
Skyline APIServer Developer
Documentation

Release 1.0.0.0rc2.dev5

Skyline APIServer contributors

Sep 30, 2022

CONTENTS

1 Introduction 1

2 Using Skyline APIServer 3
2.1 Installation Guide . 3

2.1.1 System Requirements . 3
System Requirements . 3

2.1.2 Installing Guide . 3
Skyline APIServer Installation Guide for Ubuntu 3

2.2 Configuration Guide . 10
2.2.1 Settings Reference . 10

3 Contributor Docs 13
3.1 Contributor Guide . 13

3.1.1 Getting Started . 13
So You Want to Contribute . 13
Backporting a Fix . 16
Skyline Project Releases . 17
Contributing Documentation to Skyline APIServer 19

3.1.2 Writing Release Notes . 20
Release notes . 20

3.1.3 Programming HowTos and Tutorials . 22
Setting Up a Development Environment . 22

3.1.4 Other Resources . 24
Code Reviews . 24

4 Release Notes 29
4.1 Additional reference . 29

4.1.1 Glossary . 29

i

ii

CHAPTER

ONE

INTRODUCTION

OpenStack Skyline APIServer is the back-end server of Skyline. It provides RESTful APIs to Skyline
Console.

Skyline is an OpenStack dashboard optimized by UI and UE, support OpenStack Train+. It has a modern
technology stack and ecology, is easier for developers to maintain and operate by users, and has higher
concurrency performance.

Skylines mascot is the nine-color deer. The nine-color deer comes from Dunhuang mural the nine-color
king deer, whose moral is Buddhist cause-effect and gratefulness, which is consistent with 99clouds phi-
losophy of embracing and feedback community since its inception. We also hope Skyline can keep light,
elegant and powerful as the nine-color deer, to provide a better dashboard for the openstack community
and users.

1

https://github.com/openstack/skyline-apiserver
https://github.com/openstack/skyline-console
https://github.com/openstack/skyline-console

Skyline APIServer Developer Documentation, Release 1.0.0.0rc2.dev5

2 Chapter 1. Introduction

CHAPTER

TWO

USING SKYLINE APISERVER

How to use Skyline APIServer in your own projects.

2.1 Installation Guide

This section describes how to install and configure the skyline-apiserver.

2.1.1 System Requirements

System Requirements

Supported Operating Systems

Skyline APIServers source install supports the following host Operating Systems (OS):

• Ubuntu Focal (20.04)

2.1.2 Installing Guide

Skyline APIServer Installation Guide for Ubuntu

This section will guide you through the installation of the Skyline APIServer on Ubuntu 20.04 LTS.

Source Install Ubuntu

This section describes how to install and configure the Skyline APIServer service. Before you begin,
you must have a ready OpenStack environment. At least it includes keystone, glance, nova and
neutron service.

3

Skyline APIServer Developer Documentation, Release 1.0.0.0rc2.dev5

Prerequisites

Before you install and configure the Skyline APIServer service, you must create a database.

1. To create the database, complete these steps:

1. Use the database access client to connect to the database server as the root user:

mysql

2. Create the skyline database:

MariaDB [(none)]> CREATE DATABASE skyline DEFAULT CHARACTER SET \
utf8 DEFAULT COLLATE utf8_general_ci;

3. Grant proper access to the skyline database:

MariaDB [(none)]> GRANT ALL PRIVILEGES ON skyline.* TO 'skyline'@
↪→'localhost' \
IDENTIFIED BY 'SKYLINE_DBPASS';

MariaDB [(none)]> GRANT ALL PRIVILEGES ON skyline.* TO 'skyline'@'%'␣
↪→\
IDENTIFIED BY 'SKYLINE_DBPASS';

Replace SKYLINE_DBPASS with a suitable password.

4. Exit the database access client.

2. Source the admin credentials to gain access to admin-only CLI commands:

$. admin-openrc

3. To create the service credentials, complete these steps:

1. Create a skyline user:

$ openstack user create --domain default --password-prompt skyline

User Password:
Repeat User Password:
+---------------------+----------------------------------+
| Field | Value |
+---------------------+----------------------------------+
domain_id	default
enabled	True
id	1qaz2wsx3edc4rfv5tgb6yhn7ujm8ikl
name	skyline
options	{}
password_expires_at	None
+---------------------+----------------------------------+

2. Add the admin role to the skyline user:

$ openstack role add --project service --user skyline admin

4 Chapter 2. Using Skyline APIServer

Skyline APIServer Developer Documentation, Release 1.0.0.0rc2.dev5

Note: This command provides no output.

Install and configure components

We will install the Skyline APIServer service from source code.

1. Git clone the repository from OpenDev (GitHub)

$ sudo apt update
$ sudo apt install -y git
$ cd ${HOME}
$ git clone https://opendev.org/openstack/skyline-apiserver.git

Note: If you meet the following error, you need to run command sudo apt install -y
ca-certificates:

fatal: unable to access https://opendev.org/openstack/skyline-apiserver.git/: server certificate ver-
ification failed. CAfile: none CRLfile: none

2. Install skyline-apiserver from source

$ sudo apt install -y python3-pip
$ sudo pip3 install skyline-apiserver/

3. Ensure that some folders of skyline-apiserver have been created

$ sudo mkdir -p /etc/skyline /var/log/skyline

4. Copy the configuration file to the configuration folder /etc/skyline

$ sudo cp ${HOME}/skyline-apiserver/etc/gunicorn.py /etc/skyline/gunicorn.
↪→py
$ sudo sed -i "s/^bind = *.*/bind = ['0.0.0.0:28000']/g" /etc/skyline/
↪→gunicorn.py
$ sudo cp ${HOME}/skyline-apiserver/etc/skyline.yaml.sample /etc/skyline/
↪→skyline.yaml

Note: We need to change the bind value in /etc/skyline/gunicorn.py to 0.0.0.0:28000.
Default value is unix:/var/lib/skyline/skyline.sock.

