
OpenStack-Ansible Documentation
Release 23.4.5.dev7

OpenStack-Ansible Contributors

Sep 26, 2024

CONTENTS

1 Abstract 1

Python Module Index 235

Index 237

i

ii

CHAPTER

ONE

ABSTRACT

OpenStack-Ansible provides Ansible playbooks and roles for the deployment and configuration of an
OpenStack environment.

OpenStack-Ansible Wallaby series was first released with the 23.0.0 tag on 02 July 2021.

1.1 Operations Guide

This guide provides information about operating your OpenStack-Ansible deployment.

For information on how to deploy your OpenStack-Ansible cloud, refer to the Deployment Guide for
step-by-step instructions on how to deploy the OpenStack packages and dependencies on your cloud
using OpenStack-Ansible.

For user guides, see the User Guide.

For information on how to contribute, extend or develop OpenStack-Ansible, see the Contributors Guide.

For in-depth technical information, see the OpenStack-Ansible Reference.

This guide ranges from first operations to verify your deployment, to the major upgrades procedures.

1.1.1 Verify OpenStack-Ansible Cloud

This chapter is intended to document basic OpenStack operations to verify your OpenStack-Ansible
deployment.

It explains how CLIs can be used as an admin and a user, to ensure the well-behavior of your cloud.

Check your OpenStack-Ansible cloud

This chapter goes through the verification steps for a basic operation of the OpenStack API and dash-
board, as an administrator.

Note: The utility container provides a CLI environment for additional configuration and testing.

1. Access the utility container:

$ lxc-attach -n `lxc-ls -1 | grep utility | head -n 1`

2. Source the admin tenant credentials:

1

https://docs.openstack.org/project-deploy-guide/openstack-ansible/wallaby/index.html
https://docs.openstack.org/openstack-ansible/wallaby/user/index.html
https://docs.openstack.org/openstack-ansible/wallaby/contributor/index.html
https://docs.openstack.org/openstack-ansible/wallaby/reference/index.html

OpenStack-Ansible Documentation, Release 23.4.5.dev7

$. ~/openrc

3. Run an OpenStack command that uses one or more APIs. For example:

$ openstack user list --domain default
+----------------------------------+--------------------+
| ID | Name |
+----------------------------------+--------------------+
04007b990d9442b59009b98a828aa981	glance
0ccf5f2020ca4820847e109edd46e324	keystone
1dc5f638d4d840c690c23d5ea83c3429	neutron
3073d0fa5ced46f098215d3edb235d00	cinder
5f3839ee1f044eba921a7e8a23bb212d	admin
61bc8ee7cc9b4530bb18acb740ee752a	stack_domain_admin
77b604b67b79447eac95969aafc81339	alt_demo
85c5bf07393744dbb034fab788d7973f	nova
a86fc12ade404a838e3b08e1c9db376f	swift
bbac48963eff4ac79314c42fc3d7f1df	ceilometer
c3c9858cbaac4db9914e3695b1825e41	dispersion
cd85ca889c9e480d8ac458f188f16034	demo
efab6dc30c96480b971b3bd5768107ab	heat
+----------------------------------+--------------------+

4. With a web browser, access the Dashboard using the external load balancer domain name or
IP address. This is defined by the external_lb_vip_address option in the /etc/
openstack_deploy/openstack_user_config.yml file. The dashboard uses HTTPS
on port 443.

5. Authenticate using the username admin and password defined by the
keystone_auth_admin_password option in the /etc/openstack_deploy/
user_secrets.yml file.

6. Run an OpenStack command to reveal all endpoints from your deployment. For example:

$ openstack endpoint list
+----------------+-----------+--------------+----------------+--------
↪→-+-----------+---+
| ID | Region | Service Name | Service Type |
↪→Enabled | Interface | URL
↪→ |
+----------------+-----------+--------------+----------------+--------
↪→-+-----------+---+
| [ID truncated] | RegionOne | cinderv2 | volumev2 | True
↪→ | admin | http://172.29.236.100:8776/v2/%(project_id)s |
| [ID truncated] | RegionOne | cinderv3 | volumev3 | True
↪→ | public | https://10.23.100.127:8776/v3/%(project_id)s |
| [ID truncated] | RegionOne | aodh | alarming | True
↪→ | internal | http://172.29.236.100:8042 |
| [ID truncated] | RegionOne | glance | image | True
↪→ | public | https://10.23.100.127:9292 |
| [ID truncated] | RegionOne | cinderv2 | volumev2 | True
↪→ | internal | http://172.29.236.100:8776/v2/%(project_id)s |
| [ID truncated] | RegionOne | heat-cfn | cloudformation | True
↪→ | admin | http://172.29.236.100:8000/v1 |
| [ID truncated] | RegionOne | neutron | network | True
↪→ | admin | http://172.29.236.100:9696 |

(continues on next page)

2 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

| [ID truncated] | RegionOne | aodh | alarming | True
↪→ | public | https://10.23.100.127:8042 |
| [ID truncated] | RegionOne | nova | compute | True
↪→ | admin | http://172.29.236.100:8774/v2.1/%(project_id)s |
| [ID truncated] | RegionOne | heat-cfn | cloudformation | True
↪→ | internal | http://172.29.236.100:8000/v1 |
| [ID truncated] | RegionOne | swift | object-store | True
↪→ | public | https://10.23.100.127:8080/v1/AUTH_%(project_id)s |
| [ID truncated] | RegionOne | designate | dns | True
↪→ | admin | http://172.29.236.100:9001 |
| [ID truncated] | RegionOne | cinderv2 | volumev2 | True
↪→ | public | https://10.23.100.127:8776/v2/%(project_id)s |
| [ID truncated] | RegionOne | keystone | identity | True
↪→ | admin | http://172.29.236.100:5000/v3 |
| [ID truncated] | RegionOne | nova | compute | True
↪→ | public | https://10.23.100.127:8774/v2.1/%(project_id)s |
| [ID truncated] | RegionOne | keystone | identity | True
↪→ | internal | http://172.29.236.100:5000/v3 |
| [ID truncated] | RegionOne | nova | compute | True
↪→ | internal | http://172.29.236.100:8774/v2.1/%(project_id)s |
| [ID truncated] | RegionOne | gnocchi | metric | True
↪→ | public | https://10.23.100.127:8041 |
| [ID truncated] | RegionOne | neutron | network | True
↪→ | internal | http://172.29.236.100:9696 |
| [ID truncated] | RegionOne | aodh | alarming | True
↪→ | admin | http://172.29.236.100:8042 |
| [ID truncated] | RegionOne | heat | orchestration | True
↪→ | admin | http://172.29.236.100:8004/v1/%(project_id)s |
| [ID truncated] | RegionOne | glance | image | True
↪→ | internal | http://172.29.236.100:9292 |
| [ID truncated] | RegionOne | designate | dns | True
↪→ | internal | http://172.29.236.100:9001 |
| [ID truncated] | RegionOne | cinderv3 | volume | True
↪→ | internal | http://172.29.236.100:8776/v3/%(project_id)s |
| [ID truncated] | RegionOne | heat-cfn | cloudformation | True
↪→ | public | https://10.23.100.127:8000/v1 |
| [ID truncated] | RegionOne | designate | dns | True
↪→ | public | https://10.23.100.127:9001 |
| [ID truncated] | RegionOne | swift | object-store | True
↪→ | admin | http://172.29.236.100:8080/v1/AUTH_%(project_id)s |
| [ID truncated] | RegionOne | heat | orchestration | True
↪→ | internal | http://172.29.236.100:8004/v1/%(project_id)s |
| [ID truncated] | RegionOne | cinderv3 | volumev3 | True
↪→ | admin | http://172.29.236.100:8776/v3/%(project_id)s |
| [ID truncated] | RegionOne | swift | object-store | True
↪→ | internal | http://172.29.236.100:8080/v1/AUTH_%(project_id)s |
| [ID truncated] | RegionOne | neutron | network | True
↪→ | public | https://10.23.100.127:9696 |
| [ID truncated] | RegionOne | heat | orchestration | True
↪→ | public | https://10.23.100.127:8004/v1/%(project_id)s |
| [ID truncated] | RegionOne | gnocchi | metric | True
↪→ | admin | http://172.29.236.100:8041 |
| [ID truncated] | RegionOne | gnocchi | metric | True
↪→ | internal | http://172.29.236.100:8041 |
| [ID truncated] | RegionOne | keystone | identity | True
↪→ | public | https://10.23.100.127:5000/v3 |

(continues on next page)

1.1. Operations Guide 3

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

| [ID truncated] | RegionOne | glance | image | True
↪→ | admin | http://172.29.236.100:9292 |
| [ID truncated] | RegionOne | placement | placement | True
↪→ | internal | http://172.29.236.100:8780 |
| [ID truncated] | RegionOne | placement | placement | True
↪→ | admin | http://172.29.236.100:8780 |
| [ID truncated] | RegionOne | placement | placement | True
↪→ | public | https://10.23.100.127:8780 |
+----------------+-----------+--------------+----------------+--------
↪→-+-----------+---+

7. Run an OpenStack command to ensure all the compute services are working (the output depends
on your configuration) For example:

$ openstack compute service list
+----+------------------+--+----
↪→------+---------+-------+----------------------------+
| ID | Binary | Host |
↪→Zone | Status | State | Updated At |
+----+------------------+--+----
↪→------+---------+-------+----------------------------+
| 1 | nova-conductor | aio1-nova-conductor-container-5482ff27 |
↪→internal | enabled | up | 2018-02-14T15:34:42.000000 |
| 2 | nova-scheduler | aio1-nova-scheduler-container-0b594e89 |
↪→internal | enabled | up | 2018-02-14T15:34:47.000000 |
| 5 | nova-consoleauth | aio1-nova-console-container-835ca240 |
↪→internal | enabled | up | 2018-02-14T15:34:47.000000 |
| 6 | nova-compute | ubuntu-bionic |
↪→nova | enabled | up | 2018-02-14T15:34:42.000000 |
+----+------------------+--+----
↪→------+---------+-------+----------------------------+

8. Run an OpenStack command to ensure the networking services are working (the output also de-
pends on your configuration) For example:

$ openstack network agent list
+--------------------------------------+----------------------+-------
↪→---------------------------------+-------------------+-------+------
↪→-+---------------------------+
| ID | Agent Type | Host
↪→ | Availability Zone | Alive |
↪→State | Binary |
+--------------------------------------+----------------------+-------
↪→---------------------------------+-------------------+-------+------
↪→-+---------------------------+
| 262b29fe-e60e-44b0-ae3c-065565f8deb7 | Metering agent | aio1-
↪→neutron-agents-container-2b0569d5 | None | :-) | UP
↪→ | neutron-metering-agent |
| 41135f7f-9e6c-4122-b6b3-d131bfaae53e | Linux bridge agent |
↪→ubuntu-bionic | None | :-)
↪→| UP | neutron-linuxbridge-agent |
| 615d12a8-e738-490a-8552-2a03c8544b51 | Metadata agent | aio1-
↪→neutron-agents-container-2b0569d5 | None | :-) | UP
↪→ | neutron-metadata-agent |
| 99b2abd3-a330-4ca7-b524-ed176c10b31c | DHCP agent | aio1-
↪→neutron-agents-container-2b0569d5 | nova | :-) | UP
↪→ | neutron-dhcp-agent | (continues on next page)

4 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

| e0139a26-fbf7-4cee-a37f-90940dc5851f | Linux bridge agent | aio1-
↪→neutron-agents-container-2b0569d5 | None | :-) | UP
↪→ | neutron-linuxbridge-agent |
| feb20ed4-4346-4ad9-b50c-41efd784f2e9 | L3 agent | aio1-
↪→neutron-agents-container-2b0569d5 | nova | :-) | UP
↪→ | neutron-l3-agent |
+--------------------------------------+----------------------+-------
↪→---------------------------------+-------------------+-------+------
↪→-+---------------------------+

9. Run an OpenStack command to ensure the block storage services are working (depends on your
configuration). For example:

$ openstack volume service list
+------------------+--+------
↪→+---------+-------+----------------------------+
| Binary | Host | Zone
↪→| Status | State | Updated At |
+------------------+--+------
↪→+---------+-------+----------------------------+
| cinder-scheduler | aio1-cinder-scheduler-container-ff4c6c1e | nova
↪→| enabled | up | 2018-02-14T15:37:21.000000 |
| cinder-volume | ubuntu-bionic@lvm | nova
↪→| enabled | up | 2018-02-14T15:37:25.000000 |
| cinder-backup | ubuntu-bionic | nova
↪→| enabled | up | 2018-02-14T15:37:21.000000 |
+------------------+--+------
↪→+---------+-------+----------------------------+

10. Run an OpenStack command to ensure the image storage service is working (depends on your
uploaded images). For example:

$ openstack image list
+--------------------------------------+--------+--------+
| ID | Name | Status |
+--------------------------------------+--------+--------+
| 6092d7b3-87c1-4d6c-a822-66c0c6171bd3 | cirros | active |
+--------------------------------------+--------+--------+

11. Check the backend API health on your load balancer nodes. For example, if using haproxy, ensure
no backend is marked as DOWN:

$ hatop -s /var/run/haproxy.stat

Configure your first networks

A newly deployed OpenStack-Ansible has no networks by default. If you need to add networks, you can
use the openstack CLI, or you can use the ansible modules for it.

An example for the latter is in the openstack-ansible-ops repository, under the
openstack-service-setup.yml playbook.

1.1. Operations Guide 5

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Use the command line clients

This section describes some of the more common commands to use your OpenStack cloud.

Log in to any utility container or install the openstack client on your machine, and run the following
commands:

The openstack flavor list command lists the flavors that are available. These are different disk sizes that
can be assigned to images:

$ openstack flavor list
+-----+-----------+-------+------+-----------+-------+-----------+
| ID | Name | RAM | Disk | Ephemeral | VCPUs | Is Public |
+-----+-----------+-------+------+-----------+-------+-----------+
1	m1.tiny	512	1	0	1	True
2	m1.small	2048	20	0	1	True
3	m1.medium	4096	40	0	2	True
4	m1.large	8192	80	0	4	True
5	m1.xlarge	16384	160	0	8	True
+-----+-----------+-------+------+-----------+-------+-----------+

The openstack floating ip list command lists the currently available floating IP addresses and the in-
stances they are associated with:

$ openstack floating ip list
+------------------+---------------------+------------------+---------+----
↪→---------------+---------------+
| ID | Floating IP Address | Fixed IP Address | Port |
↪→Floating Network | Project |
+------------------+---------------------+------------------+---------+----
↪→---------------+---------------+
| 0a88589a-ffac... | 192.168.12.7 | None | None |
↪→d831dac6-028c... | 32db2ccf2a... |
+------------------+---------------------+------------------+---------+----
↪→---------------+---------------+

For more information about OpenStack client utilities, see these links:

• OpenStack API Quick Start

• OpenStackClient commands

• Image Service (glance) CLI commands

• Image Service (glance) CLI command cheat sheet

• Compute (nova) CLI commands

• Compute (nova) CLI command cheat sheet

• Networking (neutron) CLI commands

• Networking (neutron) CLI command cheat sheet

• Block Storage (cinder) CLI commands

• Block Storage (cinder) CLI command cheat sheet

• python-keystoneclient

• python-glanceclient

6 Chapter 1. Abstract

https://docs.openstack.org/api-quick-start/index.html
https://docs.openstack.org/python-openstackclient/latest/
https://docs.openstack.org/glance/latest/cli/index.html
https://docs.openstack.org/python-glanceclient/latest/cli/glance.html
https://docs.openstack.org/nova/latest/cli/index.html
https://docs.openstack.org/python-novaclient/latest/cli/nova.html
https://docs.openstack.org/neutron/latest/cli/index.html
https://docs.openstack.org/python-neutronclient/latest/cli/neutron.html
https://docs.openstack.org/python-cinderclient/latest/user/shell.html
https://docs.openstack.org/python-cinderclient/latest/cli/details.html
https://pypi.org/project/python-keystoneclient/
https://pypi.org/project/python-glanceclient/

OpenStack-Ansible Documentation, Release 23.4.5.dev7

• python-novaclient

• python-neutronclient

1.1.2 Managing your cloud

This chapter is intended to document OpenStack operations tasks that are integral to the operations
support in an OpenStack-Ansible deployment.

It explains operations such as managing images, instances, or networks.

Managing images

An image represents the operating system, software, and any settings that instances may need depending
on the project goals. Create images first before creating any instances.

Adding images can be done through the Dashboard, or the command line. Another option available is the
python-openstackclient tool, which can be installed on the controller node, or on a workstation.

Adding an image using the Dashboard

In order to add an image using the Dashboard, prepare an image binary file, which must be accessible
over HTTP using a valid and direct URL. Images can be compressed using .zip or .tar.gz.

Note: Uploading images using the Dashboard will be available to users with administrator privileges.
Operators can set user access privileges.

1. Log in to the Dashboard.

2. Select the Admin tab in the navigation pane and click images.

3. Click the Create Image button. The Create an Image dialog box will appear.

4. Enter the details of the image, including the Image Location, which is where the URL location
of the image is required.

5. Click the Create Image button. The newly created image may take some time before it is com-
pletely uploaded since the image arrives in an image queue.

Adding an image using the command line

The utility container provides a CLI environment for additional configuration and management.

1. Access the utility container:

$ lxc-attach -n `lxc-ls -1 | grep utility | head -n 1`

Use the openstack client within the utility container to manage all glance images. See the openstack
client official documentation on managing images.

1.1. Operations Guide 7

https://pypi.org/project/python-novaclient/
https://pypi.org/project/python-neutronclient/
https://docs.openstack.org/image-guide/create-images-manually.html
https://docs.openstack.org/image-guide/create-images-manually.html

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Managing instances

This chapter describes how to create and access instances.

Creating an instance using the Dashboard

Using an image, create a new instance via the Dashboard options.

1. Log into the Dashboard, and select the Compute project from the drop down list.

2. Click the Images option.

3. Locate the image that will act as the instance base from the Images table.

4. Click Launch from the Actions column.

5. Check the Launch Instances dialog, and find the details tab. Enter the appropriate values for the
instance.

1. In the Launch Instance dialog, click the Access & Security tab. Select the keypair. Set the
security group as default.

2. Click the Networking tab. This tab will be unavailable if OpenStack networking (neutron)
has not been enabled. If networking is enabled, select the networks on which the instance
will reside.

3. Click the Volume Options tab. This tab will only be available if a Block Storage volume
exists for the instance. Select Dont boot from a volume for now.

For more information on attaching Block Storage volumes to instances for persistent storage,
see the Managing volumes for persistent storage section below.

4. Add customisation scripts, if needed, by clicking the Post-Creation tab. These run after
the instance has been created. Some instances support user data, such as root passwords, or
admin users. Enter the information specific to the instance here if required.

5. Click Advanced Options. Specify whether the instance uses a configuration drive to store
metadata by selecting a disk partition type.

6. Click Launch to create the instance. The instance will start on a compute node. The Instance
page will open and start creating a new instance. The Instance page that opens will list the
instance name, size, status, and task. Power state and public and private IP addresses are also
listed here.

The process will take less than a minute to complete. Instance creation is complete when the status
is listed as active. Refresh the page to see the new active instance.

8 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Table 1: Launching an instance options
Field Name Required Details
Availability Zone Optional The availability zone in

which the image service
creates the instance. If no
availability zones is defined,
no instances will be found.
The cloud provider sets the
availability zone to a specific
value.

Instance Name Required The name of the new in-
stance, which becomes
the initial host name of
the server. If the server
name is changed in the API
or directly changed, the
Dashboard names remain
unchanged

Image Required The type of container for-
mat, one of ami, ari, aki,
bare, or ovf

Flavor Required The vCPU, Memory, and
Disk configuration. Note that
larger flavors can take a long
time to create. If creating
an instance for the first time
and want something small
with which to test, select m1.
small.

Instance Count Required If creating multiple instances
with this configuration, enter
an integer up to the number
permitted by the quota, which
is 10 by default.

Instance Boot Source Required Specify whether the instance
will be based on an image
or a snapshot. If it is the
first time creating an instance,
there will not yet be any snap-
shots available.

Image Name Required The instance will boot from
the selected image. This
option will be pre-populated
with the instance selected
from the table. How-
ever, choose Boot from
Snapshot in Instance Boot
Source, and it will default to
Snapshot instead.

Security Groups Optional This option assigns security
groups to an instance. The
default security group acti-
vates when no customised
group is specified here. Se-
curity Groups, similar to a
cloud firewall, define which
incoming network traffic is
forwarded to instances.

Keypair Optional Specify a key pair with this
option. If the image uses
a static key set (not recom-
mended), a key pair is not
needed.

Selected Networks Optional To add a network to an in-
stance, click the + in the Net-
works field.

Customisation Script Optional Specify a customisation
script. This script runs after
the instance launches and
becomes active.

1.1. Operations Guide 9

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Creating an instance using the command line

On the command line, instance creation is managed with the openstack server create command. Before
launching an instance, determine what images and flavors are available to create a new instance using
the openstack image list and openstack flavor list commands.

1. Log in to any utility container.

2. Issue the openstack server create command with a name for the instance, along with the name
of the image and flavor to use:

$ openstack server create --image precise-image --flavor 2 --key-name
↪→example-key example-instance
+-------------------------------------+-------------------------------
↪→-------+
| Property | Value
↪→ |
+-------------------------------------+-------------------------------
↪→-------+
| OS-DCF:diskConfig | MANUAL
↪→ |
| OS-EXT-SRV-ATTR:host | None
↪→ |
| OS-EXT-SRV-ATTR:hypervisor_hostname | None
↪→ |
| OS-EXT-SRV-ATTR:instance_name | instance-0000000d
↪→ |
| OS-EXT-STS:power_state | 0
↪→ |
| OS-EXT-STS:task_state | scheduling
↪→ |
| OS-EXT-STS:vm_state | building
↪→ |
| accessIPv4 |
↪→ |
| accessIPv6 |
↪→ |
| adminPass | ATSEfRY9fZPx
↪→ |
| config_drive |
↪→ |
| created | 2012-08-02T15:43:46Z
↪→ |
| flavor | m1.small
↪→ |
| hostId |
↪→ |
| id | 5bf46a3b-084c-4ce1-b06f-
↪→e460e875075b |
| image | precise-image
↪→ |
| key_name | example-key
↪→ |
| metadata | {}
↪→ |
| name | example-instance
↪→ |

(continues on next page)

10 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

| progress | 0
↪→ |
| status | BUILD
↪→ |
| tenant_id |
↪→b4769145977045e2a9279c842b09be6a |
| updated | 2012-08-02T15:43:46Z
↪→ |
| user_id |
↪→5f2f2c28bdc844f9845251290b524e80 |
+-------------------------------------+-------------------------------
↪→-------+

3. To check that the instance was created successfully, issue the openstack server list command:

$ openstack server list
+------------------+------------------+--------+-------------------+--
↪→-------------+
| ID | Name | Status | Networks |
↪→ Image Name |
+------------------+------------------+--------+-------------------+--
↪→-------------+
| [ID truncated] | example-instance | ACTIVE | public=192.0.2.0 |
↪→precise-image |
+------------------+------------------+--------+-------------------+--
↪→-------------+

Managing an instance

1. Log in to the Dashboard. Select one of the projects, and click Instances.

2. Select an instance from the list of available instances.

3. Check the Actions column, and click on the More option. Select the instance state.

The Actions column includes the following options:

• Resize or rebuild any instance

• View the instance console log

• Edit the instance

• Modify security groups

• Pause, resume, or suspend the instance

• Soft or hard reset the instance

Note: Terminate the instance under the Actions column.

1.1. Operations Guide 11

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Managing volumes for persistent storage

Volumes attach to instances, enabling persistent storage. Volume storage provides a source of memory
for instances. Administrators can attach volumes to a running instance, or move a volume from one
instance to another.

Nova instances live migration

Nova is capable of live migration instances from one host to a different host to support various opera-
tional tasks including:

• Host Maintenance

• Host capacity management

• Resizing and moving instances to better hardware

Nova configuration drive implication

Depending on the OpenStack-Ansible version in use, Nova can be configured to force configuration
drive attachments to instances. In this case, a ISO9660 CD-ROM image will be made available to the
instance via the /mnt mount point. This can be used by tools, such as cloud-init, to gain access to
instance metadata. This is an alternative way of accessing the Nova EC2-style Metadata.

To allow live migration of Nova instances, this forced provisioning of the config (CD-ROM) drive needs
either be turned off, or the format of the configuration drive needs to be changed to a disk format like
vfat, a format which both Linux and Windows instances can access.

This work around is required for all Libvirt versions prior 1.2.17.

To turn off the forced provisioning of the config drive, add the following override to the /etc/
openstack_deploy/user_variables.yml file:

nova_force_config_drive: False

To change the format of the configuration drive, to a hard disk style format, use the following configu-
ration inside the same /etc/openstack_deploy/user_variables.yml file:

nova_nova_conf_overrides:
DEFAULT:

config_drive_format: vfat
force_config_drive: false

Tunneling versus direct transport

In the default configuration, Nova determines the correct transport URL for how to transfer the data from
one host to the other. Depending on the nova_virt_type override the following configurations are
used:

• kvm defaults to qemu+tcp://%s/system

• qemu defaults to qemu+tcp://%s/system

12 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

• xen defaults to xenmigr://%s/system

Libvirt TCP port to transfer the data to migrate.

OpenStack-Ansible changes the default setting and used a encrypted SSH connection to transfer the
instance data.

live_migration_uri = "qemu+ssh://nova@%s/system?no_verify=1&keyfile={{
↪→nova_system_home_folder }}/.ssh/id_rsa"

Other configurations can be configured inside the /etc/openstack_deploy/
user_variables.yml file:

nova_nova_conf_overrides:
libvirt:

live_migration_completion_timeout: 0
live_migration_progress_timeout: 0
live_migration_uri: "qemu+ssh://nova@%s/system?keyfile=/var/lib/nova/.

↪→ssh/id_rsa&no_verify=1"

Local versus shared storage

By default, live migration assumes that your Nova instances are stored on shared storage and
KVM/Libvirt only need to synchronize the memory and base image of the Nova instance to the new
host. Live migrations on local storage will fail as a result of that assumption. Migrations with local stor-
age can be accomplished by allowing instance disk migrations with the --block-migrate option.

Additional Nova flavor features like ephemeral storage or swap have an impact on live migration perfor-
mance and success.

Cinder attached volumes also require a Libvirt version larger or equal to 1.2.17.

Executing the migration

The live migration is accessible via the nova client.

nova live-migration [--block-migrate] [--force] <uuid> [<host>]

Examplarery live migration on a local storage:

nova live-migration --block-migrate <uuid of the instance> <nova host>

Monitoring the status

Once the live migration request has been accepted, the status can be monitored with the nova client:

nova migration-list

+-----+------------+-----------+----------------+--------------+-----------
↪→+-----------+---------------+------------+------------+------------+-----
↪→-------+-----------------+
| Id | Source Node | Dest Node | Source Compute | Dest Compute | Dest Host
↪→| Status | Instance UUID | Old Flavor | New Flavor | Created At |
↪→Updated At | Type |

(continues on next page)

1.1. Operations Guide 13

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

+----+-------------+-----------+----------------+--------------+-----------
↪→+-----------+---------------+------------+------------+------------+-----
↪→-------+-----------------+
| 6 | - | - | compute01 | compute02 | -
↪→| preparing | f95ee17a-d09c | 7 | 7 | date |
↪→date | live-migration |
+----+-------------+-----------+----------------+--------------+-----------
↪→+-----------+---------------+------------+------------+------------+-----
↪→-------+-----------------+

To filter the list, the options --host or --status can be used:

nova migration-list --status error

In cases where the live migration fails, both the source and destination compute nodes need to be checked
for errors. Usually it is sufficient to search for the instance UUID only to find errors related to the live
migration.

Other forms of instance migration

Besides the live migration, Nova offers the option to migrate entire hosts in a online (live) or offline
(cold) migration.

The following nova client commands are provided:

• host-evacuate-live

Live migrate all instances of the specified host to other hosts if resource utilzation allows. It is
best to use shared storage like Ceph or NFS for host evacuation.

• host-servers-migrate

This command is similar to host evacuation but migrates all instances off the specified host while
they are shutdown.

• resize

Changes the flavor of an Nova instance (increase) while rebooting and also migrates (cold) the
instance to a new host to accommodate the new resource requirements. This operation can take
considerate amount of time, depending disk image sizes.

Managing networks

Operational considerations, like compliance, can make it necessary to manage networks. For example,
adding new provider networks to the OpenStack-Ansible managed cloud. The following sections are the
most common administrative tasks outlined to complete those tasks.

For more generic information on troubleshooting your network, see the Network Troubleshooting chap-
ter in the Operations Guide.

For more in-depth information on Networking, see the Networking Guide.

14 Chapter 1. Abstract

https://wiki.openstack.org/wiki/OpsGuide/Network_Troubleshooting
https://wiki.openstack.org/wiki/OpsGuide/Network_Troubleshooting
https://docs.openstack.org/neutron/latest/admin/

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Add provider bridges using new network interfaces

Add each provider network to your cloud to be made known to OpenStack-Ansible and the operating
system before you can execute the necessary playbooks to complete the configuration.

OpenStack-Ansible configuration

All provider networks need to be added to the OpenStack-Ansible configuration.

Edit the file /etc/openstack_deploy/openstack_user_config.yml and add a new block
underneath the provider_networks section:

The container_bridge setting defines the physical network bridge used to connect the veth pair
from the physical host to the container. Inside the container, the container_interface setting
defines the name at which the physical network will be made available. The container_interface
setting is not required when Neutron agents are deployed on bare metal. Make sure that both settings are
uniquely defined across their provider networks and that the network interface is correctly configured
inside your operating system. group_binds define where this network need to attached to, to either
containers or physical hosts and is ultimately dependent on the network stack in use. For example,
Linuxbridge versus OVS. The configuration range defines Neutron physical segmentation IDs which
are automatically used by end users when creating networks via mainly horizon and the Neutron API.
Similar is true for the net_name configuration which defines the addressable name inside the Neutron
configuration. This configuration also need to be unique across other provider networks.

For more information, see Configure the deployment in the OpenStack-Ansible Deployment Guide.

Updating the node with the new configuration

Run the appropriate playbooks depending on the group_binds section.

For example, if you update the networks requiring a change in all nodes with a linux bridge agent,
assuming you have infra nodes named infra01, infra02, and infra03, run:

openstack-ansible containers-deploy.yml --limit localhost,infra01,
↪→infra01-host_containers
openstack-ansible containers-deploy.yml --limit localhost,infra02,
↪→infra02-host_containers
openstack-ansible containers-deploy.yml --limit localhost,infra03,
↪→infra03-host_containers

Then update the neutron configuration.

openstack-ansible os-neutron-install.yml --limit localhost,infra01,
↪→infra01-host_containers
openstack-ansible os-neutron-install.yml --limit localhost,infra02,
↪→infra02-host_containers
openstack-ansible os-neutron-install.yml --limit localhost,infra03,
↪→infra03-host_containers

Then update your compute nodes if necessary.

1.1. Operations Guide 15

https://docs.openstack.org/project-deploy-guide/openstack-ansible/wallaby/configure.html

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Remove provider bridges from OpenStack

Similar to adding a provider network, the removal process uses the same procedure but in a reversed
order. The Neutron ports will need to be removed, prior to the removal of the OpenStack-Ansible
configuration.

1. Unassign all Neutron floating IPs:

Note: Export the Neutron network that is about to be removed as single UUID.

export NETWORK_UUID=<uuid>
for p in $(neutron port-list -c id --device_owner compute:nova --
↪→network_id=${NETWORK_UUID}| awk '/([A-Fa-f0-9]+-){3}/ {print $2}');
↪→ do
floatid=$(neutron floatingip-list -c id --port_id=$p | awk '/([A-

↪→Fa-z0-9]+-){3}/ { print $2 }')
if [-n "$floatid"]; then

echo "Disassociating floating IP $floatid from port $p"
neutron floatingip-disassociate $floatid

fi
done

2. Remove all Neutron ports from the instances:

export NETWORK_UUID=<uuid>
for p in $(neutron port-list -c id -c device_id --device_owner
↪→compute:nova --network_id=${NETWORK_UUID}| awk '/([A-Fa-f0-9]+-){3}/
↪→ {print $2}'); do
echo "Removing Neutron compute port $p"
neutron port-delete $p

done

3. Remove Neutron router ports and DHCP agents:

export NETWORK_UUID=<uuid>
for line in $(neutron port-list -c id -c device_id --device_owner
↪→network:router_interface --network_id=${NETWORK_UUID}| awk '/([A-Fa-
↪→f0-9]+-){3}/ {print $2 "+" $4}'); do
p=$(echo "$line"| cut -d'+' -f1); r=$(echo "$line"| cut -d'+' -

↪→f2)
echo "Removing Neutron router port $p from $r"
neutron router-interface-delete $r port=$p

done

for agent in $(neutron agent-list -c id --agent_type='DHCP Agent' --
↪→network_id=${NETWORK_UUID}| awk '/([A-Fa-f0-9]+-){3}/ {print $2}');
↪→ do
echo "Remove network $NETWORK_UUID from Neutron DHCP Agent $agent"
neutron dhcp-agent-network-remove "${agent}" $NETWORK_UUID

done

4. Remove the Neutron network:

export NETWORK_UUID=<uuid>
neutron net-delete $NETWORK_UUID

16 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

5. Remove the provider network from the provider_networks configuration of the OpenStack-
Ansible configuration /etc/openstack_deploy/openstack_user_config.yml and
re-run the following playbooks:

openstack-ansible lxc-containers-create.yml --limit infra01:infra01-
↪→host_containers
openstack-ansible lxc-containers-create.yml --limit infra02:infra02-
↪→host_containers
openstack-ansible lxc-containers-create.yml --limit infra03:infra03-
↪→host_containers
openstack-ansible os-neutron-install.yml --tags neutron-config

Restart a Networking agent container

Under some circumstances, configuration or temporary issues, one specific or all neutron agents con-
tainer need to be restarted.

This can be accomplished with multiple commands:

1. Example of rebooting still accessible containers.

This example will issue a reboot to the container named with
neutron_agents_container_hostname_name from inside:

ansible -m shell neutron_agents_container_hostname_name -a 'reboot'

2. Example of rebooting one container at a time, 60 seconds apart:

ansible -m shell neutron_agents_container -a 'sleep 60; reboot' --
↪→forks 1

3. If the container does not respond, it can be restarted from the physical network host:

ansible -m shell network_hosts -a 'for c in $(lxc-ls -1 |grep
↪→neutron_agents_container); do lxc-stop -n $c && lxc-start -d -n $c;
↪→done' --forks 1

1.1.3 Maintenance tasks

This chapter is intended for OpenStack-Ansible specific maintenance tasks.

Galera cluster maintenance

Routine maintenance includes gracefully adding or removing nodes from the cluster without impacting
operation and also starting a cluster after gracefully shutting down all nodes.

MySQL instances are restarted when creating a cluster, when adding a node, when the service is not
running, or when changes are made to the /etc/mysql/my.cnf configuration file.

1.1. Operations Guide 17

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Verify cluster status

Compare the output of the following command with the following output. It should give you information
about the status of your cluster.

ansible galera_container -m shell -a "mysql \
-e 'show status like \"%wsrep_cluster_%\";'"
node3_galera_container-3ea2cbd3 | FAILED | rc=1 >>
ERROR 2002 (HY000): Can't connect to local MySQL server
through socket '/var/run/mysqld/mysqld.sock' (2)

node2_galera_container-49a47d25 | FAILED | rc=1 >>
ERROR 2002 (HY000): Can't connect to local MySQL server
through socket '/var/run/mysqld/mysqld.sock' (2)

node4_galera_container-76275635 | success | rc=0 >>
Variable_name Value
wsrep_cluster_conf_id 7
wsrep_cluster_size 1
wsrep_cluster_state_uuid 338b06b0-2948-11e4-9d06-bef42f6c52f1
wsrep_cluster_status Primary

In this example, only one node responded.

Gracefully shutting down the MariaDB service on all but one node allows the remaining operational
node to continue processing SQL requests. When gracefully shutting down multiple nodes, perform the
actions sequentially to retain operation.

Start a cluster

Gracefully shutting down all nodes destroys the cluster. Starting or restarting a cluster from zero nodes
requires creating a new cluster on one of the nodes.

1. Start a new cluster on the most advanced node. Change to the playbooks directory and check
the seqno value in the grastate.dat file on all of the nodes:

ansible galera_container -m shell -a "cat /var/lib/mysql/grastate.
↪→dat"
node2_galera_container-49a47d25 | success | rc=0 >>
GALERA saved state version: 2.1
uuid: 338b06b0-2948-11e4-9d06-bef42f6c52f1
seqno: 31
cert_index:

node3_galera_container-3ea2cbd3 | success | rc=0 >>
GALERA saved state version: 2.1
uuid: 338b06b0-2948-11e4-9d06-bef42f6c52f1
seqno: 31
cert_index:

node4_galera_container-76275635 | success | rc=0 >>
GALERA saved state version: 2.1
uuid: 338b06b0-2948-11e4-9d06-bef42f6c52f1
seqno: 31
cert_index:

18 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

In this example, all nodes in the cluster contain the same positive seqno values as they were
synchronized just prior to graceful shutdown. If all seqno values are equal, any node can start
the new cluster.

for init
/etc/init.d/mysql start --wsrep-new-cluster
for systemd
systemctl set-environment _WSREP_NEW_CLUSTER='--wsrep-new-cluster'
systemctl start mysql
systemctl set-environment _WSREP_NEW_CLUSTER=''

Please also have a look at upstream starting a cluster page

This can also be done with the help of ansible using the shell module:

ansible galera_container -m shell -a "/etc/init.d/mysql start --
↪→wsrep-new-cluster" --limit galera_container[0]

This command results in a cluster containing a single node. The wsrep_cluster_size value
shows the number of nodes in the cluster.

node2_galera_container-49a47d25 | FAILED | rc=1 >>
ERROR 2002 (HY000): Can't connect to local MySQL server
through socket '/var/run/mysqld/mysqld.sock' (111)

node3_galera_container-3ea2cbd3 | FAILED | rc=1 >>
ERROR 2002 (HY000): Can't connect to local MySQL server
through socket '/var/run/mysqld/mysqld.sock' (2)

node4_galera_container-76275635 | success | rc=0 >>
Variable_name Value
wsrep_cluster_conf_id 1
wsrep_cluster_size 1
wsrep_cluster_state_uuid 338b06b0-2948-11e4-9d06-bef42f6c52f1
wsrep_cluster_status Primary

2. Restart MariaDB on the other nodes (replace [0] from previous ansible command with [1:]) and
verify that they rejoin the cluster.

node2_galera_container-49a47d25 | success | rc=0 >>
Variable_name Value
wsrep_cluster_conf_id 3
wsrep_cluster_size 3
wsrep_cluster_state_uuid 338b06b0-2948-11e4-9d06-bef42f6c52f1
wsrep_cluster_status Primary

node3_galera_container-3ea2cbd3 | success | rc=0 >>
Variable_name Value
wsrep_cluster_conf_id 3
wsrep_cluster_size 3
wsrep_cluster_state_uuid 338b06b0-2948-11e4-9d06-bef42f6c52f1
wsrep_cluster_status Primary

node4_galera_container-76275635 | success | rc=0 >>
Variable_name Value
wsrep_cluster_conf_id 3
wsrep_cluster_size 3

(continues on next page)

1.1. Operations Guide 19

https://galeracluster.com/documentation-webpages/startingcluster.html

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

wsrep_cluster_state_uuid 338b06b0-2948-11e4-9d06-bef42f6c52f1
wsrep_cluster_status Primary

Galera cluster recovery

Run the galera-install playbook using the galera-bootstrap tag to automatically recover
a node or an entire environment.

1. Run the following Ansible command to show the failed nodes:

openstack-ansible galera-install.yml --tags galera-bootstrap

The cluster comes back online after completion of this command. If this fails, please review restarting
the cluster and recovering the primary component in the galera documentation as theyre invaluable for a
full cluster recovery.

Recover a single-node failure

If a single node fails, the other nodes maintain quorum and continue to process SQL requests.

1. Change to the playbooks directory and run the following Ansible command to determine the
failed node:

ansible galera_container -m shell -a "mysql \
-e 'show status like \"%wsrep_cluster_%\";'"
node3_galera_container-3ea2cbd3 | FAILED | rc=1 >>
ERROR 2002 (HY000): Can't connect to local MySQL server through
socket '/var/run/mysqld/mysqld.sock' (111)

node2_galera_container-49a47d25 | success | rc=0 >>
Variable_name Value
wsrep_cluster_conf_id 17
wsrep_cluster_size 3
wsrep_cluster_state_uuid 338b06b0-2948-11e4-9d06-bef42f6c52f1
wsrep_cluster_status Primary

node4_galera_container-76275635 | success | rc=0 >>
Variable_name Value
wsrep_cluster_conf_id 17
wsrep_cluster_size 3
wsrep_cluster_state_uuid 338b06b0-2948-11e4-9d06-bef42f6c52f1
wsrep_cluster_status Primary

In this example, node 3 has failed.

