
able_statuses=(2), params=None)

Gets container metadata.

Parameters

• account The containers account.

• container Container to get metadata on.

• metadata_prefix Used to filter values from the headers returned. Will
strip that prefix from the keys in the dict returned. Defaults to .

• acceptable_statuses List of status for valid responses, defaults to
(2,).

Returns Returns dict of container metadata. Keys will be lowercase.

Raises

• UnexpectedResponse Exception raised when requests fail to get a re-
sponse with an acceptable status

• Exception Exception is raised when code fails in an unexpected way.

get_object(account, container, obj, headers=None, acceptable_statuses=(2),
params=None)

Gets an object.

580 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

Parameters

• account The objects account.

• container The objects container.

• obj The object name.

• headers Headers to send with request, defaults to empty dict.

• acceptable_statuses List of status for valid responses, defaults to
(2,).

• params A dict of params to be set in request query string, defaults to None.

Raises

• UnexpectedResponse Exception raised when requests fail to get a re-
sponse with an acceptable status

• Exception Exception is raised when code fails in an unexpected way.

Returns A 3-tuple (status, headers, iterator of object body)

get_object_metadata(account, container, obj, metadata_prefix=”, accept-
able_statuses=(2), headers=None, params=None)

Gets object metadata.

Parameters

• account The objects account.

• container The objects container.

• obj The object.

• metadata_prefix Used to filter values from the headers returned. Will
strip that prefix from the keys in the dict returned. Defaults to .

• acceptable_statuses List of status for valid responses, defaults to
(2,).

• headers extra headers to send with request

Returns Dict of object metadata.

Raises

• UnexpectedResponse Exception raised when requests fail to get a re-
sponse with an acceptable status

• Exception Exception is raised when code fails in an unexpected way.

property get_object_ring

iter_containers(account, marker=”, end_marker=”, prefix=”, accept-
able_statuses=(2, 404))

Returns an iterator of containers dicts from an account.

Parameters

• account Account on which to do the container listing.

• marker Prefix of first desired item, defaults to .

• end_marker Last item returned will be less than this, defaults to .

9.7. Misc 581



Swift Documentation, Release 2.27.1.dev38

• prefix Prefix of containers

• acceptable_statuses List of status for valid responses, defaults to
(2, HTTP_NOT_FOUND).

Raises

• UnexpectedResponse Exception raised when requests fail to get a re-
sponse with an acceptable status

• Exception Exception is raised when code fails in an unexpected way.

iter_object_lines(account, container, obj, headers=None, accept-
able_statuses=(2))

Returns an iterator of object lines from an uncompressed or compressed text object.

Uncompress object as it is read if the objects name ends with .gz.

Parameters

• account The objects account.

• container The objects container.

• obj The object.

• acceptable_statuses List of status for valid responses, defaults to
(2,).

Raises

• UnexpectedResponse Exception raised when requests fail to get a re-
sponse with an acceptable status

• Exception Exception is raised when code fails in an unexpected way.

iter_objects(account, container, marker=”, end_marker=”, prefix=”, accept-
able_statuses=(2, 404))

Returns an iterator of object dicts from a container.

Parameters

• account The containers account.

• container Container to iterate objects on.

• marker Prefix of first desired item, defaults to .

• end_marker Last item returned will be less than this, defaults to .

• prefix Prefix of objects

• acceptable_statuses List of status for valid responses, defaults to
(2, HTTP_NOT_FOUND).

Raises

• UnexpectedResponse Exception raised when requests fail to get a re-
sponse with an acceptable status

• Exception Exception is raised when code fails in an unexpected way.

make_path(account, container=None, obj=None)
Returns a swift path for a request quoting and utf-8 encoding the path parts as need be.

582 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

Parameters

• account swift account

• container container, defaults to None

• obj object, defaults to None

Raises ValueError Is raised if obj is specified and container is not.

make_request(method, path, headers, acceptable_statuses, body_file=None,
params=None)

Makes a request to Swift with retries.

Parameters

• method HTTP method of request.

• path Path of request.

• headers Headers to be sent with request.

• acceptable_statuses List of acceptable statuses for request.

• body_file Body file to be passed along with request, defaults to None.

• params A dict of params to be set in request query string, defaults to None.

Returns Response object on success.

Raises

• UnexpectedResponse Exception raised when make_request() fails to
get a response with an acceptable status

• Exception Exception is raised when code fails in an unexpected way.

set_account_metadata(account, metadata, metadata_prefix=”, accept-
able_statuses=(2))

Sets account metadata. A call to this will add to the account metadata and not overwrite all
of it with values in the metadata dict. To clear an account metadata value, pass an empty
string as the value for the key in the metadata dict.

Parameters

• account Account on which to get the metadata.

• metadata Dict of metadata to set.

• metadata_prefix Prefix used to set metadata values in headers of re-
quests, used to prefix keys in metadata when setting metadata, defaults to
.

• acceptable_statuses List of status for valid responses, defaults to
(2,).

Raises

• UnexpectedResponse Exception raised when requests fail to get a re-
sponse with an acceptable status

• Exception Exception is raised when code fails in an unexpected way.

9.7. Misc 583



Swift Documentation, Release 2.27.1.dev38

set_container_metadata(account, container, metadata, metadata_prefix=”, ac-
ceptable_statuses=(2))

Sets container metadata. A call to this will add to the container metadata and not overwrite
all of it with values in the metadata dict. To clear a container metadata value, pass an empty
string as the value for the key in the metadata dict.

Parameters

• account The containers account.

• container Container to set metadata on.

• metadata Dict of metadata to set.

• metadata_prefix Prefix used to set metadata values in headers of re-
quests, used to prefix keys in metadata when setting metadata, defaults to
.

• acceptable_statuses List of status for valid responses, defaults to
(2,).

Raises

• UnexpectedResponse Exception raised when requests fail to get a re-
sponse with an acceptable status

• Exception Exception is raised when code fails in an unexpected way.

set_object_metadata(account, container, obj, metadata, metadata_prefix=”, ac-
ceptable_statuses=(2))

Sets an objects metadata. The objects metadata will be overwritten by the values in the
metadata dict.

Parameters

• account The objects account.

• container The objects container.

• obj The object.

• metadata Dict of metadata to set.

• metadata_prefix Prefix used to set metadata values in headers of re-
quests, used to prefix keys in metadata when setting metadata, defaults to
.

• acceptable_statuses List of status for valid responses, defaults to
(2,).

Raises

• UnexpectedResponse Exception raised when requests fail to get a re-
sponse with an acceptable status

• Exception Exception is raised when code fails in an unexpected way.

upload_object(fobj, account, container, obj, headers=None, acceptable_statuses=(2),
params=None)

Parameters

• fobj File object to read objects content from.

584 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

• account The objects account.

• container The objects container.

• obj The object.

• headers Headers to send with request, defaults to empty dict.

• acceptable_statuses List of acceptable statuses for request.

• params A dict of params to be set in request query string, defaults to None.

Raises

• UnexpectedResponse Exception raised when requests fail to get a re-
sponse with an acceptable status

• Exception Exception is raised when code fails in an unexpected way.

class swift.common.internal_client.SimpleClient(url=None, token=None,
starting_backoff=1,
max_backoff=5, re-
tries=5)

Bases: object

Simple client that is used in bin/swift-dispersion-* and container sync

base_request(method, container=None, name=None, prefix=None, headers=None,
proxy=None, contents=None, full_listing=None, logger=None, addi-
tional_info=None, timeout=None, marker=None)

get_account(*args, **kwargs)

get_container(container, **kwargs)

put_container(container, **kwargs)

put_object(container, name, contents, **kwargs)

retry_request(method, **kwargs)

exception swift.common.internal_client.UnexpectedResponse(message,
resp)

Bases: Exception

Exception raised on invalid responses to InternalClient.make_request().

Parameters

• message Exception message.

• resp The unexpected response.

swift.common.internal_client.delete_object(url, **kwargs)
For usage with container sync

swift.common.internal_client.get_auth(url, user, key, auth_version=’1.0’,
**kwargs)

swift.common.internal_client.head_object(url, **kwargs)
For usage with container sync

swift.common.internal_client.put_object(url, **kwargs)
For usage with container sync

9.7. Misc 585



Swift Documentation, Release 2.27.1.dev38

9.7.8 Manager

class swift.common.manager.Manager(servers, run_dir=’/var/run/swift’)
Bases: object

Main class for performing commands on groups of servers.

Parameters servers list of server names as strings

force_reload(**kwargs)
alias for reload

get_command(cmd)
Find and return the decorated method named like cmd

Parameters cmd the command to get, a string, if not found raises UnknownCom-
mandError

kill(**kwargs)
stop a server (no error if not running)

kill_child_pids(**kwargs)
kill child pids, optionally servicing accepted connections

classmethod list_commands()
Get all publicly accessible commands

Returns a list of string tuples (cmd, help), the method names who are decorated
as commands

no_daemon(**kwargs)
start a server interactively

no_wait(**kwargs)
spawn server and return immediately

once(**kwargs)
start server and run one pass on supporting daemons

reload(**kwargs)
graceful shutdown then restart on supporting servers

reload_seamless(**kwargs)
seamlessly re-exec, then shutdown of old listen sockets on supporting servers

restart(**kwargs)
stops then restarts server

run_command(cmd, **kwargs)
Find the named command and run it

Parameters cmd the command name to run

shutdown(**kwargs)
allow current requests to finish on supporting servers

start(**kwargs)
starts a server

status(**kwargs)
display status of tracked pids for server

586 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

stop(**kwargs)
stops a server

class swift.common.manager.Server(server, run_dir=’/var/run/swift’)
Bases: object

Manage operations on a server or group of servers of similar type

Parameters server name of server

conf_files(**kwargs)
Get conf files for this server

Parameters number if supplied will only lookup the nth server

Returns list of conf files

get_conf_file_name(pid_file)
Translate pid_file to a corresponding conf_file

Parameters pid_file a pid_file for this server, a string

Returns the conf_file for this pid_file

get_pid_file_name(conf_file)
Translate conf_file to a corresponding pid_file

Parameters conf_file an conf_file for this server, a string

Returns the pid_file for this conf_file

get_running_pids(**kwargs)
Get running pids

Returns a dict mapping pids (ints) to pid_files (paths)

interact(**kwargs)
wait on spawned procs to terminate

iter_pid_files(**kwargs)
Generator, yields (pid_file, pids)

kill_child_pids(**kwargs)
Kill child pids, leaving server overseer to respawn them

Parameters

• graceful if True, attempt SIGHUP on supporting servers

• seamless if True, attempt SIGUSR1 on supporting servers

Returns a dict mapping pids (ints) to pid_files (paths)

kill_running_pids(**kwargs)
Kill running pids

Parameters

• graceful if True, attempt SIGHUP on supporting servers

• seamless if True, attempt SIGUSR1 on supporting servers

Returns a dict mapping pids (ints) to pid_files (paths)

9.7. Misc 587



Swift Documentation, Release 2.27.1.dev38

launch(**kwargs)
Collect conf files and attempt to spawn the processes for this server

pid_files(**kwargs)
Get pid files for this server

Parameters number if supplied will only lookup the nth server

Returns list of pid files

signal_children(sig, **kwargs)
Send a signal to child pids for this server

Parameters sig signal to send

Returns a dict mapping pids (ints) to pid_files (paths)

signal_pids(sig, **kwargs)
Send a signal to pids for this server

Parameters sig signal to send

Returns a dict mapping pids (ints) to pid_files (paths)

spawn(conf_file, once=False, wait=True, daemon=True, additional_args=None,
**kwargs)

Launch a subprocess for this server.

Parameters

• conf_file path to conf_file to use as first arg

• once boolean, add once argument to command

• wait boolean, if true capture stdout with a pipe

• daemon boolean, if false ask server to log to console

• additional_args list of additional arguments to pass on the command
line

Returns the pid of the spawned process

status(pids=None, **kwargs)
Display status of server

Parameters

• pids if not supplied pids will be populated automatically

• number if supplied will only lookup the nth server

Returns 1 if server is not running, 0 otherwise

stop(**kwargs)
Send stop signals to pids for this server

Returns a dict mapping pids (ints) to pid_files (paths)

wait(**kwargs)
wait on spawned procs to start

exception swift.common.manager.UnknownCommandError
Bases: Exception

588 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

swift.common.manager.command(func)
Decorator to declare which methods are accessible as commands, commands always return 1 or
0, where 0 should indicate success.

Parameters func function to make public

swift.common.manager.format_server_name(servername)
Formats server name as swift compatible server names E.g. swift-object-server

Parameters servername server name

Returns swift compatible server name and its binary name

swift.common.manager.kill_group(pid, sig)
Send signal to process group

: param pid: process id : param sig: signal to send

swift.common.manager.safe_kill(pid, sig, name)
Send signal to process and check process name

: param pid: process id : param sig: signal to send : param name: name to ensure target process

swift.common.manager.setup_env()
Try to increase resource limits of the OS. Move PYTHON_EGG_CACHE to /tmp

swift.common.manager.verify_server(server)
Check whether the server is among swift servers or not, and also checks whether the servers
binaries are installed or not.

Parameters server name of the server

Returns True, when the server name is valid and its binaries are found. False, other-
wise.

swift.common.manager.watch_server_pids(server_pids, interval=1, **kwargs)
Monitor a collection of server pids yielding back those pids that arent responding to signals.

Parameters server_pids a dict, lists of pids [int,] keyed on Server objects

9.7.9 MemCacheD

Why our own memcache client? By Michael Barton

python-memcached doesnt use consistent hashing, so adding or removing a memcache server from the
pool invalidates a huge percentage of cached items.

If you keep a pool of python-memcached client objects, each client object has its own connection to
every memcached server, only one of which is ever in use. So you wind up with n * m open sockets
and almost all of them idle. This client effectively has a pool for each server, so the number of backend
connections is hopefully greatly reduced.

python-memcache uses pickle to store things, and there was already a huge stink about Swift using
pickles in memcache (http://osvdb.org/show/osvdb/86581). That seemed sort of unfair, since nova and
keystone and everyone else use pickles for memcache too, but its hidden behind a standard library. But
changing would be a security regression at this point.

Also, pylibmc wouldnt work for us because it needs to use python sockets in order to play nice with
eventlet.

9.7. Misc 589

http://osvdb.org/show/osvdb/86581


Swift Documentation, Release 2.27.1.dev38

Lucid comes with memcached: v1.4.2. Protocol documentation for that version is at:

http://github.com/memcached/memcached/blob/1.4.2/doc/protocol.txt

class swift.common.memcached.MemcacheConnPool(server, size, con-
nect_timeout,
tls_context=None)

Bases: eventlet.pools.Pool

Connection pool for Memcache Connections

The server parameter can be a hostname, an IPv4 address, or an IPv6 address with an optional
port. See swift.common.utils.parse_socket_string() for details.

create()
Generate a new pool item. In order for the pool to function, either this method must be
overriden in a subclass or the pool must be constructed with the create argument. It accepts
no arguments and returns a single instance of whatever thing the pool is supposed to contain.

In general, create() is called whenever the pool exceeds its previous high-water mark of
concurrently-checked-out-items. In other words, in a new pool with min_size of 0, the very
first call to get() will result in a call to create(). If the first caller calls put() before
some other caller calls get(), then the first item will be returned, and create() will not
be called a second time.

get()
Return an item from the pool, when one is available. This may cause the calling greenthread
to block.

exception swift.common.memcached.MemcacheConnectionError
Bases: Exception

exception swift.common.memcached.MemcachePoolTimeout(seconds=None,
excep-
tion=None)

Bases: eventlet.timeout.Timeout

class swift.common.memcached.MemcacheRing(servers, connect_timeout=0.3,
io_timeout=2.0,
pool_timeout=1.0, tries=3,
allow_pickle=False, al-
low_unpickle=False,
max_conns=2, tls_context=None,
logger=None, er-
ror_limit_count=10, er-
ror_limit_time=60, er-
ror_limit_duration=60)

Bases: object

Simple, consistent-hashed memcache client.

decr(key, delta=1, time=0)
Decrements a key which has a numeric value by delta. Calls incr with -delta.

Parameters

• key key

• delta amount to subtract to the value of key (or set the value to 0 if the
key is not found) will be cast to an int

590 Chapter 9. Source Documentation

http://github.com/memcached/memcached/blob/1.4.2/doc/protocol.txt


Swift Documentation, Release 2.27.1.dev38

• time the time to live

Returns result of decrementing

Raises MemcacheConnectionError

delete(key, server_key=None)
Deletes a key/value pair from memcache.

Parameters

• key key to be deleted

• server_key key to use in determining which server in the ring is used

get(key)
Gets the object specified by key. It will also unserialize the object before returning if it is
serialized in memcache with JSON, or if it is pickled and unpickling is allowed.

Parameters key key

Returns value of the key in memcache

get_multi(keys, server_key)
Gets multiple values from memcache for the given keys.

Parameters

• keys keys for values to be retrieved from memcache

• server_key key to use in determining which server in the ring is used

Returns list of values

incr(key, delta=1, time=0)
Increments a key which has a numeric value by delta. If the key cant be found, its added as
delta or 0 if delta < 0. If passed a negative number, will use memcacheds decr. Returns the
int stored in memcached Note: The data memcached stores as the result of incr/decr is an
unsigned int. decrs that result in a number below 0 are stored as 0.

Parameters

• key key

• delta amount to add to the value of key (or set as the value if the key is
not found) will be cast to an int

• time the time to live

Returns result of incrementing

Raises MemcacheConnectionError

set(key, value, serialize=True, time=0, min_compress_len=0)
Set a key/value pair in memcache

Parameters

• key key

• value value

9.7. Misc 591



Swift Documentation, Release 2.27.1.dev38

• serialize if True, value is serialized with JSON before sending to mem-
cache, or with pickle if configured to use pickle instead of JSON (to avoid
cache poisoning)

• time the time to live

• min_compress_len minimum compress length, this parameter was
added to keep the signature compatible with python-memcached interface.
This implementation ignores it.

set_multi(mapping, server_key, serialize=True, time=0, min_compress_len=0)
Sets multiple key/value pairs in memcache.

Parameters

• mapping dictionary of keys and values to be set in memcache

• server_key key to use in determining which server in the ring is used

• serialize if True, value is serialized with JSON before sending to mem-
cache, or with pickle if configured to use pickle instead of JSON (to avoid
cache poisoning)

• time the time to live

Min_compress_len minimum compress length, this parameter was added to keep
the signature compatible with python-memcached interface. This implementa-
tion ignores it

swift.common.memcached.sanitize_timeout(timeout)
Sanitize a timeout value to use an absolute expiration time if the delta is greater than 30 days (in
seconds). Note that the memcached server translates negative values to mean a delta of 30 days in
seconds (and 1 additional second), client beware.

9.7.10 Request Helpers

Miscellaneous utility functions for use in generating responses.

Why not swift.common.utils, you ask? Because this way we can import things from swob in here without
creating circular imports.

class swift.common.request_helpers.SegmentedIterable(req, app,
listing_iter,
max_get_time,
logger, ua_suffix,
swift_source,
name=’<not
specified>’, re-
sponse_body_length=None)

Bases: object

Iterable that returns the object contents for a large object.

Parameters

• req original request object

• app WSGI application from which segments will come

592 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

• listing_iter iterable yielding the object segments to fetch, along with
the byte subranges to fetch, in the form of a 5-tuple (object-path, object-etag,
object-size, first-byte, last-byte).

If object-etag is None, no MD5 verification will be done.

If object-size is None, no length verification will be done.

If first-byte and last-byte are None, then the entire object will be fetched.

• max_get_time maximum permitted duration of a GET request (seconds)

• logger logger object

• swift_source value of swift.source in subrequest environ (just for log-
ging)

• ua_suffix string to append to user-agent.

• name name of manifest (used in logging only)

• response_body_length optional response body length for the response
being sent to the client.

app_iter_range(*a, **kw)
swob.Response will only respond with a 206 status in certain cases; one of those is if the
body iterator responds to .app_iter_range().

However, this object (or really, its listing iter) is smart enough to handle the range stuff
internally, so we just no-op this out for swob.

app_iter_ranges(ranges, content_type, boundary, content_size)
This method assumes that iter(self) yields all the data bytes that go into the response, but
none of the MIME stuff. For example, if the response will contain three MIME docs with
data abcd, efgh, and ijkl, then iter(self) will give out the bytes abcdefghijkl.

This method inserts the MIME stuff around the data bytes.

close()
Called when the client disconnect. Ensure that the connection to the backend server is closed.

validate_first_segment()
Start fetching object data to ensure that the first segment (if any) is valid. This is to catch
cases like first segment is missing or first segments etag doesnt match manifest.

Note: this does not validate that you have any segments. A zero-segment large object is not
erroneous; it is just empty.

swift.common.request_helpers.check_path_header(req, name, length, er-
ror_msg)

Validate that the value of path-like header is well formatted. We assume the caller ensures that
specific header is present in req.headers.

Parameters

• req HTTP request object

• name header name

• length length of path segment check

• error_msg error message for client

9.7. Misc 593



Swift Documentation, Release 2.27.1.dev38

Returns A tuple with path parts according to length

Raise HTTPPreconditionFailed if header value is not well formatted.

swift.common.request_helpers.constrain_req_limit(req, constrained_limit)

swift.common.request_helpers.copy_header_subset(from_r, to_r, condition)
Will copy desired subset of headers from from_r to to_r.

Parameters

• from_r a swob Request or Response

• to_r a swob Request or Response

• condition a function that will be passed the header key as a single argu-
ment and should return True if the header is to be copied.

swift.common.request_helpers.get_container_update_override_key(key)
Returns the full X-Object-Sysmeta-Container-Update-Override-* header key.

Parameters key the key you want to override in the container update

Returns the full header key

swift.common.request_helpers.get_ip_port(node, headers)

swift.common.request_helpers.get_name_and_placement(request, min-
segs=1,
maxsegs=None,
rest_with_last=False)

Utility function to split and validate the request path and storage policy. The storage policy index is
extracted from the headers of the request and converted to a StoragePolicy instance. The remaining
args are passed through to split_and_validate_path().

Returns a list, result of split_and_validate_path() with the BaseStorage-
Policy instance appended on the end

Raises HTTPServiceUnavailable if the path is invalid or no policy exists with
the extracted policy_index.

swift.common.request_helpers.get_object_transient_sysmeta(key)
Returns the Object Transient System Metadata header for key. The Object Transient System
Metadata namespace will be persisted by backend object servers. These headers are treated in the
same way as object user metadata i.e. all headers in this namespace will be replaced on every
POST request.

Parameters key metadata key

Returns the entire object transient system metadata header for key

swift.common.request_helpers.get_param(req, name, default=None)
Get a parameter from an HTTP request ensuring proper handling UTF-8 encoding.

Parameters

• req request object

• name parameter name

• default result to return if the parameter is not found

594 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

Returns HTTP request parameter value, as a native string (in py2, as UTF-8 encoded
str, not unicode object)

Raises HTTPBadRequest if param not valid UTF-8 byte sequence

swift.common.request_helpers.get_reserved_name(*parts)
Generate a valid reserved name that joins the component parts.

Returns a string

swift.common.request_helpers.get_sys_meta_prefix(server_type)
Returns the prefix for system metadata headers for given server type.

This prefix defines the namespace for headers that will be persisted by backend servers.

Parameters server_type type of backend server i.e. [account|container|object]

Returns prefix string for server types system metadata headers

swift.common.request_helpers.get_user_meta_prefix(server_type)
Returns the prefix for user metadata headers for given server type.

This prefix defines the namespace for headers that will be persisted by backend servers.

Parameters server_type type of backend server i.e. [account|container|object]

Returns prefix string for server types user metadata headers

swift.common.request_helpers.http_response_to_document_iters(response,
read_chunk_size=4096)

Takes a successful object-GET HTTP response and turns it into an iterator of (first-byte, last-byte,
length, headers, body-file) 5-tuples.

The response must either be a 200 or a 206; if you feed in a 204 or something similar, this probably
wont work.

Parameters response HTTP response, like from bufferedhttp.http_connect(), not
a swob.Response.

swift.common.request_helpers.is_object_transient_sysmeta(key)
Tests if a header key starts with and is longer than the prefix for object transient system metadata.

Parameters key header key

Returns True if the key satisfies the test, False otherwise

swift.common.request_helpers.is_sys_meta(server_type, key)
Tests if a header key starts with and is longer than the system metadata prefix for given server
type.

Parameters

• server_type type of backend server i.e. [account|container|object]

• key header key

Returns True if the key satisfies the test, False otherwise

swift.common.request_helpers.is_sys_or_user_meta(server_type, key)
Tests if a header key starts with and is longer than the user or system metadata prefix for given
server type.

Parameters

9.7. Misc 595



Swift Documentation, Release 2.27.1.dev38

• server_type type of backend server i.e. [account|container|object]

• key header key

Returns True if the key satisfies the test, False otherwise

swift.common.request_helpers.is_user_meta(server_type, key)
Tests if a header key starts with and is longer than the user metadata prefix for given server type.

Parameters

• server_type type of backend server i.e. [account|container|object]

• key header key

Returns True if the key satisfies the test, False otherwise

swift.common.request_helpers.remove_items(headers, condition)
Removes items from a dict whose keys satisfy the given condition.

Parameters

• headers a dict of headers

• condition a function that will be passed the header key as a single argu-
ment and should return True if the header is to be removed.

Returns a dict, possibly empty, of headers that have been removed

swift.common.request_helpers.resolve_etag_is_at_header(req, meta-
data)

Helper function to resolve an alternative etag value that may be stored in metadata under an alter-
nate name.

The value of the requests X-Backend-Etag-Is-At header (if it exists) is a comma separated list
of alternate names in the metadata at which an alternate etag value may be found. This list is
processed in order until an alternate etag is found.

The left most value in X-Backend-Etag-Is-At will have been set by the left most middleware, or
if no middleware, by ECObjectController, if an EC policy is in use. The left most middleware is
assumed to be the authority on what the etag value of the object content is.

The resolver will work from left to right in the list until it finds a value that is a name in the given
metadata. So the left most wins, IF it exists in the metadata.

By way of example, assume the encrypter middleware is installed. If an object is not encrypted
then the resolver will not find the encrypter middlewares alternate etag sysmeta (X-Object-
Sysmeta-Crypto-Etag) but will then find the EC alternate etag (if EC policy). But if the object
is encrypted then X-Object-Sysmeta-Crypto-Etag is found and used, which is correct because it
should be preferred over X-Object-Sysmeta-Ec-Etag.

Parameters

• req a swob Request

• metadata a dict containing object metadata

Returns an alternate etag value if any is found, otherwise None

596 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

swift.common.request_helpers.split_and_validate_path(request,
minsegs=1,
maxsegs=None,
rest_with_last=False)

Utility function to split and validate the request path.

Returns result of split_path() if everythings okay, as native strings

Raises HTTPBadRequest if somethings not okay

swift.common.request_helpers.split_reserved_name(name)
Separate a valid reserved name into the component parts.

Returns a list of strings

swift.common.request_helpers.strip_object_transient_sysmeta_prefix(key)
Removes the object transient system metadata prefix from the start of a header key.

Parameters key header key

Returns stripped header key

swift.common.request_helpers.strip_sys_meta_prefix(server_type, key)
Removes the system metadata prefix for a given server type from the start of a header key.

Parameters

• server_type type of backend server i.e. [account|container|object]

• key header key

Returns stripped header key

swift.common.request_helpers.strip_user_meta_prefix(server_type, key)
Removes the user metadata prefix for a given server type from the start of a header key.

Parameters

• server_type type of backend server i.e. [account|container|object]

• key header key

Returns stripped header key

swift.common.request_helpers.update_etag_is_at_header(req, name)
Helper function to update an X-Backend-Etag-Is-At header whose value is a list of alternative
header names at which the actual object etag may be found. This informs the object server where
to look for the actual object etag when processing conditional requests.

Since the proxy server and/or middleware may set alternative etag header names, the value of
X-Backend-Etag-Is-At is a comma separated list which the object server inspects in order until it
finds an etag value.

Parameters

• req a swob Request

• name name of a sysmeta where alternative etag may be found

swift.common.request_helpers.update_ignore_range_header(req, name)
Helper function to update an X-Backend-Ignore-Range-If-Metadata-Present header whose value
is a list of header names which, if any are present on an object, mean the object server should
respond with a 200 instead of a 206 or 416.

9.7. Misc 597



Swift Documentation, Release 2.27.1.dev38

Parameters

• req a swob Request

• name name of a header which, if found, indicates the proxy will want the
whole object

swift.common.request_helpers.validate_container_params(req)

swift.common.request_helpers.validate_internal_account(account)
Validate internal account name.

Raises HTTPBadRequest

swift.common.request_helpers.validate_internal_container(account,
container)

Validate internal account and container names.

Raises HTTPBadRequest

swift.common.request_helpers.validate_internal_obj(account, container,
obj)

Validate internal account, container and object names.

Raises HTTPBadRequest

swift.common.request_helpers.validate_params(req, names)
Get list of parameters from an HTTP request, validating the encoding of each parameter.

Parameters

• req request object

• names parameter names

Returns a dict mapping parameter names to values for each name that appears in the
request parameters

Raises HTTPBadRequest if any parameter value is not a valid UTF-8 byte se-
quence

9.7.11 Swob

Implementation of WSGI Request and Response objects.

This library has a very similar API to Webob. It wraps WSGI request environments and response values
into objects that are more friendly to interact with.

Why Swob and not just use WebOb? By Michael Barton

We used webob for years. The main problem was that the interface wasnt stable. For a while, each of
our several test suites required a slightly different version of webob to run, and none of them worked
with the then-current version. It was a huge headache, so we just scrapped it.

This is kind of a ton of code, but its also been a huge relief to not have to scramble to add a bunch of
code branches all over the place to keep Swift working every time webob decides some interface needs
to change.

class swift.common.swob.Accept(headerval)
Bases: object

Wraps a Requests Accept header as a friendly object.

598 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

Parameters headerval value of the header as a str

best_match(options)
Returns the item from options that best matches the accept header. Returns None if no
available options are acceptable to the client.

Parameters options a list of content-types the server can respond with

Raises ValueError if the header is malformed

exception swift.common.swob.HTTPException(*args, **kwargs)
Bases: swift.common.swob.Response, Exception

class swift.common.swob.HeaderEnvironProxy(environ)
Bases: collections.abc.MutableMapping

A dict-like object that proxies requests to a wsgi environ, rewriting header keys to environ keys.

For example, headers[Content-Range] sets and gets the value of head-
ers.environ[HTTP_CONTENT_RANGE]

keys()→ a set-like object providing a view on Ds keys

class swift.common.swob.Match(headerval)
Bases: object

Wraps a Requests If-[None-]Match header as a friendly object.

Parameters headerval value of the header as a str

class swift.common.swob.Range(headerval)
Bases: object

Wraps a Requests Range header as a friendly object. After initialization, range.ranges is populated
with a list of (start, end) tuples denoting the requested ranges.

If there were any syntactically-invalid byte-range-spec values, the constructor will raise a Val-
ueError, per the relevant RFC:

The recipient of a byte-range-set that includes one or more syntactically invalid byte-range-spec
values MUST ignore the header field that includes that byte-range-set.

According to the RFC 2616 specification, the following cases will be all considered as syntacti-
cally invalid, thus, a ValueError is thrown so that the range header will be ignored. If the range
value contains at least one of the following cases, the entire range is considered invalid, ValueError
will be thrown so that the header will be ignored.

1. value not starts with bytes=

2. range value start is greater than the end, eg. bytes=5-3

3. range does not have start or end, eg. bytes=-

4. range does not have hyphen, eg. bytes=45

5. range value is non numeric

6. any combination of the above

Every syntactically valid range will be added into the ranges list even when some of the ranges
may not be satisfied by underlying content.

Parameters headerval value of the header as a str

9.7. Misc 599



Swift Documentation, Release 2.27.1.dev38

ranges_for_length(length)
This method is used to return multiple ranges for a given length which should represent the
length of the underlying content. The constructor method __init__ made sure that any range
in ranges list is syntactically valid. So if length is None or size of the ranges is zero, then the
Range header should be ignored which will eventually make the response to be 200.

If an empty list is returned by this method, it indicates that there are unsatisfiable ranges
found in the Range header, 416 will be returned.

if a returned list has at least one element, the list indicates that there is at least one range
valid and the server should serve the request with a 206 status code.

The start value of each range represents the starting position in the content, the end value
represents the ending position. This method purposely adds 1 to the end number because the
spec defines the Range to be inclusive.

The Range spec can be found at the following link: http://www.w3.org/Protocols/rfc2616/
rfc2616-sec14.html#sec14.35.1

Parameters length length of the underlying content

class swift.common.swob.Request(environ)
Bases: object

WSGI Request object.

property accept
Retrieve and set the accept property in the WSGI environ, as a Accept object

property acl
Get and set the swob.ACL property in the WSGI environment

classmethod blank(path, environ=None, headers=None, body=None, **kwargs)
Create a new request object with the given parameters, and an environment otherwise filled
in with non-surprising default values.

Parameters

• path encoded, parsed, and unquoted into PATH_INFO

• environ WSGI environ dictionary

• headers HTTP headers

• body stuffed in a WsgiBytesIO and hung on wsgi.input

• kwargs any environ key with an property setter

property body
Get and set the request body str

property body_file
Get and set the wsgi.input property in the WSGI environment

call_application(application)
Calls the application with this requests environment. Returns the status, headers, and
app_iter for the response as a tuple.

Parameters application the WSGI application to call

property content_length
Retrieve and set the content-length header as an int

600 Chapter 9. Source Documentation

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.35.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.35.1


Swift Documentation, Release 2.27.1.dev38

copy_get()
Makes a copy of the request, converting it to a GET.

ensure_x_timestamp()
Similar to timestamp, but the X-Timestamp header will be set if not present.

Raises HTTPBadRequest if X-Timestamp is already set but not a valid
Timestamp

Returns the requests X-Timestamp header, as a Timestamp

get_response(application)
Calls the application with this requests environment. Returns a Response object that wraps
up the applications result.

Parameters application the WSGI application to call

property host
Get and set the HTTP_HOST property in the WSGI environment

property host_url
Get url for request/response up to path

property if_match
Retrieve and set the if-match property in the WSGI environ, as a Match object

property if_modified_since
Retrieve and set the if-modified-since header as a datetime, set it with a datetime, int, or str

property if_none_match
Retrieve and set the if-none-match property in the WSGI environ, as a Match object

property if_unmodified_since
Retrieve and set the if-unmodified-since header as a datetime, set it with a datetime, int, or
str

message_length()
Properly determine the message length for this request. It will return an integer if the headers
explicitly contain the message length, or None if the headers dont contain a length. The
ValueError exception will be raised if the headers are invalid.

Raises

• ValueError if either transfer-encoding or content-length headers have
bad values

• AttributeError if the last value of the transfer-encoding header is not
chunked

property method
Get and set the REQUEST_METHOD property in the WSGI environment

property params
Provides QUERY_STRING parameters as a dictionary

property path
Provides the full path of the request, excluding the QUERY_STRING

property path_info
Get and set the PATH_INFO property in the WSGI environment

9.7. Misc 601



Swift Documentation, Release 2.27.1.dev38

path_info_pop()
Takes one path portion (delineated by slashes) from the path_info, and appends it to the
script_name. Returns the path segment.

property path_qs
The path of the request, without host but with query string.

property query_string
Get and set the QUERY_STRING property in the WSGI environment

property range
Retrieve and set the range property in the WSGI environ, as a Range object

property referer
Get and set the HTTP_REFERER property in the WSGI environment

property referrer
Get and set the HTTP_REFERER property in the WSGI environment

property remote_addr
Get and set the REMOTE_ADDR property in the WSGI environment

property remote_user
Get and set the REMOTE_USER property in the WSGI environment

property script_name
Get and set the SCRIPT_NAME property in the WSGI environment

split_path(minsegs=1, maxsegs=None, rest_with_last=False)
Validate and split the Requests path.

Examples:

['a'] = split_path('/a')
['a', None] = split_path('/a', 1, 2)
['a', 'c'] = split_path('/a/c', 1, 2)
['a', 'c', 'o/r'] = split_path('/a/c/o/r', 1, 3, True)

Parameters

• minsegs Minimum number of segments to be extracted

• maxsegs Maximum number of segments to be extracted

• rest_with_last If True, trailing data will be returned as part of last
segment. If False, and there is trailing data, raises ValueError.

Returns list of segments with a length of maxsegs (non-existent segments will
return as None)

Raises ValueError if given an invalid path

property str_params
Provides QUERY_STRING parameters as a dictionary

property swift_entity_path
Provides the (native string) account/container/object path, sans API version.

This can be useful when constructing a path to send to a backend server, as that path will
need everything after the /v1.

602 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

property timestamp
Provides HTTP_X_TIMESTAMP as a Timestamp

property url
Provides the full url of the request

property user_agent
Get and set the HTTP_USER_AGENT property in the WSGI environment

class swift.common.swob.Response(body=None, status=200, headers=None,
app_iter=None, request=None, con-
ditional_response=False, condi-
tional_etag=None, **kw)

Bases: object

WSGI Response object.

__call__(env, start_response)
Respond to the WSGI request.

Warning: This will translate any relative Location header value to an absolute URL
using the WSGI environments HOST_URL as a prefix, as RFC 2616 specifies.

However, it is quite common to use relative redirects, especially when it is difficult
to know the exact HOST_URL the browser would have used when behind several
CNAMEs, CDN services, etc. All modern browsers support relative redirects.

To skip over RFC enforcement of the Location header value, you may set
env['swift.leave_relative_location'] = True in the WSGI environ-
ment.

absolute_location()
Attempt to construct an absolute location.

property accept_ranges
Retrieve and set the accept-ranges header

property app_iter
Retrieve and set the response app_iter

property body
Retrieve and set the Response body str

property charset
Retrieve and set the response charset

property conditional_etag
The conditional_etag keyword argument for Response will allow the conditional match value
of a If-Match request to be compared to a non-standard value.

This is available for Storage Policies that do not store the client object data verbatim on the
storage nodes, but still need support conditional requests.

Its most effectively used with X-Backend-Etag-Is-At which would define the additional
Metadata key(s) where the original ETag of the clear-form client request data may be found.

property content_length
Retrieve and set the content-length header as an int

9.7. Misc 603



Swift Documentation, Release 2.27.1.dev38

property content_range
Retrieve and set the content-range header

property content_type
Retrieve and set the response Content-Type header

property etag
Retrieve and set the response Etag header

fix_conditional_response()
You may call this once you have set the content_length to the whole object length and body
or app_iter to reset the content_length properties on the request.

It is ok to not call this method, the conditional response will be maintained for you when
you __call__ the response.

property host_url
Get url for request/response up to path

property last_modified
Retrieve and set the last-modified header as a datetime, set it with a datetime, int, or str

property location
Retrieve and set the location header

property status
Retrieve and set the Response status, e.g. 200 OK

www_authenticate()
Construct a suitable value for WWW-Authenticate response header

If we have a request and a valid-looking path, the realm is the account; otherwise we set it
to unknown.

class swift.common.swob.StatusMap
Bases: object

A dict-like object that returns HTTPException subclasses/factory functions where the given key
is the status code.

class swift.common.swob.WsgiBytesIO(initial_bytes=b”)
Bases: _io.BytesIO

This class adds support for the additional wsgi.input methods defined on eventlet.wsgi.Input to
the BytesIO class which would otherwise be a fine stand-in for the file-like object in the WSGI
environment.

swift.common.swob.wsgify(func)
A decorator for translating functions which take a swob Request object and return a Response ob-
ject into WSGI callables. Also catches any raised HTTPExceptions and treats them as a returned
Response.

604 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

9.7.12 Utils

Miscellaneous utility functions for use with Swift.

swift.common.utils.ATTRIBUTES_RE = re.compile('(\\w+)=(".*?"|[^";]+)(; ?|$)')
Regular expression to match form attributes.

class swift.common.utils.CloseableChain(*iterables)
Bases: object

Like itertools.chain, but with a close method that will attempt to invoke its sub-iterators close
methods, if any.

class swift.common.utils.ContextPool(size=1000)
Bases: eventlet.greenpool.GreenPool

GreenPool subclassed to kill its coros when it gets gced

class swift.common.utils.Everything
Bases: object

A container that contains everything. If e is an instance of Everything, then x in e is true for all x.

class swift.common.utils.GreenAsyncPile(size_or_pool)
Bases: object

Runs jobs in a pool of green threads, and the results can be retrieved by using this object as an
iterator.

This is very similar in principle to eventlet.GreenPile, except it returns results as they become
available rather than in the order they were launched.

Correlating results with jobs (if necessary) is left to the caller.

spawn(func, *args, **kwargs)
Spawn a job in a green thread on the pile.

waitall(timeout)
Wait timeout seconds for any results to come in.

Parameters timeout seconds to wait for results

Returns list of results accrued in that time

waitfirst(timeout)
Wait up to timeout seconds for first result to come in.

Parameters timeout seconds to wait for results

Returns first item to come back, or None

exception swift.common.utils.GreenAsyncPileWaitallTimeout(seconds=None,
excep-
tion=None)

Bases: eventlet.timeout.Timeout

class swift.common.utils.GreenthreadSafeIterator(unsafe_iterable)
Bases: object

Wrap an iterator to ensure that only one greenthread is inside its next() method at a time.

9.7. Misc 605



Swift Documentation, Release 2.27.1.dev38

This is useful if an iterators next() method may perform network IO, as that may trigger a green-
thread context switch (aka trampoline), which can give another greenthread a chance to call next().
At that point, you get an error like ValueError: generator already executing. By wrapping calls to
next() with a mutex, we avoid that error.

class swift.common.utils.InputProxy(wsgi_input)
Bases: object

File-like object that counts bytes read. To be swapped in for wsgi.input for accounting purposes.

read(*args, **kwargs)
Pass read request to the underlying file-like object and add bytes read to total.

readline(*args, **kwargs)
Pass readline request to the underlying file-like object and add bytes read to total.

exception swift.common.utils.InvalidHashPathConfigError
Bases: ValueError

class swift.common.utils.LRUCache(maxsize=1000, maxtime=3600)
Bases: object

Decorator for size/time bound memoization that evicts the least recently used members.

class swift.common.utils.LogAdapter(logger, server)
Bases: logging.LoggerAdapter, object

A Logger like object which performs some reformatting on calls to exception(). Can be used
to store a threadlocal transaction id and client ip.

exception(msg, *args, **kwargs)
Delegate an exception call to the underlying logger.

getEffectiveLevel()
Get the effective level for the underlying logger.

notice(msg, *args, **kwargs)
Convenience function for syslog priority LOG_NOTICE. The python logging lvl is set to 25,
just above info. SysLogHandler is monkey patched to map this log lvl to the LOG_NOTICE
syslog priority.

process(msg, kwargs)
Add extra info to message

set_statsd_prefix(prefix)
The StatsD client prefix defaults to the name of the logger. This method may override that
default with a specific value. Currently used in the proxy-server to differentiate the Account,
Container, and Object controllers.

statsd_delegate()
Factory to create methods which delegate to methods on self.logger.statsd_client (an instance
of StatsdClient). The created methods conditionally delegate to a method whose name is
given in statsd_func_name. The created delegate methods are a no-op when StatsD logging
is not configured.

Parameters statsd_func_name the name of a method on StatsdClient.

class swift.common.utils.LogLevelFilter(level=10)
Bases: object

606 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

Drop messages for the logger based on level.

This is useful when dependencies log too much information.

Parameters level All messages at or below this level are dropped (DEBUG < INFO
< WARN < ERROR < CRITICAL|FATAL) Default: DEBUG

swift.common.utils.NR_ioprio_set()
Give __NR_ioprio_set value for your system.

class swift.common.utils.NicerInterpolation
Bases: configparser.BasicInterpolation

class swift.common.utils.NullLogger
Bases: object

A no-op logger for eventlet wsgi.

class swift.common.utils.OverrideOptions(devices, partitions, policies)
Bases: tuple

devices
Alias for field number 0

partitions
Alias for field number 1

policies
Alias for field number 2

class swift.common.utils.PipeMutex
Bases: object

Mutex using a pipe. Works across both greenlets and real threads, even at the same time.

acquire(blocking=True)
Acquire the mutex.

If called with blocking=False, returns True if the mutex was acquired and False if it wasnt.
Otherwise, blocks until the mutex is acquired and returns True.

This lock is recursive; the same greenthread may acquire it as many times as it wants to,
though it must then release it that many times too.

close()
Close the mutex. This releases its file descriptors.

You cant use a mutex after its been closed.

release()
Release the mutex.

class swift.common.utils.PrefixLoggerAdapter(logger, extra)
Bases: swift.common.utils.SwiftLoggerAdapter

Adds an optional prefix to all its log messages. When the prefix has not been set, messages are
unchanged.

exception(msg, *a, **kw)
Delegate an exception call to the underlying logger.

9.7. Misc 607



Swift Documentation, Release 2.27.1.dev38

process(msg, kwargs)
Process the logging message and keyword arguments passed in to a logging call to insert
contextual information. You can either manipulate the message itself, the keyword args or
both. Return the message and kwargs modified (or not) to suit your needs.

Normally, youll only need to override this one method in a LoggerAdapter subclass for your
specific needs.

class swift.common.utils.RateLimitedIterator(iterable, ele-
ments_per_second,
limit_after=0, rate-
limit_if=<function Rate-
LimitedIterator.<lambda»)

Bases: object

Wrap an iterator to only yield elements at a rate of N per second.

Parameters

• iterable iterable to wrap

• elements_per_second the rate at which to yield elements

• limit_after rate limiting kicks in only after yielding this many elements;
default is 0 (rate limit immediately)

class swift.common.utils.ShardRange(name, timestamp, lower=MinBound,
upper=MaxBound, object_count=0,
bytes_used=0, meta_timestamp=None,
deleted=False, state=None,
state_timestamp=None, epoch=None,
reported=False)

Bases: object

A ShardRange encapsulates sharding state related to a container including lower and upper bounds
that define the object namespace for which the container is responsible.

Shard ranges may be persisted in a container database. Timestamps associated with subsets of the
shard range attributes are used to resolve conflicts when a shard range needs to be merged with an
existing shard range record and the most recent version of an attribute should be persisted.

Parameters

• name the name of the shard range; this should take the form of a path to a
container i.e. <account_name>/<container_name>.

• timestamp a timestamp that represents the time at which the shard ranges
lower, upper or deleted attributes were last modified.

• lower the lower bound of object names contained in the shard range; the
lower bound is not included in the shard range namespace.

• upper the upper bound of object names contained in the shard range; the
upper bound is included in the shard range namespace.

• object_count the number of objects in the shard range; defaults to zero.

• bytes_used the number of bytes in the shard range; defaults to zero.

608 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

• meta_timestamp a timestamp that represents the time at which the shard
ranges object_count and bytes_used were last updated; defaults to
the value of timestamp.

• deleted a boolean; if True the shard range is considered to be deleted.

• state the state; must be one of ShardRange.STATES; defaults to CRE-
ATED.

• state_timestamp a timestamp that represents the time at which state
was forced to its current value; defaults to the value of timestamp. This
timestamp is typically not updated with every change of state because
in general conflicts in state attributes are resolved by choosing the larger
state value. However, when this rule does not apply, for example when
changing state from SHARDED to ACTIVE, the state_timestamp may
be advanced so that the new state value is preferred over any older state
value.

• epoch optional epoch timestamp which represents the time at which shard-
ing was enabled for a container.

• reported optional indicator that this shard and its stats have been reported
to the root container.

copy(timestamp=None, **kwargs)
Creates a copy of the ShardRange.

Parameters timestamp (optional) If given, the returned ShardRange will have
all of its timestamps set to this value. Otherwise the returned ShardRange will
have the original timestamps.

Returns an instance of ShardRange

entire_namespace()
Returns True if the ShardRange includes the entire namespace, False otherwise.

expand(donors)
Expands the bounds as necessary to match the minimum and maximum bounds of the given
donors.

Parameters donors A list of ShardRange

Returns True if the bounds have been modified, False otherwise.

classmethod from_dict(params)
Return an instance constructed using the given dict of params. This method is deliberately
less flexible than the class __init__() method and requires all of the __init__() args to be
given in the dict of params.

Parameters params a dict of parameters

Returns an instance of this class

includes(other)
Returns True if this namespace includes the whole of the other namespace, False otherwise.

Parameters other an instance of ShardRange

9.7. Misc 609



Swift Documentation, Release 2.27.1.dev38

increment_meta(object_count, bytes_used)
Increment the object stats metadata by the given values and update the meta_timestamp to
the current time.

Parameters

• object_count should be an integer

• bytes_used should be an integer

Raises ValueError if object_count or bytes_used cannot be cast to an
int.

classmethod make_path(shards_account, root_container, parent_container, times-
tamp, index)

Returns a path for a shard container that is valid to use as a name when constructing a
ShardRange.