Note: Change the related configuration in /etc/skyline/skyline.yaml. Detailed introduc-
tion of the configuration can be found in Settings Reference.

default:
database_url: mysql://skyline:SKYLINE_DBPASS@DB_SERVER:3306/skyline
debug: true

(continues on next page)

2.1. Installation Guide 5

Skyline APIServer Developer Documentation, Release 1.0.0.0rc2.dev5

(continued from previous page)

log_dir: /var/log
openstack:
keystone_url: http://KEYSTONE_SERVER:5000/v3/
system_user_password: SKYLINE_SERVICE_PASSWORD

Replace SKYLINE_DBPASS, DB_SERVER, KEYSTONE_SERVER and SKYLINE_SERVICE_PASSWORD
with a correct value.

5. Populate the Skyline APIServer database

$ cd ${HOME}/skyline-apiserver/
$ make db_sync

Finalize installation

1. Set start service config /etc/systemd/system/skyline-apiserver.service

[Unit]
Description=Skyline APIServer

[Service]
Type=simple
ExecStart=/usr/local/bin/gunicorn -c /etc/skyline/gunicorn.py skyline_
↪→apiserver.main:app
LimitNOFILE=32768

[Install]
WantedBy=multi-user.target

$ sudo systemctl daemon-reload
$ sudo systemctl enable skyline-apiserver
$ sudo systemctl start skyline-apiserver

Docker Install Ubuntu

This section describes how to install and configure the Skyline APIServer service. Before you begin,
you must have a ready OpenStack environment. At least it includes keystone, glance, nova and
neutron service.

Note: You have install the docker service on the host machine. You can follow the docker installation.

6 Chapter 2. Using Skyline APIServer

https://docs.docker.com/engine/install/ubuntu/

Skyline APIServer Developer Documentation, Release 1.0.0.0rc2.dev5

Prerequisites

Before you install and configure the Skyline APIServer service, you must create a database.

1. To create the database, complete these steps:

1. Use the database access client to connect to the database server as the root user:

mysql

2. Create the skyline database:

MariaDB [(none)]> CREATE DATABASE skyline DEFAULT CHARACTER SET \
utf8 DEFAULT COLLATE utf8_general_ci;

3. Grant proper access to the skyline database:

MariaDB [(none)]> GRANT ALL PRIVILEGES ON skyline.* TO 'skyline'@
↪→'localhost' \
IDENTIFIED BY 'SKYLINE_DBPASS';

MariaDB [(none)]> GRANT ALL PRIVILEGES ON skyline.* TO 'skyline'@'%'␣
↪→\
IDENTIFIED BY 'SKYLINE_DBPASS';

Replace SKYLINE_DBPASS with a suitable password.

4. Exit the database access client.

2. Source the admin credentials to gain access to admin-only CLI commands:

$. admin-openrc

3. To create the service credentials, complete these steps:

1. Create a skyline user:

$ openstack user create --domain default --password-prompt skyline

User Password:
Repeat User Password:
+---------------------+----------------------------------+
| Field | Value |
+---------------------+----------------------------------+
domain_id	default
enabled	True
id	1qaz2wsx3edc4rfv5tgb6yhn7ujm8ikl
name	skyline
options	{}
password_expires_at	None
+---------------------+----------------------------------+

2. Add the admin role to the skyline user:

$ openstack role add --project service --user skyline admin

2.1. Installation Guide 7

Skyline APIServer Developer Documentation, Release 1.0.0.0rc2.dev5

Note: This command provides no output.

Install and configure components

We will install the Skyline APIServer service from docker image.

1. Pull the Skyline APIServer service image from Docker Hub:

$ sudo docker pull 99cloud/skyline:latest

2. Ensure that some folders of skyline-apiserver have been created

$ sudo mkdir -p /etc/skyline /var/log/skyline /var/lib/skyline /var/log/
↪→nginx

3. Set all value from Settings Reference into the configuration file /etc/skyline/skyline.yaml

Note: Change the related configuration in /etc/skyline/skyline.yaml. Detailed introduc-
tion of the configuration can be found in Settings Reference.

default:
database_url: mysql://skyline:SKYLINE_DBPASS@DB_SERVER:3306/skyline
debug: true
log_dir: /var/log

openstack:
keystone_url: http://KEYSTONE_SERVER:5000/v3/
system_user_password: SKYLINE_SERVICE_PASSWORD

Replace SKYLINE_DBPASS, DB_SERVER, KEYSTONE_SERVER and SKYLINE_SERVICE_PASSWORD
with a correct value.

Finalize installation

1. Run bootstrap server

$ sudo docker run -d --name skyline_bootstrap \
-e KOLLA_BOOTSTRAP="" \
-v /etc/skyline/skyline.yaml:/etc/skyline/skyline.yaml \
-v /var/log:/var/log \
--net=host 99cloud/skyline:latest

If you see the following message, it means that the bootstrap server is␣
↪→successful:

+ echo '/usr/local/bin/gunicorn -c /etc/skyline/gunicorn.py skyline_
↪→apiserver.main:app'

(continues on next page)

8 Chapter 2. Using Skyline APIServer

Skyline APIServer Developer Documentation, Release 1.0.0.0rc2.dev5

(continued from previous page)

+ mapfile -t CMD
++ xargs -n 1
++ tail /run_command
+ [[-n 0]]
+ cd /skyline-apiserver/
+ make db_sync
alembic -c skyline_apiserver/db/alembic/alembic.ini upgrade head
2022-08-19 07:49:16.004 | INFO | alembic.runtime.migration:__init__
↪→:204 - Context impl MySQLImpl.
2022-08-19 07:49:16.005 | INFO | alembic.runtime.migration:__init__
↪→:207 - Will assume non-transactional DDL.
+ exit 0

2. Cleanup bootstrap server

$ sudo docker rm -f skyline_bootstrap

3. Run skyline-apiserver

$ sudo docker run -d --name skyline --restart=always \
-v /etc/skyline/skyline.yaml:/etc/skyline/skyline.yaml \
-v /var/log:/var/log \
--net=host 99cloud/skyline:latest

Note: The skyline image is both include skyline-apiserver and skyline-console. And the skyline-
apiserver is bound as socket file /var/lib/skyline/skyline.sock.