2. Restart MariaDB on the failed node and verify that it rejoins the cluster.

3. If MariaDB fails to start, run the mysqld command and perform further analysis on the output.
As a last resort, rebuild the container for the node.

20 Chapter 1. Abstract

https://galeracluster.com/library/training/tutorials/restarting-cluster.html
https://galeracluster.com/library/training/tutorials/restarting-cluster.html
https://galeracluster.com/documentation-webpages/pcrecovery.html

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Recover a multi-node failure

When all but one node fails, the remaining node cannot achieve quorum and stops processing SQL
requests. In this situation, failed nodes that recover cannot join the cluster because it no longer exists.

1. Run the following Ansible command to show the failed nodes:

ansible galera_container -m shell -a "mysql \
-e 'show status like \"%wsrep_cluster_%\";'"
node2_galera_container-49a47d25 | FAILED | rc=1 >>
ERROR 2002 (HY000): Can't connect to local MySQL server
through socket '/var/run/mysqld/mysqld.sock' (111)

node3_galera_container-3ea2cbd3 | FAILED | rc=1 >>
ERROR 2002 (HY000): Can't connect to local MySQL server
through socket '/var/run/mysqld/mysqld.sock' (111)

node4_galera_container-76275635 | success | rc=0 >>
Variable_name Value
wsrep_cluster_conf_id 18446744073709551615
wsrep_cluster_size 1
wsrep_cluster_state_uuid 338b06b0-2948-11e4-9d06-bef42f6c52f1
wsrep_cluster_status non-Primary

In this example, nodes 2 and 3 have failed. The remaining operational server indicates
non-Primary because it cannot achieve quorum.

2. Run the following command to rebootstrap the operational node into the cluster:

mysql -e "SET GLOBAL wsrep_provider_options='pc.bootstrap=yes';"
node4_galera_container-76275635 | success | rc=0 >>
Variable_name Value
wsrep_cluster_conf_id 15
wsrep_cluster_size 1
wsrep_cluster_state_uuid 338b06b0-2948-11e4-9d06-bef42f6c52f1
wsrep_cluster_status Primary

node3_galera_container-3ea2cbd3 | FAILED | rc=1 >>
ERROR 2002 (HY000): Can't connect to local MySQL server
through socket '/var/run/mysqld/mysqld.sock' (111)

node2_galera_container-49a47d25 | FAILED | rc=1 >>
ERROR 2002 (HY000): Can't connect to local MySQL server
through socket '/var/run/mysqld/mysqld.sock' (111)

The remaining operational node becomes the primary node and begins processing SQL requests.

3. Restart MariaDB on the failed nodes and verify that they rejoin the cluster:

ansible galera_container -m shell -a "mysql \
-e 'show status like \"%wsrep_cluster_%\";'"
node3_galera_container-3ea2cbd3 | success | rc=0 >>
Variable_name Value
wsrep_cluster_conf_id 17
wsrep_cluster_size 3
wsrep_cluster_state_uuid 338b06b0-2948-11e4-9d06-bef42f6c52f1
wsrep_cluster_status Primary

(continues on next page)

1.1. Operations Guide 21

https://galeracluster.com/documentation-webpages/quorumreset.html

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

node2_galera_container-49a47d25 | success | rc=0 >>
Variable_name Value
wsrep_cluster_conf_id 17
wsrep_cluster_size 3
wsrep_cluster_state_uuid 338b06b0-2948-11e4-9d06-bef42f6c52f1
wsrep_cluster_status Primary

node4_galera_container-76275635 | success | rc=0 >>
Variable_name Value
wsrep_cluster_conf_id 17
wsrep_cluster_size 3
wsrep_cluster_state_uuid 338b06b0-2948-11e4-9d06-bef42f6c52f1
wsrep_cluster_status Primary

4. If MariaDB fails to start on any of the failed nodes, run the mysqld command and perform further
analysis on the output. As a last resort, rebuild the container for the node.

Recover a complete environment failure

Restore from backup if all of the nodes in a Galera cluster fail (do not shutdown gracefully). Change to
the playbook directory and run the following command to determine if all nodes in the cluster have
failed:

ansible galera_container -m shell -a "cat /var/lib/mysql/grastate.dat"
node3_galera_container-3ea2cbd3 | success | rc=0 >>
GALERA saved state
version: 2.1
uuid: 338b06b0-2948-11e4-9d06-bef42f6c52f1
seqno: -1
cert_index:

node2_galera_container-49a47d25 | success | rc=0 >>
GALERA saved state
version: 2.1
uuid: 338b06b0-2948-11e4-9d06-bef42f6c52f1
seqno: -1
cert_index:

node4_galera_container-76275635 | success | rc=0 >>
GALERA saved state
version: 2.1
uuid: 338b06b0-2948-11e4-9d06-bef42f6c52f1
seqno: -1
cert_index:

All the nodes have failed if mysqld is not running on any of the nodes and all of the nodes contain a
seqno value of -1.

If any single node has a positive seqno value, then that node can be used to restart the cluster. However,
because there is no guarantee that each node has an identical copy of the data, we do not recommend to
restart the cluster using the --wsrep-new-cluster command on one node.

22 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Rebuild a container

Recovering from certain failures require rebuilding one or more containers.

1. Disable the failed node on the load balancer.

Note: Do not rely on the load balancer health checks to disable the node. If the node is not
disabled, the load balancer sends SQL requests to it before it rejoins the cluster and cause data
inconsistencies.

2. Destroy the container and remove MariaDB data stored outside of the container:

lxc-stop -n node3_galera_container-3ea2cbd3
lxc-destroy -n node3_galera_container-3ea2cbd3
rm -rf /openstack/node3_galera_container-3ea2cbd3/*

In this example, node 3 failed.

3. Run the host setup playbook to rebuild the container on node 3:

openstack-ansible setup-hosts.yml -l node3 \
-l node3_galera_container-3ea2cbd3

The playbook restarts all other containers on the node.

4. Run the infrastructure playbook to configure the container specifically on node 3:

openstack-ansible setup-infrastructure.yml \
--limit node3_galera_container-3ea2cbd3

Warning: The new container runs a single-node Galera cluster, which is a dangerous state
because the environment contains more than one active database with potentially different
data.

ansible galera_container -m shell -a "mysql \
-e 'show status like \"%wsrep_cluster_%\";'"
node3_galera_container-3ea2cbd3 | success | rc=0 >>
Variable_name Value
wsrep_cluster_conf_id 1
wsrep_cluster_size 1
wsrep_cluster_state_uuid da078d01-29e5-11e4-a051-03d896dbdb2d
wsrep_cluster_status Primary

node2_galera_container-49a47d25 | success | rc=0 >>
Variable_name Value
wsrep_cluster_conf_id 4
wsrep_cluster_size 2
wsrep_cluster_state_uuid 338b06b0-2948-11e4-9d06-bef42f6c52f1
wsrep_cluster_status Primary

node4_galera_container-76275635 | success | rc=0 >>
Variable_name Value

(continues on next page)

1.1. Operations Guide 23

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

wsrep_cluster_conf_id 4
wsrep_cluster_size 2
wsrep_cluster_state_uuid 338b06b0-2948-11e4-9d06-bef42f6c52f1
wsrep_cluster_status Primary

5. Restart MariaDB in the new container and verify that it rejoins the cluster.

Note: In larger deployments, it may take some time for the MariaDB daemon to start in
the new container. It will be synchronizing data from the other MariaDB servers during this
time. You can monitor the status during this process by tailing the /var/log/mysql_logs/
galera_server_error.log log file.

Lines starting with WSREP_SST will appear during the sync process and you should see a line
with WSREP: SST complete, seqno: <NUMBER> if the sync was successful.

ansible galera_container -m shell -a "mysql \
-e 'show status like \"%wsrep_cluster_%\";'"
node2_galera_container-49a47d25 | success | rc=0 >>
Variable_name Value
wsrep_cluster_conf_id 5
wsrep_cluster_size 3
wsrep_cluster_state_uuid 338b06b0-2948-11e4-9d06-bef42f6c52f1
wsrep_cluster_status Primary

node3_galera_container-3ea2cbd3 | success | rc=0 >>
Variable_name Value
wsrep_cluster_conf_id 5
wsrep_cluster_size 3
wsrep_cluster_state_uuid 338b06b0-2948-11e4-9d06-bef42f6c52f1
wsrep_cluster_status Primary

node4_galera_container-76275635 | success | rc=0 >>
Variable_name Value
wsrep_cluster_conf_id 5
wsrep_cluster_size 3
wsrep_cluster_state_uuid 338b06b0-2948-11e4-9d06-bef42f6c52f1
wsrep_cluster_status Primary

6. Enable the previously failed node on the load balancer.

RabbitMQ cluster maintenance

A RabbitMQ broker is a logical grouping of one or several Erlang nodes with each node running the
RabbitMQ application and sharing users, virtual hosts, queues, exchanges, bindings, and runtime pa-
rameters. A collection of nodes is often referred to as a cluster. For more information on RabbitMQ
clustering, see RabbitMQ cluster.

Within OpenStack-Ansible, all data and states required for operation of the RabbitMQ cluster is repli-
cated across all nodes including the message queues providing high availability. RabbitMQ nodes ad-
dress each other using domain names. The hostnames of all cluster members must be resolvable from
all cluster nodes, as well as any machines where CLI tools related to RabbitMQ might be used. There

24 Chapter 1. Abstract

https://www.rabbitmq.com/clustering.html

OpenStack-Ansible Documentation, Release 23.4.5.dev7

are alternatives that may work in more restrictive environments. For more details on that setup, see Inet
Configuration.

Note: There is currently an Ansible bug in regards to HOSTNAME. If the host .bashrc holds a var
named HOSTNAME, the container where the lxc_containermodule attaches will inherit this var and
potentially set the wrong $HOSTNAME. See the Ansible fix which will be released in Ansible version
2.3.

Create a RabbitMQ cluster

RabbitMQ clusters can be formed in two ways:

• Manually with rabbitmqctl

• Declaratively (list of cluster nodes in a config, with rabbitmq-autocluster, or
rabbitmq-clusterer plugins)

Note: RabbitMQ brokers can tolerate the failure of individual nodes within the cluster. These nodes
can start and stop at will as long as they have the ability to reach previously known members at the time
of shutdown.

There are two types of nodes you can configure: disk and RAM nodes. Most commonly, you will use
your nodes as disk nodes (preferred). Whereas RAM nodes are more of a special configuration used in
performance clusters.

RabbitMQ nodes and the CLI tools use an erlang cookie to determine whether or not they have
permission to communicate. The cookie is a string of alphanumeric characters and can be as short or as
long as you would like.

Note: The cookie value is a shared secret and should be protected and kept private.

The default location of the cookie on *nix environments is /var/lib/rabbitmq/.erlang.
cookie or in $HOME/.erlang.cookie.

Tip: While troubleshooting, if you notice one node is refusing to join the cluster, it is definitely worth
checking if the erlang cookie matches the other nodes. When the cookie is misconfigured (for example,
not identical), RabbitMQ will log errors such as Connection attempt from disallowed node and Could
not auto-cluster. See clustering for more information.

To form a RabbitMQ Cluster, you start by taking independent RabbitMQ brokers and re-configuring
these nodes into a cluster configuration.

Using a 3 node example, you would be telling nodes 2 and 3 to join the cluster of the first node.

1. Login to the 2nd and 3rd node and stop the rabbitmq application.

2. Join the cluster, then restart the application:

1.1. Operations Guide 25

http://erlang.org/doc/apps/erts/inet_cfg.html
http://erlang.org/doc/apps/erts/inet_cfg.html
https://github.com/ansible/ansible/pull/22246
https://www.rabbitmq.com/clustering.html

OpenStack-Ansible Documentation, Release 23.4.5.dev7

rabbit2$ rabbitmqctl stop_app
Stopping node rabbit@rabbit2 ...done.
rabbit2$ rabbitmqctl join_cluster rabbit@rabbit1
Clustering node rabbit@rabbit2 with [rabbit@rabbit1] ...done.
rabbit2$ rabbitmqctl start_app
Starting node rabbit@rabbit2 ...done.

Check the RabbitMQ cluster status

1. Run rabbitmqctl cluster_status from either node.

You will see rabbit1 and rabbit2 are both running as before.

The difference is that the cluster status section of the output, both nodes are now grouped together:

rabbit1$ rabbitmqctl cluster_status
Cluster status of node rabbit@rabbit1 ...
[{nodes,[{disc,[rabbit@rabbit1,rabbit@rabbit2]}]},
{running_nodes,[rabbit@rabbit2,rabbit@rabbit1]}]
...done.

To add the third RabbitMQ node to the cluster, repeat the above process by stopping the RabbitMQ
application on the third node.

1. Join the cluster, and restart the application on the third node.

2. Execute rabbitmq cluster_status to see all 3 nodes:

rabbit1$ rabbitmqctl cluster_status
Cluster status of node rabbit@rabbit1 ...
[{nodes,[{disc,[rabbit@rabbit1,rabbit@rabbit2,rabbit@rabbit3]}]},
{running_nodes,[rabbit@rabbit3,rabbit@rabbit2,rabbit@rabbit1]}]
...done.

Stop and restart a RabbitMQ cluster

To stop and start the cluster, keep in mind the order in which you shut the nodes down. The last node
you stop, needs to be the first node you start. This node is the master.

If you start the nodes out of order, you could run into an issue where it thinks the current master should
not be the master and drops the messages to ensure that no new messages are queued while the real
master is down.

RabbitMQ and mnesia

Mnesia is a distributed database that RabbitMQ uses to store information about users, exchanges, queues,
and bindings. Messages, however are not stored in the database.

For more information about Mnesia, see the Mnesia overview.

To view the locations of important Rabbit files, see File Locations.

26 Chapter 1. Abstract

http://erlang.org/doc/apps/mnesia/Mnesia_overview.html
https://www.rabbitmq.com/relocate.html

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Repair a partitioned RabbitMQ cluster for a single-node

Invariably due to something in your environment, you are likely to lose a node in your cluster. In this
scenario, multiple LXC containers on the same host are running Rabbit and are in a single Rabbit cluster.

If the host still shows as part of the cluster, but it is not running, execute:

rabbitmqctl start_app

However, you may notice some issues with your application as clients may be trying to push messages
to the un-responsive node. To remedy this, forget the node from the cluster by executing the following:

1. Ensure RabbitMQ is not running on the node:

rabbitmqctl stop_app

2. On the Rabbit2 node, execute:

rabbitmqctl forget_cluster_node rabbit@rabbit1

By doing this, the cluster can continue to run effectively and you can repair the failing node.

Important: Watch out when you restart the node, it will still think it is part of the cluster and will
require you to reset the node. After resetting, you should be able to rejoin it to other nodes as needed.

rabbit1$ rabbitmqctl start_app
Starting node rabbit@rabbit1 ...

Error: inconsistent_cluster: Node rabbit@rabbit1 thinks it's clustered
with node rabbit@rabbit2, but rabbit@rabbit2 disagrees

rabbit1$ rabbitmqctl reset
Resetting node rabbit@rabbit1 ...done.
rabbit1$ rabbitmqctl start_app
Starting node rabbit@mcnulty ...
...done.

Repair a partitioned RabbitMQ cluster for a multi-node cluster

The same concepts apply to a multi-node cluster that exist in a single-node cluster. The only difference
is that the various nodes will actually be running on different hosts. The key things to keep in mind
when dealing with a multi-node cluster are:

• When the entire cluster is brought down, the last node to go down must be the first node to be
brought online. If this does not happen, the nodes will wait 30 seconds for the last disc node to
come back online, and fail afterwards.

If the last node to go offline cannot be brought back up, it can be removed from the cluster using
the forget_cluster_node command.

• If all cluster nodes stop in a simultaneous and uncontrolled manner, (for example, with a power
cut) you can be left with a situation in which all nodes think that some other node stopped after

1.1. Operations Guide 27

OpenStack-Ansible Documentation, Release 23.4.5.dev7

them. In this case you can use the force_boot command on one node to make it bootable
again.

Consult the rabbitmqctl manpage for more information.

Running ad-hoc Ansible plays

Being familiar with running ad-hoc Ansible commands is helpful when operating your OpenStack-
Ansible deployment. For a review, we can look at the structure of the following ansible command:

$ ansible example_group -m shell -a 'hostname'

This command calls on Ansible to run the example_group using the -m shell module with the -a
argument which is the hostname command. You can substitute example_group for any groups you may
have defined. For example, if you had compute_hosts in one group and infra_hosts in another,
supply either group name and run the command. You can also use the * wild card if you only know the
first part of the group name, for instance if you know the group name starts with compute you would use
compute_h*. The -m argument is for module.

Modules can be used to control system resources or handle the execution of system commands. For
more information about modules, see Module Index and About Modules.

If you need to run a particular command against a subset of a group, you could use the limit flag
-l. For example, if a compute_hosts group contained compute1, compute2, compute3, and
compute4, and you only needed to execute a command on compute1 and compute4 you could
limit the command as follows:

$ ansible example_group -m shell -a 'hostname' -l compute1,compute4

Note: Each host is comma-separated with no spaces.

Note: Run the ad-hoc Ansible commands from the openstack-ansible/playbooks directory.

For more information, see Inventory and Patterns.

Running the shell module

The two most common modules used are the shell and copy modules. The shell module takes the
command name followed by a list of space delimited arguments. It is almost like the command module,
but runs the command through a shell (/bin/sh) on the remote node.

For example, you could use the shell module to check the amount of disk space on a set of Compute
hosts:

$ ansible compute_hosts -m shell -a 'df -h'

To check on the status of your Galera cluster:

$ ansible galera_container -m shell -a "mysql \
-e 'show status like \"%wsrep_cluster_%\";'"

28 Chapter 1. Abstract

https://docs.ansible.com/ansible/modules_by_category.html
https://docs.ansible.com/ansible/modules.html
https://docs.ansible.com/ansible/intro_inventory.html
https://docs.ansible.com/ansible/intro_patterns.html

OpenStack-Ansible Documentation, Release 23.4.5.dev7

When a module is being used as an ad-hoc command, there are a few parameters that are not required.
For example, for the chdir command, there is no need to chdir=/home/user ls when running
Ansible from the CLI:

$ ansible compute_hosts -m shell -a 'ls -la /home/user'

For more information, see shell - Execute commands in nodes.

Running the copy module

The copy module copies a file on a local machine to remote locations. To copy files from remote
locations to the local machine you would use the fetch module. If you need variable interpolation in
copied files, use the template module. For more information, see copy - Copies files to remote locations.

The following example shows how to move a file from your deployment host to the /tmp directory on
a set of remote machines:

$ ansible remote_machines -m copy -a 'src=/root/FILE '\
'dest=/tmp/FILE'

The fetch module gathers files from remote machines and stores the files locally in a file tree, organized
by the hostname from remote machines and stores them locally in a file tree, organized by hostname.

Note: This module transfers log files that might not be present, so a missing remote file will not be an
error unless fail_on_missing is set to yes.

The following examples shows the nova-compute.log file being pulled from a single Compute
host:

root@libertylab:/opt/rpc-openstack/openstack-ansible/playbooks# ansible
↪→compute_hosts -m fetch -a 'src=/var/log/nova/nova-compute.log dest=/tmp'
aio1 | success >> {

"changed": true,
"checksum": "865211db6285dca06829eb2215ee6a897416fe02",
"dest": "/tmp/aio1/var/log/nova/nova-compute.log",
"md5sum": "dbd52b5fd65ea23cb255d2617e36729c",
"remote_checksum": "865211db6285dca06829eb2215ee6a897416fe02",
"remote_md5sum": null

}

root@libertylab:/opt/rpc-openstack/openstack-ansible/playbooks# ls -la /
↪→tmp/aio1/var/log/nova/nova-compute.log
-rw-r--r-- 1 root root 2428624 Dec 15 01:23 /tmp/aio1/var/log/nova/nova-
↪→compute.log

1.1. Operations Guide 29

https://docs.ansible.com/ansible/shell_module.html
https://docs.ansible.com/ansible/copy_module.html

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Using tags

Tags are similar to the limit flag for groups, except tags are used to only run specific tasks within a
playbook. For more information on tags, see Tags and Understanding ansible tags.

Ansible forks

The default MaxSessions setting for the OpenSSH Daemon is 10. Each Ansible fork makes use of
a session. By default, Ansible sets the number of forks to 5. However, you can increase the number of
forks used in order to improve deployment performance in large environments.

Note that more than 10 forks will cause issues for any playbooks which use delegate_to or
local_action in the tasks. It is recommended that the number of forks are not raised when exe-
cuting against the control plane, as this is where delegation is most often used.

The number of forks used may be changed on a permanent basis by including the appropriate change to
the ANSIBLE_FORKS in your .bashrc file. Alternatively it can be changed for a particular playbook
execution by using the --forksCLI parameter. For example, the following executes the nova playbook
against the control plane with 10 forks, then against the compute nodes with 50 forks.

openstack-ansible --forks 10 os-nova-install.yml --limit compute_
↪→containers
openstack-ansible --forks 50 os-nova-install.yml --limit compute_hosts

For more information about forks, please see the following references:

• OpenStack-Ansible Bug 1479812

• Ansible forks entry for ansible.cfg

• Ansible Performance Tuning

Container management

With Ansible, the OpenStack installation process is entirely automated using playbooks written in
YAML. After installation, the settings configured by the playbooks can be changed and modified. Ser-
vices and containers can shift to accommodate certain environment requirements. Scaling services are
achieved by adjusting services within containers, or adding new deployment groups. It is also possible
to destroy containers, if needed, after changes and modifications are complete.

Scale individual services

Individual OpenStack services, and other open source project services, run within contain-
ers. It is possible to scale out these services by modifying the /etc/openstack_deploy/
openstack_user_config.yml file.

1. Navigate into the /etc/openstack_deploy/openstack_user_config.yml file.

2. Access the deployment groups section of the configuration file. Underneath the deployment group
name, add an affinity value line to container scales OpenStack services:

30 Chapter 1. Abstract

http://ansible-docs.readthedocs.io/zh/stable-2.0/rst/playbooks_tags.html
http://www.caphrim.net/ansible/2015/05/24/understanding-ansible-tags.html
https://bugs.launchpad.net/openstack-ansible/+bug/1479812
https://docs.ansible.com/ansible/latest/cli/ansible-playbook.html#cmdoption-ansible-playbook-f
https://www.ansible.com/blog/ansible-performance-tuning

OpenStack-Ansible Documentation, Release 23.4.5.dev7

infra_hosts:
infra1:

ip: 10.10.236.100
Rabbitmq
affinity:

galera_container: 1
rabbit_mq_container: 2

In this example, galera_container has a container value of one. In practice, any containers
that do not need adjustment can remain at the default value of one, and should not be adjusted
above or below the value of one.

The affinity value for each container is set at one by default. Adjust the affinity value to zero for
situations where the OpenStack services housed within a specific container will not be needed
when scaling out other required services.

3. Update the container number listed under the affinity configuration to the desired number.
The above example has galera_container set at one and rabbit_mq_container at
two, which scales RabbitMQ services, but leaves Galera services fixed.

4. Run the appropriate playbook commands after changing the configuration to create the new con-
tainers, and install the appropriate services.

For example, run the openstack-ansible lxc-containers-create.yml rabbitmq-install.yml com-
mands from the openstack-ansible/playbooks repository to complete the scaling pro-
cess described in the example above:

$ cd openstack-ansible/playbooks
$ openstack-ansible lxc-containers-create.yml rabbitmq-install.yml

Destroy and recreate containers

Resolving some issues may require destroying a container, and rebuilding that container from the be-
ginning. It is possible to destroy and re-create a container with the lxc-containers-destroy.
yml and lxc-containers-create.yml commands. These Ansible scripts reside in the
openstack-ansible/playbooks repository.

1. Navigate to the openstack-ansible directory.

2. Run the openstack-ansible lxc-containers-destroy.yml commands, specifying the target contain-
ers and the container to be destroyed.

$ openstack-ansible lxc-containers-destroy.yml --limit "CONTAINER_NAME
↪→"
$ openstack-ansible lxc-containers-create.yml --limit "CONTAINER_NAME"

3. Replace “CONTAINER_NAME“ with the target container.

1.1. Operations Guide 31

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Firewalls

OpenStack-Ansible does not configure firewalls for its infrastructure. It is up to the deployer to define
the perimeter and its firewall configuration.

By default, OpenStack-Ansible relies on Ansible SSH connections, and needs the TCP port 22 to be
opened on all hosts internally.

For more information on generic OpenStack firewall configuration, see the Firewalls and default ports

In each of the roles respective documentatione you can find the default variables for the ports used within
the scope of the role. Reviewing the documentation allow you to find the variable names if you want to
use a different port.

Note: OpenStack-Ansibles group vars conveniently expose the vars outside of the role scope in case
you are relying on the OpenStack-Ansible groups to configure your firewall.

Finding ports for your external load balancer

As explained in the previous section, you can find (in each roles documentation) the default variables
used for the public interface endpoint ports.

For example, the os_glance documentation lists the variable glance_service_publicuri. This
contains the port used for the reaching the service externally. In this example, it is equal to
glance_service_port, whose value is 9292.

As a hint, you could find the list of all public URI defaults by executing the following:

cd /etc/ansible/roles
grep -R -e publicuri -e port *

Note: Haproxy can be configured with OpenStack-Ansible. The automatically generated /etc/
haproxy/haproxy.cfg file have enough information on the ports to open for your environment.

Prune Inventory Backup Archive

The inventory backup archive will require maintenance over a long enough period of time.

Bulk pruning

It is possible to do mass pruning of the inventory backup. The following example will prune all but the
last 15 inventories from the running archive.

ARCHIVE="/etc/openstack_deploy/backup_openstack_inventory.tar"
tar -tvf ${ARCHIVE} | \

head -n -15 | awk '{print $6}' | \
xargs -n 1 tar -vf ${ARCHIVE} --delete

32 Chapter 1. Abstract

https://docs.openstack.org/install-guide/firewalls-default-ports.html
https://opendev.org/openstack/openstack-ansible/src/inventory/group_vars/all/all.yml
https://docs.openstack.org/openstack-ansible-os_glance/latest/#default-variables
https://opendev.org/openstack/openstack-ansible/src/commit/6520d0bb2c689ed7caa5df581be6a966133cdce0/inventory/group_vars/haproxy/haproxy.yml

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Selective Pruning

To prune the inventory archive selectively, first identify the files you wish to remove by listing them out.

tar -tvf /etc/openstack_deploy/backup_openstack_inventory.tar

-rw-r--r-- root/root 110096 2018-05-03 10:11 openstack_inventory.json-
↪→20180503_151147.json
-rw-r--r-- root/root 110090 2018-05-03 10:11 openstack_inventory.json-
↪→20180503_151205.json
-rw-r--r-- root/root 110098 2018-05-03 10:12 openstack_inventory.json-
↪→20180503_151217.json

Now delete the targeted inventory archive.

tar -vf /etc/openstack_deploy/backup_openstack_inventory.tar --delete
↪→openstack_inventory.json-20180503_151205.json

1.1.4 Scaling your environment

This is a draft environment scaling page for the proposed OpenStack-Ansible operations guide.

Add a new infrastructure host

While three infrastructure hosts are recommended, if further hosts are needed in an environment, it is
possible to create additional nodes.

Warning: Make sure you back up your current OpenStack environment before adding any new
nodes. See Back up and restore your cloud for more information.

1. Add the node to the infra_hosts stanza of the /etc/openstack_deploy/
openstack_user_config.yml

infra_hosts:
[...]
NEW_infra<node-ID>:
ip: 10.17.136.32

NEW_infra<node-ID2>:
ip: 10.17.136.33

2. Change to playbook folder on the deployment host.

cd /opt/openstack-ansible/playbooks

3. Update the inventory to add new hosts. Make sure new rsyslog container names are updated. Send
the updated results to dev/null.

/opt/openstack-ansible/inventory/dynamic_inventory.py > /dev/null

4. Create the /root/add_host.limit file, which contains all new node host names and their
containers. Add localhost to the list of hosts to be able to access deployment host facts.

1.1. Operations Guide 33

OpenStack-Ansible Documentation, Release 23.4.5.dev7

localhost
NEW_infra<node-ID>
NEW_infra<node-ID2>
NEW_infra<node-ID>_containers
NEW_infra<node-ID2>_containers

5. Run the setup-everything.yml playbook with the limit argument.

openstack-ansible setup-everything.yml --limit @/root/add_host.limit

Test new infra nodes

After creating a new infra node, test that the node runs correctly by launching a new instance. Ensure
that the new node can respond to a networking connection test through the ping command. Log in to
your monitoring system, and verify that the monitors return a green signal for the new node.

Add a compute host

Use the following procedure to add a compute host to an operational cluster.

1. Configure the host as a target host. See the target hosts configuration section of the deploy guide.
for more information.

2. Edit the /etc/openstack_deploy/openstack_user_config.yml file and add the
host to the compute_hosts stanza.

If necessary, also modify the used_ips stanza.

3. If the cluster is utilizing Telemetry/Metering (ceilometer), edit the /etc/
openstack_deploy/conf.d/ceilometer.yml file and add the host to the
metering-compute_hosts stanza.

4. Run the following commands to add the host. Replace NEW_HOST_NAME with the name of the
new host.

cd /opt/openstack-ansible/playbooks
openstack-ansible setup-hosts.yml --limit localhost,NEW_HOST_NAME
ansible nova_all -m setup -a 'filter=ansible_local gather_subset="!
↪→all"'
openstack-ansible setup-openstack.yml --limit localhost,NEW_HOST_
↪→NAME
openstack-ansible os-nova-install.yml --tags nova-key --limit nova_
↪→compute

Alternatively you can try using new compute nodes deployment script /opt/
openstack-ansible/scripts/add-compute.sh.

You can provide this script with extra tasks that will be executed before or right after OSA roles.
To do so you should set environment variables PRE_OSA_TASKS or POST_OSA_TASKS with
plays to run devided with semicolon:

export POST_OSA_TASKS="/opt/custom/setup.yml --limit HOST_NAME;/opt/
↪→custom/tasks.yml --tags deploy"
/opt/openstack-ansible/scripts/add-compute.sh HOST_NAME,HOST_NAME_2

34 Chapter 1. Abstract

https://docs.openstack.org/project-deploy-guide/openstack-ansible/wallaby/targethosts.html

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Test new compute nodes

After creating a new node, test that the node runs correctly by launching an instance on the new node.

$ openstack server create --image IMAGE --flavor m1.tiny \
--key-name KEY --availability-zone ZONE:HOST:NODE \
--nic net-id=UUID SERVER

Ensure that the new instance can respond to a networking connection test through the ping command.
Log in to your monitoring system, and verify that the monitors return a green signal for the new node.

Remove a compute host

The openstack-ansible-ops repository contains a playbook for removing a compute host from an
OpenStack-Ansible environment. To remove a compute host, follow the below procedure.

Note: This guide describes how to remove a compute node from an OpenStack-Ansible environment
completely. Perform these steps with caution, as the compute node will no longer be in service after the
steps have been completed. This guide assumes that all data and instances have been properly migrated.

1. Disable all OpenStack services running on the compute node. This can include, but is not limited
to, the nova-compute service and the neutron agent service.

Note: Ensure this step is performed first

Run these commands on the compute node to be removed
stop nova-compute
stop neutron-linuxbridge-agent

2. Clone the openstack-ansible-ops repository to your deployment host:

$ git clone https://opendev.org/openstack/openstack-ansible-ops \
/opt/openstack-ansible-ops

3. Run the remove_compute_node.yml Ansible playbook with the host_to_be_removed
user variable set:

$ cd /opt/openstack-ansible-ops/ansible_tools/playbooks
openstack-ansible remove_compute_node.yml \
-e host_to_be_removed="<name-of-compute-host>"

4. After the playbook completes, remove the compute node from the OpenStack-Ansible configura-
tion file in /etc/openstack_deploy/openstack_user_config.yml.

1.1. Operations Guide 35

https://opendev.org/openstack/openstack-ansible-ops

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Recover a compute host failure

The following procedure addresses Compute node failure if shared storage is used.

Note: If shared storage is not used, data can be copied from the /var/lib/nova/
instances directory on the failed Compute node ${FAILED_NODE} to another node
${RECEIVING_NODE}before performing the following procedure. Please note this method is not
supported.

1. Re-launch all instances on the failed node.

2. Invoke the MySQL command line tool

3. Generate a list of instance UUIDs hosted on the failed node:

mysql> select uuid from instances where host = '${FAILED_NODE}' and
↪→deleted = 0;

4. Set instances on the failed node to be hosted on a different node:

mysql> update instances set host ='${RECEIVING_NODE}' where host = '$
↪→{FAILED_NODE}' \
and deleted = 0;

5. Reboot each instance on the failed node listed in the previous query to regenerate the XML files:

nova reboot hard $INSTANCE_UUID

6. Find the volumes to check the instance has successfully booted and is at the login :

mysql> select nova.instances.uuid as instance_uuid, cinder.volumes.id
↪→\
as voume_uuid, cinder.volumes.status, cinder.volumes.attach_status, \
cinder.volumes.mountpoint, cinder.volumes,display_name from \
cinder.volumes inner join nova.instances on cinder.volumes.instance_
↪→uuid=nova.instances.uuid \
where nova.instances.host = '${FAILED_NODE}';

7. If rows are found, detach and re-attach the volumes using the values listed in the previous query:

nova volume-detach $INSTANCE_UUID $VOLUME_UUID && \
nova volume-attach $INSTANCE_UUID $VOLUME_UUID $VOLUME_MOUNTPOINT

8. Rebuild or replace the failed node as described in add-compute-host.

36 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Replacing failed hardware

It is essential to plan and know how to replace failed hardware in your cluster without compromising
your cloud environment.

Consider the following to help establish a hardware replacement plan:

• What type of node am I replacing hardware on?

• Can the hardware replacement be done without the host going down? For example, a single disk
in a RAID-10.

• If the host DOES have to be brought down for the hardware replacement, how should the resources
on that host be handled?

If you have a Compute (nova) host that has a disk failure on a RAID-10, you can swap the failed disk
without powering the host down. On the other hand, if the RAM has failed, you would have to power
the host down. Having a plan in place for how you will manage these types of events is a vital part of
maintaining your OpenStack environment.

For a Compute host, shut down the instance on the host before it goes down. For a Block Storage
(cinder) host using non-redundant storage, shut down any instances with volumes attached that require
that mount point. Unmount the drive within your operating system and re-mount the drive once the
Block Storage host is back online.

Shutting down the Compute host

If a Compute host needs to be shut down:

1. Disable the nova-compute binary:

nova service-disable --reason "Hardware replacement" HOSTNAME nova-
↪→compute

2. List all running instances on the Compute host:

nova list --all-t --host <compute_name> | awk '/ACTIVE/ {print $2}'
↪→> \
/home/user/running_instances && for i in `cat /home/user/running_
↪→instances`; do nova stop $i ; done

3. Use SSH to connect to the Compute host.

4. Confirm all instances are down:

virsh list --all

5. Shut down the Compute host:

shutdown -h now

6. Once the Compute host comes back online, confirm everything is in working order and start the
instances on the host. For example:

1.1. Operations Guide 37

OpenStack-Ansible Documentation, Release 23.4.5.dev7

cat /home/user/running_instances
do nova start $instance
done

7. Enable the nova-compute service in the environment:

nova service-enable HOSTNAME nova-compute

Shutting down the Block Storage host

If a LVM backed Block Storage host needs to be shut down:

1. Disable the cinder-volume service:

cinder service-list --host CINDER SERVICE NAME INCLUDING @BACKEND
cinder service-disable CINDER SERVICE NAME INCLUDING @BACKEND \
cinder-volume --reason 'RAM maintenance'

2. List all instances with Block Storage volumes attached:

mysql cinder -BNe 'select instance_uuid from volumes where
↪→deleted=0 '\
'and host like "%<cinder host>%"' | tee /home/user/running_instances

3. Shut down the instances:

cat /home/user/running_instances | xargs -n1 nova stop

4. Verify the instances are shutdown:

cat /home/user/running_instances | xargs -n1 nova show | fgrep vm_
↪→state

5. Shut down the Block Storage host:

shutdown -h now

6. Replace the failed hardware and validate the new hardware is functioning.

7. Enable the cinder-volume service:

cinder service-enable CINDER SERVICE NAME INCLUDING @BACKEND cinder-
↪→volume

8. Verify the services on the host are reconnected to the environment:

cinder service-list --host CINDER SERVICE NAME INCLUDING @BACKEND

9. Start your instances and confirm all of the instances are started:

cat /home/user/running_instances | xargs -n1 nova start
cat /home/user/running_instances | xargs -n1 nova show | fgrep vm_
↪→state

38 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Destroying Containers

1. To destroy a container, execute the following:

cd /opt/openstack-ansible/playbooks
openstack-ansible lxc-containers-destroy --limit localhost,
↪→<container name|container group>

Note: You will be asked two questions:

Are you sure you want to destroy the LXC containers? Are you sure you want
to destroy the LXC container data?

The first will just remove the container but leave the data in the bind mounts and
logs. The second will remove the data in the bind mounts and logs too.

Warning: If you remove the containers and data for the entire galera_server container group you
will lose all your databases! Also, if you destroy the first container in many host groups you will
lose other important items like certificates, keys, etc. Be sure that you understand what youre doing
when using this tool.

1. To create the containers again, execute the following:

cd /opt/openstack-ansible/playbooks
openstack-ansible lxc-containers-create --limit localhost,lxc_hosts,
↪→<container name|container
group>

The lxc_hosts host group must be included as the playbook and roles executed require the use of
facts from the hosts.

Accessibility for multi-region Object Storage

In multi-region Object Storage utilizing separate database backends, objects are retrievable from an
alternate location if the default_project_id for a user in the keystone database is the same across
each database backend.

Important: It is recommended to perform the following steps before a failure occurs to avoid having
to dump and restore the database.

If a failure does occur, follow these steps to restore the database from the Primary (failed) Region:

1. Record the Primary Region output of the default_project_id for the specified user from
the user table in the keystone database:

Note: The user is admin in this example.

1.1. Operations Guide 39

OpenStack-Ansible Documentation, Release 23.4.5.dev7

mysql -e "SELECT default_project_id from keystone.user WHERE \
name='admin';"

+----------------------------------+
| default_project_id |
+----------------------------------+
| 76ef6df109744a03b64ffaad2a7cf504 |
+-----------------+

2. Record the Secondary Region output of the default_project_id for the specified user from
the user table in the keystone database:

mysql -e "SELECT default_project_id from keystone.user WHERE \
name='admin';"

+----------------------------------+
| default_project_id |
+----------------------------------+
| 69c46f8ad1cf4a058aa76640985c |
+----------------------------------+

3. In the Secondary Region, update the references to the project_id to match the ID from the
Primary Region:

export PRIMARY_REGION_TENANT_ID="76ef6df109744a03b64ffaad2a7cf504"
export SECONDARY_REGION_TENANT_ID="69c46f8ad1cf4a058aa76640985c"

mysql -e "UPDATE keystone.assignment set \
target_id='${PRIMARY_REGION_TENANT_ID}' \
WHERE target_id='${SECONDARY_REGION_TENANT_ID}';"

mysql -e "UPDATE keystone.user set \
default_project_id='${PRIMARY_REGION_TENANT_ID}' WHERE \
default_project_id='${SECONDARY_REGION_TENANT_ID}';"

mysql -e "UPDATE keystone.project set \
id='${PRIMARY_REGION_TENANT_ID}' WHERE \
id='${SECONDARY_REGION_TENANT_ID}';"

The user in the Secondary Region now has access to objects PUT in the Primary Region. The Secondary
Region can PUT objects accessible by the user in the Primary Region.

40 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

1.1.5 Monitoring your environment

This is a draft monitoring system page for the proposed OpenStack-Ansible operations guide.

1.1.6 Back up and restore your cloud

For disaster recovery purposes, it is a good practice to perform regular backups of the database, configu-
ration files, network information, and OpenStack service details in your environment. For an OpenStack
cloud deployed using OpenStack-Ansible, back up the /etc/openstack_deploy/ directory.

Back up and restore the /etc/openstack_deploy/ directory

The /etc/openstack_deploy/ directory contains a live inventory, host structure, network in-
formation, passwords, and options that are applied to the configuration files for each service in your
OpenStack deployment. Back up the /etc/openstack_deploy/ directory to a remote location.

To restore the /etc/openstack_deploy/ directory, copy the backup of the directory to your cloud
environment.

Database backups and recovery

MySQL data is available on the infrastructure nodes. You can recover databases, and rebuild the galera
cluster. For more information, see Galera cluster recovery.

1.1.7 Troubleshooting

This chapter is intended to help troubleshoot and resolve operational issues in an OpenStack-Ansible
deployment.

Networking

This section focuses on troubleshooting general host-to-host communication required for the OpenStack
control plane to function properly.

This does not cover any networking related to instance connectivity.

These instructions assume an OpenStack-Ansible installation using LXC containers, VXLAN overlay,
and the Linuxbridge ml2 driver.