Parameters

• shards_account the hidden internal account to which the shard con-
tainer belongs.

• root_container the name of the root container for the shard.

• parent_container the name of the parent container for the
shard; for initial first generation shards this should be the same as
root_container; for shards of shards this should be the name of the
sharding shard container.

• timestamp an instance of Timestamp

• index a unique index that will distinguish the path from any other
path generated using the same combination of shards_account,
root_container, parent_container and timestamp.

Returns a string of the form <account_name>/<container_name>

overlaps(other)
Returns True if the ShardRange namespace overlaps with the other ShardRanges namespace.

Parameters other an instance of ShardRange

classmethod resolve_state(state)
Given a value that may be either the name or the number of a state return a tuple of (state
number, state name).

Parameters state Either a string state name or an integer state number.

Returns A tuple (state number, state name)

Raises ValueError if state is neither a valid state name nor a valid state
number.

set_deleted(timestamp=None)
Mark the shard range deleted and set timestamp to the current time.

Parameters timestamp optional timestamp to set; if not given the current time
will be set.

Returns True if the deleted attribute or timestamp was changed, False otherwise

610 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

update_meta(object_count, bytes_used, meta_timestamp=None)
Set the object stats metadata to the given values and update the meta_timestamp to the cur-
rent time.

Parameters

• object_count should be an integer

• bytes_used should be an integer

• meta_timestamp timestamp for metadata; if not given the current time
will be set.

Raises ValueError if object_count or bytes_used cannot be cast to an
int, or if meta_timestamp is neither None nor can be cast to a Timestamp.

update_state(state, state_timestamp=None)
Set state to the given value and optionally update the state_timestamp to the given time.

Parameters

• state new state, should be an integer

• state_timestamp timestamp for state; if not given the state_timestamp
will not be changed.

Returns True if the state or state_timestamp was changed, False otherwise

class swift.common.utils.ShardRangeList(initlist=None)
Bases: collections.UserList

This class provides some convenience functions for working with lists of ShardRange.

This class does not enforce ordering or continuity of the list items: callers should ensure that items
are added in order as appropriate.

property bytes_used
Returns the total number of bytes in all items in the list.

Returns total bytes used

includes(other)
Check if another ShardRange namespace is enclosed between the lists lower and upper
properties. Note: the lists lower and upper properties will only equal the outermost
bounds of all items in the list if the list has previously been sorted.

Note: the list does not need to contain an item matching other for this method to return
True, although if the list has been sorted and does contain an item matching other then the
method will return True.

Parameters other an instance of ShardRange

Returns True if others namespace is enclosed, False otherwise.

property lower
Returns the lower bound of the first item in the list. Note: this will only be equal to the
lowest bound of all items in the list if the list contents has been sorted.

Returns lower bound of first item in the list, or ShardRange.MIN if the list is
empty.

9.7. Misc 611



Swift Documentation, Release 2.27.1.dev38

property object_count
Returns the total number of objects of all items in the list.

Returns total object count

property upper
Returns the upper bound of the first item in the list. Note: this will only be equal to the
uppermost bound of all items in the list if the list has previously been sorted.

Returns upper bound of first item in the list, or ShardRange.MIN if the list is
empty.

class swift.common.utils.Spliterator(source_iterable)
Bases: object

Takes an iterator yielding sliceable things (e.g. strings or lists) and yields subiterators, each yield-
ing up to the requested number of items from the source.

>>> si = Spliterator(["abcde", "fg", "hijkl"])
>>> ''.join(si.take(4))
"abcd"
>>> ''.join(si.take(3))
"efg"
>>> ''.join(si.take(1))
"h"
>>> ''.join(si.take(3))
"ijk"
>>> ''.join(si.take(3))
"l" # shorter than requested; this can happen with the last iterator

class swift.common.utils.StrAnonymizer(data, method, salt)
Bases: str

Class that permits to get a string anonymized or simply quoted.

class swift.common.utils.StrFormatTime(ts)
Bases: object

Class that permits to get formats or parts of a time.

class swift.common.utils.StreamingPile(size)
Bases: swift.common.utils.GreenAsyncPile

Runs jobs in a pool of green threads, spawning more jobs as results are retrieved and worker
threads become available.

When used as a context manager, has the same worker-killing properties as ContextPool.

asyncstarmap(func, args_iter)
This is the same as itertools.starmap(), except that func is executed in a separate
green thread for each item, and results wont necessarily have the same order as inputs.

class swift.common.utils.SwiftLogFormatter(fmt=None, datefmt=None,
max_line_length=0)

Bases: logging.Formatter

Custom logging.Formatter will append txn_id to a log message if the record has one and the
message does not. Optionally it can shorten overly long log lines.

format(record)
Format the specified record as text.

612 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

The records attribute dictionary is used as the operand to a string formatting operation which
yields the returned string. Before formatting the dictionary, a couple of preparatory steps are
carried out. The message attribute of the record is computed using LogRecord.getMessage().
If the formatting string uses the time (as determined by a call to usesTime(), formatTime()
is called to format the event time. If there is exception information, it is formatted using
formatException() and appended to the message.

class swift.common.utils.SwiftLoggerAdapter(logger, extra)
Bases: logging.LoggerAdapter

A logging.LoggerAdapter subclass that also passes through StatsD method calls.

Like logging.LoggerAdapter, you have to subclass this and override the process() method to ac-
complish anything useful.

class swift.common.utils.ThreadSafeSysLogHandler(address=(’localhost’,
514), facility=1, sock-
type=None)

Bases: logging.handlers.SysLogHandler

createLock()
Acquire a thread lock for serializing access to the underlying I/O.

class swift.common.utils.Timestamp(timestamp, offset=0, delta=0,
check_bounds=True)

Bases: object

Internal Representation of Swift Time.

The normalized form of the X-Timestamp header looks like a float with a fixed width to ensure
stable string sorting - normalized timestamps look like 1402464677.04188

To support overwrites of existing data without modifying the original timestamp but still maintain
consistency a second internal offset vector is append to the normalized timestamp form which
compares and sorts greater than the fixed width float format but less than a newer timestamp.
The internalized format of timestamps looks like 1402464677.04188_0000000000000000 - the
portion after the underscore is the offset and is a formatted hexadecimal integer.

The internalized form is not exposed to clients in responses from Swift. Normal client operations
will not create a timestamp with an offset.

The Timestamp class in common.utils supports internalized and normalized formatting of times-
tamps and also comparison of timestamp values. When the offset value of a Timestamp is 0 - its
considered insignificant and need not be represented in the string format; to support backwards
compatibility during a Swift upgrade the internalized and normalized form of a Timestamp with
an insignificant offset are identical. When a timestamp includes an offset it will always be repre-
sented in the internalized form, but is still excluded from the normalized form. Timestamps with
an equivalent timestamp portion (the float part) will compare and order by their offset. Times-
tamps with a greater timestamp portion will always compare and order greater than a Timestamp
with a lesser timestamp regardless of its offset. String comparison and ordering is guaranteed for
the internalized string format, and is backwards compatible for normalized timestamps which do
not include an offset.

class swift.common.utils.Watchdog
Bases: object

Implements a watchdog to efficiently manage concurrent timeouts.

9.7. Misc 613



Swift Documentation, Release 2.27.1.dev38

Compared to eventlet.timeouts.Timeout, it reduces the number of context switching in eventlet
by avoiding to schedule actions (throw an Exception), then unschedule them if the timeouts are
cancelled.

1. at T+0, request timeout(10) => wathdog greenlet sleeps 10 seconds

2. at T+1, request timeout(15)

=> the timeout will expire after the current, no need to wake up the watchdog
greenlet

3. at T+2, request timeout(5)

=> the timeout will expire before the first timeout, wake up the watchdog greenlet
to calculate a new sleep period

4. at T+7, the 3rd timeout expires

=> the exception is raised, then the greenlet watchdog sleep(3) to wake up for the
1st timeout expiration

spawn()
Start the watchdog greenthread.

start(timeout, exc, timeout_at=None)
Schedule a timeout action

Parameters

• timeout duration before the timeout expires

• exc exception to throw when the timeout expire, must inherit from event-
let.timeouts.Timeout

• timeout_at allow to force the expiration timestamp

Returns id of the scheduled timeout, needed to cancel it

stop(key)
Cancel a scheduled timeout

Parameters key timeout id, as returned by start()

class swift.common.utils.WatchdogTimeout(watchdog, timeout, exc, time-
out_at=None)

Bases: object

Context manager to schedule a timeout in a Watchdog instance

swift.common.utils.affinity_key_function(affinity_str)
Turns an affinity config value into a function suitable for passing to sort(). After doing so, the
array will be sorted with respect to the given ordering.

For example, if affinity_str is r1=1, r2z7=2, r2z8=2, then the array will be sorted with all nodes
from region 1 (r1=1) first, then all the nodes from region 2 zones 7 and 8 (r2z7=2 and r2z8=2),
then everything else.

Note that the order of the pieces of affinity_str is irrelevant; the priority values are what comes
after the equals sign.

If affinity_str is empty or all whitespace, then the resulting function will not alter the ordering of
the nodes.

614 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

Parameters affinity_str affinity config value, e.g. r1z2=3 or r1=1, r2z1=2,
r2z2=2

Returns single-argument function

Raises ValueError if argument invalid

swift.common.utils.affinity_locality_predicate(write_affinity_str)
Turns a write-affinity config value into a predicate function for nodes. The returned value will be
a 1-arg function that takes a node dictionary and returns a true value if it is local and a false value
otherwise. The definition of local comes from the affinity_str argument passed in here.

For example, if affinity_str is r1, r2z2, then only nodes where region=1 or where (region=2 and
zone=2) are considered local.

If affinity_str is empty or all whitespace, then the resulting function will consider everything local

Parameters write_affinity_str affinity config value, e.g. r1z2 or r1, r2z1,
r2z2

Returns single-argument function, or None if affinity_str is empty

Raises ValueError if argument invalid

swift.common.utils.audit_location_generator(devices, datadir, suf-
fix=”, mount_check=True,
logger=None, de-
vices_filter=None, par-
titions_filter=None,
suffixes_filter=None,
hashes_filter=None,
hook_pre_device=None,
hook_post_device=None,
hook_pre_partition=None,
hook_post_partition=None,
hook_pre_suffix=None,
hook_post_suffix=None,
hook_pre_hash=None,
hook_post_hash=None,
error_counter=None,
yield_hash_dirs=False)

Given a devices path and a data directory, yield (path, device, partition) for all files in that directory

(devices|partitions|suffixes|hashes)_filter are meant to modify the list of elements that will be iter-
ated. eg: they can be used to exclude some elements based on a custom condition defined by the
caller.

hook_pre_(device|partition|suffix|hash) are called before yielding the element,
hook_pos_(device|partition|suffix|hash) are called after the element was yielded. They are
meant to do some pre/post processing. eg: saving a progress status.

Parameters

• devices parent directory of the devices to be audited

• datadir a directory located under self.devices. This should be one of the
DATADIR constants defined in the account, container, and object servers.

9.7. Misc 615



Swift Documentation, Release 2.27.1.dev38

• suffix path name suffix required for all names returned (ignored if
yield_hash_dirs is True)

• mount_check Flag to check if a mount check should be performed on
devices

• logger a logger object

• devices_filter a callable taking (devices, [list of devices]) as parame-
ters and returning a [list of devices]

• partitions_filter a callable taking (datadir_path, [list of parts]) as
parameters and returning a [list of parts]

• suffixes_filter a callable taking (part_path, [list of suffixes]) as pa-
rameters and returning a [list of suffixes]

• hashes_filter a callable taking (suff_path, [list of hashes]) as parame-
ters and returning a [list of hashes]

• hook_pre_device a callable taking device_path as parameter

• hook_post_device a callable taking device_path as parameter

• hook_pre_partition a callable taking part_path as parameter

• hook_post_partition a callable taking part_path as parameter

• hook_pre_suffix a callable taking suff_path as parameter

• hook_post_suffix a callable taking suff_path as parameter

• hook_pre_hash a callable taking hash_path as parameter

• hook_post_hash a callable taking hash_path as parameter

• error_counter a dictionary used to accumulate error counts; may add
keys unmounted and unlistable_partitions

• yield_hash_dirs if True, yield hash dirs instead of individual files

swift.common.utils.backward(f, blocksize=4096)
A generator returning lines from a file starting with the last line, then the second last line, etc. i.e.,
it reads lines backwards. Stops when the first line (if any) is read. This is useful when searching
for recent activity in very large files.

Parameters

• f file object to read

• blocksize no of characters to go backwards at each block

swift.common.utils.cache_from_env(env, allow_none=False)
Get memcache connection pool from the environment (which had been previously set by the
memcache middleware

Parameters env wsgi environment dict

Returns swift.common.memcached.MemcacheRing from environment

swift.common.utils.capture_stdio(logger, **kwargs)
Log unhandled exceptions, close stdio, capture stdout and stderr.

param logger: Logger object to use

616 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

swift.common.utils.closing_if_possible(maybe_closable)
Like contextlib.closing(), but doesnt crash if the object lacks a close() method.

PEP 333 (WSGI) says: If the iterable returned by the application has a close() method, the server
or gateway must call that method upon completion of the current request[.] This function makes
that easier.

swift.common.utils.compute_eta(start_time, current_value, final_value)
Compute an ETA. Now only if we could also have a progress bar

Parameters

• start_time Unix timestamp when the operation began

• current_value Current value

• final_value Final value

Returns ETA as a tuple of (length of time, unit of time) where unit of time is one of
(h, m, s)

swift.common.utils.config_auto_int_value(value, default)
Returns default if value is None or auto. Returns value as an int or raises ValueError otherwise.

swift.common.utils.config_fallocate_value(reserve_value)
Returns fallocate reserve_value as an int or float. Returns is_percent as a boolean. Returns a
ValueError on invalid fallocate value.

swift.common.utils.config_positive_int_value(value)
Returns positive int value if it can be cast by int() and its an integer > 0. (not including zero)
Raises ValueError otherwise.

swift.common.utils.config_read_prefixed_options(conf, prefix_name, de-
faults)

Read prefixed options from configuration

Parameters

• conf the configuration

• prefix_name the prefix (including, if needed, an underscore)

• defaults a dict of default values. The dict supplies the option name and
type (string or comma separated string)

Returns a dict containing the options

swift.common.utils.config_read_reseller_options(conf, defaults)
Read reseller_prefix option and associated options from configuration

Reads the reseller_prefix option, then reads options that may be associated with a specific reseller
prefix. Reads options such that an option without a prefix applies to all reseller prefixes unless an
option has an explicit prefix.

Parameters

• conf the configuration

• defaults a dict of default values. The key is the option name. The value
is either an array of strings or a string

Returns tuple of an array of reseller prefixes and a dict of option values

9.7. Misc 617



Swift Documentation, Release 2.27.1.dev38

swift.common.utils.config_true_value(value)
Returns True if the value is either True or a string in TRUE_VALUES. Returns False otherwise.

swift.common.utils.csv_append(csv_string, item)
Appends an item to a comma-separated string.

If the comma-separated string is empty/None, just returns item.

swift.common.utils.decode_timestamps(encoded, explicit=False)
Parses a string of the form generated by encode_timestamps and returns a tuple of the three com-
ponent timestamps. If explicit is False, component timestamps that are not explicitly encoded will
be assumed to have zero delta from the previous component and therefore take the value of the
previous component. If explicit is True, component timestamps that are not explicitly encoded
will be returned with value None.

swift.common.utils.distribute_evenly(items, num_buckets)
Distribute items as evenly as possible into N buckets.

swift.common.utils.document_iters_to_http_response_body(ranges_iter,
boundary,
multipart,
logger)

Takes an iterator of range iters and turns it into an appropriate HTTP response body, whether thats
multipart/byteranges or not.

This is almost, but not quite, the inverse of request_helpers.http_response_to_document_iters().
This function only yields chunks of the body, not any headers.

Parameters

• ranges_iter an iterator of dictionaries, one per range. Each dictionary
must contain at least the following key: part_iter: iterator yielding the bytes
in the range

Additionally, if multipart is True, then the following other keys are required:

start_byte: index of the first byte in the range end_byte: index of the last byte
in the range content_type: value for the ranges Content-Type header

Finally, there is one optional key that is used in the multipart/byteranges
case:

entity_length: length of the requested entity (not necessarily equal to the
response length). If omitted, * will be used.

Each part_iter will be exhausted prior to calling next(ranges_iter).

• boundary MIME boundary to use, sans dashes (e.g. boundary, not bound-
ary).

• multipart True if the response should be multipart/byteranges, False oth-
erwise. This should be True if and only if you have 2 or more ranges.

• logger a logger

swift.common.utils.document_iters_to_multipart_byteranges(ranges_iter,
bound-
ary)

Takes an iterator of range iters and yields a multipart/byteranges MIME document suitable for
sending as the body of a multi-range 206 response.

618 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

See document_iters_to_http_response_body for parameter descriptions.

swift.common.utils.drain_and_close(response_or_app_iter)
Drain and close a swob or WSGI response.

This ensures we dont log a 499 in the proxy just because we realized we dont care about the body
of an error.

swift.common.utils.drop_buffer_cache(fd, offset, length)
Drop buffer cache for the given range of the given file.

Parameters

• fd file descriptor

• offset start offset

• length length

swift.common.utils.drop_privileges(user)
Sets the userid/groupid of the current process, get session leader, etc.

Parameters user User name to change privileges to

swift.common.utils.dump_recon_cache(cache_dict, cache_file, logger,
lock_timeout=2, set_owner=None)

Update recon cache values

Parameters

• cache_dict Dictionary of cache key/value pairs to write out

• cache_file cache file to update

• logger the logger to use to log an encountered error

• lock_timeout timeout (in seconds)

• set_owner Set owner of recon cache file

swift.common.utils.encode_timestamps(t1, t2=None, t3=None, explicit=False)
Encode up to three timestamps into a string. Unlike a Timestamp object, the encoded string does
NOT used fixed width fields and consequently no relative chronology of the timestamps can be
inferred from lexicographic sorting of encoded timestamp strings.

The format of the encoded string is: <t1>[<+/-><t2 - t1>[<+/-><t3 - t2>]]

i.e. if t1 = t2 = t3 then just the string representation of t1 is returned, otherwise the time offsets for
t2 and t3 are appended. If explicit is True then the offsets for t2 and t3 are always appended even
if zero.

Note: any offset value in t1 will be preserved, but offsets on t2 and t3 are not preserved. In the
anticipated use cases for this method (and the inverse decode_timestamps method) the timestamps
passed as t2 and t3 are not expected to have offsets as they will be timestamps associated with a
POST request. In the case where the encoding is used in a container objects table row, t1 could be
the PUT or DELETE time but t2 and t3 represent the content type and metadata times (if different
from the data file) i.e. correspond to POST timestamps. In the case where the encoded form is
used in a .meta file name, t1 and t2 both correspond to POST timestamps.

swift.common.utils.eventlet_monkey_patch()
Install the appropriate Eventlet monkey patches.

9.7. Misc 619



Swift Documentation, Release 2.27.1.dev38

swift.common.utils.expand_ipv6(address)
Expand ipv6 address. :param address: a string indicating valid ipv6 address :returns: a string
indicating fully expanded ipv6 address

swift.common.utils.extract_swift_bytes(content_type)

Parse a content-type and return a tuple containing:

• the content_type string minus any swift_bytes param,

• the swift_bytes value or None if the param was not found

Parameters content_type a content-type string

Returns a tuple of (content-type, swift_bytes or None)

swift.common.utils.fallocate(fd, size, offset=0)
Pre-allocate disk space for a file.

This function can be disabled by calling disable_fallocate(). If no suitable C function is available
in libc, this function is a no-op.

Parameters

• fd file descriptor

• size size to allocate (in bytes)

swift.common.utils.fdatasync(fd)
Sync modified file data to disk.

Parameters fd file descriptor

swift.common.utils.find_shard_range(item, ranges)
Find a ShardRange in given list of shard_ranges whose namespace contains item.

Parameters

• item The item for a which a ShardRange is to be found.

• ranges a sorted list of ShardRanges.

Returns the ShardRange whose namespace contains item, or None if no suitable
range is found.

swift.common.utils.fs_has_free_space(fs_path, space_needed, is_percent)
Check to see whether or not a filesystem has the given amount of space free. Unlike fallocate(),
this does not reserve any space.

Parameters

• fs_path path to a file or directory on the filesystem; typically the path to
the filesystems mount point

• space_needed minimum bytes or percentage of free space

• is_percent if True, then space_needed is treated as a percentage of the
filesystems capacity; if False, space_needed is a number of free bytes.

Returns True if the filesystem has at least that much free space, False otherwise

Raises OSError if fs_path does not exist

620 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

swift.common.utils.fsync(fd)
Sync modified file data and metadata to disk.

Parameters fd file descriptor

swift.common.utils.fsync_dir(dirpath)
Sync directory entries to disk.

Parameters dirpath Path to the directory to be synced.

swift.common.utils.get_db_files(db_path)
Given the path to a db file, return a sorted list of all valid db files that actually exist in that paths
dir. A valid db filename has the form:

<hash>[_<epoch>].db

where <hash> matches the <hash> part of the given db_path as would be parsed by
parse_db_filename().

Parameters db_path Path to a db file that does not necessarily exist.

Returns List of valid db files that do exist in the dir of the db_path. This list may
be empty.

swift.common.utils.get_expirer_container(x_delete_at, expirer_divisor, acc,
cont, obj)

Returns an expiring object container name for given X-Delete-At and (native string) a/c/o.

swift.common.utils.get_hmac(request_method, path, expires, key, digest=<built-in
function openssl_sha1>, ip_range=None)

Returns the hexdigest string of the HMAC (see RFC 2104) for the request.

Parameters

• request_method Request method to allow.

• path The path to the resource to allow access to.

• expires Unix timestamp as an int for when the URL expires.

• key HMAC shared secret.

• digest constructor for the digest to use in calculating the HMAC Defaults
to SHA1

• ip_range The ip range from which the resource is allowed to be accessed.
We need to put the ip_range as the first argument to hmac to avoid manipula-
tion of the path due to newlines being valid in paths e.g. /v1/a/c/on127.0.0.1

Returns hexdigest str of the HMAC for the request using the specified digest algo-
rithm.

swift.common.utils.get_hub()
Checks whether poll is available and falls back on select if it isnt.

Note about epoll:

Review: https://review.opendev.org/#/c/18806/

There was a problem where once out of every 30 quadrillion connections, a coroutine wouldnt
wake up when the client closed its end. Epoll was not reporting the event or it was getting swal-
lowed somewhere. Then when that file descriptor was re-used, eventlet would freak right out
because it still thought it was waiting for activity from it in some other coro.

9.7. Misc 621

https://review.opendev.org/#/c/18806/


Swift Documentation, Release 2.27.1.dev38

Another note about epoll: its hard to use when forking. epoll works like so:

• create an epoll instance: efd = epoll_create()

• register file descriptors of interest with epoll_ctl(efd, EPOLL_CTL_ADD, fd, )

• wait for events with epoll_wait(efd, )

If you fork, you and all your child processes end up using the same epoll instance, and everyone
becomes confused. It is possible to use epoll and fork and still have a correct program as long as
you do the right things, but eventlet doesnt do those things. Really, it cant even try to do those
things since it doesnt get notified of forks.

In contrast, both poll() and select() specify the set of interesting file descriptors with each call, so
theres no problem with forking.

As eventlet monkey patching is now done before call get_hub() in wsgi.py if we use import
select we get the eventlet version, but since version 0.20.0 eventlet removed select.poll() func-
tion in patched select (see: http://eventlet.net/doc/changelog.html and https://github.com/eventlet/
eventlet/commit/614a20462).

We use eventlet.patcher.original function to get python select module to test if poll() is available
on platform.

swift.common.utils.get_log_line(req, res, trans_time, additional_info, fmt,
anonymization_method, anonymization_salt)

Make a line for logging that matches the documented log line format for backend servers.

Parameters

• req the request.

• res the response.

• trans_time the time the request took to complete, a float.

• additional_info a string to log at the end of the line

Returns a properly formatted line for logging.

swift.common.utils.get_logger(conf, name=None, log_to_console=False,
log_route=None, fmt=’%(server)s: %(message)s’)

Get the current system logger using config settings.

Log config and defaults:

log_facility = LOG_LOCAL0
log_level = INFO
log_name = swift
log_max_line_length = 0
log_udp_host = (disabled)
log_udp_port = logging.handlers.SYSLOG_UDP_PORT
log_address = /dev/log
log_statsd_host = (disabled)
log_statsd_port = 8125
log_statsd_default_sample_rate = 1.0
log_statsd_sample_rate_factor = 1.0
log_statsd_metric_prefix = (empty-string)

Parameters

622 Chapter 9. Source Documentation

http://eventlet.net/doc/changelog.html
https://github.com/eventlet/eventlet/commit/614a20462
https://github.com/eventlet/eventlet/commit/614a20462


Swift Documentation, Release 2.27.1.dev38

• conf Configuration dict to read settings from

• name Name of the logger

• log_to_console Add handler which writes to console on stderr

• log_route Route for the logging, not emitted to the log, just used to sepa-
rate logging configurations

• fmt Override log format

swift.common.utils.get_md5_socket()
Get an MD5 socket file descriptor. One can MD5 data with it by writing it to the socket with
os.write, then os.read the 16 bytes of the checksum out later.

NOTE: It is the callers responsibility to ensure that os.close() is called on the returned file descrip-
tor. This is a bare file descriptor, not a Python object. It doesnt close itself.

swift.common.utils.get_partition_for_hash(hex_hash, part_power)
Return partition number for given hex hash and partition power. :param hex_hash: A hash string
:param part_power: partition power :returns: partition number

swift.common.utils.get_policy_index(req_headers, res_headers)
Returns the appropriate index of the storage policy for the request from a proxy server

Parameters

• req_headers dict of the request headers.

• res_headers dict of the response headers.

Returns string index of storage policy, or None

swift.common.utils.get_redirect_data(response)
Extract a redirect location from a responses headers.

Parameters response a response

Returns a tuple of (path, Timestamp) if a Location header is found, otherwise None

Raises ValueError if the Location header is found but a X-Backend-Redirect-
Timestamp is not found, or if there is a problem with the format of etiher header

swift.common.utils.get_swift_info(admin=False, disallowed_sections=None)
Returns information about the swift cluster that has been previously registered with the regis-
ter_swift_info call.

Parameters

• admin boolean value, if True will additionally return an admin section with
information previously registered as admin info.

• disallowed_sections list of section names to be withheld from the
information returned.

Returns dictionary of information about the swift cluster.

swift.common.utils.get_time_units(time_amount)
Get a nomralized length of time in the largest unit of time (hours, minutes, or seconds.)

Parameters time_amount length of time in seconds

9.7. Misc 623



Swift Documentation, Release 2.27.1.dev38

Returns A touple of (length of time, unit of time) where unit of time is one of (h, m,
s)

swift.common.utils.get_valid_utf8_str(str_or_unicode)
Get valid parts of utf-8 str from str, unicode and even invalid utf-8 str

Parameters str_or_unicode a string or an unicode which can be invalid utf-8

swift.common.utils.get_zero_indexed_base_string(base, index)
This allows the caller to make a list of things with indexes, where the first item (zero indexed) is
just the bare base string, and subsequent indexes are appended -1, -2, etc.

e.g.:

'lock', None => 'lock'
'lock', 0 => 'lock'
'lock', 1 => 'lock-1'
'object', 2 => 'object-2'

Parameters

• base a string, the base string; when index is 0 (or None) this is the identity
function.

• index a digit, typically an integer (or None); for values other than 0 or None
this digit is appended to the base string separated by a hyphen.

swift.common.utils.hash_path(account, container=None, object=None,
raw_digest=False)

Get the canonical hash for an account/container/object

Parameters

• account Account

• container Container

• object Object

• raw_digest If True, return the raw version rather than a hex digest

Returns hash string

swift.common.utils.human_readable(value)
Returns the number in a human readable format; for example 1048576 = 1Mi.

swift.common.utils.is_valid_ip(ip)
Return True if the provided ip is a valid IP-address

swift.common.utils.is_valid_ipv4(ip)
Return True if the provided ip is a valid IPv4-address

swift.common.utils.is_valid_ipv6(ip)
Returns True if the provided ip is a valid IPv6-address

swift.common.utils.ismount(path)
Test whether a path is a mount point. This will catch any exceptions and translate them into a
False return value Use ismount_raw to have the exceptions raised instead.

624 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

swift.common.utils.ismount_raw(path)
Test whether a path is a mount point. Whereas ismount will catch any exceptions and just return
False, this raw version will not catch exceptions.

This is code hijacked from C Python 2.6.8, adapted to remove the extra lstat() system call.

swift.common.utils.item_from_env(env, item_name, allow_none=False)
Get a value from the wsgi environment

Parameters

• env wsgi environment dict

• item_name name of item to get

Returns the value from the environment

swift.common.utils.iter_multipart_mime_documents(wsgi_input, boundary,
read_chunk_size=4096)

Given a multi-part-mime-encoded input file object and boundary, yield file-like objects for each
part. Note that this does not split each part into headers and body; the caller is responsible for
doing that if necessary.

Parameters

• wsgi_input The file-like object to read from.

• boundary The mime boundary to separate new file-like objects on.

Returns A generator of file-like objects for each part.

Raises MimeInvalid if the document is malformed

swift.common.utils.last_modified_date_to_timestamp(last_modified_date_str)
Convert a last modified date (like youd get from a container listing, e.g. 2014-02-
28T23:22:36.698390) to a float.

swift.common.utils.link_fd_to_path(fd, target_path, dirs_created=0, retries=2,
fsync=True)

Creates a link to file descriptor at target_path specified. This method does not close the fd for you.
Unlike rename, as linkat() cannot overwrite target_path if it exists, we unlink and try again.

Attempts to fix / hide race conditions like empty object directories being removed by backend
processes during uploads, by retrying.

Parameters

• fd File descriptor to be linked

• target_path Path in filesystem where fd is to be linked

• dirs_created Number of newly created directories that needs to be
fsyncd.

• retries number of retries to make

• fsync fsync on containing directory of target_path and also all the newly
created directories.

swift.common.utils.list_from_csv(comma_separated_str)
Splits the str given and returns a properly stripped list of the comma separated values.

9.7. Misc 625



Swift Documentation, Release 2.27.1.dev38

swift.common.utils.load_libc_function(func_name, log_error=True,
fail_if_missing=False, er-
rcheck=False)

Attempt to find the function in libc, otherwise return a no-op func.

Parameters

• func_name name of the function to pull from libc.

• log_error log an error when a function cant be found

• fail_if_missing raise an exception when a function cant be found. De-
fault behavior is to return a no-op function.

• errcheck boolean, if true install a wrapper on the function to check for a
return values of -1 and call ctype.get_errno and raise an OSError

swift.common.utils.load_recon_cache(cache_file)
Load a recon cache file. Treats missing file as empty.

swift.common.utils.lock_file(filename, timeout=10, append=False, unlink=True)
Context manager that acquires a lock on a file. This will block until the lock can be acquired, or
the timeout time has expired (whichever occurs first).

Parameters

• filename file to be locked

• timeout timeout (in seconds)

• append True if file should be opened in append mode

• unlink True if the file should be unlinked at the end

swift.common.utils.lock_parent_directory(filename, timeout=10)
Context manager that acquires a lock on the parent directory of the given file path. This will block
until the lock can be acquired, or the timeout time has expired (whichever occurs first).

Parameters

• filename file path of the parent directory to be locked

• timeout timeout (in seconds)

swift.common.utils.lock_path(directory, timeout=10, timeout_class=None, limit=1,
name=None)

Context manager that acquires a lock on a directory. This will block until the lock can be acquired,
or the timeout time has expired (whichever occurs first).

For locking exclusively, file or directory has to be opened in Write mode. Python doesnt allow di-
rectories to be opened in Write Mode. So we workaround by locking a hidden file in the directory.

Parameters

• directory directory to be locked

• timeout timeout (in seconds)

• timeout_class The class of the exception to raise if the lock cannot
be granted within the timeout. Will be constructed as timeout_class(timeout,
lockpath). Default: LockTimeout

626 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

• limit The maximum number of locks that may be held concurrently on the
same directory at the time this method is called. Note that this limit is only
applied during the current call to this method and does not prevent subsequent
calls giving a larger limit. Defaults to 1.

• name A string to distinguishes different type of locks in a directory

Raises

• TypeError if limit is not an int.

• ValueError if limit is less than 1.

swift.common.utils.make_db_file_path(db_path, epoch)
Given a path to a db file, return a modified path whose filename part has the given epoch.

A db filename takes the form <hash>[_<epoch>].db; this method replaces the <epoch>
part of the given db_path with the given epoch value, or drops the epoch part if the given
epoch is None.

Parameters

• db_path Path to a db file that does not necessarily exist.

• epoch A string (or None) that will be used as the epoch in the new paths
filename; non-None values will be normalized to the normal string represen-
tation of a Timestamp.

Returns A modified path to a db file.

Raises ValueError if the epoch is not valid for constructing a Timestamp.

swift.common.utils.makedirs_count(path, count=0)
Same as os.makedirs() except that this method returns the number of new directories that had to
be created.

Also, this does not raise an error if target directory already exists. This behaviour is similar to
Python 3.xs os.makedirs() called with exist_ok=True. Also similar to swift.common.utils.mkdirs()

https://hg.python.org/cpython/file/v3.4.2/Lib/os.py#l212

swift.common.utils.maybe_multipart_byteranges_to_document_iters(app_iter,
con-
tent_type)

Takes an iterator that may or may not contain a multipart MIME document as well as content type
and returns an iterator of body iterators.

Parameters

• app_iter iterator that may contain a multipart MIME document

• content_type content type of the app_iter, used to determine whether
it conains a multipart document and, if so, what the boundary is between
documents

swift.common.utils.md5(string=b”, usedforsecurity=True)
Return an md5 hashlib object without usedforsecurity parameter

For python distributions that do not yet support this keyword parameter, we drop the parameter

swift.common.utils.md5_hash_for_file(fname)
Get the MD5 checksum of a file.

9.7. Misc 627

https://hg.python.org/cpython/file/v3.4.2/Lib/os.py#l212


Swift Documentation, Release 2.27.1.dev38

Parameters fname path to file

Returns MD5 checksum, hex encoded

swift.common.utils.mime_to_document_iters(input_file, boundary,
read_chunk_size=4096)

Takes a file-like object containing a multipart MIME document and returns an iterator of (headers,
body-file) tuples.

Parameters

• input_file file-like object with the MIME doc in it

• boundary MIME boundary, sans dashes (e.g. divider, not divider)

• read_chunk_size size of strings read via input_file.read()

swift.common.utils.mkdirs(path)
Ensures the path is a directory or makes it if not. Errors if the path exists but is a file or on
permissions failure.

Parameters path path to create

swift.common.utils.modify_priority(conf, logger)
Modify priority by nice and ionice.

swift.common.utils.multipart_byteranges_to_document_iters(input_file,
bound-
ary,
read_chunk_size=4096)

Takes a file-like object containing a multipart/byteranges MIME document (see RFC 7233, Ap-
pendix A) and returns an iterator of (first-byte, last-byte, length, document-headers, body-file)
5-tuples.

Parameters

• input_file file-like object with the MIME doc in it

• boundary MIME boundary, sans dashes (e.g. divider, not divider)

• read_chunk_size size of strings read via input_file.read()

swift.common.utils.normalize_delete_at_timestamp(timestamp,
high_precision=False)

Format a timestamp (string or numeric) into a standardized xxxxxxxxxx (10) or
xxxxxxxxxx.xxxxx (10.5) format.

Note that timestamps less than 0000000000 are raised to 0000000000 and values greater than
November 20th, 2286 at 17:46:39 UTC will be capped at that date and time, resulting in no return
value exceeding 9999999999.99999 (or 9999999999 if using low-precision).

This cap is because the expirer is already working through a sorted list of strings that were all a
length of 10. Adding another digit would mess up the sort and cause the expirer to break from
processing early. By 2286, this problem will need to be fixed, probably by creating an additional
.expiring_objects account to work from with 11 (or more) digit container names.

Parameters timestamp unix timestamp

Returns normalized timestamp as a string

swift.common.utils.normalize_timestamp(timestamp)
Format a timestamp (string or numeric) into a standardized xxxxxxxxxx.xxxxx (10.5) format.

628 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

Note that timestamps using values greater than or equal to November 20th, 2286 at 17:46 UTC
will use 11 digits to represent the number of seconds.

Parameters timestamp unix timestamp

Returns normalized timestamp as a string

swift.common.utils.override_bytes_from_content_type(listing_dict, log-
ger=None)

Takes a dict from a container listing and overrides the content_type, bytes fields if swift_bytes is
set.

swift.common.utils.pairs(item_list)
Returns an iterator of all pairs of elements from item_list.

Parameters item_list items (no duplicates allowed)

swift.common.utils.parse_content_disposition(header)
Given the value of a header like: Content-Disposition: form-data; name=somefile; file-
name=test.html

Return data like (form-data, {name: somefile, filename: test.html})

Parameters header Value of a header (the part after the : ).

Returns (value name, dict) of the attribute data parsed (see above).

swift.common.utils.parse_content_range(content_range)
Parse a content-range header into (first_byte, last_byte, total_size).

See RFC 7233 section 4.2 for details on the header format, but its basically Content-Range: bytes
${start}-${end}/${total}.

Parameters content_range Content-Range header value to parse, e.g. bytes 100-
1249/49004

Returns 3-tuple (start, end, total)

Raises ValueError if malformed

swift.common.utils.parse_content_type(content_type)
Parse a content-type and its parameters into values. RFC 2616 sec 14.17 and 3.7 are pertinent.

Examples:

'text/plain; charset=UTF-8' -> ('text/plain', [('charset, 'UTF-8')])
'text/plain; charset=UTF-8; level=1' ->

('text/plain', [('charset, 'UTF-8'), ('level', '1')])

Parameters content_type content_type to parse

Returns a tuple containing (content type, list of k, v parameter tuples)

swift.common.utils.parse_db_filename(filename)
Splits a db filename into three parts: the hash, the epoch, and the extension.

>>> parse_db_filename("ab2134.db")
('ab2134', None, '.db')
>>> parse_db_filename("ab2134_1234567890.12345.db")
('ab2134', '1234567890.12345', '.db')

9.7. Misc 629



Swift Documentation, Release 2.27.1.dev38

Parameters filename A db file basename or path to a db file.

Returns A tuple of (hash , epoch, extension). epoch may be None.

Raises ValueError if filename is not a path to a file.

swift.common.utils.parse_mime_headers(doc_file)
Takes a file-like object containing a MIME document and returns a HeaderKeyDict containing the
headers. The body of the message is not consumed: the position in doc_file is left at the beginning
of the body.

This function was inspired by the Python standard librarys http.client.parse_headers.

Parameters doc_file binary file-like object containing a MIME document

Returns a swift.common.swob.HeaderKeyDict containing the headers

swift.common.utils.parse_options(parser=None, once=False, test_args=None)
Parse standard swift server/daemon options with optparse.OptionParser.

Parameters

• parser OptionParser to use. If not sent one will be created.

• once Boolean indicating the once option is available

• test_args Override sys.argv; used in testing

Returns Tuple of (config, options); config is an absolute path to the config file, options
is the parser options as a dictionary.

Raises SystemExit First arg (CONFIG) is required, file must exist

swift.common.utils.parse_override_options(**kwargs)
Figure out which policies, devices, and partitions we should operate on, based on kwargs.

If override_policies is already present in kwargs, then return that value. This happens when using
multiple worker processes; the parent process supplies override_policies=X to each child process.

Otherwise, in run-once mode, look at the policies keyword argument. This is the value of the
policies command-line option. In run-forever mode or if no policies option was provided, an
empty list will be returned.

The procedures for devices and partitions are similar.

Returns a named tuple with fields devices, partitions, and policies.

swift.common.utils.parse_prefixed_conf(conf_file, prefix)
Search the config file for any common-prefix sections and load those sections to a dict mapping
the after-prefix reference to options.

Parameters

• conf_file the file name of the config to parse

• prefix the common prefix of the sections

Returns a dict mapping policy reference -> dict of policy options

Raises ValueError if a policy config section has an invalid name

swift.common.utils.parse_socket_string(socket_string, default_port)
Given a string representing a socket, returns a tuple of (host, port). Valid strings are DNS names,

630 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

IPv4 addresses, or IPv6 addresses, with an optional port. If an IPv6 address is specified it must
be enclosed in [], like [::1] or [::1]:11211. This follows the accepted prescription for IPv6 host
literals.

Examples:

server.org
server.org:1337
127.0.0.1:1337
[::1]:1337
[::1]

swift.common.utils.private(func)
Decorator to declare which methods are privately accessible as HTTP requests with an
X-Backend-Allow-Private-Methods: True override

Parameters func function to make private

swift.common.utils.public(func)
Decorator to declare which methods are publicly accessible as HTTP requests

Parameters func function to make public

swift.common.utils.punch_hole(fd, offset, length)
De-allocate disk space in the middle of a file.

Parameters

• fd file descriptor

• offset index of first byte to de-allocate

• length number of bytes to de-allocate

swift.common.utils.put_recon_cache_entry(cache_entry, key, item)
Update a recon cache entry item.

If item is an empty dict then any existing key in cache_entry will be deleted. Similarly if
item is a dict and any of its values are empty dicts then the corrsponsing key will be deleted from
the nested dict in cache_entry.

We use nested recon cache entries when the object auditor runs in parallel or else in once mode
with a specified subset of devices.

Parameters

• cache_entry a dict of existing cache entries

• key key for item to update

• item value for item to update

swift.common.utils.quorum_size(n)
quorum size as it applies to services that use replication for data integrity (Account/Container
services). Object quorum_size is defined on a storage policy basis.

Number of successful backend requests needed for the proxy to consider the client request suc-
cessful.

swift.common.utils.quote(value, safe=’/’)
Patched version of urllib.quote that encodes utf-8 strings before quoting

9.7. Misc 631

https://tools.ietf.org/html/rfc3986#section-3.2.2
https://tools.ietf.org/html/rfc3986#section-3.2.2


Swift Documentation, Release 2.27.1.dev38

swift.common.utils.random()→ x in the interval [0, 1).

swift.common.utils.ratelimit_sleep(running_time, max_rate, incr_by=1,
rate_buffer=5)

Will eventlet.sleep() for the appropriate time so that the max_rate is never exceeded. If max_rate
is 0, will not ratelimit. The maximum recommended rate should not exceed (1000 * incr_by) a
second as eventlet.sleep() does involve some overhead. Returns running_time that should be used
for subsequent calls.

Parameters

• running_time the running time in milliseconds of the next allowable re-
quest. Best to start at zero.

• max_rate The maximum rate per second allowed for the process.

• incr_by How much to increment the counter. Useful if you want to rate-
limit 1024 bytes/sec and have differing sizes of requests. Must be > 0 to
engage rate-limiting behavior.

• rate_buffer Number of seconds the rate counter can drop and be allowed
to catch up (at a faster than listed rate). A larger number will result in larger
spikes in rate but better average accuracy. Must be > 0 to engage rate-limiting
behavior.

swift.common.utils.readconf(conf_path, section_name=None, log_name=None, de-
faults=None, raw=False)

Read config file(s) and return config items as a dict

Parameters

• conf_path path to config file/directory, or a file-like object (hasattr read-
line)

• section_name config section to read (will return all sections if not de-
fined)

• log_name name to be used with logging (will use section_name if not de-
fined)

• defaults dict of default values to pre-populate the config with

Returns dict of config items

Raises

• ValueError if section_name does not exist

• IOError if reading the file failed

swift.common.utils.register_swift_info(name=’swift’, admin=False,
**kwargs)

Registers information about the swift cluster to be retrieved with calls to get_swift_info.

NOTE: Do not use . in the param: name or any keys in kwargs. . is used in the disal-
lowed_sections to remove unwanted keys from /info.

Parameters

• name string, the section name to place the information under.

632 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

• admin boolean, if True, information will be registered to an admin section
which can optionally be withheld when requesting the information.

• kwargs key value arguments representing the information to be added.

Raises ValueError if name or any of the keys in kwargs has . in it

swift.common.utils.reiterate(iterable)
Consume the first truthy item from an iterator, then re-chain it to the rest of the iterator. This is
useful when you want to make sure the prologue to downstream generators have been executed
before continuing. :param iterable: an iterable object

swift.common.utils.remove_directory(path)
Wrapper for os.rmdir, ENOENT and ENOTEMPTY are ignored

Parameters path first and only argument passed to os.rmdir

swift.common.utils.remove_file(path)
Quiet wrapper for os.unlink, OSErrors are suppressed

Parameters path first and only argument passed to os.unlink

swift.common.utils.renamer(old, new, fsync=True)
Attempt to fix / hide race conditions like empty object directories being removed by backend
processes during uploads, by retrying.

The containing directory of new and of all newly created directories are fsyncd by default. This
_will_ come at a performance penalty. In cases where these additional fsyncs are not necessary, it
is expected that the caller of renamer() turn it off explicitly.

Parameters

• old old path to be renamed

• new new path to be renamed to

• fsync fsync on containing directory of new and also all the newly created
directories.

swift.common.utils.replace_partition_in_path(path, part_power,
is_hash_dir=False)

Takes a path and a partition power and returns the same path, but with the correct partition number.
Most useful when increasing the partition power.

Parameters

• path full path to a file, for example object .data file

• part_power partition power to compute correct partition number

• is_hash_dir if True then path is the path to a hash dir, otherwise path
is the path to a file in a hash dir.

Returns Path with re-computed partition power

swift.common.utils.replication(func)
Decorator to declare which methods are accessible for different type of servers:

• If option replication_server is None then this decorator doesnt matter.

• If option replication_server is True then ONLY decorated with this decorator methods will
be started.

9.7. Misc 633



Swift Documentation, Release 2.27.1.dev38

• If option replication_server is False then decorated with this decorator methods will NOT be
started.

Parameters func function to mark accessible for replication

swift.common.utils.round_robin_iter(its)
Takes a list of iterators, yield an element from each in a round-robin fashion until all of them are
exhausted. :param its: list of iterators

swift.common.utils.rsync_ip(ip)
Transform ip string to an rsync-compatible form

Will return ipv4 addresses unchanged, but will nest ipv6 addresses inside square brackets.

Parameters ip an ip string (ipv4 or ipv6)

Returns a string ip address

swift.common.utils.rsync_module_interpolation(template, device)
Interpolate devices variables inside a rsync module template

Parameters

• template rsync module template as a string

• device a device from a ring

Returns a string with all variables replaced by device attributes

swift.common.utils.search_tree(root, glob_match, ext=”, exts=None,
dir_ext=None)

Look in root, for any files/dirs matching glob, recursively traversing any found directories looking
for files ending with ext

Parameters

• root start of search path

• glob_match glob to match in root, matching dirs are traversed with os.walk

• ext only files that end in ext will be returned

• exts a list of file extensions; only files that end in one of these extensions
will be returned; if set this list overrides any extension specified using the ext
param.

• dir_ext if present directories that end with dir_ext will not be traversed
and instead will be returned as a matched path

Returns list of full paths to matching files, sorted

swift.common.utils.set_swift_dir(swift_dir)
Sets the directory from which swift config files will be read. If the given directory differs from
that already set then the swift.conf file in the new directory will be validated and storage policies
will be reloaded from the new swift.conf file.

Parameters swift_dir non-default directory to read swift.conf from

class swift.common.utils.sockaddr_alg
Bases: _ctypes.Structure

634 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

swift.common.utils.split_path(path, minsegs=1, maxsegs=None,
rest_with_last=False)

Validate and split the given HTTP request path.

Examples:

['a'] = split_path('/a')
['a', None] = split_path('/a', 1, 2)
['a', 'c'] = split_path('/a/c', 1, 2)
['a', 'c', 'o/r'] = split_path('/a/c/o/r', 1, 3, True)

Parameters

• path HTTP Request path to be split

• minsegs Minimum number of segments to be extracted

• maxsegs Maximum number of segments to be extracted

• rest_with_last If True, trailing data will be returned as part of last
segment. If False, and there is trailing data, raises ValueError.

Returns list of segments with a length of maxsegs (non-existent segments will return
as None)

Raises ValueError if given an invalid path

swift.common.utils.storage_directory(datadir, partition, name_hash)
Get the storage directory

Parameters

• datadir Base data directory

• partition Partition

• name_hash Account, container or object name hash

Returns Storage directory

swift.common.utils.streq_const_time(s1, s2)
Constant-time string comparison.

Params s1 the first string

Params s2 the second string

Returns True if the strings are equal.

