
Stackviz
Release 0.0.1.dev353

OpenStack Foundation

May 02, 2024

CONTENTS

1 Overview 1

2 Local Stackviz 2
2.1 Team and repository tags . 2
2.2 StackViz . 2
2.3 Installation . 4
2.4 Usage . 5

3 For Contributor 6
3.1 So You Want to Contribute . 6

4 Manual Pages 8
4.1 Welcome to Stackvizs Manuals! . 8

5 Indices and tables 13

i

CHAPTER

ONE

OVERVIEW

Stackviz is a visualization utility to help analyze the performance of DevStack setup and Tempest test
runs. The following documentation details the procedures for installing Stackviz on your local machine
to view local runs, as well as how to use Stackviz to view upstream runs. For more information on how
Stackviz runs, see the manual pages.

1

CHAPTER

TWO

LOCAL STACKVIZ

2.1 Team and repository tags

openstackopenstack community projectcommunity project cii best practicescii best practices passingpassing

2.2 StackViz

A visualization utility to help analyze the performance of DevStack setup and Tempest executions. This
repository can be cloned and built to use Stackviz with local run data. Stackviz is currently in the process
of being implemented upstream (see Roadmap and Planning). To use Stackviz with upstream gate runs,
please see the server deployment project at:

• https://github.com/timothyb89/stackviz-deployer

2.2.1 Installation

Installation - Frontend

Installation of the frontend requires Node.js and Gulp. On Ubuntu:

sudo apt-get install nodejs
sudo apt-get install npm
sudo npm install -g gulp

Then, install the Node modules by running, from the project directory:

npm install

2

http://governance.openstack.org/reference/tags/index.html
https://github.com/timothyb89/stackviz-deployer

Stackviz, Release 0.0.1.dev353

Installation - Processing

The data processor is a small Python module located in the same source tree. To install, run:

sudo pip install .

2.2.2 Usage

Usage - Development

A development server can be run as follows:

gulp dev

This will open a web browser and reload code automatically as it changes on the filesystem.

If you have subunit and dstat logs, you can create a config.json to display your runs:

stackviz-export -f <path/to/subunit> --dstat <path/to/dstat> app/data/

During gulp dev, files written to app/data/will be automatically synchronized with the browser. Note
that these files will not be copied to build/ during gulp prod, but you can copy them manually using
gulp data.

Usage - Production

The production application can be build using:

gulp prod

This will automatically build portable html/javascript and python utilities into dist/
stackviz-VERSION.tar.gz.

You should probably install this into a virtualenv on the target system:

virtualenv stackviz
./virtualenv/bin/pip install /path/to/stackviz-VERSION.tar.gz
to run stackviz export
./virtualenv/bin/stackviz-export

Note the required html will be placed in virtualenv/share/stackviz-html as a data-file (or else-
where, if installed as a system package; this may vary on distributions). This can be moved as required.
Note that all files in there are not required:

• Directory structure (js/, css/, fonts/, images/): required.

• Static resources (fonts/, images/): required.

• Core files (index.html, js/main.js, css/main.css): required unless gzipped versions are
used.

• Gzipped versions of core files (*.gz): not required, but preferred. Use instead of plain core files
to save on disk usage and bandwidth.

2.2. StackViz 3

Stackviz, Release 0.0.1.dev353

• Source maps (js/main.js.map, js/main.js.map.gz): only required for debugging purposes.

Data should be written to stackviz-html/data/ using stackviz-export like above.

2.2.3 Testing

• Python tests: tox -e py36

• JavaScript unit tests: gulp unit

• JavaScript E2E tests: gulp e2e

2.2.4 Manuals & Developer Docs

For more detailed information on how Stackviz works, please see the manuals located at doc/source/man/

2.2.5 Roadmap and Planning

• Planning: https://etherpad.openstack.org/p/stackviz

• Gate integration planning: https://etherpad.openstack.org/p/BKgWlKIjgQ

2.3 Installation

2.3.1 Installation - Frontend

Installation of the frontend requires Node.js and Gulp. On Ubuntu:

sudo apt-get install nodejs npm nodejs-legacy
sudo npm install -g gulp

Then, install the Node modules by running, from the project directory:

npm install

2.3.2 Installation - Processing

The data processor is a small Python module located in the same source tree. To install, run:

sudo pip install .