Network List

1. HOST_NET (Physical Host Management and Access to Internet)

2. CONTAINER_NET (LXC container network used Openstack Services)

3. OVERLAY_NET (VXLAN overlay network)

Useful network utilities and commands:

1.1. Operations Guide 41

OpenStack-Ansible Documentation, Release 23.4.5.dev7

ip link show [dev INTERFACE_NAME]
arp -n [-i INTERFACE_NAME]
ip [-4 | -6] address show [dev INTERFACE_NAME]
ping <TARGET_IP_ADDRESS>
tcpdump [-n -nn] < -i INTERFACE_NAME > [host SOURCE_IP_ADDRESS]
brctl show [BRIDGE_ID]
iptables -nL
arping [-c NUMBER] [-d] <TARGET_IP_ADDRESS>

Troubleshooting host-to-host traffic on HOST_NET

Perform the following checks:

• Check physical connectivity of hosts to physical network

• Check interface bonding (if applicable)

• Check VLAN configurations and any necessary trunking to edge ports on physical switch

• Check VLAN configurations and any necessary trunking to uplink ports on physical switches (if
applicable)

• Check that hosts are in the same IP subnet or have proper routing between them

• Check there are no iptables applied to the hosts that would deny traffic

IP addresses should be applied to physical interface, bond interface, tagged sub-interface, or in some
cases the bridge interface:

ip address show dev bond0
14: bond0: <BROADCAST,MULTICAST,MASTER,UP,LOWER_UP> mtu 1500..UP...
link/ether a0:a0:a0:a0:a0:01 brd ff:ff:ff:ff:ff:ff
inet 10.240.0.44/22 brd 10.240.3.255 scope global bond0

valid_lft forever preferred_lft forever
...

Troubleshooting host-to-host traffic on CONTAINER_NET

Perform the following checks:

• Check physical connectivity of hosts to physical network

• Check interface bonding (if applicable)

• Check VLAN configurations and any necessary trunking to edge ports on physical switch

• Check VLAN configurations and any necessary trunking to uplink ports on physical switches (if
applicable)

• Check that hosts are in the same subnet or have proper routing between them

• Check there are no iptables applied to the hosts that would deny traffic

• Check to verify that physical interface is in the bridge

• Check to verify that veth-pair end from container is in br-mgmt

IP address should be applied to br-mgmt:

42 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

ip address show dev br-mgmt
18: br-mgmt: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500...UP...
link/ether a0:a0:a0:a0:a0:01 brd ff:ff:ff:ff:ff:ff
inet 172.29.236.44/22 brd 172.29.239.255 scope global br-mgmt

valid_lft forever preferred_lft forever
...

IP address should be applied to eth1 inside the LXC container:

ip address show dev eth1
59: eth1: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500...UP...
link/ether b1:b1:b1:b1:b1:01 brd ff:ff:ff:ff:ff:ff
inet 172.29.236.55/22 brd 172.29.239.255 scope global eth1

valid_lft forever preferred_lft forever
...

br-mgmt should contain veth-pair ends from all containers and a physical interface or tagged-
subinterface:

brctl show br-mgmt
bridge name bridge id STP enabled interfaces
br-mgmt 8000.abcdef12345 no 11111111_eth1

22222222_eth1
...
bond0.100
99999999_eth1
...

Troubleshooting host-to-host traffic on OVERLAY_NET

Perform the following checks:

• Check physical connectivity of hosts to physical network

• Check interface bonding (if applicable)

• Check VLAN configurations and any necessary trunking to edge ports on physical switch

• Check VLAN configurations and any necessary trunking to uplink ports on physical switches (if
applicable)

• Check that hosts are in the same subnet or have proper routing between them

• Check there are no iptables applied to the hosts that would deny traffic

• Check to verify that physcial interface is in the bridge

• Check to verify that veth-pair end from container is in br-vxlan

IP address should be applied to br-vxlan:

ip address show dev br-vxlan
21: br-vxlan: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500...UP...
link/ether a0:a0:a0:a0:a0:02 brd ff:ff:ff:ff:ff:ff
inet 172.29.240.44/22 brd 172.29.243.255 scope global br-vxlan

valid_lft forever preferred_lft forever
...

1.1. Operations Guide 43

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Checking services

You can check the status of an OpenStack service by accessing every controller node and running the
service <SERVICE_NAME> status.

See the following links for additional information to verify OpenStack services:

• Identity service (keystone)

• Image service (glance)

• Compute service (nova)

• Networking service (neutron)

• Block Storage service

• Object Storage service (swift)

Restarting services

Restart your OpenStack services by accessing every controller node. Some OpenStack services will
require restart from other nodes in your environment.

The following table lists the commands to restart an OpenStack service.

44 Chapter 1. Abstract

https://ask.openstack.org/en/question/101127/how-to-check-if-keystone-is-running/
https://docs.openstack.org/ocata/install-guide-ubuntu/glance-verify.html
https://docs.openstack.org/ocata/install-guide-ubuntu/nova-verify.html
https://docs.openstack.org/ocata/install-guide-ubuntu/neutron-verify.html
https://docs.openstack.org/ocata/install-guide-rdo/cinder-verify.html
https://docs.openstack.org/project-install-guide/object-storage/ocata/verify.html

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Table 2: Restarting OpenStack services
OpenStack service Commands
Image service

service glance-api restart

Compute service (controller
node) # service nova-api-os-compute restart

service nova-consoleauth restart
service nova-scheduler restart
service nova-conductor restart
service nova-api-metadata restart
service nova-novncproxy restart (if using novnc)
service nova-spicehtml5proxy restart (if using
↪→spice)

Compute service (compute
node) # service nova-compute restart

Networking service
service neutron-server restart
service neutron-dhcp-agent restart
service neutron-l3-agent restart
service neutron-metadata-agent restart
service neutron-linuxbridge-agent restart

Networking service (com-
pute node) # service neutron-linuxbridge-agent restart

Block Storage service
service cinder-api restart
service cinder-backup restart
service cinder-scheduler restart
service cinder-volume restart

Block Storage service
service manila-api restart
service manila-data restart
service manila-share restart
service manila-scheduler restart

Object Storage service
service swift-account-auditor restart
service swift-account-server restart
service swift-account-reaper restart
service swift-account-replicator restart
service swift-container-auditor restart
service swift-container-server restart
service swift-container-reconciler restart
service swift-container-replicator restart
service swift-container-sync restart
service swift-container-updater restart
service swift-object-auditor restart
service swift-object-expirer restart
service swift-object-server restart
service swift-object-reconstructor restart
service swift-object-replicator restart
service swift-object-updater restart
service swift-proxy-server restart1.1. Operations Guide 45

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Troubleshooting Instance connectivity issues

This section will focus on troubleshooting general instance (VM) connectivity communication. This
does not cover any networking related to instance connectivity. This is assuming a OpenStack-Ansible
install using LXC containers, VXLAN overlay and the Linuxbridge ml2 driver.

Data flow example

COMPUTE NODE
+-------------+ +--------

↪→-----+
+->"If VXLAN"+->+ *br vxlan +--->+ bond#.

↪→#00 +---+
| +-------------+ +--------

↪→-----+ |
+-------------+

↪→ | +-----------------+
Instance +---> | brq bridge |++
↪→ +-->| physical network|

+-------------+
↪→ | +-----------------+

| +-------------+ +--------
↪→-----+ |

+->"If VLAN"+->+ br vlan +--->+
↪→bond1 +---+

+-------------+ +--------
↪→-----+

NETWORK NODE
+-------------+ +-------------+

+->"If VXLAN"+->+ *bond#.#00 +--->+ *br vxlan +-->
| +-------------+ +-------------+ |

+----------------+ |
↪→ +-------------+
|physical network|++ +---
↪→>+| brq bridge |+--> Neutron DHCP/Router
+----------------+ |
↪→ +-------------+

| +-------------+ +-------------+ |
+->"If VLAN"+->+ bond1 +--->+ br vlan +-->

+-------------+ +-------------+

Preliminary troubleshooting questions to answer:

• Which compute node is hosting the VM in question?

• Which interface is used for provider network traffic?

• Which interface is used for VXLAN overlay?

• Is the connectivity issue ingress to the instance?

• Is the connectivity issue egress from the instance?

• What is the source address of the traffic?

46 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

• What is the destination address of the traffic?

• Is there a Neutron router in play?

• Which network node (container) is the router hosted?

• What is the tenant network type?

If VLAN:

Does physical interface show link and all VLANs properly trunked across physical network?

No:

• Check cable, seating, physical switchport configuration, interface/bonding configuration,
and general network configuration. See general network troubleshooting documentation.

Yes:

• Good!

• Continue!

Important: Do not continue until physical network is properly configured.

Does the instances IP address ping from networks DHCP namespace or other instances in the same
network?

No:

• Check nova console logs to see if the instance ever received its IP address initially.

• Check Neutron security-group-rules, consider adding allow ICMP rule for testing.

• Check that linux bridges contain the proper interfaces. on compute and network nodes.

• Check Neutron DHCP agent logs.

• Check syslogs.

• Check Neutron linux bridge logs.

Yes:

• Good! This suggests that the instance received its IP address and can reach local network
resources.

• Continue!

Important: Do not continue until instance has an IP address and can reach local network resources
like DHCP.

Does the instances IP address ping from the gateway device (Neutron router namespace or another
gateway device)?

No:

• Check Neutron L3 agent logs (if applicable).

• Check Neutron linuxbridge logs.

1.1. Operations Guide 47

OpenStack-Ansible Documentation, Release 23.4.5.dev7

• Check physical interface mappings.

• Check Neutron Router ports (if applicable).

• Check that linux bridges contain the proper interfaces on compute and network nodes.

• Check Neutron security-group-rules, consider adding allow ICMP rule for testing.

Yes:

• Good! The instance can ping its intended gateway. The issue may be north of the gateway
or related to the provider network.

• Check gateway or host routes on the Neutron subnet.

• Check Neutron security-group-rules, consider adding ICMP rule for testing.

• Check Neutron FloatingIP associations (if applicable).

• Check Neutron Router external gateway information (if applicable).

• Check upstream routes, NATs or access-control-lists.

Important: Do not continue until the instance can reach its gateway.

If VXLAN:

Does physical interface show link and all VLANs properly trunked across physical network?

No:

• Check cable, seating, physical switchport configuration, interface/bonding configuration,
and general network configuration. See general network troubleshooting documentation.

Yes:

• Good!

• Continue!

Important: Do not continue until physical network is properly configured.

Are VXLAN VTEP addresses able to ping each other?

No:

• Check br-vxlan interface on Compute and Network nodes

• Check veth pairs between containers and linux bridges on the host.

• Check that linux bridges contain the proper interfaces on compute and network nodes.

Yes:

• Check ml2 config file for local VXLAN IP and other VXLAN configuration settings.

• Check VTEP learning method (multicast or l2population):

– If multicast, make sure the physical switches are properly allowing and distributing
multicast traffic.

48 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Important: Do not continue until VXLAN endpoints have reachability to each other.

Does the instances IP address ping from networks DHCP namespace or other instances in the same
network?

No:

• Check Nova console logs to see if the instance ever received its IP address initially.

• Check Neutron security-group-rules, consider adding allow ICMP rule for testing.

• Check that linux bridges contain the proper interfaces on compute and network nodes.

• Check Neutron DHCP agent logs.

• Check syslogs.

• Check Neutron linux bridge logs.

• Check that Bridge Forwarding Database (fdb) contains the proper entries on both the com-
pute and Neutron agent container.

Yes:

• Good! This suggests that the instance received its IP address and can reach local network
resources.

Important: Do not continue until instance has an IP address and can reach local network resources.

Does the instances IP address ping from the gateway device (Neutron router namespace or another
gateway device)?

No:

• Check Neutron L3 agent logs (if applicable).

• Check Neutron linux bridge logs.

• Check physical interface mappings.

• Check Neutron router ports (if applicable).

• Check that linux bridges contain the proper interfaces on compute and network nodes.

• Check Neutron security-group-rules, consider adding allow ICMP rule for testing.

• Check that Bridge Forwarding Database (fdb) contains the proper entries on both the com-
pute and Neutron agent container.

Yes:

• Good! The instance can ping its intended gateway.

• Check gateway or host routes on the Neutron subnet.

• Check Neutron security-group-rules, consider adding ICMP rule for testing.

• Check Neutron FloatingIP associations (if applicable).

• Check Neutron Router external gateway information (if applicable).

1.1. Operations Guide 49

OpenStack-Ansible Documentation, Release 23.4.5.dev7

• Check upstream routes, NATs or access-control-lists.

Diagnose Image service issues

The glance-api handles the API interactions and image store.

To troubleshoot problems or errors with the Image service, refer to /var/log/glance-api.log
inside the glance api container.

You can also conduct the following activities which may generate logs to help identity problems:

1. Download an image to ensure that an image can be read from the store.

2. Upload an image to test whether the image is registering and writing to the image store.

3. Run the openstack image list command to ensure that the API and registry is working.

For an example and more information, see Verify operation
<https://docs.openstack.org/glance/latest/install/verify.html>_. and Manage Images
<https://docs.openstack.org/glance/latest/admin/manage-images.html>_

RabbitMQ issues

Analyze RabbitMQ queues

Analyze OpenStack service logs and RabbitMQ logs

Failed security hardening after host kernel upgrade from version 3.13

Ubuntu kernel packages newer than version 3.13 contain a change in module nam-
ing from nf_conntrack to br_netfilter. After upgrading the kernel, run the
openstack-hosts-setup.yml playbook against those hosts. For more information, see
OSA bug 157996.

Cached Ansible facts issues

At the beginning of a playbook run, information about each host is gathered, such as:

• Linux distribution

• Kernel version

• Network interfaces

To improve performance, particularly in large deployments, you can cache host facts and information.

OpenStack-Ansible enables fact caching by default. The facts are cached in JSON files within /etc/
openstack_deploy/ansible_facts.

Fact caching can be disabled by running export ANSIBLE_CACHE_PLUGIN=memory. To set this
permanently, set this variable in /usr/local/bin/openstack-ansible.rc. Refer to the An-
sible documentation on fact caching for more details.

50 Chapter 1. Abstract

https://bugs.launchpad.net/openstack-ansible/+bug/1579963
https://docs.ansible.com/ansible/latest/user_guide/playbooks_variables.html#fact-caching

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Forcing regeneration of cached facts

Cached facts may be incorrect if the host receives a kernel upgrade or new network interfaces. Newly
created bridges also disrupt cache facts.

This can lead to unexpected errors while running playbooks, and require cached facts to be regenerated.

Run the following command to remove all currently cached facts for all hosts:

rm /etc/openstack_deploy/ansible_facts/*

New facts will be gathered and cached during the next playbook run.

To clear facts for a single host, find its file within /etc/openstack_deploy/ansible_facts/
and remove it. Each host has a JSON file that is named after its hostname. The facts for that host will be
regenerated on the next playbook run.

Failed ansible playbooks during an upgrade

Container networking issues

All LXC containers on the host have at least two virtual Ethernet interfaces:

• eth0 in the container connects to lxcbr0 on the host

• eth1 in the container connects to br-mgmt on the host

Note: Some containers, such as cinder, glance, neutron_agents, and swift_proxy have
more than two interfaces to support their functions.

Predictable interface naming

On the host, all virtual Ethernet devices are named based on their container as well as the name of the
interface inside the container:

${CONTAINER_UNIQUE_ID}_${NETWORK_DEVICE_NAME}

As an example, an all-in-one (AIO) build might provide a utility container called aio1_utility_container-
d13b7132. That container will have two network interfaces: d13b7132_eth0 and d13b7132_eth1.

Another option would be to use the LXC tools to retrieve information about the utility container. For
example:

lxc-info -n aio1_utility_container-d13b7132

Name: aio1_utility_container-d13b7132
State: RUNNING
PID: 8245
IP: 10.0.3.201
IP: 172.29.237.204
CPU use: 79.18 seconds
BlkIO use: 678.26 MiB

(continues on next page)

1.1. Operations Guide 51

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

Memory use: 613.33 MiB
KMem use: 0 bytes
Link: d13b7132_eth0
TX bytes: 743.48 KiB
RX bytes: 88.78 MiB
Total bytes: 89.51 MiB

Link: d13b7132_eth1
TX bytes: 412.42 KiB
RX bytes: 17.32 MiB
Total bytes: 17.73 MiB

The Link: lines will show the network interfaces that are attached to the utility container.

Review container networking traffic

To dump traffic on the br-mgmt bridge, use tcpdump to see all communications between the various
containers. To narrow the focus, run tcpdump only on the desired network interface of the containers.

Restoring inventory from backup

OpenStack-Ansible maintains a running archive of inventory. If a change has been introduced
into the system that has broken inventory or otherwise has caused an unforseen issue, the in-
ventory can be reverted to an early version. The backup file /etc/openstack_deploy/
backup_openstack_inventory.tar contains a set of timestamped inventories that can be re-
stored as needed.

Example inventory restore process.

mkdir /tmp/inventory_restore
cp /etc/openstack_deploy/backup_openstack_inventory.tar /tmp/inventory_
↪→restore/backup_openstack_inventory.tar
cd /tmp/inventory_restore
tar xf backup_openstack_inventory.tar
Identify the inventory you wish to restore as the running inventory
cp openstack_inventory.json-YYYYMMDD_SSSSSS.json /etc/openstack_deploy/
↪→openstack_inventory.json
cd -
rm -rf /tmp/inventory_restore

At the completion of this operation the inventory will be restored to the earlier version.

1.1.8 Compatibility Matrix

All of the OpenStack-Ansible releases are compatible with specific sets of operating systems and their
versions. Operating Systems have their own lifecycles, however we may drop their support before end
of their EOL because of various reasons:

• OpenStack requires a higher version of a library (ie. libvirt)

• Python version

• specific dependencies

52 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

• etc.

However, we do try to provide upgrade releases where we support both new and old Operating System
versions, providing deployers the ability to properly upgrade their deployments to the new Operating
System release.

In CI we test upgrades from N to N+1 releases and only for source deployments.

Below you will find the support matrix of Operating Systems for OpenStack-Ansible releases.

1.1.9 Minor version upgrade

Upgrades between minor versions of OpenStack-Ansible require updating the repository clone to the
latest minor release tag, updating the ansible roles, and then running playbooks against the target hosts.
This section provides instructions for those tasks.

Prerequisites

To avoid issues and simplify troubleshooting during the upgrade, disable the security hardening role
by setting the apply_security_hardening variable to False in the user_variables.yml
file, and backup your openstack-ansible installation.

Execute a minor version upgrade

A minor upgrade typically requires the following steps:

1. Change directory to the cloned repositorys root directory:

cd /opt/openstack-ansible

2. Ensure that your OpenStack-Ansible code is on the latest Wallaby tagged release:

git checkout wallaby-eom

3. Update all the dependent roles to the latest version:

./scripts/bootstrap-ansible.sh

4. Change to the playbooks directory:

cd playbooks

5. Update the hosts:

openstack-ansible setup-hosts.yml

6. Update the infrastructure:

openstack-ansible -e rabbitmq_upgrade=true \
setup-infrastructure.yml

7. Update all OpenStack services:

1.1. Operations Guide 53

OpenStack-Ansible Documentation, Release 23.4.5.dev7

openstack-ansible setup-openstack.yml

Note: You can limit upgrades to specific OpenStack components. See the following section for details.

Upgrade specific components

You can limit upgrades to specific OpenStack components by running each of the component playbooks
against groups.

For example, you can update only the Compute hosts by running the following command:

openstack-ansible os-nova-install.yml --limit nova_compute

To update only a single Compute host, run the following command:

openstack-ansible os-nova-install.yml --limit <node-name> \
--skip-tags 'nova-key'

Note: Skipping the nova-key tag is necessary so that the keys on all Compute hosts are not gathered.

To see which hosts belong to which groups, use the inventory-manage.py script to show all groups
and their hosts. For example:

1. Change directory to the repository clone root directory:

cd /opt/openstack-ansible

2. Show all groups and which hosts belong to them:

./scripts/inventory-manage.py -G

3. Show all hosts and the groups to which they belong:

./scripts/inventory-manage.py -g

To see which hosts a playbook runs against, and to see which tasks are performed, run the following
commands (for example):

1. Change directory to the repository clone playbooks directory:

cd /opt/openstack-ansible/playbooks

2. See the hosts in the nova_compute group that a playbook runs against:

openstack-ansible os-nova-install.yml --limit nova_compute \
--list-hosts

3. See the tasks that are executed on hosts in the nova_compute group:

54 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

openstack-ansible os-nova-install.yml --limit nova_compute \
--skip-tags 'nova-key' \
--list-tasks

1.1.10 Major upgrades

This guide provides information about the upgrade process from Victoria to Wallaby for OpenStack-
Ansible.

Note: You can only upgrade between sequential releases.

Introduction

For upgrades between major versions, the OpenStack-Ansible repository provides playbooks and scripts
to upgrade an environment. The run-upgrade.sh script runs each upgrade playbook in the correct
order, or playbooks can be run individually if necessary. Alternatively, a deployer can upgrade manually.

For more information about the major upgrade process, see Upgrading by using a script and Upgrading
manually.

Warning: The upgrade is always under active development. Test this on a development environ-
ment first.

Upgrading by using a script

The Wallaby release series of OpenStack-Ansible contains the code for migrating from Victoria to Wal-
laby.

Running the upgrade script

To upgrade from Victoria to Wallaby by using the upgrade script, perform the following steps in the
openstack-ansible directory:

1. Change directory to the repository clone root directory:

cd /opt/openstack-ansible

2. Run the following commands:

git checkout wallaby-eom
./scripts/run-upgrade.sh

For more information about the steps performed by the script, see Upgrading manually.

1.1. Operations Guide 55

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Upgrading manually

Manual upgrades are useful for scoping the changes in the upgrade process (for example, in very large
deployments with strict SLA requirements), or performing other upgrade automation beyond that pro-
vided by OpenStack-Ansible.

The steps detailed here match those performed by the run-upgrade.sh script. You can safely run
these steps multiple times.

Preflight checks

Before starting with the upgrade, perform preflight health checks to ensure your environment is stable.
If any of those checks fail, ensure that the issue is resolved before continuing.

Check out the Wallaby release

Ensure that your OpenStack-Ansible code is on the latest Wallaby tagged release.

git checkout wallaby-eom

Prepare the shell variables

Define these variables to reduce typing when running the remaining upgrade tasks. Because these envi-
ronments variables are shortcuts, this step is optional. If you prefer, you can reference the files directly
during the upgrade.

cd /opt/openstack-ansible
export MAIN_PATH="$(pwd)"
export SCRIPTS_PATH="${MAIN_PATH}/scripts"

Backup the existing OpenStack-Ansible configuration

Make a backup of the configuration of the environment:

source_series_backup_file="/openstack/backup-openstack-ansible-victoria.
↪→tar.gz"
tar zcf ${source_series_backup_file} /etc/openstack_deploy /etc/
↪→ansible/ /usr/local/bin/openstack-ansible.rc

Bootstrap the new Ansible and OSA roles

To ensure that there is no currently set ANSIBLE_INVENTORY to override the default inventory loca-
tion, we unset the environment variable.

unset ANSIBLE_INVENTORY

Bootstrap Ansible again to ensure that all OpenStack-Ansible role dependencies are in place before you
run playbooks from the Wallaby release.

56 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

${SCRIPTS_PATH}/bootstrap-ansible.sh

Change to the playbooks directory

Change to the playbooks directory to simplify the CLI commands from here on in the procedure, given
that most playbooks executed are in this directory.

cd playbooks

Implement changes to OSA configuration

If there have been any OSA variable name changes or environment/inventory changes, there is a play-
book to handle those changes to ensure service continuity in the environment when the new playbooks
run. The playbook is tagged to ensure that any part of it can be executed on its own or skipped. Please
review the contents of the playbook for more information.

openstack-ansible "${SCRIPTS_PATH}/upgrade-utilities/deploy-config-
↪→changes.yml"

Upgrade hosts

Before installing the infrastructure and OpenStack, update the host machines.

With the introduction of the PKI ansible role, OSA now manages its own Cer-
tificate Authority (CA) when self-signed certificates are used. Before proceeding
with the upgrade, you will need to override openstack_pki_authorities and
openstack_pki_service_intermediate_cert_name in your user_variables. Other-
wise, sample authorities will be generated for root and intermediate certificates and all self-signed
certificates generated later will be signed with them.

Warning: Usage of non-trusted certificates for RabbitMQ is not possible due to requirements of
newer amqp versions.

To generate new CA, you will need to run the following command:

openstack-ansible certificate-authority.yml

Once CA is generated, we can proceed with standard OpenStack upgrade steps:

openstack-ansible setup-hosts.yml --limit '!galera_all:!rabbitmq_all'

This command is the same setting up hosts on a new installation. The galera_all and
rabbitmq_all host groups are excluded to prevent reconfiguration and restarting of any of those
containers as they need to be updated, but not restarted.

Once that is complete, upgrade the final host groups with the flag to prevent container restarts.

1.1. Operations Guide 57

OpenStack-Ansible Documentation, Release 23.4.5.dev7

openstack-ansible setup-hosts.yml -e 'lxc_container_allow_restarts=false
↪→' --limit 'galera_all:rabbitmq_all'

Upgrade infrastructure

We can now go ahead with the upgrade of all the infrastructure components. To ensure that rabbitmq
and mariadb are upgraded, we pass the appropriate flags.

openstack-ansible setup-infrastructure.yml -e 'galera_upgrade=true' -e
↪→'rabbitmq_upgrade=true'

With this complete, we can now restart the mariadb containers one at a time, ensuring that each is
started, responding, and synchronized with the other nodes in the cluster before moving on to the next
steps. This step allows the LXC container configuration that you applied earlier to take effect, ensuring
that the containers are restarted in a controlled fashion.

openstack-ansible "${SCRIPTS_PATH}/upgrade-utilities/galera-cluster-
↪→rolling-restart.yml"

Upgrade OpenStack

We can now go ahead with the upgrade of all the OpenStack components.

openstack-ansible setup-openstack.yml

1.1.11 Distribution upgrades

This guide provides information about upgrading from one distribution release to the next.

Note: This guide was written when upgrading from Ubuntu Bionic to Focal during the Victoria release
cycle.

Introduction

OpenStack Ansible supports operating system distribution upgrades during specific release cycles.
These can be observed by consulting the operating system compatibility matrix, and identifying where
two versions of the same operating system are supported.

Upgrades should be performed in the order specified in this guide to minimise the risk of service in-
terruptions. Upgrades must also be carried out by performing a fresh installation of the target systems
operating system, before running openstack-ansible to install services on this host.

58 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Ordering

This guide includes a suggested order for carrying out upgrades. This may need to be adapted dependent
on the extent to which you have customised your OpenStack Ansible deployment.

Critically, it is important to consider when you upgrade repo hosts/containers. At least one repo host
should be upgraded before you upgrade any API hosts/containers. The last repo host to be upgraded
should be the primary, and should not be carried out until after the final service which does not support
limit is upgraded.

If this order is adapted, it will be necessary to restore some files to the repo host from a backup part-way
through the process. This will be necessary if no repo hosts remain which run the older operating system
version, which prevents older packages from being built.

Beyond these requirements, a suggested order for upgrades is a follows:

1. Infrastructure services (Galera, RabbitMQ, APIs, HAProxy)

In all cases, secondary or backup instances should be upgraded first

2. Compute nodes

3. Network nodes

Pre-Requisites

• Ensure that all hosts in your target deployment have been installed and configured using a match-
ing version of OpenStack Ansible. Ideally perform a minor upgrade to the latest version of the
OpenStack release cycle which you are currently running first in order to reduce the risk of en-
countering bugs.

• Check any OpenStack Ansible variables which you customise to ensure that they take into account
the new and old operating system version (for example custom package repositories and version
pinning).

• Perform backups of critical data, in particular the Galera database in case of any failures. It is also
recommended to back up the /var/www/repo directory on the primary repo host in case it needs to
be restored mid-upgrade.

• Identify your primary HAProxy/Galera/RabbitMQ/repo infrastructure host

In a simple 3 infrastructure hosts setup, these services/containers usually end up being all on the
the same host.

The primary will be the LAST box youll want to reinstall.

– HAProxy/keepalived

Finding your HAProxy/keepalived primary is as easy as

ssh {{ external_lb_vip_address }}

Or preferably if youve installed HAProxy with stats, like so;

haproxy_stats_enabled: true
haproxy_stats_bind_address: "{{ external_lb_vip_address }}"

1.1. Operations Guide 59

OpenStack-Ansible Documentation, Release 23.4.5.dev7

and can visit https://admin:password@external_lb_vip_address:1936/ and read Statistics
Report for pid # on infrastructure_host

– repo_container

Check all your repo_containers and look for /etc/lsyncd/lsyncd.conf.lua

Warnings

• During the upgrade process, some OpenStack services cannot be deployed by using Ansibles limit.
As such, it will be necessary to deploy some services to mixed operating system versions at the
same time.

The following services are known to lack support for limit:

– RabbitMQ

– Repo Server

– Keystone

• In the same way as OpenStack Ansible major (and some minor) upgrades, there will be brief
interruptions to the entire Galera and RabbitMQ clusters during the upgrade which will result in
brief service interruptions.

• When taking down memcached instances for upgrades you may encounter performance issues
with the APIs.

Deploying Infrastructure Hosts

1. Drain RabbitMQ connections (optional)

In order to cleanly hand over connections from one member of the RabbitMQ cluster to another,
the instance being reinstalled should be drained. This can be achieved by running the following
from the instance to be reinstalled and waiting for the RabbitMQ admin interface to indicate that
socket descriptors have reduced to zero.

rabbitmq-upgrade drain

2. Disable HAProxy back ends (optional)

If you wish to minimise error states in HAProxy, services on hosts which are being reinstalled can
be set in maintenance mode (MAINT).

Log into your primary HAProxy/keepalived and run something similar to

echo "disable server repo_all-back/<infrahost>_repo_container-<hash>"
↪→| socat /var/run/haproxy.stat stdio

for each API or service instance you wish to disable.

Or if youve enabled haproxy_stats as described above, you can visit https://admin:password@
external_lb_vip_address:1936/ and select them and Set state to MAINT

3. Reinstall an infrastructure hosts operating system

As noted above, this should be carried out for non-primaries first, ideally starting with a repo host.

60 Chapter 1. Abstract

https://admin:password@external_lb_vip_address:1936/
https://admin:password@external_lb_vip_address:1936/
https://admin:password@external_lb_vip_address:1936/

OpenStack-Ansible Documentation, Release 23.4.5.dev7

4. Clearing out stale information

1. Removing stale ansible-facts

rm /etc/openstack_deploy/ansible-facts/reinstalled_host*

(* because were deleting all container facts for the host as well.)

2. If RabbitMQ was running on this host

We forget it by running these commands on another RabbitMQ host.

rabbitmqctl cluster_status
rabbitmqctl forget_cluster_node rabbit@removed_host_rabbitmq_
↪→container

5. If it is NOT a primary, install everything on the new host

openstack-ansible setup-hosts.yml --limit localhost,reinstalled_host*
openstack-ansible setup-infrastructure.yml --limit localhost,repo_all,
↪→rabbitmq_all,reinstalled_host*
openstack-ansible setup-openstack.yml --limit localhost,keystone_all,
↪→reinstalled_host*

(* because we need to include containers in the limit)

6. If it IS a primary, do these steps

openstack-ansible setup-hosts.yml --limit localhost,reinstalled_host*

Temporarily set your primary Galera in MAINT in HAProxy

openstack-ansible galera-install.yml --limit localhost,reinstalled_
↪→host*

Note that at this point, the Ansible role will have taken the primary Galera out of MAINT in
HAProxy. You may wish to temporarily put it back into MAINT until you are sure it is working
correctly.

Youll now have mariadb running, but its not synced info from the non-primaries. To fix this we
ssh to the primary Galera, and restart the mariadb.service and verify everything is in order.

systemctl restart mariadb.service
mysql
mysql> SHOW STATUS LIKE "wsrep_cluster_%";
mysql> SHOW DATABASES;

Everything should be synced and in order now. You can take your primary Galera from MAINT
to READY

We can move on to RabbitMQ primary

openstack-ansible rabbitmq-install.yml

The RabbitMQ primary will also be in a cluster of its own. You will need to fix this by running
these commands on the primary.

1.1. Operations Guide 61

OpenStack-Ansible Documentation, Release 23.4.5.dev7

rabbitmqctl stop_app
rabbitmqctl join_cluster rabbit@some_operational_rabbitmq_container
rabbitmqctl start_app
rabbitmqctl cluster_status

Everything should now be in a working state and we can finish it off with

openstack-ansible setup-infrastructure.yml --limit localhost,repo_all,
↪→rabbitmq_all,reinstalled_host*
openstack-ansible setup-openstack.yml --limit localhost,keystone_all,
↪→reinstalled_host*

7. Adjust HAProxy status

If HAProxy was set into MAINT mode, this can now be removed for services which have been
restored.

For the repo host, it is important that the freshly installed hosts are set to READY in HAProxy,
and any which remain on the old operating system are set to MAINT.

Deploying Compute & Network Hosts

1. Disable the hypervisor service on compute hosts and migrate any VMs to another available hy-
pervisor.

2. Reinstall a hosts operating system

3. Clear out stale ansible-facts

rm /etc/openstack_deploy/ansible-facts/reinstalled_host*

(* because were deleting all container facts for the host as well.)

4. Execute the following:

openstack-ansible setup-hosts.yml --limit localhost,reinstalled_host*
openstack-ansible setup-infrastructure.yml --limit localhost,
↪→reinstalled_host*
openstack-ansible setup-openstack.yml --limit localhost,reinstalled_
↪→host*

(* because we need to include containers in the limit)

Note: During this upgrade cycle it was noted that network nodes required a restart to bring some tenant
interfaces online after running setup-openstack. Additionally, BGP speakers (used for IPv6) had to be
re-initialised from the command line. These steps were necessary before reinstalling further network
nodes to prevent HA Router interruptions.

62 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

1.2 User Guide

In this section, you will find user stories and examples relevant to deploying OpenStack-Ansible.

For information on how to deploy your OpenStack-Ansible cloud, refer to the Deployment Guide for
step-by-step instructions on how to deploy the OpenStack packages and dependencies on your cloud
using OpenStack-Ansible.

For information on how to manage and operate OpenStack-Ansible, see the see the Operations Guide.

For information on how to contribute, extend or develop OpenStack-Ansible, see the Contributors Guide.

For in-depth technical information, see the OpenStack-Ansible Reference.

1.2.1 Quickstart: AIO

All-in-one (AIO) builds are a great way to perform an OpenStack-Ansible build for:

• a development environment

• an overview of how all of the OpenStack services fit together

• a simple lab deployment

Although AIO builds arent recommended for large production deployments, theyre great for smaller
proof-of-concept deployments.

Absolute minimum server resources (currently used for gate checks):

• 8 vCPUs

• 50GB free disk space on the root partition

• 8GB RAM

Recommended server resources:

• CPU/motherboard that supports hardware-assisted virtualization

• 8 CPU Cores

• 80GB free disk space on the root partition, or 60GB+ on a blank secondary disk. Using a
secondary disk requires the use of the bootstrap_host_data_disk_device parameter.
Please see Building an AIO for more details.

• 16GB RAM

It is possible to perform AIO builds within a virtual machine for demonstration and evaluation, but your
virtual machines will perform poorly unless nested virtualization is available. For production workloads,
multiple nodes for specific roles are recommended.

1.2. User Guide 63

https://docs.openstack.org/project-deploy-guide/openstack-ansible/wallaby/index.html
https://docs.openstack.org/openstack-ansible/wallaby/admin/index.html
https://docs.openstack.org/openstack-ansible/wallaby/contributor/index.html
https://docs.openstack.org/openstack-ansible/wallaby/reference/index.html
https://en.wikipedia.org/wiki/Hardware-assisted_virtualization

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Building an AIO

Overview

There are three steps to running an AIO build, with an optional first step should you need to customize
your build:

• Prepare the host

• Bootstrap Ansible and the required roles

• Bootstrap the AIO configuration

• Run playbooks

Prepare the host

When building an AIO on a new server, it is recommended that all system packages are upgraded and
then reboot into the new kernel:

Note: Execute the following commands and scripts as the root user.

Ubuntu / Debian
apt-get update
apt-get dist-upgrade
reboot

CentOS
dnf upgrade
dnf install git-core
systemctl stop firewalld
systemctl mask firewalld
reboot

Note: Before rebooting, in /etc/sysconfig/selinux, make sure that SELINUX=enforcing
is changed to SELINUX=disabled. SELinux enabled is not currently supported in OpenStack-
Ansible for CentOS/RHEL due to a lack of maintainers for the feature.

Note: If you are installing with limited connectivity, please review Installing with limited connectivity
before proceeding.

64 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Bootstrap Ansible and the required roles

Start by cloning the OpenStack-Ansible repository and changing into the repository root directory:

git clone https://opendev.org/openstack/openstack-ansible \
/opt/openstack-ansible

cd /opt/openstack-ansible

Next switch the applicable branch/tag to be deployed from. Note that deploying from the head of a
branch may result in an unstable build due to changes in flight and upstream OpenStack changes. For a
test (for example, not a development) build it is usually best to checkout the latest tagged version.

List all existing tags.
git tag -l

Checkout the stable branch and find just the latest tag
git checkout stable/wallaby
git describe --abbrev=0 --tags

Checkout the latest tag from either method of retrieving the
↪→tag.
git checkout wallaby-eom

Note: The Wallaby release is only compatible with Debian 10 (buster), Debian 11 (bullseye), Ubuntu
18.04 (Bionic Beaver), Ubuntu 20.04 (Focal Fossa), CentOS 8 and CentOS 8 Stream.

Warning: The announcement of early end-of-life for CentOS 8 and the migration to CentOS
Stream leaves OpenStack-Ansible currently un-installable on CentOS Stream. A number of critical
dependencies are taken from the EPEL repository and currently these will not install onto a CentOS
Stream host. Careful consideration should be given to the life-cycle of any new deployments on
CentOS 8.

The next step is to bootstrap Ansible and the Ansible roles for the development environment.

Run the following to bootstrap Ansible and the required roles:

scripts/bootstrap-ansible.sh

Note: You might encounter an error while running the Ansible bootstrap script when building some of
the Python extensions (like pycrypto) which says:

configure: error: cannot run C compiled programs.

The reason of this failure might be resulting from a noexec mount flag used for the filesystem associated
with /tmp which you can check by running the following command:

mount | grep $(df /tmp | tail -n +2 | awk '{print $1}') | grep noexec

If this is the case you can specify an alternate path which does not have this mount option set:

1.2. User Guide 65

OpenStack-Ansible Documentation, Release 23.4.5.dev7

TMPDIR=/var/tmp scripts/bootstrap-ansible.sh

Bootstrap the AIO configuration

In order for all the services to run, the host must be prepared with the appropriate disks partitioning,
packages, network configuration and configurations for the OpenStack Deployment.

By default the AIO bootstrap scripts deploy a base set of OpenStack services with sensible defaults for
the purpose of a gate check, development or testing system.

Review the bootstrap-host role defaults file to see various configuration options. Deployers have the
option to change how the host is bootstrapped. This is useful when you wish the AIO to make use of a
secondary data disk, or when using this role to bootstrap a multi-node development environment.

The bootstrap script is pre-set to pass the environment variable BOOTSTRAP_OPTS as an additional
option to the bootstrap process. For example, if you wish to set the bootstrap to re-partition a specific
secondary storage device (/dev/sdb), which will erase all of the data on the device, then execute:

export BOOTSTRAP_OPTS="bootstrap_host_data_disk_device=sdb"

Additional options may be implemented by simply concatenating them with a space between each set of
options, for example:

export BOOTSTRAP_OPTS="bootstrap_host_data_disk_device=sdb"
export BOOTSTRAP_OPTS="${BOOTSTRAP_OPTS} bootstrap_host_data_disk_fs_
↪→type=xfs"

If you are installing with limited connectivity, or you dont have default route set, you will need to define
interface for outgoing connections manually

export BOOTSTRAP_OPTS="bootstrap_host_public_interface=eth1"

For the default AIO scenario, the AIO configuration preparation is completed by executing:

scripts/bootstrap-aio.sh

To add OpenStack Services over and above the bootstrap-aio default services for the applicable scenario,
copy the conf.d files with the .aio file extension into /etc/openstack_deploy and rename
then to .yml files. For example, in order to enable the OpenStack Telemetry services, execute the
following:

cd /opt/openstack-ansible/
cp etc/openstack_deploy/conf.d/{aodh,gnocchi,ceilometer}.yml.aio /etc/
↪→openstack_deploy/conf.d/
for f in $(ls -1 /etc/openstack_deploy/conf.d/*.aio); do mv -v ${f} ${f%.
↪→*}; done

It is possible to also do this (and change other defaults) during the bootstrap script initial execution by
changing the SCENARIO environment variable before running the script. The key word aio will ensure
that a basic set of OpenStack services (cinder, glance, horizon, neutron, nova) will be deployed. The key
words lxc can be used to set the container back-end, while the key word metal will deploy all services
without containers. In order to implement any other services, add the name of the conf.d file name

66 Chapter 1. Abstract

https://opendev.org/openstack/openstack-ansible/src/tests/roles/bootstrap-host/defaults/main.yml

OpenStack-Ansible Documentation, Release 23.4.5.dev7

without the .yml.aio extension into the SCENARIO environment variable. Each key word should be
delimited by an underscore. For example, the following will implement an AIO with barbican, cinder,
glance, horizon, neutron, and nova. It will set the cinder storage back-end to ceph and will make use of
LXC as the container back-end.

export SCENARIO='aio_lxc_barbican_ceph'
scripts/bootstrap-aio.sh

Note: If the metal and aio key words are used together, horizon will not be deployed because haproxy
and horizon will conflict on the same listening ports.