This function takes two strings and compares them. It is intended to be used when doing a com-
parison for authentication purposes to help guard against timing attacks.

swift.common.utils.strict_b64decode(value, allow_line_breaks=False)
Validate and decode Base64-encoded data.

The stdlib base64 module silently discards bad characters, but we often want to treat them as an
error.

Parameters

• value some base64-encoded data

• allow_line_breaks if True, ignore carriage returns and newlines

9.7. Misc 635



Swift Documentation, Release 2.27.1.dev38

Returns the decoded data

Raises ValueError if value is not a string, contains invalid characters, or has
insufficient padding

swift.common.utils.systemd_notify(logger=None)
Notify the service manager that started this process, if it is systemd-compatible, that this process
correctly started. To do so, it communicates through a Unix socket stored in environment variable
NOTIFY_SOCKET. More information can be found in systemd documentation: https://www.
freedesktop.org/software/systemd/man/sd_notify.html

Parameters logger a logger object

swift.common.utils.timing_stats(**dec_kwargs)
Returns a decorator that logs timing events or errors for public methods in swifts wsgi server
controllers, based on response code.

swift.common.utils.unlink_older_than(path, mtime)
Remove any file in a given path that was last modified before mtime.

Parameters

• path path to remove file from

• mtime timestamp of oldest file to keep

swift.common.utils.unlink_paths_older_than(filepaths, mtime)
Remove any files from the given list that were last modified before mtime.

Parameters

• filepaths a list of strings, the full paths of files to check

• mtime timestamp of oldest file to keep

swift.common.utils.validate_device_partition(device, partition)
Validate that a device and a partition are valid and wont lead to directory traversal when used.

Parameters

• device device to validate

• partition partition to validate

Raises ValueError if given an invalid device or partition

swift.common.utils.validate_sync_to(value, allowed_sync_hosts, realms_conf)
Validates an X-Container-Sync-To header value, returning the validated endpoint, realm, and
realm_key, or an error string.

Parameters

• value The X-Container-Sync-To header value to validate.

• allowed_sync_hosts A list of allowed hosts in endpoints, if
realms_conf does not apply.

• realms_conf An instance of swift.common.container_sync_realms.ContainerSyncRealms
to validate against.

636 Chapter 9. Source Documentation

https://www.freedesktop.org/software/systemd/man/sd_notify.html
https://www.freedesktop.org/software/systemd/man/sd_notify.html


Swift Documentation, Release 2.27.1.dev38

Returns A tuple of (error_string, validated_endpoint, realm, realm_key). The er-
ror_string will None if the rest of the values have been validated. The vali-
dated_endpoint will be the validated endpoint to sync to. The realm and realm_key
will be set if validation was done through realms_conf.

swift.common.utils.whataremyips(bind_ip=None)
Get our IP addresses (us being the set of services configured by one *.conf file). If our REST
listens on a specific address, return it. Otherwise, if listen on 0.0.0.0 or :: return all addresses,
including the loopback.

Parameters bind_ip (str) Optional bind_ip from a config file; may be IP address
or hostname.

Returns list of Strings of ip addresses

swift.common.utils.write_file(path, contents)
Write contents to file at path

Parameters

• path any path, subdirs will be created as needed

• contents data to write to file, will be converted to string

swift.common.utils.write_pickle(obj, dest, tmp=None, pickle_protocol=0)
Ensure that a pickle file gets written to disk. The file is first written to a tmp location, ensure it is
synced to disk, then perform a move to its final location

Parameters

• obj python object to be pickled

• dest path of final destination file

• tmp path to tmp to use, defaults to None

• pickle_protocol protocol to pickle the obj with, defaults to 0

9.7.13 WSGI

WSGI tools for use with swift.

class swift.common.wsgi.ConfigDirLoader(conf_dir)
Bases: swift.common.wsgi.NamedConfigLoader

Read configuration from multiple files under the given path.

exception swift.common.wsgi.ConfigFileError
Bases: Exception

exception swift.common.wsgi.ConfigFilePortError
Bases: swift.common.wsgi.ConfigFileError

class swift.common.wsgi.ConfigString(config_string)
Bases: swift.common.wsgi.NamedConfigLoader

Wrap a raw config string up for paste.deploy.

If you give one of these to our loadcontext (e.g. give it to our appconfig) well intercept it and get
it routed to the right loader.

9.7. Misc 637



Swift Documentation, Release 2.27.1.dev38

class swift.common.wsgi.NamedConfigLoader(filename)
Bases: paste.deploy.loadwsgi.ConfigLoader

Patch paste.deploys ConfigLoader so each context object will know what config section it came
from.

class swift.common.wsgi.PipelineWrapper(context)
Bases: object

This class provides a number of utility methods for modifying the composition of a wsgi pipeline.

create_filter(entry_point_name)
Creates a context for a filter that can subsequently be added to a pipeline context.

Parameters entry_point_name entry point of the middleware (Swift only)

Returns a filter context

index(entry_point_name)
Returns the first index of the given entry point name in the pipeline.

Raises ValueError if the given module is not in the pipeline.

insert_filter(ctx, index=0)
Inserts a filter module into the pipeline context.

Parameters

• ctx the context to be inserted

• index (optional) index at which filter should be inserted in the list of
pipeline filters. Default is 0, which means the start of the pipeline.

startswith(entry_point_name)
Tests if the pipeline starts with the given entry point name.

Parameters entry_point_name entry point of middleware or app (Swift
only)

Returns True if entry_point_name is first in pipeline, False otherwise

class swift.common.wsgi.RestrictedGreenPool(size=1024)
Bases: eventlet.greenpool.GreenPool

Works the same as GreenPool, but if the size is specified as one, then the spawn_n() method will
invoke waitall() before returning to prevent the caller from doing any other work (like calling
accept()).

spawn_n(*args, **kwargs)
Create a greenthread to run the function, the same as spawn(). The difference is that
spawn_n() returns None; the results of function are not retrievable.

class swift.common.wsgi.ServersPerPortStrategy(conf, logger,
servers_per_port)

Bases: swift.common.wsgi.StrategyBase

WSGI server management strategy object for an object-server with one listen port per unique local
port in the storage policy rings. The servers_per_port integer config setting determines how many
workers are run per port.

Tracking data is a map like port -> [(pid, socket), ...].

638 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

Used in run_wsgi().

Parameters

• conf (dict) Server configuration dictionary.

• logger The servers LogAdaptor object.

• servers_per_port (int) The number of workers to run per port.

iter_sockets()
Yields all known listen sockets.

log_sock_exit(sock, data)
Log a servers exit.

loop_timeout()
Return timeout before checking for reloaded rings.

Returns The time to wait for a child to exit before checking for reloaded rings
(new ports).

new_worker_socks()
Yield a sequence of (socket, (port, server_idx)) tuples for each server which should be
forked-off and started.

Any sockets for orphaned ports no longer in any ring will be closed (causing their associated
workers to gracefully exit) after all new sockets have been yielded.

The server_idx item for each socket will passed into the log_sock_exit() and
register_worker_start() methods.

no_fork_sock()
This strategy does not support running in the foreground.

register_worker_exit(pid)
Called when a worker has exited.

Parameters pid (int) The PID of the worker that exited.

register_worker_start(sock, data, pid)
Called when a new worker is started.

Parameters

• sock (socket) The listen socket for the worker just started.

• server_idx The sockets server_idx as yielded by
new_worker_socks().

• pid (int) The new worker process PID

class swift.common.wsgi.StrategyBase(conf, logger)
Bases: object

Some operations common to all strategy classes.

post_fork_hook()
Called in each forked-off child process, prior to starting the actual wsgi server, to perform
any initialization such as drop privileges.

set_close_on_exec_on_listen_sockets()
Set the close-on-exec flag on any listen sockets.

9.7. Misc 639



Swift Documentation, Release 2.27.1.dev38

shutdown_sockets()
Shutdown any listen sockets.

signal_ready()
Signal that the server is up and accepting connections.

class swift.common.wsgi.WSGIContext(wsgi_app)
Bases: object

This class provides a means to provide context (scope) for a middleware filter to have access to
the wsgi start_response results like the request status and headers.

class swift.common.wsgi.WorkersStrategy(conf, logger)
Bases: swift.common.wsgi.StrategyBase

WSGI server management strategy object for a single bind port and listen socket shared by a
configured number of forked-off workers.

Tracking data is a map of pid -> socket.

Used in run_wsgi().

Parameters

• conf (dict) Server configuration dictionary.

• logger The servers LogAdaptor object.

iter_sockets()
Yields all known listen sockets.

log_sock_exit(sock, _unused)
Log a servers exit.

Parameters

• sock (socket) The listen socket for the worker just started.

• _unused The sockets opaque_data yielded by new_worker_socks().

loop_timeout()
We want to keep from busy-waiting, but we also need a non-None value so the main loop
gets a chance to tell whether it should keep running or not (e.g. SIGHUP received).

So we return 0.5.

new_worker_socks()
Yield a sequence of (socket, opqaue_data) tuples for each server which should be forked-off
and started.

The opaque_data item for each socket will passed into the log_sock_exit() and
register_worker_start() methods where it will be ignored.

no_fork_sock()
Return a server listen socket if the server should run in the foreground (no fork).

register_worker_exit(pid)
Called when a worker has exited.

NOTE: a re-execed server can reap the dead worker PIDs from the old server process that
is being replaced as part of a service reload (SIGUSR1). So we need to be robust to getting
some unknown PID here.

640 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

Parameters pid (int) The PID of the worker that exited.

register_worker_start(sock, _unused, pid)
Called when a new worker is started.

Parameters

• sock (socket) The listen socket for the worker just started.

• _unused The sockets opaque_data yielded by new_worker_socks().

• pid (int) The new worker process PID

swift.common.wsgi.get_socket(conf)
Bind socket to bind ip:port in conf

Parameters conf Configuration dict to read settings from

Returns a socket object as returned from socket.listen or ssl.wrap_socket if conf spec-
ifies cert_file

swift.common.wsgi.init_request_processor(conf_path, app_section, *args,
**kwargs)

Loads common settings from conf Sets the logger Loads the request processor

Parameters

• conf_path Path to paste.deploy style configuration file/directory

• app_section App name from conf file to load config from

Returns the loaded application entry point

Raises ConfigFileError Exception is raised for config file error

swift.common.wsgi.load_app_config(conf_file)
Read the app config section from a config file.

Parameters conf_file path to a config file

Returns a dict

swift.common.wsgi.loadapp(conf_file, global_conf=None, al-
low_modify_pipeline=True)

Loads a context from a config file, and if the context is a pipeline then presents the app with the
opportunity to modify the pipeline.

swift.common.wsgi.make_env(env, method=None, path=None, agent=’Swift’,
query_string=None, swift_source=None)

Returns a new fresh WSGI environment.

Parameters

• env The WSGI environment to base the new environment on.

• method The new REQUEST_METHOD or None to use the original.

• path The new path_info or none to use the original. path should NOT be
quoted. When building a url, a Webob Request (in accordance with wsgi spec)
will quote env[PATH_INFO]. url += quote(environ[PATH_INFO])

• query_string The new query_string or none to use the original. When
building a url, a Webob Request will append the query string directly to the
url. url += ? + env[QUERY_STRING]

9.7. Misc 641



Swift Documentation, Release 2.27.1.dev38

• agent The HTTP user agent to use; default Swift. You can put %(orig)s
in the agent to have it replaced with the original envs HTTP_USER_AGENT,
such as %(orig)s StaticWeb. You also set agent to None to use the original
envs HTTP_USER_AGENT or to have no HTTP_USER_AGENT.

• swift_source Used to mark the request as originating out of middleware.
Will be logged in proxy logs.

Returns Fresh WSGI environment.

swift.common.wsgi.make_pre_authed_env(env, method=None, path=None,
agent=’Swift’, query_string=None,
swift_source=None)

Same as make_env() but with preauthorization.

swift.common.wsgi.make_pre_authed_request(env, method=None,
path=None, body=None,
headers=None, agent=’Swift’,
swift_source=None)

Same as make_subrequest() but with preauthorization.

swift.common.wsgi.make_subrequest(env, method=None, path=None,
body=None, headers=None, agent=’Swift’,
swift_source=None, make_env=<function
make_env>)

Makes a new swob.Request based on the current env but with the parameters specified.

Parameters

• env The WSGI environment to base the new request on.

• method HTTP method of new request; default is from the original env.

• path HTTP path of new request; default is from the original env.
path should be compatible with what you would send to Request.blank.
path should be quoted and it can include a query string. for example:
/a%20space?unicode_str%E8%AA%9E=y%20es

• body HTTP body of new request; empty by default.

• headers Extra HTTP headers of new request; None by default.

• agent The HTTP user agent to use; default Swift. You can put %(orig)s
in the agent to have it replaced with the original envs HTTP_USER_AGENT,
such as %(orig)s StaticWeb. You also set agent to None to use the original
envs HTTP_USER_AGENT or to have no HTTP_USER_AGENT.

• swift_source Used to mark the request as originating out of middleware.
Will be logged in proxy logs.

• make_env make_subrequest calls this make_env to help build the
swob.Request.

Returns Fresh swob.Request object.

swift.common.wsgi.pipeline_property(name, **kwargs)
Create a property accessor for the given name. The property will dig through the bound instance
on which it was accessed for an attribute app and check that object for an attribute of the given
name. If the app object does not have such an attribute, it will look for an attribute app on THAT

642 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

object and continue its search from there. If the named attribute cannot be found accessing the
property will raise AttributeError.

If a default kwarg is provided you get that instead of the AttributeError. When found the attribute
will be cached on instance with the property accessor using the same name as the attribute prefixed
with a leading underscore.

swift.common.wsgi.run_wsgi(conf_path, app_section, *args, **kwargs)
Runs the server according to some strategy. The default strategy runs a specified number of
workers in pre-fork model. The object-server (only) may use a servers-per-port strategy if its
config has a servers_per_port setting with a value greater than zero.

Parameters

• conf_path Path to paste.deploy style configuration file/directory

• app_section App name from conf file to load config from

Returns 0 if successful, nonzero otherwise

swift.common.wsgi.wrap_conf_type(f)
Wrap a function whos first argument is a paste.deploy style config uri, such that you can pass
it an un-adorned raw filesystem path (or config string) and the config directive (either config:,
config_dir:, or config_str:) will be added automatically based on the type of entity (either a file
or directory, or if no such entity on the file system - just a string) before passing it through to the
paste.deploy function.

9.7.14 Storage Policy

class swift.common.storage_policy.BaseStoragePolicy(idx, name=”,
is_default=False,
is_deprecated=False,
object_ring=None,
aliases=”, disk-
file_module=’egg:swift#replication.fs’)

Bases: object

Represents a storage policy. Not meant to be instantiated directly; implement a derived subclasses
(e.g. StoragePolicy, ECStoragePolicy, etc) or use reload_storage_policies() to load
POLICIES from swift.conf.

The object_ring property is lazy loaded once the services swift_dir is known via
get_object_ring(), but it may be over-ridden via object_ring kwarg at create time for test-
ing or actively loaded with load_ring().

add_name(name)
Adds an alias name to the storage policy. Shouldnt be called directly from the storage policy
but instead through the storage policy collection class, so lookups by name resolve correctly.

Parameters name a new alias for the storage policy

change_primary_name(name)
Changes the primary/default name of the policy to a specified name.

Parameters name a string name to replace the current primary name.

get_diskfile_manager(*args, **kwargs)
Return an instance of the diskfile manager class configured for this storage policy.

9.7. Misc 643



Swift Documentation, Release 2.27.1.dev38

Parameters

• args positional args to pass to the diskfile manager constructor.

• kwargs keyword args to pass to the diskfile manager constructor.

Returns A disk file manager instance.

get_info(config=False)
Return the info dict and conf file options for this policy.

Parameters config boolean, if True all config options are returned

load_ring(swift_dir)
Load the ring for this policy immediately.

Parameters swift_dir path to rings

property quorum
Number of successful backend requests needed for the proxy to consider the client request
successful.

classmethod register(policy_type)
Decorator for Storage Policy implementations to register their StoragePolicy class. This will
also set the policy_type attribute on the registered implementation.

remove_name(name)
Removes an alias name from the storage policy. Shouldnt be called directly from the storage
policy but instead through the storage policy collection class, so lookups by name resolve
correctly. If the name removed is the primary name then the next available alias will be
adopted as the new primary name.

Parameters name a name assigned to the storage policy

class swift.common.storage_policy.ECStoragePolicy(idx, name=”,
aliases=”,
is_default=False,
is_deprecated=False,
object_ring=None,
disk-
file_module=’egg:swift#erasure_coding.fs’,
ec_segment_size=1048576,
ec_type=None,
ec_ndata=None,
ec_nparity=None,
ec_duplication_factor=1)

Bases: swift.common.storage_policy.BaseStoragePolicy

Represents a storage policy of type erasure_coding.

Not meant to be instantiated directly; use reload_storage_policies() to load POLICIES
from swift.conf.

property ec_scheme_description
This short hand form of the important parts of the ec schema is stored in Object System
Metadata on the EC Fragment Archives for debugging.

property fragment_size
Maximum length of a fragment, including header.

644 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

NB: a fragment archive is a sequence of 0 or more max-length fragments followed by one
possibly-shorter fragment.

get_backend_index(node_index)
Backend index for PyECLib

Parameters node_index integer of node index

Returns integer of actual fragment index. if param is not an integer, return None
instead

get_info(config=False)
Return the info dict and conf file options for this policy.

Parameters config boolean, if True all config options are returned

load_ring(swift_dir)
Load the ring for this policy immediately.

Parameters swift_dir path to rings

property quorum
Number of successful backend requests needed for the proxy to consider the client PUT
request successful.

The quorum size for EC policies defines the minimum number of data + parity elements
required to be able to guarantee the desired fault tolerance, which is the number of data
elements supplemented by the minimum number of parity elements required by the chosen
erasure coding scheme.

For example, for Reed-Solomon, the minimum number parity elements required is 1, and
thus the quorum_size requirement is ec_ndata + 1.

Given the number of parity elements required is not the same for every erasure coding
scheme, consult PyECLib for min_parity_fragments_needed()

exception swift.common.storage_policy.PolicyError(msg, index=None)
Bases: ValueError

class swift.common.storage_policy.StoragePolicy(idx, name=”,
is_default=False,
is_deprecated=False,
object_ring=None,
aliases=”, disk-
file_module=’egg:swift#replication.fs’)

Bases: swift.common.storage_policy.BaseStoragePolicy

Represents a storage policy of type replication. Default storage policy class unless otherwise
overridden from swift.conf.

Not meant to be instantiated directly; use reload_storage_policies() to load POLICIES
from swift.conf.

property quorum

Quorum concept in the replication case: floor(number of replica / 2) + 1

class swift.common.storage_policy.StoragePolicyCollection(pols)
Bases: object

9.7. Misc 645



Swift Documentation, Release 2.27.1.dev38

This class represents the collection of valid storage policies for the cluster and is instantiated
as StoragePolicy objects are added to the collection when swift.conf is parsed by
parse_storage_policies().

When a StoragePolicyCollection is created, the following validation is enforced:

• If a policy with index 0 is not declared and no other policies defined, Swift will create one

• The policy index must be a non-negative integer

• If no policy is declared as the default and no other policies are defined, the policy with index
0 is set as the default

• Policy indexes must be unique

• Policy names are required

• Policy names are case insensitive

• Policy names must contain only letters, digits or a dash

• Policy names must be unique

• The policy name Policy-0 can only be used for the policy with index 0

• If any policies are defined, exactly one policy must be declared default

• Deprecated policies can not be declared the default

add_policy_alias(policy_index, *aliases)
Adds a new name or names to a policy

Parameters

• policy_index index of a policy in this policy collection.

• aliases arbitrary number of string policy names to add.

change_policy_primary_name(policy_index, new_name)
Changes the primary or default name of a policy. The new primary name can be an alias that
already belongs to the policy or a completely new name.

Parameters

• policy_index index of a policy in this policy collection.

• new_name a string name to set as the new default name.

get_by_index(index)
Find a storage policy by its index.

An index of None will be treated as 0.

Parameters index numeric index of the storage policy

Returns storage policy, or None if no such policy

get_by_name(name)
Find a storage policy by its name.

Parameters name name of the policy

Returns storage policy, or None

646 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

get_object_ring(policy_idx, swift_dir)
Get the ring object to use to handle a request based on its policy.

An index of None will be treated as 0.

Parameters

• policy_idx policy index as defined in swift.conf

• swift_dir swift_dir used by the caller

Returns appropriate ring object

get_policy_info()
Build info about policies for the /info endpoint

Returns list of dicts containing relevant policy information

remove_policy_alias(*aliases)
Removes a name or names from a policy. If the name removed is the primary name then the
next available alias will be adopted as the new primary name.

Parameters aliases arbitrary number of existing policy names to remove.

class swift.common.storage_policy.StoragePolicySingleton
Bases: object

An instance of this class is the primary interface to storage policies exposed as a module level
global named POLICIES. This global reference wraps _POLICIES which is normally instanti-
ated by parsing swift.conf and will result in an instance of StoragePolicyCollection.

You should never patch this instance directly, instead patch the module level _POLICIES
instance so that swift code which imported POLICIES directly will reference the patched
StoragePolicyCollection.

swift.common.storage_policy.get_policy_string(base, policy_or_index)
Helper function to construct a string from a base and the policy. Used to encode the policy index
into either a file name or a directory name by various modules.

Parameters

• base the base string

• policy_or_index StoragePolicy instance, or an index (string or int), if
None the legacy storage Policy-0 is assumed.

Returns base name with policy index added

Raises PolicyError if no policy exists with the given policy_index

swift.common.storage_policy.parse_storage_policies(conf)
Parse storage policies in swift.conf - note that validation is done when the
StoragePolicyCollection is instantiated.

Parameters conf ConfigParser parser object for swift.conf

swift.common.storage_policy.reload_storage_policies()
Reload POLICIES from swift.conf.

swift.common.storage_policy.split_policy_string(policy_string)
Helper function to convert a string representing a base and a policy. Used to decode the policy
from either a file name or a directory name by various modules.

9.7. Misc 647



Swift Documentation, Release 2.27.1.dev38

Parameters policy_string base name with policy index added

Raises PolicyError if given index does not map to a valid policy

Returns a tuple, in the form (base, policy) where base is the base string and policy is
the StoragePolicy instance for the index encoded in the policy_string.

9.8 Middleware

9.8.1 Account Quotas

account_quotas is a middleware which blocks write requests (PUT, POST) if a given account quota
(in bytes) is exceeded while DELETE requests are still allowed.

account_quotas uses the x-account-meta-quota-bytes metadata entry to store the quota.
Write requests to this metadata entry are only permitted for resellers. There is no quota limit if
x-account-meta-quota-bytes is not set.

The account_quotas middleware should be added to the pipeline in your /etc/swift/
proxy-server.conf file just after any auth middleware. For example:

[pipeline:main]
pipeline = catch_errors cache tempauth account_quotas proxy-server

[filter:account_quotas]
use = egg:swift#account_quotas

To set the quota on an account:

swift -A http://127.0.0.1:8080/auth/v1.0 -U account:reseller -K secret
↪→post -m quota-bytes:10000

Remove the quota:

swift -A http://127.0.0.1:8080/auth/v1.0 -U account:reseller -K secret
↪→post -m quota-bytes:

The same limitations apply for the account quotas as for the container quotas.

For example, when uploading an object without a content-length header the proxy server doesnt know
the final size of the currently uploaded object and the upload will be allowed if the current account size
is within the quota. Due to the eventual consistency further uploads might be possible until the account
size has been updated.

class swift.common.middleware.account_quotas.AccountQuotaMiddleware(app,
*args,
**kwargs)

Bases: object

Account quota middleware

See above for a full description.

swift.common.middleware.account_quotas.filter_factory(global_conf,
**local_conf)

Returns a WSGI filter app for use with paste.deploy.

648 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

9.8.2 AWS S3 Api

The s3api middleware will emulate the S3 REST api on top of swift.

To enable this middleware to your configuration, add the s3api middleware in front of the auth middle-
ware. See proxy-server.conf-sample for more detail and configurable options.

To set up your client, ensure you are using the tempauth or keystone auth system for swift project. When
your swift on a SAIO environment, make sure you have setting the tempauth middleware configuration
in proxy-server.conf, and the access key will be the concatenation of the account and user strings
that should look like test:tester, and the secret access key is the account password. The host should also
point to the swift storage hostname.

The tempauth option example:

[filter:tempauth]
use = egg:swift#tempauth
user_admin_admin = admin .admin .reseller_admin
user_test_tester = testing

An example client using tempauth with the python boto library is as follows:

from boto.s3.connection import S3Connection
connection = S3Connection(

aws_access_key_id='test:tester',
aws_secret_access_key='testing',
port=8080,
host='127.0.0.1',
is_secure=False,
calling_format=boto.s3.connection.OrdinaryCallingFormat())

And if you using keystone auth, you need the ec2 credentials, which can be downloaded from the API
Endpoints tab of the dashboard or by openstack ec2 command.

Here is showing to create an EC2 credential:

# openstack ec2 credentials create
+------------+---------------------------------------------------+
| Field | Value |
+------------+---------------------------------------------------+
| access | c2e30f2cd5204b69a39b3f1130ca8f61 |
| links | {u'self': u'http://controller:5000/v3/......'} |
| project_id | 407731a6c2d0425c86d1e7f12a900488 |
| secret | baab242d192a4cd6b68696863e07ed59 |
| trust_id | None |
| user_id | 00f0ee06afe74f81b410f3fe03d34fbc |
+------------+---------------------------------------------------+

An example client using keystone auth with the python boto library will be:

from boto.s3.connection import S3Connection
connection = S3Connection(

aws_access_key_id='c2e30f2cd5204b69a39b3f1130ca8f61',
aws_secret_access_key='baab242d192a4cd6b68696863e07ed59',
port=8080,
host='127.0.0.1',

(continues on next page)

9.8. Middleware 649



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

is_secure=False,
calling_format=boto.s3.connection.OrdinaryCallingFormat())

Deployment

Proxy-Server Setting

Set s3api before your auth in your pipeline in proxy-server.conf file. To enable all compatibility
currently supported, you should make sure that bulk, slo, and your auth middleware are also included in
your proxy pipeline setting.

Using tempauth, the minimum example config is:

[pipeline:main]
pipeline = proxy-logging cache s3api tempauth bulk slo proxy-logging proxy-
↪→server

When using keystone, the config will be:

[pipeline:main]
pipeline = proxy-logging cache authtoken s3api s3token keystoneauth bulk
↪→slo proxy-logging proxy-server

Finally, add the s3api middleware section:

[filter:s3api]
use = egg:swift#s3api

Note: keystonemiddleware.authtoken can be located before/after s3api but we recommend
to put it before s3api because when authtoken is after s3api, both authtoken and s3token will issue
the acceptable token to keystone (i.e. authenticate twice). And in the keystonemiddleware.
authtoken middleware , you should set delay_auth_decision option to True.

650 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

Constraints

Currently, the s3api is being ported from https://github.com/openstack/swift3 so any existing issues in
swift3 are still remaining. Please make sure descriptions in the example proxy-server.conf and
what happens with the config, before enabling the options.

Supported API

The compatibility will continue to be improved upstream, you can keep and eye on compatibility via a
check tool build by SwiftStack. See https://github.com/swiftstack/s3compat in detail.

class swift.common.middleware.s3api.s3api.S3ApiMiddleware(app,
wsgi_conf,
*args,
**kwargs)

Bases: object

S3Api: S3 compatibility middleware

check_filter_order(pipeline, required_filters)
Check that required filters are present in order in the pipeline.

check_pipeline(wsgi_conf)
Check that proxy-server.conf has an appropriate pipeline for s3api.

swift.common.middleware.s3api.s3api.filter_factory(global_conf, **lo-
cal_conf)

Standard filter factory to use the middleware with paste.deploy

S3 Token Middleware

s3token middleware is for authentication with s3api + keystone. This middleware:

• Gets a request from the s3api middleware with an S3 Authorization access key.

• Validates s3 token with Keystone.

• Transforms the account name to AUTH_%(tenant_name).

• Optionally can retrieve and cache secret from keystone to validate signature locally

Note: If upgrading from swift3, the auth_version config option has been removed, and the
auth_uri option now includes the Keystone API version. If you previously had a configuration like

[filter:s3token]
use = egg:swift3#s3token
auth_uri = https://keystonehost:35357
auth_version = 3

you should now use

[filter:s3token]
use = egg:swift#s3token
auth_uri = https://keystonehost:35357/v3

9.8. Middleware 651

https://github.com/openstack/swift3
https://github.com/swiftstack/s3compat


Swift Documentation, Release 2.27.1.dev38

class swift.common.middleware.s3api.s3token.S3Token(app, conf)
Bases: object

Middleware that handles S3 authentication.

swift.common.middleware.s3api.s3token.filter_factory(global_conf,
**local_conf)

Returns a WSGI filter app for use with paste.deploy.

class swift.common.middleware.s3api.s3request.HashingInput(reader,
con-
tent_length,
hasher,
ex-
pected_hex_hash)

Bases: object

wsgi.input wrapper to verify the hash of the input as its read.

class swift.common.middleware.s3api.s3request.S3AclRequest(env,
app=None,
conf=None)

Bases: swift.common.middleware.s3api.s3request.S3Request

S3Acl request object.

authenticate(app)
authenticate method will run pre-authenticate request and retrieve account information. Note
that it currently supports only keystone and tempauth. (no support for the third party authen-
tication middleware)

get_acl_response(app, method=None, container=None, obj=None, headers=None,
body=None, query=None)

Wrapper method of _get_response to add s3 acl information from response sysmeta headers.

get_response(app, method=None, container=None, obj=None, headers=None,
body=None, query=None)

Wrap up get_response call to hook with acl handling method.

to_swift_req(method, container, obj, query=None, body=None, headers=None)
Create a Swift request based on this requests environment.

class swift.common.middleware.s3api.s3request.S3Request(env,
app=None,
conf=None)

Bases: swift.common.swob.Request

S3 request object.

property body
swob.Request.body is not secure against malicious input. It consumes too much memory
without any check when the request body is excessively large. Use xml() instead.

property bucket_acl
Get and set the container acl property

check_copy_source(app)
check_copy_source checks the copy source existence and if copying an object to itself, for
illegal request parameters

Returns the source HEAD response

652 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

get_container_info(app)
get_container_info will return a result dict of get_container_info from the backend Swift.

Returns a dictionary of container info from
swift.controllers.base.get_container_info

Raises NoSuchBucket when the container doesnt exist

Raises InternalError when the request failed without 404

get_response(app, method=None, container=None, obj=None, headers=None,
body=None, query=None)

get_response is an entry point to be extended for child classes. If additional
tasks needed at that time of getting swift response, we can override this method.
swift.common.middleware.s3api.s3request.S3Request need to just call _get_response to get
pure swift response.

property object_acl
Get and set the object acl property

property timestamp
S3Timestamp from Date header. If X-Amz-Date header specified, it will be prior to Date
header.

:return : S3Timestamp instance

to_swift_req(method, container, obj, query=None, body=None, headers=None)
Create a Swift request based on this requests environment.

xml(max_length)
Similar to swob.Request.body, but it checks the content length before creating a body string.

class swift.common.middleware.s3api.s3request.SigV4Mixin
Bases: object

A request class mixin to provide S3 signature v4 functionality

property timestamp
Return timestamp string according to the auth type The difference from v2 is v4 have to see
X-Amz-Date even though its query auth type.

class swift.common.middleware.s3api.s3request.SigV4Request(env,
app=None,
conf=None)

Bases: swift.common.middleware.s3api.s3request.SigV4Mixin, swift.
common.middleware.s3api.s3request.S3Request

class swift.common.middleware.s3api.s3request.SigV4S3AclRequest(env,
app=None,
conf=None)

Bases: swift.common.middleware.s3api.s3request.SigV4Mixin, swift.
common.middleware.s3api.s3request.S3AclRequest

swift.common.middleware.s3api.s3request.get_request_class(env,
s3_acl)

Helper function to find a request class to use from Map

exception swift.common.middleware.s3api.s3response.AccessDenied(msg=None,
*args,
**kwargs)

9.8. Middleware 653



Swift Documentation, Release 2.27.1.dev38

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.AccountProblem(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.AmbiguousGrantByEmailAddress(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.AuthorizationHeaderMalformed(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.AuthorizationQueryParametersError(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.BadDigest(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.BucketAlreadyExists(bucket,
msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.BucketAlreadyOwnedByYou(bucket,
msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.BucketNotEmpty(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.CredentialsNotSupported(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.CrossLocationLoggingProhibited(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.EntityTooLarge(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

654 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

exception swift.common.middleware.s3api.s3response.EntityTooSmall(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.ErrorResponse(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.S3ResponseBase,
swift.common.swob.HTTPException

S3 error object.

Reference information about S3 errors is available at: http://docs.aws.amazon.com/AmazonS3/
latest/API/ErrorResponses.html

exception swift.common.middleware.s3api.s3response.ExpiredToken(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

class swift.common.middleware.s3api.s3response.HeaderKeyDict(base_headers=None,
**kwargs)

Bases: swift.common.header_key_dict.HeaderKeyDict

Similar to the Swifts normal HeaderKeyDict class, but its key name is normalized as S3 clients
expect.

exception swift.common.middleware.s3api.s3response.IllegalVersioningConfigurationException(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.IncompleteBody(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.IncorrectNumberOfFilesInPostRequest(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.InlineDataTooLarge(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.InternalError(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.InvalidAccessKeyId(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

9.8. Middleware 655

http://docs.aws.amazon.com/AmazonS3/latest/API/ErrorResponses.html
http://docs.aws.amazon.com/AmazonS3/latest/API/ErrorResponses.html


Swift Documentation, Release 2.27.1.dev38

exception swift.common.middleware.s3api.s3response.InvalidArgument(name,
value,
msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.InvalidBucketName(bucket,
msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.InvalidBucketState(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.InvalidDigest(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.InvalidLocationConstraint(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.InvalidObjectState(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.InvalidPart(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.InvalidPartOrder(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.InvalidPayer(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.InvalidPolicyDocument(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.InvalidRange(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

656 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

exception swift.common.middleware.s3api.s3response.InvalidRequest(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.InvalidSOAPRequest(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.InvalidSecurity(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.InvalidStorageClass(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.InvalidTargetBucketForLogging(bucket,
msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.InvalidToken(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.InvalidURI(uri,
msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.KeyTooLong(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.MalformedACLError(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.MalformedPOSTRequest(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.MalformedXML(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.MaxMessageLengthExceeded(msg=None,
*args,
**kwargs)

9.8. Middleware 657



Swift Documentation, Release 2.27.1.dev38

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.MaxPostPreDataLengthExceededError(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.MetadataTooLarge(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.MethodNotAllowed(method,
re-
source_type,
msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.MissingContentLength(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.MissingRequestBodyError(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.MissingSecurityElement(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.MissingSecurityHeader(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.NoLoggingStatusForKey(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.NoSuchBucket(bucket,
msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.NoSuchKey(key,
msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

658 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

exception swift.common.middleware.s3api.s3response.NoSuchLifecycleConfiguration(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.NoSuchUpload(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.NoSuchVersion(key,
ver-
sion_id,
msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.NotSignedUp(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.NotSuchBucketPolicy(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.OperationAborted(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.PermanentRedirect(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.PreconditionFailed(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.Redirect(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.RequestIsNotMultiPartContent(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.RequestTimeTooSkewed(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

9.8. Middleware 659



Swift Documentation, Release 2.27.1.dev38

exception swift.common.middleware.s3api.s3response.RequestTimeout(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.RequestTorrentOfBucketError(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.RestoreAlreadyInProgress(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.S3NotImplemented(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

class swift.common.middleware.s3api.s3response.S3Response(*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.S3ResponseBase,
swift.common.swob.Response

Similar to the Response class in Swift, but uses our HeaderKeyDict for headers instead of Swifts
HeaderKeyDict. This also translates Swift specific headers to S3 headers.

classmethod from_swift_resp(sw_resp)
Create a new S3 response object based on the given Swift response.

class swift.common.middleware.s3api.s3response.S3ResponseBase
Bases: object

Base class for swift3 responses.

exception swift.common.middleware.s3api.s3response.ServiceUnavailable(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.SignatureDoesNotMatch(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.SlowDown(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.TemporaryRedirect(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.TokenRefreshRequired(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

660 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

exception swift.common.middleware.s3api.s3response.TooManyBuckets(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.UnexpectedContent(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.UnresolvableGrantByEmailAddress(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.s3response.UserKeyMustBeSpecified(msg=None,
*args,
**kwargs)

Bases: swift.common.middleware.s3api.s3response.ErrorResponse

exception swift.common.middleware.s3api.exception.ACLError
Bases: swift.common.middleware.s3api.exception.S3Exception

exception swift.common.middleware.s3api.exception.BadSwiftRequest
Bases: swift.common.middleware.s3api.exception.S3Exception

exception swift.common.middleware.s3api.exception.InvalidSubresource(resource,
cause)

Bases: swift.common.middleware.s3api.exception.S3Exception

exception swift.common.middleware.s3api.exception.NotS3Request
Bases: swift.common.middleware.s3api.exception.S3Exception

exception swift.common.middleware.s3api.exception.S3Exception
Bases: Exception

class swift.common.middleware.s3api.etree._Element(*args, **kwargs)
Bases: lxml.etree.ElementBase

Wrapper Element class of lxml.etree.Element to support a utf-8 encoded non-ascii string as a text.

Why we need this?: Original lxml.etree.Element supports only unicode for the text. It de-
clines maintainability because we have to call a lot of encode/decode methods to apply ac-
count/container/object name (i.e. PATH_INFO) to each Element instance. When using this class,
we can remove such a redundant codes from swift.common.middleware.s3api middleware.

property text
utf-8 wrapper property of lxml.etree.Element.text

class swift.common.middleware.s3api.utils.Config(base=None)
Bases: dict

update([E ], **F)→ None. Update D from dict/iterable E and F.
If E is present and has a .keys() method, then does: for k in E: D[k] = E[k] If E is present
and lacks a .keys() method, then does: for k, v in E: D[k] = v In either case, this is followed
by: for k in F: D[k] = F[k]

class swift.common.middleware.s3api.utils.S3Timestamp(timestamp, off-
set=0, delta=0,
check_bounds=True)

9.8. Middleware 661



Swift Documentation, Release 2.27.1.dev38

Bases: swift.common.utils.Timestamp

property amz_date_format
this format should be like YYYYMMDDThhmmssZ

swift.common.middleware.s3api.utils.mktime(timestamp_str,
time_format=’%Y-%m-
%dT%H:%M:%S’)

mktime creates a float instance in epoch time really like as time.mktime

the difference from time.mktime is allowing to 2 formats string for the argument for the S3 testing
usage. TODO: support

Parameters

• timestamp_str a string of timestamp formatted as (a) RFC2822 (e.g.
date header) (b) %Y-%m-%dT%H:%M:%S (e.g. copy result)

• time_format a string of format to parse in (b) process

Returns a float instance in epoch time

swift.common.middleware.s3api.utils.sysmeta_header(resource, name)
Returns the system metadata header for given resource type and name.

swift.common.middleware.s3api.utils.sysmeta_prefix(resource)
Returns the system metadata prefix for given resource type.

swift.common.middleware.s3api.utils.validate_bucket_name(name,
dns_compliant_bucket_names)

Validates the name of the bucket against S3 criteria, http://docs.amazonwebservices.com/
AmazonS3/latest/BucketRestrictions.html True is valid, False is invalid.

s3apis ACLs implementation

s3api uses a different implementation approach to achieve S3 ACLs.

First, we should understand what we have to design to achieve real S3 ACLs. Current s3api(real S3)s
ACLs Model is as follows:

AccessControlPolicy:
Owner:
AccessControlList:

Grant[n]:
(Grantee, Permission)

Each bucket or object has its own acl consisting of Owner and AcessControlList. AccessControlList can
contain some Grants. By default, AccessControlList has only one Grant to allow FULL CONTROLL
to owner. Each Grant includes single pair with Grantee, Permission. Grantee is the user (or user group)
allowed the given permission.

This module defines the groups and the relation tree.

If you wanna get more information about S3s ACLs model in detail, please see official documentation
here,

http://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html

662 Chapter 9. Source Documentation

http://docs.amazonwebservices.com/AmazonS3/latest/BucketRestrictions.html
http://docs.amazonwebservices.com/AmazonS3/latest/BucketRestrictions.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html


Swift Documentation, Release 2.27.1.dev38

class swift.common.middleware.s3api.subresource.ACL(owner,
grants=None,
s3_acl=False, al-
low_no_owner=False)

Bases: object

S3 ACL class.

Refs (S3 API - acl-overview: http://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.
html):

The sample ACL includes an Owner element identifying the owner via the AWS accounts canon-
ical user ID. The Grant element identifies the grantee (either an AWS account or a predefined
group), and the permission granted. This default ACL has one Grant element for the owner. You
grant permissions by adding Grant elements, each grant identifying the grantee and the permis-
sion.

check_owner(user_id)
Check that the user is an owner.

check_permission(user_id, permission)
Check that the user has a permission.

elem()
Decode the value to an ACL instance.

classmethod from_elem(elem, s3_acl=False, allow_no_owner=False)
Convert an ElementTree to an ACL instance

classmethod from_headers(headers, bucket_owner, object_owner=None,
as_private=True)

Convert HTTP headers to an ACL instance.

class swift.common.middleware.s3api.subresource.AllUsers
Bases: swift.common.middleware.s3api.subresource.Group

Access permission to this group allows anyone to access the resource. The requests can be signed
(authenticated) or unsigned (anonymous). Unsigned requests omit the Authentication header in
the request.

Note: s3api regards unsigned requests as Swift API accesses, and bypasses them to Swift. As a
result, AllUsers behaves completely same as AuthenticatedUsers.

class swift.common.middleware.s3api.subresource.AuthenticatedUsers
Bases: swift.common.middleware.s3api.subresource.Group

This group represents all AWS accounts. Access permission to this group allows any AWS account
to access the resource. However, all requests must be signed (authenticated).

class swift.common.middleware.s3api.subresource.CannedACL
Bases: object

A dict-like object that returns canned ACL.

class swift.common.middleware.s3api.subresource.Grant(grantee, per-
mission)

Bases: object

Grant Class which includes both Grantee and Permission

9.8. Middleware 663

http://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html
http://docs.aws.amazon.com/AmazonS3/latest/dev/acl-overview.html


Swift Documentation, Release 2.27.1.dev38

elem()
Create an etree element.

classmethod from_elem(elem)
Convert an ElementTree to an ACL instance

class swift.common.middleware.s3api.subresource.Grantee
Bases: object

Base class for grantee.

Methods:

• init: create a Grantee instance

• elem: create an ElementTree from itself

Static Methods:

• from_header: convert a grantee string in the HTTP header to an Grantee instance.

• from_elem: convert a ElementTree to an Grantee instance.

elem()
Get an etree element of this instance.

static from_header(grantee)
Convert a grantee string in the HTTP header to an Grantee instance.

class swift.common.middleware.s3api.subresource.Group
Bases: swift.common.middleware.s3api.subresource.Grantee

Base class for Amazon S3 Predefined Groups

elem()
Get an etree element of this instance.

class swift.common.middleware.s3api.subresource.LogDelivery
Bases: swift.common.middleware.s3api.subresource.Group

WRITE and READ_ACP permissions on a bucket enables this group to write server access logs
to the bucket.

class swift.common.middleware.s3api.subresource.Owner(id, name)
Bases: object

Owner class for S3 accounts

class swift.common.middleware.s3api.subresource.User(name)
Bases: swift.common.middleware.s3api.subresource.Grantee

Canonical user class for S3 accounts.

elem()
Get an etree element of this instance.

swift.common.middleware.s3api.subresource.canned_acl_grantees(bucket_owner,
ob-
ject_owner=None)

A set of predefined grants supported by AWS S3.

664 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

swift.common.middleware.s3api.subresource.decode_acl(resource,
headers, al-
low_no_owner)

Decode Swift metadata to an ACL instance.

Given a resource type and HTTP headers, this method returns an ACL instance.

swift.common.middleware.s3api.subresource.encode_acl(resource, acl)
Encode an ACL instance to Swift metadata.

Given a resource type and an ACL instance, this method returns HTTP headers, which can be used
for Swift metadata.

swift.common.middleware.s3api.subresource.get_group_subclass_from_uri(uri)
Convert a URI to one of the predefined groups.

Acl Handlers

Why do we need this

To make controller classes clean, we need these handlers. It is really useful for customizing acl checking
algorithms for each controller.

Basic Information

BaseAclHandler wraps basic Acl handling. (i.e. it will check acl from ACL_MAP by using HEAD)

How to extend

Make a handler with the name of the controller. (e.g. BucketAclHandler is for BucketController) It
consists of method(s) for actual S3 method on controllers as follows.

Example:

class BucketAclHandler(BaseAclHandler):
def PUT:

<< put acl handling algorithms here for PUT bucket >>

Note: If the method DONT need to recall _get_response in outside of acl checking, the method have to
return the response it needs at the end of method.

class swift.common.middleware.s3api.acl_handlers.BaseAclHandler(req,
log-
ger,
con-
tainer=None,
obj=None,
head-
ers=None)

Bases: object

9.8. Middleware 665



Swift Documentation, Release 2.27.1.dev38

BaseAclHandler: Handling ACL for basic requests mapped on ACL_MAP

get_acl(headers, body, bucket_owner, object_owner=None)
Get ACL instance from S3 (e.g. x-amz-grant) headers or S3 acl xml body.

class swift.common.middleware.s3api.acl_handlers.BucketAclHandler(req,
log-
ger,
con-
tainer=None,
obj=None,
head-
ers=None)

Bases: swift.common.middleware.s3api.acl_handlers.BaseAclHandler

BucketAclHandler: Handler for BucketController

class swift.common.middleware.s3api.acl_handlers.MultiObjectDeleteAclHandler(req,
log-
ger,
con-
tainer=None,
obj=None,
head-
ers=None)

Bases: swift.common.middleware.s3api.acl_handlers.BaseAclHandler

MultiObjectDeleteAclHandler: Handler for MultiObjectDeleteController

class swift.common.middleware.s3api.acl_handlers.MultiUploadAclHandler(req,
log-
ger,
**kwargs)

Bases: swift.common.middleware.s3api.acl_handlers.BaseAclHandler

MultiUpload stuff requires acl checking just once for BASE container so that MultiUploadA-
clHandler extends BaseAclHandler to check acl only when the verb defined. We should define the
verb as the first step to request to backend Swift at incoming request.

Basic Rules:

• BASE container name is always w/o MULTIUPLOAD_SUFFIX

• Any check timing is ok but we should check it as soon as possible.

Controller Verb CheckResource Permission
Part PUT Container WRITE
Uploads GET Container READ
Uploads POST Container WRITE
Upload GET Container READ
Upload DELETE Container WRITE
Upload POST Container WRITE

666 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

class swift.common.middleware.s3api.acl_handlers.ObjectAclHandler(req,
log-
ger,
con-
tainer=None,
obj=None,
head-
ers=None)

Bases: swift.common.middleware.s3api.acl_handlers.BaseAclHandler

ObjectAclHandler: Handler for ObjectController

class swift.common.middleware.s3api.acl_handlers.PartAclHandler(req,
log-
ger,
**kwargs)

Bases: swift.common.middleware.s3api.acl_handlers.
MultiUploadAclHandler

PartAclHandler: Handler for PartController

class swift.common.middleware.s3api.acl_handlers.S3AclHandler(req,
log-
ger,
con-
tainer=None,
obj=None,
head-
ers=None)

Bases: swift.common.middleware.s3api.acl_handlers.BaseAclHandler

S3AclHandler: Handler for S3AclController

class swift.common.middleware.s3api.acl_handlers.UploadAclHandler(req,
log-
ger,
**kwargs)

Bases: swift.common.middleware.s3api.acl_handlers.
MultiUploadAclHandler

UploadAclHandler: Handler for UploadController

class swift.common.middleware.s3api.acl_handlers.UploadsAclHandler(req,
log-
ger,
**kwargs)

Bases: swift.common.middleware.s3api.acl_handlers.
MultiUploadAclHandler

UploadsAclHandler: Handler for UploadsController

swift.common.middleware.s3api.acl_utils.handle_acl_header(req)
Handle the x-amz-acl header. Note that this header currently used for only normal-acl (not imple-
mented) on s3acl. TODO: add translation to swift acl like as x-container-read to s3acl

9.8. Middleware 667



Swift Documentation, Release 2.27.1.dev38

swift.common.middleware.s3api.acl_utils.swift_acl_translate(acl,
group=”,
user=”,
xml=False)

Takes an S3 style ACL and returns a list of header/value pairs that implement that ACL in Swift,
or NotImplemented if there isnt a way to do that yet.

class swift.common.middleware.s3api.controllers.base.Controller(app,
conf,
log-
ger,
**kwargs)

Bases: object

Base WSGI controller class for the middleware

classmethod resource_type()
Returns the target resource type of this controller.

class swift.common.middleware.s3api.controllers.base.UnsupportedController(app,
conf,
log-
ger,
**kwargs)

Bases: swift.common.middleware.s3api.controllers.base.Controller

Handles unsupported requests.

swift.common.middleware.s3api.controllers.base.bucket_operation(func=None,
err_resp=None,
err_msg=None)

A decorator to ensure that the request is a bucket operation. If the target resource is an object, this
decorator updates the request by default so that the controller handles it as a bucket operation. If
err_resp is specified, this raises it on error instead.

swift.common.middleware.s3api.controllers.base.check_container_existence(func)
A decorator to ensure the container existence.

swift.common.middleware.s3api.controllers.base.object_operation(func)
A decorator to ensure that the request is an object operation. If the target resource is not an object,
this raises an error response.

class swift.common.middleware.s3api.controllers.service.ServiceController(app,
conf,
log-
ger,
**kwargs)

Bases: swift.common.middleware.s3api.controllers.base.Controller

Handles account level requests.