So you can not access the skyline-apiserver openapi swagger. But now you can visit the skyline
UI https://xxxxx:9999.

Note: If you need to modify skyline port, add -e LISTEN_ADDRESS=<ip:port> in run com-
mand. Default port is 9999.

Verify Skyline APIServer operation

Verify operation of the Skyline APIServer service

Note: Only available when you use Source Install Ubuntu.

Note: Visit the OpenAPI swagger of Skyline APIServer.

1. Open a web browser and navigate to the Skyline APIServer OpenAPI swagger http://
xxx:28000/docs:

2.1. Installation Guide 9

Skyline APIServer Developer Documentation, Release 1.0.0.0rc2.dev5

2.2 Configuration Guide

2.2.1 Settings Reference

Skyline APIServer use tox -e genconfig to generate a sample configuration file skyline.yaml.
sample in etc directory.

default:
access_token_expire: 3600
access_token_renew: 1800
cors_allow_origins: []
database_url: sqlite:////tmp/skyline.db
debug: false
log_dir: ./log
prometheus_basic_auth_password: ''

(continues on next page)

10 Chapter 2. Using Skyline APIServer

Skyline APIServer Developer Documentation, Release 1.0.0.0rc2.dev5

(continued from previous page)

prometheus_basic_auth_user: ''
prometheus_enable_basic_auth: false
prometheus_endpoint: http://localhost:9091
secret_key: aCtmgbcUqYUy_HNVg5BDXCaeJgJQzHJXwqbXr0Nmb2o
session_name: session
ssl_enabled: true

openstack:
base_domains:
- heat_user_domain
default_region: RegionOne
enforce_new_defaults: true
extension_mapping:
floating-ip-port-forwarding: neutron_port_forwarding
fwaas_v2: neutron_firewall
qos: neutron_qos
vpnaas: neutron_vpn

interface_type: public
keystone_url: http://localhost:5000/v3/
nginx_prefix: /api/openstack
reclaim_instance_interval: 604800
service_mapping:
baremetal: ironic
compute: nova
container: zun
container-infra: magnum
database: trove
identity: keystone
image: glance
key-manager: barbican
load-balancer: octavia
network: neutron
object-store: swift
orchestration: heat
placement: placement
sharev2: manilav2
volumev3: cinder

sso_enabled: false
sso_protocols:
- openid
sso_region: RegionOne
system_admin_roles:
- admin
- system_admin
system_project: service
system_project_domain: Default
system_reader_roles:
- system_reader
system_user_domain: Default
system_user_name: skyline

(continues on next page)

2.2. Configuration Guide 11

Skyline APIServer Developer Documentation, Release 1.0.0.0rc2.dev5

(continued from previous page)

system_user_password: ''
setting:
base_settings:
- flavor_families
- gpu_models
- usb_models
flavor_families:
- architecture: x86_architecture
categories:
- name: general_purpose
properties: []

- name: compute_optimized
properties: []

- name: memory_optimized
properties: []

- name: high_clock_speed
properties: []

- architecture: heterogeneous_computing
categories:
- name: compute_optimized_type_with_gpu
properties: []

- name: visualization_compute_optimized_type_with_gpu
properties: []

gpu_models:
- nvidia_t4
usb_models:
- usb_c

12 Chapter 2. Using Skyline APIServer

CHAPTER

THREE

CONTRIBUTOR DOCS

3.1 Contributor Guide

In this section you will find information on how to contribute to skyline-apiserver. Content includes
architectural overviews, tips and tricks for setting up a development environment.

3.1.1 Getting Started

So You Want to Contribute

For general information on contributing to OpenStack, please check out the contributor guide to get
started. It covers all the basics that are common to all OpenStack projects: the accounts you need, the
basics of interacting with our Gerrit review system, how we communicate as a community, etc.

Below will cover the more project specific information you need to get started with the skyline-apiserver
project, which is responsible for the following OpenStack deliverables:

skyline-apiserver

The OpenStack Modern Dashboard - back-end.
code: https://opendev.org/openstack/skyline-apiserver
docs: https://docs.openstack.org/skyline-apiserver/latest/
Launchpad: https://launchpad.net/skyline-apiserver

Communication

IRC We use IRC a lot. You will, too. You can find infomation about what IRC network OpenStack
uses for communication (and tips for using IRC) in the Setup IRC section of the main OpenStack
Contributor Guide.

People working on the Skyline APIServer project may be found in the #openstack-skyline
IRC channel during working hours in their timezone. The channel is logged, so if you ask
a question when no one is around, you can check the log to see if its been answered: http:
//eavesdrop.openstack.org/irclogs/%23openstack-skyline/

weekly meeting

Note: Now we have not weekly meeting, we will have it in the future.

13

https://docs.openstack.org/contributors/
https://opendev.org/openstack/skyline-apiserver
https://docs.openstack.org/skyline-apiserver/latest/
https://launchpad.net/skyline-apiserver
https://docs.openstack.org/contributors/common/irc.html
http://eavesdrop.openstack.org/irclogs/%23openstack-skyline/
http://eavesdrop.openstack.org/irclogs/%23openstack-skyline/

Skyline APIServer Developer Documentation, Release 1.0.0.0rc2.dev5

mailing list We use the openstack-discuss@lists.openstack.org mailing list for asynchronous discussions
or to communicate with other OpenStack teams. Use the prefix [skyline] in your subject line
(its a high-volume list, so most people use email filters).

More information about the mailing list, including how to subscribe and read the archives, can be
found at: http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss

Contacting the Core Team

The skyline-core team is an active group of contributors who are responsible for directing and maintaining
the skyline-apiserver project. As a new contributor, your interaction with this group will be mostly
through code reviews, because only members of skyline-core can approve a code change to be merged
into the code repository.