To add any global overrides, over and above the defaults for the applicable scenario, edit /etc/
openstack_deploy/user_variables.yml. In order to understand the various ways that you
can override the default behaviour set out in the roles, playbook and group variables, see Overriding
default configuration.

See the Deployment Guide for a more detailed break down of how to implement your own configuration
rather than to use the AIO bootstrap.

Run playbooks

Finally, run the playbooks by executing:

cd /opt/openstack-ansible/playbooks
openstack-ansible setup-hosts.yml
openstack-ansible setup-infrastructure.yml
openstack-ansible setup-openstack.yml

The installation process will take a while to complete, but here are some general estimates:

• Bare metal systems with SSD storage: ~ 30-50 minutes

• Virtual machines with SSD storage: ~ 45-60 minutes

• Systems with traditional hard disks: ~ 90-120 minutes

Once the playbooks have fully executed, it is possible to experiment with various settings changes in
/etc/openstack_deploy/user_variables.yml and only run individual playbooks. For ex-
ample, to run the playbook for the Keystone service, execute:

cd /opt/openstack-ansible/playbooks
openstack-ansible os-keystone-install.yml

1.2. User Guide 67

https://docs.openstack.org/project-deploy-guide/openstack-ansible/wallaby/index.html

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Rebooting an AIO

As the AIO includes all three cluster members of MariaDB/Galera, the cluster has to be re-initialized
after the host is rebooted.

This is done by executing the following:

cd /opt/openstack-ansible/playbooks
openstack-ansible -e galera_ignore_cluster_state=true galera-install.yml

If this fails to get the database cluster back into a running state, then please make use of the Galera
Cluster Recovery section in the operations guide.

Rebuilding an AIO

Sometimes it may be useful to destroy all the containers and rebuild the AIO. While it is preferred
that the AIO is entirely destroyed and rebuilt, this isnt always practical. As such the following may be
executed instead:

Move to the playbooks directory.
cd /opt/openstack-ansible/playbooks

Destroy all of the running containers.
openstack-ansible lxc-containers-destroy.yml

On the host stop all of the services that run locally and not
within a container.
for i in \

$(ls /etc/init \
| grep -e "nova\|swift\|neutron\|cinder" \
| awk -F'.' '{print $1}'); do \

service $i stop; \
done

Uninstall the core services that were installed.
for i in $(pip freeze | grep -e "nova\|neutron\|keystone\|swift\|cinder
↪→"); do \

pip uninstall -y $i; done

Remove crusty directories.
rm -rf /openstack /etc/{neutron,nova,swift,cinder} \

/var/log/{neutron,nova,swift,cinder}

Remove the pip configuration files on the host
rm -rf /root/.pip

Remove the apt package manager proxy
rm /etc/apt/apt.conf.d/00apt-cacher-proxy

Should an existing AIO environment need to be reinstalled, the most efficient method is to destroy the
host operating system and start over. For this reason, AIOs are best run inside of some form of virtual
machine or cloud guest.

68 Chapter 1. Abstract

/admin/maintenance-tasks.html#galera-cluster-recovery
/admin/maintenance-tasks.html#galera-cluster-recovery

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Reference Diagram for an AIO Build

Here is a basic diagram that attempts to illustrate what the resulting AIO deployment looks like.

This diagram is not to scale and is not even 100% accurate, this diagram was built for informational
purposes only and should ONLY be used as such.

------->[ETH0 == Public Network]
|
V [*] Socket Connections

[HOST MACHINE] [<>v^] Network Connections

* ^ *
| | |---
| | |
| |---------------->[HAProxy] |
| ^ |
| | |
| V |
| (BR-Interfaces)<------ |
| ^ * | |

-[LXC]--*----------------------|-----|------|----| |
			V *			
*		[Galera x3]				
[Memcached]<------------						

-------[Rsyslog]<--------------|--| | * |
[Repos Server x3]<------	---	-->[RabbitMQ x3]	
[Horizon x2]<-----------			
[Nova api ec2]<---------	--		
[Nova api os]<----------	->		
[Nova console]<---------			
[Nova Cert]<------------	->		
[Cinder api]<-----------	->		
[Glance api]<-----------	->		
[Heat apis]<------------	->		[Loop back devices]*-*
[Heat engine]<----------	->		\ \
------>[Nova api metadata]			{ LVM } { XFS x3 }
	[Nova conductor]<-------		
	----->[Nova scheduler]--------	->	
	[Keystone x3]<----------	->	
		--->[Neutron agents]*-------	--
		[Neutron server]<-------	->
			->[Swift proxy]<-----------

-|-|-|-[Cinder volume]*----------------------* | |

	V		*		
---->[Compute]*[Neutron linuxbridge]<---| |->[Swift storage]-

1.2. User Guide 69

OpenStack-Ansible Documentation, Release 23.4.5.dev7

1.2.2 Network architectures

OpenStack-Ansible supports a number of different network architectures, and can be deployed using a
single network interface for non-production workloads or using multiple network interfaces or bonded
interfaces for production workloads.

The OpenStack-Ansible reference architecture segments traffic using VLANs across multiple network
interfaces or bonds. Common networks used in an OpenStack-Ansible deployment can be observed in
the following table:

Network CIDR VLAN
Management Network 172.29.236.0/22 10
Overlay Network 172.29.240.0/22 30
Storage Network 172.29.244.0/22 20

The Management Network, also referred to as the container network, provides management
of and communication between the infrastructure and OpenStack services running in containers or on
metal. The management network uses a dedicated VLAN typically connected to the br-mgmt
bridge, and may also be used as the primary interface used to interact with the server via SSH.

The Overlay Network, also referred to as the tunnel network, provides connectivity between
hosts for the purpose of tunnelling encapsulated traffic using VXLAN, GENEVE, or other protocols.
The overlay network uses a dedicated VLAN typically connected to the br-vxlan bridge.

The Storage Network provides segregated access to Block Storage from OpenStack services such
as Cinder and Glance. The storage network uses a dedicated VLAN typically connected to the
br-storage bridge.

Note: The CIDRs and VLANs listed for each network are examples and may be different in your
environment.

Additional VLANs may be required for the following purposes:

• External provider networks for Floating IPs and instances

• Self-service project/tenant networks for instances

• Other OpenStack services

Network interfaces

Configuring network interfaces

OpenStack-Ansible does not mandate any specific method of configuring network interfaces on the host.
You may choose any tool, such as ifupdown, netplan, systemd-networkd, networkmanager or another
operating-system specific tool. The only requirement is that a set of functioning network bridges and
interfaces are created which match those expected by OpenStack-Ansible, plus any that you choose to
specify for neutron physical interfaces.

A selection of network configuration example files are given in the etc/network and etc/netplan
for ubuntu systems, and it is expected that these will need adjustment for the specific requirements of
each deployment.

70 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Single interface or bond

OpenStack-Ansible supports the use of a single interface or set of bonded interfaces that carry traffic for
OpenStack services as well as instances.

The following diagram demonstrates hosts using a single interface:

The following diagram demonstrates hosts using a single bond:

1.2. User Guide 71

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Each host will require the correct network bridges to be implemented. The following is the /etc/
network/interfaces file for infra1 using a single bond.

Note: If your environment does not have eth0, but instead has p1p1 or some other interface name,
ensure that all references to eth0 in all configuration files are replaced with the appropriate name. The
same applies to additional network interfaces.

This is a multi-NIC bonded configuration to implement the required
↪→bridges
for OpenStack-Ansible. This illustrates the configuration of the first
Infrastructure host and the IP addresses assigned should be adapted
for implementation on the other hosts.
#
After implementing this configuration, the host will need to be
rebooted.

Assuming that eth0/1 and eth2/3 are dual port NIC's we pair
eth0 with eth2 for increased resiliency in the case of one interface card
failing.
auto eth0
iface eth0 inet manual

bond-master bond0
bond-primary eth0

auto eth1
iface eth1 inet manual

auto eth2
iface eth2 inet manual

bond-master bond0

auto eth3
iface eth3 inet manual

Create a bonded interface. Note that the "bond-slaves" is set to none.
↪→This
is because the bond-master has already been set in the raw interfaces for
the new bond0.
auto bond0
iface bond0 inet manual

bond-slaves none
bond-mode active-backup
bond-miimon 100
bond-downdelay 200
bond-updelay 200

Container/Host management VLAN interface
auto bond0.10
iface bond0.10 inet manual

vlan-raw-device bond0

OpenStack Networking VXLAN (tunnel/overlay) VLAN interface
auto bond0.30
iface bond0.30 inet manual

vlan-raw-device bond0

(continues on next page)

72 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

Storage network VLAN interface (optional)
auto bond0.20
iface bond0.20 inet manual

vlan-raw-device bond0

Container/Host management bridge
auto br-mgmt
iface br-mgmt inet static

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond0.10
address 172.29.236.11
netmask 255.255.252.0
gateway 172.29.236.1
dns-nameservers 8.8.8.8 8.8.4.4

OpenStack Networking VXLAN (tunnel/overlay) bridge
#
Nodes hosting Neutron agents must have an IP address on this interface,
including COMPUTE, NETWORK, and collapsed INFRA/NETWORK nodes.
#

auto br-vxlan
iface br-vxlan inet static

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond0.30
address 172.29.240.16
netmask 255.255.252.0

OpenStack Networking VLAN bridge
#
The "br-vlan" bridge is no longer necessary for deployments unless
↪→Neutron
agents are deployed in a container. Instead, a direct interface such as
bond0 can be specified via the "host_bind_override" override when
↪→defining
provider networks.
#
#auto br-vlan
#iface br-vlan inet manual
bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond0

compute1 Network VLAN bridge
#auto br-vlan
#iface br-vlan inet manual
bridge_stp off
bridge_waitport 0
bridge_fd 0
#

(continues on next page)

1.2. User Guide 73

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

Storage bridge (optional)
#
Only the COMPUTE and STORAGE nodes must have an IP address
on this bridge. When used by infrastructure nodes, the
IP addresses are assigned to containers which use this
bridge.
#
auto br-storage
iface br-storage inet manual

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond0.20

compute1 Storage bridge
#auto br-storage
#iface br-storage inet static
bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond0.20
address 172.29.244.16
netmask 255.255.252.0

Multiple interfaces or bonds

OpenStack-Ansible supports the use of a multiple interfaces or sets of bonded interfaces that carry traffic
for OpenStack services and instances.

The following diagram demonstrates hosts using multiple interfaces:

The following diagram demonstrates hosts using multiple bonds:

74 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Each host will require the correct network bridges to be implemented. The following is the /etc/
network/interfaces file for infra1 using multiple bonded interfaces.

Note: If your environment does not have eth0, but instead has p1p1 or some other interface name,
ensure that all references to eth0 in all configuration files are replaced with the appropriate name. The
same applies to additional network interfaces.

This is a multi-NIC bonded configuration to implement the required
↪→bridges
for OpenStack-Ansible. This illustrates the configuration of the first
Infrastructure host and the IP addresses assigned should be adapted
for implementation on the other hosts.
#
After implementing this configuration, the host will need to be
rebooted.

Assuming that eth0/1 and eth2/3 are dual port NIC's we pair
eth0 with eth2 and eth1 with eth3 for increased resiliency
in the case of one interface card failing.
auto eth0
iface eth0 inet manual

bond-master bond0
bond-primary eth0

auto eth1
iface eth1 inet manual

bond-master bond1
bond-primary eth1

auto eth2
iface eth2 inet manual

bond-master bond0

(continues on next page)

1.2. User Guide 75

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

auto eth3
iface eth3 inet manual

bond-master bond1

Create a bonded interface. Note that the "bond-slaves" is set to none.
↪→This
is because the bond-master has already been set in the raw interfaces for
the new bond0.
auto bond0
iface bond0 inet manual

bond-slaves none
bond-mode active-backup
bond-miimon 100
bond-downdelay 200
bond-updelay 200

This bond will carry VLAN and VXLAN traffic to ensure isolation from
control plane traffic on bond0.
auto bond1
iface bond1 inet manual

bond-slaves none
bond-mode active-backup
bond-miimon 100
bond-downdelay 250
bond-updelay 250

Container/Host management VLAN interface
auto bond0.10
iface bond0.10 inet manual

vlan-raw-device bond0

OpenStack Networking VXLAN (tunnel/overlay) VLAN interface
auto bond1.30
iface bond1.30 inet manual

vlan-raw-device bond1

Storage network VLAN interface (optional)
auto bond0.20
iface bond0.20 inet manual

vlan-raw-device bond0

Container/Host management bridge
auto br-mgmt
iface br-mgmt inet static

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond0.10
address 172.29.236.11
netmask 255.255.252.0
gateway 172.29.236.1
dns-nameservers 8.8.8.8 8.8.4.4

OpenStack Networking VXLAN (tunnel/overlay) bridge
#
Nodes hosting Neutron agents must have an IP address on this interface,

(continues on next page)

76 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

including COMPUTE, NETWORK, and collapsed INFRA/NETWORK nodes.
#

auto br-vxlan
iface br-vxlan inet static

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond1.30
address 172.29.240.16
netmask 255.255.252.0

OpenStack Networking VLAN bridge
#
The "br-vlan" bridge is no longer necessary for deployments unless
↪→Neutron
agents are deployed in a container. Instead, a direct interface such as
bond1 can be specified via the "host_bind_override" override when
↪→defining
provider networks.
#
#auto br-vlan
#iface br-vlan inet manual
bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond1

compute1 Network VLAN bridge
#auto br-vlan
#iface br-vlan inet manual
bridge_stp off
bridge_waitport 0
bridge_fd 0
#

Storage bridge (optional)
#
Only the COMPUTE and STORAGE nodes must have an IP address
on this bridge. When used by infrastructure nodes, the
IP addresses are assigned to containers which use this
bridge.
#
auto br-storage
iface br-storage inet manual

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond0.20

compute1 Storage bridge
#auto br-storage
#iface br-storage inet static
bridge_stp off
bridge_waitport 0
bridge_fd 0

(continues on next page)

1.2. User Guide 77

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

bridge_ports bond0.20
address 172.29.244.16
netmask 255.255.252.0

Additional resources

For more information on how to properly configure network interface files and OpenStack-Ansible con-
figuration files for different deployment scenarios, please refer to the following:

• Configuring a test environment

• Configuring a homogeneous production environment

• Using provider network groups for a heterogeneous environment

For network agent and container networking toplogies, please refer to the following:

• Container networking architecture

1.2.3 Test environment example

Here is an example test environment for a working OpenStack-Ansible (OSA) deployment with a small
number of servers.

This example environment has the following characteristics:

• One infrastructure (control plane) host (8 vCPU, 8 GB RAM, 60 GB HDD)

• One compute host (8 vCPU, 8 GB RAM, 60 GB HDD)

• One Network Interface Card (NIC) for each host

• A basic compute kit environment, with the Image (glance) and Compute (nova) services set to use
file-backed storage.

• Internet access via the router address 172.29.236.1 on the Management Network

78 Chapter 1. Abstract

https://docs.openstack.org/openstack-ansible/wallaby/user/test/example.html
https://docs.openstack.org/openstack-ansible/wallaby/user/prod/example.html
https://docs.openstack.org/openstack-ansible/wallaby/user/prod/provnet_groups.html
https://docs.openstack.org/openstack-ansible/wallaby/reference/architecture/container-networking.html

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Network configuration

Switch port configuration

The following example provides a good reference for switch configuration and cab layout. This ex-
ample may be more that what is required for basic setups however it can be adjusted to just about any
configuration. Additionally you will need to adjust the VLANS noted within this example to match your
environment.

1.2. User Guide 79

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Network CIDR/VLAN assignments

The following CIDR and VLAN assignments are used for this environment.

Network CIDR VLAN
Management Network 172.29.236.0/22 10
Tunnel (VXLAN) Network 172.29.240.0/22 30
Storage Network 172.29.244.0/22 20

80 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

IP assignments

The following host name and IP address assignments are used for this environment.

Host name Management IP Tunnel (VxLAN) IP Storage IP
infra1 172.29.236.11 172.29.240.11
compute1 172.29.236.12 172.29.240.12 172.29.244.12
storage1 172.29.236.13 172.29.244.13

Host network configuration

Each host will require the correct network bridges to be implemented. The following is the /etc/
network/interfaces file for infra1.

Note: If your environment does not have eth0, but instead has p1p1 or some other interface name,
ensure that all references to eth0 in all configuration files are replaced with the appropriate name. The
same applies to additional network interfaces.

This is a single-NIC configuration to implement the required bridges
for OpenStack-Ansible. This illustrates the configuration of the first
Infrastructure host and the IP addresses assigned should be adapted
for implementation on the other hosts.
#
After implementing this configuration, the host will need to be
rebooted.

Physical interface
auto eth0
iface eth0 inet manual

Container/Host management VLAN interface
auto eth0.10
iface eth0.10 inet manual

vlan-raw-device eth0

OpenStack Networking VXLAN (tunnel/overlay) VLAN interface
auto eth0.30
iface eth0.30 inet manual

vlan-raw-device eth0

Storage network VLAN interface (optional)
auto eth0.20
iface eth0.20 inet manual

vlan-raw-device eth0

Container/Host management bridge
auto br-mgmt
iface br-mgmt inet static

bridge_stp off
bridge_waitport 0
bridge_fd 0

(continues on next page)

1.2. User Guide 81

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

bridge_ports eth0.10
address 172.29.236.11
netmask 255.255.252.0
gateway 172.29.236.1
dns-nameservers 8.8.8.8 8.8.4.4

Bind the External VIP
auto br-mgmt:0
iface br-mgmt:0 inet static

address 172.29.236.10
netmask 255.255.252.0

OpenStack Networking VXLAN (tunnel/overlay) bridge
#
The COMPUTE, NETWORK and INFRA nodes must have an IP address
on this bridge.
#
auto br-vxlan
iface br-vxlan inet static

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports eth0.30
address 172.29.240.11
netmask 255.255.252.0

OpenStack Networking VLAN bridge
auto br-vlan
iface br-vlan inet manual

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports eth0

compute1 Network VLAN bridge
#auto br-vlan
#iface br-vlan inet manual
bridge_stp off
bridge_waitport 0
bridge_fd 0
#
For tenant vlan support, create a veth pair to be used when the neutron
agent is not containerized on the compute hosts. 'eth12' is the value
↪→used on
the host_bind_override parameter of the br-vlan network section of the
openstack_user_config example file. The veth peer name must match the
↪→value
specified on the host_bind_override parameter.
#
When the neutron agent is containerized it will use the container_
↪→interface
value of the br-vlan network, which is also the same 'eth12' value.
#
Create veth pair, do not abort if already exists
pre-up ip link add br-vlan-veth type veth peer name eth12 || true
Set both ends UP

(continues on next page)

82 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

pre-up ip link set br-vlan-veth up
pre-up ip link set eth12 up
Delete veth pair on DOWN
post-down ip link del br-vlan-veth || true
bridge_ports eth0 br-vlan-veth

Storage bridge (optional)
#
Only the COMPUTE and STORAGE nodes must have an IP address
on this bridge. When used by infrastructure nodes, the
IP addresses are assigned to containers which use this
bridge.
#
auto br-storage
iface br-storage inet manual

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports eth0.20

compute1 Storage bridge
#auto br-storage
#iface br-storage inet static
bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports eth0.20
address 172.29.244.12
netmask 255.255.252.0

Deployment configuration

Environment layout

The /etc/openstack_deploy/openstack_user_config.yml file defines the environment
layout.

The following configuration describes the layout for this environment.

cidr_networks:

container: 172.29.236.0/22
tunnel: 172.29.240.0/22
storage: 172.29.244.0/22

used_ips:
- "172.29.236.1,172.29.236.50"
- "172.29.240.1,172.29.240.50"
- "172.29.244.1,172.29.244.50"
- "172.29.248.1,172.29.248.50"

global_overrides:
The internal and external VIP should be different IPs, however they
do not need to be on separate networks.

(continues on next page)

1.2. User Guide 83

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

external_lb_vip_address: 172.29.236.10
internal_lb_vip_address: 172.29.236.11
management_bridge: "br-mgmt"
provider_networks:

- network:
container_bridge: "br-mgmt"
container_type: "veth"
container_interface: "eth1"
ip_from_q: "container"
type: "raw"
group_binds:

- all_containers
- hosts

is_container_address: true
- network:

container_bridge: "br-vxlan"
container_type: "veth"
container_interface: "eth10"
ip_from_q: "tunnel"
type: "vxlan"
range: "1:1000"
net_name: "vxlan"
group_binds:

- neutron_linuxbridge_agent
- network:

container_bridge: "br-vlan"
container_type: "veth"
container_interface: "eth12"
host_bind_override: "eth12"
type: "flat"
net_name: "flat"
group_binds:

- neutron_linuxbridge_agent
- network:

container_bridge: "br-vlan"
container_type: "veth"
container_interface: "eth11"
type: "vlan"
range: "101:200,301:400"
net_name: "vlan"
group_binds:

- neutron_linuxbridge_agent
- network:

container_bridge: "br-storage"
container_type: "veth"
container_interface: "eth2"
ip_from_q: "storage"
type: "raw"
group_binds:

- glance_api
- cinder_api
- cinder_volume
- nova_compute

###
Infrastructure

(continues on next page)

84 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

###

galera, memcache, rabbitmq, utility
shared-infra_hosts:

infra1:
ip: 172.29.236.11

repository (apt cache, python packages, etc)
repo-infra_hosts:

infra1:
ip: 172.29.236.11

load balancer
haproxy_hosts:

infra1:
ip: 172.29.236.11

###
OpenStack
###

keystone
identity_hosts:

infra1:
ip: 172.29.236.11

cinder api services
storage-infra_hosts:

infra1:
ip: 172.29.236.11

glance
image_hosts:

infra1:
ip: 172.29.236.11

placement
placement-infra_hosts:

infra1:
ip: 172.29.236.11

nova api, conductor, etc services
compute-infra_hosts:

infra1:
ip: 172.29.236.11

heat
orchestration_hosts:

infra1:
ip: 172.29.236.11

horizon
dashboard_hosts:

infra1:
ip: 172.29.236.11

(continues on next page)

1.2. User Guide 85

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

neutron server, agents (L3, etc)
network_hosts:

infra1:
ip: 172.29.236.11

nova hypervisors
compute_hosts:

compute1:
ip: 172.29.236.12

cinder storage host (LVM-backed)
storage_hosts:

storage1:
ip: 172.29.236.13
container_vars:

cinder_backends:
limit_container_types: cinder_volume
lvm:

volume_group: cinder-volumes
volume_driver: cinder.volume.drivers.lvm.LVMVolumeDriver
volume_backend_name: LVM_iSCSI
iscsi_ip_address: "172.29.244.13"

Environment customizations

The optionally deployed files in /etc/openstack_deploy/env.d allow the customization of
Ansible groups. This allows the deployer to set whether the services will run in a container (the default),
or on the host (on metal).

For this environment you do not need the /etc/openstack_deploy/env.d folder as the defaults
set by OpenStack-Ansible are suitable.

User variables

The /etc/openstack_deploy/user_variables.yml file defines the global overrides for the
default variables.

For this environment, if you want to use the same IP address for the internal and external endpoints, you
will need to ensure that the internal and public OpenStack endpoints are served with the same protocol.
This is done with the following content:

This file contains an example of the global variable overrides
which may need to be set for a production environment.

OpenStack public endpoint protocol
openstack_service_publicuri_proto: http

86 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

1.2.4 Production environment

This is an example production environment for a working OpenStack-Ansible (OSA) deployment with
high availability services.

This example environment has the following characteristics:

• Three infrastructure (control plane) hosts

• Two compute hosts

• One NFS storage device

• One log aggregation host

• Multiple Network Interface Cards (NIC) configured as bonded pairs for each host

• Full compute kit with the Telemetry service (ceilometer) included, with NFS configured as a
storage back end for the Image (glance), and Block Storage (cinder) services

• Internet access via the router address 172.29.236.1 on the Management Network

Network configuration

Network CIDR/VLAN assignments

The following CIDR and VLAN assignments are used for this environment.

1.2. User Guide 87

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Network CIDR VLAN
Management Network 172.29.236.0/22 10
Tunnel (VXLAN) Network 172.29.240.0/22 30
Storage Network 172.29.244.0/22 20

IP assignments

The following host name and IP address assignments are used for this environment.

Host name Management IP Tunnel (VxLAN) IP Storage IP
lb_vip_address 172.29.236.9
infra1 172.29.236.11 172.29.240.11
infra2 172.29.236.12 172.29.240.12
infra3 172.29.236.13 172.29.240.13
log1 172.29.236.14
NFS Storage 172.29.244.15
compute1 172.29.236.16 172.29.240.16 172.29.244.16
compute2 172.29.236.17 172.29.240.17 172.29.244.17

Host network configuration

Each host will require the correct network bridges to be implemented. The following is the /etc/
network/interfaces file for infra1.

Note: If your environment does not have eth0, but instead has p1p1 or some other interface name,
ensure that all references to eth0 in all configuration files are replaced with the appropriate name. The
same applies to additional network interfaces.

This is a multi-NIC bonded configuration to implement the required
↪→bridges
for OpenStack-Ansible. This illustrates the configuration of the first
Infrastructure host and the IP addresses assigned should be adapted
for implementation on the other hosts.
#
After implementing this configuration, the host will need to be
rebooted.

Assuming that eth0/1 and eth2/3 are dual port NIC's we pair
eth0 with eth2 and eth1 with eth3 for increased resiliency
in the case of one interface card failing.
auto eth0
iface eth0 inet manual

bond-master bond0
bond-primary eth0

auto eth1
iface eth1 inet manual

bond-master bond1

(continues on next page)

88 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

bond-primary eth1

auto eth2
iface eth2 inet manual

bond-master bond0

auto eth3
iface eth3 inet manual

bond-master bond1

Create a bonded interface. Note that the "bond-slaves" is set to none.
↪→This
is because the bond-master has already been set in the raw interfaces for
the new bond0.
auto bond0
iface bond0 inet manual

bond-slaves none
bond-mode active-backup
bond-miimon 100
bond-downdelay 200
bond-updelay 200

This bond will carry VLAN and VXLAN traffic to ensure isolation from
control plane traffic on bond0.
auto bond1
iface bond1 inet manual

bond-slaves none
bond-mode active-backup
bond-miimon 100
bond-downdelay 250
bond-updelay 250

Container/Host management VLAN interface
auto bond0.10
iface bond0.10 inet manual

vlan-raw-device bond0

OpenStack Networking VXLAN (tunnel/overlay) VLAN interface
auto bond1.30
iface bond1.30 inet manual

vlan-raw-device bond1

Storage network VLAN interface (optional)
auto bond0.20
iface bond0.20 inet manual

vlan-raw-device bond0

Container/Host management bridge
auto br-mgmt
iface br-mgmt inet static

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond0.10
address 172.29.236.11
netmask 255.255.252.0

(continues on next page)

1.2. User Guide 89

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

gateway 172.29.236.1
dns-nameservers 8.8.8.8 8.8.4.4

OpenStack Networking VXLAN (tunnel/overlay) bridge
#
The COMPUTE, NETWORK and INFRA nodes must have an IP address
on this bridge.
#

auto br-vxlan
iface br-vxlan inet static

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond1.30
address 172.29.240.16
netmask 255.255.252.0

OpenStack Networking VLAN bridge
auto br-vlan
iface br-vlan inet manual

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond1

compute1 Network VLAN bridge
#auto br-vlan
#iface br-vlan inet manual
bridge_stp off
bridge_waitport 0
bridge_fd 0
#
For tenant vlan support, create a veth pair to be used when the neutron
agent is not containerized on the compute hosts. 'eth12' is the value
↪→used on
the host_bind_override parameter of the br-vlan network section of the
openstack_user_config example file. The veth peer name must match the
↪→value
specified on the host_bind_override parameter.
#
When the neutron agent is containerized it will use the container_
↪→interface
value of the br-vlan network, which is also the same 'eth12' value.
#
Create veth pair, do not abort if already exists
pre-up ip link add br-vlan-veth type veth peer name eth12 || true
Set both ends UP
pre-up ip link set br-vlan-veth up
pre-up ip link set eth12 up
Delete veth pair on DOWN
post-down ip link del br-vlan-veth || true
bridge_ports bond1 br-vlan-veth

Storage bridge (optional)
#

(continues on next page)

90 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

Only the COMPUTE and STORAGE nodes must have an IP address
on this bridge. When used by infrastructure nodes, the
IP addresses are assigned to containers which use this
bridge.
#
auto br-storage
iface br-storage inet manual

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond0.20

compute1 Storage bridge
#auto br-storage
#iface br-storage inet static
bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond0.20
address 172.29.244.16
netmask 255.255.252.0

Deployment configuration

Environment layout

The /etc/openstack_deploy/openstack_user_config.yml file defines the environment
layout.

The following configuration describes the layout for this environment.

cidr_networks:

container: 172.29.236.0/22
tunnel: 172.29.240.0/22
storage: 172.29.244.0/22

used_ips:
- "172.29.236.1,172.29.236.50"
- "172.29.240.1,172.29.240.50"
- "172.29.244.1,172.29.244.50"
- "172.29.248.1,172.29.248.50"

global_overrides:
internal_lb_vip_address: 172.29.236.9
#
The below domain name must resolve to an IP address
in the CIDR specified in haproxy_keepalived_external_vip_cidr.
If using different protocols (https/http) for the public/internal
endpoints the two addresses must be different.
#
external_lb_vip_address: openstack.example.com
management_bridge: "br-mgmt"
provider_networks:

(continues on next page)

1.2. User Guide 91

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

- network:
container_bridge: "br-mgmt"
container_type: "veth"
container_interface: "eth1"
ip_from_q: "container"
type: "raw"
group_binds:

- all_containers
- hosts

is_container_address: true
- network:

container_bridge: "br-vxlan"
container_type: "veth"
container_interface: "eth10"
ip_from_q: "tunnel"
type: "vxlan"
range: "1:1000"
net_name: "vxlan"
group_binds:

- neutron_linuxbridge_agent
- network:

container_bridge: "br-vlan"
container_type: "veth"
container_interface: "eth12"
host_bind_override: "eth12"
type: "flat"
net_name: "flat"
group_binds:

- neutron_linuxbridge_agent
- network:

container_bridge: "br-vlan"
container_type: "veth"
container_interface: "eth11"
type: "vlan"
range: "101:200,301:400"
net_name: "vlan"
group_binds:

- neutron_linuxbridge_agent
- network:

container_bridge: "br-storage"
container_type: "veth"
container_interface: "eth2"
ip_from_q: "storage"
type: "raw"
group_binds:

- glance_api
- cinder_api
- cinder_volume
- nova_compute

###
Infrastructure
###

galera, memcache, rabbitmq, utility
shared-infra_hosts:

(continues on next page)

92 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

repository (apt cache, python packages, etc)
repo-infra_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

load balancer
Ideally the load balancer should not use the Infrastructure hosts.
Dedicated hardware is best for improved performance and security.
haproxy_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

rsyslog server
log_hosts:

log1:
ip: 172.29.236.14

###
OpenStack
###

keystone
identity_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

cinder api services
storage-infra_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

glance
The settings here are repeated for each infra host.

(continues on next page)

1.2. User Guide 93

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

They could instead be applied as global settings in
user_variables, but are left here to illustrate that
each container could have different storage targets.
image_hosts:

infra1:
ip: 172.29.236.11
container_vars:

limit_container_types: glance
glance_nfs_client:

- server: "172.29.244.15"
remote_path: "/images"
local_path: "/var/lib/glance/images"
type: "nfs"
options: "_netdev,auto"

infra2:
ip: 172.29.236.12
container_vars:

limit_container_types: glance
glance_nfs_client:

- server: "172.29.244.15"
remote_path: "/images"
local_path: "/var/lib/glance/images"
type: "nfs"
options: "_netdev,auto"

infra3:
ip: 172.29.236.13
container_vars:

limit_container_types: glance
glance_nfs_client:

- server: "172.29.244.15"
remote_path: "/images"
local_path: "/var/lib/glance/images"
type: "nfs"
options: "_netdev,auto"

placement
placement-infra_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

nova api, conductor, etc services
compute-infra_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

heat
orchestration_hosts:

infra1:
(continues on next page)

94 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

ip: 172.29.236.11
infra2:

ip: 172.29.236.12
infra3:

ip: 172.29.236.13

horizon
dashboard_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

neutron api
network-infra_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

neutron agents (L3, DHCP, etc)
network-agent_hosts:

net1:
ip: 172.29.236.21

net2:
ip: 172.29.236.22

net3:
ip: 172.29.236.23

ceilometer (telemetry data collection)
metering-infra_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

aodh (telemetry alarm service)
metering-alarm_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

gnocchi (telemetry metrics storage)
metrics_hosts:

infra1:
ip: 172.29.236.11

infra2:
(continues on next page)

1.2. User Guide 95

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

ip: 172.29.236.12
infra3:

ip: 172.29.236.13

nova hypervisors
compute_hosts:

compute1:
ip: 172.29.236.16

compute2:
ip: 172.29.236.17

ceilometer compute agent (telemetry data collection)
metering-compute_hosts:

compute1:
ip: 172.29.236.16

compute2:
ip: 172.29.236.17

cinder volume hosts (NFS-backed)
The settings here are repeated for each infra host.
They could instead be applied as global settings in
user_variables, but are left here to illustrate that
each container could have different storage targets.
storage_hosts:

infra1:
ip: 172.29.236.11
container_vars:

cinder_backends:
limit_container_types: cinder_volume
nfs_volume:

volume_backend_name: NFS_VOLUME1
volume_driver: cinder.volume.drivers.nfs.NfsDriver
nfs_mount_options: "rsize=65535,wsize=65535,timeo=1200,

↪→actimeo=120"
nfs_shares_config: /etc/cinder/nfs_shares
shares:

- ip: "172.29.244.15"
share: "/vol/cinder"

infra2:
ip: 172.29.236.12
container_vars:

cinder_backends:
limit_container_types: cinder_volume
nfs_volume:

volume_backend_name: NFS_VOLUME1
volume_driver: cinder.volume.drivers.nfs.NfsDriver
nfs_mount_options: "rsize=65535,wsize=65535,timeo=1200,

↪→actimeo=120"
nfs_shares_config: /etc/cinder/nfs_shares
shares:

- ip: "172.29.244.15"
share: "/vol/cinder"

infra3:
ip: 172.29.236.13
container_vars:

cinder_backends:
(continues on next page)

96 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

limit_container_types: cinder_volume
nfs_volume:

volume_backend_name: NFS_VOLUME1
volume_driver: cinder.volume.drivers.nfs.NfsDriver
nfs_mount_options: "rsize=65535,wsize=65535,timeo=1200,

↪→actimeo=120"
nfs_shares_config: /etc/cinder/nfs_shares
shares:

- ip: "172.29.244.15"
share: "/vol/cinder"

Environment customizations

The optionally deployed files in /etc/openstack_deploy/env.d allow the customization of
Ansible groups. This allows the deployer to set whether the services will run in a container (the default),
or on the host (on metal).

For this environment, the cinder-volume runs in a container on the infrastructure hosts. To achieve
this, implement /etc/openstack_deploy/env.d/cinder.yml with the following content:

This file contains an example to show how to set
the cinder-volume service to run in a container.
#
Important note:
When using LVM or any iSCSI-based cinder backends, such as NetApp with
iSCSI protocol, the cinder-volume service *must* run on metal.
Reference: https://bugs.launchpad.net/ubuntu/+source/lxc/+bug/1226855

container_skel:
cinder_volumes_container:

properties:
is_metal: false

User variables

The /etc/openstack_deploy/user_variables.yml file defines the global overrides for the
default variables.

For this environment, implement the load balancer on the infrastructure hosts. Ensure that keepalived is
also configured with HAProxy in /etc/openstack_deploy/user_variables.yml with the
following content.

This file contains an example of the global variable overrides
which may need to be set for a production environment.
Load Balancer Configuration (haproxy/keepalived)
haproxy_keepalived_external_vip_cidr: "<external_vip_address>/<netmask>"
haproxy_keepalived_internal_vip_cidr: "172.29.236.9/32"
haproxy_keepalived_external_interface: ens2
haproxy_keepalived_internal_interface: br-mgmt

1.2. User Guide 97

OpenStack-Ansible Documentation, Release 23.4.5.dev7

1.2.5 Provider network groups

Many network configuration examples assume a homogenous environment, where each server is config-
ured identically and consistent network interfaces and interface names can be assumed across all hosts.

Recent changes to OSA enables deployers to define provider networks that apply to particular inventory
groups and allows for a heterogeneous network configuration within a cloud environment. New groups
can be created or existing inventory groups, such as network_hosts or compute_hosts, can be
used to ensure certain configurations are applied only to hosts that meet the given parameters.

Before reading this document, please review the following scenario:

• Production environment

This example environment has the following characteristics:

• A network_hosts group consisting of three collapsed infrastructure/network (control plane)
hosts

• A compute_hosts group consisting of two compute hosts

• Multiple Network Interface Cards (NIC) used as provider network interfaces that vary between
hosts

Note: The groups network_hosts and compute_hosts are pre-defined groups in an OpenStack-
Ansible deployment.

The following diagram demonstates servers with different network interface names:

98 Chapter 1. Abstract

https://docs.openstack.org/openstack-ansible/wallaby/user/prod/example.html

OpenStack-Ansible Documentation, Release 23.4.5.dev7

In this example environment, infrastructure/network nodes hosting L2/L3/DHCP agents will utilize an
interface named ens1f0 for the provider network physnet1. Compute nodes, on the other hand, will
utilize an interface named ens2f0 for the same physnet1 provider network.

Note: Differences in network interface names may be the result of a difference in drivers and/or PCI
slot locations.

Deployment configuration

Environment layout

The /etc/openstack_deploy/openstack_user_config.yml file defines the environment
layout.

