ovsdbapp Documentation

Release 2.11.1.dev2

OpenStack Foundation

Mar 06, 2025

Contents
1 Installation 1
2 Library User Guide 2
2.1 OVEIVIEW . . . v o o e o e e e e e e 2
2.2 Tuatorial e e 3
3 Contributing 5

A library for creating OVSDB applications

The ovdsbapp library is useful for creating applications that communicate via Open_vSwitchs OVSDB
protocol (https://tools.ietf.org/html/rfc7047). It wraps the Python ovs and adds an event loop and friendly
transactions.

* Free software: Apache license

* Source: https://opendev.org/openstack/ovsdbapp/

* Bugs: https://bugs.launchpad.net/ovsdbapp
Features:

* An thread-based event loop for using ovs.db.Idl

* Transaction support

¢ Native OVSDB communication

1 Installation

At the command line:

[$ pip install ovsdbapp }

Or, if you have virtualenvwrapper installed:

https://tools.ietf.org/html/rfc7047
https://opendev.org/openstack/ovsdbapp/
https://bugs.launchpad.net/ovsdbapp

$ mkvirtualenv ovsdbapp
$ pip install ovsdbapp

2 Library User Guide

This document describes OVSDBapp concepts and best practices to enable writing effective OVSDBapp-
based applications.

2.1 Overview
Overview

OVSDBapp is a library to make it easier to write applications that interact with an Open vSwitch database
server. It allows the user to separate support for a particular OVSDB schema and the backend method of
communication with the OVSDB server.

OVSDBapp Concepts

API
The interface that an application will use for reading or modifying entries in the OVS database.
Whatever backend communication method is used, as long as user code only accesses methods in
this API, no user code should need to be changed when swapping between backends.

Backend
The Backend handles the communication with Open vSwitch. Originally, there were two OVSD-
Bapp backends: 1) one that used the ovs-vsctl CLI utility to interact with the OVS database and
2) one that maintains a persistent connection to an OVSDB server using the python-ovs library.
Currently, only the python-ovs backend is being maintained.

Command
OVSDBapp uses the Command Pattern to isolate individual units of work that will be run as part
of an OVSDB transaction.

Event
OVSDB provides the ability to monitor database changes as they happen. OVSDBapp backends
each implement the RowEvent and RowEventHandler to handle delivering these events to user
code.

API Implementations:
The backend-specific implementation of an OVSDBapp API. Only this code should need to be
implemented to support a new backend. All other user code should be backend-agnostic.

Schema
The OVSDB database schema for which the API is implemented. In current ovsdbapp code, the
schema and API are intrinsically linked in a 1:1 manner, but ultimately they are independent. User
code could easily define an API specific to their application that encompasses multiple OVSDB
schemas as long as the Backend supported it.

Transaction
An OVSDB transaction consisting of one or more Commands.

Virtual Environment
OVSDBapp supports running OVS and OVN services in a virtual environment. This is primarily
used for testing.

https://en.wikipedia.org/wiki/Command_pattern

2.2 Tutorial
Tutorial

Open vSwitch Environment Setup

This tutorial will use the Open vSwitch sandbox environment from the OVS source tree. For the sake of
simplicity, we will build OVS without SSL support. You will need git, C development tools, automake,
autoconf, and libtool. See the Installing Open vSwitch instructions for build requirements and more
detailed build instructions.

git clone https://github.com/openvswitch/ovs
ovs

./boot.sh

./configure --disable-ssl --enable-shared

make -j $(nproc) sandbox

Backend Setup

While the original ovs-vsctl -based backend required no setup, other backends may. For example, the
python-ovs IDL backend maintains a constant connection to ovsdb-server and requires an IDL class to
be instantiated and passed to an OVSDBapp IDL backend Connection object.

Using the API

Each API definition varies based on the schemas it supports and what the app requires. There is built-in
support for many common OVS and OVN-related schemas, but it is possible that the APIs defined for
these are not optimized for a given apps use cases. It may often make sense for apps to define APIs
separate from those that are in ovsdbapp.

With that said, any api that inherits from ovsdbapp.api.API will at least have methods defined for the
standard generic OVSDB DB operations found described in the ovs-vsctl manpage under Database Com-
mands.

https://docs.openvswitch.org/en/latest/intro/install/
http://www.openvswitch.org/support/dist-docs/ovs-vsctl.8.html

e list

e find

* get

e set

e add

* remove
* clear

* create
* destroy

They are all prefixed with db_ (e.g. list becomes db_list) and have an interface similar to that used by ovs-
vsctl, ovn-nbctl, ovn-sbctl, etc. db_list() and db_find() return results as lists of dicts with each dict repre-
senting a row, with keys as the column names. Later versions added db_list_rows() and db_find_rows()
to return lists of RowView objects.

API commands that interact with the OVSDB server typically return an instance of a subclass of ovsd-
bapp.api.Command. These objects hold the state of a request that will be sent to an OVSDB server as
part of a transaction. They can be thought of as the equivalent of queries in SQL.

For a Command to be sent to the OVSDB server, it must be attached to a transaction, and committed. For
single commands, this can be done with execute():

[1

This implicitly creates a transaction, adds the Command returned by db_list() to that transaction, calls
commit() on the transaction, and returns the result that is stored on the Command object. It is the equiv-
alent of:

That API also defines transaction(), a context manager, that makes multi-command transactions easier.

There are some things to note with the above code. First, is that Transaction.add() returns the Command
object that is passed to it. In the case of the db_create() command, the row it will create can be referenced
in other commands in the same transaction. Second, if a table is defined as having at most one row, like
the Open_vSwitch table, instead of passing its UUID, . can be passed. Lastly, note that we are creating
a Bridge row and adding it to the Open_vSwitch rows bridges field. The Bridge table is not set as a
root table in the Open_vSwitch schema. What this means is that if no row in a root table references
this Bridge, ovsdb-server will automatically clean up this row. The Open_vSwitch table is a root table,
so referencing the bridge in that row prevents the bridge that was just created from being immediately
removed.

3 Contributing

If you would like to contribute to the development of OpenStack, you must follow the steps in this page:
https://docs.openstack.org/infra/manual/developers.html

If you already have a good understanding of how the system works and your OpenStack accounts are
set up, you can skip to the development workflow section of this documentation to learn how changes to
OpenStack should be submitted for review via the Gerrit tool:

https://docs.openstack.org/infra/manual/developers.html#development-workflow
Pull requests submitted through GitHub will be ignored.
Bugs should be filed on Launchpad, not GitHub:

https://bugs.launchpad.net/ovsdbapp

https://docs.openstack.org/infra/manual/developers.html
https://docs.openstack.org/infra/manual/developers.html#development-workflow
https://bugs.launchpad.net/ovsdbapp

	Installation
	Library User Guide
	Overview
	Overview
	OVSDBapp Concepts

	Tutorial
	Tutorial
	Open vSwitch Environment Setup
	Backend Setup
	Using the API

	Contributing