You can learn more about the role of core reviewers in the OpenStack governance documentation: https:
//docs.openstack.org/contributors/common/governance.html#core-reviewer

The membership list of skyline-core is maintained in gerrit: https://review.opendev.org/admin/groups/
1fe65032c39f1d459327b010730627a904d7b793,members

Project Team Lead

For each development cycle, Skyline APIServer project Active Technical Contributors (ATCs) elect a
Project Team Lead who is responsible for running midcycles, and skyline-apiserver sessions at the Project
Team Gathering for that cycle (and who is also ultimately responsible for everything else the project does).

• You automatically become an ATC by making a commit to one of the skyline-apiserver deliv-
erables. Other people who havent made a commit, but have contributed to the project in other
ways (for example, making good bug reports) may be recognized as extra-ATCs and obtain voting
privileges. If you are such a person, contact the current PTL before the Extra-ATC freeze indi-
cated on the current development cycle schedule (which you can find from the OpenStack Releases
homepage .

The current Skyline APIServer project Project Team Lead (PTL) is listed in the Skyline APIServer project
reference maintained by the OpenStack Technical Committee.

All common PTL duties are enumerated in the PTL guide.

New Feature Planning

The Skyline APIServer project uses blueprints to track new features. Heres a quick rundown of what
they are and how the Skyline APIServer project uses them.

blueprints

Exist in Launchpad, where they can be targeted to release milestones.
You file one at https://blueprints.launchpad.net/skyline-apiserver

Examples of changes that can be covered by a blueprint only are:

• adding a new api

14 Chapter 3. Contributor Docs

mailto:openstack-discuss@lists.openstack.org
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss
https://docs.openstack.org/contributors/common/governance.html#core-reviewer
https://docs.openstack.org/contributors/common/governance.html#core-reviewer
https://review.opendev.org/admin/groups/1fe65032c39f1d459327b010730627a904d7b793,members
https://review.opendev.org/admin/groups/1fe65032c39f1d459327b010730627a904d7b793,members
https://releases.openstack.org/index.html
https://releases.openstack.org/index.html
https://governance.openstack.org/tc/reference/projects/skyline.html
https://governance.openstack.org/tc/reference/projects/skyline.html
https://docs.openstack.org/project-team-guide/ptl.html
https://blueprints.launchpad.net/skyline-apiserver

Skyline APIServer Developer Documentation, Release 1.0.0.0rc2.dev5

Feel free to ask in #openstack-skyline if you have an idea you want to develop and youre not sure
whether it requires a blueprint and a spec or simply a blueprint.

The Skyline APIServer project observes the following deadlines. For the current development cycle, the
dates of each (and a more detailed description) may be found on the release schedule, which you can find
from: https://releases.openstack.org/

• bp freeze (all bps must be approved by this date)

• new feature status checkpoint

Task Tracking

We track our tasks in Launchpad. See the top of the page for the URL of Skyline APIServer project
deliverable.

If youre looking for some smaller, easier work item to pick up and get started on, search for the low-
hanging-fruit tag in the Bugs section.

When you start working on a bug, make sure you assign it to yourself. Otherwise someone else may also
start working on it, and we dont want to duplicate efforts. Also, if you find a bug in the code and want
to post a fix, make sure you file a bug (and assign it to yourself!) just in case someone else comes across
the problem in the meantime.

Reporting a Bug

You found an issue and want to make sure we are aware of it? You can do so in the Launchpad space for
the affected deliverable:

• skyline-apiserver: https://bugs.launchpad.net/skyline-apiserver

Getting Your Patch Merged

Before your patch can be merged, it must be reviewed and approved.

The Skyline APIServer project policy is that a patch must have two +2s before it can be merged. (Excep-
tions are documentation changes, which require only a single +2, for which the PTL may require more
than two +2s, depending on the complexity of the proposal.) Only members of the skyline-core team can
vote +2 (or -2) on a patch, or approve it.

Note: Although your contribution will require reviews by members of skyline-core, these arent the
only people whose reviews matter. Anyone with a gerrit account can post reviews, so you can ask other
developers you know to review your code and you can review theirs. (A good way to learn your way
around the codebase is to review other peoples patches.)

If youre thinking, Im new at this, how can I possibly provide a helpful review?, take a look at How to
Review Changes the OpenStack Way.

There are also some Skyline APIServer project specific reviewing guidelines in the Code Reviews section
of the Skyline APIServer Contributor Guide.

3.1. Contributor Guide 15

https://releases.openstack.org/
https://bugs.launchpad.net/skyline-apiserver
https://docs.openstack.org/project-team-guide/review-the-openstack-way.html
https://docs.openstack.org/project-team-guide/review-the-openstack-way.html

Skyline APIServer Developer Documentation, Release 1.0.0.0rc2.dev5

In addition, some changes may require a release note. Any patch that changes functionality, adds func-
tionality, or addresses a significant bug should have a release note. You can find more information about
how to write a release note in the Release notes section of the Skyline APIServer Contributors Guide.

Note: Keep in mind that the best way to make sure your patches are reviewed in a timely manner is to
review other peoples patches. Were engaged in a cooperative enterprise here.

If your patch has a -1 from Zuul, you should fix it right away, because people are unlikely to review a
patch that is failing the CI system.

• If its a pep8 issue, the job leaves sufficient information for you to fix the problems yourself.

• If you are failing unit or functional tests, you should look at the failures carefully. These tests guard
against regressions, so if your patch causing failures, you need to figure out exactly what is going
on.

• The unit, functional, and pep8 tests can all be run locally before you submit your patch for review.
By doing so, you can help conserve gate resources.

How long it may take for your review to get attention will depend on the current project priorities. For
example, the feature freeze is at the third milestone of each development cycle, so feature patches have
the highest priority just before M-3. These dates are clearly noted on the release schedule for the current
release, which you can find from https://releases.openstack.org/

You can see whos been doing what with Skyline APIServer recently in Stackalytics: https://www.
stackalytics.io/report/activity?module=skyline-group

Backporting a Fix

From time to time, you may find a bug thats been fixed in master, and youd like to have that fix in the
release youre currently using (for example, Wallaby). What you want to do is propose a backport of the
fix.