The following configuration describes the layout for this environment.

cidr_networks:

container: 172.29.236.0/22

(continues on next page)

1.2. User Guide 99

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

tunnel: 172.29.240.0/22
storage: 172.29.244.0/22

used_ips:
- "172.29.236.1,172.29.236.50"
- "172.29.240.1,172.29.240.50"
- "172.29.244.1,172.29.244.50"
- "172.29.248.1,172.29.248.50"

global_overrides:
internal_lb_vip_address: 172.29.236.9
#
The below domain name must resolve to an IP address
in the CIDR specified in haproxy_keepalived_external_vip_cidr.
If using different protocols (https/http) for the public/internal
endpoints the two addresses must be different.
#
external_lb_vip_address: openstack.example.com
management_bridge: "br-mgmt"
provider_networks:

- network:
container_bridge: "br-mgmt"
container_type: "veth"
container_interface: "eth1"
ip_from_q: "container"
type: "raw"
group_binds:

- all_containers
- hosts

is_container_address: true
#
The below provider network defines details related to vxlan traffic,
including the range of VNIs to assign to project/tenant networks and
other attributes.
#
The network details will be used to populate the respective network
configuration file(s) on the members of the listed groups.
#
- network:

container_bridge: "br-vxlan"
container_type: "veth"
container_interface: "eth10"
ip_from_q: "tunnel"
type: "vxlan"
range: "1:1000"
net_name: "vxlan"
group_binds:

- network_hosts
- compute_hosts

#
The below provider network(s) define details related to a given

↪→provider
network: physnet1. Details include the name of the veth interface to
connect to the bridge when agent on_metal is False (container_

↪→interface)
or the physical interface to connect to the bridge when agent on_

↪→metal (continues on next page)

100 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

is True (host_bind_override), as well as the network type. The
↪→provider

network name (net_name) will be used to build a physical network
↪→mapping

to a network interface; either container_interface or host_bind_
↪→override

(when defined).
#
The network details will be used to populate the respective network
configuration file(s) on the members of the listed groups. In this
example, host_bind_override specifies the ens1f0 interface and

↪→applies
only to the members of network_hosts:
#
- network:

container_bridge: "br-vlan"
container_type: "veth"
container_interface: "eth12"
host_bind_override: "ens1f0"
type: "flat"
net_name: "physnet1"
group_binds:

- network_hosts
- network:

container_bridge: "br-vlan"
container_type: "veth"
container_interface: "eth11"
host_bind_override: "ens1f0"
type: "vlan"
range: "101:200,301:400"
net_name: "physnet1"
group_binds:

- network_hosts
#
The below provider network(s) also define details related to the
physnet1 provider network. In this example, however, host_bind_

↪→override
specifies the ens2f0 interface and applies only to the members of
compute_hosts:
#
- network:

container_bridge: "br-vlan"
container_type: "veth"
container_interface: "eth12"
host_bind_override: "ens2f0"
type: "flat"
net_name: "physnet1"
group_binds:

- compute_hosts
- network:

container_bridge: "br-vlan"
container_type: "veth"
container_interface: "eth11"
host_bind_override: "ens2f0"
type: "vlan"
range: "101:200,301:400"

(continues on next page)

1.2. User Guide 101

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

net_name: "physnet1"
group_binds:

- compute_hosts
#
The below provider network defines details related to storage

↪→traffic.
#
- network:

container_bridge: "br-storage"
container_type: "veth"
container_interface: "eth2"
ip_from_q: "storage"
type: "raw"
group_binds:

- glance_api
- cinder_api
- cinder_volume
- nova_compute

###
Infrastructure
###

galera, memcache, rabbitmq, utility
shared-infra_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

repository (apt cache, python packages, etc)
repo-infra_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

load balancer
Ideally the load balancer should not use the Infrastructure hosts.
Dedicated hardware is best for improved performance and security.
haproxy_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

rsyslog server
log_hosts:

log1:
ip: 172.29.236.14

(continues on next page)

102 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

###
OpenStack
###

keystone
identity_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

cinder api services
storage-infra_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

glance
The settings here are repeated for each infra host.
They could instead be applied as global settings in
user_variables, but are left here to illustrate that
each container could have different storage targets.
image_hosts:

infra1:
ip: 172.29.236.11
container_vars:

limit_container_types: glance
glance_nfs_client:

- server: "172.29.244.15"
remote_path: "/images"
local_path: "/var/lib/glance/images"
type: "nfs"
options: "_netdev,auto"

infra2:
ip: 172.29.236.12
container_vars:

limit_container_types: glance
glance_nfs_client:

- server: "172.29.244.15"
remote_path: "/images"
local_path: "/var/lib/glance/images"
type: "nfs"
options: "_netdev,auto"

infra3:
ip: 172.29.236.13
container_vars:

limit_container_types: glance
glance_nfs_client:

- server: "172.29.244.15"
remote_path: "/images"

(continues on next page)

1.2. User Guide 103

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

local_path: "/var/lib/glance/images"
type: "nfs"
options: "_netdev,auto"

placement
placement-infra_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

nova api, conductor, etc services
compute-infra_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

heat
orchestration_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

horizon
dashboard_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

neutron server, agents (L3, etc)
network_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

ceilometer (telemetry data collection)
metering-infra_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
(continues on next page)

104 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

ip: 172.29.236.13

aodh (telemetry alarm service)
metering-alarm_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

gnocchi (telemetry metrics storage)
metrics_hosts:

infra1:
ip: 172.29.236.11

infra2:
ip: 172.29.236.12

infra3:
ip: 172.29.236.13

nova hypervisors
compute_hosts:

compute1:
ip: 172.29.236.16

compute2:
ip: 172.29.236.17

ceilometer compute agent (telemetry data collection)
metering-compute_hosts:

compute1:
ip: 172.29.236.16

compute2:
ip: 172.29.236.17

cinder volume hosts (NFS-backed)
The settings here are repeated for each infra host.
They could instead be applied as global settings in
user_variables, but are left here to illustrate that
each container could have different storage targets.
storage_hosts:

infra1:
ip: 172.29.236.11
container_vars:

cinder_backends:
limit_container_types: cinder_volume
nfs_volume:

volume_backend_name: NFS_VOLUME1
volume_driver: cinder.volume.drivers.nfs.NfsDriver
nfs_mount_options: "rsize=65535,wsize=65535,timeo=1200,

↪→actimeo=120"
nfs_shares_config: /etc/cinder/nfs_shares
shares:

- ip: "172.29.244.15"
share: "/vol/cinder"

infra2:
ip: 172.29.236.12

(continues on next page)

1.2. User Guide 105

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

container_vars:
cinder_backends:

limit_container_types: cinder_volume
nfs_volume:

volume_backend_name: NFS_VOLUME1
volume_driver: cinder.volume.drivers.nfs.NfsDriver
nfs_mount_options: "rsize=65535,wsize=65535,timeo=1200,

↪→actimeo=120"
nfs_shares_config: /etc/cinder/nfs_shares
shares:

- ip: "172.29.244.15"
share: "/vol/cinder"

infra3:
ip: 172.29.236.13
container_vars:

cinder_backends:
limit_container_types: cinder_volume
nfs_volume:

volume_backend_name: NFS_VOLUME1
volume_driver: cinder.volume.drivers.nfs.NfsDriver
nfs_mount_options: "rsize=65535,wsize=65535,timeo=1200,

↪→actimeo=120"
nfs_shares_config: /etc/cinder/nfs_shares
shares:

- ip: "172.29.244.15"
share: "/vol/cinder"

Hosts in the network_hosts group will map physnet1 to the ens1f0 interface, while hosts in the
compute_hosts group will map physnet1 to the ens2f0 interface. Additional provider mappings
can be established using the same format in a separate definition.

An additional provider interface definition named physnet2 using different interfaces between hosts
may resemble the following:

- network:
container_bridge: "br-vlan2"
container_type: "veth"
container_interface: "eth13"
host_bind_override: "ens1f1"
type: "vlan"
range: "2000:2999"
net_name: "physnet2"
group_binds:

- network_hosts
- network:

container_bridge: "br-vlan2"
container_type: "veth"
host_bind_override: "ens2f1"
type: "vlan"
range: "2000:2999"
net_name: "physnet2"
group_binds:

- compute_hosts

Note: The container_interface parameter is only necessary when Neutron agents are run in

106 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

containers, and can be excluded in many cases. The container_bridge and container_type
parameters also relate to infrastructure containers, but should remain defined for legacy purposes.

Custom Groups

Custom inventory groups can be created to assist in segmenting hosts beyond the built-in groups pro-
vided by OpenStack-Ansible.

Before creating custom groups, please review the following:

• Configuring the inventory

The following diagram demonstates how a custom group can be used to further segment hosts:

When creating a custom group, first create a skeleton in /etc/openstack_deploy/env.d/
. The following is an example of an inventory skeleton for a group named custom2_hosts that
will consist of bare metal hosts, and has been created at /etc/openstack_deploy/env.d/
custom2_hosts.yml.

physical_skel:

custom2_containers:
belongs_to:

- all_containers
custom2_hosts:

belongs_to:
- hosts

1.2. User Guide 107

https://docs.openstack.org/openstack-ansible/wallaby/reference/inventory/configure-inventory.html

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Define the group and its members in a corresponding file in /etc/openstack_deploy/
conf.d/. The following is an example of a group named custom2_hosts defined in /
etc/openstack_deploy/conf.d/custom2_hosts.yml consisting of a single member,
compute2:

custom example
custom2_hosts:

compute2:
ip: 172.29.236.17

The custom group can then be specifed when creating a provider network, as shown here:

- network:
container_bridge: "br-vlan"
container_type: "veth"
host_bind_override: "ens8f1"
type: "vlan"
range: "101:200,301:400"
net_name: "physnet1"
group_binds:

- custom2_hosts

1.2.6 Installing with limited connectivity

Many playbooks and roles in OpenStack-Ansible retrieve dependencies from the public Internet by de-
fault. The example configurations assume that the deployer provides a good quality Internet connection
via a router on the OpenStack management network.

Deployments may encounter limited external connectivity for a number of reasons:

• Unreliable or low bandwidth external connectivity

• Firewall rules which block external connectivity

• External connectivity required to be via HTTP or SOCKS proxies

• Architectural decisions by the deployer to isolate the OpenStack networks

• High security environments where no external connectivity is permitted

When running OpenStack-Ansible in network environments that block internet connectivity, we recom-
mend the following set of practices and configuration overrides for deployers to use.

The options below are not mutually exclusive and may be combined if desired.

Example internet dependencies

• Python packages

• Distribution specific packages

• LXC container images

• Source code repositories

• GPG keys for package validation

108 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Practice A: Mirror internet resources locally

You may choose to operate and maintain mirrors of OpenStack-Ansible and OpenStack dependencies.
Mirrors often provide a great deal of risk mitigation by reducing dependencies on resources and systems
outside of your direct control. Mirrors can also provide greater stability, performance and security.

Python package repositories

Many packages used to run OpenStack are installed using pip. We advise mirroring the PyPi package
index used by pip. A deployer can choose to actively mirror the entire upstream PyPi repository, but this
may require a significant amount of storage. Alternatively, a caching pip proxy can be used to retain
local copies of only those packages which are required.

In order to configure the deployment to use an alternative index, create the file /etc/pip.conf with the
following content and ensure that it resides on all hosts in the environment.

[global]
index-url = http://pip.example.org/simple

In addition, it is necessary to configure easy_install to use an alternative index. easy_install is used
instead of pip to install anything listed under setup_requires in setup.py during wheel builds. See https:
//pip.pypa.io/en/latest/reference/pip_install/#controlling-setup-requires

To configure easy_install to use an alternative index, create the file /root/.pydistutils.cfg with the follow-
ing content.

[easy_install]
index_url = https://pip.example.org/simple

Then, in /etc/openstack_deploy/user_variables.yml, configure the deployment to copy these files from
the host into the container cache image.

Copy these files from the host into the containers
lxc_container_cache_files_from_host:

- /etc/pip.conf
- /root/.pydistutils.cfg

Distribution specific packages

Many software packages are installed on Ubuntu hosts using .deb packages. Similar packaging mecha-
nisms exist for other Linux distributions. We advise mirroring the repositories that host these packages.

Upstream Ubuntu repositories to mirror for Ubuntu 18.04 LTS:

• bionic

• bionic-updates

OpenStack-Ansible requires several other repositories to install specific components such as Galera and
Ceph.

Example repositories to mirror (Ubuntu target hosts):

• https://download.ceph.com/debian-luminous/

1.2. User Guide 109

https://pip.pypa.io/en/latest/reference/pip_install/#controlling-setup-requires
https://pip.pypa.io/en/latest/reference/pip_install/#controlling-setup-requires
https://download.ceph.com/debian-luminous/

OpenStack-Ansible Documentation, Release 23.4.5.dev7

• https://www.rabbitmq.com/debian

• http://ubuntu-cloud.archive.canonical.com/ubuntu

• https://packages.erlang-solutions.com/ubuntu

• https://mirror.rackspace.com/mariadb/repo/10.1/ubuntu

• https://repo.percona.com/apt

These lists are intentionally not exhaustive and equivalents will be required for other Linux distribu-
tions. Consult the OpenStack-Ansible playbooks and role documentation for further repositories and the
variables that may be used to override the repository location.

LXC container images

OpenStack-Ansible relies upon community built LXC images when building containers for OpenStack
services. Deployers may choose to create, maintain, and host their own container images. Consult the
openstack-ansible-lxc_container_create role for details on configuration overrides for
this scenario.

Source code repositories

OpenStack-Ansible relies upon Ansible Galaxy to download Ansible roles when bootstrapping a
deployment host. Deployers may wish to mirror the dependencies that are downloaded by the
bootstrap-ansible.sh script.

Deployers can configure the script to source Ansible from an alternate Git repository by setting the
environment variable ANSIBLE_GIT_REPO.

Deployers can configure the script to source Ansible role dependencies from alternate locations by pro-
viding a custom role requirements file and specifying the path to that file using the environment variable
ANSIBLE_ROLE_FILE.

Practice B: Proxy access to internet resources

Some networks have no routed access to the Internet, or require certain traffic to use application specific
gateways such as HTTP or SOCKS proxy servers.

Target and deployment hosts can be configured to reach public internet resources via HTTP or SOCKS
proxy server(s). OpenStack-Ansible may be used to configure target hosts to use the proxy server(s).
OpenStack-Ansible does not provide automation for creating the proxy server(s).

Initial host deployment is outside the scope of OpenStack-Ansible and the deployer must ensure a min-
imum set of proxy configuration is in place, in particular for the system package manager.

110 Chapter 1. Abstract

https://www.rabbitmq.com/debian
http://ubuntu-cloud.archive.canonical.com/ubuntu
https://packages.erlang-solutions.com/ubuntu
https://mirror.rackspace.com/mariadb/repo/10.1/ubuntu
https://repo.percona.com/apt

OpenStack-Ansible Documentation, Release 23.4.5.dev7

apt-get proxy configuration

See Setting up apt-get to use a http-proxy

Other proxy configuration

In addition to this basic configuration, there are other network clients on the target hosts which may be
configured to connect via a proxy. For example:

• Most Python network modules

• curl

• wget

• openstack

These tools and their underlying libraries are used by Ansible itself and the OpenStack-Ansible play-
books, so there must be a proxy configuration in place for the playbooks to successfully access external
resources.

Typically these tools read environment variables containing proxy server settings. These environment
variables can be configured in /etc/environment if required.

It is important to note that the proxy server should only be used to access external resources, and com-
munication between the internal components of the OpenStack deployment should be direct and not
through the proxy. The no_proxy environment variable is used to specify hosts that should be reached
directly without going through the proxy. These often are the hosts in the management network.

OpenStack-Ansible provides two distinct mechanisms for configuring proxy server settings:

1. The default configuration file suggests setting a persistent proxy configuration on all target hosts
and defines a persistent no_proxy environment variable which lists all hosts/containers management
addresses as well as the load balancer internal/external addresses.

2. An alternative method applies proxy configuration in a transient manner during the execution of
Ansible playbooks and defines a minimum set of management network IP addresses for no_proxy
that are required for the playbooks to succeed. These proxy settings do not persist after an Ansible
playbook run and the completed deployment does not require them in order to be functional.

The deployer must decide which of these approaches is more suitable for the target hosts, taking into
account the following guidance:

1. Persistent proxy configuration is a standard practice and network clients on the target hosts will be
able to access external resources after deployment.

2. The deployer must ensure that a persistent proxy configuration has complete coverage of all Open-
Stack management network host/containers IP addresses in the no_proxy environment variable. It is
necessary to use a list of IP addresses, CIDR notation is not valid for no_proxy.

3. Transient proxy configuration guarantees that proxy environment variables will not persist, ensur-
ing direct communication between services on the OpenStack management network after deployment.
Target host network clients such as wget will not be able to access external resources after deployment.

4. The maximum length of no_proxy should not exceed 1024 characters due to a fixed size buffer
in the pam_env PAM module. Longer environment variables will be truncated during deployment
operations and this will lead to unpredictable errors during or after deployment.

1.2. User Guide 111

https://help.ubuntu.com/community/AptGet/Howto#Setting_up_apt-get_to_use_a_http-proxy

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Once the number of hosts/containers in a deployment reaches a certain size, the length of no_proxy
will exceed 1024 characters at which point it is mandatory to use the transient proxy settings which only
requires a subset of the management network IP addresses to be present in no_proxy at deployment
time.

Refer to global_environment_variables: and deployment_environment_variables: in the example
user_variables.yml for details of configuring persistent and transient proxy environment variables.

Deployment host proxy configuration for bootstrapping Ansible

Configure the bootstrap-ansible.sh script used to install Ansible and Ansible role dependen-
cies on the deployment host to use a proxy by setting the environment variables HTTPS_PROXY or
HTTP_PROXY.

Note: We recommend you set your /etc/environment variables with proxy settings before launch-
ing any scripts or playbooks to avoid failure.

For larger or complex environments a dedicated deployment host allows the most suitable proxy config-
uration to be applied to both deployment and target hosts.

Considerations when proxying TLS traffic

Proxying TLS traffic often interferes with the clients ability to perform successful validation of
the certificate chain. Various configuration variables exist within the OpenStack-Ansible play-
books and roles that allow a deployer to ignore these validation failures. Find an example /etc/
openstack_deploy/user_variables.yml configuration below:

pip_validate_certs: false
galera_package_download_validate_certs: false

The list above is intentionally not exhaustive. Additional variables may exist within the project and will
be named using the *_validate_certs pattern. Disable certificate chain validation on a case by case basis
and only after encountering failures that are known to only be caused by the proxy server(s).

1.2.7 Routed environment example

This section describes an example production environment for a working OpenStack-Ansible (OSA)
deployment with high availability services where provider networks and connectivity between physical
machines are routed (layer 3).

This example environment has the following characteristics:

• Three infrastructure (control plane) hosts

• Two compute hosts

• One NFS storage device

• One log aggregation host

• Multiple Network Interface Cards (NIC) configured as bonded pairs for each host

112 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

• Full compute kit with the Telemetry service (ceilometer) included, with NFS configured as a
storage backend for the Image (glance), and Block Storage (cinder) services

• Static routes are added to allow communication between the Management, Tunnel, and Storage
Networks of each pod. The gateway address is the first usable address within each networks
subnet.

Network configuration

Network CIDR/VLAN assignments

The following CIDR assignments are used for this environment.

Network CIDR VLAN
POD 1 Management Network 172.29.236.0/24 10
POD 1 Tunnel (VXLAN) Network 172.29.237.0/24 30
POD 1 Storage Network 172.29.238.0/24 20
POD 2 Management Network 172.29.239.0/24 10
POD 2 Tunnel (VXLAN) Network 172.29.240.0/24 30
POD 2 Storage Network 172.29.241.0/24 20
POD 3 Management Network 172.29.242.0/24 10
POD 3 Tunnel (VXLAN) Network 172.29.243.0/24 30
POD 3 Storage Network 172.29.244.0/24 20
POD 4 Management Network 172.29.245.0/24 10
POD 4 Tunnel (VXLAN) Network 172.29.246.0/24 30
POD 4 Storage Network 172.29.247.0/24 20

1.2. User Guide 113

OpenStack-Ansible Documentation, Release 23.4.5.dev7

IP assignments

The following host name and IP address assignments are used for this environment.

Host name Management IP Tunnel (VxLAN) IP Storage IP
lb_vip_address 172.29.236.9
infra1 172.29.236.10 172.29.237.10
infra2 172.29.239.10 172.29.240.10
infra3 172.29.242.10 172.29.243.10
log1 172.29.236.11
NFS Storage 172.29.244.15
compute1 172.29.245.10 172.29.246.10 172.29.247.10
compute2 172.29.245.11 172.29.246.11 172.29.247.11

Host network configuration

Each host will require the correct network bridges to be implemented. The following is the /etc/
network/interfaces file for infra1.

Note: If your environment does not have eth0, but instead has p1p1 or some other interface name,
ensure that all references to eth0 in all configuration files are replaced with the appropriate name. The
same applies to additional network interfaces.

This is a multi-NIC bonded configuration to implement the required
↪→bridges
for OpenStack-Ansible. This illustrates the configuration of the first
Infrastructure host and the IP addresses assigned should be adapted
for implementation on the other hosts.
#
After implementing this configuration, the host will need to be
rebooted.

Assuming that eth0/1 and eth2/3 are dual port NIC's we pair
eth0 with eth2 and eth1 with eth3 for increased resiliency
in the case of one interface card failing.
auto eth0
iface eth0 inet manual

bond-master bond0
bond-primary eth0

auto eth1
iface eth1 inet manual

bond-master bond1
bond-primary eth1

auto eth2
iface eth2 inet manual

bond-master bond0

auto eth3

(continues on next page)

114 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

iface eth3 inet manual
bond-master bond1

Create a bonded interface. Note that the "bond-slaves" is set to none.
↪→This
is because the bond-master has already been set in the raw interfaces for
the new bond0.
auto bond0
iface bond0 inet manual

bond-slaves none
bond-mode active-backup
bond-miimon 100
bond-downdelay 200
bond-updelay 200

This bond will carry VLAN and VXLAN traffic to ensure isolation from
control plane traffic on bond0.
auto bond1
iface bond1 inet manual

bond-slaves none
bond-mode active-backup
bond-miimon 100
bond-downdelay 250
bond-updelay 250

Container/Host management VLAN interface
auto bond0.10
iface bond0.10 inet manual

vlan-raw-device bond0

OpenStack Networking VXLAN (tunnel/overlay) VLAN interface
auto bond1.30
iface bond1.30 inet manual

vlan-raw-device bond1

Storage network VLAN interface (optional)
auto bond0.20
iface bond0.20 inet manual

vlan-raw-device bond0

Container/Host management bridge
auto br-mgmt
iface br-mgmt inet static

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond0.10
address 172.29.236.10
netmask 255.255.255.0
gateway 172.29.236.1
dns-nameservers 8.8.8.8 8.8.4.4

OpenStack Networking VXLAN (tunnel/overlay) bridge
#
The COMPUTE, NETWORK and INFRA nodes must have an IP address
on this bridge.

(continues on next page)

1.2. User Guide 115

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

#
auto br-vxlan
iface br-vxlan inet static

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond1.30
address 172.29.237.10
netmask 255.255.252.0

OpenStack Networking VLAN bridge
auto br-vlan
iface br-vlan inet manual

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond1

compute1 Network VLAN bridge
#auto br-vlan
#iface br-vlan inet manual
bridge_stp off
bridge_waitport 0
bridge_fd 0
#
For tenant vlan support, create a veth pair to be used when the neutron
agent is not containerized on the compute hosts. 'eth12' is the value
↪→used on
the host_bind_override parameter of the br-vlan network section of the
openstack_user_config example file. The veth peer name must match the
↪→value
specified on the host_bind_override parameter.
#
When the neutron agent is containerized it will use the container_
↪→interface
value of the br-vlan network, which is also the same 'eth12' value.
#
Create veth pair, do not abort if already exists
pre-up ip link add br-vlan-veth type veth peer name eth12 || true
Set both ends UP
pre-up ip link set br-vlan-veth up
pre-up ip link set eth12 up
Delete veth pair on DOWN
post-down ip link del br-vlan-veth || true
bridge_ports bond1 br-vlan-veth

Storage bridge (optional)
#
Only the COMPUTE and STORAGE nodes must have an IP address
on this bridge. When used by infrastructure nodes, the
IP addresses are assigned to containers which use this
bridge.
#
auto br-storage
iface br-storage inet manual

bridge_stp off
(continues on next page)

116 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

bridge_waitport 0
bridge_fd 0
bridge_ports bond0.20

compute1 Storage bridge
#auto br-storage
#iface br-storage inet static
bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond0.20
address 172.29.247.10
netmask 255.255.255.0

Deployment configuration

Environment layout

The /etc/openstack_deploy/openstack_user_config.yml file defines the environment
layout.

For each pod, a group will need to be defined containing all hosts within that pod.

Within defined provider networks, address_prefix is used to override the prefix of the key added
to each host that contains IP address information. This should usually be one of either container,
tunnel, or storage. reference_group contains the name of a defined pod group and is used to
limit the scope of each provider network to that group.

Static routes are added to allow communication of provider networks between pods.

The following configuration describes the layout for this environment.

cidr_networks:

pod1_container: 172.29.236.0/24
pod2_container: 172.29.237.0/24
pod3_container: 172.29.238.0/24
pod4_container: 172.29.239.0/24
pod1_tunnel: 172.29.240.0/24
pod2_tunnel: 172.29.241.0/24
pod3_tunnel: 172.29.242.0/24
pod4_tunnel: 172.29.243.0/24
pod1_storage: 172.29.244.0/24
pod2_storage: 172.29.245.0/24
pod3_storage: 172.29.246.0/24
pod4_storage: 172.29.247.0/24

used_ips:
- "172.29.236.1,172.29.236.50"
- "172.29.237.1,172.29.237.50"
- "172.29.238.1,172.29.238.50"
- "172.29.239.1,172.29.239.50"
- "172.29.240.1,172.29.240.50"
- "172.29.241.1,172.29.241.50"

(continues on next page)

1.2. User Guide 117

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

- "172.29.242.1,172.29.242.50"
- "172.29.243.1,172.29.243.50"
- "172.29.244.1,172.29.244.50"
- "172.29.245.1,172.29.245.50"
- "172.29.246.1,172.29.246.50"
- "172.29.247.1,172.29.247.50"

global_overrides:
internal_lb_vip_address: internal-openstack.example.com
#
The below domain name must resolve to an IP address
in the CIDR specified in haproxy_keepalived_external_vip_cidr.
If using different protocols (https/http) for the public/internal
endpoints the two addresses must be different.
#
external_lb_vip_address: openstack.example.com
management_bridge: "br-mgmt"
provider_networks:

- network:
container_bridge: "br-mgmt"
container_type: "veth"
container_interface: "eth1"
ip_from_q: "pod1_container"
address_prefix: "container"
type: "raw"
group_binds:

- all_containers
- hosts

reference_group: "pod1_hosts"
is_container_address: true
Containers in pod1 need routes to the container networks of

↪→other pods
static_routes:

Route to container networks
- cidr: 172.29.236.0/22

gateway: 172.29.236.1
- network:

container_bridge: "br-mgmt"
container_type: "veth"
container_interface: "eth1"
ip_from_q: "pod2_container"
address_prefix: "container"
type: "raw"
group_binds:

- all_containers
- hosts

reference_group: "pod2_hosts"
is_container_address: true
Containers in pod2 need routes to the container networks of

↪→other pods
static_routes:

Route to container networks
- cidr: 172.29.236.0/22

gateway: 172.29.237.1
- network:

container_bridge: "br-mgmt"
(continues on next page)

118 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

container_type: "veth"
container_interface: "eth1"
ip_from_q: "pod3_container"
address_prefix: "container"
type: "raw"
group_binds:

- all_containers
- hosts

reference_group: "pod3_hosts"
is_container_address: true
Containers in pod3 need routes to the container networks of

↪→other pods
static_routes:

Route to container networks
- cidr: 172.29.236.0/22

gateway: 172.29.238.1
- network:

container_bridge: "br-mgmt"
container_type: "veth"
container_interface: "eth1"
ip_from_q: "pod4_container"
address_prefix: "container"
type: "raw"
group_binds:

- all_containers
- hosts

reference_group: "pod4_hosts"
is_container_address: true
Containers in pod4 need routes to the container networks of

↪→other pods
static_routes:

Route to container networks
- cidr: 172.29.236.0/22

gateway: 172.29.239.1
- network:

container_bridge: "br-vxlan"
container_type: "veth"
container_interface: "eth10"
ip_from_q: "pod1_tunnel"
address_prefix: "tunnel"
type: "vxlan"
range: "1:1000"
net_name: "vxlan"
group_binds:

- neutron_linuxbridge_agent
reference_group: "pod1_hosts"
Containers in pod1 need routes to the tunnel networks of other

↪→pods
static_routes:

Route to tunnel networks
- cidr: 172.29.240.0/22

gateway: 172.29.240.1
- network:

container_bridge: "br-vxlan"
container_type: "veth"
container_interface: "eth10"

(continues on next page)

1.2. User Guide 119

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

ip_from_q: "pod2_tunnel"
address_prefix: "tunnel"
type: "vxlan"
range: "1:1000"
net_name: "vxlan"
group_binds:

- neutron_linuxbridge_agent
reference_group: "pod2_hosts"
Containers in pod2 need routes to the tunnel networks of other

↪→pods
static_routes:

Route to tunnel networks
- cidr: 172.29.240.0/22

gateway: 172.29.241.1
- network:

container_bridge: "br-vxlan"
container_type: "veth"
container_interface: "eth10"
ip_from_q: "pod3_tunnel"
address_prefix: "tunnel"
type: "vxlan"
range: "1:1000"
net_name: "vxlan"
group_binds:

- neutron_linuxbridge_agent
reference_group: "pod3_hosts"
Containers in pod3 need routes to the tunnel networks of other

↪→pods
static_routes:

Route to tunnel networks
- cidr: 172.29.240.0/22

gateway: 172.29.242.1
- network:

container_bridge: "br-vxlan"
container_type: "veth"
container_interface: "eth10"
ip_from_q: "pod4_tunnel"
address_prefix: "tunnel"
type: "vxlan"
range: "1:1000"
net_name: "vxlan"
group_binds:

- neutron_linuxbridge_agent
reference_group: "pod4_hosts"
Containers in pod4 need routes to the tunnel networks of other

↪→pods
static_routes:

Route to tunnel networks
- cidr: 172.29.240.0/22

gateway: 172.29.243.1
- network:

container_bridge: "br-vlan"
container_type: "veth"
container_interface: "eth12"
host_bind_override: "eth12"
type: "flat"

(continues on next page)

120 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

net_name: "flat"
group_binds:

- neutron_linuxbridge_agent
- network:

container_bridge: "br-vlan"
container_type: "veth"
container_interface: "eth11"
type: "vlan"
range: "101:200,301:400"
net_name: "vlan"
group_binds:

- neutron_linuxbridge_agent
- network:

container_bridge: "br-storage"
container_type: "veth"
container_interface: "eth2"
ip_from_q: "pod1_storage"
address_prefix: "storage"
type: "raw"
group_binds:

- glance_api
- cinder_api
- cinder_volume
- nova_compute

reference_group: "pod1_hosts"
Containers in pod1 need routes to the storage networks of other

↪→pods
static_routes:

Route to storage networks
- cidr: 172.29.244.0/22

gateway: 172.29.244.1
- network:

container_bridge: "br-storage"
container_type: "veth"
container_interface: "eth2"
ip_from_q: "pod2_storage"
address_prefix: "storage"
type: "raw"
group_binds:

- glance_api
- cinder_api
- cinder_volume
- nova_compute

reference_group: "pod2_hosts"
Containers in pod2 need routes to the storage networks of other

↪→pods
static_routes:

Route to storage networks
- cidr: 172.29.244.0/22

gateway: 172.29.245.1
- network:

container_bridge: "br-storage"
container_type: "veth"
container_interface: "eth2"
ip_from_q: "pod3_storage"
address_prefix: "storage"

(continues on next page)

1.2. User Guide 121

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

type: "raw"
group_binds:

- glance_api
- cinder_api
- cinder_volume
- nova_compute

reference_group: "pod3_hosts"
Containers in pod3 need routes to the storage networks of other

↪→pods
static_routes:

Route to storage networks
- cidr: 172.29.244.0/22

gateway: 172.29.246.1
- network:

container_bridge: "br-storage"
container_type: "veth"
container_interface: "eth2"
ip_from_q: "pod4_storage"
address_prefix: "storage"
type: "raw"
group_binds:

- glance_api
- cinder_api
- cinder_volume
- nova_compute

reference_group: "pod4_hosts"
Containers in pod4 need routes to the storage networks of other

↪→pods
static_routes:

Route to storage networks
- cidr: 172.29.244.0/22

gateway: 172.29.247.1

###
Infrastructure
###

pod1_hosts:
infra1:

ip: 172.29.236.10
log1:

ip: 172.29.236.11

pod2_hosts:
infra2:

ip: 172.29.239.10

pod3_hosts:
infra3:

ip: 172.29.242.10

pod4_hosts:
compute1:

ip: 172.29.245.10
compute2:

ip: 172.29.245.11
(continues on next page)

122 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

galera, memcache, rabbitmq, utility
shared-infra_hosts:

infra1:
ip: 172.29.236.10

infra2:
ip: 172.29.239.10

infra3:
ip: 172.29.242.10

repository (apt cache, python packages, etc)
repo-infra_hosts:

infra1:
ip: 172.29.236.10

infra2:
ip: 172.29.239.10

infra3:
ip: 172.29.242.10

load balancer
Ideally the load balancer should not use the Infrastructure hosts.
Dedicated hardware is best for improved performance and security.
haproxy_hosts:

infra1:
ip: 172.29.236.10

infra2:
ip: 172.29.239.10

infra3:
ip: 172.29.242.10

rsyslog server
log_hosts:

log1:
ip: 172.29.236.11

###
OpenStack
###

keystone
identity_hosts:

infra1:
ip: 172.29.236.10

infra2:
ip: 172.29.239.10

infra3:
ip: 172.29.242.10

cinder api services
storage-infra_hosts:

infra1:
ip: 172.29.236.10

infra2:
ip: 172.29.239.10

infra3:
ip: 172.29.242.10

(continues on next page)

1.2. User Guide 123

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

glance
The settings here are repeated for each infra host.
They could instead be applied as global settings in
user_variables, but are left here to illustrate that
each container could have different storage targets.
image_hosts:

infra1:
ip: 172.29.236.11
container_vars:

limit_container_types: glance
glance_nfs_client:

- server: "172.29.244.15"
remote_path: "/images"
local_path: "/var/lib/glance/images"
type: "nfs"
options: "_netdev,auto"

infra2:
ip: 172.29.236.12
container_vars:

limit_container_types: glance
glance_nfs_client:

- server: "172.29.244.15"
remote_path: "/images"
local_path: "/var/lib/glance/images"
type: "nfs"
options: "_netdev,auto"

infra3:
ip: 172.29.236.13
container_vars:

limit_container_types: glance
glance_nfs_client:

- server: "172.29.244.15"
remote_path: "/images"
local_path: "/var/lib/glance/images"
type: "nfs"
options: "_netdev,auto"

nova api, conductor, etc services
compute-infra_hosts:

infra1:
ip: 172.29.236.10

infra2:
ip: 172.29.239.10

infra3:
ip: 172.29.242.10

heat
orchestration_hosts:

infra1:
ip: 172.29.236.10

infra2:
ip: 172.29.239.10

infra3:
ip: 172.29.242.10

(continues on next page)

124 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

horizon
dashboard_hosts:

infra1:
ip: 172.29.236.10

infra2:
ip: 172.29.239.10

infra3:
ip: 172.29.242.10

neutron server, agents (L3, etc)
network_hosts:

infra1:
ip: 172.29.236.10

infra2:
ip: 172.29.239.10

infra3:
ip: 172.29.242.10

ceilometer (telemetry data collection)
metering-infra_hosts:

infra1:
ip: 172.29.236.10

infra2:
ip: 172.29.239.10

infra3:
ip: 172.29.242.10

aodh (telemetry alarm service)
metering-alarm_hosts:

infra1:
ip: 172.29.236.10

infra2:
ip: 172.29.239.10

infra3:
ip: 172.29.242.10

gnocchi (telemetry metrics storage)
metrics_hosts:

infra1:
ip: 172.29.236.10

infra2:
ip: 172.29.239.10

infra3:
ip: 172.29.242.10

nova hypervisors
compute_hosts:

compute1:
ip: 172.29.245.10

compute2:
ip: 172.29.245.11

ceilometer compute agent (telemetry data collection)
metering-compute_hosts:

compute1:
ip: 172.29.245.10

(continues on next page)

1.2. User Guide 125

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

compute2:
ip: 172.29.245.11

cinder volume hosts (NFS-backed)
The settings here are repeated for each infra host.
They could instead be applied as global settings in
user_variables, but are left here to illustrate that
each container could have different storage targets.
storage_hosts:

infra1:
ip: 172.29.236.11
container_vars:

cinder_backends:
limit_container_types: cinder_volume
nfs_volume:

volume_backend_name: NFS_VOLUME1
volume_driver: cinder.volume.drivers.nfs.NfsDriver
nfs_mount_options: "rsize=65535,wsize=65535,timeo=1200,

↪→actimeo=120"
nfs_shares_config: /etc/cinder/nfs_shares
shares:

- ip: "172.29.244.15"
share: "/vol/cinder"

infra2:
ip: 172.29.236.12
container_vars:

cinder_backends:
limit_container_types: cinder_volume
nfs_volume:

volume_backend_name: NFS_VOLUME1
volume_driver: cinder.volume.drivers.nfs.NfsDriver
nfs_mount_options: "rsize=65535,wsize=65535,timeo=1200,

↪→actimeo=120"
nfs_shares_config: /etc/cinder/nfs_shares
shares:

- ip: "172.29.244.15"
share: "/vol/cinder"

infra3:
ip: 172.29.236.13
container_vars:

cinder_backends:
limit_container_types: cinder_volume
nfs_volume:

volume_backend_name: NFS_VOLUME1
volume_driver: cinder.volume.drivers.nfs.NfsDriver
nfs_mount_options: "rsize=65535,wsize=65535,timeo=1200,

↪→actimeo=120"
nfs_shares_config: /etc/cinder/nfs_shares
shares:

- ip: "172.29.244.15"
share: "/vol/cinder"

126 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Environment customizations

The optionally deployed files in /etc/openstack_deploy/env.d allow the customization of
Ansible groups. This allows the deployer to set whether the services will run in a container (the default),
or on the host (on metal).

For this environment, the cinder-volume runs in a container on the infrastructure hosts. To achieve
this, implement /etc/openstack_deploy/env.d/cinder.yml with the following content:

This file contains an example to show how to set
the cinder-volume service to run in a container.
#
Important note:
When using LVM or any iSCSI-based cinder backends, such as NetApp with
iSCSI protocol, the cinder-volume service *must* run on metal.
Reference: https://bugs.launchpad.net/ubuntu/+source/lxc/+bug/1226855

container_skel:
cinder_volumes_container:

properties:
is_metal: false

User variables

The /etc/openstack_deploy/user_variables.yml file defines the global overrides for the
default variables.

For this environment, implement the load balancer on the infrastructure hosts. Ensure that keepalived is
also configured with HAProxy in /etc/openstack_deploy/user_variables.yml with the
following content.

This file contains an example of the global variable overrides
which may need to be set for a production environment.
Load Balancer Configuration (haproxy/keepalived)
haproxy_keepalived_external_vip_cidr: "<external_vip_address>/<netmask>"
haproxy_keepalived_internal_vip_cidr: "172.29.236.9/32"
haproxy_keepalived_external_interface: ens2
haproxy_keepalived_internal_interface: br-mgmt

1.2.8 Ceph production example

This section describes an example production environment for a working OpenStack-Ansible (OSA)
deployment with high availability services and using the Ceph backend for images, volumes, and in-
stances.

This example environment has the following characteristics:

• Three infrastructure (control plane) hosts with ceph-mon containers

• Two compute hosts

• Three Ceph OSD storage hosts

1.2. User Guide 127

OpenStack-Ansible Documentation, Release 23.4.5.dev7

• One log aggregation host

• Multiple Network Interface Cards (NIC) configured as bonded pairs for each host

• Full compute kit with the Telemetry service (ceilometer) included, with Ceph configured as a
storage back end for the Image (glance), and Block Storage (cinder) services

• Internet access via the router address 172.29.236.1 on the Management Network

Integration with Ceph

OpenStack-Ansible allows Ceph storage cluster integration in three ways:

• connecting to your own pre-deployed ceph cluster by pointing to its information in
user_variables.yml and allowing openstack-ansible to ssh to the ceph monitors to retrieve
the contents of ceph.conf and the keyrings.

This method only requires a very small amount of configuration in user_variables.yml to
point to the external ceph cluster monitors. The whole configuration for ceph-ansible would live
outside the openstack-ansible deployment and there is no duplication. The ceph_mons variable
expects a list of IP addresses for the Ceph Monitor servers in the external ceph deployment:

Note: Overriding ceph_mons is required only when you are using external cluster which does not
present in the OpenStack-Ansibles inventory (ie group mon_group_name is not defined).

ceph_mons:
- 172.29.244.151

(continues on next page)

128 Chapter 1. Abstract

https://ceph.io

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

- 172.29.244.152
- 172.29.244.153

• connecting to your own pre-deployed ceph cluster by pointing to its monitors in
user_variables.yml as above and providing data to populate ceph.conf and ceph keyring
files on the deploy host. This is described here. No ssh access by openstack-ansible is required to
the ceph cluster.

• deploying a ceph cluster as part of the openstack-ansible deployment by using the roles main-
tained by the Ceph-Ansible project. Deployers can enable the ceph-install playbook by
adding hosts to the ceph-mon_hosts, ceph-osd_hosts and ceph-rgw_hosts groups
in openstack_user_config.yml, and then configuring Ceph-Ansible specific vars in the
OpenStack-Ansible user_variables.yml file.

This example will focus on the deployment of both OpenStack-Ansible and its Ceph cluster.

Network configuration

Network CIDR/VLAN assignments

The following CIDR and VLAN assignments are used for this environment.

Network CIDR VLAN
Management Network 172.29.236.0/22 10
Tunnel (VXLAN) Network 172.29.240.0/22 30
Storage Network 172.29.244.0/22 20

IP assignments

The following host name and IP address assignments are used for this environment.

Host name Management IP Tunnel (VxLAN) IP Storage IP
lb_vip_address 172.29.236.9
infra1 172.29.236.11 172.29.240.11
infra2 172.29.236.12 172.29.240.12
infra3 172.29.236.13 172.29.240.13
log1 172.29.236.14
compute1 172.29.236.16 172.29.240.16 172.29.244.16
compute2 172.29.236.17 172.29.240.17 172.29.244.17
osd1 172.29.236.18 172.29.244.18
osd2 172.29.236.19 172.29.244.19
osd3 172.29.236.20 172.29.244.20

1.2. User Guide 129

https://docs.openstack.org/openstack-ansible-ceph_client/latest/config-from-file.html
https://github.com/ceph/ceph-ansible/
https://github.com/ceph/ceph-ansible/blob/master/group_vars/all.yml.sample

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Host network configuration

Each host will require the correct network bridges to be implemented. The following is the /etc/
network/interfaces file for infra1.

