
OS Brick Documentation
Release 6.10.0.dev12

Cinder Contributors

Jan 08, 2025

CONTENTS

1 Installation Guide 3
1.1 Installation . 3

2 Usage Guide 5
2.1 Tutorial . 5

2.1.1 Prerequisites . 5
2.1.2 Configuration . 5
2.1.3 Setup . 5
2.1.4 Fetch all of the initiator information from the host 6

3 Reference 7
3.1 API Documentation . 7

3.1.1 os_brick OpenStack Brick library . 7
initiator Initiator . 7
exception Exceptions . 11

4 Contributing 13
4.1 So You Want to Contribute . 13

i

ii

OS Brick Documentation, Release 6.10.0.dev12

os-brick is a Python package containing classes that help with volume discovery and removal from a host.

CONTENTS 1

OS Brick Documentation, Release 6.10.0.dev12

2 CONTENTS

CHAPTER

ONE

INSTALLATION GUIDE

1.1 Installation
At the command line:

$ pip install os-brick

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv os-brick
$ pip install os-brick

Or, from source:

$ git clone https://opendev.org/openstack/os-brick
$ cd os-brick
$ python setup.py install

3

OS Brick Documentation, Release 6.10.0.dev12

4 Chapter 1. Installation Guide

CHAPTER

TWO

USAGE GUIDE

2.1 Tutorial
This tutorial is intended as an introduction to working with os-brick.

2.1.1 Prerequisites
Before we start, make sure that you have the os-brick distribution installed. In the Python shell, the
following should run without raising an exception:

>>> import os_brick

2.1.2 Configuration
There are some os-brick connectors that use file locks to prevent concurrent access to critical sections of
the code.

These file locks use the oslo.concurrency lock_utils module and require the lock_path to be
configured with the path where locks should be created.

os-brick can use a specific directory just for its locks or use the same directory as the service using
os-brick.

The os-brick specific configuration option is [os_brick]/lock_path, and if left undefined it will use
the value from [oslo_concurrency]/lock_path.

2.1.3 Setup
Once os_brick has been loaded it needs to be initialized, which is done by calling the os_brick.setup
method with the oslo.conf configuration.

It is important that the call to setup method happens after oslo.config has been properly initialized.

from oslo_config import cfg
from cinder import version

CONF = cfg.CONF

def main():
CONF(sys.argv[1:], project='cinder',

version=version.version_string())
os_brick.setup(CONF)

5

OS Brick Documentation, Release 6.10.0.dev12

2.1.4 Fetch all of the initiator information from the host
An example of how to collect the initiator information that is needed to export a volume to this host.

from os_brick.initiator import connector

os_brick.setup(CONF)

what helper do you want to use to get root access?
root_helper = "sudo"
The ip address of the host you are running on
my_ip = "192.168.1.1"
Do you want to support multipath connections?
multipath = True
Do you want to enforce that multipath daemon is running?
enforce_multipath = False
initiator = connector.get_connector_properties(root_helper, my_ip,

multipath,
enforce_multipath)

6 Chapter 2. Usage Guide

CHAPTER

THREE

REFERENCE

3.1 API Documentation
The os-brick package provides the ability to collect host initiator information as well as discovery vol-
umes and removal of volumes from a host.

3.1.1 os_brick OpenStack Brick library
Sub-modules:

initiator Initiator

Bricks Initiator module.

The initator module contains the capabilities for discovering the initiator information as well as discov-
ering and removing volumes from a host.

Sub-modules:

connector Connector

Brick Connector objects for each supported transport protocol.

The connectors here are responsible for discovering and removing volumes for each of the supported
transport protocols.

class os_brick.initiator.connector.InitiatorConnector

static factory(protocol, root_helper, driver=None, use_multipath=False,
device_scan_attempts=3, arch=None, *args, **kwargs)

Build a Connector object based upon protocol and architecture.

class os_brick.initiator.connector.ISCSIConnector(root_helper: str, driver=None,
execute=None, use_multipath: bool
= False, device_scan_attempts: int =
3, transport: str = ’default’, *args,
**kwargs)

Connector class to attach/detach iSCSI volumes.

connect_volume(connection_properties: dict)→ dict[str, str] | None
Attach the volume to instance_name.