Note: The Skyline APIServer project observes the OpenStack Stable Branch Policy. Thus, not every
change in master is backportable to the stable branches. In particular, features are never backportable.
A really complicated bugfix may not be backportable if what it fixes is low-occurrence and theres a high
risk that it may cause a regression elsewhere in the software.

How can you tell? Ask in the #openstack-skyline channel on IRC.

Since we use git for source code version control, backporting is done by cherry-picking a change that has
already been merged into one branch into another branch. The gerrit web interface makes it really easy
to do this. In fact, maybe too easy. Here are some guidelines:

• Before you cherry-pick a change, make sure it has already merged to master. If the change hasnt
merged yet, it may require further revision, and the commit youve cherry-picked wont be the correct
commit to backport.

• Backports must be done in reverse chronological order. Since OpenStack releases are named
alphabetically, this means reverse alphabetical order: stable/yoga, stable/xena, etc.

16 Chapter 3. Contributor Docs

https://releases.openstack.org/
https://www.stackalytics.io/report/activity?module=skyline-group
https://www.stackalytics.io/report/activity?module=skyline-group
https://docs.openstack.org/project-team-guide/stable-branches.html

Skyline APIServer Developer Documentation, Release 1.0.0.0rc2.dev5

• The cherry-pick must have merged into the closest most recent branch before it will be considered
for a branch, that is, a cherry-pick to stable/xena will not be considered until it has merged into
stable/yoga first.

– This is because sometimes a backport requires revision along the way. For example, different
OpenStack releases support different versions of Python. So if a fix uses a language feature
introduced in Python 3.8, it will merge just fine into current master (during zed development),
but it will not pass unit tests in stable/yoga (which supports Python 3.6). Likewise, if you
already cherry-picked the patch from master directly to stable/xena, it wont pass tests there
either (because xena also supports Python 3.6).

So its better to follow the policy and wait until the patch is merged into stable/yoga before
you propose a backport to stable/xena.

• You can propose backports directly from git instead of using the gerrit web interface, but if you
do, you must include the fact that its a cherry-pick in the commit message. Gerrit does this au-
tomatically for you if you cherry-pick from a merged commit (which is the only kind of commit
you should cherry-pick from in Gerrit); git will do it for you if you use the -x flag when you do a
manual cherry-pick.

This will keep the history of this backport intact as it goes from branch to branch. We want this
information to be in the commit message and to be accurate, because if the fix causes a regression
(which is always possible), it will be helpful to the poor sucker who has to fix it to know where
this code came from without digging through a bunch of git history.

If you have questions about any of this, or if you have a bug to fix that is only present in one of the stable
branches, ask for advice in #openstack-skyline on IRC.

Backport CI Testing

Like all code changes, backports should undergo continuous integration testing. This is done automati-
cally by Zuul for changes that affect the main skyline-apiserver code.

This shouldnt be a big deal because presumably youve done local testing with your backend to ensure
that the code works as expected in a stable branch; were simply asking that this be documented on the
backport.

Skyline Project Releases

The Skyline project follows the OpenStack 6 month development cycle, at the end of which a new stable
branch is created from master, and master becomes the development branch for the next development
cycle.

Because many OpenStack consumers dont move as quickly as OpenStack development, we backport
appropriate bugfixes from master into the stable branches and create new releases for consumers to use
for a while. See the Stable Branches section of the OpenStack Project Team Guide for details about the
timelines.

What follows is information about the Skyline project and its releases.

3.1. Contributor Guide 17

https://docs.openstack.org/project-team-guide/stable-branches.html
https://docs.openstack.org/project-team-guide/index.html

Skyline APIServer Developer Documentation, Release 1.0.0.0rc2.dev5

Where Stuff Is

The Skyline Project Deliverables

https://governance.openstack.org/tc/reference/projects/skyline.html#deliverables

The Code Repositories

• https://opendev.org/openstack/skyline-apiserver

• https://opendev.org/openstack/skyline-console

All Skyline Project Releases

https://releases.openstack.org/teams/skyline.html

How Stuff Works

Releases from Master

Releases from master for skyline-apiserver follow the cycle-with-rc release model.

• The cycle-with-rc model describes projects that produce a single release at the end of the cycle,
with one or more release candidates (RC) close to the end of the cycle and optional development
milestone betas published on a per-project need.

For more information about the release models and deliverable types: https://releases.openstack.org/
reference/release_models.html

Branching

All Skyline project deliverables follow the OpenStack stable branch policy. Briefly,

• The stable branches are intended to be a safe source of fixes for high impact bugs and security
issues which have been fixed on master since a given release.

• Stable branches are cut from the last release of a given deliverable, at the end of the common
6-month development cycle.

While anyone may propose a release, releases must be approved by the OpenStack Release Managers.

18 Chapter 3. Contributor Docs

https://governance.openstack.org/tc/reference/projects/skyline.html#deliverables
https://opendev.org/openstack/skyline-apiserver
https://opendev.org/openstack/skyline-console
https://releases.openstack.org/teams/skyline.html
https://releases.openstack.org/reference/release_models.html
https://releases.openstack.org/reference/release_models.html
https://docs.openstack.org/project-team-guide/stable-branches.html
https://review.opendev.org/admin/groups/5c75219bf2ace95cdea009c82df26ca199e04d59,members

Skyline APIServer Developer Documentation, Release 1.0.0.0rc2.dev5

Contributing Documentation to Skyline APIServer

This page provides guidance on how to provide documentation for those who may not have previously
been active writing documentation for OpenStack.

Documentation Content

To keep the documentation consistent across projects, and to maintain quality, please follow the Open-
Stack Writing style guide.

Using RST

OpenStack documentation uses reStructuredText to write documentation. The files end with a .rst
extension. The .rst files are then processed by Sphinx to build HTML based on the RST files.

Note: Files that are to be included using the .. include:: directive in an RST file should use the
.inc extension. If you instead use the .rst this will result in the RST file being processed twice during
the build and cause Sphinx to generate a warning during the build.

reStructuredText is a powerful language for generating web pages. The documentation team has put
together an RST conventions page with information and links related to RST.

Building Skyline APIServers Documentation

To build documentation the following command should be used:

tox -e docs

When building documentation it is important to also run docs.