Note: If your environment does not have eth0, but instead has p1p1 or some other interface name,
ensure that all references to eth0 in all configuration files are replaced with the appropriate name. The
same applies to additional network interfaces.

This is a multi-NIC bonded configuration to implement the required
↪→bridges
for OpenStack-Ansible. This illustrates the configuration of the first
Infrastructure host and the IP addresses assigned should be adapted
for implementation on the other hosts.
#
After implementing this configuration, the host will need to be
rebooted.

Assuming that eth0/1 and eth2/3 are dual port NIC's we pair
eth0 with eth2 and eth1 with eth3 for increased resiliency
in the case of one interface card failing.
auto eth0
iface eth0 inet manual

bond-master bond0
bond-primary eth0

auto eth1
iface eth1 inet manual

bond-master bond1
bond-primary eth1

auto eth2
iface eth2 inet manual

bond-master bond0

auto eth3
iface eth3 inet manual

bond-master bond1

Create a bonded interface. Note that the "bond-slaves" is set to none.
↪→This
is because the bond-master has already been set in the raw interfaces for
the new bond0.
auto bond0
iface bond0 inet manual

bond-slaves none
bond-mode active-backup
bond-miimon 100
bond-downdelay 200
bond-updelay 200

This bond will carry VLAN and VXLAN traffic to ensure isolation from
control plane traffic on bond0.
auto bond1

(continues on next page)

130 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

iface bond1 inet manual
bond-slaves none
bond-mode active-backup
bond-miimon 100
bond-downdelay 250
bond-updelay 250

Container/Host management VLAN interface
auto bond0.10
iface bond0.10 inet manual

vlan-raw-device bond0

OpenStack Networking VXLAN (tunnel/overlay) VLAN interface
auto bond1.30
iface bond1.30 inet manual

vlan-raw-device bond1

Storage network VLAN interface (optional)
auto bond0.20
iface bond0.20 inet manual

vlan-raw-device bond0

Container/Host management bridge
auto br-mgmt
iface br-mgmt inet static

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond0.10
address 172.29.236.11
netmask 255.255.252.0
gateway 172.29.236.1
dns-nameservers 8.8.8.8 8.8.4.4

OpenStack Networking VXLAN (tunnel/overlay) bridge
#
The COMPUTE, NETWORK and INFRA nodes must have an IP address
on this bridge.
#

auto br-vxlan
iface br-vxlan inet static

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond1.30
address 172.29.240.16
netmask 255.255.252.0

OpenStack Networking VLAN bridge
auto br-vlan
iface br-vlan inet manual

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond1

(continues on next page)

1.2. User Guide 131

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

compute1 Network VLAN bridge
#auto br-vlan
#iface br-vlan inet manual
bridge_stp off
bridge_waitport 0
bridge_fd 0
#
For tenant vlan support, create a veth pair to be used when the neutron
agent is not containerized on the compute hosts. 'eth12' is the value
↪→used on
the host_bind_override parameter of the br-vlan network section of the
openstack_user_config example file. The veth peer name must match the
↪→value
specified on the host_bind_override parameter.
#
When the neutron agent is containerized it will use the container_
↪→interface
value of the br-vlan network, which is also the same 'eth12' value.
#
Create veth pair, do not abort if already exists
pre-up ip link add br-vlan-veth type veth peer name eth12 || true
Set both ends UP
pre-up ip link set br-vlan-veth up
pre-up ip link set eth12 up
Delete veth pair on DOWN
post-down ip link del br-vlan-veth || true
bridge_ports bond1 br-vlan-veth

Storage bridge (optional)
#
Only the COMPUTE and STORAGE nodes must have an IP address
on this bridge. When used by infrastructure nodes, the
IP addresses are assigned to containers which use this
bridge.
#
auto br-storage
iface br-storage inet manual

bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond0.20

compute1 Storage bridge
#auto br-storage
#iface br-storage inet static
bridge_stp off
bridge_waitport 0
bridge_fd 0
bridge_ports bond0.20
address 172.29.244.16
netmask 255.255.252.0

132 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Deployment configuration

Environment layout

The /etc/openstack_deploy/openstack_user_config.yml file defines the environment
layout.

The following configuration describes the layout for this environment.

cidr_networks: &cidr_networks

container: 172.29.236.0/22
tunnel: 172.29.240.0/22
storage: 172.29.244.0/22

used_ips:
- "172.29.236.1,172.29.236.50"
- "172.29.240.1,172.29.240.50"
- "172.29.244.1,172.29.244.50"
- "172.29.248.1,172.29.248.50"

global_overrides:
cidr_networks: *cidr_networks
internal_lb_vip_address: 172.29.236.9
#
The below domain name must resolve to an IP address
in the CIDR specified in haproxy_keepalived_external_vip_cidr.
If using different protocols (https/http) for the public/internal
endpoints the two addresses must be different.
#
external_lb_vip_address: openstack.example.com
management_bridge: "br-mgmt"
provider_networks:

- network:
container_bridge: "br-mgmt"
container_type: "veth"
container_interface: "eth1"
ip_from_q: "container"
type: "raw"
group_binds:

- all_containers
- hosts

is_container_address: true
- network:

container_bridge: "br-vxlan"
container_type: "veth"
container_interface: "eth10"
ip_from_q: "tunnel"
type: "vxlan"
range: "1:1000"
net_name: "vxlan"
group_binds:

- neutron_linuxbridge_agent
- network:

container_bridge: "br-vlan"
container_type: "veth"

(continues on next page)

1.2. User Guide 133

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

container_interface: "eth12"
host_bind_override: "eth12"
type: "flat"
net_name: "flat"
group_binds:

- neutron_linuxbridge_agent
- network:

container_bridge: "br-vlan"
container_type: "veth"
container_interface: "eth11"
type: "vlan"
range: "101:200,301:400"
net_name: "vlan"
group_binds:

- neutron_linuxbridge_agent
- network:

container_bridge: "br-storage"
container_type: "veth"
container_interface: "eth2"
ip_from_q: "storage"
type: "raw"
group_binds:

- glance_api
- cinder_api
- cinder_volume
- manila_share
- nova_compute
- ceph-osd

###
Infrastructure
###

_infrastructure_hosts: &infrastructure_hosts
infra1:

ip: 172.29.236.11
infra2:

ip: 172.29.236.12
infra3:

ip: 172.29.236.13

nova hypervisors
compute_hosts: &compute_hosts

compute1:
ip: 172.29.236.16

compute2:
ip: 172.29.236.17

ceph-osd_hosts:
osd1:

ip: 172.29.236.18
osd2:

ip: 172.29.236.19
osd3:

ip: 172.29.236.20

(continues on next page)

134 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

galera, memcache, rabbitmq, utility
shared-infra_hosts: *infrastructure_hosts

ceph-mon containers
ceph-mon_hosts: *infrastructure_hosts

ceph-mds containers
ceph-mds_hosts: *infrastructure_hosts

ganesha-nfs hosts
ceph-nfs_hosts: *infrastructure_hosts

repository (apt cache, python packages, etc)
repo-infra_hosts: *infrastructure_hosts

load balancer
Ideally the load balancer should not use the Infrastructure hosts.
Dedicated hardware is best for improved performance and security.
haproxy_hosts: *infrastructure_hosts

rsyslog server
log_hosts:

log1:
ip: 172.29.236.14

###
OpenStack
###

keystone
identity_hosts: *infrastructure_hosts

cinder api services
storage-infra_hosts: *infrastructure_hosts

cinder volume hosts (Ceph RBD-backed)
storage_hosts: *infrastructure_hosts

glance
image_hosts: *infrastructure_hosts

placement
placement-infra_hosts: *infrastructure_hosts

nova api, conductor, etc services
compute-infra_hosts: *infrastructure_hosts

heat
orchestration_hosts: *infrastructure_hosts

horizon
dashboard_hosts: *infrastructure_hosts

neutron server, agents (L3, etc)
network_hosts: *infrastructure_hosts

(continues on next page)

1.2. User Guide 135

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

ceilometer (telemetry data collection)
metering-infra_hosts: *infrastructure_hosts

aodh (telemetry alarm service)
metering-alarm_hosts: *infrastructure_hosts

gnocchi (telemetry metrics storage)
metrics_hosts: *infrastructure_hosts

manila (share service)
manila-infra_hosts: *infrastructure_hosts
manila-data_hosts: *infrastructure_hosts

ceilometer compute agent (telemetry data collection)
metering-compute_hosts: *compute_hosts

Environment customizations

The optionally deployed files in /etc/openstack_deploy/env.d allow the customization of
Ansible groups. This allows the deployer to set whether the services will run in a container (the default),
or on the host (on metal).

For a ceph environment, you can run the cinder-volume in a container. To do this you will need to
create a /etc/openstack_deploy/env.d/cinder.yml file with the following content:

This file contains an example to show how to set
the cinder-volume service to run in a container.
#
Important note:
When using LVM or any iSCSI-based cinder backends, such as NetApp with
iSCSI protocol, the cinder-volume service *must* run on metal.
Reference: https://bugs.launchpad.net/ubuntu/+source/lxc/+bug/1226855

container_skel:
cinder_volumes_container:

properties:
is_metal: false

User variables

The /etc/openstack_deploy/user_variables.yml file defines the global overrides for the
default variables.

For this example environment, we configure a HA load balancer. We implement the load
balancer (HAProxy) with an HA layer (keepalived) on the infrastructure hosts. Your /etc/
openstack_deploy/user_variables.yml must have the following content to configure
haproxy, keepalived and ceph:

Because we have three haproxy nodes, we need

(continues on next page)

136 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

to one active LB IP, and we use keepalived for that.
Load Balancer Configuration (haproxy/keepalived)
haproxy_keepalived_external_vip_cidr: "<external_ip_address>/<netmask>"
haproxy_keepalived_internal_vip_cidr: "172.29.236.9/32"
haproxy_keepalived_external_interface: ens2
haproxy_keepalived_internal_interface: br-mgmt

Ceph cluster fsid (must be generated before first run)
Generate a uuid using: python -c 'import uuid; print(str(uuid.uuid4()))'
generate_fsid: false
fsid: 116f14c4-7fe1-40e4-94eb-9240b63de5c1 # Replace with your generated
↪→UUID

ceph-ansible settings
See https://github.com/ceph/ceph-ansible/tree/master/group_vars for
additional configuration options available.
monitor_address_block: "{{ cidr_networks.container }}"
public_network: "{{ cidr_networks.container }}"
cluster_network: "{{ cidr_networks.storage }}"
journal_size: 10240 # size in MB
ceph-ansible automatically creates pools & keys for OpenStack services
openstack_config: true
cinder_ceph_client: cinder
glance_ceph_client: glance
glance_default_store: rbd
glance_rbd_store_pool: images
nova_libvirt_images_rbd_pool: vms

cinder_backends:
rbd_volumes:

volume_driver: cinder.volume.drivers.rbd.RBDDriver
rbd_pool: volumes
rbd_ceph_conf: /etc/ceph/ceph.conf
rbd_store_chunk_size: 8
volume_backend_name: rbddriver
rbd_user: "{{ cinder_ceph_client }}"
rbd_secret_uuid: "{{ cinder_ceph_client_uuid }}"
report_discard_supported: true

1.2.9 Using radosgw as a drop-in replacement for Swift

OpenStack-Ansible gives you the option of deploying radosgw as a drop-in replacement for native Open-
Stack Swift.

In particular, the ceph-rgw-install.yml playbook (which includes
ceph-rgw-keystone-setup.yml) will deploy radosgw to any ceph-rgw hosts, and cre-
ate a corresponding Keystone object-store service catalog entry. The service endpoints do contain
the AUTH_%(tenant_id)s prefix just like in native Swift, so public read ACLs and temp URLs will
work just like they do in Swift.

By default, OSA enables only the Swift API in radosgw.

1.2. User Guide 137

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Adding S3 API support

You may want to enable the default radosgw S3 API, in addition to the Swift API. In order to do so, you
need to override the ceph_conf_overrides_rgw variable in user_variables.yml. Below is
an example configuration snippet:

Note: Mentioned below overrides are default ones and will be applied to ceph-rgw group

ceph_conf_overrides_rgw:

"client.rgw.{{ hostvars[inventory_hostname]['ansible_hostname'] }}.rgw0":
OpenStack integration with Keystone
rgw_keystone_url: "{{ keystone_service_adminuri }}"
rgw_keystone_api_version: 3
rgw_keystone_admin_user: "{{ radosgw_admin_user }}"
rgw_keystone_admin_password: "{{ radosgw_admin_password }}"
rgw_keystone_admin_project: "{{ radosgw_admin_tenant }}"
rgw_keystone_admin_domain: default
rgw_keystone_accepted_roles: 'member, _member_, admin, swiftoperator'
rgw_keystone_implicit_tenants: 'true'
rgw_swift_account_in_url: 'true'
rgw_swift_versioning_enabled: 'true'
rgw_enable_apis: swift
For S3 support, update/add below rows
rgw_enable_apis: 'swift, s3'
rgw_s3_auth_use_keystone: 'true'

You may also want to add the rgw_dns_name option if you want to enable bucket hostnames with the
S3 API.

1.2.10 Integrate radosgw into your Telemetry

The telemetry (and in consequence accounting) for radosgw as object-storage will not work out of the
box. You need to change different parts of your OpenStack and Ceph setup to get it up and running.

Ceilometer Changes

Ceilometer needs additional pip packages to talk to Ceph Rados Gateway. To install it, edit the default
ceilometer_pip_packages in your user_variables.yml file:

ceilometer_pip_packages:
- ceilometer
- ceilometermiddleware
- cryptography
- gnocchiclient
- libvirt-python
- PyMySQL
- pymongo
- python-ceilometerclient
- python-memcached
- tooz

(continues on next page)

138 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

- warlock
- requests-aws>=0.1.4 #https://github.com/openstack/ceilometer/blob/

↪→stable/pike/test-requirements.txt

You also have to configure Ceilometer to actually query radosgw. When your ceilometer isnt configured
to poll everything, add these pollsters to your polling.yml file:

- name: radosgw_pollsters
interval: 1200
meters:

- radosgw.containers.objects
- radosgw.containers.objects.size
- radosgw.objects
- radosgw.objects.size
- radosgw.objects.containers
- radosgw.usage

Add them also to your pipeline:

- name: radosgw_source
interval: 60
meters:

- "rgw.objects"
- "rgw.objects.size"
- "rgw.objects.containers"
- "rgw.api.request"
- "rgw.containers.objects"
- "rgw.containers.objects.size"

sinks:
- meter_sink

Declare Ceph Rados Gateway as object-store in your ceilometer.conf file by adding this to your
user_variables.yml file:

ceilometer_ceilometer_conf_overrides:
service_types:

radosgw: object-store
rgw_admin_credentials:

access_key: XXX
secret_key: XXX

The required user and credentials is created by this command:

radosgw-admin user create --uid admin --display-name "admin user" --caps
↪→"usage=read,write;metadata=read,write;users=read,write;buckets=read,write
↪→"

To get your credentials, execute:

1.2. User Guide 139

OpenStack-Ansible Documentation, Release 23.4.5.dev7

radosgw-admin user info --uid admin | jq '.keys'

Ceph Changes

The required changes are described in the documentation of Ceilometer. This is just a sum up. In your
ceph.conf add:

[client.radosgw.gateway]
rgw enable usage log = true
rgw usage log tick interval = 30
rgw usage log flush threshold = 1024
rgw usage max shards = 32
rgw usage max user shards = 1

1.2.11 Security settings

This chapter contains information to configure specific security settings for your OpenStack-Ansible
cloud.

For understanding security design, please see Security.

Securing services with SSL certificates

The OpenStack Security Guide recommends providing secure communication between various services
in an OpenStack deployment. The OpenStack-Ansible project currently offers the ability to configure
SSL certificates for secure communication between services:

All public endpoints reside behind haproxy, resulting in the only certificate management for externally
visible https services are those for haproxy. Certain internal services such as RabbitMQ also require
proper SSL configuration.

When deploying with OpenStack-Ansible, you can either use self-signed certificates that are generated
during the deployment process or provide SSL certificates, keys, and CA certificates from your own
trusted certificate authority. Highly secured environments use trusted, user-provided certificates for as
many services as possible.

Note: Perform all SSL certificate configuration in /etc/openstack_deploy/
user_variables.yml file. Do not edit the playbooks or roles themselves.

Openstack-Ansible uses an ansible role ansible_role_pki as a general tool to manage and install self-
signed and user provided certificates.

140 Chapter 1. Abstract

https://docs.openstack.org/security-guide/secure-communication.html
https://opendev.org/openstack/ansible-role-pki

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Self-signed certificates

Self-signed certificates enable you to start quickly and encrypt data in transit. However, they do not
provide a high level of trust for public endpoints in highly secure environments. By default, self-signed
certificates are used in OpenStack-Ansible. When self-signed certificates are used, certificate verification
is automatically disabled.

Self-signed certificates can play an important role in securing internal services within the Openstack-
Ansible deployment, as they can only be issued by the private CA associated with the deployment. Using
mutual TLS between backend services such as RabbitMQ and MariaDB with self-signed certificates
and a robust CA setup can ensure that only correctly authenticated clients can connect to these internal
services.

Generating and regenerating self-signed certificate authorities

A self-signed certificate authority is generated on the deploy host during the first run of the playbook.

To regenerate the certificate authority you must set the openstack_pki_regen_ca variable to ei-
ther the name of the root CA or intermediate CA you wish or regenerate, or to true to regenerate all
self-signed certificate authorities.

openstack-ansible -e "openstack_pki_regen_
↪→ca=ExampleCorpIntermediate" certificate-authority.yml

Take particular care not to regenerate Root or Intermediate certificate authorities in a way that may
invalidate existing server certificates in the deployment. It may be preferable to create new Intermediate
CA certificates rather than regenerate existing ones in order to maintain existing chains of trust.

Generating and regenerating self-signed certificates

Self-signed certificates are generated for each service during the first run of the playbook.

To generate a new self-signed certificate for a service, you must set the
<servicename>_pki_regen_cert variable to true in one of the following ways:

• To force a self-signed certificate to regenerate, you can pass the variable to
openstack-ansible on the command line:

openstack-ansible -e "haproxy_pki_regen_cert=true" haproxy-install.
↪→yml

• To force a self-signed certificate to regenerate with every playbook run, set the appropriate regen-
eration option to true. For example, if you have already run the haproxy playbook, but you
want to regenerate the self-signed certificate, set the haproxy_pki_regen_cert variable to
true in the /etc/openstack_deploy/user_variables.yml file:

haproxy_pki_regen_cert: true

1.2. User Guide 141

OpenStack-Ansible Documentation, Release 23.4.5.dev7

User-provided certificates

For added trust in highly secure environments, you can provide your own SSL certificates, keys, and
CA certificates. Acquiring certificates from a trusted certificate authority is outside the scope of this
document, but the Certificate Management section of the Linux Documentation Project explains how to
create your own certificate authority and sign certificates.

Use the following process to deploy user-provided SSL certificates in OpenStack-Ansible:

1. Copy your SSL certificate, key, and CA certificate files to the deployment host.

2. Specify the path to your SSL certificate, key, and CA certificate in the /etc/
openstack_deploy/user_variables.yml file.

3. Run the playbook for that service.

HAProxy example

The variables to set which provide the path on the deployment node to the certificates for HAProxy
configuration are:

haproxy_user_ssl_cert: /etc/openstack_deploy/ssl/example.com.crt
haproxy_user_ssl_key: /etc/openstack_deploy/ssl/example.com.key
haproxy_user_ssl_ca_cert: /etc/openstack_deploy/ssl/ExampleCA.crt

RabbitMQ example

To deploy user-provided certificates for RabbitMQ, copy the certificates to the deployment host, edit the
/etc/openstack_deploy/user_variables.yml file and set the following three variables:

rabbitmq_user_ssl_cert: /etc/openstack_deploy/ssl/example.com.crt
rabbitmq_user_ssl_key: /etc/openstack_deploy/ssl/example.com.key
rabbitmq_user_ssl_ca_cert: /etc/openstack_deploy/ssl/ExampleCA.crt

Then, run the playbook to apply the certificates:

openstack-ansible rabbitmq-install.yml

The playbook deploys your user-provided SSL certificate, key, and CA certificate to each RabbitMQ
container.

The process is identical for the other services. Replace rabbitmq in the preceding configuration variables
with horizon, haproxy, or keystone, and then run the playbook for that service to deploy user-provided
certificates to those services.

142 Chapter 1. Abstract

http://www.tldp.org/HOWTO/SSL-Certificates-HOWTO/c118.html

OpenStack-Ansible Documentation, Release 23.4.5.dev7

LetsEncrypt certificates

The HAProxy ansible role supports using LetsEncrypt to automatically deploy trusted SSL certificates
for the public endpoint. Each HAProxy server will individually request a LetsEncrypt certificate.

The http-01 type challenge is used by certbot to deploy certificates so it is required that the public
endpoint is accessible directly on the internet.

Deployment of certificates using LetsEncrypt has been validated for openstack-ansible using Ubuntu
Bionic. Other distributions should work but are not tested.

To deploy certificates with LetsEncrypt, add the following to /etc/openstack_deploy/
user_variables.yml to enable the letsencrypt function in the haproxy ansible role, and to create
a new backend service called letsencrypt to service http-01 challenge requests.

haproxy_ssl: true
haproxy_ssl_letsencrypt_enable: True
haproxy_ssl_letsencrypt_install_method: "distro"
haproxy_ssl_letsencrypt_email: "email.address@example.com"

If you dont have horizon deployed, you will need to define dummy service that will listen on 80 and 443
ports and will be used for acme-challenge, whose backend is certbot on the haproxy host:

haproxy_extra_services:
the external facing service which serves the apache test site, with a

↪→acl for LE requests
- service:

haproxy_service_name: certbot
haproxy_redirect_http_port: 80 #redirect

↪→port 80 to port ssl
haproxy_redirect_scheme: "https if !{ ssl_fc } !{ path_beg /.well-

↪→known/acme-challenge/ }" #redirect all non-ssl traffic to ssl except
↪→acme-challenge

haproxy_port: 443
haproxy_frontend_acls: "{{ haproxy_ssl_letsencrypt_acl }}"

↪→#use a frontend ACL specify the backend to use for acme-challenge
haproxy_ssl: True
haproxy_backend_nodes: #apache is

↪→running on locally on 127.0.0.1:80 serving a dummy site
- name: local-test-service

ip_addr: 127.0.0.1
haproxy_balance_type: http
haproxy_backend_port: 80
haproxy_backend_options:

- "httpchk HEAD /" # request to
↪→use for health check for the example service

1.2. User Guide 143

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Apply ansible-hardening

The ansible-hardening role is applicable to physical hosts within an OpenStack-Ansible deploy-
ment that are operating as any type of node, infrastructure or compute. By default, the role is en-
abled. You can disable it by changing the value of the apply_security_hardening variable in
the user_variables.yml file to false:

apply_security_hardening: false

You can apply security hardening configurations to an existing environment or audit an environment by
using a playbook supplied with OpenStack-Ansible:

Apply security hardening configurations
openstack-ansible security-hardening.yml

Perform a quick audit by using Ansible's check mode
openstack-ansible --check security-hardening.yml

For more information about the security configurations, see the security hardening role documentation.

1.2.12 Source overriding examples

There are situations where a deployer want to override sources with its own fork.

This chapter gives case-by-case examples on how to override the default sources.

Overriding Ansible version

Overriding the default Ansible version is not recommended, as each branch of OpenStack-Ansible has
been built with the a specific Ansible version in mind, and many Ansible changes are neither backwards
nor forward compatible.

The bootstrap-ansible.sh script installs Ansible, and uses a variable ANSIBLE_PACKAGE to
describe which version to install.

For example to install ansible version 2.5.0:

$ export ANSIBLE_PACKAGE="ansible==2.5.0"

Installing directly from git is also supported. For example, from the tip of Ansible development branch:

$ export ANSIBLE_PACKAGE="git+https://github.com/ansible/ansible@devel
↪→#egg=ansible"

144 Chapter 1. Abstract

https://docs.openstack.org/ansible-hardening/

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Overriding the roles

Overriding the role file has been explained in the reference guide, on the Adding new or overriding roles
in your OpenStack-Ansible installation section.

Overriding other upstream projects source code

All the upstream repositories used are defined in the openstack-ansible integrated repository, in
the playbooks/defaults/repo_packages folder.

For example, if you want to override glance repository with your own, you need to define the follow-
ing:

glance_git_repo: https://<your git repo>
glance_git_install_branch: <your git branch or commit SHA>
glance_git_project_group: glance_all

Please note, for this glance example, that you do not need to edit the playbooks/defaults/
repo_packages/openstack_services.yml file.

Instead, the usual overrides mechanism can take place, and you can define these 3 variables in a
user_*.yml file. See also the Overriding default configuration page.

Note: These variables behave a little differently than standard ansible precedence, because they are also
consumed by a custom lookup plugin.

The py_pkgs lookup will ignore all _git_ variables unless the _git_repo variable is present.

So even if you only want to override the _git_install_branch for a repository, you should also
define the _git_repo variable in your user variables.

1.2.13 Telemetry with Gnocchi, Ceph and Redis example

The default openstack-ansible installation configures gnocchi to use a file as storage backend. When
you already have a pre-installed ceph, you can use this as backend for gnocchi. This documentation will
guide you how to set up gnocchi to use your ceph as storage backend.

Ceph as metric storage

gnocchi_storage_driver: ceph

You have to add some pip packages to your gnocchi setup:

gnocchi_pip_packages:
- cryptography
- gnocchiclient
this is what we want:
- "gnocchi[mysql,ceph,ceph_alternative_lib,redis,keystone]"
but as there is no librados >=12.2 pip package we have to first install
↪→ceph without alternative support
after adding the ceph repo to gnocchi container, python-rados>=12.2.0 is
↪→installed and linked automatically (continues on next page)

1.2. User Guide 145

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

and gnocchi will automatically take up the features present in the used
↪→rados lib.
- "gnocchi[mysql,ceph,redis,keystone]"
- keystonemiddleware
- python-memcached

But when your setup grows, gnocchi might slow down or block your ceph installation. You might
experience slow requests and stuck PGs in your Ceph. As this might have multiple causes, take a look
at the presentations linked in the Performance Tests for Gnocchi section. They also include various
parameters which you might tune.

Redis as measure storage

One solution to possible performance problems is to use an incoming measure storage for your gnocchi
installation. The supported storage systems are:

• File (default)

• Ceph (preferred)

• OpenStack Swift

• Amazon S3

• Redis

When your Swift API endpoint uses Ceph as a backend, the only one left for this setup is Redis.

So first of all setup a redis server/cluster, e.g. with this ansible role. Next, you have to configure Gnocchi
with OpenStack-Ansible to use the Redis Cluster as incoming storage:

gnocchi_conf_overrides:
incoming:

driver: redis
redis_url: redis://{{ hostvars[groups['redis-master'][0]]['ansible_

↪→default_ipv4']['address'] }}:{{ hostvars[groups['redis-master'][0]][
↪→'redis_sentinel_port'] }}?sentinel=master01{% for host in groups['redis-
↪→slave'] %}&sentinel_fallback={{ hostvars[host]['ansible_default_ipv4'][
↪→'address'] }}:{{ hostvars[host]['redis_sentinel_port'] }}{% endfor %}&
↪→db=0

You also have to install additional pip/distro packages to use the redis cluster:

gnocchi_distro_packages:
- apache2
- apache2-utils
- libapache2-mod-wsgi
- git
- build-essential
- python3-dev
- librados-dev
- libpq-dev
- python3-rados
additional package for python redis client
- python3-redis
- libsystemd-dev

146 Chapter 1. Abstract

https://gnocchi.xyz/intro.html#incoming-and-storage-drivers
https://github.com/DavidWittman/ansible-redis

OpenStack-Ansible Documentation, Release 23.4.5.dev7

gnocchi_pip_packages:
- cryptography
- gnocchiclient
this is what we want:
- "gnocchi[mysql,ceph,ceph_alternative_lib,redis,keystone]"
but as there is no librados >=12.2 pip package we have to first install
↪→ceph without alternative support
after adding the ceph repo to gnocchi container, python-rados>=12.2.0 is
↪→installed and linked automatically
and gnocchi will automatically take up the features present in the used
↪→rados lib.
- "gnocchi[mysql,ceph,redis,keystone]"
- keystonemiddleware
- python-memcached
- redis
- systemd-python

Note: A word of caution: the name of the Ceph alternative lib implementation (ceph_alternative_lib)
varies between Gnocchi versions.

Zookeeper for coordination

When you deployed Gnocchi on multiple servers to distribute the work, add Zookeeper as coordination
backend. To setup Zookeeper, you can use this ansible role.

Create containers for Zookeeper:

conf.d
zookeeper_hosts:
{% for server in groups['control_nodes'] %}
{{ server }}:

ip: {{ hostvars[server]['ansible_facts']['default_ipv4']['address'] }}
{% endfor%}

env.d
component_skel:

zookeeper_server:
belongs_to:

- zookeeper_all

container_skel:
zookeeper_container:

belongs_to:
- infra_containers
- shared-infra_containers

contains:
- zookeeper_server

properties:
service_name: zookeeper

Now you can set up Zookeeper as coordination backend for Gnocchi:

1.2. User Guide 147

https://github.com/openstack/ansible-role-zookeeper.git

OpenStack-Ansible Documentation, Release 23.4.5.dev7

gnocchi_coordination_url: "zookeeper://{% for host in groups['zookeeper_all
↪→'] %}{{ hostvars[host]['container_address'] }}:2181{% if not loop.last %}
↪→,{% endif %}{% endfor %}"

You also have to install additional packages:

gnocchi_pip_packages:
- cryptography
- gnocchiclient
this is what we want:
- "gnocchi[mysql,ceph,ceph_alternative_lib,redis,keystone]"
but as there is no librados >=12.2 pip package we have to first install
↪→ceph without alternative support
after adding the ceph repo to gnocchi container, python-rados>=12.2.0 is
↪→installed and linked automatically
and gnocchi will automatically take up the features present in the used
↪→rados lib.
- "gnocchi[mysql,ceph,redis,keystone]"
- keystonemiddleware
- python-memcached
- redis
- systemd-python
addiitional pip packages needed for zookeeper coordination backend
- tooz
- lz4
- kazoo

Performance Tests for Gnocchi

For more ideas how to tune your Gnocchi stack, take a look at these presentations:

• https://docs.openstack.org/performance-docs/test_results/telemetry_gnocchi_with_ceph/index.
html

1.2.14 Hybrid messaging example

This section provides an overview of hybrid messaging deployment concepts and describes the necessary
steps for a working OpenStack-Ansible (OSA) deployment where RPC and Notify communications are
separated and integrated with different messaging server backends (e.g. rabbitmq and qdrouterd).

oslo.messaging library

The oslo.messaging library is part of the OpenStack Oslo project that provides intra-service messag-
ing capabilities. The library supports two communication patterns (RPC and Notify) and provides an
abstraction that hides the details of the messaging bus operation from the OpenStack services.

148 Chapter 1. Abstract

https://docs.openstack.org/performance-docs/test_results/telemetry_gnocchi_with_ceph/index.html
https://docs.openstack.org/performance-docs/test_results/telemetry_gnocchi_with_ceph/index.html

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Notifications

Notify communications are an asynchronous exchange from notifier to listener. The messages trans-
ferred typically correspond to information updates or event occurrences that are published by an Open-
Stack service. The listener need not be present when the notification is sent as notify communications
are temporally decoupled. This decoupling between notifier and listener requires that the messaging
backend deployed for notifications provide message persistence such as a broker queue or log store. It
is noteworthy that the message transfer is unidirectional from notifier to listener and there is no message
flow back to the notifier.

RPC

The RPC is intended as a synchronous exchange between a client and server that is temporally bracketed.
The information transferred typically corresponds to a request-response pattern for service command
invocation. If the server is not present at the time the command is invoked, the call should fail. The
temporal coupling requires that the messaging backend deployed support the bi-directional transfer of
the request from caller to server and the associated reply sent from the server back to the caller. This
requirement can be satisfied by a broker queue or a direct messaging backend server.

Messaging transport

The oslo.messaging library supports a messaging transport plugin capability such that RPC and Notify
communications can be separated and different messaging backend servers can be deployed.

The oslo.messaging drivers provide the transport integration for the selected protocol and backend server.
The following table summarizes the supported oslo.messaging drivers and the communication services
they support.

+----------------+-----------+-----------+-----+--------+-----------+
| Oslo.Messaging | Transport | Backend | RPC | Notify | Messaging |
| Driver | Protocol | Server | | | Type |
+================+===========+===========+=====+========+===========+
| rabbit | AMQP V0.9 | rabbitmq | yes | yes | queue |
+----------------+-----------+-----------+-----+--------+-----------+
| amqp | AMQP V1.0 | qdrouterd | yes | | direct |
+----------------+-----------+-----------+-----+--------+-----------+
| kafka | kafka | kafka | | yes | queue |
| (experimental) | binary | | | | (stream) |
+----------------+-----------+-----------+-----+--------+-----------+

Standard deployment of rabbitmq server

A single rabbitmq server backend (e.g. server or cluster) is the default deployment for OSA. This broker
messaging backend provides the queue services for both RPC and Notification communications through
its integration with the oslo.messaging rabbit driver. The oslo-messaging.yml file provides the default
configuration to associate the oslo.messaging RPC and Notify services to the rabbitmq server backend.

RPC
oslomsg_rpc_transport: "{{ (groups[qdrouterd_host_group] | length > 0) |
↪→ternary('amqp', 'rabbit') }}"

(continues on next page)

1.2. User Guide 149

https://docs.openstack.org/oslo.messaging/latest/reference/transport.html
https://github.com/openstack/openstack-ansible/blob/master/inventory/group_vars/all/oslo-messaging.yml

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

oslomsg_rpc_port: "{{ (groups[qdrouterd_host_group] | length > 0) |
↪→ternary(qdrouterd_port, rabbitmq_port) }}"
oslomsg_rpc_servers: "{{ (groups[qdrouterd_host_group] | length > 0) |
↪→ternary(qdrouterd_servers, rabbitmq_servers) }}"
oslomsg_rpc_use_ssl: "{{ (groups[qdrouterd_host_group] | length > 0) |
↪→ternary(qdrouterd_use_ssl, rabbitmq_use_ssl) }}"
oslomsg_rpc_host_group: "{{ (groups[qdrouterd_host_group] | length > 0) |
↪→ternary(qdrouterd_host_group, rabbitmq_host_group) }}"
oslomsg_rpc_policies: "{{ rabbitmq_policies }}"

Notify
oslomsg_notify_transport: "{{ (groups[rabbitmq_host_group] | length > 0) |
↪→ternary('rabbit', 'none') }}"
oslomsg_notify_port: "{{ rabbitmq_port }}"
oslomsg_notify_servers: "{{ rabbitmq_servers }}"
oslomsg_notify_use_ssl: "{{ rabbitmq_use_ssl }}"
oslomsg_notify_host_group: "{{ rabbitmq_host_group }}"
oslomsg_notify_policies: "{{ rabbitmq_policies }}"

Hybrid messaging deployment with qdrouterd server

In OSA, the deployment of disparate messaging backends is completely transparent to the OpenStack
services. By managing the inventories for the messaging servers, a hybrid messaging configuration will
be created. The instantiation of the qdrouterd server role in the qdrouterd_host_group will automatically
setup the oslomsg_rpc* variables to use this messaging backend. No additional configuration is required.
The result is that RPC services will communicate via the amqp (V1.0 protocol) driver and the Notify
services will communicate via the rabbit driver. The separation and use of different messaging backends
can provide increased scale and resiliency.

1.3 So You Want to Contribute

For general information on contributing to OpenStack, please check out the contributor guide to get
started. It covers all the basics that are common to all OpenStack projects: the accounts you need, the
basics of interacting with our Gerrit review system, how we communicate as a community, etc.

Below will cover the more project specific information you need to get started with OpenStack-Ansible.

1.3.1 Communication

IRC channel

Warning: The OpenStack Community will be moving the IRC network from Freenode to OFTC
on May 31, 2021. All the current IRC channels used in The OpenStack community are registered in
OFTC network too. More details on how to use OFTC on various platform are coming soon.

The OpenStack-Ansible community communicates in the #openstack-ansible IRC channel hosted on
OFTC. This channel is logged, and its logs are published on http://eavesdrop.openstack.org/irclogs/
%23openstack-ansible/.

150 Chapter 1. Abstract

https://docs.openstack.org/contributors/
http://eavesdrop.openstack.org/irclogs/%23openstack-ansible/
http://eavesdrop.openstack.org/irclogs/%23openstack-ansible/

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Weekly meetings are held in our IRC channel. The schedule and logs can be found on http://eavesdrop.
openstack.org/#OpenStack_Ansible_Deployment_Meeting. The agenda for the next meeting can be
found on our Meetings wiki page.

Mailing lists

Members of the OpenStack-Ansible community should monitor the OpenStack-discuss mailing lists.

All our communications should be prefixed with [openstack-ansible].

1.3.2 Contacting the Core Team

All of our core team is available through IRC and present in #openstack-ansible channel on Freenode.
The list of the current members of the OpenStack-Ansible Team might be found on gerrit.

1.3.3 New Feature Planning

If you would like to contribute towards a role to introduce an OpenStack or infrastructure service, or
to improve an existing role, the OpenStack-Ansible project would welcome that contribution and your
assistance in maintaining it.

Please look through Contributor Guidelines page for more information about the process.

1.3.4 Task Tracking

We track our tasks in Launchpad

https://bugs.launchpad.net/openstack-ansible

If youre looking for some smaller, easier work item to pick up and get started on, search for the low-
hanging-fruit tag.

1.3.5 Reporting a Bug

You found an issue and want to make sure we are aware of it? You can do so on Launchpad.

Also you may find more detailed information about how to work with bugs on the page Bug Handling

1.3.6 Getting Your Patch Merged

Any new code will be reviewed before merging into our repositories and requires at least 2 approvals
from our Core team.

We follow openstack guidelines for the code reviewing process.

Please be aware that any patch can be refused by the community if they dont match the General Guide-
lines for Submitting Code.

1.3. So You Want to Contribute 151

http://eavesdrop.openstack.org/#OpenStack_Ansible_Deployment_Meeting
http://eavesdrop.openstack.org/#OpenStack_Ansible_Deployment_Meeting
https://wiki.openstack.org/wiki/Meetings/openstack-ansible
http://lists.openstack.org/cgi-bin/mailman/listinfo
https://review.opendev.org/#/admin/groups/490,members
https://docs.openstack.org/openstack-ansible/wallaby/contributor/contribute.html
https://bugs.launchpad.net/openstack-ansible
https://bugs.launchpad.net/openstack-ansible
https://docs.openstack.org/openstack-ansible/wallaby/contributor/bugs.html
https://docs.openstack.org/project-team-guide/review-the-openstack-way.html

OpenStack-Ansible Documentation, Release 23.4.5.dev7

1.3.7 Project Team Lead Duties

All common PTL duties are enumerated in the PTL guide.

All Core reviewer duties are described on the page Core Reviewers.

1.4 Developer Documentation

In this section, you will find documentation relevant to developing OpenStack-Ansible.

For information on how to deploy your OpenStack-Ansible cloud, refer to the Deployment Guide for
step-by-step instructions on how to deploy the OpenStack packages and dependencies on your cloud
using OpenStack-Ansible.

For user guides, see the User Guide.

For information on how to manage and operate OpenStack-Ansible, see the see the Operations Guide.

For in-depth technical information, see the OpenStack-Ansible Reference.

Contents:

1.4.1 Project Onboarding

This document should help you understand how to contribute to OpenStack-Ansible.

Project repositories

The OpenStack-Ansible project has different kinds of git repositories, each of them with specific use
cases, and different sets of practices.

152 Chapter 1. Abstract

https://docs.openstack.org/project-team-guide/ptl.html
https://docs.openstack.org/openstack-ansible/wallaby/contributor/core-reviewers.html
https://docs.openstack.org/project-deploy-guide/openstack-ansible/wallaby/index.html
https://docs.openstack.org/openstack-ansible/wallaby/user/index.html
https://docs.openstack.org/openstack-ansible/wallaby/admin/index.html
https://docs.openstack.org/openstack-ansible/wallaby/reference/index.html

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Repository type or name Code location Repository purpose

OpenStack-Ansible
Also called integrated
repository

• https://github.
com/openstack/
openstack-ansible

Our main repository, used by
deployers. Uses the other
repositories.

The OpenStack-Ansible roles
repositories

• https://github.
com/openstack/
openstack-ansible-os_
nova

• https://github.
com/openstack/
openstack-ansible-os_
glance

• https://github.
com/openstack/
ansible-role-systemd_
mount

• https://github.
com/openstack/
ansible-config_template

• https://github.
com/openstack/
ansible-hardening

•

Each role is in charge of de-
ploying exactly one component
of an OpenStack-Ansible de-
ployment.

The tests repository
• https://github.

com/openstack/
openstack-ansible-tests

The tests repository is the
location for common code used
in the integrated repo and role
repos tests.
It allows us to not repeat
ourselves: it is the location of
common playbooks, common
tasks and scripts.