7

OS Brick Documentation, Release 6.10.0.dev12

Parameters
connection_properties (dict) The valid dictionary that describes all of
the target volume attributes.

Returns
dict

connection_properties for iSCSI must include: target_portal(s) - ip and optional port tar-
get_iqn(s) - iSCSI Qualified Name target_lun(s) - LUN id of the volume Note that plural
keys may be used when use_multipath=True

disconnect_volume(connection_properties: dict, device_info: dict, force: bool = False,
ignore_errors: bool = False)→ None

Detach the volume from instance_name.

Parameters

• connection_properties (dict that must include:
target_portal(s) - IP and optional port target_iqn(s)
- iSCSI Qualified Name target_lun(s) - LUN id of the
volume) The dictionary that describes all of the target volume attributes.

• device_info (dict) historical difference, but same as connection_props

• force (bool) Whether to forcefully disconnect even if flush fails.

• ignore_errors (bool) When force is True, this will decide whether to
ignore errors or raise an exception once finished the operation. Default is
False.

class os_brick.initiator.connector.FibreChannelConnector(root_helper: str,
driver=None, execute: str |
None = None,
use_multipath: bool =
False,
device_scan_attempts: int =
3, *args, **kwargs)

Connector class to attach/detach Fibre Channel volumes.

connect_volume(connection_properties: dict)→ dict
Attach the volume to instance_name.

Parameters
connection_properties (dict) The dictionary that describes all of the tar-
get volume attributes.

Returns
dict

connection_properties for Fibre Channel must include: target_wwn - World Wide Name tar-
get_lun - LUN id of the volume

disconnect_volume(connection_properties: dict, device_info: dict, force: bool = False,
ignore_errors: bool = False)→ None

Detach the volume from instance_name.

Parameters

8 Chapter 3. Reference

OS Brick Documentation, Release 6.10.0.dev12

• connection_properties (dict) The dictionary that describes all of the
target volume attributes.

• device_info (dict) historical difference, but same as connection_props

connection_properties for Fibre Channel must include: target_wwn - World Wide Name tar-
get_lun - LUN id of the volume

class os_brick.initiator.connector.LocalConnector(root_helper, driver=None, *args,
**kwargs)

Connector class to attach/detach File System backed volumes.

connect_volume(connection_properties: dict)→ dict
Connect to a volume.

Parameters
connection_properties (dict) The dictionary that describes all of the tar-
get volume attributes. connection_properties must include:

• device_path - path to the volume to be connected

Returns
dict

disconnect_volume(connection_properties, device_info, force=False, ignore_errors=False)
Disconnect a volume from the local host.

Parameters

• connection_properties (dict) The dictionary that describes all of the
target volume attributes.

• device_info (dict) historical difference, but same as connection_props

class os_brick.initiator.connector.HuaweiStorHyperConnector(root_helper,
driver=None, *args,
**kwargs)

Connector class to attach/detach SDSHypervisor volumes.

connect_volume(connection_properties)
Connect to a volume.

Parameters
connection_properties (dict) The dictionary that describes all of the tar-
get volume attributes.

Returns
dict

disconnect_volume(connection_properties, device_info, force=False, ignore_errors=False)
Disconnect a volume from the local host.

Parameters

• connection_properties (dict) The dictionary that describes all of the
target volume attributes.

• device_info (dict) historical difference, but same as connection_props

3.1. API Documentation 9

OS Brick Documentation, Release 6.10.0.dev12

class os_brick.initiator.connectors.nvmeof.NVMeOFConnector(root_helper: str, driver:
HostDriver | None =
None, use_multipath:
bool = False,
device_scan_attempts:
int = 5, *args, **kwargs)

Connector class to attach/detach NVMe-oF volumes.

connect_volume(connection_properties: NVMeOFConnProps)→ dict[str, str]
Attach and discover the volume.

disconnect_volume(connection_properties: dict, device_info: dict[str, str], force: bool =
False, ignore_errors: bool = False)→ None

Flush the volume.