Note: The tox documentation jobs (docs, releasenotes) are set up to treat Sphinx warnings as errors.
This is because many Sphinx warnings result in improperly formatted pages being generated, so we prefer
to fix those right now, instead of waiting for someone to report a docs bug.

During the documentation build a number of things happen:

• All of the RST files under doc/source are processed and built.

– The openstackdocs theme is applied to all of the files so that they will look consistent with
all the other OpenStack documentation.

– The resulting HTML is put into doc/build/html.

• All of Skyline APIServers .py files are processed and the docstrings are used to generate the files
under doc/source/contributor/api

After the build completes the results may be accessed via a web browser in the doc/build/html direc-
tory structure.

3.1. Contributor Guide 19

https://docs.openstack.org/doc-contrib-guide/writing-style.html
https://docs.openstack.org/doc-contrib-guide/rst-conv.html

Skyline APIServer Developer Documentation, Release 1.0.0.0rc2.dev5

Review and Release Process

Documentation changes go through the same review process as all other changes.

Note: Reviewers can see the resulting web page output by clicking on openstack-tox-docs in the
Zuul check table on the review, and then look for Artifacts > Docs preview site.

This is also true for the build-openstack-releasenotes check jobs.

Once a patch is approved it is immediately released to the docs.openstack.org website and can be seen
under Skyline APIServers Documentation Page at https://docs.openstack.org/skyline-apiserver/latest.
When a new release is cut a snapshot of that documentation will be kept at https://docs.openstack.
org/skyline-apiserver/<release>. Changes from master can be backported to previous branches
if necessary.

Finding something to contribute

If you are reading the documentation and notice something incorrect or undocumented, you can directly
submit a patch following the advice set out below.

There are also documentation bugs that other people have noticed that you could address:

• https://bugs.launchpad.net/skyline-apiserver/+bugs?field.tag=doc

Note: If you dont see a bug listed, you can also try the tag docs or documentation. We tend to use doc
as the appropriate tag, but occasionally a bug gets tagged with a variant.

3.1.2 Writing Release Notes

Please follow the format, it will make everyones life easier.

Release notes

The release notes for a patch should be included in the patch.

If the following applies to the patch, a release note is required:

• Upgrades

– The deployer needs to take an action when upgrading

– A new config option is added that the deployer should consider changing from the default

– A configuration option is deprecated or removed

• Features

– A new feature is implemented

– Feature is deprecated or removed

– Current behavior is changed

20 Chapter 3. Contributor Docs

https://docs.openstack.org/skyline-apiserver/latest
https://bugs.launchpad.net/skyline-apiserver/+bugs?field.tag=doc

Skyline APIServer Developer Documentation, Release 1.0.0.0rc2.dev5

• Bugs

– A security bug is fixed

– A long-standing or important bug is fixed

• APIs

– REST API changes

Reviewing release note content

Release notes are user facing. We expect operators to read them (and other people interested in seeing
whats in a new release may read them, too). This makes a release note different from a commit message,
which is aimed at other developers.

Keep this in mind as you review a release note. Also, since its user facing, something you would think
of as a nit in a code comment (for example, bad punctuation or a misspelled word) is not really a nit in a
release noteits something that needs to be corrected. This also applies to the format of the release note,
which should follow the standards set out later in this document.

In summary, dont feel bad about giving a -1 for a nit in a release note. We dont want to have to go back
and fix typos later, especially for a bugfix thats likely to be backported, which would require squashing
the typo fix into the backport patch (which is something thats easy to forget). Thus we really want to get
release notes right the first time.

Fixing a release note

Of course, even with careful writing and reviewing, a mistake can slip through that isnt noticed until
after a release. If that happens, the patch to correct a release note must be proposed directly to the stable
branch in which the release note was introduced. (Yes, this is completely different from how we handle
bugs.)

This is because of how reno scans release notes and determines what release they go with. See Updating
Stable Branch Release Notes in the reno User Guide for more information.

Bugs

For bug fixes, release notes must include the bug number in Launchpad with a link to it as a RST link.

Note the use of the past tense (Fixed) instead of the present tense (Fix). This is because although you are
fixing the bug right now in the present, operators will be reading the release notes in the future (at the
time of the release), at which time your bug fix will be a thing of the past.

Additionally, keep in mind that when your release note is published, it is mixed in with all the other
release notes and wont obviously be connected to your patch. Thus, in order for it to make sense, you
may need to repeat information that you already have in your commit message. Thats OK.

3.1. Contributor Guide 21

https://docs.openstack.org/reno/latest/user/usage.html#updating-stable-branch-release-notes
https://docs.openstack.org/reno/latest/user/usage.html#updating-stable-branch-release-notes

Skyline APIServer Developer Documentation, Release 1.0.0.0rc2.dev5

Creating the note

Skyline APIServer uses reno to generate release notes. Please read the docs for details. In summary, use

$ tox -e venv -- reno new <bug-,bp-,whatever>

Then edit the sample file that was created and push it with your change.

To see the results:

$ git commit # Commit the change because reno scans git log.

$ tox -e releasenotes

Then look at the generated release notes files in releasenotes/build/html in your favorite browser.

3.1.3 Programming HowTos and Tutorials

Setting Up a Development Environment

This page describes how to setup a working Python development environment that can be used in devel-
oping skyline-apiserver on Ubuntu. These instructions assume youre already familiar with git. Refer to
GettingTheCode for additional information.

Following these instructions will allow you to run the skyline-apiserver unit tests. Running skyline-
apiserver is currently only supported on Linux(recommend Ubuntu 20.04).

Virtual environments

Skyline-apiserver development uses virtualenv to track and manage Python dependencies while in de-
velopment and testing. This allows you to install all of the Python package dependencies in a virtual en-
vironment or virtualenv (a special subdirectory of your skyline-apiserver directory), instead of installing
the packages at the system level.

Note: Virtualenv is useful for running the unit tests, but is not typically used for full integration testing
or production usage.

Linux Systems

Install the prerequisite packages.