The specs repository
• https://github.

com/openstack/
openstack-ansible-specs

This repository contains all
the information concerning
large bodies of work done in
OpenStack-Ansible, split by
cycle.

The ops repository
• https://github.

com/openstack/
openstack-ansible-ops

This repository is an incubator
for new projects, each project
solving a particular operational
problem. Each project has its
own folder in this repository.

External repositories
• https://github.com/ceph/

ceph-ansible
• https://github.

com/logan2211/
ansible-resolvconf

• https://github.com/
willshersystems/
ansible-sshd

• https://github.
com/opendaylight/
integration-packaging-ansible-opendaylight

• https://github.
com/evrardjp/
ansible-keepalived

•

OpenStack-Ansible is not re-
inventing the wheel, and tries to
reuse as much as possible exist-
ing roles. A bugfix for one of
those repositories must be han-
dled to these repositories main-
tainers.

1.4. Developer Documentation 153

https://github.com/openstack/openstack-ansible
https://github.com/openstack/openstack-ansible
https://github.com/openstack/openstack-ansible
https://github.com/openstack/openstack-ansible-os_nova
https://github.com/openstack/openstack-ansible-os_nova
https://github.com/openstack/openstack-ansible-os_nova
https://github.com/openstack/openstack-ansible-os_nova
https://github.com/openstack/openstack-ansible-os_glance
https://github.com/openstack/openstack-ansible-os_glance
https://github.com/openstack/openstack-ansible-os_glance
https://github.com/openstack/openstack-ansible-os_glance
https://github.com/openstack/ansible-role-systemd_mount
https://github.com/openstack/ansible-role-systemd_mount
https://github.com/openstack/ansible-role-systemd_mount
https://github.com/openstack/ansible-role-systemd_mount
https://github.com/openstack/ansible-config_template
https://github.com/openstack/ansible-config_template
https://github.com/openstack/ansible-config_template
https://github.com/openstack/ansible-hardening
https://github.com/openstack/ansible-hardening
https://github.com/openstack/ansible-hardening
https://github.com/openstack/openstack-ansible-tests
https://github.com/openstack/openstack-ansible-tests
https://github.com/openstack/openstack-ansible-tests
https://github.com/openstack/openstack-ansible-specs
https://github.com/openstack/openstack-ansible-specs
https://github.com/openstack/openstack-ansible-specs
https://github.com/openstack/openstack-ansible-ops
https://github.com/openstack/openstack-ansible-ops
https://github.com/openstack/openstack-ansible-ops
https://github.com/ceph/ceph-ansible
https://github.com/ceph/ceph-ansible
https://github.com/logan2211/ansible-resolvconf
https://github.com/logan2211/ansible-resolvconf
https://github.com/logan2211/ansible-resolvconf
https://github.com/willshersystems/ansible-sshd
https://github.com/willshersystems/ansible-sshd
https://github.com/willshersystems/ansible-sshd
https://github.com/opendaylight/integration-packaging-ansible-opendaylight
https://github.com/opendaylight/integration-packaging-ansible-opendaylight
https://github.com/opendaylight/integration-packaging-ansible-opendaylight
https://github.com/evrardjp/ansible-keepalived
https://github.com/evrardjp/ansible-keepalived
https://github.com/evrardjp/ansible-keepalived

OpenStack-Ansible Documentation, Release 23.4.5.dev7

How to contribute on code or issues

• For contributing code and documentation, you must follow the OpenStack practices. Nothing
special is required for OpenStack-Ansible.

See also the OpenStack developers getting started page. and our contributor guidelines before
hacking.

• For helping on or submitting bugs, you must have an account on ubuntu Launchpad. All our
repositories share the same Launchpad project.

Please check our bug report and bug triage processes.

Easy to fix bugs are marked with the tag low hanging fruit, and should be the target of first time
contributors.

• For sharing your user experience, stories, and helping other users, please join us in our IRC chan-
nel.

• The OpenStack-Ansible project has recurring tasks that need attention, like releasing, or other
code duties. See our page Periodic work.

Community communication channels

IRC channel

Warning: The OpenStack Community will be moving the IRC network from Freenode to OFTC
on May 31, 2021. All the current IRC channels used in The OpenStack community are registered in
OFTC network too. More details on how to use OFTC on various platform are coming soon.

The OpenStack-Ansible community communicates a lot through IRC, in the #openstack-ansible channel,
on OFTC. This channel is logged, and its logs are published on http://eavesdrop.openstack.org/irclogs/
%23openstack-ansible/.

Weekly meetings are held in our IRC channel. The schedule and logs can be found on http://eavesdrop.
openstack.org/#OpenStack_Ansible_Deployment_Meeting. Next meeting agenda can be found on our
Meetings wiki page.

Mailing lists

A member of the OpenStack-Ansible community should monitor the OpenStack-discuss mailing lists.

All our communications should be prefixed with [openstack-ansible].

154 Chapter 1. Abstract

https://docs.openstack.org/infra/manual/developers.html#getting-started
https://bugs.launchpad.net/openstack-ansible
http://eavesdrop.openstack.org/irclogs/%23openstack-ansible/
http://eavesdrop.openstack.org/irclogs/%23openstack-ansible/
http://eavesdrop.openstack.org/#OpenStack_Ansible_Deployment_Meeting
http://eavesdrop.openstack.org/#OpenStack_Ansible_Deployment_Meeting
https://wiki.openstack.org/wiki/Meetings/openstack-ansible
http://lists.openstack.org/cgi-bin/mailman/listinfo

OpenStack-Ansible Documentation, Release 23.4.5.dev7

1.4.2 OpenStack-Ansible Bug Handling

Bug Reporting

Bugs should be filed on the OpenStack-Ansible Launchpad project.

When submitting a bug, or working on a bug, please ensure the following criteria are met:

• The description clearly states or describes the original problem or root cause of the problem.

• The description clearly states the expected outcome of the user action.

• Include historical information on how the problem was identified.

• Any relevant logs or user configuration are included, either directly or through a pastebin.

• If the issue is a bug that needs fixing in a branch other than master, please note the associated
branch within the launchpad issue.

• The provided information should be totally self-contained. External access to web services/sites
should not be needed.

• Steps to reproduce the problem if possible.

Bug Tags

If the reported needs fixing in a branch in addition to master, add a <release>-backport-potential tag (e.g.
liberty-backport-potential). There are predefined tags that will auto-complete.

Status

Please leave the status of an issue alone until someone confirms it or a member of the bugs team triages
it. While waiting for the issue to be confirmed or triaged the status should remain as New.

Importance

Should only be touched if it is a Blocker/Gating issue. If it is, please set to High, and only use Critical if
you have found a bug that can take down whole infrastructures. Once the importance has been changed
the status should be changed to Triaged by someone other than the bug creator.

The triaging process is explained here below.

Bug triage

What is a bug triage

Bug triage is a process where tracker issues are screened and prioritised. Triage should help ensure we
appropriately manage all reported issues - bugs as well as improvements and feature requests. (Source:
Moodle bug triage)

Reported bugs need confirmation, prioritization, and ensure they do not go stale. If you care about
OpenStack stability but are not wanting to actively develop the roles and playbooks used within the
OpenStack-Ansible project, consider contributing in the area of bug triage.

1.4. Developer Documentation 155

https://bugs.launchpad.net/openstack-ansible
https://docs.moodle.org/dev/Bug_triage

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Please reference the Project Team Guide bugs reference_ for information about bug status/importance
and the life cycle of a bug.

Bug triage meeting duties

If the bug description is incomplete, or the report is lacking the information necessary to reproduce the
issue, ask the reporter to provide missing information, and set the bug status to Incomplete

If the bug report contains enough information and you can reproduce it (or it looks valid), then you
should set its status to Confirmed.

If the bug has security implications, set the security flag (under This report is public on the top right)

If the bug affects a specific area covered by an official tag, you should set the tag. For example, if the
bug is likely to be quite easy to solve, add the low-hanging-fruit tag.

The bug triage meeting is probably a good time for people with bug supervisors rights to also prioritize
bugs per importance (on top of classifying them on status).

Bug skimming duty

To help triaging bugs, one person of the bug team can be on bug skimming duty.

Q What is the goal of the bug skimming duty?

A Bug skimming duty reduces the amount of work other developers have to spend to do a
proper root cause analysis (and later fix) of bug reports. For this, close the obviously
invalid bug reports, confirm the obviously valid bug reports, ask questions if things
are unclear.

Q Do I need to prove that a bug report is valid/invalid before I can set it to Con-
firmed/Invalid ?

A No. Sometimes it is not even possible because you do not have the resources. Looking at
the code and tests often enables you to make an educated guess. Citing your sources
in a comment helps the discussion.

Q What is the best status to close a bug report if its issue cannot be reproduced?

A Definitively Invalid. The status Incomplete is an open state and means that more infor-
mation is necessary.

Q How do I handle open bug reports which are Incomplete for too long?

A If it is in this state for more than 30 days and no answers to the open questions are given,
close it with Wont Fix.

Q How do I handle dependencies to other bugs or TBD features in other projects? For
example, I can fix a bug in OpenStack-Ansible but I need that a feature in Compute
(nova) gets implemented before.

A Leave a comment in the OpenStack-Ansible bug report which explains this dependency
and leave a link to the blueprint or bug report of the other project you depend on.

Q Do I have to double-check bug reports which are New and have an assignee?

156 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

A Usually not. This bug report has an inconsistent state though. If a bug report has an
assignee, it should be In Progress and have an importance set.

Bug skimming duty weekly checklist

• Prioritize or reprioritize OpenStack-Ansible confirmed bugs.

• Move year old wishlist bugs to Opinion/Wishlist to remove clutter. You can use the following
message:

This wishlist bug has been open a year without any activity. I am moving this to
Opinion / Wishlist. This is an easily-obtainable queue of older requests. This bug can
be reopened (set back to New) if someone decides to work on this.

• Move bugs that can not be reproduced to an invalid state if they are unmodified for more than a
month.

• Send an email to the openstack-discuss list with the list of bugs to triage during the week. A new
bug marked as Critical or High must be treated in priority.

1.4.3 Contributor Guidelines

Before submitting code

Before jumping ahead and working on code, a series of steps should be taken:

• Is there a bug for it? Can your track if someone else has seen the same bug?

• Are you sure nobody is working on this problem at the moment? Could there be a review pending
fixing the same issue?

• Have you checked if your issue/feature request hasnt been solved in another branch?

If youre willing to submit code, please remember the following rules:

• All code should match our General Guidelines for Submitting Code.

• All code requires to go through our Review process.

• Documentation should be provided with the code directly. See also Documentation and Release
Note Guidelines.

• Fixing bugs and increasing test coverage have priority to new features. See also the section Work-
ing on bug fixes.

• New features are following a process, explained in the section Working on new features. New
features are less likely to be backported to previous branches.

1.4. Developer Documentation 157

https://bugs.launchpad.net/openstack-ansible/+bugs?field.searchtext=&orderby=-importance&field.status%3Alist=CONFIRMED&field.status%3Alist=TRIAGED&field.status%3Alist=INPROGRESS&assignee_option=any&field.assignee=&field.bug_reporter=&field.bug_commenter=&field.subscriber=&field.structural_subscriber=&field.tag=&field.tags_combinator=ANY&field.has_cve.used=&field.omit_dupes.used=&field.omit_dupes=on&field.affects_me.used=&field.has_patch.used=&field.has_branches.used=&field.has_branches=on&field.has_no_branches.used=&field.has_no_branches=on&field.has_blueprints.used=&field.has_blueprints=on&field.has_no_blueprints.used=&field.has_no_blueprints=on&search=Search
https://bugs.launchpad.net/openstack-ansible/+bugs?field.searchtext=&orderby=datecreated&search=Search&field.importance%3Alist=WISHLIST&assignee_option=any&field.assignee=&field.bug_reporter=&field.bug_commenter=&field.subscriber=&field.structural_subscriber=&field.tag=&field.tags_combinator=ANY&field.has_cve.used=&field.omit_dupes.used=&field.omit_dupes=on&field.affects_me.used=&field.has_patch.used=&field.has_branches.used=&field.has_branches=on&field.has_no_branches.used=&field.has_no_branches=on&field.has_blueprints.used=&field.has_blueprints=on&field.has_no_blueprints.used=&field.has_no_blueprints=on
https://bugs.launchpad.net/openstack-ansible/+bugs?search=Search&field.status=New

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Review process

Any new code will be reviewed before merging into our repositories.

We follow openstack guidelines for the code reviewing process.

Please be aware that any patch can be refused by the community if they dont match the General Guide-
lines for Submitting Code.

Working on bug fixes

Any bug fix should have, in its commit message:

Closes-Bug: #bugnumber

or

Related-Bug: #bugnumber

where #bugnumber refers to a Launchpad issue.

See also the working on bugs section of the openstack documentation.

Working on new features

If you would like to contribute towards a role to introduce an OpenStack or infrastructure service, or
to improve an existing role, the OpenStack-Ansible project would welcome that contribution and your
assistance in maintaining it.

Here are a few rules to get started:

• All large feature additions/deletions should be accompanied by a blueprint/spec. e.g. adding
additional active agents to neutron, developing a new service role, etc See also Submitting a spec-
ification.

• Before creating blueprint/spec an associated Wishlist Bug can be raised on launchpad. This issue
will be triaged and a determination will be made on how large the change is and whether or not
the change warrants a blueprint/spec. Both features and bug fixes may require the creation of a
blueprint/spec. This requirement will be voted on by core reviewers and will be based on the size
and impact of the change.

• All blueprints/specs should be voted on and approved by core reviewers before any associated
code will be merged. For more information on blueprints/specs please review the OpenStack
documentation regarding Working on Specifications and Blueprints and our own Submitting a
specification.

• Once the blueprint work is completed the author(s) can request a backport of the blueprint work
into a stable branch. Each backport will be evaluated on a case by case basis with cautious consid-
eration based on how the backport affects any existing deployments. See the Backporting section
for more information.

• Any new OpenStack services implemented which have Tempest tests available must be imple-
mented along with suitable functional tests enabled as part of the feature development in order to
ensure that any changes to the code base do not break the service functionality.

• Feature additions must include documentation which provides reference to OpenStack documen-
tation about what the feature is and how it works. The documentation should then describe how

158 Chapter 1. Abstract

https://docs.openstack.org/project-team-guide/review-the-openstack-way.html
https://docs.openstack.org/infra/manual/developers.html#working-on-bugs
https://docs.openstack.org/infra/manual/developers.html#working-on-specifications-and-blueprints
https://docs.openstack.org/tempest/

OpenStack-Ansible Documentation, Release 23.4.5.dev7

it is implemented in OpenStack-Ansible and what configuration options there are. See also the
Documentation and Release Note Guidelines section.

Example process to develop a new role

Here are the steps to write the role:

1. You can review roles which may be currently in development by checking our specs repository
and unmerged specs on review.openstack.org. If you do not find a spec for the role, propose a
blueprint/spec. See also Submitting a specification.

2. Create a source repository (e.g. on Github) to start your work on the Role.

3. Generate the reference directory structure for an Ansible role which is the necessary subset of
the documented Best Practice. You might use Ansible Galaxy tools to do this for you (e.g.
ansible-galaxy init). You may additionally want to include directories such as docs
and examples and tests for your role.

4. Generate a meta/main.yml right away. This file is important to Ansible to ensure your depen-
dent roles are installed and available and provides others with the information they will need to
understand the purpose of your role.

5. Develop task files for each of the install stages in turn, creating any handlers and templates as
needed. Ensure that you notify handlers after any task which impacts the way the service would
run (such as configuration file modifications). Also take care that file ownership and permissions
are appropriate.

Hint: Fill in variable defaults, libraries, and prerequisites as you discover a need for them. You
can also develop documentation for your role at the same time.

6. Add tests to the role. See also our Testing page.

7. Ensuring the role matches OpenStack-Ansibles latest standards. See also our Code rules page.

8. Ensure the role converges:

• Implement developer_mode to build from a git source into a Python virtual environment.

• Deploy the applicable configuration files in the right places.

• Ensure that the service starts.

The convergence may involve consuming other OpenStack-Ansible roles (For example:
galera_server, galera_client, rabbitmq_server) in order to ensure that the appropriate infras-
tructure is in place. Re-using existing roles in OpenStack-Ansible or Ansible Galaxy is strongly
encouraged.

9. Once the initial convergence is working and the services are running, the role development should
focus on implementing some level of functional testing. See also Improve testing with tempest.

10. Test the role on a new machine, using our provided scripts.

11. Submit your role for review.

12. If required, ask the OpenStack-Ansible PTL to import the github role into the openstack-ansible
namespace (This can only be done early in the development cycle, and may be postponed to next
cycle).

1.4. Developer Documentation 159

https://opendev.org/openstack/openstack-ansible-specs
https://review.opendev.org/#/q/status:+open+project:openstack/openstack-ansible-specs
https://docs.ansible.com/ansible/playbooks_best_practices.html#directory-layout

OpenStack-Ansible Documentation, Release 23.4.5.dev7

13. If necessary, work on the integration within the openstack-ansible integrated repository, and de-
ploy the role on an AIO. See also Testing a new role with an AIO.

Example process for adding a feature to an existing role

1. Search for in the OpenStack-Ansible Launchpad project for the feature request.

2. If no Wishlist item exist in Launchpad for your feature, create a bug for it. Dont hesitate to ask if
a spec is required in the bug.

3. The Bug triage will classify if this new feature requires a spec or not.

4. Work on the role files, following our Code rules.

5. Add an extra role test scenario, to ensure your code path is tested and working.

6. Test your new scenario with a new machine. See also the Running tests locally page.

7. Submit your code for review, with its necessary documentation and release notes.

Example process to incubate a new ops project

A new project in openstack-ansible-ops can be started at any time, with no constraint like writing a
specification, or creating a bug.

Instead, the new code has to be isolated on a separate folder of the openstack-ansible-ops repo.

Backporting

• Backporting is defined as the act of reproducing a change from another branch. Un-
clean/squashed/modified cherry-picks and complete reimplementations are OK.

• Backporting is often done by using the same code (via cherry picking), but this is not always the
case. This method is preferred when the cherry-pick provides a complete solution for the targeted
problem.

• When cherry-picking a commit from one branch to another the commit message should be
amended with any files that may have been in conflict while performing the cherry-pick oper-
ation. Additionally, cherry-pick commit messages should contain the original commit SHA near
the bottom of the new commit message. This can be done with cherry-pick -x. Heres more
information on Submitting a change to a branch for review.

• Every backport commit must still only solve one problem, as per the guidelines in General Guide-
lines for Submitting Code.

• If a backport is a squashed set of cherry-picked commits, the original SHAs should be referenced
in the commit message and the reason for squashing the commits should be clearly explained.

• When a cherry-pick is modified in any way, the changes made and the reasons for them must be
explicitly expressed in the commit message.

• Refactoring work must not be backported to a released branch.

• Backport reviews should be done with due consideration to the effect of the patch on any exist-
ing environment deployed by OpenStack-Ansible. The general OpenStack Guidelines for stable
branches can be used as a reference.

160 Chapter 1. Abstract

https://bugs.launchpad.net/openstack-ansible
https://opendev.org/openstack/openstack-ansible-ops
https://www.mediawiki.org/wiki/Gerrit/Advanced_usage#Submitting_a_change_to_a_branch_for_review_.28.22backporting.22.29
https://docs.openstack.org/project-team-guide/stable-branches.html
https://docs.openstack.org/project-team-guide/stable-branches.html

OpenStack-Ansible Documentation, Release 23.4.5.dev7

1.4.4 Code rules

General Guidelines for Submitting Code

• Write good commit messages. We follow the OpenStack Git Commit Good Practice guide. if you
have any questions regarding how to write good commit messages please review the upstream
OpenStack documentation.

• Changes to the project should be submitted for review via the Gerrit tool, following the workflow
documented here.

• Pull requests submitted through GitHub will be ignored and closed without regard.

• Patches should be focused on solving one problem at a time. If the review is overly complex
or generally large the initial commit will receive a -2 and the contributor will be asked to split
the patch up across multiple reviews. In the case of complex feature additions the design and
implementation of the feature should be done in such a way that it can be submitted in multiple
patches using dependencies. Using dependent changes should always aim to result in a working
build throughout the dependency chain. Documentation is available for advanced gerrit usage too.

• All patch sets should adhere to the Ansible Style Guide listed here as well as adhere to the Ansible
best practices when possible.

• All changes should be clearly listed in the commit message, with an associated bug id/blueprint
along with any extra information where applicable.

• Refactoring work should never include additional rider features. Features that may pertain to
something that was re-factored should be raised as an issue and submitted in prior or subsequent
patches.

• New features, breaking changes and other patches of note must include a release note generated
using the reno tool. Please see the Documentation and Release Note Guidelines for more infor-
mation.

• All patches including code, documentation and release notes should be built and tested locally
with the appropriate test suite before submitting for review. See Development and Testing for
more information.

Documentation and Release Note Guidelines

Documentation is a critical part of ensuring that the deployers of OpenStack-Ansible are appropriately
informed about:

• How to use the projects tooling effectively to deploy OpenStack.

• How to implement the right configuration to meet the needs of their specific use-case.

• Changes in the project over time which may affect an existing deployment.

To meet these needs developers must submit code comments, documentation (see also the documentation
locations section) and release notes with any code submissions.

All forms of documentation should comply with the guidelines provided in the OpenStack Documenta-
tion Contributor Guide, with particular reference to the following sections:

• Writing style

• RST formatting conventions

1.4. Developer Documentation 161

https://wiki.openstack.org/wiki/GitCommitMessages
https://docs.openstack.org/infra/manual/developers.html#development-workflow
https://docs.openstack.org/infra/manual/developers.html#development-workflow
https://www.mediawiki.org/wiki/Gerrit/Advanced_usage
https://docs.ansible.com/playbooks_best_practices.html
https://docs.ansible.com/playbooks_best_practices.html
https://docs.openstack.org/reno/latest/
https://docs.openstack.org/doc-contrib-guide/
https://docs.openstack.org/doc-contrib-guide/

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Code Comments

Code comments for variables should be used to explain the purpose of the variable. This is particularly
important for the role defaults file as the file is included verbatim in the roles documentation. Where
there is an optional variable, the variable and an explanation of what it is used for should be added to the
defaults file.

Code comments for bash/python scripts should give guidance to the purpose of the code. This is impor-
tant to provide context for reviewers before the patch has merged, and for later modifications to remind
the contributors what the purpose was and why it was done that way.

Documentation locations

OpenStack-Ansible has multiple forms of documentation with different intent.

The Deployment Guide intends to help deployers deploy OpenStack-Ansible for the first time.

The User Guide intends to provide user stories on how to do specific things with OpenStack-Ansible.

The Operations Guide provide help on how to manage and operate OpenStack-Ansible.

The in-depth technical information is located in the OpenStack-Ansible Reference.

The role documentation (for example, the keystone role documentation) intends to explain all the options
available for the role and how to implement more advanced requirements. To reduce duplication, the role
documentation directly includes the roles default variables file which includes the comments explaining
the purpose of the variables. The long hand documentation for the roles should focus less on explaining
variables and more on explaining how to implement advanced use cases.

The role documentation must include a description of the mandatory infrastructure (For example: a
database and a message queue are required), variables (For example: the database name and credentials)
and group names (For example: The role expects a group named foo_all to be present and it expects
the host to be a member of it) for the roles execution to succeed.

Where possible the documentation in OpenStack-Ansible should steer clear of trying to explain Open-
Stack concepts. Those explanations belong in the OpenStack Manuals or service documentation and
OpenStack-Ansible documentation should link to those documents when available, rather than duplicate
their content.

Release Notes

Release notes are generated using the reno tool. Release notes must be written with the following
guidelines in mind:

• Each list item must make sense to read without the context of the patch or the repository the patch
is being submitted into. The reason for this is that all release notes are consolidated and presented
in a long list without reference to the source patch or the context of the repository.

• Each note should be brief and to the point. Try to avoid multi-paragraph notes. For features the
note should typically refer to documentation for more details. For bug fixes the note can refer to a
registered bug for more details.

In most cases only the following sections should be used for new release notes submitted with patches:

162 Chapter 1. Abstract

https://docs.openstack.org/project-deploy-guide/openstack-ansible/wallaby/index.html
https://docs.openstack.org/openstack-ansible/wallaby/user/index.html
https://docs.openstack.org/openstack-ansible/wallaby/admin/index.html
https://docs.openstack.org/openstack-ansible/wallaby/reference/index.html
https://docs.openstack.org/openstack-ansible-os_keystone/
https://docs.openstack.org/reno/latest/

OpenStack-Ansible Documentation, Release 23.4.5.dev7

• features: This should inform the deployer briefly about a new feature and should describe how
to use it either by referencing the variables to set or by referring to documentation.

• issues: This should inform the deployer about known issues. This may be used when fixing an
issue and wanting to inform deployers about a workaround that can be used for versions prior to
that which contains the patch that fixes the issue. Issue notes should specifically make mention of
what versions of OpenStack-Ansible are affected by the issue.

• upgrade: This should inform the deployer about changes which may affect them when upgrad-
ing from a previous major or minor version. Typically, these notes would describe changes to
default variable values or variables that have been removed.

• deprecations: If a variable has been deprecated (ideally using the deprecation filter), then it
should be communicated through notes in this section. Note that if a variable has been removed
entirely then it has not been deprecated and the removal should be noted in the upgrade section.

Submitting a specification

By proposing a draft spec you can help the OpenStack-Ansible community keep track of what roles or
large changes are being developed, and perhaps connect you with others who may be interested and able
to help you in the process.

Our specifications repository follows the usual OpenStack and OpenStack-Ansible guidelines for sub-
mitting code.

However, to help you in the writing of the specification, we have a specification template that can be
copied into the latest release name folder. Rename and edit it for your needs.

Ansible Style Guide

YAML formatting

When creating tasks and other roles for use in Ansible please create them using the YAML dictionary
format.

Example YAML dictionary format:

- name: The name of the tasks
module_name:

thing1: "some-stuff"
thing2: "some-other-stuff"

tags:
- some-tag
- some-other-tag

Example what NOT to do:

- name: The name of the tasks
module_name: thing1="some-stuff" thing2="some-other-stuff"
tags: some-tag

- name: The name of the tasks
module_name: >

thing1="some-stuff"
(continues on next page)

1.4. Developer Documentation 163

https://opendev.org/openstack/openstack-ansible-specs/src/specs/templates/template.rst

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

thing2="some-other-stuff"
tags: some-tag

Usage of the > and | operators should be limited to Ansible conditionals and command modules such as
the Ansible shell or command.

Tags and tags conventions

Tags are assigned based on the relevance of each individual item. Higher level includes (for example
in the tasks/main.yml) need high level tags. For example, *-config or *-install. Included
tasks can have more detailed tags.

The following convention is used:

• A tag including the word install handles software installation tasks. Running a playbook with
--tags <role>-install only deploys the necessary software on the target, and will not
configure it to your needs or run any service.

• A tag including the word config prepares the configuration of the software (adapted to your
needs), and all the components necessary to run the service(s) configured in the role. Running
a playbook with --tags <role>-config is only possible if the target already ran the tags
<role>-install.

• A tag including the word upgrade handles all the upgrade tasks.

Variable files conventions

The variables files in a role are split in 3 locations:

1. The defaults/main.yml file

2. The vars/main.yml file

3. The vars/<platform specific>.yml file

The variables with lower priority should be in the defaults/main.yml. This allows their overriding with
group variables or host variables. A good example for this are default database connection details,
default queues connection details, or debug mode.

In other words, defaults/main.yml contains variables that are meant to be overridable by a deployer
or a continuous integration system. These variables should be limited as much as possible, to avoid
increasing the test matrix.

The vars/main.yml is always included. It contains generic variables that arent meant to be changed by a
deployer. This includes for example static information that arent distribution specific (like aggregation
of role internal variables for example).

The vars/<platform specific>.yml is the place where distribution specific content will be stored. For
example, this file will hold the package names, repositories urls and keys, file paths, service names/init
scripts.

164 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Secrets

Any secrets (For example: passwords) should not be provided with default values in the tasks, role vars,
or role defaults. The tasks should be implemented in such a way that any secrets required, but not pro-
vided, should result in the task execution failure. It is important for a secure-by-default implementation
to ensure that an environment is not vulnerable due to the production use of default secrets. Deployers
must be forced to properly provide their own secret variable values.

Task files conventions

Most OpenStack services will follow a common series of stages to install, configure, or update a service
deployment. This is apparent when you review tasks/main.yml for existing roles.

If developing a new role, please follow the conventions set by existing roles.

Tests conventions

The conventions for writing tests are described in the Testing page.

Other OpenStack-Ansible conventions

To facilitate the development and tests implemented across all OpenStack-Ansible roles, a base set of
folders and files need to be implemented. A base set of configuration and test facilitation scripts must
include at least the following:

• tox.ini: The lint testing, documentation build, release note build and functional build execution
process for the roles gate tests are all defined in this file.

• test-requirements.txt: The Python requirements that must be installed when executing
the tests.

• bindep.txt: The binary requirements that must be installed on the host the tests are executed
on for the Python requirements and the tox execution to work. This must be copied from the
openstack-ansible-tests repository and will be automatically be overridden by our pro-
posal bot should any change happen.

• setup.cfg and setup.py: Information about the repository used when building artifacts.

• run_tests.sh: A script for developers to execute all standard tests on a suitable host. This
must be copied from the openstack-ansible-tests repository and will be automatically
be overridden by our proposal bot should any change happen.

• Vagrantfile: A configuration file to allow a developer to easily create a test virtual machine
using Vagrant. This must automatically execute run_tests.sh. This must be copied from
the openstack-ansible-tests repository and will be automatically be overridden by our
proposal bot should any change happen.

• README.rst, LICENSE, CONTRIBUTING.rst: A set of standard files whose content is self-
explanatory.

• .gitignore: A standard git configuration file for the repository which should be pretty uni-
form across all the repositories. This must be copied from the openstack-ansible-tests
repository and will be automatically be overridden by our proposal bot should any change happen.

1.4. Developer Documentation 165

https://www.vagrantup.com/

OpenStack-Ansible Documentation, Release 23.4.5.dev7

• .gitreview: A standard file configured for the project to inform the git-review plugin
where to find the upstream gerrit remote for the repository.

• docs/ and releasenotes/ folders need to be exist and be properly configured.

Please have a look at a role like os_cinder, os_keystone, or os_neutron for latest files.

Container technology independence

The role implementation should be done in such a way that it is agnostic with regards to whether it is
implemented in a container, or on a physical host. The test infrastructure may make use of containers for
the separation of services, but if a role is used by a playbook that targets a host, it must work regardless
of whether that host is a container, a virtual server, or a physical server. The use of containers for role
tests is not required but it may be useful in order to simulate a multi-node build out as part of the testing
infrastructure.

Minimum supported distributions

See our Supported distributions page.

1.4.5 Testing

Adding tests to a new role

Each of the role tests is in its tests/ folder.

This folder contains at least the following files:

• test.yml (super playbook acting as test router to sub-playbooks)

• <role name>-overrides.yml. This var file is automatically loaded by our shell script in
our tests repository.

• inventory. A static inventory for role testing. Its possible some roles have multiple inventories.
See for example the neutron role with its lxb_inventory, calico_inventory.

• group_vars and host_vars. These folders will hold override the necessary files for testing.
For example, this is where you override the IP addresses, IP ranges, and ansible connection details.

• ansible-role-requirements.yml. This should be fairly straightforward: this file con-
tains all the roles to clone before running your role. The roles relative playbooks will have to be
listed in the test.yml file. However, keep in mind to NOT re-invent the wheel. For example,
if your role needs keystone, you dont need to create your own keystone install playbook, because
we have a generic keystone install playbook in the tests repository.

• Only add a zuul.d folder when your role is imported into the openstack-ansible namespace.

166 Chapter 1. Abstract

https://opendev.org/openstack/openstack-ansible-tests

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Extending tests of an existing role

1. Modify the tox.ini to add your new scenario. If required, you can override the inventory, and/or
the variable files.

2. Add a new non-voting job in zuul.d/jobs.yaml, and wire it in the project tests file zuul.
d/project.yaml.

Improve testing with tempest

Once the initial convergence is working and the services are running, the role development should focus
on implementing some level of functional testing.

Ideally, the functional tests for an OpenStack role should make use of Tempest to execute the functional
tests. The ideal tests to execute are scenario tests as they test the functions that the service is expected
to do in a production deployment. In the absence of any scenario tests for the service a fallback option
is to implement the smoke tests instead.

If no tempest is provided, some other functional testing should be done. For APIs, you can probably
check the HTTP response codes, with specially crafted requests.

Running tests locally

Linting

Python coding conventions are tested using PEP8, with the following convention exceptions:

• F403 - from ansible.module_utils.basic import *

Testing may be done locally by executing:

./run_tests.sh pep8

Bash coding conventions are tested using Bashate, with the following convention exceptions:

• E003: Indent not multiple of 4. We prefer to use multiples of 2 instead.

• E006: Line longer than 79 columns. As many scripts are deployed as templates and use
jinja templating, this is very difficult to achieve. It is still considered a preference and should
be a goal to improve readability, within reason.

• E040: Syntax error determined using bash -n. As many scripts are deployed as templates
and use jinja templating, this will often fail. This test is reasonably safely ignored as the
syntax error will be identified when executing the resulting script.

Testing may be done locally by executing:

./run_tests.sh bashate

Ansible is lint tested using ansible-lint.

Testing may be done locally by executing:

./run_tests.sh ansible-lint

1.4. Developer Documentation 167

https://www.python.org/dev/peps/pep-0008/
https://opendev.org/openstack/bashate
https://github.com/ansible/ansible-lint

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Ansible playbook syntax is tested using ansible-playbook.

Testing may be done locally by executing:

./run_tests.sh ansible-syntax

A consolidated set of all lint tests may be done locally by executing:

./run_tests.sh linters

Documentation building

Documentation is developed in reStructuredText (RST) and compiled into HTML using Sphinx.

Documentation may be built locally by executing:

./run_tests.sh docs

The OpenStack-Ansible integrated repo also has an extra documentation building process, to build the
deployment guide.

This guide may be built locally by executing:

./run_tests.sh deploy-guide

Release notes building

Release notes are generated using the the reno tool and compiled into HTML using Sphinx.

Release notes may be built locally by executing:

./run_tests.sh releasenotes

Note: The releasenotes build argument only tests committed changes. Ensure your local changes
are committed before running the releasenotes build.

Roles functional or scenario testing

To run a functional test of the role, execute:

./run_tests.sh functional

Some roles have extra tests, like neutron, defined in tox.ini.

To run a functional test named calico, execute:

./run_tests.sh calico

168 Chapter 1. Abstract

http://docutils.sourceforge.net/rst.html
https://docs.openstack.org/reno/latest/

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Testing a new role with an AIO

1. Include your role on the deploy host. See also Adding new or overriding roles in your OpenStack-
Ansible installation.

2. Perform any other host preparation (such as the tasks performed by the bootstrap-aio.yml
playbook). This includes any preparation tasks that are particular to your service.

3. Generate files to include your service in the Ansible inventory using env.d and conf.d files
for use on your deploy host.

Hint: You can follow examples from other roles, making the appropriate modifications being
sure that group labels in env.d and conf.d files are consistent.

Hint: A description of how these work can be found in Understanding host groups (conf.d
structure) and Understanding container groups (env.d structure).

4. Generate secrets, if any, as described in the Configure Service Credentials. You can append your
keys to an existing user_secrets.yml file or add a new file to the openstack_deploy
directory to contain them. Provide overrides for any other variables you will need at this time as
well, either in user_variables.yml or another file.

See also our Overriding default configuration page.

Any secrets required for the role to work must be noted in the etc/openstack_deploy/
user_secrets.yml file for reuse by other users.

5. If your service is installed from source or relies on python packages which need to be installed
from source, specify a repository for the source code of each requirement by adding a file to
your deploy host under playbooks/defaults/repo_packages in the OpenStack-Ansible
source repository and following the pattern of files currently in that directory. You could also
simply add an entry to an existing file there. Be sure to run the repo-build.yml play later so
that wheels for your packages will be included in the repository infrastructure.

6. Make any required adjustments to the load balancer configuration (e.g. modify inventory/
group_vars/all/haproxy.yml in the OpenStack-Ansible source repository on your de-
ploy host) so that your service can be reached through a load balancer, if appropriate, and be sure
to run the haproxy-install.yml play later so your changes will be applied. Please note, you
can also use haproxy_extra_services variable if you dont want to provide your service as
default for everyone.

7. Put together a service install playbook file for your role. This can also be modeled from any
existing service playbook that has similar dependencies to your service (database, messaging,
storage drivers, container mount points, etc.). A common place to keep playbook files in a Galaxy
role is in an examples directory off the root of the role. If the playbook is meant for installing
an OpenStack service, name it os-<service>-install.yml and target it at the appropriate
group defined in the service env.d file. It is crucial that the implementation of the service is
optional and that the deployer must opt-in to the deployment through the population of a host
in the applicable host group. If the host group has no hosts, Ansible skips the playbooks tasks
automatically.

8. Any variables needed by other roles to connect to the new role, or by the new role to connect to
other roles, should be implemented in inventory/group_vars. The group vars are essen-

1.4. Developer Documentation 169

https://docs.openstack.org/project-deploy-guide/openstack-ansible/wallaby/configure.html#configuring-service-credentials

OpenStack-Ansible Documentation, Release 23.4.5.dev7

tially the glue which playbooks use to ensure that all roles are given the appropriate information.
When group vars are implemented it should be a minimum set to achieve the goal of integrating
the new role into the integrated build.

9. Documentation must be added in the role to describe how to implement the new service in an in-
tegrated environement. This content must adhere to the Documentation and Release Note Guide-
lines. Until the role has integrated functional testing implemented (see also the Role develop-
ment maturity paragraph), the documentation must make it clear that the service inclusion in
OpenStack-Ansible is experimental and is not fully tested by OpenStack-Ansible in an integrated
build. Alternatively, an user story can be created.

10. A feature release note must be added to announce the new service availability and to refer to
the role documentation for further details. This content must adhere to the Documentation and
Release Note Guidelines.

11. It must be possible to execute a functional, integrated test which executes a deployment in the
same way as a production environment. The test must execute a set of functional tests using
Tempest. This is the required last step before a service can remove the experimental warning from
the documentation.

Hint: If you adhere to the pattern of isolating your roles extra deployment requirements (secrets and
var files, HAProxy yml fragments, repo_package files, etc.) in their own files it makes it easy for you to
automate these additional steps when testing your role.

Integrated repo functional or scenario testing

To test the integrated repo, follow the Deployment Guide

Alternatively, you can check the aio guide, or even run the gate wrapper script, named scripts/
gate-check-commit.sh, described below.

The OpenStack Infrastructure automated tests

There should be no difference between running tests in the openstack infrastructure, versus running
locally.

The tests in the openstack infrastructure are triggered by jobs defined in each repo zuul.d folder.

See also the zuul user guide.

However, for reliability purposes, a few variables are defined to point to the OpenStack infra pypi and
packages mirrors.

The integrated repo functional test is using the scripts/gate-check-commit.sh script, which
receives arguments from the zuul run playbook definition.

While this script is primarily developed and maintained for use in OpenStack-CI, it can be used in other
environments.

170 Chapter 1. Abstract

https://docs.openstack.org/project-deploy-guide/openstack-ansible/wallaby/index.html
https://zuul-ci.org/docs/zuul/user/index.html

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Role development maturity

A role may be fully mature, even if it is not integrated in the openstack-ansible repository. The
maturity depends on its testing levels.

A role can be in one of the four maturity levels:

• Complete

• Incubated

• Unmaintained

• Retired

Here are a series of rules that define maturity levels:

• A role can be retired at any time if it is not relevant anymore.

• A role can be Incubated for maximum 2 cycles.

• An Incubated role that passes functional testing will be upgraded to the Complete status,
and cannot return in Incubated status.

• An Incubated role that didnt implement functional testing in the six month timeframe will
become Unmaintained.

• A role in Complete status can be downgraded to Unmaintained. status, according to the
maturity downgrade procedure.

Maturity downgrade procedure

If a role has failed periodics or gate test for two weeks, a bug should be filed, and a message to the
mailing list will be sent, referencing the bug.

The next community meeting should discuss about role deprecation, and if no contributor comes forward
to fix the role, periodic testing will be turned off, and the role will move to an unmaintained state.

Maturity Matrix

All of the OpenStack-Ansible roles do not have the same level of maturity and testing.

Here is a dashboard of the current status of the roles:

1.4.6 Periodic Work

Releasing

Our release frequency is discussed in Releases.

1.4. Developer Documentation 171

OpenStack-Ansible Documentation, Release 23.4.5.dev7

OSA CLI tooling

OpenStack-Ansible used to bump everything in a single script, which made it hard to maintain, and was
very branch specific. It made it hard for users to consume either an update of the upstream shas, or to
bump roles with their own pace.