GET(req)
Handle GET Service request

class swift.common.middleware.s3api.controllers.bucket.BucketController(app,
conf,
log-
ger,
**kwargs)

668 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

Bases: swift.common.middleware.s3api.controllers.base.Controller

Handles bucket request.

DELETE(req)
Handle DELETE Bucket request

GET(req)
Handle GET Bucket (List Objects) request

HEAD(req)
Handle HEAD Bucket (Get Metadata) request

POST(req)
Handle POST Bucket request

PUT(req)
Handle PUT Bucket request

class swift.common.middleware.s3api.controllers.obj.ObjectController(app,
conf,
log-
ger,
**kwargs)

Bases: swift.common.middleware.s3api.controllers.base.Controller

Handles requests on objects

DELETE(req)
Handle DELETE Object request

GET(req)
Handle GET Object request

HEAD(req)
Handle HEAD Object request

PUT(req)
Handle PUT Object and PUT Object (Copy) request

class swift.common.middleware.s3api.controllers.acl.AclController(app,
conf,
log-
ger,
**kwargs)

Bases: swift.common.middleware.s3api.controllers.base.Controller

Handles the following APIs:

• GET Bucket acl

• PUT Bucket acl

• GET Object acl

• PUT Object acl

Those APIs are logged as ACL operations in the S3 server log.

GET(req)
Handles GET Bucket acl and GET Object acl.

9.8. Middleware 669



Swift Documentation, Release 2.27.1.dev38

PUT(req)
Handles PUT Bucket acl and PUT Object acl.

swift.common.middleware.s3api.controllers.acl.get_acl(account_name,
headers)

Attempts to construct an S3 ACL based on what is found in the swift headers

class swift.common.middleware.s3api.controllers.s3_acl.S3AclController(app,
conf,
log-
ger,
**kwargs)

Bases: swift.common.middleware.s3api.controllers.base.Controller

Handles the following APIs:

• GET Bucket acl

• PUT Bucket acl

• GET Object acl

• PUT Object acl

Those APIs are logged as ACL operations in the S3 server log.

GET(req)
Handles GET Bucket acl and GET Object acl.

PUT(req)
Handles PUT Bucket acl and PUT Object acl.

Implementation of S3 Multipart Upload.

This module implements S3 Multipart Upload APIs with the Swift SLO feature. The following explains
how S3api uses swift container and objects to store S3 upload information:

[bucket]+segments

A container to store upload information. [bucket] is the original bucket where multipart upload is initi-
ated.

[bucket]+segments/[upload_id]

An object of the ongoing upload id. The object is empty and used for checking the target upload status.
If the object exists, it means that the upload is initiated but not either completed or aborted.

670 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

[bucket]+segments/[upload_id]/[part_number]

The last suffix is the part number under the upload id. When the client uploads the parts, they will be
stored in the namespace with [bucket]+segments/[upload_id]/[part_number].

Example listing result in the [bucket]+segments container:

[bucket]+segments/[upload_id1] # upload id object for upload_id1
[bucket]+segments/[upload_id1]/1 # part object for upload_id1
[bucket]+segments/[upload_id1]/2 # part object for upload_id1
[bucket]+segments/[upload_id1]/3 # part object for upload_id1
[bucket]+segments/[upload_id2] # upload id object for upload_id2
[bucket]+segments/[upload_id2]/1 # part object for upload_id2
[bucket]+segments/[upload_id2]/2 # part object for upload_id2

.

.

Those part objects are directly used as segments of a Swift Static Large Object when the multipart upload
is completed.

class swift.common.middleware.s3api.controllers.multi_upload.PartController(app,
conf,
log-
ger,
**kwargs)

Bases: swift.common.middleware.s3api.controllers.base.Controller

Handles the following APIs:

• Upload Part

• Upload Part - Copy

Those APIs are logged as PART operations in the S3 server log.

PUT(req)
Handles Upload Part and Upload Part Copy.

class swift.common.middleware.s3api.controllers.multi_upload.UploadController(app,
conf,
log-
ger,
**kwargs)

Bases: swift.common.middleware.s3api.controllers.base.Controller

Handles the following APIs:

• List Parts

• Abort Multipart Upload

• Complete Multipart Upload

Those APIs are logged as UPLOAD operations in the S3 server log.

DELETE(req)
Handles Abort Multipart Upload.

GET(req)
Handles List Parts.

9.8. Middleware 671



Swift Documentation, Release 2.27.1.dev38

POST(req)
Handles Complete Multipart Upload.

class swift.common.middleware.s3api.controllers.multi_upload.UploadsController(app,
conf,
log-
ger,
**kwargs)

Bases: swift.common.middleware.s3api.controllers.base.Controller

Handles the following APIs:

• List Multipart Uploads

• Initiate Multipart Upload

Those APIs are logged as UPLOADS operations in the S3 server log.

GET(req)
Handles List Multipart Uploads

POST(req)
Handles Initiate Multipart Upload.

class swift.common.middleware.s3api.controllers.multi_delete.MultiObjectDeleteController(app,
conf,
log-
ger,
**kwargs)

Bases: swift.common.middleware.s3api.controllers.base.Controller

Handles Delete Multiple Objects, which is logged as a MULTI_OBJECT_DELETE operation in
the S3 server log.

POST(req)
Handles Delete Multiple Objects.

class swift.common.middleware.s3api.controllers.versioning.VersioningController(app,
conf,
log-
ger,
**kwargs)

Bases: swift.common.middleware.s3api.controllers.base.Controller

Handles the following APIs:

• GET Bucket versioning

• PUT Bucket versioning

Those APIs are logged as VERSIONING operations in the S3 server log.

GET(req)
Handles GET Bucket versioning.

PUT(req)
Handles PUT Bucket versioning.

672 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

class swift.common.middleware.s3api.controllers.location.LocationController(app,
conf,
log-
ger,
**kwargs)

Bases: swift.common.middleware.s3api.controllers.base.Controller

Handles GET Bucket location, which is logged as a LOCATION operation in the S3 server log.

GET(req)
Handles GET Bucket location.

class swift.common.middleware.s3api.controllers.logging.LoggingStatusController(app,
conf,
log-
ger,
**kwargs)

Bases: swift.common.middleware.s3api.controllers.base.Controller

Handles the following APIs:

• GET Bucket logging

• PUT Bucket logging

Those APIs are logged as LOGGING_STATUS operations in the S3 server log.

GET(req)
Handles GET Bucket logging.

PUT(req)
Handles PUT Bucket logging.

9.8.3 Bulk Operations (Delete and Archive Auto Extraction)

Middleware that will perform many operations on a single request.

Extract Archive

Expand tar files into a Swift account. Request must be a PUT with the query parameter ?
extract-archive=format specifying the format of archive file. Accepted formats are tar, tar.gz,
and tar.bz2.

For a PUT to the following url:

/v1/AUTH_Account/$UPLOAD_PATH?extract-archive=tar.gz

UPLOAD_PATH is where the files will be expanded to. UPLOAD_PATH can be a container, a pseudo-
directory within a container, or an empty string. The destination of a file in the archive will be built as
follows:

/v1/AUTH_Account/$UPLOAD_PATH/$FILE_PATH

Where FILE_PATH is the file name from the listing in the tar file.

If the UPLOAD_PATH is an empty string, containers will be auto created accordingly and files in the
tar that would not map to any container (files in the base directory) will be ignored.

9.8. Middleware 673



Swift Documentation, Release 2.27.1.dev38

Only regular files will be uploaded. Empty directories, symlinks, etc will not be uploaded.

Content Type

If the content-type header is set in the extract-archive call, Swift will assign that content-type to all
the underlying files. The bulk middleware will extract the archive file and send the internal files using
PUT operations using the same headers from the original request (e.g. auth-tokens, content-Type, etc.).
Notice that any middleware call that follows the bulk middleware does not know if this was a bulk
request or if these were individual requests sent by the user.

In order to make Swift detect the content-type for the files based on the file extension, the content-type
in the extract-archive call should not be set. Alternatively, it is possible to explicitly tell Swift to detect
the content type using this header:

X-Detect-Content-Type: true

For example:

curl -X PUT http://127.0.0.1/v1/AUTH_acc/cont/$?extract-archive=tar
-T backup.tar
-H "Content-Type: application/x-tar"
-H "X-Auth-Token: xxx"
-H "X-Detect-Content-Type: true"

Assigning Metadata

The tar file format (1) allows for UTF-8 key/value pairs to be associated with each file in an archive. If
a file has extended attributes, then tar will store those as key/value pairs. The bulk middleware can read
those extended attributes and convert them to Swift object metadata. Attributes starting with user.meta
are converted to object metadata, and user.mime_type is converted to Content-Type.

For example:

setfattr -n user.mime_type -v "application/python-setup" setup.py
setfattr -n user.meta.lunch -v "burger and fries" setup.py
setfattr -n user.meta.dinner -v "baked ziti" setup.py
setfattr -n user.stuff -v "whee" setup.py

Will get translated to headers:

Content-Type: application/python-setup
X-Object-Meta-Lunch: burger and fries
X-Object-Meta-Dinner: baked ziti

The bulk middleware will handle xattrs stored by both GNU and BSD tar (2). Only xattrs user.
mime_type and user.meta.* are processed. Other attributes are ignored.

In addition to the extended attributes, the object metadata and the x-delete-at/x-delete-after headers set
in the request are also assigned to the extracted objects.

Notes:

(1) The POSIX 1003.1-2001 (pax) format. The default format on GNU tar 1.27.1 or later.

674 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

(2) Even with pax-format tarballs, different encoders store xattrs slightly differently; for example, GNU
tar stores the xattr user.userattribute as pax header SCHILY.xattr.user.userattribute, while BSD tar (which
uses libarchive) stores it as LIBARCHIVE.xattr.user.userattribute.

Response

The response from bulk operations functions differently from other Swift responses. This is because a
short request body sent from the client could result in many operations on the proxy server and precau-
tions need to be made to prevent the request from timing out due to lack of activity. To this end, the
client will always receive a 200 OK response, regardless of the actual success of the call. The body
of the response must be parsed to determine the actual success of the operation. In addition to this the
client may receive zero or more whitespace characters prepended to the actual response body while the
proxy server is completing the request.

The format of the response body defaults to text/plain but can be either json or xml depending on the
Accept header. Acceptable formats are text/plain, application/json, application/
xml, and text/xml. An example body is as follows:

{"Response Status": "201 Created",
"Response Body": "",
"Errors": [],
"Number Files Created": 10}

If all valid files were uploaded successfully the Response Status will be 201 Created. If any files failed
to be created the response code corresponds to the subrequests error. Possible codes are 400, 401, 502
(on server errors), etc. In both cases the response body will specify the number of files successfully
uploaded and a list of the files that failed.

There are proxy logs created for each file (which becomes a subrequest) in the tar. The subrequests
proxy log will have a swift.source set to EA the logs content length will reflect the unzipped size of the
file. If double proxy-logging is used the leftmost logger will not have a swift.source set and the content
length will reflect the size of the payload sent to the proxy (the unexpanded size of the tar.gz).

Bulk Delete

Will delete multiple objects or containers from their account with a single request. Responds to POST
requests with query parameter ?bulk-delete set. The request url is your storage url. The Content-
Type should be set to text/plain. The body of the POST request will be a newline separated list
of url encoded objects to delete. You can delete 10,000 (configurable) objects per request. The objects
specified in the POST request body must be URL encoded and in the form:

/container_name/obj_name

or for a container (which must be empty at time of delete):

/container_name

The response is similar to extract archive as in every response will be a 200 OK and you must parse the
response body for actual results. An example response is:

{"Number Not Found": 0,
"Response Status": "200 OK",

(continues on next page)

9.8. Middleware 675



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

"Response Body": "",
"Errors": [],
"Number Deleted": 6}

If all items were successfully deleted (or did not exist), the Response Status will be 200 OK. If any
failed to delete, the response code corresponds to the subrequests error. Possible codes are 400, 401,
502 (on server errors), etc. In all cases the response body will specify the number of items successfully
deleted, not found, and a list of those that failed. The return body will be formatted in the way speci-
fied in the requests Accept header. Acceptable formats are text/plain, application/json,
application/xml, and text/xml.

There are proxy logs created for each object or container (which becomes a subrequest) that is deleted.
The subrequests proxy log will have a swift.source set to BD the logs content length of 0. If double
proxy-logging is used the leftmost logger will not have a swift.source set and the content length will
reflect the size of the payload sent to the proxy (the list of objects/containers to be deleted).

exception swift.common.middleware.bulk.CreateContainerError(msg,
sta-
tus_int,
sta-
tus)

Bases: Exception

swift.common.middleware.bulk.get_response_body(data_format, data_dict,
error_list, root_tag)

Returns a properly formatted response body according to format.

Handles json and xml, otherwise will return text/plain. Note: xml response does not include xml
declaration.

Params data_format resulting format

Params data_dict generated data about results.

Params error_list list of quoted filenames that failed

Params root_tag the tag name to use for root elements when returning XML; e.g.
extract or delete

9.8.4 CatchErrors

exception swift.common.middleware.catch_errors.BadResponseLength
Bases: Exception

class swift.common.middleware.catch_errors.CatchErrorMiddleware(app,
conf)

Bases: object

Middleware that provides high-level error handling and ensures that a transaction id will be set for
every request.

class swift.common.middleware.catch_errors.CatchErrorsContext(app,
log-
ger,
trans_id_suffix=”)

Bases: swift.common.wsgi.WSGIContext

676 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

swift.common.middleware.catch_errors.enforce_byte_count(inner_iter,
nbytes)

Enforces that inner_iter yields exactly <nbytes> bytes before exhaustion.

If inner_iter fails to do so, BadResponseLength is raised.

Parameters

• inner_iter iterable of bytestrings

• nbytes number of bytes expected

9.8.5 CNAME Lookup

CNAME Lookup Middleware

Middleware that translates an unknown domain in the host header to something that ends with the con-
figured storage_domain by looking up the given domains CNAME record in DNS.

This middleware will continue to follow a CNAME chain in DNS until it finds a record ending in the
configured storage domain or it reaches the configured maximum lookup depth. If a match is found, the
environments Host header is rewritten and the request is passed further down the WSGI chain.

class swift.common.middleware.cname_lookup.CNAMELookupMiddleware(app,
conf)

Bases: object

CNAME Lookup Middleware

See above for a full description.

Parameters

• app The next WSGI filter or app in the paste.deploy chain.

• conf The configuration dict for the middleware.

swift.common.middleware.cname_lookup.lookup_cname(domain, resolver)
Given a domain, returns its DNS CNAME mapping and DNS ttl.

Parameters

• domain domain to query on

• resolver dns.resolver.Resolver() instance used for executing DNS queries

Returns (ttl, result)

9.8.6 Container Quotas

The container_quotas middleware implements simple quotas that can be imposed on swift con-
tainers by a user with the ability to set container metadata, most likely the account administrator. This
can be useful for limiting the scope of containers that are delegated to non-admin users, exposed to
formpost uploads, or just as a self-imposed sanity check.

Any object PUT operations that exceed these quotas return a 413 response (request entity too large) with
a descriptive body.

9.8. Middleware 677



Swift Documentation, Release 2.27.1.dev38

Quotas are subject to several limitations: eventual consistency, the timeliness of the cached con-
tainer_info (60 second ttl by default), and its unable to reject chunked transfer uploads that exceed
the quota (though once the quota is exceeded, new chunked transfers will be refused).

Quotas are set by adding meta values to the container, and are validated when set:

Metadata Use
X-Container-Meta-Quota-Bytes Maximum size of the container, in bytes.
X-Container-Meta-Quota-Count Maximum object count of the container.

The container_quotas middleware should be added to the pipeline in your /etc/swift/
proxy-server.conf file just after any auth middleware. For example:

[pipeline:main]
pipeline = catch_errors cache tempauth container_quotas proxy-server

[filter:container_quotas]
use = egg:swift#container_quotas

9.8.7 Container Sync Middleware

class swift.common.middleware.container_sync.ContainerSync(app,
conf,
log-
ger=None)

Bases: object

WSGI middleware that validates an incoming container sync request using the container-sync-
realms.conf style of container sync.

9.8.8 Cross Domain Policies

class swift.common.middleware.crossdomain.CrossDomainMiddleware(app,
conf,
*args,
**kwargs)

Bases: object

Cross domain middleware used to respond to requests for cross domain policy information.

If the path is /crossdomain.xml it will respond with an xml cross domain policy document. This
allows web pages hosted elsewhere to use client side technologies such as Flash, Java and Sil-
verlight to interact with the Swift API.

To enable this middleware, add it to the pipeline in your proxy-server.conf file. It should be added
before any authentication (e.g., tempauth or keystone) middleware. In this example ellipsis ()
indicate other middleware you may have chosen to use:

[pipeline:main]
pipeline = ... crossdomain ... authtoken ... proxy-server

And add a filter section, such as:

678 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

[filter:crossdomain]
use = egg:swift#crossdomain
cross_domain_policy = <allow-access-from domain="*.example.com" />

<allow-access-from domain="www.example.com" secure="false" />

For continuation lines, put some whitespace before the continuation text. Ensure you put a com-
pletely blank line to terminate the cross_domain_policy value.

The cross_domain_policy name/value is optional. If omitted, the policy defaults as if you had
specified:

cross_domain_policy = <allow-access-from domain="*" secure="false" />

GET(req)
Returns a 200 response with cross domain policy information

9.8.9 Discoverability

Swift will by default provide clients with an interface providing details about the installation. Unless
disabled (i.e expose_info=false in Proxy Server Configuration), a GET request to /info will
return configuration data in JSON format. An example response:

{"swift": {"version": "1.11.0"}, "staticweb": {}, "tempurl": {}}

This would signify to the client that swift version 1.11.0 is running and that staticweb and tempurl are
available in this installation.

There may be administrator-only information available via /info. To retrieve it, one must use an
HMAC-signed request, similar to TempURL. The signature may be produced like so:

swift tempurl GET 3600 /info secret 2>/dev/null | sed s/temp_url/swiftinfo/
↪→g

9.8.10 Domain Remap

Domain Remap Middleware

Middleware that translates container and account parts of a domain to path parameters that the proxy
server understands.

Translation is only performed when the request URLs host domain matches one of a list of domains. This
list may be configured by the option storage_domain, and defaults to the single domain example.
com.

If not already present, a configurable path_root, which defaults to v1, will be added to the start of
the translated path.

For example, with the default configuration:

container.AUTH-account.example.com/object
container.AUTH-account.example.com/v1/object

would both be translated to:

9.8. Middleware 679



Swift Documentation, Release 2.27.1.dev38

container.AUTH-account.example.com/v1/AUTH_account/container/object

and:

AUTH-account.example.com/container/object
AUTH-account.example.com/v1/container/object

would both be translated to:

AUTH-account.example.com/v1/AUTH_account/container/object

Additionally, translation is only performed when the account name in the translated path starts with a
reseller prefix matching one of a list configured by the option reseller_prefixes, or when no
match is found but a default_reseller_prefix has been configured.

The reseller_prefixes list defaults to the single prefix AUTH. The
default_reseller_prefix is not configured by default.

Browsers can convert a host header to lowercase, so the middleware checks that the reseller prefix on the
account name is the correct case. This is done by comparing the items in the reseller_prefixes
config option to the found prefix. If they match except for case, the item from reseller_prefixes
will be used instead of the found reseller prefix. The middleware will also replace any hyphen (-) in the
account name with an underscore (_).

For example, with the default configuration:

auth-account.example.com/container/object
AUTH-account.example.com/container/object
auth_account.example.com/container/object
AUTH_account.example.com/container/object

would all be translated to:

<unchanged>.example.com/v1/AUTH_account/container/object

When no match is found in reseller_prefixes, the default_reseller_prefix config op-
tion is used. When no default_reseller_prefix is configured, any request with an account
prefix not in the reseller_prefixes list will be ignored by this middleware.

For example, with default_reseller_prefix = AUTH:

account.example.com/container/object

would be translated to:

account.example.com/v1/AUTH_account/container/object

Note that this middleware requires that container names and account names (except as described above)
must be DNS-compatible. This means that the account name created in the system and the containers
created by users cannot exceed 63 characters or have UTF-8 characters. These are restrictions over and
above what Swift requires and are not explicitly checked. Simply put, this middleware will do a best-
effort attempt to derive account and container names from elements in the domain name and put those
derived values into the URL path (leaving the Host header unchanged).

Also note that using Container to Container Synchronization with remapped domain names is not ad-
vised. With Container to Container Synchronization, you should use the true storage end points as sync

680 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

destinations.

class swift.common.middleware.domain_remap.DomainRemapMiddleware(app,
conf)

Bases: object

Domain Remap Middleware

See above for a full description.

Parameters

• app The next WSGI filter or app in the paste.deploy chain.

• conf The configuration dict for the middleware.

9.8.11 Dynamic Large Objects

DLO support centers around a user specified filter that matches segments and concatenates them together
in object listing order. Please see the DLO docs for Dynamic Large Objects further details.

9.8.12 Encryption

Encryption middleware should be deployed in conjunction with the Keymaster middleware.

Implements middleware for object encryption which comprises an instance of a Decrypter combined
with an instance of an Encrypter.

swift.common.middleware.crypto.filter_factory(global_conf, **local_conf)
Provides a factory function for loading encryption middleware.

class swift.common.middleware.crypto.encrypter.EncInputWrapper(crypto,
keys,
req,
log-
ger)

Bases: object

File-like object to be swapped in for wsgi.input.

class swift.common.middleware.crypto.encrypter.Encrypter(app, conf)
Bases: object

Middleware for encrypting data and user metadata.

By default all PUT or POSTed object data and/or metadata will be encrypted. Encryption of new
data and/or metadata may be disabled by setting the disable_encryption option to True.
However, this middleware should remain in the pipeline in order for existing encrypted data to be
read.

class swift.common.middleware.crypto.encrypter.EncrypterObjContext(encrypter,
log-
ger)

Bases: swift.common.middleware.crypto.crypto_utils.
CryptoWSGIContext

encrypt_user_metadata(req, keys)
Encrypt user-metadata header values. Replace each x-object-meta-<key> user metadata

9.8. Middleware 681



Swift Documentation, Release 2.27.1.dev38

header with a corresponding x-object-transient-sysmeta-crypto-meta-<key> header which
has the crypto metadata required to decrypt appended to the encrypted value.

Parameters

• req a swob Request

• keys a dict of encryption keys

handle_post(req, start_response)
Encrypt the new object headers with a new iv and the current crypto. Note that an object
may have encrypted headers while the body may remain unencrypted.

swift.common.middleware.crypto.encrypter.encrypt_header_val(crypto,
value,
key)

Encrypt a header value using the supplied key.

Parameters

• crypto a Crypto instance

• value value to encrypt

• key crypto key to use

Returns a tuple of (encrypted value, crypto_meta) where crypto_meta is a dict of form
returned by get_crypto_meta()

Raises ValueError if value is empty

class swift.common.middleware.crypto.decrypter.BaseDecrypterContext(crypto_app,
server_type,
log-
ger)

Bases: swift.common.middleware.crypto.crypto_utils.
CryptoWSGIContext

decrypt_value(value, key, crypto_meta, decoder)
Base64-decode and decrypt a value using the crypto_meta provided.

Parameters

• value a base64-encoded value to decrypt

• key crypto key to use

• crypto_meta a crypto-meta dict of form returned by
get_crypto_meta()

• decoder function to turn the decrypted bytes into useful data

Returns decrypted value

decrypt_value_with_meta(value, key, required, decoder)
Base64-decode and decrypt a value if crypto meta can be extracted from the value itself,
otherwise return the value unmodified.

A value should either be a string that does not contain the ; character or should be of the
form:

<base64-encoded ciphertext>;swift_meta=<crypto meta>

682 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

Parameters

• value value to decrypt

• key crypto key to use

• required if True then the value is required to be decrypted and an En-
cryptionException will be raised if the header cannot be decrypted due to
missing crypto meta.

• decoder function to turn the decrypted bytes into useful data

Returns decrypted value if crypto meta is found, otherwise the unmodified value

Raises EncryptionException if an error occurs while parsing crypto meta
or if the header value was required to be decrypted but crypto meta was not
found.

get_crypto_meta(header_name, check=True)
Extract a crypto_meta dict from a header.

Parameters

• header_name name of header that may have crypto_meta

• check if True validate the crypto meta

Returns A dict containing crypto_meta items

Raises EncryptionException if an error occurs while parsing the crypto
meta

get_decryption_keys(req, crypto_meta=None)
Determine if a response should be decrypted, and if so then fetch keys.

Parameters

• req a Request object

• crypto_meta a dict of crypto metadata

Returns a dict of decryption keys

get_unwrapped_key(crypto_meta, wrapping_key)
Get a wrapped key from crypto-meta and unwrap it using the provided wrapping key.

Parameters

• crypto_meta a dict of crypto-meta

• wrapping_key key to be used to decrypt the wrapped key

Returns an unwrapped key

Raises HTTPInternalServerError if the crypto-meta has no wrapped key
or the unwrapped key is invalid

class swift.common.middleware.crypto.decrypter.Decrypter(app, conf)
Bases: object

Middleware for decrypting data and user metadata.

9.8. Middleware 683



Swift Documentation, Release 2.27.1.dev38

class swift.common.middleware.crypto.decrypter.DecrypterContContext(decrypter,
log-
ger)

Bases: swift.common.middleware.crypto.decrypter.
BaseDecrypterContext

process_json_resp(req, resp_iter)
Parses json body listing and decrypt encrypted entries. Updates Content-Length header with
new body length and return a body iter.

class swift.common.middleware.crypto.decrypter.DecrypterObjContext(decrypter,
log-
ger)

Bases: swift.common.middleware.crypto.decrypter.
BaseDecrypterContext

decrypt_resp_headers(put_keys, post_keys)
Find encrypted headers and replace with the decrypted versions.

Parameters

• put_keys a dict of decryption keys used for object PUT.

• post_keys a dict of decryption keys used for object POST.

Returns A list of headers with any encrypted headers replaced by their decrypted
values.

Raises HTTPInternalServerError if any error occurs while decrypting
headers

multipart_response_iter(resp, boundary, body_key, crypto_meta)
Decrypts a multipart mime doc response body.

Parameters

• resp application response

• boundary multipart boundary string

• body_key decryption key for the response body

• crypto_meta crypto_meta for the response body

Returns generator for decrypted response body

response_iter(resp, body_key, crypto_meta, offset)
Decrypts a response body.

Parameters

• resp application response

• body_key decryption key for the response body

• crypto_meta crypto_meta for the response body

• offset offset into object content at which response body starts

Returns generator for decrypted response body

684 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

9.8.13 Etag Quoter

This middleware fix the Etag header of responses so that it is RFC compliant. RFC 7232 specifies that
the value of the Etag header must be double quoted.

It must be placed at the beggining of the pipeline, right after cache:

[pipeline:main]
pipeline = ... cache etag-quoter ...

[filter:etag-quoter]
use = egg:swift#etag_quoter

Set X-Account-Rfc-Compliant-Etags: true at the account level to have any Etags in ob-
ject responses be double quoted, as in "d41d8cd98f00b204e9800998ecf8427e". Alternatively,
you may only fix Etags in a single container by setting X-Container-Rfc-Compliant-Etags:
true on the container. This may be necessary for Swift to work properly with some CDNs.

Either option may also be explicitly disabled, so you may enable quoted Etags account-wide as above but
turn them off for individual containers with X-Container-Rfc-Compliant-Etags: false.
This may be useful if some subset of applications expect Etags to be bare MD5s.

9.8.14 FormPost

FormPost Middleware

Translates a browser form post into a regular Swift object PUT.

The format of the form is:

<form action="<swift-url>" method="POST"
enctype="multipart/form-data">

<input type="hidden" name="redirect" value="<redirect-url>" />
<input type="hidden" name="max_file_size" value="<bytes>" />
<input type="hidden" name="max_file_count" value="<count>" />
<input type="hidden" name="expires" value="<unix-timestamp>" />
<input type="hidden" name="signature" value="<hmac>" />
<input type="file" name="file1" /><br />
<input type="submit" />

</form>

Optionally, if you want the uploaded files to be temporary you can set x-delete-at or x-delete-after
attributes by adding one of these as a form input:

<input type="hidden" name="x_delete_at" value="<unix-timestamp>" />
<input type="hidden" name="x_delete_after" value="<seconds>" />

If you want to specify the content type or content encoding of the files you can set content-encoding or
content-type by adding them to the form input:

<input type="hidden" name="content-type" value="text/html" />
<input type="hidden" name="content-encoding" value="gzip" />

The above example applies these parameters to all uploaded files. You can also set the content-type and
content-encoding on a per-file basis by adding the parameters to each part of the upload.

9.8. Middleware 685

https://tools.ietf.org/html/rfc7232#section-2.3


Swift Documentation, Release 2.27.1.dev38

The <swift-url> is the URL of the Swift destination, such as:

https://swift-cluster.example.com/v1/AUTH_account/container/object_prefix

The name of each file uploaded will be appended to the <swift-url> given. So, you can upload directly
to the root of container with a url like:

https://swift-cluster.example.com/v1/AUTH_account/container/

Optionally, you can include an object prefix to better separate different users uploads, such as:

https://swift-cluster.example.com/v1/AUTH_account/container/object_prefix

Note the form method must be POST and the enctype must be set as multipart/form-data.

The redirect attribute is the URL to redirect the browser to after the upload completes. This is an optional
parameter. If you are uploading the form via an XMLHttpRequest the redirect should not be included.
The URL will have status and message query parameters added to it, indicating the HTTP status code
for the upload (2xx is success) and a possible message for further information if there was an error (such
as max_file_size exceeded).

The max_file_size attribute must be included and indicates the largest single file upload that can be done,
in bytes.

The max_file_count attribute must be included and indicates the maximum number of files that can
be uploaded with the form. Include additional <input type="file" name="filexx" /> at-
tributes if desired.

The expires attribute is the Unix timestamp before which the form must be submitted before it is invali-
dated.

The signature attribute is the HMAC-SHA1 signature of the form. Here is sample code for computing
the signature:

import hmac
from hashlib import sha1
from time import time
path = '/v1/account/container/object_prefix'
redirect = 'https://srv.com/some-page' # set to '' if redirect not in form
max_file_size = 104857600
max_file_count = 10
expires = int(time() + 600)
key = 'mykey'
hmac_body = '%s\n%s\n%s\n%s\n%s' % (path, redirect,

max_file_size, max_file_count, expires)
signature = hmac.new(key, hmac_body, sha1).hexdigest()

The key is the value of either the account (X-Account-Meta-Temp-URL-Key, X-Account-Meta-Temp-
Url-Key-2) or the container (X-Container-Meta-Temp-URL-Key, X-Container-Meta-Temp-Url-Key-2)
TempURL keys.

Be certain to use the full path, from the /v1/ onward. Note that x_delete_at and x_delete_after are not
used in signature generation as they are both optional attributes.

The command line tool swift-form-signature may be used (mostly just when testing) to com-
pute expires and signature.

686 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

Also note that the file attributes must be after the other attributes in order to be processed correctly. If
attributes come after the file, they wont be sent with the subrequest (there is no way to parse all the
attributes on the server-side without reading the whole thing into memory to service many requests,
some with large files, there just isnt enough memory on the server, so attributes following the file are
simply ignored).

class swift.common.middleware.formpost.FormPost(app, conf)
Bases: object

FormPost Middleware

See above for a full description.

The proxy logs created for any subrequests made will have swift.source set to FP.

Parameters

• app The next WSGI filter or app in the paste.deploy chain.

• conf The configuration dict for the middleware.

app
The next WSGI application/filter in the paste.deploy pipeline.

conf
The filter configuration dict.

swift.common.middleware.formpost.MAX_VALUE_LENGTH = 4096
The maximum size of any attributes value. Any additional data will be truncated.

swift.common.middleware.formpost.READ_CHUNK_SIZE = 4096
The size of data to read from the form at any given time.

swift.common.middleware.formpost.filter_factory(global_conf, **lo-
cal_conf)

Returns the WSGI filter for use with paste.deploy.

9.8.15 GateKeeper

The gatekeeper middleware imposes restrictions on the headers that may be included with requests
and responses. Request headers are filtered to remove headers that should never be generated by a client.
Similarly, response headers are filtered to remove private headers that should never be passed to a client.

The gatekeeper middleware must always be present in the proxy server wsgi pipeline. It should
be configured close to the start of the pipeline specified in /etc/swift/proxy-server.conf,
immediately after catch_errors and before any other middleware. It is essential that it is configured
ahead of all middlewares using system metadata in order that they function correctly.

If gatekeepermiddleware is not configured in the pipeline then it will be automatically inserted close
to the start of the pipeline by the proxy server.

swift.common.middleware.gatekeeper.outbound_exclusions = ['x-account-sysmeta-', 'x-container-sysmeta-', 'x-object-sysmeta-', 'x-object-transient-sysmeta-', 'x-backend']
A list of python regular expressions that will be used to match against outbound response headers.
Matching headers will be removed from the response.

9.8. Middleware 687



Swift Documentation, Release 2.27.1.dev38

9.8.16 Healthcheck

class swift.common.middleware.healthcheck.HealthCheckMiddleware(app,
conf)

Bases: object

Healthcheck middleware used for monitoring.

If the path is /healthcheck, it will respond 200 with OK as the body.

If the optional config parameter disable_path is set, and a file is present at that path, it will respond
503 with DISABLED BY FILE as the body.

DISABLED(req)
Returns a 503 response with DISABLED BY FILE in the body.

GET(req)
Returns a 200 response with OK in the body.

9.8.17 Keymaster

Keymaster middleware should be deployed in conjunction with the Encryption middleware.

class swift.common.middleware.crypto.keymaster.BaseKeyMaster(app,
conf)

Bases: object

Base middleware for providing encryption keys.

This provides some basic helpers for:

• loading from a separate config path,

• deriving keys based on path, and

• installing a swift.callback.fetch_crypto_keys hook in the request environ-
ment.

Subclasses should define log_route, keymaster_opts, and
keymaster_conf_section attributes, and implement the _get_root_secret function.

create_key(path, secret_id=None)
Creates an encryption key that is unique for the given path.

Parameters

• path the (WSGI string) path of the resource being encrypted.

• secret_id the id of the root secret from which the key should be derived.

Returns an encryption key.

Raises UnknownSecretIdError if the secret_id is not recognised.

class swift.common.middleware.crypto.keymaster.KeyMaster(app, conf)
Bases: swift.common.middleware.crypto.keymaster.BaseKeyMaster

Middleware for providing encryption keys.

The middleware requires its encryption root secret to be set. This is the root secret from which
encryption keys are derived. This must be set before first use to a value that is at least 256 bits.

688 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

The security of all encrypted data critically depends on this key, therefore it should be set to a
high-entropy value. For example, a suitable value may be obtained by generating a 32 byte (or
longer) value using a cryptographically secure random number generator. Changing the root secret
is likely to result in data loss.

class swift.common.middleware.crypto.keymaster.KeyMasterContext(keymaster,
ac-
count,
con-
tainer,
obj,
meta_version_to_write=’2’)

Bases: swift.common.wsgi.WSGIContext

The simple scheme for key derivation is as follows: every path is associated with a key, where the
key is derived from the path itself in a deterministic fashion such that the key does not need to be
stored. Specifically, the key for any path is an HMAC of a root key and the path itself, calculated
using an SHA256 hash function:

<path_key> = HMAC_SHA256(<root_secret>, <path>)

fetch_crypto_keys(key_id=None, *args, **kwargs)
Setup container and object keys based on the request path.

Keys are derived from request path. The id entry in the results dict includes the part of the
path used to derive keys. Other keymaster implementations may use a different strategy to
generate keys and may include a different type of id, so callers should treat the id as opaque
keymaster-specific data.

Parameters key_id if given this should be a dict with the items included under
the id key of a dict returned by this method.

Returns A dict containing encryption keys for object and container, and entries
id and all_ids. The all_ids entry is a list of key id dicts for all root secret ids
including the one used to generate the returned keys.

9.8.18 KeystoneAuth

class swift.common.middleware.keystoneauth.KeystoneAuth(app, conf)
Bases: object

Swift middleware to Keystone authorization system.

In Swifts proxy-server.conf add this keystoneauth middleware and the authtoken middleware to
your pipeline. Make sure you have the authtoken middleware before the keystoneauth middleware.

The authtoken middleware will take care of validating the user and keystoneauth will authorize
access.

The sample proxy-server.conf shows a sample pipeline that uses keystone.

proxy-server.conf-sample

The authtoken middleware is shipped with keystonemiddleware - it does not have any other de-
pendencies than itself so you can either install it by copying the file directly in your python path
or by installing keystonemiddleware.

9.8. Middleware 689



Swift Documentation, Release 2.27.1.dev38

If support is required for unvalidated users (as with anonymous access) or for
formpost/staticweb/tempurl middleware, authtoken will need to be configured with
delay_auth_decision set to true. See the Keystone documentation for more detail
on how to configure the authtoken middleware.

In proxy-server.conf you will need to have the setting account auto creation to true:

[app:proxy-server]
account_autocreate = true

And add a swift authorization filter section, such as:

[filter:keystoneauth]
use = egg:swift#keystoneauth
operator_roles = admin, swiftoperator

The user who is able to give ACL / create Containers permissions will be the user with a role listed
in the operator_roles setting which by default includes the admin and the swiftoperator
roles.

The keystoneauth middleware maps a Keystone project/tenant to an account in Swift by adding
a prefix (AUTH_ by default) to the tenant/project id.. For example, if the project id is 1234, the
path is /v1/AUTH_1234.

If you need to have a different reseller_prefix to be able to mix different auth servers you can
configure the option reseller_prefix in your keystoneauth entry like this:

reseller_prefix = NEWAUTH

Dont forget to also update the Keystone service endpoint configuration to use NEWAUTH in the
path.

It is possible to have several accounts associated with the same project. This is done by listing
several prefixes as shown in the following example:

reseller_prefix = AUTH, SERVICE

This means that for project id 1234, the paths /v1/AUTH_1234 and /v1/SERVICE_1234 are asso-
ciated with the project and are authorized using roles that a user has with that project. The core use
of this feature is that it is possible to provide different rules for each account prefix. The following
parameters may be prefixed with the appropriate prefix:

operator_roles
service_roles

For backward compatibility, if either of these parameters is specified without a prefix then it
applies to all reseller_prefixes. Here is an example, using two prefixes:

reseller_prefix = AUTH, SERVICE
# The next three lines have identical effects (since the first applies
# to both prefixes).
operator_roles = admin, swiftoperator
AUTH_operator_roles = admin, swiftoperator
SERVICE_operator_roles = admin, swiftoperator
# The next line only applies to accounts with the SERVICE prefix
SERVICE_operator_roles = admin, some_other_role

690 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

X-Service-Token tokens are supported by the inclusion of the service_roles configuration option.
When present, this option requires that the X-Service-Token header supply a token from a user
who has a role listed in service_roles. Here is an example configuration:

reseller_prefix = AUTH, SERVICE
AUTH_operator_roles = admin, swiftoperator
SERVICE_operator_roles = admin, swiftoperator
SERVICE_service_roles = service

The keystoneauth middleware supports cross-tenant access control using the syntax
<tenant>:<user> to specify a grantee in container Access Control Lists (ACLs). For a re-
quest to be granted by an ACL, the grantee <tenant> must match the UUID of the tenant to
which the request X-Auth-Token is scoped and the grantee <user> must match the UUID of the
user authenticated by that token.

Note that names must no longer be used in cross-tenant ACLs because with the introduction of
domains in keystone names are no longer globally unique.

For backwards compatibility, ACLs using names will be granted by keystoneauth when it can be
established that the grantee tenant, the grantee user and the tenant being accessed are either not
yet in a domain (e.g. the X-Auth-Token has been obtained via the keystone v2 API) or are all in
the default domain to which legacy accounts would have been migrated. The default domain is
identified by its UUID, which by default has the value default. This can be changed by setting
the default_domain_id option in the keystoneauth configuration:

default_domain_id = default

The backwards compatible behavior can be disabled by setting the config option
allow_names_in_acls to false:

allow_names_in_acls = false

To enable this backwards compatibility, keystoneauth will attempt to determine the domain id of
a tenant when any new account is created, and persist this as account metadata. If an account
is created for a tenant using a token with reselleradmin role that is not scoped on that tenant,
keystoneauth is unable to determine the domain id of the tenant; keystoneauth will assume that
the tenant may not be in the default domain and therefore not match names in ACLs for that
account.

By default, middleware higher in the WSGI pipeline may override auth processing, useful for mid-
dleware such as tempurl and formpost. If you know youre not going to use such middleware and
you want a bit of extra security you can disable this behaviour by setting the allow_overrides
option to false:

allow_overrides = false

Parameters

• app The next WSGI app in the pipeline

• conf The dict of configuration values

authorize_anonymous(req)
Authorize an anonymous request.

Returns None if authorization is granted, an error page otherwise.

9.8. Middleware 691



Swift Documentation, Release 2.27.1.dev38

denied_response(req)
Deny WSGI Response.

Returns a standard WSGI response callable with the status of 403 or 401 depending on
whether the REMOTE_USER is set or not.

swift.common.middleware.keystoneauth.filter_factory(global_conf, **lo-
cal_conf)

Returns a WSGI filter app for use with paste.deploy.

9.8.19 List Endpoints

List endpoints for an object, account or container.

This middleware makes it possible to integrate swift with software that relies on data locality information
to avoid network overhead, such as Hadoop.

Using the original API, answers requests of the form:

/endpoints/{account}/{container}/{object}
/endpoints/{account}/{container}
/endpoints/{account}
/endpoints/v1/{account}/{container}/{object}
/endpoints/v1/{account}/{container}
/endpoints/v1/{account}

with a JSON-encoded list of endpoints of the form:

http://{server}:{port}/{dev}/{part}/{acc}/{cont}/{obj}
http://{server}:{port}/{dev}/{part}/{acc}/{cont}
http://{server}:{port}/{dev}/{part}/{acc}

correspondingly, e.g.:

http://10.1.1.1:6200/sda1/2/a/c2/o1
http://10.1.1.1:6200/sda1/2/a/c2
http://10.1.1.1:6200/sda1/2/a

Using the v2 API, answers requests of the form:

/endpoints/v2/{account}/{container}/{object}
/endpoints/v2/{account}/{container}
/endpoints/v2/{account}

with a JSON-encoded dictionary containing a key endpoints that maps to a list of endpoints having the
same form as described above, and a key headers that maps to a dictionary of headers that should be sent
with a request made to the endpoints, e.g.:

{ "endpoints": {"http://10.1.1.1:6210/sda1/2/a/c3/o1",
"http://10.1.1.1:6230/sda3/2/a/c3/o1",
"http://10.1.1.1:6240/sda4/2/a/c3/o1"},

"headers": {"X-Backend-Storage-Policy-Index": "1"}}

In this example, the headers dictionary indicates that requests to the endpoint URLs should include the
header X-Backend-Storage-Policy-Index: 1 because the objects container is using storage policy index
1.

692 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

The /endpoints/ path is customizable (list_endpoints_path configuration parameter).

Intended for consumption by third-party services living inside the cluster (as the endpoints make sense
only inside the cluster behind the firewall); potentially written in a different language.

This is why its provided as a REST API and not just a Python API: to avoid requiring clients to write
their own ring parsers in their languages, and to avoid the necessity to distribute the ring file to clients
and keep it up-to-date.

Note that the call is not authenticated, which means that a proxy with this middleware enabled should
not be open to an untrusted environment (everyone can query the locality data using this middleware).

class swift.common.middleware.list_endpoints.ListEndpointsMiddleware(app,
conf)

Bases: object

List endpoints for an object, account or container.

See above for a full description.

Uses configuration parameter swift_dir (default /etc/swift).

Parameters

• app The next WSGI filter or app in the paste.deploy chain.

• conf The configuration dict for the middleware.

get_object_ring(policy_idx)
Get the ring object to use to handle a request based on its policy.

Policy_idx policy index as defined in swift.conf

Returns appropriate ring object

9.8.20 Memcache

class swift.common.middleware.memcache.MemcacheMiddleware(app,
conf)

Bases: object

Caching middleware that manages caching in swift.

9.8.21 Name Check (Forbidden Character Filter)

Created on February 27, 2012

A filter that disallows any paths that contain defined forbidden characters or that exceed a defined length.

Place early in the proxy-server pipeline after the left-most occurrence of the proxy-logging middle-
ware (if present) and before the final proxy-logging middleware (if present) or the proxy-serer
app itself, e.g.:

[pipeline:main]
pipeline = catch_errors healthcheck proxy-logging name_check cache
↪→ratelimit tempauth sos proxy-logging proxy-server

[filter:name_check]

(continues on next page)

9.8. Middleware 693



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

use = egg:swift#name_check
forbidden_chars = '"`<>
maximum_length = 255

There are default settings for forbidden_chars (FORBIDDEN_CHARS) and maximum_length
(MAX_LENGTH)

The filter returns HTTPBadRequest if path is invalid.

@author: eamonn-otoole

9.8.22 Object Versioning

Object versioning in Swift has 3 different modes. There are two legacy modes that have similar API with
a slight difference in behavior and this middleware introduces a new mode with a completely redesigned
API and implementation.

In terms of the implementation, this middleware relies heavily on the use of static links to reduce the
amount of backend data movement that was part of the two legacy modes. It also introduces a new API
for enabling the feature and to interact with older versions of an object.

Compatibility between modes

This new mode is not backwards compatible or interchangeable with the two legacy modes. This
means that existing containers that are being versioned by the two legacy modes cannot enable the
new mode. The new mode can only be enabled on a new container or a container without either
X-Versions-Location or X-History-Location header set. Attempting to enable the new
mode on a container with either header will result in a 400 Bad Request response.

Enable Object Versioning in a Container

After the introduction of this feature containers in a Swift cluster will be in one of either 3 possible states:
1. Object versioning never enabled, 2. Object Versioning Enabled or 3. Object Versioning Disabled.
Once versioning has been enabled on a container, it will always have a flag stating whether it is either
enabled or disabled.

Clients enable object versioning on a container by performing either a PUT or POST request with the
header X-Versions-Enabled: true. Upon enabling the versioning for the first time, the mid-
dleware will create a hidden container where object versions are stored. This hidden container will
inherit the same Storage Policy as its parent container.

To disable, clients send a POST request with the header X-Versions-Enabled: false. When
versioning is disabled, the old versions remain unchanged.

To delete a versioned container, versioning must be disabled and all versions of all objects must be
deleted before the container can be deleted. At such time, the hidden container will also be deleted.

694 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

Object CRUD Operations to a Versioned Container

When data is PUT into a versioned container (a container with the versioning flag enabled), the actual
object is written to a hidden container and a symlink object is written to the parent container. Every
object is assigned a version id. This id can be retrieved from the X-Object-Version-Id header in
the PUT response.

Note: When object versioning is disabled on a container, new data will no longer be versioned, but
older versions remain untouched. Any new data PUT will result in a object with a null version-id.
The versioning API can be used to both list and operate on previous versions even while versioning is
disabled.

If versioning is re-enabled and an overwrite occurs on a null id object. The object will be versioned off
with a regular version-id.

A GET to a versioned object will return the current version of the object. The
X-Object-Version-Id header is also returned in the response.

A POST to a versioned object will update the most current object metadata as normal, but will not create
a new version of the object. In other words, new versions are only created when the content of the object
changes.