On Ubuntu20.04-64:

sudo apt-get install libssl-dev python3-pip libmysqlclient-dev libpq-dev␣
↪→libffi-dev

To get a full python3 development environment, the two python3 packages need to be added to the list
above:

22 Chapter 3. Contributor Docs

https://docs.openstack.org/reno/latest/
https://wiki.openstack.org/wiki/Getting_The_Code
https://pypi.org/project/virtualenv

Skyline APIServer Developer Documentation, Release 1.0.0.0rc2.dev5

python3-dev python3-pip

Getting the code

Grab the code:

git clone https://opendev.org/openstack/skyline-apiserver.git
cd skyline-apiserver

Running unit tests

The preferred way to run the unit tests is using tox. It executes tests in isolated environ-
ment, by creating separate virtualenv and installing dependencies from the requirements.txt and
test-requirements.txt files, so the only package you install is tox itself:

sudo pip install tox

Run the unit tests by doing:

tox -e py38

Setup Your Local Development Env

1. Installing dependency packages

tox -e venv

2. Set skyline.yaml config file

cp etc/skyline.yaml.sample etc/skyline.yaml
export OS_CONFIG_DIR=$(pwd)/etc

Maybe you should change the params with your real environment as followed:

- database_url
- keystone_url
- default_region
- interface_type
- system_project_domain
- system_project
- system_user_domain
- system_user_name
- system_user_password

3. Init skyline database

3.1. Contributor Guide 23

Skyline APIServer Developer Documentation, Release 1.0.0.0rc2.dev5

source .tox/venv/bin/activate
make db_sync
deactivate

4. Run skyline-apiserver

$ source .tox/venv/bin/activate
$ uvicorn --reload --reload-dir skyline_apiserver --port 28000 --log-
↪→level debug skyline_apiserver.main:app

INFO: Uvicorn running on http://127.0.0.1:28000 (Press CTRL+C to quit)
INFO: Started reloader process [154033] using statreload
INFO: Started server process [154037]
INFO: Waiting for application startup.
INFO: Application startup complete.

You can now access the online API documentation: http://127.0.0.1:28000/docs.

Or, you can launch debugger with .vscode/lauch.json with vscode.

Contributing Your Work

Once your work is complete you may wish to contribute it to the project. Skyline-apiserver uses the
Gerrit code review system. For information on how to submit your branch to Gerrit, see GerritWorkflow.

3.1.4 Other Resources

Code Reviews

Skyline APIServer follows the same Review guidelines outlined by the OpenStack community. This page
provides additional information that is helpful for reviewers of patches to Skyline APIServer.

Gerrit

Skyline APIServer uses the Gerrit tool to review proposed code changes. The review site is https://review.
opendev.org

Gerrit is a complete replacement for Github pull requests. All Github pull requests to the Skyline APIS-
erver repository will be ignored.

See Quick Reference for information on quick reference for developers. See Getting Started for infor-
mation on how to get started using Gerrit. See Development Workflow for more detailed information on
how to work with Gerrit.

24 Chapter 3. Contributor Docs

https://docs.openstack.org/infra/manual/developers.html#development-workflow
https://docs.openstack.org/doc-contrib-guide/docs-review-guidelines.html
https://review.opendev.org/q/project:openstack/skyline-apiserver+status:open
https://review.opendev.org
https://review.opendev.org
https://docs.openstack.org/infra/manual/developers.html#quick-reference
https://docs.openstack.org/infra/manual/developers.html#getting-started
https://docs.openstack.org/infra/manual/developers.html#development-workflow

Skyline APIServer Developer Documentation, Release 1.0.0.0rc2.dev5

The Great Change

Skyline APIServer only needs to support Python 3 runtimes (in particular, 3.8). Our biggest interaction
with the stable branches is backporting bugfixes, where in the ideal case, were just doing a simple cherry-
pick of a commit from master to the stable branches. You can see that theres some tension here.

With that in mind, here are some guidelines for reviewers and developers that the Skyline APIServer
community has agreed on during this phase where we want to write pure Python 3 but still must support
Python 2 code.

Python 2 to Python 3 transition guidelines

• New features can use Python-3-only language constructs, but bugfixes likely to be backported
should be more conservative and write for Python 2 compatibilty.

Unit Tests

Skyline APIServer requires unit tests with all patches that introduce a new branch or function in the code.
Changes that do not come with a unit test change should be considered closely and usually returned to
the submitter with a request for the addition of unit test.

CI Job rechecks

CI job runs may result in false negatives for a considerable number of causes:

• Network failures.

• Not enough resources on the job runner.

• Storage timeouts caused by the array running nightly maintenance jobs.

• External service failure: pypi, package repositories, etc.

• Non skyline-apiserver components spurious bugs.

And the list goes on and on.

When we detect one of these cases the normal procedure is to run a recheck writing a comment with
recheck for core Zuul jobs.

These false negative have periods of time where they spike, for example when there are spurious failures,
and a lot of rechecks are necessary until a valid result is posted by the CI job. And its in these periods of
time where people acquire the tendency to blindly issue rechecks without looking at the errors reported
by the jobs.

When these blind checks happen on real patch failures or with external services that are going to be out
for a while, they lead to wasted resources as well as longer result times for patches in other projects.

The Skyline APIServer community has noticed this tendency and wants to fix it, so now it is strongly
encouraged to avoid issuing naked rechecks and instead issue them with additional information to indicate
that we have looked at the failure and confirmed it is unrelated to the patch.

3.1. Contributor Guide 25

Skyline APIServer Developer Documentation, Release 1.0.0.0rc2.dev5

Efficient Review Guidelines

This section will guide you through the best practices you can follow to do quality code reviews:

• Failing Gate: You can check for jobs like pep8, py38, functional etc that are generic to all the
patches and look for possible failures in linting, unit test, functional test etc and provide feedback
on fixing it. Usually its the authors responsibility to do a local run of tox and ensure they dont fail
upstream but if something is failing on gate and the author is not be aware about how to fix it then
we can provide valuable guidance on it.