2.3. Installation 4

https://etherpad.openstack.org/p/stackviz
https://etherpad.openstack.org/p/BKgWlKIjgQ

Stackviz, Release 0.0.1.dev353

2.4 Usage

2.4.1 Usage - Development

A development server can be run as follows:

gulp dev

This will open a web browser and reload code automatically as it changes on the filesystem.

If you have subunit and dstat logs, you can create a config.json to display your runs:

stackviz-export -f <path/to/subunit> --dstat <path/to/dstat> app/data/

During gulp dev, files written to app/data/will be automatically synchronized with the browser. Note
that these files will not be copied to build/ during gulp prod, but you can copy them manually using
gulp data.

2.4.2 Usage - Production

The production application can be build using:

gulp prod

The result will be written to ./build and should be appropriate for distribution. Note that all files are
not required:

• Directory structure (js/, css/, fonts/, images/): required.

• Static resources (fonts/, images/): required.

• Core files (index.html, js/main.js, css/main.css): required unless gzipped versions are
used.

• Gzipped versions of core files (*.gz): not required, but preferred. Use instead of plain core files
to save on disk usage and bandwidth.

• Source maps (js/main.js.map, js/main.js.map.gz): only required for debugging purposes.

Data should be written to build/data/ using stackviz-export like above. Note that the static pro-
duction code generated above is portable, and can be generated anywhere and copied to another host to
be combined with exported data.

2.4. Usage 5

CHAPTER

THREE

FOR CONTRIBUTOR

If you are a new contributor to Stackviz please refer: So You Want to Contribute

3.1 So You Want to Contribute

For general information on contributing to OpenStack, please check out the contributor guide to get
started. It covers all the basics that are common to all OpenStack projects: the accounts you need, the
basics of interacting with our Gerrit review system, how we communicate as a community, etc.

Below will cover the more project specific information you need to get started with Stackviz.

3.1.1 Communication

• IRC channel #openstack-qa at OFTC

• Mailing list (prefix subjects with [qa] for faster responses) http://lists.openstack.org/cgi-bin/
mailman/listinfo/openstack-discuss

3.1.2 Contacting the Core Team

Please refer to the Stackviz Core Team contacts.

3.1.3 New Feature Planning

If you want to propose a new feature please read Feature Proposal Process

3.1.4 Task Tracking

There is no separate task tracking tool for Stackviz, we track our tasks in Launchpad.

6

https://docs.openstack.org/contributors/
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss
https://review.opendev.org/#/admin/groups/1072,members
https://wiki.openstack.org/wiki/QA#Feature_Proposal_.26_Design_discussions
https://bugs.launchpad.net/tempest

Stackviz, Release 0.0.1.dev353

3.1.5 Reporting a Bug

You found an issue and want to make sure we are aware of it? You can do so on Launchpad. There is
no separate Launchpad for Stackviz. More info about Launchpad usage can be found on OpenStack docs
page

3.1.6 Getting Your Patch Merged

All changes proposed to the Stackviz requires single Code-Review +2 votes as minimum from Stackviz
core reviewers who can approve patch by giving Workflow +1 vote.

3.1.7 Project Team Lead Duties

All common PTL duties are enumerated in the PTL guide.

The Release Process for QA is documented in QA Release Process.

3.1. So You Want to Contribute 7

https://bugs.launchpad.net/tempest/+filebug
https://docs.openstack.org/contributors/common/task-tracking.html#launchpad
https://docs.openstack.org/contributors/common/task-tracking.html#launchpad
https://docs.openstack.org/project-team-guide/ptl.html
https://wiki.openstack.org/wiki/QA/releases

CHAPTER

FOUR

MANUAL PAGES

4.1 Welcome to Stackvizs Manuals!

In this directory, you will find detailed documentation describing Stackviz components and how they
work together.

Stackviz is broken up into two distinct components: a Python processing module (stackviz/stackviz)
and an AngularJS front-end (stackviz/app). Stackviz also uses Gulp to manage various tasks including
building sites and running tests. For information on each of these components, see their corresponding
RST entry. Below is a listing of each major subdirectory in Stackviz.

4.1.1 Directories:

• ./app/: AngularJS front-end.