On DELETE, the middleware will write a zero-byte delete marker object version that notes when the
delete took place. The symlink object will also be deleted from the versioned container. The object will
no longer appear in container listings for the versioned container and future requests there will return
404 Not Found. However, the previous versions content will still be recoverable.

Object Versioning API

Clients can now operate on previous versions of an object using this new versioning API.

First to list previous versions, issue a a GET request to the versioned container with query parameter:

?versions

To list a container with a large number of object versions, clients can also use the version_marker
parameter together with the marker parameter. While the marker parameter is used to specify an
object name the version_marker will be used specify the version id.

All other pagination parameters can be used in conjunction with the versions parameter.

During container listings, delete markers can be identified with the content-type application/
x-deleted;swift_versions_deleted=1. The most current version of an object can be iden-
tified by the field is_latest.

To operate on previous versions, clients can use the query parameter:

?version-id=<id>

where the <id> is the value from the X-Object-Version-Id header.

Only COPY, HEAD, GET and DELETE operations can be performed on previous versions. Either a
PUT or POST request with a version-id parameter will result in a 400 Bad Request response.

A HEAD/GET request to a delete-marker will result in a 404 Not Found response.

9.8. Middleware 695



Swift Documentation, Release 2.27.1.dev38

When issuing DELETE requests with a version-id parameter, delete markers are not written down.
A DELETE request with a version-id parameter to the current object will result in a both the symlink
and the backing data being deleted. A DELETE to any other version will result in that version only be
deleted and no changes made to the symlink pointing to the current version.

How to Enable Object Versioning in a Swift Cluster

To enable this new mode in a Swift cluster the versioned_writes and symlinkmiddlewares must
be added to the proxy pipeline, you must also set the option allow_object_versioning to True.

class swift.common.middleware.versioned_writes.object_versioning.AccountContext(wsgi_app,
log-
ger)

Bases: swift.common.middleware.versioned_writes.object_versioning.
ObjectVersioningContext

class swift.common.middleware.versioned_writes.object_versioning.ByteCountingReader(file_like)
Bases: object

Counts bytes read from file_like so we know how big the object is that the client just PUT.

This is particularly important when the client sends a chunk-encoded body, so we dont have a
Content-Length header available.

class swift.common.middleware.versioned_writes.object_versioning.ContainerContext(wsgi_app,
log-
ger)

Bases: swift.common.middleware.versioned_writes.object_versioning.
ObjectVersioningContext

handle_delete(req, start_response)
Handle request to delete a users container.

As part of deleting a container, this middleware will also delete the hidden container holding
object versions.

Before a users container can be deleted, swift must check if there are still old object versions
from that container. Only after disabling versioning and deleting all object versions can a
container be deleted.

handle_request(req, start_response)
Handle request for container resource.

On PUT, POST set version location and enabled flag sysmeta. For container listings of a
versioned container, update the objects bytes and etag to use the targets instead of using the
symlink info.

class swift.common.middleware.versioned_writes.object_versioning.ObjectContext(wsgi_app,
log-
ger)

Bases: swift.common.middleware.versioned_writes.object_versioning.
ObjectVersioningContext

handle_delete(req, versions_cont, api_version, account_name, container_name, ob-
ject_name, is_enabled)

Handle DELETE requests.

696 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

Copy current version of object to versions_container and write a delete marker before pro-
ceeding with original request.

Parameters

• req original request.

• versions_cont container where previous versions of the object are
stored.

• api_version api version.

• account_name account name.

• object_name name of object of original request

handle_post(req, versions_cont, account)
Handle a POST request to an object in a versioned container.

If the response is a 307 because the POST went to a symlink, follow the symlink and send
the request to the versioned object

Parameters

• req original request.

• versions_cont container where previous versions of the object are
stored.

• account account name.

handle_put(req, versions_cont, api_version, account_name, object_name, is_enabled)
Check if the current version of the object is a versions-symlink if not, its because this object
was added to the container when versioning was not enabled. Well need to copy it into the
versions containers now that versioning is enabled.

Also, put the new data from the client into the versions container and add a static symlink in
the versioned container.

Parameters

• req original request.

• versions_cont container where previous versions of the object are
stored.

• api_version api version.

• account_name account name.

• object_name name of object of original request

handle_put_version(req, versions_cont, api_version, account_name, container, ob-
ject_name, is_enabled, version)

Handle a PUT?version-id request and create/update the is_latest link to point to the specific
version. Expects a valid version id.

handle_versioned_request(req, versions_cont, api_version, account, container,
obj, is_enabled, version)

Handle version-id request for object resource. When a request contains a
version-id=<id> parameter, the request is acted upon the actual version of that ob-
ject. Version-aware operations require that the container is versioned, but do not require that

9.8. Middleware 697



Swift Documentation, Release 2.27.1.dev38

the versioning is currently enabled. Users should be able to operate on older versions of an
object even if versioning is currently suspended.

PUT and POST requests are not allowed as that would overwrite the contents of the versioned
object.

Parameters

• req The original request

• versions_cont container holding versions of the requested obj

• api_version should be v1 unless swift bumps api version

• account account name string

• container container name string

• object object name string

• is_enabled is versioning currently enabled

• version version of the object to act on

class swift.common.middleware.versioned_writes.object_versioning.ObjectVersioningContext(wsgi_app,
log-
ger)

Bases: swift.common.wsgi.WSGIContext

9.8.23 Proxy Logging

Logging middleware for the Swift proxy.

This serves as both the default logging implementation and an example of how to plug in your own
logging format/method.

The logging format implemented below is as follows:

client_ip remote_addr end_time.datetime method path protocol status_int referer user_agent
auth_token bytes_recvd bytes_sent client_etag transaction_id headers request_time source
log_info start_time end_time policy_index

These values are space-separated, and each is url-encoded, so that they can be separated with a simple
.split()

• remote_addr is the contents of the REMOTE_ADDR environment variable, while client_ip is
swifts best guess at the end-user IP, extracted variously from the X-Forwarded-For header, X-
Cluster-Ip header, or the REMOTE_ADDR environment variable.

• source (swift.source in the WSGI environment) indicates the code that generated the request, such
as most middleware. (See below for more detail.)

• log_info (swift.log_info in the WSGI environment) is for additional information that could
prove quite useful, such as any x-delete-at value or other behind the scenes activity that might
not otherwise be detectable from the plain log information. Code that wishes to add ad-
ditional log information should use code like env.setdefault('swift.log_info',
[]).append(your_info) so as to not disturb others log information.

• Values that are missing (e.g. due to a header not being present) or zero are generally represented
by a single hyphen (-).

698 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

The proxy-logging can be used twice in the proxy servers pipeline when there is middleware installed
that can return custom responses that dont follow the standard pipeline to the proxy server.

For example, with staticweb, the middleware might intercept a request to /v1/AUTH_acc/cont/, make a
subrequest to the proxy to retrieve /v1/AUTH_acc/cont/index.html and, in effect, respond to the clients
original request using the 2nd requests body. In this instance the subrequest will be logged by the
rightmost middleware (with a swift.source set) and the outgoing request (with body overridden) will be
logged by leftmost middleware.

Requests that follow the normal pipeline (use the same wsgi environment throughout) will not be double
logged because an environment variable (swift.proxy_access_log_made) is checked/set when a log is
made.

All middleware making subrequests should take care to set swift.source when needed. With the dou-
bled proxy logs, any consumer/processor of swifts proxy logs should look at the swift.source field, the
rightmost log value, to decide if this is a middleware subrequest or not. A log processor calculating
bandwidth usage will want to only sum up logs with no swift.source.

class swift.common.middleware.proxy_logging.ProxyLoggingMiddleware(app,
conf,
log-
ger=None)

Bases: object

Middleware that logs Swift proxy requests in the swift log format.

log_request(req, status_int, bytes_received, bytes_sent, start_time, end_time,
resp_headers=None, ttfb=0, wire_status_int=None)

Log a request.

Parameters

• req swob.Request object for the request

• status_int integer code for the response status

• bytes_received bytes successfully read from the request body

• bytes_sent bytes yielded to the WSGI server

• start_time timestamp request started

• end_time timestamp request completed

• resp_headers dict of the response headers

• wire_status_int the on the wire status int

9.8.24 Ratelimit

exception swift.common.middleware.ratelimit.MaxSleepTimeHitError
Bases: Exception

class swift.common.middleware.ratelimit.RateLimitMiddleware(app,
conf,
log-
ger=None)

Bases: object

Rate limiting middleware

9.8. Middleware 699



Swift Documentation, Release 2.27.1.dev38

Rate limits requests on both an Account and Container level. Limits are configurable.

get_ratelimitable_key_tuples(req, account_name, container_name=None,
obj_name=None, global_ratelimit=None)

Returns a list of key (used in memcache), ratelimit tuples. Keys should be checked in order.

Parameters

• req swob request

• account_name account name from path

• container_name container name from path

• obj_name object name from path

• global_ratelimit this account has an account wide ratelimit on all
writes combined

handle_ratelimit(req, account_name, container_name, obj_name)
Performs rate limiting and account white/black listing. Sleeps if necessary. If
self.memcache_client is not set, immediately returns None.

Parameters

• account_name account name from path

• container_name container name from path

• obj_name object name from path

swift.common.middleware.ratelimit.filter_factory(global_conf, **lo-
cal_conf)

paste.deploy app factory for creating WSGI proxy apps.

swift.common.middleware.ratelimit.get_maxrate(ratelimits, size)
Returns number of requests allowed per second for given size.

swift.common.middleware.ratelimit.interpret_conf_limits(conf,
name_prefix,
info=None)

Parses general parms for rate limits looking for things that start with the provided name_prefix
within the provided conf and returns lists for both internal use and for /info

Parameters

• conf conf dict to parse

• name_prefix prefix of config parms to look for

• info set to return extra stuff for /info registration

700 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

9.8.25 Read Only

class swift.common.middleware.read_only.ReadOnlyMiddleware(app,
conf,
log-
ger=None)

Bases: object

Middleware that make an entire cluster or individual accounts read only.

account_read_only(req, account)
Check whether an account should be read-only.

This considers both the cluster-wide config value as well as the per-account override in X-
Account-Sysmeta-Read-Only.

swift.common.middleware.read_only.filter_factory(global_conf, **lo-
cal_conf)

paste.deploy app factory for creating WSGI proxy apps.

9.8.26 Recon

class swift.common.middleware.recon.ReconMiddleware(app, conf, *args,
**kwargs)

Bases: object

Recon middleware used for monitoring.

/recon/load|mem|async will return various system metrics.

Needs to be added to the pipeline and requires a filter declaration in the [account|container|object]-
server conf file:

[filter:recon] use = egg:swift#recon recon_cache_path = /var/cache/swift

get_async_info()
get # of async pendings

get_auditor_info(recon_type)
get auditor info

get_device_info()
get devices

get_diskusage()
get disk utilization statistics

get_driveaudit_error()
get # of drive audit errors

get_expirer_info(recon_type)
get expirer info

get_load(openr=<built-in function open>)
get info from /proc/loadavg

get_mem(openr=<built-in function open>)
get info from /proc/meminfo

9.8. Middleware 701



Swift Documentation, Release 2.27.1.dev38

get_mounted(openr=<built-in function open>)
get ALL mounted fs from /proc/mounts

get_quarantine_count()
get obj/container/account quarantine counts

get_replication_info(recon_type)
get replication info

get_ring_md5()
get all ring md5sums

get_sharding_info()
get sharding info

get_socket_info(openr=<built-in function open>)
get info from /proc/net/sockstat and sockstat6

Note: The mem value is actually kernel pages, but we return bytes allocated based on the
systems page size.

get_swift_conf_md5()
get md5 of swift.conf

get_time()
get current time

get_unmounted()
list unmounted (failed?) devices

get_updater_info(recon_type)
get updater info

get_version()
get swift version

9.8.27 Server Side Copy

Server side copy is a feature that enables users/clients to COPY objects between accounts and containers
without the need to download and then re-upload objects, thus eliminating additional bandwidth con-
sumption and also saving time. This may be used when renaming/moving an object which in Swift is a
(COPY + DELETE) operation.

The server side copy middleware should be inserted in the pipeline after auth and before the quotas and
large object middlewares. If it is not present in the pipeline in the proxy-server configuration file, it will
be inserted automatically. There is no configurable option provided to turn off server side copy.

702 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

Metadata

• All metadata of source object is preserved during object copy.

• One can also provide additional metadata during PUT/COPY request. This will over-write any
existing conflicting keys.

• Server side copy can also be used to change content-type of an existing object.

Object Copy

• The destination container must exist before requesting copy of the object.

• When several replicas exist, the system copies from the most recent replica. That is, the copy
operation behaves as though the X-Newest header is in the request.

• The request to copy an object should have no body (i.e. content-length of the request must be
zero).

There are two ways in which an object can be copied:

1. Send a PUT request to the new object (destination/target) with an additional header named
X-Copy-From specifying the source object (in /container/object format). Example:

curl -i -X PUT http://<storage_url>/container1/destination_obj
-H 'X-Auth-Token: <token>'
-H 'X-Copy-From: /container2/source_obj'
-H 'Content-Length: 0'

2. Send a COPY request with an existing object in URL with an additional header named
Destination specifying the destination/target object (in /container/object format). Example:

curl -i -X COPY http://<storage_url>/container2/source_obj
-H 'X-Auth-Token: <token>'
-H 'Destination: /container1/destination_obj'
-H 'Content-Length: 0'

Note that if the incoming request has some conditional headers (e.g. Range, If-Match), the source
object will be evaluated for these headers (i.e. if PUT with both X-Copy-From and Range, Swift will
make a partial copy to the destination object).

Cross Account Object Copy

Objects can also be copied from one account to another account if the user has the necessary permis-
sions (i.e. permission to read from container in source account and permission to write to container in
destination account).

Similar to examples mentioned above, there are two ways to copy objects across accounts:

1. Like the example above, send PUT request to copy object but with an additional header named
X-Copy-From-Account specifying the source account. Example:

curl -i -X PUT http://<host>:<port>/v1/AUTH_test1/container/
↪→destination_obj
-H 'X-Auth-Token: <token>'

(continues on next page)

9.8. Middleware 703



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

-H 'X-Copy-From: /container/source_obj'
-H 'X-Copy-From-Account: AUTH_test2'
-H 'Content-Length: 0'

2. Like the previous example, send a COPY request but with an additional header named
Destination-Account specifying the name of destination account. Example:

curl -i -X COPY http://<host>:<port>/v1/AUTH_test2/container/source_
↪→obj
-H 'X-Auth-Token: <token>'
-H 'Destination: /container/destination_obj'
-H 'Destination-Account: AUTH_test1'
-H 'Content-Length: 0'

Large Object Copy

The best option to copy a large object is to copy segments individually. To copy the manifest object of a
large object, add the query parameter to the copy request:

?multipart-manifest=get

If a request is sent without the query parameter, an attempt will be made to copy the whole object but
will fail if the object size is greater than 5GB.

class swift.common.middleware.copy.ServerSideCopyWebContext(app,
log-
ger)

Bases: swift.common.wsgi.WSGIContext

9.8.28 Static Large Objects

Please see the SLO docs for Static Large Objects further details.

9.8.29 StaticWeb

This StaticWeb WSGI middleware will serve container data as a static web site with index file and er-
ror file resolution and optional file listings. This mode is normally only active for anonymous requests.
When using keystone for authentication set delay_auth_decision = true in the authtoken mid-
dleware configuration in your /etc/swift/proxy-server.conf file. If you want to use it with
authenticated requests, set the X-Web-Mode: true header on the request.

The staticweb filter should be added to the pipeline in your /etc/swift/proxy-server.
conf file just after any auth middleware. Also, the configuration section for the staticweb middle-
ware itself needs to be added. For example:

[DEFAULT]
...

[pipeline:main]
pipeline = catch_errors healthcheck proxy-logging cache ratelimit tempauth

staticweb proxy-logging proxy-server

(continues on next page)

704 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

(continued from previous page)

...

[filter:staticweb]
use = egg:swift#staticweb

Any publicly readable containers (for example, X-Container-Read: .r:*, see ACLs for more
information on this) will be checked for X-Container-Meta-Web-Index and X-Container-Meta-Web-
Error header values:

X-Container-Meta-Web-Index <index.name>
X-Container-Meta-Web-Error <error.name.suffix>

If X-Container-Meta-Web-Index is set, any <index.name> files will be served without having to specify
the <index.name> part. For instance, setting X-Container-Meta-Web-Index: index.html
will be able to serve the object /pseudo/path/index.html with just /pseudo/path or /pseudo/path/

If X-Container-Meta-Web-Error is set, any errors (currently just 401 Unauthorized and 404 Not
Found) will instead serve the /<status.code><error.name.suffix> object. For instance, setting
X-Container-Meta-Web-Error: error.html will serve /404error.html for requests for
paths not found.

For pseudo paths that have no <index.name>, this middleware can serve HTML file listings if you set
the X-Container-Meta-Web-Listings: true metadata item on the container.

If listings are enabled, the listings can have a custom style sheet by setting the X-Container-Meta-
Web-Listings-CSS header. For instance, setting X-Container-Meta-Web-Listings-CSS:
listing.css will make listings link to the /listing.css style sheet. If you view source in your browser
on a listing page, you will see the well defined document structure that can be styled.

By default, the listings will be rendered with a label of Listing of /v1/account/container/path. This can be
altered by setting a X-Container-Meta-Web-Listings-Label: <label>. For example, if
the label is set to example.com, a label of Listing of example.com/path will be used instead.

The content-type of directory marker objects can be modified by setting the
X-Container-Meta-Web-Directory-Type header. If the header is not set, applica-
tion/directory is used by default. Directory marker objects are 0-byte objects that represent directories
to create a simulated hierarchical structure.

Example usage of this middleware via swift:

Make the container publicly readable:

swift post -r '.r:*' container

You should be able to get objects directly, but no index.html resolution or listings.

Set an index file directive:

swift post -m 'web-index:index.html' container

You should be able to hit paths that have an index.html without needing to type the in-
dex.html part.

Turn on listings:

9.8. Middleware 705



Swift Documentation, Release 2.27.1.dev38

swift post -r '.r:*,.rlistings' container
swift post -m 'web-listings: true' container

Now you should see object listings for paths and pseudo paths that have no index.html.

Enable a custom listings style sheet:

swift post -m 'web-listings-css:listings.css' container

Set an error file:

swift post -m 'web-error:error.html' container

Now 401s should load 401error.html, 404s should load 404error.html, etc.

Set Content-Type of directory marker object:

swift post -m 'web-directory-type:text/directory' container

Now 0-byte objects with a content-type of text/directory will be treated as directories rather
than objects.

class swift.common.middleware.staticweb.StaticWeb(app, conf)
Bases: object

The Static Web WSGI middleware filter; serves container data as a static web site. See staticweb
for an overview.

The proxy logs created for any subrequests made will have swift.source set to SW.

Parameters

• app The next WSGI application/filter in the paste.deploy pipeline.

• conf The filter configuration dict.

app
The next WSGI application/filter in the paste.deploy pipeline.

conf
The filter configuration dict. Only used in tests.

swift.common.middleware.staticweb.filter_factory(global_conf, **lo-
cal_conf)

Returns a Static Web WSGI filter for use with paste.deploy.

9.8.30 Symlink

Symlink Middleware

Symlinks are objects stored in Swift that contain a reference to another object (hereinafter, this is called
target object). They are analogous to symbolic links in Unix-like operating systems. The existence of
a symlink object does not affect the target object in any way. An important use case is to use a path
in one container to access an object in a different container, with a different policy. This allows policy
cost/performance trade-offs to be made on individual objects.

Clients create a Swift symlink by performing a zero-length PUT request with the header
X-Symlink-Target: <container>/<object>. For a cross-account symlink, the header

706 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

X-Symlink-Target-Account: <account> must be included. If omitted, it is inserted au-
tomatically with the account of the symlink object in the PUT request process.

Symlinks must be zero-byte objects. Attempting to PUT a symlink with a non-empty request body
will result in a 400-series error. Also, POST with X-Symlink-Target header always results in a
400-series error. The target object need not exist at symlink creation time.

Clients may optionally include a X-Symlink-Target-Etag: <etag> header during the PUT.
If present, this will create a static symlink instead of a dynamic symlink. Static symlinks point
to a specific object rather than a specific name. They do this by using the value set in their
X-Symlink-Target-Etag header when created to verify it still matches the ETag of the object
theyre pointing at on a GET. In contrast to a dynamic symlink the target object referenced in the
X-Symlink-Target header must exist and its ETag must match the X-Symlink-Target-Etag
or the symlink creation will return a client error.

A GET/HEAD request to a symlink will result in a request to the target object referenced by the sym-
links X-Symlink-Target-Account and X-Symlink-Target headers. The response of the
GET/HEAD request will contain a Content-Location header with the path location of the tar-
get object. A GET/HEAD request to a symlink with the query parameter ?symlink=get will result
in the request targeting the symlink itself.

A symlink can point to another symlink. Chained symlinks will be traversed until the target is not a
symlink. If the number of chained symlinks exceeds the limit symloop_max an error response will
be produced. The value of symloop_max can be defined in the symlink config section of proxy-
server.conf. If not specified, the default symloop_max value is 2. If a value less than 1 is specified,
the default value will be used.

If a static symlink (i.e. a symlink created with a X-Symlink-Target-Etag header) targets another
static symlink, both of the X-Symlink-Target-Etag headers must match the target object for
the GET to succeed. If a static symlink targets a dynamic symlink (i.e. a symlink created without
a X-Symlink-Target-Etag header) then the X-Symlink-Target-Etag header of the static
symlink must be the Etag of the zero-byte object. If a symlink with a X-Symlink-Target-Etag
targets a large object manifest it must match the ETag of the manifest (e.g. the ETag as returned by
multipart-manifest=get or value in the X-Manifest-Etag header).

A HEAD/GET request to a symlink object behaves as a normal HEAD/GET request to the target object.
Therefore issuing a HEAD request to the symlink will return the target metadata, and issuing a GET
request to the symlink will return the data and metadata of the target object. To return the symlink
metadata (with its empty body) a GET/HEAD request with the ?symlink=get query parameter must
be sent to a symlink object.

A POST request to a symlink will result in a 307 Temporary Redirect response. The response will con-
tain a Location header with the path of the target object as the value. The request is never redirected
to the target object by Swift. Nevertheless, the metadata in the POST request will be applied to the
symlink because object servers cannot know for sure if the current object is a symlink or not in eventual
consistency.

A symlinks Content-Type is completely independent from its target. As a convenience Swift will
automatically set the Content-Type on a symlink PUT if not explicitly set by the client. If the
client sends a X-Symlink-Target-Etag Swift will set the symlinks Content-Type to that
of the target, otherwise it will be set to application/symlink. You can review a symlinks
Content-Type using the ?symlink=get interface. You can change a symlinks Content-Type
using a POST request. The symlinks Content-Type will appear in the container listing.

A DELETE request to a symlink will delete the symlink itself. The target object will not be deleted.

9.8. Middleware 707



Swift Documentation, Release 2.27.1.dev38

A COPY request, or a PUT request with a X-Copy-From header, to a symlink will copy the target
object. The same request to a symlink with the query parameter ?symlink=get will copy the symlink
itself.

An OPTIONS request to a symlink will respond with the options for the symlink only; the request will
not be redirected to the target object. Please note that if the symlinks target object is in another container
with CORS settings, the response will not reflect the settings.

Tempurls can be used to GET/HEAD symlink objects, but PUT is not allowed and will result in a 400-
series error. The GET/HEAD tempurls honor the scope of the tempurl key. Container tempurl will
only work on symlinks where the target container is the same as the symlink. In case a symlink targets
an object in a different container, a GET/HEAD request will result in a 401 Unauthorized error. The
account level tempurl will allow cross-container symlinks, but not cross-account symlinks.

If a symlink object is overwritten while it is in a versioned container, the symlink object itself is ver-
sioned, not the referenced object.

A GET request with query parameter ?format=json to a container which contains symlinks will
respond with additional information symlink_path for each symlink object in the container listing.
The symlink_path value is the target path of the symlink. Clients can differentiate symlinks and
other objects by this function. Note that responses in any other format (e.g. ?format=xml) wont
include symlink_path info. If a X-Symlink-Target-Etag header was included on the sym-
link, JSON container listings will include that value in a symlink_etag key and the target objects
Content-Length will be included in the key symlink_bytes.

If a static symlink targets a static large object manifest it will carry forward the SLOs size and slo_etag in
the container listing using the symlink_bytes and slo_etag keys. However, manifests created be-
fore swift v2.12.0 (released Dec 2016) do not contain enough metadata to propagate the extra SLO infor-
mation to the listing. Clients may recreate the manifest (COPY w/ ?multipart-manfiest=get)
before creating a static symlink to add the requisite metadata.

Errors

• PUT with the header X-Symlink-Target with non-zero Content-Length will produce a 400
BadRequest error.

• POST with the header X-Symlink-Target will produce a 400 BadRequest error.

• GET/HEAD traversing more than symloop_max chained symlinks will produce a 409 Conflict
error.

• PUT/GET/HEAD on a symlink that inclues a X-Symlink-Target-Etag header that does not
match the target will poduce a 409 Conflict error.

• POSTs will produce a 307 Temporary Redirect error.

Deployment

Symlinks are enabled by adding the symlink middleware to the proxy server WSGI pipeline and includ-
ing a corresponding filter configuration section in the proxy-server.conf file. The symlink middleware
should be placed after slo, dlo and versioned_writes middleware, but before encryption middleware in
the pipeline. See the proxy-server.conf-sample file for further details. Additional steps are required if the
container sync feature is being used.

Note: Once you have deployed symlink middleware in your pipeline, you should neither remove the
symlink middleware nor downgrade swift to a version earlier than symlinks being supported. Doing so

708 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

may result in unexpected container listing results in addition to symlink objects behaving like a normal
object.

Container sync configuration

If container sync is being used then the symlink middleware must be added to the container sync internal
client pipeline. The following configuration steps are required:

1. Create a custom internal client configuration file for container sync (if one is not already in use)
based on the sample file internal-client.conf-sample. For example, copy internal-client.conf-
sample to /etc/swift/container-sync-client.conf.

2. Modify this file to include the symlink middleware in the pipeline in the same way as described
above for the proxy server.

3. Modify the container-sync section of all container server config files to point to this internal client
config file using the internal_client_conf_path option. For example:

internal_client_conf_path = /etc/swift/container-sync-client.conf

Note: These container sync configuration steps will be necessary for container sync probe tests to pass
if the symlink middleware is included in the proxy pipeline of a test cluster.

class swift.common.middleware.symlink.SymlinkContainerContext(wsgi_app,
log-
ger)

Bases: swift.common.wsgi.WSGIContext

handle_container(req, start_response)
Handle container requests.

Parameters

• req a Request

• start_response start_response function

Returns Response Iterator after start_response called.

class swift.common.middleware.symlink.SymlinkMiddleware(app, conf,
sym-
loop_max)

Bases: object

Middleware that implements symlinks.

Symlinks are objects stored in Swift that contain a reference to another object (i.e., the target
object). An important use case is to use a path in one container to access an object in a different
container, with a different policy. This allows policy cost/performance trade-offs to be made on
individual objects.

class swift.common.middleware.symlink.SymlinkObjectContext(wsgi_app,
logger,
sym-
loop_max)

9.8. Middleware 709



Swift Documentation, Release 2.27.1.dev38

Bases: swift.common.wsgi.WSGIContext

handle_get_head(req)
Handle get/head request and in case the response is a symlink, redirect request to target
object.

Parameters req HTTP GET or HEAD object request

Returns Response Iterator

handle_get_head_symlink(req)
Handle get/head request when client sent parameter ?symlink=get

Parameters req HTTP GET or HEAD object request with param ?symlink=get

Returns Response Iterator

handle_object(req, start_response)
Handle object requests.

Parameters

• req a Request

• start_response start_response function

Returns Response Iterator after start_response has been called

handle_post(req)
Handle post request. If POSTing to a symlink, a HTTPTemporaryRedirect error message is
returned to client.

Clients that POST to symlinks should understand that the POST is not redirected to the target
object like in a HEAD/GET request. POSTs to a symlink will be handled just like a normal
object by the object server. It cannot reject it because it may not have symlink state when
the POST lands. The object server has no knowledge of what is a symlink object is. On
the other hand, on POST requests, the object server returns all sysmeta of the object. This
method uses that sysmeta to determine if the stored object is a symlink or not.

Parameters req HTTP POST object request

Raises HTTPTemporaryRedirect if POSTing to a symlink.

Returns Response Iterator

handle_put(req)
Handle put request when it contains X-Symlink-Target header.

Symlink headers are validated and moved to sysmeta namespace. :param req: HTTP PUT
object request :returns: Response Iterator

swift.common.middleware.symlink.symlink_sysmeta_to_usermeta(headers)
Helper function to translate from cluster-facing X-Object-Sysmeta-Symlink-* headers to client-
facing X-Symlink-* headers.

Parameters headers request headers dict. Note that the headers dict will be up-
dated directly.

swift.common.middleware.symlink.symlink_usermeta_to_sysmeta(headers)
Helper function to translate from client-facing X-Symlink-* headers to cluster-facing X-Object-
Sysmeta-Symlink-* headers.

710 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

Parameters headers request headers dict. Note that the headers dict will be up-
dated directly.

9.8.31 TempAuth

Test authentication and authorization system.

Add to your pipeline in proxy-server.conf, such as:

[pipeline:main]
pipeline = catch_errors cache tempauth proxy-server

Set account auto creation to true in proxy-server.conf:

[app:proxy-server]
account_autocreate = true

And add a tempauth filter section, such as:

[filter:tempauth]
use = egg:swift#tempauth
user_admin_admin = admin .admin .reseller_admin
user_test_tester = testing .admin
user_test2_tester2 = testing2 .admin
user_test_tester3 = testing3
# To allow accounts/users with underscores you can base64 encode them.
# Here is the account "under_score" and username "a_b" (note the lack
# of padding equal signs):
user64_dW5kZXJfc2NvcmU_YV9i = testing4

See the proxy-server.conf-sample for more information.

Account/User List

All accounts/users are listed in the filter section. The format is:

user_<account>_<user> = <key> [group] [group] [...] [storage_url]

If you want to be able to include underscores in the <account> or <user> portions, you can base64
encode them (with no equal signs) in a line like this:

user64_<account_b64>_<user_b64> = <key> [group] [...] [storage_url]

There are three special groups:

• .reseller_admin can do anything to any account for this auth

• .reseller_reader can GET/HEAD anything in any account for this auth

• .admin can do anything within the account

If none of these groups are specified, the user can only access containers that have been explicitly allowed
for them by a .admin or .reseller_admin.

The trailing optional storage_url allows you to specify an alternate URL to hand back to the user
upon authentication. If not specified, this defaults to:

9.8. Middleware 711



Swift Documentation, Release 2.27.1.dev38

$HOST/v1/<reseller_prefix>_<account>

Where $HOST will do its best to resolve to what the requester would need to use to
reach this host, <reseller_prefix> is from this section, and <account> is from the
user_<account>_<user> name. Note that $HOST cannot possibly handle when you have a load
balancer in front of it that does https while TempAuth itself runs with http; in such a case, youll have to
specify the storage_url_scheme configuration value as an override.

Multiple Reseller Prefix Items

The reseller prefix specifies which parts of the account namespace this middleware is responsible for
managing authentication and authorization. By default, the prefix is AUTH so accounts and tokens are
prefixed by AUTH_. When a requests token and/or path start with AUTH_, this middleware knows it is
responsible.

We allow the reseller prefix to be a list. In tempauth, the first item in the list is used as the prefix
for tokens and user groups. The other prefixes provide alternate accounts that users can access. For
example if the reseller prefix list is AUTH, OTHER, a user with admin access to AUTH_account also
has admin access to OTHER_account.

Required Group

The group .admin is normally needed to access an account (ACLs provide an additional way to
access an account). You can specify the require_group parameter. This means that you also
need the named group to access an account. If you have several reseller prefix items, prefix the
require_group parameter with the appropriate prefix.

X-Service-Token

If an X-Service-Token is presented in the request headers, the groups derived from the token
are appended to the roles derived from X-Auth-Token. If X-Auth-Token is missing or invalid,
X-Service-Token is not processed.

The X-Service-Token is useful when combined with multiple reseller prefix items. In the following
configuration, accounts prefixed SERVICE_ are only accessible if X-Auth-Token is from the end-
user and X-Service-Token is from the glance user:

[filter:tempauth]
use = egg:swift#tempauth
reseller_prefix = AUTH, SERVICE
SERVICE_require_group = .service
user_admin_admin = admin .admin .reseller_admin
user_joeacct_joe = joepw .admin
user_maryacct_mary = marypw .admin
user_glance_glance = glancepw .service

The name .service is an example. Unlike .admin, .reseller_admin, .reseller_reader
it is not a reserved name.

Please note that ACLs can be set on service accounts and are matched against the identity validated by
X-Auth-Token. As such ACLs can grant access to a service accounts container without needing to
provide a service token, just like any other cross-reseller request using ACLs.

712 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

Account ACLs

If a swift_owner issues a POST or PUT to the account with the X-Account-Access-Control
header set in the request, then this may allow certain types of access for additional users.

• Read-Only: Users with read-only access can list containers in the account, list objects in any
container, retrieve objects, and view unprivileged account/container/object metadata.

• Read-Write: Users with read-write access can (in addition to the read-only privileges) create
objects, overwrite existing objects, create new containers, and set unprivileged container/object
metadata.

• Admin: Users with admin access are swift_owners and can perform any action, including view-
ing/setting privileged metadata (e.g. changing account ACLs).

To generate headers for setting an account ACL:

from swift.common.middleware.acl import format_acl
acl_data = { 'admin': ['alice'], 'read-write': ['bob', 'carol'] }
header_value = format_acl(version=2, acl_dict=acl_data)

To generate a curl command line from the above:

token=...
storage_url=...
python -c '

from swift.common.middleware.acl import format_acl
acl_data = { 'admin': ['alice'], 'read-write': ['bob', 'carol'] }
headers = {'X-Account-Access-Control':

format_acl(version=2, acl_dict=acl_data)}
header_str = ' '.join(["-H '%s: %s'" % (k, v)

for k, v in headers.items()])
print('curl -D- -X POST -H "x-auth-token: $token" %s '

'$storage_url' % header_str)
'

class swift.common.middleware.tempauth.TempAuth(app, conf)
Bases: object

Parameters

• app The next WSGI app in the pipeline

• conf The dict of configuration values from the Paste config file

account_acls(req)
Return a dict of ACL data from the account server via get_account_info.

Auth systems may define their own format, serialization, structure, and capabilities imple-
mented in the ACL headers and persisted in the sysmeta data. However, auth systems are
strongly encouraged to be interoperable with Tempauth.

Account ACLs are set and retrieved via the header X-Account-Access-Control

For header format and syntax, see:

• swift.common.middleware.acl.parse_acl()

• swift.common.middleware.acl.format_acl()

9.8. Middleware 713



Swift Documentation, Release 2.27.1.dev38

authorize(req)
Returns None if the request is authorized to continue or a standard WSGI response callable
if not.

denied_response(req)
Returns a standard WSGI response callable with the status of 403 or 401 depending on
whether the REMOTE_USER is set or not.

extract_acl_and_report_errors(req)
Return a user-readable string indicating the errors in the input ACL, or None if there are no
errors.

get_groups(env, token)
Get groups for the given token.

Parameters

• env The current WSGI environment dictionary.

• token Token to validate and return a group string for.

Returns None if the token is invalid or a string containing a comma separated list
of groups the authenticated user is a member of. The first group in the list is
also considered a unique identifier for that user.

handle(env, start_response)
WSGI entry point for auth requests (ones that match the self.auth_prefix). Wraps env in
swob.Request object and passes it down.

Parameters

• env WSGI environment dictionary

• start_response WSGI callable

handle_get_token(req)
Handles the various request for token and service end point(s) calls. There are various for-
mats to support the various auth servers in the past. Examples:

GET <auth-prefix>/v1/<act>/auth
X-Auth-User: <act>:<usr> or X-Storage-User: <usr>
X-Auth-Key: <key> or X-Storage-Pass: <key>

GET <auth-prefix>/auth
X-Auth-User: <act>:<usr> or X-Storage-User: <act>:<usr>
X-Auth-Key: <key> or X-Storage-Pass: <key>

GET <auth-prefix>/v1.0
X-Auth-User: <act>:<usr> or X-Storage-User: <act>:<usr>
X-Auth-Key: <key> or X-Storage-Pass: <key>

On successful authentication, the response will have X-Auth-Token and X-Storage-Token
set to the token to use with Swift and X-Storage-URL set to the URL to the default Swift
cluster to use.

Parameters req The swob.Request to process.

Returns swob.Response, 2xx on success with data set as explained above.

handle_request(req)
Entry point for auth requests (ones that match the self.auth_prefix). Should return a WSGI-
style callable (such as swob.Response).

714 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

Parameters req swob.Request object

swift.common.middleware.tempauth.filter_factory(global_conf, **lo-
cal_conf)

Returns a WSGI filter app for use with paste.deploy.

9.8.32 TempURL

TempURL Middleware

Allows the creation of URLs to provide temporary access to objects.

For example, a website may wish to provide a link to download a large object in Swift, but the Swift
account has no public access. The website can generate a URL that will provide GET access for a
limited time to the resource. When the web browser user clicks on the link, the browser will download
the object directly from Swift, obviating the need for the website to act as a proxy for the request.

If the user were to share the link with all his friends, or accidentally post it on a forum, etc. the direct
access would be limited to the expiration time set when the website created the link.

Beyond that, the middleware provides the ability to create URLs, which contain signatures which are
valid for all objects which share a common prefix. These prefix-based URLs are useful for sharing a set
of objects.

Restrictions can also be placed on the ip that the resource is allowed to be accessed from. This can be
useful for locking down where the urls can be used from.

Client Usage

To create temporary URLs, first an X-Account-Meta-Temp-URL-Key header must be set on the
Swift account. Then, an HMAC (RFC 2104) signature is generated using the HTTP method to allow
(GET, PUT, DELETE, etc.), the Unix timestamp until which the access should be allowed, the full path
to the object, and the key set on the account.

The digest algorithm to be used may be configured by the operator. By default, HMAC-SHA1, HMAC-
SHA256, and HMAC-SHA512 are supported. Check the tempurl.allowed_digests entry in
the clusters capabilities response to see which algorithms are supported by your deployment; see Dis-
coverability for more information. On older clusters, the tempurl key may be present while the
allowed_digests subkey is not; in this case, only HMAC-SHA1 is supported.

For example, here is code generating the signature for a GET for 60 seconds on /v1/AUTH_account/
container/object:

import hmac
from hashlib import sha1
from time import time
method = 'GET'
expires = int(time() + 60)
path = '/v1/AUTH_account/container/object'
key = 'mykey'
hmac_body = '%s\n%s\n%s' % (method, expires, path)
sig = hmac.new(key, hmac_body, sha1).hexdigest()

Be certain to use the full path, from the /v1/ onward.

9.8. Middleware 715



Swift Documentation, Release 2.27.1.dev38

Lets say sig ends up equaling da39a3ee5e6b4b0d3255bfef95601890afd80709 and
expires ends up 1323479485. Then, for example, the website could provide a link to:

https://swift-cluster.example.com/v1/AUTH_account/container/object?
temp_url_sig=da39a3ee5e6b4b0d3255bfef95601890afd80709&
temp_url_expires=1323479485

For longer hashes, a hex encoding becomes unwieldy. Base64 encoding is also supported, and indi-
cated by prefixing the signature with "<digest name>:". This is required for HMAC-SHA512
signatures. For example, comparable code for generating a HMAC-SHA512 signature would be:

import base64
import hmac
from hashlib import sha512
from time import time
method = 'GET'
expires = int(time() + 60)
path = '/v1/AUTH_account/container/object'
key = 'mykey'
hmac_body = '%s\n%s\n%s' % (method, expires, path)
sig = 'sha512:' + base64.urlsafe_b64encode(hmac.new(

key, hmac_body, sha512).digest())

Supposing that sig ends up equaling sha512:ZrSijn0GyDhsv1ltIj9hWUTrbAeE45NcKXyBaz7aPbSMvROQ4jtYH4nRAmm
5ErY2X11Yc1Yhy2OMCyN3yueeXg== and expires ends up 1516741234, then the website
could provide a link to:

https://swift-cluster.example.com/v1/AUTH_account/container/object?
temp_url_sig=sha512:ZrSijn0GyDhsv1ltIj9hWUTrbAeE45NcKXyBaz7aPbSMvRO
Q4jtYH4nRAmm5ErY2X11Yc1Yhy2OMCyN3yueeXg==&
temp_url_expires=1516741234

You may also use ISO 8601 UTC timestamps with the format "%Y-%m-%dT%H:%M:%SZ" instead of
UNIX timestamps in the URL (but NOT in the code above for generating the signature!). So, the above
HMAC-SHA1 URL could also be formulated as:

https://swift-cluster.example.com/v1/AUTH_account/container/object?
temp_url_sig=da39a3ee5e6b4b0d3255bfef95601890afd80709&
temp_url_expires=2011-12-10T01:11:25Z

If a prefix-based signature with the prefix pre is desired, set path to:

path = 'prefix:/v1/AUTH_account/container/pre'

The generated signature would be valid for all objects starting with pre. The middleware detects
a prefix-based temporary URL by a query parameter called temp_url_prefix. So, if sig and
expires would end up like above, following URL would be valid:

https://swift-cluster.example.com/v1/AUTH_account/container/pre/object?
temp_url_sig=da39a3ee5e6b4b0d3255bfef95601890afd80709&
temp_url_expires=1323479485&
temp_url_prefix=pre

Another valid URL:

716 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

https://swift-cluster.example.com/v1/AUTH_account/container/pre/
subfolder/another_object?
temp_url_sig=da39a3ee5e6b4b0d3255bfef95601890afd80709&
temp_url_expires=1323479485&
temp_url_prefix=pre

If you wish to lock down the ip ranges from where the resource can be accessed to the ip 1.2.3.4:

import hmac
from hashlib import sha1
from time import time
method = 'GET'
expires = int(time() + 60)
path = '/v1/AUTH_account/container/object'
ip_range = '1.2.3.4'
key = 'mykey'
hmac_body = 'ip=%s\n%s\n%s\n%s' % (ip_range, method, expires, path)
sig = hmac.new(key, hmac_body, sha1).hexdigest()

The generated signature would only be valid from the ip 1.2.3.4. The middleware detects an ip-based
temporary URL by a query parameter called temp_url_ip_range. So, if sig and expireswould
end up like above, following URL would be valid:

https://swift-cluster.example.com/v1/AUTH_account/container/object?
temp_url_sig=da39a3ee5e6b4b0d3255bfef95601890afd80709&
temp_url_expires=1323479485&
temp_url_ip_range=1.2.3.4

Similarly to lock down the ip to a range of 1.2.3.X so starting from the ip 1.2.3.0 to 1.2.3.255:

import hmac
from hashlib import sha1
from time import time
method = 'GET'
expires = int(time() + 60)
path = '/v1/AUTH_account/container/object'
ip_range = '1.2.3.0/24'
key = 'mykey'
hmac_body = 'ip=%s\n%s\n%s\n%s' % (ip_range, method, expires, path)
sig = hmac.new(key, hmac_body, sha1).hexdigest()

Then the following url would be valid:

https://swift-cluster.example.com/v1/AUTH_account/container/object?
temp_url_sig=da39a3ee5e6b4b0d3255bfef95601890afd80709&
temp_url_expires=1323479485&
temp_url_ip_range=1.2.3.0/24

Any alteration of the resource path or query arguments of a temporary URL would result in 401
Unauthorized. Similarly, a PUT where GET was the allowed method would be rejected with 401
Unauthorized. However, HEAD is allowed if GET, PUT, or POST is allowed.

Using this in combination with browser form post translation middleware could also allow direct-from-
browser uploads to specific locations in Swift.

TempURL supports both account and container level keys. Each allows up to two keys to be set,
allowing key rotation without invalidating all existing temporary URLs. Account keys are spec-

9.8. Middleware 717



Swift Documentation, Release 2.27.1.dev38

ified by X-Account-Meta-Temp-URL-Key and X-Account-Meta-Temp-URL-Key-2,
while container keys are specified by X-Container-Meta-Temp-URL-Key and
X-Container-Meta-Temp-URL-Key-2. Signatures are checked against account and con-
tainer keys, if present.

With GET TempURLs, a Content-Disposition header will be set on the response so that browsers
will interpret this as a file attachment to be saved. The filename chosen is based on the object name, but
you can override this with a filename query parameter. Modifying the above example:

https://swift-cluster.example.com/v1/AUTH_account/container/object?
temp_url_sig=da39a3ee5e6b4b0d3255bfef95601890afd80709&
temp_url_expires=1323479485&filename=My+Test+File.pdf

If you do not want the object to be downloaded, you can cause Content-Disposition: inline
to be set on the response by adding the inline parameter to the query string, like so:

https://swift-cluster.example.com/v1/AUTH_account/container/object?
temp_url_sig=da39a3ee5e6b4b0d3255bfef95601890afd80709&
temp_url_expires=1323479485&inline

In some cases, the client might not able to present the content of the object, but you still want the con-
tent able to save to local with the specific filename. So you can cause Content-Disposition:
inline; filename=... to be set on the response by adding the inline&filename=... pa-
rameter to the query string, like so:

https://swift-cluster.example.com/v1/AUTH_account/container/object?
temp_url_sig=da39a3ee5e6b4b0d3255bfef95601890afd80709&
temp_url_expires=1323479485&inline&filename=My+Test+File.pdf

Cluster Configuration

This middleware understands the following configuration settings:

incoming_remove_headers A whitespace-delimited list of the headers to remove from
incoming requests. Names may optionally end with * to indicate a prefix match.
incoming_allow_headers is a list of exceptions to these removals. Default:
x-timestamp

incoming_allow_headers A whitespace-delimited list of the headers allowed as exceptions to
incoming_remove_headers. Names may optionally end with * to indicate a prefix match.

Default: None

outgoing_remove_headers A whitespace-delimited list of the headers to remove from
outgoing responses. Names may optionally end with * to indicate a prefix match.
outgoing_allow_headers is a list of exceptions to these removals.

Default: x-object-meta-*

outgoing_allow_headers A whitespace-delimited list of the headers allowed as exceptions to
outgoing_remove_headers. Names may optionally end with * to indicate a prefix match.

Default: x-object-meta-public-*

methods A whitespace delimited list of request methods that are allowed to be used with a temporary
URL.

718 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

Default: GET HEAD PUT POST DELETE

allowed_digests A whitespace delimited list of digest algorithms that are allowed to be used when
calculating the signature for a temporary URL.

Default: sha1 sha256 sha512

swift.common.middleware.tempurl.DEFAULT_INCOMING_ALLOW_HEADERS = ''
Default headers as exceptions to DEFAULT_INCOMING_REMOVE_HEADERS. Simply a
whitespace delimited list of header names and names can optionally end with * to indicate a
prefix match.

swift.common.middleware.tempurl.DEFAULT_INCOMING_REMOVE_HEADERS = 'x-timestamp'
Default headers to remove from incoming requests. Simply a whitespace delimited list
of header names and names can optionally end with * to indicate a prefix match. DE-
FAULT_INCOMING_ALLOW_HEADERS is a list of exceptions to these removals.

swift.common.middleware.tempurl.DEFAULT_OUTGOING_ALLOW_HEADERS = 'x-object-meta-public-*'
Default headers as exceptions to DEFAULT_OUTGOING_REMOVE_HEADERS. Simply a
whitespace delimited list of header names and names can optionally end with * to indicate a
prefix match.

swift.common.middleware.tempurl.DEFAULT_OUTGOING_REMOVE_HEADERS = 'x-object-meta-*'
Default headers to remove from outgoing responses. Simply a whitespace delimited list
of header names and names can optionally end with * to indicate a prefix match. DE-
FAULT_OUTGOING_ALLOW_HEADERS is a list of exceptions to these removals.

class swift.common.middleware.tempurl.TempURL(app, conf)
Bases: object

WSGI Middleware to grant temporary URLs specific access to Swift resources. See the overview
for more information.

The proxy logs created for any subrequests made will have swift.source set to TU.

Parameters

• app The next WSGI filter or app in the paste.deploy chain.

• conf The configuration dict for the middleware.

agent
HTTP user agent to use for subrequests.

app
The next WSGI application/filter in the paste.deploy pipeline.

conf
The filter configuration dict.

incoming_allow_headers
Headers to allow in incoming requests. Uppercase WSGI env style, like
HTTP_X_MATCHES_REMOVE_PREFIX_BUT_OKAY.

incoming_allow_headers_startswith
Header with match prefixes to allow in incoming requests. Uppercase WSGI env style, like
HTTP_X_MATCHES_REMOVE_PREFIX_BUT_OKAY_*.