Disconnect of volumes happens on storage system side. Here we could remove connections
to subsystems if no volumes are left. But new volumes can pop up asynchronously in the
meantime. So the only thing left is flushing or disassembly of a correspondng RAID device.

Parameters

• connection_properties (dict) The dictionary that describes all of the
target volume attributes as described in connect_volume but also with the
device_path key containing the path to the volume that was connected (this
is added by Nova).

• device_info (dict) historical difference, but same as connection_props

extend_volume(connection_properties: dict[str, str])→ int
Update an attached volume to reflect the current size after extend

The only way to reflect the new size of an NVMe-oF volume on the host is a rescan, which
rescans the whole subsystem. This is a problem on attach_volume and detach_volume, but
not here, since we will have at least the namespace we are operating on in the subsystem.

The tricky part is knowing when a rescan has already been completed and the volume size
on sysfs is final. The rescan may already have happened before this method is called due to
an AER message or we may need to trigger it here.

Scans can be triggered manually with nvme ns-rescan or writing 1 in configfs rescan file, or
they can be triggered indirectly when calling the nvme list, nvme id-ns, or even using the
nvme admin-passthru command.

Even after getting the new size with any of the NVMe commands above, we still need to wait
until this is reflected on the host device, because we cannot return to the caller until the new
size is in effect.

If we dont see the new size taking effect on the system after 5 seconds, or if we cannot get the
new size with nvme, then we rescan in the latter and in both cases we blindly wait 5 seconds
and return whatever size is present.

For replicated volumes, the RAID needs to be extended.

get_volume_paths(connection_properties: NVMeOFConnProps, device_info: dict[str, str] |
None = None)→ list[str]

Return paths where the volume is present.

10 Chapter 3. Reference

OS Brick Documentation, Release 6.10.0.dev12

classmethod get_connector_properties(root_helper, *args, **kwargs)→ dict
The NVMe-oF connector properties (initiator uuid and nqn.)

exception Exceptions

Exceptions for the Brick library.

class os_brick.exception.BrickException(message=None, **kwargs)
Base Brick Exception

To correctly use this class, inherit from it and define a message property. That message will get
printfd with the keyword arguments provided to the constructor.

class os_brick.exception.NotFound(message=None, **kwargs)

class os_brick.exception.Invalid(message=None, **kwargs)

class os_brick.exception.InvalidParameterValue(message=None, **kwargs)

class os_brick.exception.NoFibreChannelHostsFound(message=None, **kwargs)

class os_brick.exception.NoFibreChannelVolumeDeviceFound(message=None, **kwargs)

class os_brick.exception.VolumeDeviceNotFound(message=None, **kwargs)

class os_brick.exception.ProtocolNotSupported(message=None, **kwargs)

3.1. API Documentation 11

OS Brick Documentation, Release 6.10.0.dev12

12 Chapter 3. Reference

CHAPTER

FOUR

CONTRIBUTING

4.1 So You Want to Contribute
For general information on contributing to OpenStack, please check out the contributor guide to get
started. It covers all the basics that are common to all OpenStack projects: the accounts you need, the
basics of interacting with our Gerrit review system, how we communicate as a community, etc.

The os-brick library is maintained by the OpenStack Cinder project. To understand our development
process and how you can contribute to it, please look at the Cinder projects general contributors page:
http://docs.openstack.org/cinder/latest/contributor/contributing.html

13

https://docs.openstack.org/contributors/
http://docs.openstack.org/cinder/latest/contributor/contributing.html

	Installation Guide
	Installation

	Usage Guide
	Tutorial
	Prerequisites
	Configuration
	Setup
	Fetch all of the initiator information from the host

	Reference
	API Documentation
	os_brick – OpenStack Brick library
	initiator – Initiator
	connector – Connector

	exception – Exceptions

	Contributing
	So You Want to Contribute…