• ./doc/: Stackvizs documentation.

• ./gulp/: Gulp used for task management.

• ./stackviz/: Python processing module.

• ./test/: Unit and e2e tests.

Documentation for the Python processing module and AngularJS front-end:

Python Data-Processing Module (stackviz-export)

The main purpose of stackviz-export is to parse subunit and dstat logs in order to generate configu-
ration files for the AngularJS front-end.

Installation

Once Stackviz has been cloned into a suitable directory, setting up the module is as simple as:

sudo pip install .

8

Stackviz, Release 0.0.1.dev353

Usage

stackviz-export [options] <DEST>

Where DEST is the output directory of the module. If DEST does not exist, a new directory will be
created. One of the following input options must be chosen:

-f, stream-file FILE
Specifies a subunit stream file to be used with the exporter. This argument can be used multiple
times to specify additional subunit files.

-i, stdin
Instructs stackviz-export to read a subunit stream from stdin.

-r, repository REPOSITORY
Specifies a .stestr to read subunit streams from. This argument can be used multiple times to
specify additional repositories.

Stackviz also visualizes machine utilization statistics using dstat. To attach a dstat.csv log to the subunit
output, specify the following option:

dstat FILE
Specifies a csv-formatted dstat log file that corresponds with the provided subunit stream file.

Additional options:

-h help
Print help message.

-z gzip
Enables gzip compression for data files.

Output

stackviz-export outputs the following files to the destination directory. Note that <source> in the
details, raw, and tree logs refer to what stream source the

config.json
Contains all the basic information about a dataset that the front-end needs. There will be one
tempest entry for every dataset that was generated in stackviz-export. Each tempest entry has
general information about each run, as well as the locations of the details, raw, and tree JSON files.

dstat_log.csv
This file will only be present if a dstat log was used in the corresponding stackviz-export
run. Has a wide variety of system statistics including CPU, memory, and disk utilization. This
information is displayed on the timeline graph.

tempest_<source>_<id>_details.json
The details log contains timestamp and status information for tests in addition to all of the logs
associated with the test (e.g. tracebacks). These artifacts are displayed in the test details page.

tempest_<source>_<id>_raw.json

Contains nearly all information available about tests:

• status: pass, fail, or skipped

• name: full name of test

4.1. Welcome to Stackvizs Manuals! 9

Stackviz, Release 0.0.1.dev353

• tags: which worker the test was run on

• details: empty, this info is available in the details JSON

• duration: how long the test took, in seconds

• timestamps: timestamps at test begin and test end

This file is used in the timeline and test details page.

tempest_<source>_<id>_tree.json
Stores test names in a hierarchy for display on the deprecated sunburst diagram. Not currently used
by any page in Stackviz.

AngularJS Front-end

The AngularJS front-end uses config files generated by stackviz-export to display a variety of infor-
mation regarding test runs. This document breaks down the various components of the Stackviz Angular
app.

Pages

Home

Path
<host>/#/

Directive
./app/views/home.html

Controller
./app/js/controllers/home.js

The landing page for Stackviz consists of two elements. The first is a summary panel that shows statistics
for the run including runtime (MM:SS), total number of tests run, number of failed tests, and number of
skipped tests. The button in the footer of this panel links to the timeline, where individual tests can be
browsed further. The second element is a panel showing all of the failures for the current run, including
the last few lines of their tracebacks. The test divs here link to their corresponding Test Details page.

Timeline

Path
<host>/#/<run>/timeline?test=<test>/

Directive
./app/views/timeline.html

Controller
./app/js/controllers/timeline.js

The Timeline provides an overview of all the tests that were executed as part of a run. Each lane in the
timeline corresponds to one worker thread on the host machine. Each rectangle in the timeline represents
one test. When a rectangle is selected, the details panel below the timeline is populated with information

4.1. Welcome to Stackvizs Manuals! 10

Stackviz, Release 0.0.1.dev353

about the test. Each test rectangle is also color-coordinated: green is passing, blue is skipped, and red is
failed.

The details panel below the timeline shows information pertaining to the current test (it is empty if no test
is selected): test class, test module, which worker executed it, the duration, and start & finish timestamps.
The footer contains a button that links to the test details page for the selected test.