9.8. Middleware 719



Swift Documentation, Release 2.27.1.dev38

incoming_remove_headers
Headers to remove from incoming requests. Uppercase WSGI env style, like
HTTP_X_PRIVATE.

incoming_remove_headers_startswith
Header with match prefixes to remove from incoming requests. Uppercase WSGI env style,
like HTTP_X_SENSITIVE_*.

outgoing_allow_headers
Headers to allow in outgoing responses. Lowercase, like x-matches-remove-prefix-but-okay.

outgoing_allow_headers_startswith
Header with match prefixes to allow in outgoing responses. Lowercase, like x-matches-
remove-prefix-but-okay-*.

outgoing_remove_headers
Headers to remove from outgoing responses. Lowercase, like x-account-meta-temp-url-key.

outgoing_remove_headers_startswith
Header with match prefixes to remove from outgoing responses. Lowercase, like x-account-
meta-private-*.

swift.common.middleware.tempurl.filter_factory(global_conf, **lo-
cal_conf)

Returns the WSGI filter for use with paste.deploy.

9.8.33 Versioned Writes

Note: This middleware supports two legacy modes of object versioning that is now replaced by a new
mode. It is recommended to use the new Object Versioning mode for new containers.

Object versioning in swift is implemented by setting a flag on the container to tell swift to version all
objects in the container. The value of the flag is the URL-encoded container name where the versions
are stored (commonly referred to as the archive container). The flag itself is one of two headers, which
determines how object DELETE requests are handled:

• X-History-Location

On DELETE, copy the current version of the object to the archive container, write a zero-byte
delete marker object that notes when the delete took place, and delete the object from the versioned
container. The object will no longer appear in container listings for the versioned container and
future requests there will return 404 Not Found. However, the content will still be recoverable
from the archive container.

• X-Versions-Location

On DELETE, only remove the current version of the object. If any previous versions exist in
the archive container, the most recent one is copied over the current version, and the copy in the
archive container is deleted. As a result, if you have 5 total versions of the object, you must delete
the object 5 times for that object name to start responding with 404 Not Found.

Either header may be used for the various containers within an account, but only one may be set for any
given container. Attempting to set both simulataneously will result in a 400 Bad Request response.

720 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

Note: It is recommended to use a different archive container for each container that is being versioned.

Note: Enabling versioning on an archive container is not recommended.

When data is PUT into a versioned container (a container with the versioning flag turned on), the ex-
isting data in the file is redirected to a new object in the archive container and the data in the PUT
request is saved as the data for the versioned object. The new object name (for the previous version) is
<archive_container>/<length><object_name>/<timestamp>, where length is the
3-character zero-padded hexadecimal length of the <object_name> and <timestamp> is the times-
tamp of when the previous version was created.

A GET to a versioned object will return the current version of the object without having to do any request
redirects or metadata lookups.

A POST to a versioned object will update the object metadata as normal, but will not create a new version
of the object. In other words, new versions are only created when the content of the object changes.

A DELETE to a versioned object will be handled in one of two ways, as described above.

To restore a previous version of an object, find the desired version in the archive container then issue
a COPY with a Destination header indicating the original location. This will archive the current
version similar to a PUT over the versioned object. If the client additionally wishes to permanently
delete what was the current version, it must find the newly-created archive in the archive container and
issue a separate DELETE to it.

How to Enable Object Versioning in a Swift Cluster

This middleware was written as an effort to refactor parts of the proxy server, so this functionality was
already available in previous releases and every attempt was made to maintain backwards compatibility.
To allow operators to perform a seamless upgrade, it is not required to add the middleware to the proxy
pipeline and the flag allow_versions in the container server configuration files are still valid, but
only when using X-Versions-Location. In future releases, allow_versions will be depre-
cated in favor of adding this middleware to the pipeline to enable or disable the feature.

In case the middleware is added to the proxy pipeline, you must also set allow_versioned_writes
to True in the middleware options to enable the information about this middleware to be returned in a
/info request.

Note: You need to add the middleware to the proxy pipeline and set allow_versioned_writes =
True to use X-History-Location. Setting allow_versions = True in the container server
is not sufficient to enable the use of X-History-Location.

9.8. Middleware 721



Swift Documentation, Release 2.27.1.dev38

Upgrade considerations

If allow_versioned_writes is set in the filter configuration, you can leave the
allow_versions flag in the container server configuration files untouched. If you decide to dis-
able or remove the allow_versions flag, you must re-set any existing containers that had the
X-Versions-Location flag configured so that it can now be tracked by the versioned_writes mid-
dleware.

Clients should not use the X-History-Location header until all proxies in the cluster have been
upgraded to a version of Swift that supports it. Attempting to use X-History-Location during a
rolling upgrade may result in some requests being served by proxies running old code, leading to data
loss.

Examples Using curl with X-Versions-Location

First, create a container with the X-Versions-Location header or add the header to an existing
container. Also make sure the container referenced by the X-Versions-Location exists. In this
example, the name of that container is versions:

curl -i -XPUT -H "X-Auth-Token: <token>" -H "X-Versions-Location: versions
↪→" http://<storage_url>/container
curl -i -XPUT -H "X-Auth-Token: <token>" http://<storage_url>/versions

Create an object (the first version):

curl -i -XPUT --data-binary 1 -H "X-Auth-Token: <token>" http://<storage_
↪→url>/container/myobject

Now create a new version of that object:

curl -i -XPUT --data-binary 2 -H "X-Auth-Token: <token>" http://<storage_
↪→url>/container/myobject

See a listing of the older versions of the object:

curl -i -H "X-Auth-Token: <token>" http://<storage_url>/versions?
↪→prefix=008myobject/

Now delete the current version of the object and see that the older version is gone from versions container
and back in container container:

curl -i -XDELETE -H "X-Auth-Token: <token>" http://<storage_url>/container/
↪→myobject
curl -i -H "X-Auth-Token: <token>" http://<storage_url>/versions?
↪→prefix=008myobject/
curl -i -XGET -H "X-Auth-Token: <token>" http://<storage_url>/container/
↪→myobject

722 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

Examples Using curl with X-History-Location

As above, create a container with the X-History-Location header and ensure that the container
referenced by the X-History-Location exists. In this example, the name of that container is
versions:

curl -i -XPUT -H "X-Auth-Token: <token>" -H "X-History-Location: versions"
↪→http://<storage_url>/container
curl -i -XPUT -H "X-Auth-Token: <token>" http://<storage_url>/versions

Create an object (the first version):

curl -i -XPUT --data-binary 1 -H "X-Auth-Token: <token>" http://<storage_
↪→url>/container/myobject

Now create a new version of that object:

curl -i -XPUT --data-binary 2 -H "X-Auth-Token: <token>" http://<storage_
↪→url>/container/myobject

Now delete the current version of the object. Subsequent requests will 404:

curl -i -XDELETE -H "X-Auth-Token: <token>" http://<storage_url>/container/
↪→myobject
curl -i -H "X-Auth-Token: <token>" http://<storage_url>/container/myobject

A listing of the older versions of the object will include both the first and second versions of the object,
as well as a delete marker object:

curl -i -H "X-Auth-Token: <token>" http://<storage_url>/versions?
↪→prefix=008myobject/

To restore a previous version, simply COPY it from the archive container:

curl -i -XCOPY -H "X-Auth-Token: <token>" http://<storage_url>/versions/
↪→008myobject/<timestamp> -H "Destination: container/myobject"

Note that the archive container still has all previous versions of the object, including the source for the
restore:

curl -i -H "X-Auth-Token: <token>" http://<storage_url>/versions?
↪→prefix=008myobject/

To permanently delete a previous version, DELETE it from the archive container:

curl -i -XDELETE -H "X-Auth-Token: <token>" http://<storage_url>/versions/
↪→008myobject/<timestamp>

9.8. Middleware 723



Swift Documentation, Release 2.27.1.dev38

How to Disable Object Versioning in a Swift Cluster

If you want to disable all functionality, set allow_versioned_writes to False in the middleware
options.

Disable versioning from a container (x is any value except empty):

curl -i -XPOST -H "X-Auth-Token: <token>" -H "X-Remove-Versions-Location: x
↪→" http://<storage_url>/container

class swift.common.middleware.versioned_writes.legacy.VersionedWritesContext(wsgi_app,
log-
ger)

Bases: swift.common.wsgi.WSGIContext

handle_obj_versions_delete_pop(req, versions_cont, api_version, ac-
count_name, container_name, object_name)

Handle DELETE requests when in stack mode.

Delete current version of object and pop previous version in its place.

Parameters

• req original request.

• versions_cont container where previous versions of the object are
stored.

• api_version api version.

• account_name account name.

• container_name container name.

• object_name object name.

handle_obj_versions_delete_push(req, versions_cont, api_version, ac-
count_name, container_name, ob-
ject_name)

Handle DELETE requests when in history mode.

Copy current version of object to versions_container and write a delete marker before pro-
ceeding with original request.

Parameters

• req original request.

• versions_cont container where previous versions of the object are
stored.

• api_version api version.

• account_name account name.

• object_name name of object of original request

handle_obj_versions_put(req, versions_cont, api_version, account_name, ob-
ject_name)

Copy current version of object to versions_container before proceeding with original request.

Parameters

724 Chapter 9. Source Documentation



Swift Documentation, Release 2.27.1.dev38

• req original request.

• versions_cont container where previous versions of the object are
stored.

• api_version api version.

• account_name account name.

• object_name name of object of original request

9.8.34 XProfile

Profiling middleware for Swift Servers.

The current implementation is based on eventlet aware profiler.(For the future, more profilers could be
added in to collect more data for analysis.) Profiling all incoming requests and accumulating cpu timing
statistics information for performance tuning and optimization. An mini web UI is also provided for
profiling data analysis. It can be accessed from the URL as below.

Index page for browse profile data:

http://SERVER_IP:PORT/__profile__

List all profiles to return profile ids in json format:

http://SERVER_IP:PORT/__profile__/
http://SERVER_IP:PORT/__profile__/all

Retrieve specific profile data in different formats:

http://SERVER_IP:PORT/__profile__/PROFILE_ID?format=[default|json|csv|ods]
http://SERVER_IP:PORT/__profile__/current?format=[default|json|csv|ods]
http://SERVER_IP:PORT/__profile__/all?format=[default|json|csv|ods]

Retrieve metrics from specific function in json format:

http://SERVER_IP:PORT/__profile__/PROFILE_ID/NFL?format=json
http://SERVER_IP:PORT/__profile__/current/NFL?format=json
http://SERVER_IP:PORT/__profile__/all/NFL?format=json

NFL is defined by concatenation of file name, function name and the first
line number.
e.g.::

account.py:50(GETorHEAD)
or with full path:

opt/stack/swift/swift/proxy/controllers/account.py:50(GETorHEAD)

A list of URL examples:

http://localhost:8080/__profile__ (proxy server)
http://localhost:6200/__profile__/all (object server)
http://localhost:6201/__profile__/current (container server)
http://localhost:6202/__profile__/12345?format=json (account server)

The profiling middleware can be configured in paste file for WSGI servers such as proxy, account,
container and object servers. Please refer to the sample configuration files in etc directory.

9.8. Middleware 725



Swift Documentation, Release 2.27.1.dev38

The profiling data is provided with four formats such as binary(by default), json, csv and odf spreadsheet
which requires installing odfpy library:

sudo pip install odfpy

Theres also a simple visualization capability which is enabled by using matplotlib toolkit. it is also
required to be installed if you want to use it to visualize statistic data:

sudo apt-get install python-matplotlib

726 Chapter 9. Source Documentation



CHAPTER

TEN

INDICES AND TABLES

• genindex

• modindex

• search

727



Swift Documentation, Release 2.27.1.dev38

728 Chapter 10. Indices and tables



PYTHON MODULE INDEX

a
swift.account.auditor, 491
swift.account.backend, 492
swift.account.reaper, 494
swift.account.server, 497

c
swift.cli.manage_shard_ranges, 111
swift.cli.ring_builder_analyzer, 17
swift.cli.ringcomposer, 16
swift.common.bufferedhttp, 561
swift.common.constraints, 563
swift.common.container_sync_realms,

566
swift.common.db, 521
swift.common.db_replicator, 526
swift.common.direct_client, 567
swift.common.exceptions, 574
swift.common.internal_client, 577
swift.common.manager, 586
swift.common.memcached, 589
swift.common.middleware.account_quotas,

648
swift.common.middleware.acl, 558
swift.common.middleware.bulk, 673
swift.common.middleware.catch_errors,

676
swift.common.middleware.cname_lookup,

677
swift.common.middleware.container_quotas,

677
swift.common.middleware.container_sync,

678
swift.common.middleware.copy, 702
swift.common.middleware.crossdomain,

678
swift.common.middleware.crypto, 681
swift.common.middleware.crypto.decrypter,

682
swift.common.middleware.crypto.encrypter,

681

swift.common.middleware.crypto.keymaster,
688

swift.common.middleware.dlo, 48
swift.common.middleware.domain_remap,

679
swift.common.middleware.etag_quoter,

685
swift.common.middleware.formpost,

685
swift.common.middleware.gatekeeper,

687
swift.common.middleware.healthcheck,

688
swift.common.middleware.keystoneauth,

689
swift.common.middleware.list_endpoints,

692
swift.common.middleware.memcache,

693
swift.common.middleware.name_check,

693
swift.common.middleware.proxy_logging,

698
swift.common.middleware.ratelimit,

699
swift.common.middleware.read_only,

701
swift.common.middleware.recon, 701
swift.common.middleware.s3api.acl_handlers,

665
swift.common.middleware.s3api.acl_utils,

667
swift.common.middleware.s3api.controllers.acl,

669
swift.common.middleware.s3api.controllers.base,

668
swift.common.middleware.s3api.controllers.bucket,

668
swift.common.middleware.s3api.controllers.location,

672
swift.common.middleware.s3api.controllers.logging,

729



Swift Documentation, Release 2.27.1.dev38

673
swift.common.middleware.s3api.controllers.multi_delete,

672
swift.common.middleware.s3api.controllers.multi_upload,

670
swift.common.middleware.s3api.controllers.obj,

669
swift.common.middleware.s3api.controllers.s3_acl,

670
swift.common.middleware.s3api.controllers.service,

668
swift.common.middleware.s3api.controllers.versioning,

672
swift.common.middleware.s3api.etree,

661
swift.common.middleware.s3api.exception,

661
swift.common.middleware.s3api.s3api,

649
swift.common.middleware.s3api.s3request,

652
swift.common.middleware.s3api.s3response,

653
swift.common.middleware.s3api.s3token,

651
swift.common.middleware.s3api.subresource,

662
swift.common.middleware.s3api.utils,

661
swift.common.middleware.slo, 49
swift.common.middleware.staticweb,

704
swift.common.middleware.symlink,

706
swift.common.middleware.tempauth,

711
swift.common.middleware.tempurl,

715
swift.common.middleware.versioned_writes.legacy,

720
swift.common.middleware.versioned_writes.object_versioning,

694
swift.common.middleware.xprofile,

725
swift.common.request_helpers, 592
swift.common.ring.builder, 460
swift.common.ring.composite_builder,

465
swift.common.ring.ring, 457
swift.common.storage_policy, 643
swift.common.swob, 598

swift.common.utils, 605
swift.common.wsgi, 637
swift.container.auditor, 497
swift.container.backend, 498
swift.container.reconciler, 511
swift.container.replicator, 507
swift.container.server, 509
swift.container.sharder, 515
swift.container.sync, 518
swift.container.updater, 520

o
swift.obj.auditor, 528
swift.obj.diskfile, 529
swift.obj.reconstructor, 551
swift.obj.replicator, 545
swift.obj.server, 554
swift.obj.ssync_receiver, 549
swift.obj.ssync_sender, 547
swift.obj.updater, 556

p
swift.proxy.controllers.account,

480
swift.proxy.controllers.base, 472
swift.proxy.controllers.container,

480
swift.proxy.controllers.obj, 481
swift.proxy.server, 489

730 Python Module Index



INDEX

Symbols
_Element (class in

swift.common.middleware.s3api.etree),
661

__call__() (swift.common.swob.Response
method), 603

A
absolute_location()

(swift.common.swob.Response method),
603

Accept (class in swift.common.swob), 598
accept() (swift.common.swob.Request prop-

erty), 600
accept_ranges()

(swift.common.swob.Response prop-
erty), 603

AccessDenied, 653
account() (swift.obj.diskfile.BaseDiskFile

property), 530
account_acls()

(swift.common.middleware.tempauth.TempAuth
method), 713

account_audit()
(swift.account.auditor.AccountAuditor
method), 491

account_info()
(swift.proxy.controllers.base.Controller
method), 473

account_read_only()
(swift.common.middleware.read_only.ReadOnlyMiddleware
method), 701

account_ring()
(swift.common.internal_client.InternalClient
property), 578

account_update()
(swift.container.server.ContainerController
method), 510

AccountAuditor (class in
swift.account.auditor), 491

AccountBroker (class in

swift.account.backend), 492
AccountContext (class in

swift.common.middleware.versioned_writes.object_versioning),
696

AccountController (class in
swift.account.server), 497

AccountController (class in
swift.proxy.controllers.account), 480

AccountProblem, 654
AccountQuotaMiddleware (class in

swift.common.middleware.account_quotas),
648

AccountReaper (class in
swift.account.reaper), 494

ACL (class in swift.common.middleware.s3api.subresource),
662

acl() (swift.common.swob.Request property),
600

AclController (class in
swift.common.middleware.s3api.controllers.acl),
669

ACLError, 661
acls_from_account_info() (in module

swift.common.middleware.acl), 558
acquire() (swift.common.utils.PipeMutex

method), 607
add_acls_from_sys_metadata()

(swift.proxy.controllers.account.AccountController
method), 480

add_alternate_nodes()
(swift.proxy.controllers.obj.ECGetResponseBucket
method), 484

add_bad_resp()
(swift.proxy.controllers.obj.ECGetResponseCollection
method), 484

add_dev() (swift.common.ring.builder.RingBuilder
method), 460

add_failure_stats()
(swift.obj.replicator.Stats method),
547

add_good_response()

731



Swift Documentation, Release 2.27.1.dev38

(swift.proxy.controllers.obj.ECGetResponseCollection
method), 484

add_name() (swift.common.storage_policy.BaseStoragePolicy
method), 643

add_policy_alias()
(swift.common.storage_policy.StoragePolicyCollection
method), 646

add_response()
(swift.proxy.controllers.obj.ECGetResponseBucket
method), 484

add_response()
(swift.proxy.controllers.obj.ECGetResponseCollection
method), 484

add_to_reconciler_queue() (in module
swift.container.reconciler), 513

affinity_key_function() (in module
swift.common.utils), 614

affinity_locality_predicate() (in
module swift.common.utils), 615

agent (swift.common.middleware.tempurl.TempURL
attribute), 719

aggregate_recon_update()
(swift.obj.reconstructor.ObjectReconstructor
method), 551

aggregate_recon_update()
(swift.obj.replicator.ObjectReplicator
method), 545

allowed_methods()
(swift.proxy.controllers.base.Controller
property), 473

allowed_sync_hosts
(swift.container.server.ContainerController
attribute), 510

allowed_sync_hosts
(swift.container.sync.ContainerSync
attribute), 519

AllUsers (class in
swift.common.middleware.s3api.subresource),
663

AmbiguousGrantByEmailAddress, 654
amz_date_format()

(swift.common.middleware.s3api.utils.S3Timestamp
property), 662

APIVersionError, 574
app (swift.common.middleware.formpost.FormPost

attribute), 687
app (swift.common.middleware.staticweb.StaticWeb

attribute), 706
app (swift.common.middleware.tempurl.TempURL

attribute), 719
app_factory() (in module

swift.account.server), 497
app_factory() (in module

swift.container.server), 511
app_factory() (in module swift.obj.server),

556
app_factory() (in module swift.proxy.server),

491
app_iter() (swift.common.swob.Response

property), 603
app_iter_range()

(swift.common.request_helpers.SegmentedIterable
method), 593

app_iter_range()
(swift.obj.diskfile.BaseDiskFileReader
method), 538

app_iter_range()
(swift.proxy.controllers.obj.ECAppIter
method), 482

app_iter_ranges()
(swift.common.request_helpers.SegmentedIterable
method), 593

app_iter_ranges()
(swift.obj.diskfile.BaseDiskFileReader
method), 538

app_iter_ranges()
(swift.proxy.controllers.obj.ECAppIter
method), 482

Application (class in swift.proxy.server), 489
assigned_device_count()

(swift.common.ring.ring.Ring property),
457

async_update()
(swift.obj.server.ObjectController
method), 554

asyncstarmap()
(swift.common.utils.StreamingPile
method), 612

ATTRIBUTES_RE (in module
swift.common.utils), 605

audit_all_objects()
(swift.obj.auditor.AuditorWorker
method), 528

audit_location_generator() (in module
swift.common.utils), 615

audit_loop() (swift.obj.auditor.ObjectAuditor
method), 528

AuditLocation (class in swift.obj.diskfile),
529

AuditorWorker (class in swift.obj.auditor),
528

authenticate()

732 Index



Swift Documentation, Release 2.27.1.dev38

(swift.common.middleware.s3api.s3request.S3AclRequest
method), 652

AuthenticatedUsers (class in
swift.common.middleware.s3api.subresource),
663

AuthorizationHeaderMalformed, 654
AuthorizationQueryParametersError,

654
authorize() (swift.common.middleware.tempauth.TempAuth

method), 713
authorize_anonymous()

(swift.common.middleware.keystoneauth.KeystoneAuth
method), 691

auto_create_account_prefix()
(swift.common.internal_client.InternalClient
property), 578

autocreate_account()
(swift.proxy.controllers.base.Controller
method), 473

await_response()
(swift.proxy.controllers.obj.Putter
method), 487

B
backward() (in module swift.common.utils),

616
BadDigest, 654
BadResponseLength, 676
BadSwiftRequest, 661
base_request()

(swift.common.internal_client.SimpleClient
method), 585

BaseAclHandler (class in
swift.common.middleware.s3api.acl_handlers),
665

BaseDecrypterContext (class in
swift.common.middleware.crypto.decrypter),
682

BaseDiskFile (class in swift.obj.diskfile), 529
BaseDiskFileManager (class in

swift.obj.diskfile), 532
BaseDiskFileReader (class in

swift.obj.diskfile), 537
BaseDiskFileWriter (class in

swift.obj.diskfile), 538
BaseKeyMaster (class in

swift.common.middleware.crypto.keymaster),
688

BaseObjectController (class in
swift.proxy.controllers.obj), 481

BaseStoragePolicy (class in

swift.common.storage_policy), 643
best_bucket()

(swift.proxy.controllers.obj.ECGetResponseCollection
property), 484

best_match() (swift.common.swob.Accept
method), 599

best_policy_index() (in module
swift.container.reconciler), 513

best_response()
(swift.proxy.controllers.base.Controller
method), 473

blank() (swift.common.swob.Request class
method), 600

body() (swift.common.middleware.s3api.s3request.S3Request
property), 652

body() (swift.common.swob.Request property),
600

body() (swift.common.swob.Response property),
603

body_file() (swift.common.swob.Request
property), 600

BROKER_TIMEOUT (in module
swift.common.db), 521

brokerclass (swift.container.replicator.ContainerReplicator
attribute), 507

bucket_acl() (swift.common.middleware.s3api.s3request.S3Request
property), 652

bucket_operation() (in module
swift.common.middleware.s3api.controllers.base),
668

BucketAclHandler (class in
swift.common.middleware.s3api.acl_handlers),
666

BucketAlreadyExists, 654
BucketAlreadyOwnedByYou, 654
BucketController (class in

swift.common.middleware.s3api.controllers.bucket),
668

BucketNotEmpty, 654
BufferedHTTPConnection (class in

swift.common.bufferedhttp), 561
BufferedHTTPResponse (class in

swift.common.bufferedhttp), 561
build_reconstruction_jobs()

(swift.obj.reconstructor.ObjectReconstructor
method), 551

build_replication_jobs()
(swift.obj.replicator.ObjectReplicator
method), 545

ByteCountEnforcer (class in
swift.proxy.controllers.base), 472

Index 733



Swift Documentation, Release 2.27.1.dev38

ByteCountingReader (class in
swift.common.middleware.versioned_writes.object_versioning),
696

bytes_to_skip() (in module
swift.proxy.controllers.base), 477

bytes_used() (swift.common.utils.ShardRangeList
property), 611

C
cache_from_env() (in module

swift.common.utils), 616
calc_replica_count() (in module

swift.common.ring.ring), 460
call_application()

(swift.common.swob.Request method),
600

can_part_move()
(swift.common.ring.composite_builder.CompositeRingBuilder
method), 467

can_part_move()
(swift.common.ring.composite_builder.CooperativeRingBuilder
method), 470

can_zero_copy_send()
(swift.obj.diskfile.BaseDiskFileReader
method), 538

cancel_increase_partition_power()
(swift.common.ring.builder.RingBuilder
method), 461

canned_acl_grantees() (in module
swift.common.middleware.s3api.subresource),
664

CannedACL (class in
swift.common.middleware.s3api.subresource),
663

capture_stdio() (in module
swift.common.utils), 616

CatchErrorMiddleware (class in
swift.common.middleware.catch_errors),
676

CatchErrorsContext (class in
swift.common.middleware.catch_errors),
676

change_min_part_hours()
(swift.common.ring.builder.RingBuilder
method), 461

change_policy_primary_name()
(swift.common.storage_policy.StoragePolicyCollection
method), 646

change_primary_name()
(swift.common.storage_policy.BaseStoragePolicy
method), 643

charset() (swift.common.swob.Response prop-
erty), 603

check_account_format() (in module
swift.common.constraints), 563

check_against_existing() (in module
swift.common.ring.composite_builder),
470

check_builder_ids() (in module
swift.common.ring.composite_builder),
470

check_config()
(swift.proxy.server.Application method),
489

check_container_existence()
(in module
swift.common.middleware.s3api.controllers.base),
668

check_container_format() (in module
swift.common.constraints), 563

check_content_type() (in module
swift.proxy.controllers.obj), 487

check_copy_source()
(swift.common.middleware.s3api.s3request.S3Request
method), 652

check_delete_headers() (in module
swift.common.constraints), 564

check_dir() (in module
swift.common.constraints), 564

check_drive() (in module
swift.common.constraints), 564

check_filter_order()
(swift.common.middleware.s3api.s3api.S3ApiMiddleware
method), 651

check_float() (in module
swift.common.constraints), 564

check_for_dev_uniqueness() (in module
swift.common.ring.composite_builder),
471

check_free_space()
(swift.account.server.AccountController
method), 497

check_free_space()
(swift.container.server.ContainerController
method), 510

check_metadata() (in module
swift.common.constraints), 564

check_mount() (in module
swift.common.constraints), 564

check_name_format() (in module
swift.common.constraints), 565

check_object_creation() (in module

734 Index



Swift Documentation, Release 2.27.1.dev38

swift.common.constraints), 565
check_owner()

(swift.common.middleware.s3api.subresource.ACL
method), 663

check_path_header() (in module
swift.common.request_helpers), 593

check_permission()
(swift.common.middleware.s3api.subresource.ACL
method), 663

check_pipeline()
(swift.common.middleware.s3api.s3api.S3ApiMiddleware
method), 651

check_policy()
(swift.obj.diskfile.BaseDiskFileManager
class method), 533

check_ring() (swift.obj.reconstructor.ObjectReconstructor
method), 551

check_ring() (swift.obj.replicator.ObjectReplicator
method), 545

check_same_builder() (in module
swift.common.ring.composite_builder),
471

check_utf8() (in module
swift.common.constraints), 565

chexor() (in module swift.common.db), 525
choose_best_bucket()

(swift.proxy.controllers.obj.ECGetResponseCollection
method), 485

chunk_size (swift.common.ring.ring.RingReader
attribute), 460

chunk_transformer() (in module
swift.proxy.controllers.obj), 488

ChunkReadError, 574
ChunkReadTimeout, 574
chunks_finished()

(swift.obj.diskfile.BaseDiskFileWriter
method), 539

ChunkWriteTimeout, 574
clean_acl() (in module

swift.common.middleware.acl), 558
clean_acls() (swift.proxy.controllers.container.ContainerController

method), 481
cleanup_ondisk_files()

(swift.obj.diskfile.BaseDiskFileManager
method), 533

cleanup_post_replicate()
(swift.common.db_replicator.Replicator
method), 526

cleanup_post_replicate()
(swift.container.replicator.ContainerReplicator
method), 507

clear_auditor_status() (in module
swift.obj.diskfile), 542

clear_auditor_status()
(swift.obj.diskfile.BaseDiskFileManager
method), 533

clear_info_cache() (in module
swift.proxy.controllers.base), 477

clear_recon_cache()
(swift.obj.auditor.ObjectAuditor method),
528

CleavingContext (class in
swift.container.sharder), 515

client_range_to_segment_range() (in
module swift.proxy.controllers.obj), 488

ClientException, 574
close() (swift.common.bufferedhttp.BufferedHTTPResponse

method), 562
close() (swift.common.request_helpers.SegmentedIterable

method), 593
close() (swift.common.ring.ring.RingReader

property), 460
close() (swift.common.utils.PipeMutex

method), 607
close() (swift.obj.diskfile.BaseDiskFileReader

method), 538
close() (swift.obj.diskfile.BaseDiskFileWriter

method), 539
close() (swift.proxy.controllers.obj.ECAppIter

method), 482
close() (swift.proxy.controllers.obj.Putter

method), 487
close_conns()

(swift.proxy.controllers.obj.ECGetResponseBucket
method), 484

close_swift_conn() (in module
swift.proxy.controllers.base), 477

CloseableChain (class in swift.common.utils),
605

closing_if_possible() (in module
swift.common.utils), 616

clusters() (swift.common.container_sync_realms.ContainerSyncRealms
method), 566

cmp_policy_info() (in module
swift.container.reconciler), 514

CNAMELookupMiddleware (class in
swift.common.middleware.cname_lookup),
677

collect_jobs()
(swift.obj.replicator.ObjectReplicator
method), 545

collect_parts()

Index 735



Swift Documentation, Release 2.27.1.dev38

(swift.obj.reconstructor.ObjectReconstructor
method), 551

command() (in module swift.common.manager),
588

commit() (swift.common.db.GreenDBConnection
method), 525

commit() (swift.obj.diskfile.BaseDiskFileWriter
method), 539

commit() (swift.obj.diskfile.ECDiskFileWriter
method), 542

complete_rsync()
(swift.common.db_replicator.ReplicatorRpc
method), 527

compose() (swift.common.ring.composite_builder.CompositeRingBuilder
method), 467

compose_rings() (in module
swift.common.ring.composite_builder),
471

CompositeRingBuilder (class in
swift.common.ring.composite_builder),
466

CompressingFileReader (class in
swift.common.internal_client), 577

compute_eta() (in module
swift.common.utils), 617

conditional_etag()
(swift.common.swob.Response prop-
erty), 603

conf (swift.common.middleware.formpost.FormPost
attribute), 687

conf (swift.common.middleware.staticweb.StaticWeb
attribute), 706

conf (swift.common.middleware.tempurl.TempURL
attribute), 719

conf (swift.container.sync.ContainerSync at-
tribute), 519

conf_files() (swift.common.manager.Server
method), 587

Config (class in
swift.common.middleware.s3api.utils),
661

config_auto_int_value() (in module
swift.common.utils), 617

config_fallocate_value() (in module
swift.common.utils), 617

config_positive_int_value() (in mod-
ule swift.common.utils), 617

config_read_prefixed_options() (in
module swift.common.utils), 617

config_read_reseller_options() (in
module swift.common.utils), 617

config_true_value() (in module
swift.common.utils), 617

ConfigDirLoader (class in
swift.common.wsgi), 637

ConfigFileError, 637
ConfigFilePortError, 637
ConfigString (class in swift.common.wsgi),

637
connect() (swift.common.bufferedhttp.BufferedHTTPConnection

method), 561
connect() (swift.obj.ssync_sender.Sender

method), 548
connect() (swift.proxy.controllers.obj.MIMEPutter

class method), 485
connect() (swift.proxy.controllers.obj.Putter

class method), 487
ConnectionTimeout, 574
consolidate_hashes() (in module

swift.obj.diskfile), 543
consolidate_hashes()

(swift.obj.diskfile.BaseDiskFileManager
method), 533

constrain_req_limit() (in module
swift.common.request_helpers), 594

construct_dev_path()
(swift.obj.diskfile.BaseDiskFileManager
method), 533

container() (swift.obj.diskfile.BaseDiskFile
property), 530

container_audit()
(swift.container.auditor.ContainerAuditor
method), 497

container_deletes
(swift.container.sync.ContainerSync
attribute), 519

container_exists()
(swift.common.internal_client.InternalClient
method), 578

container_failures
(swift.container.sync.ContainerSync
attribute), 519

container_info()
(swift.proxy.controllers.base.Controller
method), 473

container_puts
(swift.container.sync.ContainerSync
attribute), 519

container_report()
(swift.container.sync.ContainerSync
method), 519

container_report()

736 Index



Swift Documentation, Release 2.27.1.dev38

(swift.container.updater.ContainerUpdater
method), 520

container_ring
(swift.container.sync.ContainerSync
attribute), 519

container_ring()
(swift.common.internal_client.InternalClient
property), 578

container_skips
(swift.container.sync.ContainerSync
attribute), 519

container_stats
(swift.container.sync.ContainerSync
attribute), 519

container_sweep()
(swift.container.updater.ContainerUpdater
method), 521

container_sync()
(swift.container.sync.ContainerSync
method), 519

container_sync_row()
(swift.container.sync.ContainerSync
method), 519

container_syncs
(swift.container.sync.ContainerSync
attribute), 520

container_time
(swift.container.sync.ContainerSync
attribute), 520

container_update()
(swift.obj.server.ObjectController
method), 555

ContainerAuditor (class in
swift.container.auditor), 497

ContainerBroker (class in
swift.container.backend), 498

ContainerContext (class in
swift.common.middleware.versioned_writes.object_versioning),
696

ContainerController (class in
swift.container.server), 509

ContainerController (class in
swift.proxy.controllers.container), 480

ContainerReconciler (class in
swift.container.reconciler), 511

ContainerReplicator (class in
swift.container.replicator), 507

ContainerReplicatorRpc (class in
swift.container.replicator), 508

ContainerSharder (class in
swift.container.sharder), 515

ContainerSync (class in
swift.common.middleware.container_sync),
678

ContainerSync (class in swift.container.sync),
518

ContainerSyncRealms (class in
swift.common.container_sync_realms),
566

ContainerUpdater (class in
swift.container.updater), 520

content_length()
(swift.common.swob.Request property),
600

content_length()
(swift.common.swob.Response prop-
erty), 603

content_length()
(swift.obj.diskfile.BaseDiskFile prop-
erty), 530

content_length()
(swift.obj.reconstructor.RebuildingECDiskFileStream
property), 553

content_range()
(swift.common.swob.Response prop-
erty), 603

content_type()
(swift.common.swob.Response prop-
erty), 604

content_type()
(swift.obj.diskfile.BaseDiskFile prop-
erty), 530

content_type_timestamp()
(swift.obj.diskfile.BaseDiskFile prop-
erty), 530

ContextPool (class in swift.common.utils), 605
Controller (class in

swift.common.middleware.s3api.controllers.base),
668

Controller (class in
swift.proxy.controllers.base), 472

convert_segment_listing()
(swift.common.middleware.slo.SloGetContext
method), 54

CooperativeRingBuilder (class in
swift.common.ring.composite_builder),
470

copy() (swift.common.utils.ShardRange
method), 609

copy() (swift.obj.updater.SweepStats method),
557

copy_from() (swift.common.ring.builder.RingBuilder

Index 737



Swift Documentation, Release 2.27.1.dev38

method), 461
copy_get() (swift.common.swob.Request

method), 600
copy_header_subset() (in module

swift.common.request_helpers), 594
cors_validation() (in module

swift.proxy.controllers.base), 477
create() (swift.common.memcached.MemcacheConnPool

method), 590
create() (swift.obj.diskfile.BaseDiskFile

method), 530
create_account()

(swift.common.internal_client.InternalClient
method), 578

create_account_stat_table()
(swift.account.backend.AccountBroker
method), 492

create_broker()
(swift.container.backend.ContainerBroker
class method), 498

create_container()
(swift.common.internal_client.InternalClient
method), 578

create_container_info_table()
(swift.container.backend.ContainerBroker
method), 499

create_container_table()
(swift.account.backend.AccountBroker
method), 492

create_filter()
(swift.common.wsgi.PipelineWrapper
method), 638

create_key() (swift.common.middleware.crypto.keymaster.BaseKeyMaster
method), 688

create_listing()
(swift.container.server.ContainerController
method), 510

create_object_table()
(swift.container.backend.ContainerBroker
method), 499

create_policy_stat_table()
(swift.account.backend.AccountBroker
method), 492

create_policy_stat_table()
(swift.container.backend.ContainerBroker
method), 499

create_recon_nested_dict()
(swift.obj.auditor.AuditorWorker
method), 528

create_shard_range_table()
(swift.container.backend.ContainerBroker

method), 499
CreateContainerError, 676
createLock() (swift.common.utils.ThreadSafeSysLogHandler

method), 613
CredentialsNotSupported, 654
CrossDomainMiddleware (class in

swift.common.middleware.crossdomain),
678

CrossLocationLoggingProhibited, 654
csv_append() (in module swift.common.utils),

618
cursor() (swift.common.db.GreenDBConnection

method), 525
cursor() (swift.container.sharder.CleavingContext

property), 515

D
data_timestamp()

(swift.obj.diskfile.BaseDiskFile prop-
erty), 530

DatabaseAlreadyExists, 521
DatabaseBroker (class in swift.common.db),

521
DatabaseConnectionError, 525
datadir (swift.container.replicator.ContainerReplicator

attribute), 507
db_contains_type

(swift.account.backend.AccountBroker
attribute), 492

db_contains_type
(swift.container.backend.ContainerBroker
attribute), 499

db_epoch() (swift.container.backend.ContainerBroker
property), 499

db_file() (swift.common.db.DatabaseBroker
property), 522

db_file() (swift.container.backend.ContainerBroker
property), 499

db_files() (swift.container.backend.ContainerBroker
property), 499

DB_PREALLOCATION (in module
swift.common.db), 521

db_reclaim_timestamp
(swift.account.backend.AccountBroker
attribute), 492

db_reclaim_timestamp
(swift.container.backend.ContainerBroker
attribute), 499

db_type (swift.account.backend.AccountBroker
attribute), 492

db_type (swift.container.backend.ContainerBroker

738 Index



Swift Documentation, Release 2.27.1.dev38

attribute), 499
debug() (swift.common.ring.builder.RingBuilder

method), 461
debug_timing()

(swift.common.db_replicator.ReplicatorRpc
method), 527

decode_acl() (in module
swift.common.middleware.s3api.subresource),
664

decode_missing() (in module
swift.obj.ssync_receiver), 550

decode_timestamps() (in module
swift.common.utils), 618

decode_wanted() (in module
swift.obj.ssync_sender), 548

decr() (swift.common.memcached.MemcacheRing
method), 590

decrypt_resp_headers()
(swift.common.middleware.crypto.decrypter.DecrypterObjContext
method), 684

decrypt_value()
(swift.common.middleware.crypto.decrypter.BaseDecrypterContext
method), 682

decrypt_value_with_meta()
(swift.common.middleware.crypto.decrypter.BaseDecrypterContext
method), 682

Decrypter (class in
swift.common.middleware.crypto.decrypter),
683

DecrypterContContext (class in
swift.common.middleware.crypto.decrypter),
683

DecrypterObjContext (class in
swift.common.middleware.crypto.decrypter),
684

DEFAULT_INCOMING_ALLOW_HEADERS
(in module
swift.common.middleware.tempurl),
719

DEFAULT_INCOMING_REMOVE_HEADERS
(in module
swift.common.middleware.tempurl),
719

DEFAULT_OUTGOING_ALLOW_HEADERS
(in module
swift.common.middleware.tempurl),
719

DEFAULT_OUTGOING_REMOVE_HEADERS
(in module
swift.common.middleware.tempurl),
719

default_port (swift.container.replicator.ContainerReplicator
attribute), 507

delay_denial() (in module
swift.proxy.controllers.base), 477

DELETE() (swift.account.server.AccountController
method), 497

delete() (swift.common.memcached.MemcacheRing
method), 591

DELETE() (swift.common.middleware.s3api.controllers.bucket.BucketController
method), 669

DELETE() (swift.common.middleware.s3api.controllers.multi_upload.UploadController
method), 671

DELETE() (swift.common.middleware.s3api.controllers.obj.ObjectController
method), 669

DELETE() (swift.container.server.ContainerController
method), 509

delete() (swift.container.sharder.CleavingContext
method), 515

delete() (swift.obj.diskfile.BaseDiskFile
method), 530

DELETE() (swift.obj.server.ObjectController
method), 554

DELETE() (swift.proxy.controllers.account.AccountController
method), 480

DELETE() (swift.proxy.controllers.container.ContainerController
method), 480

DELETE() (swift.proxy.controllers.obj.BaseObjectController
method), 481

delete_account()
(swift.common.internal_client.InternalClient
method), 578

delete_at_update()
(swift.obj.server.ObjectController
method), 555

delete_container()
(swift.common.internal_client.InternalClient
method), 579

delete_db() (swift.common.db.DatabaseBroker
method), 522

delete_db() (swift.common.db_replicator.Replicator
method), 526

delete_db() (swift.container.replicator.ContainerReplicator
method), 507

delete_handoff_objs()
(swift.obj.replicator.ObjectReplicator
method), 545

delete_meta_whitelist
(swift.common.db.DatabaseBroker
attribute), 522

delete_meta_whitelist
(swift.container.backend.ContainerBroker

Index 739



Swift Documentation, Release 2.27.1.dev38

attribute), 499
delete_object() (in module

swift.common.internal_client), 585
delete_object()

(swift.common.internal_client.InternalClient
method), 579

delete_object()
(swift.container.backend.ContainerBroker
method), 499

delete_partition()
(swift.obj.reconstructor.ObjectReconstructor
method), 551

delete_partition()
(swift.obj.replicator.ObjectReplicator
method), 546

delete_reverted_objs()
(swift.obj.reconstructor.ObjectReconstructor
method), 551

denied_response()
(swift.common.middleware.keystoneauth.KeystoneAuth
method), 692

denied_response()
(swift.common.middleware.tempauth.TempAuth
method), 714

deserialize_v1()
(swift.common.ring.ring.RingData
class method), 459

detect_lockups()
(swift.obj.reconstructor.ObjectReconstructor
method), 551

device_count()
(swift.common.ring.ring.Ring property),
457

devices (swift.common.utils.OverrideOptions
attribute), 607

devices (swift.container.sync.ContainerSync at-
tribute), 520

DeviceUnavailable, 574
devs() (swift.common.ring.ring.Ring property),

457
dict_factory() (in module

swift.common.db), 525
direct_delete_account() (in module

swift.common.direct_client), 567
direct_delete_container() (in module

swift.common.direct_client), 567
direct_delete_container_entry() (in

module swift.container.reconciler), 514
direct_delete_container_object()

(in module swift.common.direct_client),
567

direct_delete_object() (in module
swift.common.direct_client), 568

direct_get_account() (in module
swift.common.direct_client), 568

direct_get_container() (in module
swift.common.direct_client), 568

direct_get_object() (in module
swift.common.direct_client), 569

direct_get_recon() (in module
swift.common.direct_client), 570

direct_get_suffix_hashes() (in module
swift.common.direct_client), 570

direct_head_container() (in module
swift.common.direct_client), 570

direct_head_object() (in module
swift.common.direct_client), 571

direct_post_object() (in module
swift.common.direct_client), 571

direct_put_container() (in module
swift.common.direct_client), 572

direct_put_container_object() (in
module swift.common.direct_client), 572

direct_put_object() (in module
swift.common.direct_client), 572

DirectClientException, 567
DirectClientReconException, 567
DISABLED() (swift.common.middleware.healthcheck.HealthCheckMiddleware

method), 688
disconnect() (swift.obj.ssync_sender.Sender

method), 548
DiskFile (class in swift.obj.diskfile), 540
diskfile_cls (swift.obj.diskfile.BaseDiskFileManager

attribute), 533
diskfile_cls (swift.obj.diskfile.DiskFileManager

attribute), 540
diskfile_cls (swift.obj.diskfile.ECDiskFileManager

attribute), 541
DiskFileBadMetadataChecksum, 574
DiskFileCollision, 574
DiskFileDeleted, 574
DiskFileDeviceUnavailable, 574
DiskFileError, 574
DiskFileExpired, 575
DiskFileManager (class in swift.obj.diskfile),

540
DiskFileNoSpace, 575
DiskFileNotExist, 575
DiskFileNotOpen, 575
DiskFileQuarantined, 575
DiskFileReader (class in swift.obj.diskfile),

540

740 Index



Swift Documentation, Release 2.27.1.dev38

DiskFileRouter (class in swift.obj.diskfile),
540

DiskFileWriter (class in swift.obj.diskfile),
540

DiskFileXattrNotSupported, 575
dispatch() (swift.common.db_replicator.ReplicatorRpc

method), 527
distribute_evenly() (in module

swift.common.utils), 618
document_iters_to_http_response_body()

(in module swift.common.utils), 618
document_iters_to_multipart_byteranges()

(in module swift.common.utils), 618
DomainRemapMiddleware (class in

swift.common.middleware.domain_remap),
681

done() (swift.container.sharder.CleavingContext
method), 515

drain() (in module swift.obj.server), 556
drain_and_close() (in module

swift.common.utils), 619
DriveNotMounted, 575
drop_buffer_cache() (in module

swift.common.utils), 619
drop_privileges() (in module

swift.common.utils), 619
dump_recon_cache() (in module

swift.common.utils), 619
dump_to_reconciler()

(swift.container.replicator.ContainerReplicator
method), 507

DuplicateDeviceError, 575
durable() (swift.proxy.controllers.obj.ECGetResponseBucket

property), 484
durable() (swift.proxy.controllers.obj.ECGetResponseCollection

property), 485
durable_timestamp()

(swift.obj.diskfile.BaseDiskFile prop-
erty), 530

durable_timestamp()
(swift.obj.diskfile.ECDiskFile property),
540

E
ec_scheme_description()

(swift.common.storage_policy.ECStoragePolicy
property), 644

ECAppIter (class in swift.proxy.controllers.obj),
482

ECDiskFile (class in swift.obj.diskfile), 540
ECDiskFileManager (class in

swift.obj.diskfile), 541
ECDiskFileReader (class in

swift.obj.diskfile), 542
ECDiskFileWriter (class in

swift.obj.diskfile), 542
ECFragGetter (class in

swift.proxy.controllers.obj), 483
ECGetResponseBucket (class in

swift.proxy.controllers.obj), 483
ECGetResponseCollection (class in

swift.proxy.controllers.obj), 484
ECObjectController (class in

swift.proxy.controllers.obj), 485
ECStoragePolicy (class in

swift.common.storage_policy), 644
elem() (swift.common.middleware.s3api.subresource.ACL

method), 663
elem() (swift.common.middleware.s3api.subresource.Grant

method), 663
elem() (swift.common.middleware.s3api.subresource.Grantee

method), 664
elem() (swift.common.middleware.s3api.subresource.Group

method), 664
elem() (swift.common.middleware.s3api.subresource.User

method), 664
empty() (swift.account.backend.AccountBroker

method), 492
empty() (swift.common.db.DatabaseBroker

method), 522
empty() (swift.container.backend.ContainerBroker

method), 500
EmptyRingError, 575
enable_sharding()

(swift.container.backend.ContainerBroker
method), 500

EncInputWrapper (class in
swift.common.middleware.crypto.encrypter),
681

encode_acl() (in module
swift.common.middleware.s3api.subresource),
665

encode_missing() (in module
swift.obj.ssync_sender), 548

encode_timestamps() (in module
swift.common.utils), 619

encode_wanted() (in module
swift.obj.ssync_receiver), 550

encrypt_header_val() (in module
swift.common.middleware.crypto.encrypter),
682

encrypt_user_metadata()

Index 741



Swift Documentation, Release 2.27.1.dev38

(swift.common.middleware.crypto.encrypter.EncrypterObjContext
method), 681

Encrypter (class in
swift.common.middleware.crypto.encrypter),
681

EncrypterObjContext (class in
swift.common.middleware.crypto.encrypter),
681

EncryptionException, 575
end() (swift.obj.auditor.WatcherWrapper

method), 529
end_of_object_data()