• Documentation: Check whether the patch proposed requires documentation or not and ensure the
proper documentation is added. If the proper documentation is added then the next step is to check
the status of docs job if its failing or passing. If it passes, you can check how it looks in HTML as
follows: Go to openstack-tox-docs job link -> View Log -> docs and go to the appropriate
section for which the documentation is added. Rendering: We do have a job for checking failures
related to document changes proposed (openstack-tox-docs) but we need to be aware that even if
a document change passes all the syntactical rules, it still might not be logically correct i.e. after
rendering it could be possible that the bullet points are not under the desired section or the spacing
and indentation is not as desired. It is always good to check the final document after rendering in
the docs job which might yield possible logical errors.

• Readability: Readability is a big factor as remembering the logic of every code path is not feasible
and contributors change from time to time. We should adapt to writing readable code which is easy
to follow and can be understood by anyone having knowledge about Python constructs and working
of Skyline APIServer. Sometimes it happens that a logic can only be written in a complex way,
in that case, its always good practice to add a comment describing the functionality. So, if a logic
proposed is not readable, do ask/suggest a more readable version of it and if thats not feasible then
asking for a comment that would explain it is also a valid review point.

• Type Annotations: There has been an ongoing effort to implement type annotations all across
Skyline APIServer with the help of mypy tooling. Certain areas of code already adapt to mypy
coding style and its good practice that new code merging into Skyline APIServer should also adapt
to it. We, as reviewers, should ensure that new code proposed should include mypy constructs.

• Downvoting reason: It often happens that the reviewer adds a bunch of comments some of which
they would like to be addressed (blocking) and some of them are good to have but not a hard
requirement (non-blocking). Its a good practice for the reviewer to mention for which comments
is the -1 valid so to make sure they are always addressed.

• Testing: Always check if the patch adds the associated unit, functional and tempest tests depending
on the change.

• Commit Message: There are few things that we should make sure the commit message includes:

1) Make sure the author clearly explains in the commit message why the code changes are necessary
and how exactly the code changes fix the issue.

2) It should have the appropriate tags (Eg: Closes-Bug, Related-Bug, Blueprint, Depends-On etc).
For detailed information refer to external references in commit message.

3) It should follow the guidelines of commit message length i.e. 50 characters for the summary line
and 72 characters for the description. More information can be found at Summary of Git commit
message structure.

4) Sometimes it happens that the author updates the code but forgets to update the commit message
leaving the commit describing the old changes. Verify that the commit message is updated as per

26 Chapter 3. Contributor Docs

https://wiki.openstack.org/wiki/GitCommitMessages#Including_external_references
https://wiki.openstack.org/wiki/GitCommitMessages#Summary_of_Git_commit_message_structure
https://wiki.openstack.org/wiki/GitCommitMessages#Summary_of_Git_commit_message_structure

Skyline APIServer Developer Documentation, Release 1.0.0.0rc2.dev5

code changes.

• Release Notes: There are different cases where a releasenote is required like fixing a bug, adding
a feature, changing areas affecting upgrade etc. You can refer to the Release notes section in our
contributor docs for more information.

• Ways of reviewing: There are various ways you can go about reviewing a patch, following are
some of the standard ways you can follow to provide valuable feedback on the patch:

1) Testing it in local environment: The easiest way to check the correctness of a code change
proposed is to reproduce the issue (steps should be in launchpad bug) and try the same steps after
applying the patch to your environment and see if the provided code changes fix the issue. You
can also go a little further to think of possible corner cases where an end user might possibly face
issues again and provide the same feedback to cover those cases in the original change proposed.

2) Optimization: If youre not aware about the code path the patch is fixing, you can still go ahead
and provide valuable feedback about the python code if that can be optimized to improve main-
tainability or performance.

3.1. Contributor Guide 27

https://docs.openstack.org/skyline-apiserver/latest/contributor/releasenotes.html

Skyline APIServer Developer Documentation, Release 1.0.0.0rc2.dev5

28 Chapter 3. Contributor Docs

CHAPTER

FOUR

RELEASE NOTES

See https://docs.openstack.org/releasenotes/skyline-apiserver

4.1 Additional reference

Contents:

4.1.1 Glossary

This glossary offers a list of terms and definitions to define a vocabulary for Skyline APIServer concepts.

Schemas Provide a description of the data that is expected to be returned or request.

29

https://docs.openstack.org/releasenotes/skyline-apiserver

	Introduction
	Using Skyline APIServer
	Installation Guide
	System Requirements
	System Requirements
	Supported Operating Systems

	Installing Guide
	Skyline APIServer Installation Guide for Ubuntu
	Source Install Ubuntu
	Prerequisites
	Install and configure components
	Finalize installation

	Docker Install Ubuntu
	Prerequisites
	Install and configure components
	Finalize installation

	Verify Skyline APIServer operation

	Configuration Guide
	Settings Reference

	Contributor Docs
	Contributor Guide
	Getting Started
	So You Want to Contribute…
	Communication
	Contacting the Core Team
	Project Team Lead
	New Feature Planning
	Task Tracking
	Reporting a Bug
	Getting Your Patch Merged

	Backporting a Fix
	Backport CI Testing

	Skyline Project Releases
	Where Stuff Is
	The Skyline Project Deliverables
	The Code Repositories
	All Skyline Project Releases

	How Stuff Works
	Releases from Master
	Branching

	Contributing Documentation to Skyline APIServer
	Documentation Content
	Using RST
	Building Skyline APIServer’s Documentation
	Review and Release Process
	Finding something to contribute

	Writing Release Notes
	Release notes
	Reviewing release note content
	Fixing a release note
	Bugs
	Creating the note

	Programming HowTos and Tutorials
	Setting Up a Development Environment
	Virtual environments
	Linux Systems
	Getting the code
	Running unit tests
	Setup Your Local Development Env
	Contributing Your Work

	Other Resources
	Code Reviews
	Gerrit
	The Great Change
	Python 2 to Python 3 transition guidelines

	Unit Tests
	CI Job rechecks
	Efficient Review Guidelines

	Release Notes
	Additional reference
	Glossary