Test Details

Path
<host>/#/<run>/test-details/<test>/

Directive
./app/views/test-details.html

Controller
./app/js/controllers/test-details.js

The test details page consists of one panel that displays various log info from one test. The first tab
contains summary information similar to the info found on the test panel on the timeline. Additional
tabs in this panel are dependent upon the logs that the test kept. Each of these tabs provides additional
information to aid debugging. The most common tabs include:

pythonlogging
Contains logs for API calls that were used in the test. This log is often quite large, as it contains full
headers for every request at INFO, DEBUG, WARNING, and ERROR levels. To make searching
these logs easier, the test details page has a built in filter for parsing by log level. In the header
of the test details page, the magnifying glass can be clicked to only show pythonlogging lines that
correspond to a certain level of detail. To find errors in pythonlogging quickly, it is advisable to
only select the WARNING and ERROR levels for display.

reason
Only available for skipped tests. Lists the reason for skipping the test, usually to avoid triggering
an outstanding bug.

traceback
Only available for failed tests. Shows the full traceback of the test runners error output when the
test failed. This is useful in quickly isolating the cause of a failure. There can be multiple traceback
logs (e.g. traceback, traceback1) for one test.

When enough information has been gleaned from more detailed logs, the button in the panel filter can be
used to quickly navigate back to the timeline page.

Directives

tempestSummary
The tempest summary directive consists of one panel that shows stats for one run: Duration of
the run, number of tests run, number of tests skipped, and number of tests failed. timeDiff (the
duration of the run) is calculated from the start and end timestamps contained in summary data.
All other fields are populated directly from the summary data, via a call to the dataset service.

testDetailsSearch
testDetailsSearch uses two HTML pages to search the test details page:
test-details-search-popover.html and test-details-search.html. The popover

4.1. Welcome to Stackvizs Manuals! 11

Stackviz, Release 0.0.1.dev353

contains the filter levels for the pythonlogging tab: INFO, DEBUG, WARNING, ERROR. This
directive is used as the template for test-details-search, per AngularJS popover convention.
The function used to parse the logs, parsePythonLogging actually lives in the controller for
testDetailsSearch, and is passed through both the prior directives scopes. This function reads in
the pythonLogging tab as one text object, then splits it by n to create an array of lines. Each line
is then added back to the pythonLogging tab if it contains the specific log level somewhere in
the line.

timeline
The timeline directive is a container for the actual timeline components, detailed below.

timelineDetails

timelineDstat

timelineOverview

timelineSearch

timelineViewport

Services

dataset
The dataset service is an API that provides the front-end with all of the data generated by
stackviz-export. All data processed by stackviz-export ends up in the ./app/data/ directory
to be called by dataset service with $http and $q directives. Below is the list of calls:

• list returns config.json using GET.

• get(id) calls list, then iterates through all the available datasets for the requested id num-
ber. Rejects if not found.

• raw(dataset) returns <dataset>_raw.json file using GET.

• details(dataset) returns <dataset>_details.json file using GET.

• tree(dataset) returns <dataset>_tree.json file using GET.

• dstat(dataset) returns dstat_log.csv file using GET, if available.

progress
A wrapper for nprogress, a progress bar library. Used in the timeline and test details pages to
show progress in loading datasets.

4.1. Welcome to Stackvizs Manuals! 12

CHAPTER

FIVE

INDICES AND TABLES

• search

13

	Overview
	Local Stackviz
	Team and repository tags
	StackViz
	Installation
	Installation - Frontend
	Installation - Processing

	Usage
	Usage - Development
	Usage - Production

	Testing
	Manuals & Developer Docs
	Roadmap and Planning

	Installation
	Installation - Frontend
	Installation - Processing

	Usage
	Usage - Development
	Usage - Production

	For Contributor
	So You Want to Contribute…
	Communication
	Contacting the Core Team
	New Feature Planning
	Task Tracking
	Reporting a Bug
	Getting Your Patch Merged
	Project Team Lead Duties

	Manual Pages
	Welcome to Stackviz’s Manuals!
	Directories:
	Python Data-Processing Module (stackviz-export)
	Installation
	Usage
	Output

	AngularJS Front-end
	Pages
	Home
	Timeline
	Test Details

	Directives
	Services

	Indices and tables