(swift.proxy.controllers.obj.MIMEPutter
method), 486

end_of_object_data()
(swift.proxy.controllers.obj.Putter
method), 487

endpoint() (swift.common.container_sync_realms.ContainerSyncRealms
method), 566

enforce_byte_count() (in module
swift.common.middleware.catch_errors),
676

ensure_object_in_right_location()
(swift.container.reconciler.ContainerReconciler
method), 511

ensure_tombstone_in_right_location()
(swift.container.reconciler.ContainerReconciler
method), 512

ensure_x_timestamp()
(swift.common.swob.Request method),
601

entire_namespace()
(swift.common.utils.ShardRange
method), 609

EntityTooLarge, 654
EntityTooSmall, 654
error_limit() (swift.proxy.server.Application

method), 489
error_limited()

(swift.proxy.server.Application method),
490

error_occurred()
(swift.proxy.server.Application method),
490

ErrorResponse, 655
etag() (swift.common.swob.Response property),

604
eventlet_monkey_patch() (in module

swift.common.utils), 619
EventletPlungerString (class in

swift.obj.server), 554

ever_rebalanced()
(swift.common.ring.builder.RingBuilder
property), 462

Everything (class in swift.common.utils), 605
exception() (swift.common.utils.LogAdapter

method), 606
exception() (swift.common.utils.PrefixLoggerAdapter

method), 607
exception_occurred()

(swift.proxy.server.Application method),
490

execute() (swift.common.db.GreenDBCursor
method), 525

expand() (swift.common.utils.ShardRange
method), 609

expand_ipv6() (in module
swift.common.utils), 619

ExpiredToken, 655
extract_acl_and_report_errors()

(swift.common.middleware.tempauth.TempAuth
method), 714

extract_device()
(swift.common.db_replicator.Replicator
method), 526

extract_policy() (in module
swift.obj.diskfile), 543

extract_swift_bytes() (in module
swift.common.utils), 620

F
failsafe_object_audit()

(swift.obj.auditor.AuditorWorker
method), 528

fallocate() (in module swift.common.utils),
620

fast_forward()
(swift.proxy.controllers.base.GetOrHeadHandler
method), 475

fast_forward()
(swift.proxy.controllers.obj.ECFragGetter
method), 483

fdatasync() (in module swift.common.utils),
620

feed_reconciler()
(swift.container.replicator.ContainerReplicator
method), 508

feed_remaining_primaries()
(swift.proxy.controllers.obj.ECObjectController
method), 485

fetch_crypto_keys()
(swift.common.middleware.crypto.keymaster.KeyMasterContext

742 Index



Swift Documentation, Release 2.27.1.dev38

method), 689
fields (swift.obj.replicator.Stats attribute), 547
FileNotFoundError, 575
filter_factory() (in module

swift.common.middleware.account_quotas),
648

filter_factory() (in module
swift.common.middleware.crypto),
681

filter_factory() (in module
swift.common.middleware.formpost),
687

filter_factory() (in module
swift.common.middleware.keystoneauth),
692

filter_factory() (in module
swift.common.middleware.ratelimit),
700

filter_factory() (in module
swift.common.middleware.read_only),
701

filter_factory() (in module
swift.common.middleware.s3api.s3api),
651

filter_factory() (in module
swift.common.middleware.s3api.s3token),
652

filter_factory() (in module
swift.common.middleware.staticweb),
706

filter_factory() (in module
swift.common.middleware.tempauth),
715

filter_factory() (in module
swift.common.middleware.tempurl),
720

final_recon_dump()
(swift.obj.reconstructor.ObjectReconstructor
method), 551

finalize_shrinking() (in module
swift.container.sharder), 516

find_compactible_shard_sequences()
(in module swift.container.sharder), 516

find_local_handoff_for_part()
(swift.container.replicator.ContainerReplicator
method), 508

find_missing_ranges() (in module
swift.container.sharder), 517

find_overlapping_ranges() (in module
swift.container.sharder), 517

find_shard_range() (in module

swift.common.utils), 620
find_shard_ranges()

(swift.container.backend.ContainerBroker
method), 500

find_sharding_candidates() (in module
swift.container.sharder), 517

find_shrinking_candidates() (in mod-
ule swift.container.sharder), 517

finish_increase_partition_power()
(swift.common.ring.builder.RingBuilder
method), 462

fix_conditional_response()
(swift.common.swob.Response method),
604

FooterNotSupported, 575
force_reload()

(swift.common.manager.Manager
method), 586

fork_child() (swift.obj.auditor.ObjectAuditor
method), 528

format() (swift.common.utils.SwiftLogFormatter
method), 612

format_acl() (in module
swift.common.middleware.acl), 559

format_acl_v1() (in module
swift.common.middleware.acl), 559

format_acl_v2() (in module
swift.common.middleware.acl), 559

format_server_name() (in module
swift.common.manager), 589

FormPost (class in
swift.common.middleware.formpost),
687

fragment_size()
(swift.common.storage_policy.ECStoragePolicy
property), 644

fragments() (swift.obj.diskfile.BaseDiskFile
property), 531

fragments() (swift.obj.diskfile.ECDiskFile
property), 540

from_dict() (swift.common.ring.builder.RingBuilder
class method), 462

from_dict() (swift.common.utils.ShardRange
class method), 609

from_elem() (swift.common.middleware.s3api.subresource.ACL
class method), 663

from_elem() (swift.common.middleware.s3api.subresource.Grant
class method), 664

from_hash_dir()
(swift.obj.diskfile.BaseDiskFile class
method), 531

Index 743



Swift Documentation, Release 2.27.1.dev38

from_header()
(swift.common.middleware.s3api.subresource.Grantee
static method), 664

from_headers()
(swift.common.middleware.s3api.subresource.ACL
class method), 663

from_recon() (swift.obj.replicator.Stats class
method), 547

from_swift_resp()
(swift.common.middleware.s3api.s3response.S3Response
class method), 660

fs_has_free_space() (in module
swift.common.utils), 620

fsync() (in module swift.common.utils), 620
fsync_dir() (in module swift.common.utils),

621

G
gen_headers() (in module

swift.common.direct_client), 573
gen_resp_headers() (in module

swift.container.server), 511
generate_request_headers()

(swift.proxy.controllers.base.Controller
method), 474

GET() (swift.account.server.AccountController
method), 497

get() (swift.common.db.DatabaseBroker
method), 522

get() (swift.common.memcached.MemcacheConnPool
method), 590

get() (swift.common.memcached.MemcacheRing
method), 591

GET() (swift.common.middleware.crossdomain.CrossDomainMiddleware
method), 679

GET() (swift.common.middleware.healthcheck.HealthCheckMiddleware
method), 688

GET() (swift.common.middleware.s3api.controllers.acl.AclController
method), 669

GET() (swift.common.middleware.s3api.controllers.bucket.BucketController
method), 669

GET() (swift.common.middleware.s3api.controllers.location.LocationController
method), 673

GET() (swift.common.middleware.s3api.controllers.logging.LoggingStatusController
method), 673

GET() (swift.common.middleware.s3api.controllers.multi_upload.UploadController
method), 671

GET() (swift.common.middleware.s3api.controllers.multi_upload.UploadsController
method), 672

GET() (swift.common.middleware.s3api.controllers.obj.ObjectController
method), 669

GET() (swift.common.middleware.s3api.controllers.s3_acl.S3AclController
method), 670

GET() (swift.common.middleware.s3api.controllers.service.ServiceController
method), 668

GET() (swift.common.middleware.s3api.controllers.versioning.VersioningController
method), 672

GET() (swift.container.server.ContainerController
method), 509

GET() (swift.obj.server.ObjectController
method), 554

GET() (swift.proxy.controllers.base.Controller
method), 472

GET() (swift.proxy.controllers.container.ContainerController
method), 480

GET() (swift.proxy.controllers.obj.BaseObjectController
method), 481

get_account()
(swift.common.internal_client.SimpleClient
method), 585

get_account_info() (in module
swift.proxy.controllers.base), 477

get_account_info()
(swift.common.internal_client.InternalClient
method), 579

get_account_metadata()
(swift.common.internal_client.InternalClient
method), 580

get_account_name_and_placement()
(in module swift.account.server), 497

get_account_ring()
(swift.account.reaper.AccountReaper
method), 494

get_account_ring()
(swift.container.updater.ContainerUpdater
method), 521

get_acl() (in module
swift.common.middleware.s3api.controllers.acl),
670

get_acl() (swift.common.middleware.s3api.acl_handlers.BaseAclHandler
method), 666

get_acl_response()
(swift.common.middleware.s3api.s3request.S3AclRequest
method), 652

get_all_shard_range_data()
(swift.container.backend.ContainerBroker
method), 500

get_and_validate_policy_index()
(swift.container.server.ContainerController
method), 510

get_async_dir() (in module
swift.obj.diskfile), 543

744 Index



Swift Documentation, Release 2.27.1.dev38

get_async_info()
(swift.common.middleware.recon.ReconMiddleware
method), 701

get_auditor_info()
(swift.common.middleware.recon.ReconMiddleware
method), 701

get_auditor_status() (in module
swift.obj.diskfile), 543

get_auth() (in module
swift.common.internal_client), 585

get_backend_index()
(swift.common.storage_policy.ECStoragePolicy
method), 645

get_balance()
(swift.common.ring.builder.RingBuilder
method), 462

get_brokers()
(swift.container.backend.ContainerBroker
method), 500

get_by_index()
(swift.common.storage_policy.StoragePolicyCollection
method), 646

get_by_name()
(swift.common.storage_policy.StoragePolicyCollection
method), 646

get_cache_key() (in module
swift.proxy.controllers.base), 478

get_command()
(swift.common.manager.Manager
method), 586

get_conf_file_name()
(swift.common.manager.Server method),
587

get_container()
(swift.common.internal_client.SimpleClient
method), 585

get_container_info() (in module
swift.proxy.controllers.base), 478

get_container_info()
(swift.common.middleware.s3api.s3request.S3Request
method), 653

get_container_metadata()
(swift.common.internal_client.InternalClient
method), 580

get_container_name_and_placement()
(in module swift.account.server), 497

get_container_name_and_placement()
(in module swift.container.server), 511

get_container_ring()
(swift.account.reaper.AccountReaper
method), 494

get_container_ring()
(swift.obj.updater.ObjectUpdater
method), 556

get_container_update_override_key()
(in module
swift.common.request_helpers), 594

get_controller()
(swift.proxy.server.Application method),
490

get_crypto_meta()
(swift.common.middleware.crypto.decrypter.BaseDecrypterContext
method), 683

get_data_dir() (in module swift.obj.diskfile),
543

get_datafile_metadata()
(swift.obj.diskfile.BaseDiskFile method),
531

get_datafile_metadata()
(swift.obj.reconstructor.RebuildingECDiskFileStream
method), 553

get_db_connection() (in module
swift.common.db), 526

get_db_files() (in module
swift.common.utils), 621

get_db_state()
(swift.container.backend.ContainerBroker
method), 501

get_db_version()
(swift.account.backend.AccountBroker
method), 492

get_db_version()
(swift.container.backend.ContainerBroker
method), 501

get_decryption_keys()
(swift.common.middleware.crypto.decrypter.BaseDecrypterContext
method), 683

get_dev_path()
(swift.obj.diskfile.BaseDiskFileManager
method), 533

get_device_info()
(swift.common.middleware.recon.ReconMiddleware
method), 701

get_device_path()
(swift.common.db.DatabaseBroker
method), 522

get_diskfile()
(swift.obj.diskfile.BaseDiskFileManager
method), 534

get_diskfile()
(swift.obj.server.ObjectController
method), 555

Index 745



Swift Documentation, Release 2.27.1.dev38

get_diskfile_from_audit_location()
(swift.obj.diskfile.BaseDiskFileManager
method), 534

get_diskfile_from_hash()
(swift.obj.diskfile.BaseDiskFileManager
method), 534

get_diskfile_manager()
(swift.common.storage_policy.BaseStoragePolicy
method), 643

get_diskusage()
(swift.common.middleware.recon.ReconMiddleware
method), 701

get_driveaudit_error()
(swift.common.middleware.recon.ReconMiddleware
method), 701

get_expirer_container() (in module
swift.common.utils), 621

get_expirer_info()
(swift.common.middleware.recon.ReconMiddleware
method), 701

get_extra_headers()
(swift.proxy.controllers.obj.ECGetResponseCollection
method), 485

get_group_subclass_from_uri()
(in module
swift.common.middleware.s3api.subresource),
665

get_groups() (swift.common.middleware.tempauth.TempAuth
method), 714

get_hashes() (swift.obj.diskfile.BaseDiskFileManager
method), 534

get_hmac() (in module swift.common.utils),
621

get_hub() (in module swift.common.utils), 621
get_info() (in module

swift.proxy.controllers.base), 478
get_info() (swift.account.backend.AccountBroker

method), 492
get_info() (swift.common.db.DatabaseBroker

method), 522
get_info() (swift.common.storage_policy.BaseStoragePolicy

method), 644
get_info() (swift.common.storage_policy.ECStoragePolicy

method), 645
get_info() (swift.container.backend.ContainerBroker

method), 501
get_info_is_deleted()

(swift.container.backend.ContainerBroker
method), 501

get_ip_port() (in module
swift.common.request_helpers), 594

get_items_since()
(swift.common.db.DatabaseBroker
method), 522

get_load() (swift.common.middleware.recon.ReconMiddleware
method), 701

get_local_devices()
(swift.obj.reconstructor.ObjectReconstructor
method), 551

get_local_devices()
(swift.obj.replicator.ObjectReplicator
method), 546

get_log_line() (in module
swift.common.utils), 622

get_logger() (in module swift.common.utils),
622

get_max_row()
(swift.common.db.DatabaseBroker
method), 522

get_maxrate() (in module
swift.common.middleware.ratelimit),
700

get_md5_socket() (in module
swift.common.utils), 623

get_mem() (swift.common.middleware.recon.ReconMiddleware
method), 701

get_metadata()
(swift.obj.diskfile.BaseDiskFile method),
531

get_metadata()
(swift.obj.reconstructor.RebuildingECDiskFileStream
method), 553

get_metafile_metadata()
(swift.obj.diskfile.BaseDiskFile method),
531

get_misplaced_since()
(swift.container.backend.ContainerBroker
method), 501

get_more_nodes()
(swift.common.ring.ring.Ring method),
457

get_mounted()
(swift.common.middleware.recon.ReconMiddleware
method), 701

get_multi() (swift.common.memcached.MemcacheRing
method), 591

get_name_and_placement() (in module
swift.common.request_helpers), 594

get_name_length_limit()
(swift.proxy.controllers.base.Controller
method), 474

get_nodes() (swift.common.ring.ring.Ring

746 Index



Swift Documentation, Release 2.27.1.dev38

method), 457
get_obj_name_and_placement() (in

module swift.container.server), 511
get_obj_name_and_placement() (in

module swift.obj.server), 556
get_object() (swift.common.internal_client.InternalClient

method), 580
get_object_info() (in module

swift.proxy.controllers.base), 478
get_object_metadata()

(swift.common.internal_client.InternalClient
method), 581

get_object_ring()
(swift.account.reaper.AccountReaper
method), 494

get_object_ring()
(swift.common.internal_client.InternalClient
property), 581

get_object_ring()
(swift.common.middleware.list_endpoints.ListEndpointsMiddleware
method), 693

get_object_ring()
(swift.common.storage_policy.StoragePolicyCollection
method), 646

get_object_ring()
(swift.proxy.server.Application method),
490

get_object_transient_sysmeta() (in
module swift.common.request_helpers),
594

get_objects()
(swift.container.backend.ContainerBroker
method), 501

get_ondisk_files()
(swift.obj.diskfile.BaseDiskFileManager
method), 534

get_or_head_response()
(swift.common.middleware.dlo.GetContext
method), 49

get_own_shard_range()
(swift.container.backend.ContainerBroker
method), 502

get_param() (in module
swift.common.request_helpers), 594

get_part() (swift.common.ring.ring.Ring
method), 458

get_part_devices()
(swift.common.ring.builder.RingBuilder
method), 462

get_part_nodes()
(swift.common.ring.ring.Ring method),

458
get_part_path() (in module

swift.obj.diskfile), 543
get_partition_for_hash() (in module

swift.common.utils), 623
get_paths() (swift.container.updater.ContainerUpdater

method), 521
get_pid_file_name()

(swift.common.manager.Server method),
587

get_policy2devices()
(swift.obj.reconstructor.ObjectReconstructor
method), 552

get_policy_index() (in module
swift.common.utils), 623

get_policy_info()
(swift.common.storage_policy.StoragePolicyCollection
method), 647

get_policy_options()
(swift.proxy.server.Application method),
490

get_policy_stats()
(swift.account.backend.AccountBroker
method), 493

get_policy_stats()
(swift.container.backend.ContainerBroker
method), 502

get_policy_string() (in module
swift.common.storage_policy), 647

get_quarantine_count()
(swift.common.middleware.recon.ReconMiddleware
method), 702

get_ratelimitable_key_tuples()
(swift.common.middleware.ratelimit.RateLimitMiddleware
method), 700

get_raw_metadata()
(swift.common.db.DatabaseBroker
method), 522

get_reconciler_broker()
(swift.container.replicator.ContainerReplicator
method), 508

get_reconciler_container_name() (in
module swift.container.reconciler), 514

get_reconciler_content_type() (in
module swift.container.reconciler), 514

get_reconciler_obj_name() (in module
swift.container.reconciler), 514

get_reconciler_sync()
(swift.container.backend.ContainerBroker
method), 502

get_redirect_data() (in module

Index 747



Swift Documentation, Release 2.27.1.dev38

swift.common.utils), 623
get_replication_info()

(swift.common.db.DatabaseBroker
method), 522

get_replication_info()
(swift.common.middleware.recon.ReconMiddleware
method), 702

get_replication_info()
(swift.container.backend.ContainerBroker
method), 502

get_request_class() (in module
swift.common.middleware.s3api.s3request),
653

get_required_overload()
(swift.common.ring.builder.RingBuilder
method), 462

get_reserved_name() (in module
swift.common.request_helpers), 595

get_response()
(swift.common.middleware.s3api.s3request.S3AclRequest
method), 652

get_response()
(swift.common.middleware.s3api.s3request.S3Request
method), 653

get_response() (swift.common.swob.Request
method), 601

get_response_body() (in module
swift.common.middleware.bulk), 676

get_responses()
(swift.proxy.controllers.obj.ECGetResponseBucket
method), 484

get_ring() (swift.common.ring.builder.RingBuilder
method), 462

get_ring_md5()
(swift.common.middleware.recon.ReconMiddleware
method), 702

get_row_to_q_entry_translator() (in
module swift.container.reconciler), 514

get_running_pids()
(swift.common.manager.Server method),
587

get_segments_to_delete_iter()
(swift.common.middleware.slo.StaticLargeObject
method), 55

get_shard_ranges()
(swift.container.backend.ContainerBroker
method), 502

get_shard_ranges()
(swift.container.replicator.ContainerReplicatorRpc
method), 508

get_shard_usage()

(swift.container.backend.ContainerBroker
method), 503

get_sharding_info()
(swift.common.middleware.recon.ReconMiddleware
method), 702

get_sharding_sysmeta()
(swift.container.backend.ContainerBroker
method), 503

get_sharding_sysmeta_with_timestamps()
(swift.container.backend.ContainerBroker
method), 503

get_sig() (swift.common.container_sync_realms.ContainerSyncRealms
method), 566

get_slo_segments()
(swift.common.middleware.slo.StaticLargeObject
method), 55

get_socket() (in module swift.common.wsgi),
641

get_socket_info()
(swift.common.middleware.recon.ReconMiddleware
method), 702

get_suffix_delta()
(swift.obj.reconstructor.ObjectReconstructor
method), 552

get_swift_conf_md5()
(swift.common.middleware.recon.ReconMiddleware
method), 702

get_swift_info() (in module
swift.common.utils), 623

get_sync() (swift.common.db.DatabaseBroker
method), 522

get_syncs() (swift.common.db.DatabaseBroker
method), 522

get_sys_meta_prefix() (in module
swift.common.request_helpers), 595

get_time() (swift.common.middleware.recon.ReconMiddleware
method), 702

get_time_units() (in module
swift.common.utils), 623

get_tmp_dir() (in module swift.obj.diskfile),
543

get_unmounted()
(swift.common.middleware.recon.ReconMiddleware
method), 702

get_unwrapped_key()
(swift.common.middleware.crypto.decrypter.BaseDecrypterContext
method), 683

get_updater_info()
(swift.common.middleware.recon.ReconMiddleware
method), 702

get_user_meta_prefix() (in module

748 Index



Swift Documentation, Release 2.27.1.dev38

swift.common.request_helpers), 595
get_valid_utf8_str() (in module

swift.common.utils), 624
get_version()

(swift.common.middleware.recon.ReconMiddleware
method), 702

get_worker_args()
(swift.obj.reconstructor.ObjectReconstructor
method), 552

get_worker_args()
(swift.obj.replicator.ObjectReplicator
method), 546

get_working_response()
(swift.proxy.controllers.base.GetOrHeadHandler
method), 475

get_zero_indexed_base_string() (in
module swift.common.utils), 624

GetContext (class in
swift.common.middleware.dlo), 49

getEffectiveLevel()
(swift.common.utils.LogAdapter
method), 606

GETorHEAD() (swift.proxy.controllers.account.AccountController
method), 480

GETorHEAD() (swift.proxy.controllers.container.ContainerController
method), 480

GETorHEAD() (swift.proxy.controllers.obj.BaseObjectController
method), 481

GETorHEAD_base()
(swift.proxy.controllers.base.Controller
method), 472

GetOrHeadHandler (class in
swift.proxy.controllers.base), 475

getresponse()
(swift.common.bufferedhttp.BufferedHTTPConnection
method), 561

global_conf_callback() (in module
swift.obj.server), 556

Grant (class in
swift.common.middleware.s3api.subresource),
663

Grantee (class in
swift.common.middleware.s3api.subresource),
664

GreenAsyncPile (class in swift.common.utils),
605

GreenAsyncPileWaitallTimeout, 605
GreenDBConnection (class in

swift.common.db), 525
GreenDBCursor (class in swift.common.db),

525

GreenthreadSafeIterator (class in
swift.common.utils), 605

Group (class in
swift.common.middleware.s3api.subresource),
664

H
handle() (swift.common.middleware.tempauth.TempAuth

method), 714
handle_acl_header() (in module

swift.common.middleware.s3api.acl_utils),
667

handle_container()
(swift.common.middleware.symlink.SymlinkContainerContext
method), 709

handle_delete()
(swift.common.middleware.versioned_writes.object_versioning.ContainerContext
method), 696

handle_delete()
(swift.common.middleware.versioned_writes.object_versioning.ObjectContext
method), 696

handle_get_head()
(swift.common.middleware.symlink.SymlinkObjectContext
method), 710

handle_get_head_symlink()
(swift.common.middleware.symlink.SymlinkObjectContext
method), 710

handle_get_token()
(swift.common.middleware.tempauth.TempAuth
method), 714

handle_multipart_delete()
(swift.common.middleware.slo.StaticLargeObject
method), 56

handle_multipart_get_or_head()
(swift.common.middleware.slo.StaticLargeObject
method), 56

handle_multipart_put()
(swift.common.middleware.slo.StaticLargeObject
method), 56

handle_obj_versions_delete_pop()
(swift.common.middleware.versioned_writes.legacy.VersionedWritesContext
method), 724

handle_obj_versions_delete_push()
(swift.common.middleware.versioned_writes.legacy.VersionedWritesContext
method), 724

handle_obj_versions_put()
(swift.common.middleware.versioned_writes.legacy.VersionedWritesContext
method), 724

handle_object()
(swift.common.middleware.symlink.SymlinkObjectContext
method), 710

Index 749



Swift Documentation, Release 2.27.1.dev38

handle_post()
(swift.common.middleware.crypto.encrypter.EncrypterObjContext
method), 682

handle_post()
(swift.common.middleware.symlink.SymlinkObjectContext
method), 710

handle_post()
(swift.common.middleware.versioned_writes.object_versioning.ObjectContext
method), 697

handle_put() (swift.common.middleware.symlink.SymlinkObjectContext
method), 710

handle_put() (swift.common.middleware.versioned_writes.object_versioning.ObjectContext
method), 697

handle_put_version()
(swift.common.middleware.versioned_writes.object_versioning.ObjectContext
method), 697

handle_ratelimit()
(swift.common.middleware.ratelimit.RateLimitMiddleware
method), 700

handle_request()
(swift.common.middleware.dlo.GetContext
method), 49

handle_request()
(swift.common.middleware.tempauth.TempAuth
method), 714

handle_request()
(swift.common.middleware.versioned_writes.object_versioning.ContainerContext
method), 696

handle_request()
(swift.proxy.server.Application method),
490

handle_slo_get_or_head()
(swift.common.middleware.slo.SloGetContext
method), 54

handle_versioned_request()
(swift.common.middleware.versioned_writes.object_versioning.ObjectContext
method), 697

has_alternate_node()
(swift.proxy.controllers.obj.ECGetResponseCollection
method), 485

has_changed() (swift.common.ring.ring.Ring
method), 458

has_multiple_policies()
(swift.container.backend.ContainerBroker
method), 503

hash_path() (in module swift.common.utils),
624

HashingInput (class in
swift.common.middleware.s3api.s3request),
652

have_quorum()

(swift.proxy.controllers.base.Controller
method), 474

HEAD() (swift.account.server.AccountController
method), 497

HEAD() (swift.common.middleware.s3api.controllers.bucket.BucketController
method), 669

HEAD() (swift.common.middleware.s3api.controllers.obj.ObjectController
method), 669

HEAD() (swift.container.server.ContainerController
method), 510

HEAD() (swift.obj.server.ObjectController
method), 554

HEAD() (swift.proxy.controllers.base.Controller
method), 472

HEAD() (swift.proxy.controllers.container.ContainerController
method), 481

HEAD() (swift.proxy.controllers.obj.BaseObjectController
method), 481

head_object() (in module
swift.common.internal_client), 585

HeaderEnvironProxy (class in
swift.common.swob), 599

HeaderKeyDict (class in
swift.common.middleware.s3api.s3response),
655

headers_from_container_info() (in
module swift.proxy.controllers.base), 479

headers_to_account_info() (in module
swift.proxy.controllers.base), 479

headers_to_container_info() (in mod-
ule swift.proxy.controllers.base), 479

headers_to_object_info() (in module
swift.proxy.controllers.base), 479

HealthCheckMiddleware (class in
swift.common.middleware.healthcheck),
688

heartbeat() (swift.obj.reconstructor.ObjectReconstructor
method), 552

heartbeat() (swift.obj.replicator.ObjectReplicator
method), 546

host() (swift.common.swob.Request property),
601

host_url() (swift.common.swob.Request prop-
erty), 601

host_url() (swift.common.swob.Response
property), 604

http_connect() (in module
swift.common.bufferedhttp), 562

http_connect_raw() (in module
swift.common.bufferedhttp), 563

http_response_to_document_iters()

750 Index



Swift Documentation, Release 2.27.1.dev38

(in module
swift.common.request_helpers), 595

HTTPException, 599
human_readable() (in module

swift.common.utils), 624

I
id() (swift.common.ring.builder.RingBuilder

property), 462
if_match() (swift.common.swob.Request prop-

erty), 601
if_modified_since()

(swift.common.swob.Request property),
601

if_none_match()
(swift.common.swob.Request property),
601

if_unmodified_since()
(swift.common.swob.Request property),
601

IllegalVersioningConfigurationException,
655

includes() (swift.common.utils.ShardRange
method), 609

includes() (swift.common.utils.ShardRangeList
method), 611

incoming_allow_headers
(swift.common.middleware.tempurl.TempURL
attribute), 719

incoming_allow_headers_startswith
(swift.common.middleware.tempurl.TempURL
attribute), 719

incoming_remove_headers
(swift.common.middleware.tempurl.TempURL
attribute), 719

incoming_remove_headers_startswith
(swift.common.middleware.tempurl.TempURL
attribute), 720

IncompleteBody, 655
incorrect_policy_index() (in module

swift.container.reconciler), 514
IncorrectNumberOfFilesInPostRequest,

655
incr() (swift.common.memcached.MemcacheRing

method), 591
increase_partition_power()

(swift.common.ring.builder.RingBuilder
method), 462

increment_meta()
(swift.common.utils.ShardRange
method), 609

index() (swift.common.wsgi.PipelineWrapper
method), 638

init_request_processor() (in module
swift.common.wsgi), 641

initialize() (swift.common.db.DatabaseBroker
method), 523

initialize_request()
(swift.obj.ssync_receiver.Receiver
method), 549

InlineDataTooLarge, 655
InputProxy (class in swift.common.utils), 606
insert_filter()

(swift.common.wsgi.PipelineWrapper
method), 638

InsufficientStorage, 575
interact() (swift.common.manager.Server

method), 587
InternalClient (class in

swift.common.internal_client), 577
InternalError, 655
interpret_conf_limits() (in module

swift.common.middleware.ratelimit), 700
interval (swift.container.sync.ContainerSync

attribute), 520
InvalidAccessKeyId, 655
InvalidAccountInfo, 575
InvalidArgument, 655
invalidate_hash() (in module

swift.obj.diskfile), 543
invalidate_hash()

(swift.obj.diskfile.BaseDiskFileManager
method), 535

InvalidBucketName, 656
InvalidBucketState, 656
InvalidDigest, 656
InvalidHashPathConfigError, 606
InvalidLocationConstraint, 656
InvalidObjectState, 656
InvalidPart, 656
InvalidPartOrder, 656
InvalidPayer, 656
InvalidPidFileException, 575
InvalidPolicyDocument, 656
InvalidRange, 656
InvalidRequest, 656
InvalidSecurity, 657
InvalidSOAPRequest, 657
InvalidStorageClass, 657
InvalidSubresource, 661
InvalidTargetBucketForLogging, 657
InvalidTimestamp, 575

Index 751



Swift Documentation, Release 2.27.1.dev38

InvalidToken, 657
InvalidURI, 657
is_builder_newer() (in module

swift.common.ring.composite_builder),
471

is_deleted() (swift.common.db.DatabaseBroker
method), 523

is_empty_enough_to_reclaim()
(swift.container.backend.ContainerBroker
method), 503

is_good_source() (in module
swift.proxy.controllers.obj), 488

is_good_source()
(swift.proxy.controllers.base.GetOrHeadHandler
method), 475

is_healthy() (swift.obj.reconstructor.ObjectReconstructor
method), 552

is_healthy() (swift.obj.replicator.ObjectReplicator
method), 546

is_object_transient_sysmeta() (in
module swift.common.request_helpers),
595

is_old_enough_to_reclaim()
(swift.container.backend.ContainerBroker
method), 503

is_origin_allowed()
(swift.proxy.controllers.base.Controller
method), 474

is_own_shard_range()
(swift.container.backend.ContainerBroker
method), 503

is_reclaimable()
(swift.common.db.DatabaseBroker
method), 523

is_reclaimable()
(swift.container.backend.ContainerBroker
method), 503

is_root_container()
(swift.container.backend.ContainerBroker
method), 503

is_sharded() (swift.container.backend.ContainerBroker
method), 503

is_sharding_candidate() (in module
swift.container.sharder), 517

is_shrinking_candidate() (in module
swift.container.sharder), 517

is_status_deleted()
(swift.account.backend.AccountBroker
method), 493

is_sys_meta() (in module
swift.common.request_helpers), 595

is_sys_or_user_meta() (in module
swift.common.request_helpers), 595

is_user_meta() (in module
swift.common.request_helpers), 596

is_valid_ip() (in module
swift.common.utils), 624

is_valid_ipv4() (in module
swift.common.utils), 624

is_valid_ipv6() (in module
swift.common.utils), 624

ismount() (in module swift.common.utils), 624
ismount_raw() (in module

swift.common.utils), 624
item_from_env() (in module

swift.common.utils), 625
iter_containers()

(swift.common.internal_client.InternalClient
method), 581

iter_mime_headers_and_bodies() (in
module swift.obj.server), 556

iter_multipart_mime_documents() (in
module swift.common.utils), 625

iter_nodes() (swift.proxy.server.Application
method), 490

iter_nodes_local_first()
(swift.proxy.controllers.obj.BaseObjectController
method), 481

iter_object_lines()
(swift.common.internal_client.InternalClient
method), 582

iter_objects()
(swift.common.internal_client.InternalClient
method), 582

iter_pid_files()
(swift.common.manager.Server method),
587

iter_sockets()
(swift.common.wsgi.ServersPerPortStrategy
method), 639

iter_sockets()
(swift.common.wsgi.WorkersStrategy
method), 640

K
key() (swift.common.container_sync_realms.ContainerSyncRealms

method), 566
key2() (swift.common.container_sync_realms.ContainerSyncRealms

method), 566
KeyMaster (class in

swift.common.middleware.crypto.keymaster),
688

752 Index



Swift Documentation, Release 2.27.1.dev38

KeyMasterContext (class in
swift.common.middleware.crypto.keymaster),
689

keys() (swift.common.swob.HeaderEnvironProxy
method), 599

KeystoneAuth (class in
swift.common.middleware.keystoneauth),
689

KeyTooLong, 657
kickoff() (swift.proxy.controllers.obj.ECAppIter

method), 482
kill() (swift.common.manager.Manager

method), 586
kill_child_pids()

(swift.common.manager.Manager
method), 586

kill_child_pids()
(swift.common.manager.Server method),
587

kill_coros() (swift.obj.reconstructor.ObjectReconstructor
method), 552

kill_group() (in module
swift.common.manager), 589

kill_running_pids()
(swift.common.manager.Server method),
587

L
last_headers()

(swift.proxy.controllers.base.GetOrHeadHandler
property), 476

last_headers()
(swift.proxy.controllers.obj.ECFragGetter
property), 483

last_modified()
(swift.common.swob.Response prop-
erty), 604

last_modified_date_to_timestamp()
(in module swift.common.utils), 625

last_status()
(swift.proxy.controllers.base.GetOrHeadHandler
property), 476

last_status()
(swift.proxy.controllers.obj.ECFragGetter
property), 483

launch() (swift.common.manager.Server
method), 587

learn_size_from_content_range()
(swift.proxy.controllers.base.GetOrHeadHandler
method), 476

learn_size_from_content_range()

(swift.proxy.controllers.obj.ECFragGetter
method), 483

least_bad_bucket()
(swift.proxy.controllers.obj.ECGetResponseCollection
property), 485

link_fd_to_path() (in module
swift.common.utils), 625

LinkIterError, 575
list_commands()

(swift.common.manager.Manager class
method), 586

list_containers_iter()
(swift.account.backend.AccountBroker
method), 493

list_from_csv() (in module
swift.common.utils), 625

list_objects_iter()
(swift.container.backend.ContainerBroker
method), 503

ListEndpointsMiddleware (class in
swift.common.middleware.list_endpoints),
693

ListingIterError, 575
ListingIterNotAuthorized, 575
ListingIterNotFound, 575
load() (swift.common.ring.builder.RingBuilder

class method), 462
load() (swift.common.ring.composite_builder.CompositeRingBuilder

class method), 468
load() (swift.common.ring.ring.RingData class

method), 459
load() (swift.container.sharder.CleavingContext

class method), 515
load_all() (swift.container.sharder.CleavingContext

class method), 515
load_app_config() (in module

swift.common.wsgi), 641
load_components()

(swift.common.ring.composite_builder.CompositeRingBuilder
method), 468

load_libc_function() (in module
swift.common.utils), 625

load_object_ring()
(swift.obj.reconstructor.ObjectReconstructor
method), 552

load_object_ring()
(swift.obj.replicator.ObjectReplicator
method), 546

load_recon_cache() (in module
swift.common.utils), 626

load_ring() (swift.common.storage_policy.BaseStoragePolicy

Index 753



Swift Documentation, Release 2.27.1.dev38

method), 644
load_ring() (swift.common.storage_policy.ECStoragePolicy

method), 645
loadapp() (in module swift.common.wsgi), 641
location() (swift.common.swob.Response

property), 604
LocationController (class in

swift.common.middleware.s3api.controllers.location),
672

lock() (swift.common.db.DatabaseBroker
method), 523

lock_file() (in module swift.common.utils),
626

lock_parent_directory() (in module
swift.common.utils), 626

lock_path() (in module swift.common.utils),
626

LockTimeout, 576
log_handoffs()

(swift.proxy.controllers.base.NodeIter
method), 476

log_request()
(swift.common.middleware.proxy_logging.ProxyLoggingMiddleware
method), 699

log_sock_exit()
(swift.common.wsgi.ServersPerPortStrategy
method), 639

log_sock_exit()
(swift.common.wsgi.WorkersStrategy
method), 640

log_stats() (swift.container.reconciler.ContainerReconciler
method), 512

LogAdapter (class in swift.common.utils), 606
LogDelivery (class in

swift.common.middleware.s3api.subresource),
664

logger (swift.container.sync.ContainerSync at-
tribute), 520

logger() (swift.obj.diskfile.BaseDiskFileWriter
property), 539

LoggingStatusController (class in
swift.common.middleware.s3api.controllers.logging),
673

LogLevelFilter (class in swift.common.utils),
606

looks_like_partition() (in module
swift.common.db_replicator), 527

lookup_cname() (in module
swift.common.middleware.cname_lookup),
677

loop_timeout()

(swift.common.wsgi.ServersPerPortStrategy
method), 639

loop_timeout()
(swift.common.wsgi.WorkersStrategy
method), 640

lower() (swift.common.utils.ShardRangeList
property), 611

LRUCache (class in swift.common.utils), 606

M
make_db_file_path() (in module

swift.common.utils), 627
make_env() (in module swift.common.wsgi),

641
make_on_disk_filename()

(swift.obj.diskfile.BaseDiskFileManager
method), 535

make_on_disk_filename()
(swift.obj.diskfile.ECDiskFileManager
method), 541

make_path() (swift.common.internal_client.InternalClient
method), 582

make_path() (swift.common.utils.ShardRange
class method), 610

make_pre_authed_env() (in module
swift.common.wsgi), 642

make_pre_authed_request() (in module
swift.common.wsgi), 642

make_rebuilt_fragment_iter()
(swift.obj.reconstructor.ObjectReconstructor
method), 552

make_request()
(swift.common.internal_client.InternalClient
method), 583

make_requests()
(swift.proxy.controllers.base.Controller
method), 474

make_shard_ranges() (in module
swift.container.sharder), 517

make_subrequest() (in module
swift.common.wsgi), 642

make_tuple_for_pickle()
(swift.account.backend.AccountBroker
method), 493

make_tuple_for_pickle()
(swift.common.db.DatabaseBroker
method), 523

make_tuple_for_pickle()
(swift.container.backend.ContainerBroker
method), 504

makedirs_count() (in module

754 Index



Swift Documentation, Release 2.27.1.dev38

swift.common.utils), 627
MalformedACLError, 657
MalformedPOSTRequest, 657
MalformedXML, 657
Manager (class in swift.common.manager), 586
manager() (swift.obj.diskfile.BaseDiskFile

property), 531
manager() (swift.obj.diskfile.BaseDiskFileReader

property), 538
manager() (swift.obj.diskfile.BaseDiskFileWriter

property), 539
marker() (swift.container.sharder.CleavingContext

property), 515
Match (class in swift.common.swob), 599
MAX_VALUE_LENGTH (in module

swift.common.middleware.formpost),
687

MaxMessageLengthExceeded, 657
MaxPostPreDataLengthExceededError,

658
MaxSleepTimeHitError, 699
maybe_get() (swift.common.db.DatabaseBroker

method), 523
maybe_multipart_byteranges_to_document_iters()

(in module swift.common.utils), 627
md5() (in module swift.common.utils), 627
md5() (swift.common.ring.ring.Ring property),

458
md5() (swift.common.ring.ring.RingReader

property), 460
md5_hash_for_file() (in module

swift.common.utils), 627
MemcacheConnectionError, 590
MemcacheConnPool (class in

swift.common.memcached), 590
MemcacheMiddleware (class in

swift.common.middleware.memcache),
693

MemcachePoolTimeout, 590
MemcacheRing (class in

swift.common.memcached), 590
merge_items()

(swift.account.backend.AccountBroker
method), 493

merge_items()
(swift.common.db.DatabaseBroker
method), 523

merge_items()
(swift.common.db_replicator.ReplicatorRpc
method), 527

merge_items()

(swift.container.backend.ContainerBroker
method), 504

merge_shard_ranges()
(swift.container.backend.ContainerBroker
method), 504

merge_shard_ranges()
(swift.container.replicator.ContainerReplicatorRpc
method), 508

merge_shards() (in module
swift.container.backend), 506

merge_syncs()
(swift.common.db.DatabaseBroker
method), 523

merge_syncs()
(swift.common.db_replicator.ReplicatorRpc
method), 527

merge_timestamps()
(swift.common.db.DatabaseBroker
method), 523

message_length()
(swift.common.swob.Request method),
601

MessageTimeout, 576
metadata() (swift.common.db.DatabaseBroker

property), 523
MetadataTooLarge, 658
method() (swift.common.swob.Request prop-

erty), 601
MethodNotAllowed, 658
mime_to_document_iters() (in module

swift.common.utils), 628
MimeInvalid, 576
MIMEPutter (class in

swift.proxy.controllers.obj), 485
min_part_seconds_left()

(swift.common.ring.builder.RingBuilder
property), 462

missing_check()
(swift.obj.ssync_receiver.Receiver
method), 549

missing_check()
(swift.obj.ssync_sender.Sender method),
548

MissingContentLength, 658
MissingRequestBodyError, 658
MissingSecurityElement, 658
MissingSecurityHeader, 658
mkdirs() (in module swift.common.utils), 628
mktime() (in module

swift.common.middleware.s3api.utils),
662

Index 755



Swift Documentation, Release 2.27.1.dev38

modify_priority() (in module
swift.common.utils), 628

modify_wsgi_pipeline()
(swift.proxy.server.Application method),
491

module
swift.account.auditor, 491
swift.account.backend, 492
swift.account.reaper, 494
swift.account.server, 497
swift.cli.manage_shard_ranges,

111
swift.cli.ring_builder_analyzer,

17
swift.cli.ringcomposer, 16
swift.common.bufferedhttp, 561
swift.common.constraints, 563
swift.common.container_sync_realms,

566
swift.common.db, 521
swift.common.db_replicator, 526
swift.common.direct_client, 567
swift.common.exceptions, 574
swift.common.internal_client,

577
swift.common.manager, 586
swift.common.memcached, 589
swift.common.middleware.account_quotas,

648
swift.common.middleware.acl, 558
swift.common.middleware.bulk,

673
swift.common.middleware.catch_errors,

676
swift.common.middleware.cname_lookup,

677
swift.common.middleware.container_quotas,

677
swift.common.middleware.container_sync,

678
swift.common.middleware.copy,

702
swift.common.middleware.crossdomain,

678
swift.common.middleware.crypto,

681
swift.common.middleware.crypto.decrypter,

682
swift.common.middleware.crypto.encrypter,

681
swift.common.middleware.crypto.keymaster,

688
swift.common.middleware.dlo, 48
swift.common.middleware.domain_remap,

679
swift.common.middleware.etag_quoter,

685
swift.common.middleware.formpost,

685
swift.common.middleware.gatekeeper,

687
swift.common.middleware.healthcheck,

688
swift.common.middleware.keystoneauth,

689
swift.common.middleware.list_endpoints,

692
swift.common.middleware.memcache,

693
swift.common.middleware.name_check,

693
swift.common.middleware.proxy_logging,

698
swift.common.middleware.ratelimit,

699
swift.common.middleware.read_only,

701
swift.common.middleware.recon,

701
swift.common.middleware.s3api.acl_handlers,

665
swift.common.middleware.s3api.acl_utils,

667
swift.common.middleware.s3api.controllers.acl,

669
swift.common.middleware.s3api.controllers.base,

668
swift.common.middleware.s3api.controllers.bucket,

668
swift.common.middleware.s3api.controllers.location,

672
swift.common.middleware.s3api.controllers.logging,

673
swift.common.middleware.s3api.controllers.multi_delete,

672
swift.common.middleware.s3api.controllers.multi_upload,

670
swift.common.middleware.s3api.controllers.obj,

669
swift.common.middleware.s3api.controllers.s3_acl,

670
swift.common.middleware.s3api.controllers.service,

756 Index



Swift Documentation, Release 2.27.1.dev38

668
swift.common.middleware.s3api.controllers.versioning,

672
swift.common.middleware.s3api.etree,

661
swift.common.middleware.s3api.exception,

661
swift.common.middleware.s3api.s3api,

649
swift.common.middleware.s3api.s3request,

652
swift.common.middleware.s3api.s3response,

653
swift.common.middleware.s3api.s3token,

651
swift.common.middleware.s3api.subresource,

662
swift.common.middleware.s3api.utils,

661
swift.common.middleware.slo, 49
swift.common.middleware.staticweb,

704
swift.common.middleware.symlink,

706
swift.common.middleware.tempauth,

711
swift.common.middleware.tempurl,

715
swift.common.middleware.versioned_writes.legacy,

720
swift.common.middleware.versioned_writes.object_versioning,

694
swift.common.middleware.xprofile,

725
swift.common.request_helpers,

592
swift.common.ring.builder, 460
swift.common.ring.composite_builder,

465
swift.common.ring.ring, 457
swift.common.storage_policy, 643
swift.common.swob, 598
swift.common.utils, 605
swift.common.wsgi, 637
swift.container.auditor, 497
swift.container.backend, 498
swift.container.reconciler, 511
swift.container.replicator, 507
swift.container.server, 509
swift.container.sharder, 515
swift.container.sync, 518

swift.container.updater, 520
swift.obj.auditor, 528
swift.obj.diskfile, 529
swift.obj.reconstructor, 551
swift.obj.replicator, 545
swift.obj.server, 554
swift.obj.ssync_receiver, 549
swift.obj.ssync_sender, 547
swift.obj.updater, 556
swift.proxy.controllers.account,

480
swift.proxy.controllers.base,

472
swift.proxy.controllers.container,

480
swift.proxy.controllers.obj, 481
swift.proxy.server, 489

mount_check (swift.container.sync.ContainerSync
attribute), 520

MultiObjectDeleteAclHandler (class in
swift.common.middleware.s3api.acl_handlers),
666

MultiObjectDeleteController (class in
swift.common.middleware.s3api.controllers.multi_delete),
672

multipart_byteranges_to_document_iters()
(in module swift.common.utils), 628

multipart_response_iter()
(swift.common.middleware.crypto.decrypter.DecrypterObjContext
method), 684

MultiphasePUTNotSupported, 576
MultiUploadAclHandler (class in

swift.common.middleware.s3api.acl_handlers),
666

N
NamedConfigLoader (class in

swift.common.wsgi), 637
native_str_keys_and_values() (in

module swift.common.db), 526
new_worker_socks()

(swift.common.wsgi.ServersPerPortStrategy
method), 639

new_worker_socks()
(swift.common.wsgi.WorkersStrategy
method), 640

newid() (swift.common.db.DatabaseBroker
method), 524

next() (swift.common.internal_client.CompressingFileReader
method), 577

next() (swift.proxy.controllers.base.NodeIter

Index 757



Swift Documentation, Release 2.27.1.dev38

method), 476
next() (swift.proxy.controllers.obj.ECAppIter

method), 483
next_part_power()

(swift.common.ring.ring.Ring property),
458

NicerInterpolation (class in
swift.common.utils), 607

no_daemon() (swift.common.manager.Manager
method), 586

no_fork_sock()
(swift.common.wsgi.ServersPerPortStrategy
method), 639

no_fork_sock()
(swift.common.wsgi.WorkersStrategy
method), 640

no_wait() (swift.common.manager.Manager
method), 586

NodeIter (class in swift.proxy.controllers.base),
476

NoLoggingStatusForKey, 658
normalize_delete_at_timestamp() (in

module swift.common.utils), 628
normalize_timestamp() (in module

swift.common.utils), 628
NoSuchBucket, 658
NoSuchKey, 658
NoSuchLifecycleConfiguration, 658
NoSuchUpload, 659
NoSuchVersion, 659
notice() (swift.common.utils.LogAdapter

method), 606
NotS3Request, 661
NotSignedUp, 659
NotSuchBucketPolicy, 659
NR_ioprio_set() (in module

swift.common.utils), 607
nuke_from_orbit()

(swift.common.bufferedhttp.BufferedHTTPResponse
method), 562

NullLogger (class in swift.common.utils), 607
num_container_updates() (in module

swift.proxy.controllers.obj), 488

O
obj() (swift.obj.diskfile.BaseDiskFile property),

531
object_acl() (swift.common.middleware.s3api.s3request.S3Request

property), 653
object_audit()

(swift.obj.auditor.AuditorWorker

method), 528
object_audit_location_generator()

(in module swift.obj.diskfile), 543
object_audit_location_generator()

(swift.obj.diskfile.BaseDiskFileManager
method), 535

object_count()
(swift.common.utils.ShardRangeList
property), 611

object_operation() (in module
swift.common.middleware.s3api.controllers.base),
668

object_sweep()
(swift.obj.updater.ObjectUpdater
method), 556

object_update()
(swift.obj.updater.ObjectUpdater
method), 557

ObjectAclHandler (class in
swift.common.middleware.s3api.acl_handlers),
666

ObjectAuditor (class in swift.obj.auditor),
528

ObjectContext (class in
swift.common.middleware.versioned_writes.object_versioning),
696

ObjectController (class in
swift.common.middleware.s3api.controllers.obj),
669

ObjectController (class in swift.obj.server),
554

ObjectControllerRouter (class in
swift.proxy.controllers.obj), 486

ObjectReconstructor (class in
swift.obj.reconstructor), 551

ObjectReplicator (class in
swift.obj.replicator), 545

ObjectUpdater (class in swift.obj.updater),
556

ObjectVersioningContext (class in
swift.common.middleware.versioned_writes.object_versioning),
698

once() (swift.common.manager.Manager
method), 586

open() (swift.obj.diskfile.BaseDiskFile method),
531

open() (swift.obj.diskfile.BaseDiskFileWriter
method), 539

OperationAborted, 659
OPTIONS() (swift.proxy.controllers.base.Controller

method), 472

758 Index



Swift Documentation, Release 2.27.1.dev38

outbound_exclusions (in module
swift.common.middleware.gatekeeper),
687

outgoing_allow_headers
(swift.common.middleware.tempurl.TempURL
attribute), 720

outgoing_allow_headers_startswith
(swift.common.middleware.tempurl.TempURL
attribute), 720

outgoing_remove_headers
(swift.common.middleware.tempurl.TempURL
attribute), 720

outgoing_remove_headers_startswith
(swift.common.middleware.tempurl.TempURL
attribute), 720

overlaps() (swift.common.utils.ShardRange
method), 610

override_bytes_from_content_type()
(in module swift.common.utils), 629

OverrideOptions (class in
swift.common.utils), 607

Owner (class in
swift.common.middleware.s3api.subresource),
664

P
pairs() (in module swift.common.utils), 629
params() (swift.common.swob.Request prop-

erty), 601
parse_acl() (in module

swift.common.middleware.acl), 560
parse_acl_v1() (in module

swift.common.middleware.acl), 560
parse_acl_v2() (in module

swift.common.middleware.acl), 560
parse_and_validate_input() (in module

swift.common.middleware.slo), 56
parse_content_disposition() (in mod-

ule swift.common.utils), 629
parse_content_range() (in module

swift.common.utils), 629
parse_content_type() (in module

swift.common.utils), 629
parse_db_filename() (in module

swift.common.utils), 629
parse_mime_headers() (in module

swift.common.utils), 630
parse_on_disk_filename()

(swift.obj.diskfile.BaseDiskFileManager
method), 535

parse_on_disk_filename()

(swift.obj.diskfile.ECDiskFileManager
method), 541

parse_options() (in module
swift.common.utils), 630

parse_override_options() (in module
swift.common.utils), 630

parse_per_policy_config() (in module
swift.proxy.server), 491

parse_prefixed_conf() (in module
swift.common.utils), 630

parse_raw_obj() (in module
swift.container.reconciler), 514

parse_socket_string() (in module
swift.common.utils), 630

parse_storage_policies() (in module
swift.common.storage_policy), 647

part_power() (swift.common.ring.ring.Ring
property), 458

part_shift() (swift.common.ring.builder.RingBuilder
property), 463

PartAclHandler (class in
swift.common.middleware.s3api.acl_handlers),
667

PartController (class in
swift.common.middleware.s3api.controllers.multi_upload),
671

partition_count()
(swift.common.ring.ring.Ring property),
459

partition_lock()
(swift.obj.diskfile.BaseDiskFileManager
method), 536

PartitionLockTimeout, 576
partitions (swift.common.utils.OverrideOptions

attribute), 607
pass_through_headers

(swift.proxy.controllers.base.Controller
attribute), 475

pass_through_headers
(swift.proxy.controllers.container.ContainerController
attribute), 481

path() (swift.common.swob.Request property),
601

path() (swift.container.backend.ContainerBroker
property), 504

path_info() (swift.common.swob.Request
property), 601

path_info_pop()
(swift.common.swob.Request method),
601

path_qs() (swift.common.swob.Request prop-

Index 759



Swift Documentation, Release 2.27.1.dev38

erty), 602
PathNotDir, 576
PermanentRedirect, 659
PermissionError, 576
pickle_async_update()

(swift.obj.diskfile.BaseDiskFileManager
method), 536

PICKLE_PROTOCOL (in module
swift.common.db), 525

pid_files() (swift.common.manager.Server
method), 588

pipeline_property() (in module
swift.common.wsgi), 642

PipelineWrapper (class in
swift.common.wsgi), 638

PipeMutex (class in swift.common.utils), 607
policies (swift.common.utils.OverrideOptions

attribute), 607
policy (swift.obj.diskfile.BaseDiskFileManager

attribute), 536
policy (swift.obj.diskfile.DiskFileManager at-

tribute), 540
policy (swift.obj.diskfile.ECDiskFileManager

attribute), 542
policy_type (swift.proxy.controllers.obj.ECObjectController

attribute), 485
policy_type (swift.proxy.controllers.obj.ReplicatedObjectController

attribute), 487
policy_type_to_controller_map

(swift.proxy.controllers.obj.ObjectControllerRouter
attribute), 486

PolicyError, 645
pop_queue() (swift.container.reconciler.ContainerReconciler

method), 512
pop_range() (swift.proxy.controllers.base.GetOrHeadHandler

method), 476
pop_range() (swift.proxy.controllers.obj.ECFragGetter

method), 483
possibly_quarantine()

(swift.common.db.DatabaseBroker
method), 524

POST() (swift.account.server.AccountController
method), 497

POST() (swift.common.middleware.s3api.controllers.bucket.BucketController
method), 669

POST() (swift.common.middleware.s3api.controllers.multi_delete.MultiObjectDeleteController
method), 672

POST() (swift.common.middleware.s3api.controllers.multi_upload.UploadController
method), 671

POST() (swift.common.middleware.s3api.controllers.multi_upload.UploadsController
method), 672

POST() (swift.container.server.ContainerController
method), 510

POST() (swift.obj.server.ObjectController
method), 554

POST() (swift.proxy.controllers.account.AccountController
method), 480

POST() (swift.proxy.controllers.container.ContainerController
method), 481

POST() (swift.proxy.controllers.obj.BaseObjectController
method), 481

post_fork_hook()
(swift.common.wsgi.StrategyBase
method), 639

post_multiprocess_run()
(swift.obj.reconstructor.ObjectReconstructor
method), 552

post_multiprocess_run()
(swift.obj.replicator.ObjectReplicator
method), 546

pre_validate_all_builders()
(in module
swift.common.ring.composite_builder),
471

PreconditionFailed, 659
PrefixLoggerAdapter (class in

swift.common.utils), 607
prepare_increase_partition_power()

(swift.common.ring.builder.RingBuilder
method), 463

pretend_min_part_hours_passed()
(swift.common.ring.builder.RingBuilder
method), 463

primaries_left()
(swift.proxy.controllers.base.NodeIter
property), 476

private() (in module swift.common.utils), 631
private_methods()

(swift.proxy.controllers.base.Controller
property), 475

process() (swift.common.utils.LogAdapter
method), 606

process() (swift.common.utils.PrefixLoggerAdapter
method), 607

process_compactible_shard_sequences()
(in module swift.container.sharder), 517

process_container()
(swift.container.updater.ContainerUpdater
method), 521

process_job()
(swift.obj.reconstructor.ObjectReconstructor
method), 552

760 Index



Swift Documentation, Release 2.27.1.dev38

process_json_resp()
(swift.common.middleware.crypto.decrypter.DecrypterContContext
method), 684

process_object_update()
(swift.obj.updater.ObjectUpdater
method), 557

provide_alternate_node()
(swift.proxy.controllers.obj.ECGetResponseCollection
method), 485

ProxyLoggingMiddleware (class in
swift.common.middleware.proxy_logging),
699

ProxyOverrideOptions (class in
swift.proxy.server), 491

public() (in module swift.common.utils), 631
punch_hole() (in module swift.common.utils),

631
purge() (swift.obj.diskfile.ECDiskFile method),

541
PUT() (swift.account.server.AccountController

method), 497
PUT() (swift.common.middleware.s3api.controllers.acl.AclController

method), 669
PUT() (swift.common.middleware.s3api.controllers.bucket.BucketController

method), 669
PUT() (swift.common.middleware.s3api.controllers.logging.LoggingStatusController

method), 673
PUT() (swift.common.middleware.s3api.controllers.multi_upload.PartController

method), 671
PUT() (swift.common.middleware.s3api.controllers.obj.ObjectController

method), 669
PUT() (swift.common.middleware.s3api.controllers.s3_acl.S3AclController

method), 670
PUT() (swift.common.middleware.s3api.controllers.versioning.VersioningController

method), 672
PUT() (swift.container.server.ContainerController

method), 510
put() (swift.obj.diskfile.BaseDiskFileWriter

method), 539
put() (swift.obj.diskfile.DiskFileWriter method),

540
put() (swift.obj.diskfile.ECDiskFileWriter

method), 542
PUT() (swift.obj.server.ObjectController

method), 554
PUT() (swift.proxy.controllers.account.AccountController

method), 480
PUT() (swift.proxy.controllers.container.ContainerController

method), 481
PUT() (swift.proxy.controllers.obj.BaseObjectController

method), 481

put_container()
(swift.account.backend.AccountBroker
method), 493

put_container()
(swift.common.internal_client.SimpleClient
method), 585

put_object() (in module
swift.common.internal_client), 585

put_object() (swift.common.internal_client.SimpleClient
method), 585

put_object() (swift.container.backend.ContainerBroker
method), 504

put_recon_cache_entry() (in module
swift.common.utils), 631

put_record() (swift.common.db.DatabaseBroker
method), 524

putheader() (swift.common.bufferedhttp.BufferedHTTPConnection
method), 561

putrequest() (swift.common.bufferedhttp.BufferedHTTPConnection
method), 561

Putter (class in swift.proxy.controllers.obj), 486
PutterConnectError, 576

Q
quarantine() (swift.common.db.DatabaseBroker

method), 524
quarantine_db() (in module

swift.common.db_replicator), 527
quarantine_renamer() (in module

swift.obj.diskfile), 544
quarantine_renamer()

(swift.obj.diskfile.BaseDiskFileManager
method), 536

QuarantineRequest, 576
QUERY_LOGGING (in module swift.common.db),

525
query_string() (swift.common.swob.Request

property), 602
quorum() (swift.common.storage_policy.BaseStoragePolicy

property), 644
quorum() (swift.common.storage_policy.ECStoragePolicy

property), 645
quorum() (swift.common.storage_policy.StoragePolicy

property), 645
quorum_size() (in module

swift.common.utils), 631
quote() (in module swift.common.utils), 631

R
random() (in module swift.account.auditor),

492
random() (in module swift.common.utils), 631

Index 761



Swift Documentation, Release 2.27.1.dev38

random() (in module swift.container.auditor),
498

random() (in module swift.container.sharder),
517

random() (in module swift.container.sync), 520
random() (in module swift.container.updater),

521
random() (in module swift.obj.updater), 557
Range (class in swift.common.swob), 599
range() (swift.common.swob.Request property),

602
range_done() (swift.container.sharder.CleavingContext

method), 515
RangeAlreadyComplete, 576
ranges_for_length()

(swift.common.swob.Range method),
599

ratelimit_sleep() (in module
swift.common.utils), 632

RateLimitedIterator (class in
swift.common.utils), 608

RateLimitMiddleware (class in
swift.common.middleware.ratelimit),
699

raw_size() (swift.common.ring.ring.Ring
property), 459

read() (swift.common.bufferedhttp.BufferedHTTPResponse
method), 562

read() (swift.common.internal_client.CompressingFileReader
method), 577

read() (swift.common.ring.ring.RingReader
method), 460

read() (swift.common.utils.InputProxy method),
606

read() (swift.proxy.controllers.base.ByteCountEnforcer
method), 472

READ_CHUNK_SIZE (in module
swift.common.middleware.formpost),
687

read_hashes() (in module swift.obj.diskfile),
544

read_metadata() (in module
swift.obj.diskfile), 544

read_metadata()
(swift.obj.diskfile.BaseDiskFile method),
532

readconf() (in module swift.common.utils),
632

reader() (swift.obj.diskfile.BaseDiskFile
method), 532

reader() (swift.obj.reconstructor.RebuildingECDiskFileStream

method), 553
reader_cls (swift.obj.diskfile.BaseDiskFile at-

tribute), 532
reader_cls (swift.obj.diskfile.DiskFile at-

tribute), 540
reader_cls (swift.obj.diskfile.ECDiskFile at-

tribute), 541
readinto() (swift.common.ring.ring.RingReader

method), 460
readline() (swift.common.bufferedhttp.BufferedHTTPResponse

method), 562
readline() (swift.common.ring.ring.RingReader

method), 460
readline() (swift.common.utils.InputProxy

method), 606
readline() (swift.obj.ssync_sender.SsyncBufferedHTTPResponse

method), 548
ReadOnlyMiddleware (class in

swift.common.middleware.read_only),
701

realms() (swift.common.container_sync_realms.ContainerSyncRealms
method), 566

realms_conf (swift.container.server.ContainerController
attribute), 511

realms_conf (swift.container.sync.ContainerSync
attribute), 520

reap_account()
(swift.account.reaper.AccountReaper
method), 494

reap_container()
(swift.account.reaper.AccountReaper
method), 495

reap_device()
(swift.account.reaper.AccountReaper
method), 495

reap_object()
(swift.account.reaper.AccountReaper
method), 496

rebalance() (swift.common.ring.builder.RingBuilder
method), 463

rebalance() (swift.common.ring.composite_builder.CompositeRingBuilder
method), 469

RebuildingECDiskFileStream (class in
swift.obj.reconstructor), 553

Receiver (class in swift.obj.ssync_receiver),
549

reclaim() (swift.common.db.DatabaseBroker
method), 524

reconcile() (swift.container.reconciler.ContainerReconciler
method), 512

reconcile_object()

762 Index



Swift Documentation, Release 2.27.1.dev38

(swift.container.reconciler.ContainerReconciler
method), 512

ReconMiddleware (class in
swift.common.middleware.recon), 701

reconstruct()
(swift.obj.reconstructor.ObjectReconstructor
method), 553

reconstruct_fa()
(swift.obj.reconstructor.ObjectReconstructor
method), 553

record_stats()
(swift.obj.auditor.AuditorWorker
method), 528

Redirect, 659
referer() (swift.common.swob.Request prop-

erty), 602
referrer() (swift.common.swob.Request prop-

erty), 602
referrer_allowed() (in module

swift.common.middleware.acl), 560
register() (swift.common.storage_policy.BaseStoragePolicy

class method), 644
register() (swift.proxy.controllers.obj.ObjectControllerRouter

class method), 486
register_swift_info() (in module

swift.common.utils), 632
register_worker_exit()

(swift.common.wsgi.ServersPerPortStrategy
method), 639

register_worker_exit()
(swift.common.wsgi.WorkersStrategy
method), 640

register_worker_start()
(swift.common.wsgi.ServersPerPortStrategy
method), 639

register_worker_start()
(swift.common.wsgi.WorkersStrategy
method), 641

reiterate() (in module swift.common.utils),
633

release() (swift.common.utils.PipeMutex
method), 607

relink_paths() (in module swift.obj.diskfile),
544

reload() (swift.common.container_sync_realms.ContainerSyncRealms
method), 566

reload() (swift.common.manager.Manager
method), 586

reload_constraints() (in module
swift.common.constraints), 565

reload_db_files()

(swift.container.backend.ContainerBroker
method), 505

reload_seamless()
(swift.common.manager.Manager
method), 586

reload_storage_policies() (in module
swift.common.storage_policy), 647

remote_addr() (swift.common.swob.Request
property), 602

remote_user() (swift.common.swob.Request
property), 602

remove_dev() (swift.common.ring.builder.RingBuilder
method), 463

remove_directory() (in module
swift.common.utils), 633

remove_file() (in module
swift.common.utils), 633

remove_items() (in module
swift.common.request_helpers), 596

remove_name()
(swift.common.storage_policy.BaseStoragePolicy
method), 644

remove_objects()
(swift.container.backend.ContainerBroker
method), 505

remove_policy_alias()
(swift.common.storage_policy.StoragePolicyCollection
method), 647

renamer() (in module swift.common.utils), 633
replace_partition_in_path() (in mod-

ule swift.common.utils), 633
ReplConnection (class in

swift.common.db_replicator), 526
replica_count()

(swift.common.ring.ring.Ring property),
459

replica_count()
(swift.common.ring.ring.RingData
property), 459

REPLICATE() (swift.account.server.AccountController
method), 497

replicate() (swift.common.db_replicator.ReplConnection
method), 526

REPLICATE() (swift.container.server.ContainerController
method), 510

replicate() (swift.obj.replicator.ObjectReplicator
method), 546

REPLICATE() (swift.obj.server.ObjectController
method), 554

replicate_reconcilers()
(swift.container.replicator.ContainerReplicator

Index 763



Swift Documentation, Release 2.27.1.dev38

method), 508
ReplicatedObjectController (class in

swift.proxy.controllers.obj), 487
replication() (in module

swift.common.utils), 633
replication_lock()

(swift.obj.diskfile.BaseDiskFileManager
method), 536

ReplicationException, 576
ReplicationLockTimeout, 576
Replicator (class in

swift.common.db_replicator), 526
ReplicatorRpc (class in

swift.common.db_replicator), 527
report() (swift.container.sync.ContainerSync

method), 520
report_up_to_date()

(swift.common.db_replicator.Replicator
method), 527

report_up_to_date()
(swift.container.replicator.ContainerReplicator
method), 508

reported (swift.container.sync.ContainerSync
attribute), 520

reported() (swift.container.backend.ContainerBroker
method), 505

Request (class in swift.common.swob), 600
RequestIsNotMultiPartContent, 659
RequestTimeout, 659
RequestTimeTooSkewed, 659
RequestTorrentOfBucketError, 660
reset() (swift.container.sharder.CleavingContext

method), 515
reset() (swift.obj.updater.SweepStats method),

557
reset_stats()

(swift.account.reaper.AccountReaper
method), 496

resolve_etag_is_at_header() (in mod-
ule swift.common.request_helpers), 596

resolve_shard_range_states()
(swift.container.backend.ContainerBroker
class method), 505

resolve_state()
(swift.common.utils.ShardRange class
method), 610

resource_type()
(swift.common.middleware.s3api.controllers.base.Controller
class method), 668

Response (class in swift.common.swob), 603
response_class

(swift.common.bufferedhttp.BufferedHTTPConnection
attribute), 561

response_class
(swift.obj.ssync_sender.SsyncBufferedHTTPConnection
attribute), 548

response_iter()
(swift.common.middleware.crypto.decrypter.DecrypterObjContext
method), 684

response_parts_iter()
(swift.proxy.controllers.obj.ECFragGetter
method), 483

ResponseTimeout, 576
restart() (swift.common.manager.Manager

method), 586
RestoreAlreadyInProgress, 660
RestrictedGreenPool (class in

swift.common.wsgi), 638
retry() (in module swift.common.direct_client),

573
retry_request()

(swift.common.internal_client.SimpleClient
method), 585

Ring (class in swift.common.ring.ring), 457
RingBuilder (class in

swift.common.ring.builder), 460
RingBuilderError, 576
RingData (class in swift.common.ring.ring), 459
RingLoadError, 576
RingReader (class in swift.common.ring.ring),

460
RingValidationError, 576
RingValidationWarning, 465
root_account()

(swift.container.backend.ContainerBroker
property), 506

root_container()
(swift.container.backend.ContainerBroker
property), 506

root_path() (swift.container.backend.ContainerBroker
property), 506

round_robin_iter() (in module
swift.common.utils), 634

roundrobin_datadirs() (in module
swift.common.db_replicator), 527

roundrobin_datadirs()
(swift.common.db_replicator.Replicator
method), 527

rsync() (swift.obj.replicator.ObjectReplicator
method), 546

rsync_ip() (in module swift.common.utils),
634

764 Index



Swift Documentation, Release 2.27.1.dev38

rsync_module_interpolation() (in
module swift.common.utils), 634

rsync_then_merge()
(swift.common.db_replicator.ReplicatorRpc
method), 527

run_audit() (swift.obj.auditor.ObjectAuditor
method), 528

run_command()
(swift.common.manager.Manager
method), 586

run_forever()
(swift.account.auditor.AccountAuditor
method), 492

run_forever()
(swift.account.reaper.AccountReaper
method), 496

run_forever()
(swift.common.db_replicator.Replicator
method), 527

run_forever()
(swift.container.auditor.ContainerAuditor
method), 497

run_forever()
(swift.container.reconciler.ContainerReconciler
method), 512

run_forever()
(swift.container.sharder.ContainerSharder
method), 515

run_forever()
(swift.container.sync.ContainerSync
method), 520

run_forever()
(swift.container.updater.ContainerUpdater
method), 521

run_forever()
(swift.obj.auditor.ObjectAuditor method),
528

run_forever()
(swift.obj.reconstructor.ObjectReconstructor
method), 553

run_forever()
(swift.obj.replicator.ObjectReplicator
method), 546

run_forever()
(swift.obj.updater.ObjectUpdater
method), 557

run_once() (swift.account.auditor.AccountAuditor
method), 492

run_once() (swift.account.reaper.AccountReaper
method), 496

run_once() (swift.common.db_replicator.Replicator

method), 527
run_once() (swift.container.auditor.ContainerAuditor

method), 498
run_once() (swift.container.reconciler.ContainerReconciler

method), 513
run_once() (swift.container.replicator.ContainerReplicator

method), 508
run_once() (swift.container.sharder.ContainerSharder

method), 515
run_once() (swift.container.sync.ContainerSync

method), 520
run_once() (swift.container.updater.ContainerUpdater

method), 521
run_once() (swift.obj.auditor.ObjectAuditor

method), 528
run_once() (swift.obj.reconstructor.ObjectReconstructor

method), 553
run_once() (swift.obj.replicator.ObjectReplicator

method), 547
run_once() (swift.obj.updater.ObjectUpdater

method), 557
run_wsgi() (in module swift.common.wsgi),

643

S
S3AclController (class in

swift.common.middleware.s3api.controllers.s3_acl),
670

S3AclHandler (class in
swift.common.middleware.s3api.acl_handlers),
667

S3AclRequest (class in
swift.common.middleware.s3api.s3request),
652

S3ApiMiddleware (class in
swift.common.middleware.s3api.s3api),
651

S3Exception, 661
S3NotImplemented, 660
S3Request (class in

swift.common.middleware.s3api.s3request),
652

S3Response (class in
swift.common.middleware.s3api.s3response),
660

S3ResponseBase (class in
swift.common.middleware.s3api.s3response),
660

S3Timestamp (class in
swift.common.middleware.s3api.utils),
661

Index 765



Swift Documentation, Release 2.27.1.dev38

S3Token (class in
swift.common.middleware.s3api.s3token),
651

safe_kill() (in module
swift.common.manager), 589

sanitize_timeout() (in module
swift.common.memcached), 592

save() (swift.common.ring.builder.RingBuilder
method), 463

save() (swift.common.ring.composite_builder.CompositeRingBuilder
method), 469

save() (swift.common.ring.ring.RingData
method), 459

save_headers (swift.container.server.ContainerController
attribute), 511

script_name() (swift.common.swob.Request
property), 602

search_devs()
(swift.common.ring.builder.RingBuilder
method), 463

search_tree() (in module
swift.common.utils), 634

see_object() (swift.obj.auditor.WatcherWrapper
method), 529

seek() (swift.common.internal_client.CompressingFileReader
method), 577

seek() (swift.common.ring.ring.RingReader
method), 460

segment_range_to_fragment_range()
(in module swift.proxy.controllers.obj),
489

SegmentedIterable (class in
swift.common.request_helpers), 592

SegmentError, 576
select_http_proxy()

(swift.container.sync.ContainerSync
method), 520

send_chunk() (swift.proxy.controllers.obj.Putter
method), 487

send_commit_confirmation()
(swift.proxy.controllers.obj.MIMEPutter
method), 486

send_delete()
(swift.obj.ssync_sender.Sender method),
548

send_post() (swift.obj.ssync_sender.Sender
method), 548

send_put() (swift.obj.ssync_sender.Sender
method), 548

send_subrequest()
(swift.obj.ssync_sender.Sender method),

548
Sender (class in swift.obj.ssync_sender), 547
serialize_v1()

(swift.common.ring.ring.RingData
method), 459

Server (class in swift.common.manager), 587
server_type (swift.account.server.AccountController

attribute), 497
server_type (swift.container.replicator.ContainerReplicator

attribute), 508
server_type (swift.container.server.ContainerController

attribute), 511
server_type (swift.obj.server.ObjectController

attribute), 555
server_type (swift.proxy.controllers.account.AccountController

attribute), 480
server_type (swift.proxy.controllers.base.Controller

attribute), 475
server_type (swift.proxy.controllers.container.ContainerController

attribute), 481
server_type (swift.proxy.controllers.obj.BaseObjectController

attribute), 482
ServerSideCopyWebContext (class in

swift.common.middleware.copy), 704
ServersPerPortStrategy (class in

swift.common.wsgi), 638
ServiceController (class in

swift.common.middleware.s3api.controllers.service),
668

ServiceUnavailable, 660
set() (swift.common.memcached.MemcacheRing

method), 591
set_account_metadata()

(swift.common.internal_client.InternalClient
method), 583

set_close_on_exec_on_listen_sockets()
(swift.common.wsgi.StrategyBase
method), 639

set_container_metadata()
(swift.common.internal_client.InternalClient
method), 583

set_deleted()
(swift.common.utils.ShardRange
method), 610

set_dev_region()
(swift.common.ring.builder.RingBuilder
method), 464

set_dev_weight()
(swift.common.ring.builder.RingBuilder
method), 464

set_dev_zone()

766 Index



Swift Documentation, Release 2.27.1.dev38

(swift.common.ring.builder.RingBuilder
method), 464

set_durable()
(swift.proxy.controllers.obj.ECGetResponseBucket
method), 484

set_info_cache() (in module
swift.proxy.controllers.base), 479

set_initial_state()
(swift.common.internal_client.CompressingFileReader
method), 577

set_multi() (swift.common.memcached.MemcacheRing
method), 592

set_node_provider()
(swift.proxy.controllers.base.NodeIter
method), 477

set_node_timing()
(swift.proxy.server.Application method),
491

set_object_info_cache() (in module
swift.proxy.controllers.base), 479

set_object_metadata()
(swift.common.internal_client.InternalClient
method), 584

set_overload()
(swift.common.ring.builder.RingBuilder
method), 464

set_replicas()
(swift.common.ring.builder.RingBuilder
method), 464

set_sharded_state()
(swift.container.backend.ContainerBroker
method), 506

set_sharding_state()
(swift.container.backend.ContainerBroker
method), 506

set_sharding_sysmeta()
(swift.container.backend.ContainerBroker
method), 506

set_statsd_prefix()
(swift.common.utils.LogAdapter
method), 606

set_storage_policy_index()
(swift.container.backend.ContainerBroker
method), 506

set_swift_dir() (in module
swift.common.utils), 634

set_x_container_sync_points()
(swift.container.backend.ContainerBroker
method), 506

setup() (swift.obj.server.ObjectController
method), 556

setup_env() (in module
swift.common.manager), 589

sharding_enabled() (in module
swift.container.sharder), 517

sharding_initiated()
(swift.container.backend.ContainerBroker
method), 506

sharding_required()
(swift.container.backend.ContainerBroker
method), 506

ShardRange (class in swift.common.utils), 608
ShardRangeList (class in swift.common.utils),

611
shortfall() (swift.proxy.controllers.obj.ECGetResponseBucket

property), 484
shortfall() (swift.proxy.controllers.obj.ECGetResponseCollection

property), 485
shortfall_with_alts()

(swift.proxy.controllers.obj.ECGetResponseBucket
property), 484

ShortReadError, 576
shutdown() (swift.common.manager.Manager

method), 586
shutdown_sockets()

(swift.common.wsgi.StrategyBase
method), 639

signal_children()
(swift.common.manager.Server method),
588

signal_pids()
(swift.common.manager.Server method),
588

signal_ready()
(swift.common.wsgi.StrategyBase
method), 640

SignatureDoesNotMatch, 660
SigV4Mixin (class in

swift.common.middleware.s3api.s3request),
653

SigV4Request (class in
swift.common.middleware.s3api.s3request),
653

SigV4S3AclRequest (class in
swift.common.middleware.s3api.s3request),
653

SimpleClient (class in
swift.common.internal_client), 585

since() (swift.obj.updater.SweepStats method),
557

size() (swift.common.ring.ring.Ring property),
459

Index 767



Swift Documentation, Release 2.27.1.dev38

slightly_later_timestamp() (in module
swift.container.reconciler), 514

SloGetContext (class in
swift.common.middleware.slo), 54

SlowDown, 660
sockaddr_alg (class in swift.common.utils),

634
sort_nodes() (swift.proxy.server.Application

method), 491
source_and_node_iter()

(swift.proxy.controllers.obj.ECFragGetter
property), 483

source_key() (in module
swift.proxy.controllers.base), 480

spawn() (swift.common.manager.Server
method), 588

spawn() (swift.common.utils.GreenAsyncPile
method), 605

spawn() (swift.common.utils.Watchdog method),
614

spawn_n() (swift.common.wsgi.RestrictedGreenPool
method), 638

split_and_validate_path() (in module
swift.common.request_helpers), 596

split_path() (in module swift.common.utils),
634

split_path() (swift.common.swob.Request
method), 602

split_policy_string() (in module
swift.common.storage_policy), 647

split_reserved_name() (in module
swift.common.request_helpers), 597

Spliterator (class in swift.common.utils), 612
ssync() (swift.obj.replicator.ObjectReplicator

method), 547
SSYNC() (swift.obj.server.ObjectController

method), 554
SsyncBufferedHTTPConnection (class in

swift.obj.ssync_sender), 548
SsyncBufferedHTTPResponse (class in

swift.obj.ssync_sender), 548
SsyncClientDisconnected, 550
start() (swift.common.manager.Manager

method), 586
start() (swift.common.utils.Watchdog method),

614
start() (swift.container.sharder.CleavingContext

method), 515
start() (swift.obj.auditor.WatcherWrapper

method), 529
startswith() (swift.common.wsgi.PipelineWrapper

method), 638
StaticLargeObject (class in

swift.common.middleware.slo), 55
StaticWeb (class in

swift.common.middleware.staticweb),
706

Stats (class in swift.obj.replicator), 547
stats_line() (swift.obj.reconstructor.ObjectReconstructor

method), 553
stats_line() (swift.obj.replicator.ObjectReplicator

method), 547
stats_log() (swift.container.reconciler.ContainerReconciler

method), 513
statsd_delegate()

(swift.common.utils.LogAdapter
method), 606

status() (swift.common.manager.Manager
method), 586

status() (swift.common.manager.Server
method), 588

status() (swift.common.swob.Response prop-
erty), 604

StatusMap (class in swift.common.swob), 604
stop() (swift.common.manager.Manager

method), 586
stop() (swift.common.manager.Server method),

588
stop() (swift.common.utils.Watchdog method),

614
storage_directory() (in module

swift.common.utils), 635
storage_policy_index()

(swift.container.backend.ContainerBroker
property), 506

StoragePolicy (class in
swift.common.storage_policy), 645

StoragePolicyCollection (class in
swift.common.storage_policy), 645

StoragePolicySingleton (class in
swift.common.storage_policy), 647

store() (swift.container.sharder.CleavingContext
method), 515

str_params() (swift.common.swob.Request
property), 602

StrAnonymizer (class in swift.common.utils),
612

StrategyBase (class in swift.common.wsgi),
639

StreamingPile (class in swift.common.utils),
612

streq_const_time() (in module

768 Index



Swift Documentation, Release 2.27.1.dev38

swift.common.utils), 635
StrFormatTime (class in swift.common.utils),

612
strict_b64decode() (in module

swift.common.utils), 635
strip_object_transient_sysmeta_prefix()

(in module
swift.common.request_helpers), 597

strip_self() (in module swift.obj.diskfile),
545

strip_sys_meta_prefix() (in module
swift.common.request_helpers), 597

strip_user_meta_prefix() (in module
swift.common.request_helpers), 597

SuffixSyncError, 576
SweepStats (class in swift.obj.updater), 557
swift.account.auditor

module, 491
swift.account.backend

module, 492
swift.account.reaper

module, 494
swift.account.server

module, 497
swift.cli.manage_shard_ranges

module, 111
swift.cli.ring_builder_analyzer

module, 17
swift.cli.ringcomposer

module, 16
swift.common.bufferedhttp

module, 561
swift.common.constraints

module, 563
swift.common.container_sync_realms

module, 566
swift.common.db

module, 521
swift.common.db_replicator

module, 526
swift.common.direct_client

module, 567
swift.common.exceptions

module, 574
swift.common.internal_client

module, 577
swift.common.manager

module, 586
swift.common.memcached

module, 589
swift.common.middleware.account_quotas

module, 648
swift.common.middleware.acl

module, 558
swift.common.middleware.bulk

module, 673
swift.common.middleware.catch_errors

module, 676
swift.common.middleware.cname_lookup

module, 677
swift.common.middleware.container_quotas

module, 677
swift.common.middleware.container_sync

module, 678
swift.common.middleware.copy

module, 702
swift.common.middleware.crossdomain

module, 678
swift.common.middleware.crypto

module, 681
swift.common.middleware.crypto.decrypter

module, 682
swift.common.middleware.crypto.encrypter

module, 681
swift.common.middleware.crypto.keymaster

module, 688
swift.common.middleware.dlo

module, 48
swift.common.middleware.domain_remap

module, 679
swift.common.middleware.etag_quoter

module, 685
swift.common.middleware.formpost

module, 685
swift.common.middleware.gatekeeper

module, 687
swift.common.middleware.healthcheck

module, 688
swift.common.middleware.keystoneauth

module, 689
swift.common.middleware.list_endpoints

module, 692
swift.common.middleware.memcache

module, 693
swift.common.middleware.name_check

module, 693
swift.common.middleware.proxy_logging

module, 698
swift.common.middleware.ratelimit

module, 699
swift.common.middleware.read_only

module, 701

Index 769



Swift Documentation, Release 2.27.1.dev38

swift.common.middleware.recon
module, 701

swift.common.middleware.s3api.acl_handlers
module, 665

swift.common.middleware.s3api.acl_utils
module, 667

swift.common.middleware.s3api.controllers.acl
module, 669

swift.common.middleware.s3api.controllers.base
module, 668

swift.common.middleware.s3api.controllers.bucket
module, 668

swift.common.middleware.s3api.controllers.location
module, 672

swift.common.middleware.s3api.controllers.logging
module, 673

swift.common.middleware.s3api.controllers.multi_delete
module, 672

swift.common.middleware.s3api.controllers.multi_upload
module, 670

swift.common.middleware.s3api.controllers.obj
module, 669

swift.common.middleware.s3api.controllers.s3_acl
module, 670

swift.common.middleware.s3api.controllers.service
module, 668

swift.common.middleware.s3api.controllers.versioning
module, 672

swift.common.middleware.s3api.etree
module, 661

swift.common.middleware.s3api.exception
module, 661

swift.common.middleware.s3api.s3api
module, 649

swift.common.middleware.s3api.s3request
module, 652

swift.common.middleware.s3api.s3response
module, 653

swift.common.middleware.s3api.s3token
module, 651

swift.common.middleware.s3api.subresource
module, 662

swift.common.middleware.s3api.utils
module, 661

swift.common.middleware.slo
module, 49

swift.common.middleware.staticweb
module, 704

swift.common.middleware.symlink
module, 706

swift.common.middleware.tempauth

module, 711
swift.common.middleware.tempurl

module, 715
swift.common.middleware.versioned_writes.legacy

module, 720
swift.common.middleware.versioned_writes.object_versioning

module, 694
swift.common.middleware.xprofile

module, 725
swift.common.request_helpers

module, 592
swift.common.ring.builder

module, 460
swift.common.ring.composite_builder

module, 465
swift.common.ring.ring

module, 457
swift.common.storage_policy

module, 643
swift.common.swob

module, 598
swift.common.utils

module, 605
swift.common.wsgi

module, 637
swift.container.auditor

module, 497
swift.container.backend

module, 498
swift.container.reconciler

module, 511
swift.container.replicator

module, 507
swift.container.server

module, 509
swift.container.sharder

module, 515
swift.container.sync

module, 518
swift.container.updater

module, 520
swift.obj.auditor

module, 528
swift.obj.diskfile

module, 529
swift.obj.reconstructor

module, 551
swift.obj.replicator

module, 545
swift.obj.server

module, 554

770 Index



Swift Documentation, Release 2.27.1.dev38

swift.obj.ssync_receiver
module, 549

swift.obj.ssync_sender
module, 547

swift.obj.updater
module, 556

swift.proxy.controllers.account
module, 480

swift.proxy.controllers.base
module, 472

swift.proxy.controllers.container
module, 480

swift.proxy.controllers.obj
module, 481

swift.proxy.server
module, 489

swift_acl_translate() (in module
swift.common.middleware.s3api.acl_utils),
667

swift_entity_path()
(swift.common.swob.Request property),
602

SwiftException, 577
SwiftLogFormatter (class in

swift.common.utils), 612
SwiftLoggerAdapter (class in

swift.common.utils), 613
symlink_sysmeta_to_usermeta()

(in module
swift.common.middleware.symlink),
710

symlink_usermeta_to_sysmeta()
(in module
swift.common.middleware.symlink),
710

SymlinkContainerContext (class in
swift.common.middleware.symlink), 709

SymlinkMiddleware (class in
swift.common.middleware.symlink),
709

SymlinkObjectContext (class in
swift.common.middleware.symlink),
709

sync() (swift.common.db_replicator.ReplicatorRpc
method), 527

sync() (swift.obj.replicator.ObjectReplicator
method), 547

sync_store (swift.container.sync.ContainerSync
attribute), 520

sysmeta_header() (in module
swift.common.middleware.s3api.utils),

662
sysmeta_prefix() (in module

swift.common.middleware.s3api.utils),
662

systemd_notify() (in module
swift.common.utils), 636

T
TempAuth (class in

swift.common.middleware.tempauth),
713

TemporaryRedirect, 660
TempURL (class in

swift.common.middleware.tempurl),
719

text() (swift.common.middleware.s3api.etree._Element
property), 661

ThreadSafeSysLogHandler (class in
swift.common.utils), 613

throw_tombstones()
(swift.container.reconciler.ContainerReconciler
method), 513

Timestamp (class in swift.common.utils), 613
timestamp() (swift.common.middleware.s3api.s3request.S3Request

property), 653
timestamp() (swift.common.middleware.s3api.s3request.SigV4Mixin

property), 653
timestamp() (swift.common.swob.Request

property), 602
timestamp() (swift.obj.diskfile.BaseDiskFile

property), 532
timing_stats() (in module

swift.common.utils), 636
to_dict() (swift.common.ring.builder.RingBuilder

method), 465
to_dict() (swift.common.ring.composite_builder.CompositeRingBuilder

method), 469
to_dict() (swift.common.ring.ring.RingData

method), 460
to_recon() (swift.obj.replicator.Stats method),

547
to_swift_req()

(swift.common.middleware.s3api.s3request.S3AclRequest
method), 652

to_swift_req()
(swift.common.middleware.s3api.s3request.S3Request
method), 653

TokenRefreshRequired, 660
TooManyBuckets, 660
total_stats()

(swift.obj.replicator.ObjectReplicator

Index 771



Swift Documentation, Release 2.27.1.dev38

property), 547
trailing_metadata() (in module

swift.proxy.controllers.obj), 489
transfer_headers()

(swift.proxy.controllers.base.Controller
method), 475

translate_container_headers_to_info()
(in module swift.container.reconciler),
514

U
UnexpectedContent, 661
UnexpectedResponse, 585
UnknownCommandError, 588
UnknownSecretIdError, 577
unlink_older_than() (in module

swift.common.utils), 636
unlink_paths_older_than() (in module

swift.common.utils), 636
UnPicklingError, 577
UnresolvableGrantByEmailAddress,

661
UnsupportedController (class in

swift.common.middleware.s3api.controllers.base),
668

update() (swift.common.middleware.s3api.utils.Config
method), 661

UPDATE() (swift.container.server.ContainerController
method), 510

update() (swift.obj.replicator.ObjectReplicator
method), 547

UPDATE() (swift.proxy.controllers.container.ContainerController
method), 481

update_auditor_status() (in module
swift.obj.diskfile), 545

update_data_record()
(swift.container.server.ContainerController
method), 511

update_deleted()
(swift.obj.replicator.ObjectReplicator
method), 547

update_etag_is_at_header() (in module
swift.common.request_helpers), 597

update_headers() (in module
swift.proxy.controllers.base), 480

update_ignore_range_header() (in
module swift.common.request_helpers),
597

update_last_part_moves()
(swift.common.ring.composite_builder.CompositeRingBuilder
method), 469

update_last_part_moves()
(swift.common.ring.composite_builder.CooperativeRingBuilder
method), 470

update_meta()
(swift.common.utils.ShardRange
method), 610

update_metadata()
(swift.common.db.DatabaseBroker
method), 524

update_new_item_from_existing() (in
module swift.container.backend), 506

update_put_timestamp()
(swift.common.db.DatabaseBroker
method), 524

update_recon()
(swift.obj.replicator.ObjectReplicator
method), 547

update_reconciler_sync()
(swift.container.backend.ContainerBroker
method), 506

update_request()
(swift.proxy.server.Application method),
491

update_state()
(swift.common.utils.ShardRange
method), 611

update_status_changed_at()
(swift.common.db.DatabaseBroker
method), 524

updated_timeout()
(swift.common.db.DatabaseBroker
method), 525

updates() (swift.obj.ssync_receiver.Receiver
method), 550

updates() (swift.obj.ssync_sender.Sender
method), 548

upload_object()
(swift.common.internal_client.InternalClient
method), 584

UploadAclHandler (class in
swift.common.middleware.s3api.acl_handlers),
667

UploadController (class in
swift.common.middleware.s3api.controllers.multi_upload),
671

UploadsAclHandler (class in
swift.common.middleware.s3api.acl_handlers),
667

UploadsController (class in
swift.common.middleware.s3api.controllers.multi_upload),
672

772 Index



Swift Documentation, Release 2.27.1.dev38

upper() (swift.common.utils.ShardRangeList
property), 612

url() (swift.common.swob.Request property),
603

User (class in
swift.common.middleware.s3api.subresource),
664

user_agent() (swift.common.swob.Request
property), 603

UserKeyMustBeSpecified, 661
utf8encode() (in module swift.common.db),

526

V
valid_api_version() (in module

swift.common.constraints), 565
valid_timestamp() (in module

swift.common.constraints), 566
validate() (swift.common.ring.builder.RingBuilder

method), 465
validate_bucket_name() (in module

swift.common.middleware.s3api.utils),
662

validate_container_params() (in mod-
ule swift.common.request_helpers), 598

validate_device_partition() (in mod-
ule swift.common.utils), 636

validate_first_segment()
(swift.common.request_helpers.SegmentedIterable
method), 593

validate_fragment_index()
(swift.obj.diskfile.ECDiskFileManager
method), 542

validate_internal_account() (in mod-
ule swift.common.request_helpers), 598

validate_internal_container() (in
module swift.common.request_helpers),
598

validate_internal_obj() (in module
swift.common.request_helpers), 598

validate_metadata()
(swift.common.db.DatabaseBroker
static method), 525

validate_params() (in module
swift.common.request_helpers), 598

validate_per_policy_counts()
(swift.account.auditor.AccountAuditor
method), 492

validate_sync_to() (in module
swift.common.utils), 636

verify_server() (in module

swift.common.manager), 589
version() (swift.common.ring.ring.Ring prop-

erty), 459
VersionedWritesContext (class in

swift.common.middleware.versioned_writes.legacy),
724

VersioningController (class in
swift.common.middleware.s3api.controllers.versioning),
672

W
wait() (swift.common.manager.Server method),

588
waitall() (swift.common.utils.GreenAsyncPile

method), 605
waitfirst() (swift.common.utils.GreenAsyncPile

method), 605
watch_server_pids() (in module

swift.common.manager), 589
Watchdog (class in swift.common.utils), 613
WatchdogTimeout (class in

swift.common.utils), 614
WatcherWrapper (class in swift.obj.auditor),

528
weight_of_one_part()

(swift.common.ring.builder.RingBuilder
method), 465

weighted_device_count()
(swift.common.ring.ring.Ring property),
459

whataremyips() (in module
swift.common.utils), 637

WorkersStrategy (class in
swift.common.wsgi), 640

wrap_conf_type() (in module
swift.common.wsgi), 643

write() (swift.obj.diskfile.BaseDiskFileWriter
method), 539

write_file() (in module swift.common.utils),
637

write_hashes() (in module swift.obj.diskfile),
545

write_metadata() (in module
swift.obj.diskfile), 545

write_metadata()
(swift.obj.diskfile.BaseDiskFile method),
532

write_pickle() (in module
swift.common.utils), 637

writer() (swift.obj.diskfile.BaseDiskFile
method), 532

Index 773



Swift Documentation, Release 2.27.1.dev38

writer_cls (swift.obj.diskfile.BaseDiskFile at-
tribute), 532

writer_cls (swift.obj.diskfile.DiskFile at-
tribute), 540

writer_cls (swift.obj.diskfile.ECDiskFile at-
tribute), 541

WsgiBytesIO (class in swift.common.swob),
604

WSGIContext (class in swift.common.wsgi), 640
wsgify() (in module swift.common.swob), 604
www_authenticate()

(swift.common.swob.Response method),
604

X
xml() (swift.common.middleware.s3api.s3request.S3Request

method), 653

Y
yield_hashes()

(swift.obj.diskfile.BaseDiskFileManager
method), 537

yield_objects()
(swift.container.sharder.ContainerSharder
method), 515

yield_objects_to_shard_range()
(swift.container.sharder.ContainerSharder
method), 516

yield_suffixes()
(swift.obj.diskfile.BaseDiskFileManager
method), 537

Z
zero_copy_send()

(swift.obj.diskfile.BaseDiskFileReader
method), 538

zero_like() (in module swift.common.db),
526

774 Index


	Getting Started
	System Requirements
	Development
	CLI client and SDK library
	Production

	Overview and Concepts
	Object Storage API overview
	Swift Architectural Overview
	The Rings
	Storage Policies
	The Account Reaper
	The Auth System
	Access Control Lists (ACLs)
	Replication
	Rate Limiting
	Large Object Support
	Global Clusters
	Container to Container Synchronization
	Expiring Object Support
	CORS
	Cross-domain Policy File
	Erasure Code Support
	Object Encryption
	Using Swift as Backing Store for Service Data
	Container Sharding
	Building a Consistent Hashing Ring
	Modifying Ring Partition Power
	Associated Projects

	Contributor Documentation
	Contributing to OpenStack Swift
	Swift Design Principles
	Recommended workflow
	Notes on Testing
	Ideas
	Community
	Review Guidelines

	Developer Documentation
	Development Guidelines
	SAIO (Swift All In One)
	First Contribution to Swift
	Adding Storage Policies to an Existing SAIO
	Auth Server and Middleware
	Middleware and Metadata
	Pluggable On-Disk Back-end APIs
	Auditor Watchers

	Administrator Documentation
	Instructions for a Multiple Server Swift Installation
	Deployment Guide
	Apache Deployment Guide
	Administrator’s Guide
	Dedicated replication network
	Logs
	Swift Ops Runbook
	OpenStack Swift Administrator Guide
	Object Storage Install Guide
	Configuration Documentation

	Object Storage v1 REST API Documentation
	Discoverability
	Authentication
	Container quotas
	Object versioning
	Large objects
	Temporary URL middleware
	Form POST middleware
	Use Content-Encoding metadata
	Use the Content-Disposition metadata
	Pseudo-hierarchical folders and directories
	Page through large lists of containers or objects
	Serialized response formats
	Create static website
	Object expiration
	Bulk delete

	S3 Compatibility Info
	S3/Swift REST API Comparison Matrix

	OpenStack End User Guide
	Source Documentation
	Partitioned Consistent Hash Ring
	Proxy
	Account
	Container
	Account DB and Container DB
	Object
	Misc
	Middleware

	Indices and tables
	Python Module Index
	Index