Since then, the OpenStack-Ansible has agreed to provide more metadata necessary for releasing into the
openstack-ansible code tree. This allowed the tooling for releasing to be more flexible, and lighter, over
time.

Now, all the functions are separated, and included into a branch independent tooling, osa_cli_releases.

You can install the latest version of this tooling by running:

pip3 install -e git+https://github.com/evrardjp/osa-cli.git#egg=openstack_
↪→ansible_cli
pip3 install -e git+https://github.com/evrardjp/osa_cli_releases.git
↪→#egg=osa_cli_releases

This tooling can then be called using osa releases. Each subcommand contains help by default.

Updating upstream SHAs

The dependencies for OpenStack-Ansible are updated through the use of osa releases
bump_upstream_shas. This script updates the projects pinned SHAs, located in the repo_packages
folder, based on their _git_track_branch value.

Updating OpenStack-Ansible roles

Updating the roles to their latest version per branch is done through osa releases bump_roles
$gitbranchname.

This can do multiple things:

• Freeze ansible-role-requirements to their latest SHAs for the branch they are tracking.

• Copy release notes relevant to the freeze.

• Unfreeze of master.

Master doesnt get frozen, unless explicitly asked for it for release milestones, using the command osa
releases freeze_roles_for_milestone

Check current pins status

You can check the current PyPI pins that are used in openstack-ansible repository by running osa
releases check_pins. This will display a table, showing the current pin in OSA, and what is
available upstream on PyPI.

This doesnt patch the global-requirements-pins, as this should be a manual operation. See the
Development cycle checklist to know when to bump the global-requirements-pins.

172 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Adding patch in releases repo

When the patches to update SHAs and roles have landed, you can propose the parent SHA as a release
in the releases repo.

This can be done using the new-release command, and then editing the SHA used for openstack-
ansible. See also new_releases page for an explanation of this command.

Please note that branches before Stein will require cleanup of the YAML file generated by new_releases,
as it will contain ALL the roles and openstack-ansible repo SHAs. We have decided to NOT tag the
roles anymore, so you will need to remove all the lines which are not relevant to the openstack-ansible
repository.

Development cycle checklist

On top of the normal cycle goals, a contributor can help the OpenStack-Ansible development team by
performing one of the following recurring tasks:

• By milestone 1:

– Community goal acknowledgement.

– Update global-requirements-pins

• By milestone 2:

– Handle deprecations from upstream projects previous cycle.

– Handle OpenStack-Ansible roles deprecations from the previous cycle.

– Refresh static elements in roles. For example, update a specific version of the software
packages.

– Bump ceph_stable_release to latest Ceph LTS release in the integrated OpenStack-
Ansible repo, and inside the ceph_client role defaults.

– Check and bump galera versions if required.

– Check and bump rabbitmq versions if required.

– Check outstanding reviews and move to merge or abandon them if no longer valid.

– Update global-requirements-pins

• By milestone 3:

– Implement features

– Update global-requirements-pins

• After milestone 3:

– Feature freeze, bug fixes, and testing improvements.

• After creating a new stable branch:

– For all the repos, update the eventual static files refering to master/previous branch name.
The main documentation should be updated to add the new branch. The #openstack-docs
team should also be updated, for linking the newly created deployment-guide.

Use the topic create-<branchname> (e.g: create-stein) for future reference.

1.4. Developer Documentation 173

https://releases.openstack.org/reference/using.html#using-new-release-command

OpenStack-Ansible Documentation, Release 23.4.5.dev7

– Branch all the independent repos that arent part of the release in gerrit. See also the
projects.yaml in the governance repo. Manually branched repos need extra editions,
like updating the .gitreview, or the reno index. Please reference previous branch creations by
using the appropriate topic in gerrit (e.g.: create-stein). The previous new branch cre-
ation may be different as the tooling/process may have evolved, so be aware that the changes
needed may need to be adapted.

• After official project release, before official OpenStack-Ansible release:

– Bump RDO and Ubuntu Cloud Archive repositories if they are ready on time.

• Immediately after official OpenStack-Ansible release:

– Send a thank you note to all the contributors through the mailing lists. They deserve it.

1.4.7 Core Reviewers

General Responsibilities

The OpenStack-Ansible Core Reviewer Team is responsible for many aspects of the OpenStack-Ansible
project. These include, but are not limited to:

• Mentor community contributors in solution design, testing, and the review process

• Actively reviewing patch submissions, considering whether the patch: - is functional - fits the
use-cases and vision of the project - is complete in terms of testing, documentation, and release
notes - takes into consideration upgrade concerns from previous versions

• Assist in bug triage and delivery of bug fixes

• Curating the gate and triaging failures

• Maintaining accurate, complete, and relevant documentation

• Ensuring the level of testing is adequate and remains relevant as features are added

• Answering questions and participating in mailing list discussions

• Interfacing with other OpenStack teams

In essence, core reviewers share the following common ideals:

• They share responsibility in the projects success in its mission.

• They value a healthy, vibrant, and active developer and user community.

• They have made a long-term, recurring time investment to improve the project.

• They spend their time doing what needs to be done to ensure the projects success, not necessarily
what is the most interesting or fun.

• A core reviewers responsibility doesnt end with merging code.

174 Chapter 1. Abstract

https://review.opendev.org/#/admin/groups/490,members
https://governance.openstack.org/tc/reference/projects/openstackansible.html#mission

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Core Reviewer Expectations

Members of the core reviewer team are expected to:

• Attend and participate in the weekly IRC meetings

• Monitor and participate in-channel at #openstack-ansible

• Monitor and participate in OpenStack-Ansible discussions on the mailing list

• Participate in team sessions at the OpenStack Projects Team Gatherings (PTG)

• Participate in Forum sessions at the OpenStack Summits

• Review patch submissions actively and consistently

Please note in-person attendance at PTG, Summit, mid-cycles, and other code sprints is not a require-
ment to be a core reviewer. The team will do its best to facilitate virtual attendance at all events. Travel
is not to be taken lightly, and we realize the costs involved for those who attend these events.

Code Merge Responsibilities

While everyone is encouraged to review changes, members of the core reviewer team have the ability
to +2/-2 and +W changes to these repositories. This is an extra level of responsibility not to be taken
lightly. Correctly merging code requires not only understanding the code itself, but also how the code
affects things like documentation, testing, upgrade impacts and interactions with other projects. It also
means you pay attention to release milestones and understand if a patch you are merging is marked for
the release, especially critical during the feature freeze.

1.4.8 Distribution support

Supported distributions

The list of supported distributions can be found in the Deployment Guide

Minimum requirements for OpenStack-Ansible roles

Existing and new distributions are expected to meet the following requirements in order for them to be
accepted in the individual OpenStack-Ansible roles:

• Pass functional tests

Graduation

For a distribution to be considered supported by the OpenStack-Ansible project, it has to meet the fol-
lowing minimum requirements:

• The necessary steps for bootstrapping the operating system have to be documented in the Deploy-
ment Guide.

• The integration repository contains at least one job which passes the Temptest testing framework.

1.4. Developer Documentation 175

https://docs.openstack.org/project-deploy-guide/openstack-ansible/wallaby/deploymenthost.html
https://docs.openstack.org/project-deploy-guide/openstack-ansible/wallaby/index.html
https://docs.openstack.org/project-deploy-guide/openstack-ansible/wallaby/index.html

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Voting

Distributions can be promoted to voting jobs on individual roles once they move to the Graduation phase
and their stability has been confirmed by the core OpenStack-Ansible developers. Similar to this, voting
can also be enabled in the integration repository for all the scenarios or a specific one.

1.5 OpenStack-Ansible Reference

This chapter contains all the extra reference information to deploy, configure, or upgrade an OpenStack-
Ansible cloud.

For information on how to deploy your OpenStack-Ansible cloud, refer to the Deployment Guide for
step-by-step instructions on how to deploy the OpenStack packages and dependencies on your cloud
using OpenStack-Ansible.

For user guides, see the User Guide.

For information on how to manage and operate OpenStack-Ansible, see the see the Operations Guide.

For information on how to contribute, extend or develop OpenStack-Ansible, see the Contributors Guide.

1.5.1 Releases

What is the OSA release model

OpenStack-Ansible (OSA) uses the cycle-trailing release model as specified in the OpenStack release
model reference_.

How are release tags decided?

In order to ensure a common understanding of what release versions mean, we use Semantic Versioning
2.0.0_ for versioning as a basis. The exception to the rule is for milestone releases during a develop-
ment cycle, where releases are tagged <MAJOR>.0.0.0b<MILESTONE>where <MAJOR> is the next
major release number, and <MILESTONE> is the milestone number.

The OpenStack series names are alphabetical, with each letter matched to a number (eg: Austin = 1,
Bexar = 2, Newton = 14, Pike = 16, etc). OSA adopted the same <MAJOR> release numbering as the
Nova project to match the overall OpenStack series version numbering.

How frequently does OSA release?

Major releases are done every six months according to the OpenStack release schedule_. Each major
release is consistent with an OpenStack series.

Minor/patch releases are requested for stable branches on the second and last Friday of every month.
The releases are typically completed within a few days of the request.

176 Chapter 1. Abstract

https://docs.openstack.org/project-deploy-guide/openstack-ansible/wallaby/index.html
https://docs.openstack.org/openstack-ansible/wallaby/user/index.html
https://docs.openstack.org/openstack-ansible/wallaby/admin/index.html
https://docs.openstack.org/openstack-ansible/wallaby/contributor/index.html

OpenStack-Ansible Documentation, Release 23.4.5.dev7

What version of OpenStack is deployed by OSA?

For each OSA release, the OpenStack version that is deployed is set to a specific OpenStack git SHA-1
hash_ (SHA). These are updated after every OSA release. The intent is to ensure that OSA users are
able to enjoy an updated OpenStack environment with smaller increments of change than the typical
upstream service releases allow for as they are usually very infrequent.

This does mean that a stable OSA deployment will include a version of a service (eg: nova-17.0.3dev4)
which does not match a tag exactly as you may expect (eg: nova-17.0.3).

If you wish to change the SHA to a specific SHA/tag/branch, or wish to use your own fork of an Open-
Stack service, please see the section titled Overriding other upstream projects source code in the user
guide.

When does a patch to an OSA role get into a release?

For each OSA release, the Ansible roles that form that release are set to a specific git SHA-1 hash_
(SHA). These are updated after every OSA release.

OSA frequently does pro-active bugfix backports. In order to reduce the risk of these backports intro-
ducing any destabilization, OSA implements a soak period for any patches implemented in the stable
branches for roles, but also provides for circumventing this in exceptional circumstances.

A patch merged into a role is immediately tested by other role tests, ensuring that any major breaking
change is caught. Once a minor/patch release is requested, the integrated build receives a SHA bump
patch to update the integrated build to using the latest available roles including that new patch. This
new set is available for testing to anyone wanting to use the head of the stable branch, and is tested in
periodic tests until the next release. In total, that means that the cycle time for a patch from merge to
release is anywhere from two weeks to one month.

If there is a requirement to rush a role patch into the next release, then anyone may propose a change
to the ansible-role-requirements.yml file in the openstack/openstack-ansible
repository with the appropriate justification.

We believe that this approach brings a balance of both reasonable stability, while still being able to do
pro-active backports.

The only exception to this rule is for the master branch, which intentionally consumes the master
branch from all roles between releases so that any changes are immediately integration tested.

1.5.2 Conventions

To avoid extra configuration, a series of conventions are set into code.

1.5. OpenStack-Ansible Reference 177

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Default folders locations

Ansible roles

The ansible roles are stored under /etc/ansible/roles.

OpenStack-Ansible directory checkout

The code is generally located into /opt/openstack-ansible.

OpenStack-Ansible wrapper

Our openstack-ansible cli is located in /usr/local/bin/openstack-ansible. It
sources an environment variable file located in: /usr/local/bin/openstack-ansible.rc.

Userspace configurations

All the userspace configurations are expected to be in /etc/openstack_deploy/.

Ansible configuration

Ansible.cfg

There is no ansible.cfg provided with OpenStack-Ansible. Environment variables are used to alter
the default Ansible behavior if necessary.

Ansible roles fetching

Any roles defined in openstack-ansible/ansible-role-requirements.yml will be in-
stalled by the openstack-ansible/scripts/bootstrap-ansible.sh script, and fetched
into the ansible roles folder.

Inventory conventions

Please confer to the inventory section of this reference.

178 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

1.5.3 Inventory

OpenStack-Ansible uses an included script to generate the inventory of hosts and containers within the
environment. This script is called by Ansible through its dynamic inventory functionality.

In this section, you will find documentation relevant to the inventory for OpenStack-Ansible.

Generating the Inventory

The script that creates the inventory is located at inventory/dynamic_inventory.py.

This section explains how ansible runs the inventory, and how you can run it manually to see its behavior.

Executing the dynamic_inventory.py script manually

When running an Ansible command (such as ansible, ansible-playbook or
openstack-ansible) Ansible automatically executes the dynamic_inventory.py script and
use its output as inventory.

Run the following command:

from the root folder of cloned OpenStack-Ansible repository
inventory/dynamic_inventory.py --config /etc/openstack_deploy/

This invocation is useful when testing changes to the dynamic inventory script.

Inputs

The dynamic_inventory.py takes the --config argument for the directory holding configura-
tion from which to create the inventory. If not specified, the default is /etc/openstack_deploy/.

In addition to this argument, the base environment skeleton is provided in the inventory/env.d
directory of the OpenStack-Ansible codebase.

Should an env.d directory be found in the directory specified by --config, its contents will be added
to the base environment, overriding any previous contents in the event of conflicts.

Note: In all versions prior to Victoria, this argument was --file.

The following file must be present in the configuration directory:

• openstack_user_config.yml

Additionally, the configuration or environment could be spread between two additional sub-directories:

• conf.d

• env.d (for environment customization)

The dynamic inventory script does the following:

• Generates the names of each container that runs a service

• Creates container and IP address mappings

1.5. OpenStack-Ansible Reference 179

https://docs.ansible.com/ansible/intro_dynamic_inventory.html

OpenStack-Ansible Documentation, Release 23.4.5.dev7

• Assigns containers to physical hosts

As an example, consider the following excerpt from openstack_user_config.yml:

identity_hosts:
infra01:

ip: 10.0.0.10
infra02:

ip: 10.0.0.11
infra03:

ip: 10.0.0.12

The identity_hosts dictionary defines an Ansible inventory group named identity_hosts
containing the three infra hosts. The configuration file inventory/env.d/keystone.yml defines
additional Ansible inventory groups for the containers that are deployed onto the three hosts named with
the prefix infra.

Note that any services marked with is_metal: true will run on the allocated physical host and
not in a container. For an example of is_metal: true being used refer to inventory/env.d/
cinder.yml in the container_skel section.

For more details, see Configuring the inventory.

Outputs

Once executed, the script will output an openstack_inventory.json file into the directory spec-
ified with the --config argument. This is used as the source of truth for repeated runs.

Warning: The openstack_inventory.json file is the source of truth for the environment.
Deleting this in a production environment means that the UUID portion of container names will be
regenerated, which then results in new containers being created. Containers generated under the
previous version will no longer be recognized by Ansible, even if reachable via SSH.

The same JSON structure is printed to stdout, which is consumed by Ansible as the inventory for the
playbooks.

Checking inventory configuration for errors

Using the --check flag when running dynamic_inventory.py will run the inventory build pro-
cess and look for known errors, but not write any files to disk.

If any groups defined in the openstack_user_config.yml or conf.d files are not found in the
environment, a warning will be raised.

This check does not do YAML syntax validation, though it will fail if there are unparseable errors.

180 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Writing debug logs

The --debug/-d parameter allows writing of a detailed log file for debugging the inventory scripts
behavior. The output is written to inventory.log in the current working directory.

The inventory.log file is appended to, not overwritten.

Like --check, this flag is not invoked when running from ansible.

Configuring the inventory

In this chapter, you can find the information on how to configure the openstack-ansible dynamic inven-
tory to your needs.

Introduction

Common OpenStack services and their configuration are defined by OpenStack-Ansible in the /etc/
openstack_deploy/openstack_user_config.yml settings file.

Additional services should be defined with a YAML file in /etc/openstack_deploy/conf.d,
in order to manage file size.

The /etc/openstack_deploy/env.d directory sources all YAML files into the deployed envi-
ronment, allowing a deployer to define additional group mappings. This directory is used to extend the
environment skeleton, or modify the defaults defined in the inventory/env.d directory.

To understand how the dynamic inventory works, see Understanding the inventory.

Warning: Never edit or delete the files /etc/openstack_deploy/
openstack_inventory.json or /etc/openstack_deploy/
openstack_hostnames_ips.yml. This can lead to file corruptions, and problems with
the inventory: hosts and container could disappear and new ones would appear, breaking your
existing deployment.

Configuration constraints

Group memberships

When adding groups, keep the following in mind:

• A group can contain hosts

• A group can contain child groups

However, groups cannot contain child groups and hosts.

1.5. OpenStack-Ansible Reference 181

OpenStack-Ansible Documentation, Release 23.4.5.dev7

The lxc_hosts Group

When the dynamic inventory script creates a container name, the host on which the container resides is
added to the lxc_hosts inventory group.

Using this name for a group in the configuration will result in a runtime error.

Deploying directly on hosts

To deploy a component directly on the host instead of within a container, set the is_metal property
to true for the container group in the container_skel section in the appropriate file.

The use of container_vars and mapping from container groups to host groups is the same for a
service deployed directly onto the host.

You can also use the no_containers option to specify a host that will have all services deployed on
metal inside of it.

Note: The cinder-volume component is deployed directly on the host by default. See the env.d/
cinder.yml file for this example.

Example: Running all controllers on metal

For example, if youd like to run all your controllers on metal, you would have the following inside your
openstack_user_config.yml.

infra_hosts:
infra1:

ip: 172.39.123.11
no_containers: true

infra2:
ip: 172.39.123.12
no_containers: true

infra3:
ip: 172.39.123.13
no_containers: true

Example: Running galera on dedicated hosts

For example, to run Galera directly on dedicated hosts, you would perform the following steps:

1. Modify the container_skel section of the env.d/galera.yml file. For example:

container_skel:
galera_container:

belongs_to:
- db_containers

contains:
- galera

(continues on next page)

182 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

properties:
is_metal: true

Note: To deploy within containers on these dedicated hosts, omit the is_metal: true
property.

2. Assign the db_containers container group (from the preceding step) to a host group by pro-
viding a physical_skel section for the host group in a new or existing file, such as env.d/
galera.yml. For example:

physical_skel:
db_containers:

belongs_to:
- all_containers

db_hosts:
belongs_to:

- hosts

3. Define the host group (db_hosts) in a conf.d/ file (such as galera.yml). For example:

db_hosts:
db-host1:

ip: 172.39.123.11
db-host2:

ip: 172.39.123.12
db-host3:

ip: 172.39.123.13

Note: Each of the custom group names in this example (db_containers and db_hosts)
are arbitrary. Choose your own group names, but ensure the references are consistent among all
relevant files.

Deploying 0 (or more than one) of component type per host

When OpenStack-Ansible generates its dynamic inventory, the affinity setting determines how many
containers of a similar type are deployed on a single physical host.

Using shared-infra_hosts as an example, consider this openstack_user_config.yml
configuration:

shared-infra_hosts:
infra1:

ip: 172.29.236.101
infra2:

ip: 172.29.236.102
infra3:

ip: 172.29.236.103

Three hosts are assigned to the shared-infra_hosts group, OpenStack-Ansible ensures that each host runs
a single database container, a single Memcached container, and a single RabbitMQ container. Each host

1.5. OpenStack-Ansible Reference 183

OpenStack-Ansible Documentation, Release 23.4.5.dev7

has an affinity of 1 by default, which means that each host runs one of each container type.

If you are deploying a stand-alone Object Storage (swift) environment, you can skip the deployment of
RabbitMQ. If you use this configuration, your openstack_user_config.yml file would look as
follows:

shared-infra_hosts:
infra1:

affinity:
rabbit_mq_container: 0

ip: 172.29.236.101
infra2:

affinity:
rabbit_mq_container: 0

ip: 172.29.236.102
infra3:

affinity:
rabbit_mq_container: 0

ip: 172.29.236.103

This configuration deploys a Memcached container and a database container on each host, but no Rab-
bitMQ containers.

Omit a service or component from the deployment

To omit a component from a deployment, you can use one of several options:

• Remove the physical_skel link between the container group and the host group by deleting
the related file located in the env.d/ directory.

• Do not run the playbook that installs the component. Unless you specify the component to run
directly on a host by using the is_metal property, a container is created for this component.

• Adjust the Deploying 0 (or more than one) of component type per host to 0 for the host group.
Similar to the second option listed here, Unless you specify the component to run directly on a
host by using the is_metal property, a container is created for this component.

Understanding the inventory

The default layout of containers and services in OpenStack-Ansible (OSA) is determined by the /etc/
openstack_deploy/openstack_user_config.yml file and the contents of both the /etc/
openstack_deploy/conf.d/ and /etc/openstack_deploy/env.d/ directories. You use
these sources to define the group mappings that the playbooks use to target hosts and containers for roles
used in the deploy.

• You define host groups, which gather the target hosts into inventory groups, through the /etc/
openstack_deploy/openstack_user_config.yml file and the contents of the /etc/
openstack_deploy/conf.d/ directory.

• You define container groups, which can map from the service components to be deployed up to
host groups, through files in the /etc/openstack_deploy/env.d/ directory.

To customize the layout of the components for your deployment, modify the host groups and container
groups appropriately before running the installation playbooks.

184 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Understanding host groups (conf.d structure)

As part of the initial configuration, each target host appears either in the /etc/
openstack_deploy/openstack_user_config.yml file or in files within the /etc/
openstack_deploy/conf.d/ directory. The format used for files in the conf.d/ directory is
identical to the syntax used in the openstack_user_config.yml file.

In these files, the target hosts are listed under one or more headings, such as shared-infra_hosts
or storage_hosts, which serve as Ansible group mappings. These groups map to the physical hosts.

The haproxy.yml.example file in the conf.d/ directory provides a simple example of defining
a host group (haproxy_hosts) with two hosts (infra1 and infra2).

The swift.yml.example file provides a more complex example. Here, host variables for a target
host are specified by using the container_vars key. OpenStack-Ansible applies all entries under
this key as host-specific variables to any component containers on the specific host.

Note: To manage file size, we recommend that you define new inventory groups, particularly for new
services, by using a new file in the conf.d/ directory.

Understanding container groups (env.d structure)

Additional group mappings are located within files in the /etc/openstack_deploy/env.d/ di-
rectory. These groups are treated as virtual mappings from the host groups (described above) onto the
container groups, that define where each service deploys. By reviewing files within the env.d/ direc-
tory, you can begin to see the nesting of groups represented in the default layout.

For example, the shared-infra.yml file defines a container group,
shared-infra_containers, as a subset of the all_containers inventory group. The
shared- infra_containers container group is mapped to the shared-infra_hosts host
group. All of the service components in the shared-infra_containers container group are
deployed to each target host in the shared-infra_hosts host group.

Within a physical_skel section, the OpenStack-Ansible dynamic inventory expects to find a pair
of keys. The first key maps to items in the container_skel section, and the second key maps to the
target host groups (described above) that are responsible for hosting the service component.

To continue the example, the memcache.yml file defines the memcache_container container
group. This group is a subset of the shared-infra_containers group, which is itself a subset of
the all_containers inventory group.

Note: The all_containers group is automatically defined by OpenStack-Ansible. Any service
component managed by OpenStack-Ansible maps to a subset of the all_containers inventory
group, directly or indirectly through another intermediate container group.

The default layout does not rely exclusively on groups being subsets of other groups. The memcache
component group is part of the memcache_container group, as well as the memcache_all
group and also contains a memcached component group. If you review the playbooks/
memcached-install.yml playbook, you see that the playbook applies to hosts in the memcached
group. Other services might have more complex deployment needs. They define and consume inventory

1.5. OpenStack-Ansible Reference 185

OpenStack-Ansible Documentation, Release 23.4.5.dev7

container groups differently. Mapping components to several groups in this way allows flexible targeting
of roles and tasks.

openstack_user_config settings reference

The openstack_user_config.yml.example file is heavily commented with the details of how
to do more advanced container networking configuration. The contents of the file are shown here for
reference.

#
Overview
========
#
This file contains the configuration for OpenStack Ansible Deployment
(OSA) core services. Optional service configuration resides in the
conf.d directory.
#
You can customize the options in this file and copy it to
/etc/openstack_deploy/openstack_user_config.yml or create a new
file containing only necessary options for your environment
before deployment.
#
OSA implements PyYAML to parse YAML files and therefore supports
↪→structure
and formatting options that augment traditional YAML. For example,
↪→aliases
or references. For more information on PyYAML, see the documentation at
#
http://pyyaml.org/wiki/PyYAMLDocumentation
#
Configuration reference
=======================
#
Level: cidr_networks (required)
Contains an arbitrary list of networks for the deployment. For each
↪→network,
the inventory generator uses the IP address range to create a pool of IP
addresses for network interfaces inside containers. A deployment requires
at least one network for management.
#
Option: <value> (required, string)
Name of network and IP address range in CIDR notation. This IP address
range coincides with the IP address range of the bridge for this
↪→network
on the target host.
#
Example:
#
Define networks for a typical deployment.
#
- Management network on 172.29.236.0/22. Control plane for
↪→infrastructure
services, OpenStack APIs, and horizon.
- Tunnel network on 172.29.240.0/22. Data plane for project (tenant)
↪→VXLAN
networks.

(continues on next page)

186 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

- Storage network on 172.29.244.0/22. Data plane for storage services
↪→such
as cinder and swift.
#
cidr_networks:
container: 172.29.236.0/22
tunnel: 172.29.240.0/22
storage: 172.29.244.0/22
#
Example:
#
Define additional service network on 172.29.248.0/22 for deployment in a
Rackspace data center.
#
snet: 172.29.248.0/22
#

#
Level: used_ips (optional)
For each network in the 'cidr_networks' level, specify a list of IP
↪→addresses
or a range of IP addresses that the inventory generator should exclude
↪→from
the pools of IP addresses for network interfaces inside containers. To
↪→use a
range, specify the lower and upper IP addresses (inclusive) with a comma
separator.
#
Example:
#
The management network includes a router (gateway) on 172.29.236.1 and
DNS servers on 172.29.236.11-12. The deployment includes seven target
servers on 172.29.236.101-103, 172.29.236.111, 172.29.236.121, and
172.29.236.131. However, the inventory generator automatically excludes
these IP addresses. The deployment host itself isn't automatically
excluded. Network policy at this particular example organization
also reserves 231-254 in the last octet at the high end of the range for
network device management.
#
used_ips:
- 172.29.236.1
- "172.29.236.100,172.29.236.200"
- "172.29.240.100,172.29.240.200"
- "172.29.244.100,172.29.244.200"
#

#
Level: global_overrides (required)
Contains global options that require customization for a deployment. For
example, load balancer virtual IP addresses (VIP). This level also
↪→provides
a mechanism to override other options defined in the playbook structure.
#
Option: internal_lb_vip_address (required, string)
Load balancer VIP (or valid FQDN) for the following items:
#

(continues on next page)

1.5. OpenStack-Ansible Reference 187

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

- Local package repository
- Galera SQL database cluster
- Administrative and internal API endpoints for all OpenStack services
- Glance registry
- Nova compute source of images
- Cinder source of images
- Instance metadata
#
Option: external_lb_vip_address (required, string)
Load balancer VIP (or valid FQDN) for the following items:
#
- Public API endpoints for all OpenStack services
- Horizon
#
Option: management_bridge (required, string)
Name of management network bridge on target hosts. Typically 'br-mgmt'.
#
Level: provider_networks (required)
List of container and bare metal networks on target hosts.
#
Level: network (required)
Defines a container or bare metal network. Create a level for each
network.
#
Option: type (required, string)
Type of network. Networks other than those for neutron such as
management and storage typically use 'raw'. Neutron networks use
'flat', 'vlan', or 'vxlan'. Coincides with ML2 plug-in
↪→configuration
options.
#
Option: container_bridge (required, string)
Name of unique bridge on target hosts to use for this network.
↪→Typical
values include 'br-mgmt', 'br-storage', 'br-vlan', 'br-vxlan', etc.
#
Option: container_interface (required, string)
Name of unique interface in containers to use for this network.
Typical values include 'eth1', 'eth2', etc. This option is OPTIONAL
for Neutron provider network definitions when Neutron agents are
deployed on bare metal (default), but REQUIRED when agents are
deployed in containers and for all other non-Neutron use-cases.
NOTE: Container interface is different from host interfaces.
#
Option: container_type (required, string)
Name of mechanism that connects interfaces in containers to the
↪→bridge
on target hosts for this network. Typically 'veth'.
#
Option: host_bind_override (optional, string)
Name of the physical network interface on the same L2 network being
used with the br-vlan device. This host_bind_override should only
be set for the ' container_bridge: "br-vlan" '.
This interface is optional but highly recommended for vlan based
OpenStack networking.
If no additional network interface is available, a deployer can
↪→create (continues on next page)

188 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

a veth pair, and plug it into the br-vlan bridge to provide
this interface. An example could be found in the aio_interfaces.cfg
file.
#
Option: container_mtu (optional, string)
Sets the MTU within LXC for a given network type.
#
Option: ip_from_q (optional, string)
Name of network in 'cidr_networks' level to use for IP address
↪→pool. Only
valid for 'raw' and 'vxlan' types.
#
Option: address_prefix (option, string)
Override for the prefix of the key added to each host that
↪→contains IP
address information for this network. By default, this will be the
↪→name
given in 'ip_from_q' with a fallback of the name of the interface
↪→given in
'container_interface'.
(e.g., 'ip_from_q'_address and 'container_interface'_address)
#
Option: is_container_address (required, boolean)
If true, the load balancer uses this IP address to access services
in the container. Only valid for networks with 'ip_from_q' option.
#
Option: group_binds (required, string)
List of one or more Ansible groups that contain this
network. For more information, see the env.d YAML files.
#
Option: reference_group (optional, string)
An Ansible group that a host must be a member of, in addition to
↪→any of the
groups within 'group_binds', for this network to apply.
#
Option: net_name (optional, string)
Name of network for 'flat' or 'vlan' types. Only valid for these
types. Coincides with ML2 plug-in configuration options.
#
Option: range (optional, string)
For 'vxlan' type neutron networks, range of VXLAN network
↪→identifiers
(VNI). For 'vlan' type neutron networks, range of VLAN tags.
↪→Supports
more than one range of VLANs on a particular network. Coincides
↪→with
ML2 plug-in configuration options.
#
Option: static_routes (optional, list)
List of additional routes to give to the container interface.
Each item is composed of cidr and gateway. The items will be
translated into the container network interfaces configuration
as a `post-up ip route add <cidr> via <gateway> || true`.
#
Option: gateway (optional, string)
String containing the IP of the default gateway used by the

(continues on next page)

1.5. OpenStack-Ansible Reference 189

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

container. Generally not needed: the containers will have
their default gateway set with dnsmasq, poitining to the host
which does natting for container connectivity.
#
Example:
#
Define a typical network architecture:
#
- Network of type 'raw' that uses the 'br-mgmt' bridge and 'management'
IP address pool. Maps to the 'eth1' device in containers. Applies to
↪→all
containers and bare metal hosts. Both the load balancer and Ansible
use this network to access containers and services.
- Network of type 'raw' that uses the 'br-storage' bridge and 'storage'
IP address pool. Maps to the 'eth2' device in containers. Applies to
nova compute and all storage service containers. Optionally applies
↪→to
to the swift proxy service.
- Network of type 'vxlan' that contains neutron VXLAN tenant networks
1 to 1000 and uses 'br-vxlan' bridge on target hosts. Applies to all
neutron agents on bare metal hosts.
- Network of type 'vlan' that contains neutron VLAN networks 101 to 200
and 301 to 400 and uses the 'br-vlan' bridge on target hosts. Applies
to all neutron agent containers and neutron agents on bare metal
↪→hosts.
- Network of type 'flat' that contains one neutron flat network and
↪→uses
the 'br-vlan' bridge on target hosts. Maps to the 'eth12' device in
containers. Applies to all neutron agent containers and neutron
↪→agents
on bare metal hosts.
#
Note: A pair of 'vlan' and 'flat' networks can use the same bridge
↪→because
one only handles tagged frames and the other only handles untagged
↪→frames
(the native VLAN in some parlance). However, additional 'vlan' or 'flat
↪→'
networks require additional bridges.
#
provider_networks:
- network:
group_binds:
- all_containers
- hosts
type: "raw"
container_bridge: "br-mgmt"
container_interface: "eth1"
container_type: "veth"
ip_from_q: "container"
is_container_address: true
- network:
group_binds:
- glance_api
- cinder_api
- cinder_volume

(continues on next page)

190 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

- nova_compute
Uncomment the next line if using swift with a storage
↪→network.
- swift_proxy
type: "raw"
container_bridge: "br-storage"
container_type: "veth"
container_interface: "eth2"
container_mtu: "9000"
ip_from_q: "storage"
- network:
group_binds:
- neutron_linuxbridge_agent
container_bridge: "br-vxlan"
container_type: "veth"
container_interface: "eth10"
container_mtu: "9000"
ip_from_q: "tunnel"
type: "vxlan"
range: "1:1000"
net_name: "vxlan"
- network:
group_binds:
- neutron_linuxbridge_agent
container_bridge: "br-vlan"
container_type: "veth"
container_interface: "eth11"
type: "vlan"
range: "101:200,301:400"
net_name: "vlan"
- network:
group_binds:
- neutron_linuxbridge_agent
container_bridge: "br-vlan"
container_type: "veth"
container_interface: "eth12"
host_bind_override: "eth12"
type: "flat"
net_name: "flat"
#

#
Level: shared-infra_hosts (required)
List of target hosts on which to deploy shared infrastructure services
including the Galera SQL database cluster, RabbitMQ, and Memcached.
↪→Recommend
three minimum target hosts for these services.
#
Level: <value> (required, string)
Hostname of a target host.
#
Option: ip (required, string)
IP address of this target host, typically the IP address assigned to
the management bridge.
#
Example:

(continues on next page)

1.5. OpenStack-Ansible Reference 191

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

#
Define three shared infrastructure hosts:
#
shared-infra_hosts:
infra1:
ip: 172.29.236.101
infra2:
ip: 172.29.236.102
infra3:
ip: 172.29.236.103
#

#
Level: repo-infra_hosts (required)
List of target hosts on which to deploy the package repository. Recommend
minimum three target hosts for this service. Typically contains the same
target hosts as the 'shared-infra_hosts' level.
#
Level: <value> (required, string)
Hostname of a target host.
#
Option: ip (required, string)
IP address of this target host, typically the IP address assigned to
the management bridge.
#
Example:
#
Define three package repository hosts:
#
repo-infra_hosts:
infra1:
ip: 172.29.236.101
infra2:
ip: 172.29.236.102
infra3:
ip: 172.29.236.103
#

#
Level: os-infra_hosts (required)
List of target hosts on which to deploy the glance API, nova API, heat
↪→API,
and horizon. Recommend three minimum target hosts for these services.
Typically contains the same target hosts as 'shared-infra_hosts' level.
#
Level: <value> (required, string)
Hostname of a target host.
#
Option: ip (required, string)
IP address of this target host, typically the IP address assigned to
the management bridge.
#
Example:
#
Define three OpenStack infrastructure hosts:
#

(continues on next page)

192 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

os-infra_hosts:
infra1:
ip: 172.29.236.101
infra2:
ip: 172.29.236.102
infra3:
ip: 172.29.236.103
#

#
Level: identity_hosts (required)
List of target hosts on which to deploy the keystone service. Recommend
three minimum target hosts for this service. Typically contains the same
target hosts as the 'shared-infra_hosts' level.
#
Level: <value> (required, string)
Hostname of a target host.
#
Option: ip (required, string)
IP address of this target host, typically the IP address assigned to
the management bridge.
#
Example:
#
Define three OpenStack identity hosts:
#
identity_hosts:
infra1:
ip: 172.29.236.101
infra2:
ip: 172.29.236.102
infra3:
ip: 172.29.236.103
#

#
Level: network_hosts (required)
List of target hosts on which to deploy neutron services. Recommend three
minimum target hosts for this service. Typically contains the same target
hosts as the 'shared-infra_hosts' level.
#
Level: <value> (required, string)
Hostname of a target host.
#
Option: ip (required, string)
IP address of this target host, typically the IP address assigned to
the management bridge.
#
Example:
#
Define three OpenStack network hosts:
#
network_hosts:
infra1:
ip: 172.29.236.101
infra2:

(continues on next page)

1.5. OpenStack-Ansible Reference 193

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

ip: 172.29.236.102
infra3:
ip: 172.29.236.103
#
If you want to deploy neutron agents to different set of hosts (net
↪→nodes)
rather then neutron API, you should define 'network-infra_hosts' and
'network-agent_hosts' instead.
#
Example:
#
network-infra_hosts:
infra1:
ip: 172.29.236.101
infra2:
ip: 172.29.236.102
infra3:
ip: 172.29.236.103
#
network-agent_hosts:
net1:
ip: 172.29.236.201
net2:
ip: 172.29.236.202
net3:
ip: 172.29.236.203
#

#
Level: compute_hosts (optional)
List of target hosts on which to deploy the nova compute service.
↪→Recommend
one minimum target host for this service. Typically contains target hosts
that do not reside in other levels.
#
Level: <value> (required, string)
Hostname of a target host.
#
Option: ip (required, string)
IP address of this target host, typically the IP address assigned to
the management bridge.
#
Example:
#
Define an OpenStack compute host:
#
compute_hosts:
compute1:
ip: 172.29.236.121
#

#
Level: ironic-compute_hosts (optional)
List of target hosts on which to deploy the nova compute service for
↪→Ironic.
Recommend one minimum target host for this service. Typically contains
↪→target (continues on next page)

194 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

hosts that do not reside in other levels.
#
Level: <value> (required, string)
Hostname of a target host.
#
Option: ip (required, string)
IP address of this target host, typically the IP address assigned to
the management bridge.
#
Example:
#
Define an OpenStack compute host:
#
ironic-compute_hosts:
ironic-infra1:
ip: 172.29.236.121
#

#
Level: storage-infra_hosts (required)
List of target hosts on which to deploy the cinder API. Recommend three
minimum target hosts for this service. Typically contains the same target
hosts as the 'shared-infra_hosts' level.
#
Level: <value> (required, string)
Hostname of a target host.
#
Option: ip (required, string)
IP address of this target host, typically the IP address assigned to
the management bridge.
#
Example:
#
Define three OpenStack storage infrastructure hosts:
#
storage-infra_hosts:
infra1:
ip: 172.29.236.101
infra2:
ip: 172.29.236.102
infra3:
ip: 172.29.236.103
#

#
Level: storage_hosts (required)
List of target hosts on which to deploy the cinder volume service.
↪→Recommend
one minimum target host for this service. Typically contains target hosts
that do not reside in other levels.
#
Level: <value> (required, string)
Hostname of a target host.
#
Option: ip (required, string)
IP address of this target host, typically the IP address assigned to

(continues on next page)

1.5. OpenStack-Ansible Reference 195

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

the management bridge.
#
Level: container_vars (required)
Contains storage options for this target host.
#
Option: cinder_storage_availability_zone (optional, string)
Cinder availability zone.
#
Option: cinder_default_availability_zone (optional, string)
If the deployment contains more than one cinder availability zone,
specify a default availability zone.
#
Level: cinder_backends (required)
Contains cinder backends.
#
Option: limit_container_types (optional, string)
Container name string in which to apply these options. Typically
any container with 'cinder_volume' in the name.
#
Level: <value> (required, string)
Arbitrary name of the backend. Each backend contains one or more
options for the particular backend driver. The template for the
cinder.conf file can generate configuration for any backend
providing that it includes the necessary driver options.
#
Option: volume_backend_name (required, string)
Name of backend, arbitrary.
#
The following options apply to the LVM backend driver:
#
Option: volume_driver (required, string)
Name of volume driver, typically
'cinder.volume.drivers.lvm.LVMVolumeDriver'.
#
Option: volume_group (required, string)
Name of LVM volume group, typically 'cinder-volumes'.
#
The following options apply to the NFS backend driver:
#
Option: volume_driver (required, string)
Name of volume driver,
'cinder.volume.drivers.nfs.NfsDriver'.
NB. When using NFS driver you may want to adjust your
env.d/cinder.yml file to run cinder-volumes in containers.
#
Option: nfs_shares_config (optional, string)
File containing list of NFS shares available to cinder,
↪→typically
'/etc/cinder/nfs_shares'.
#
Option: nfs_mount_point_base (optional, string)
Location in which to mount NFS shares, typically
'$state_path/mnt'.
#
Option: nfs_mount_options (optional, string)
Mount options used for the NFS mount points.

(continues on next page)

196 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

#
Option: shares (required)
List of shares to populate the 'nfs_shares_config' file. Each
↪→share
uses the following format:
- { ip: "{{ ip_nfs_server }}", share "/vol/cinder" }
#
The following options apply to the NetApp backend driver:
#
Option: volume_driver (required, string)
Name of volume driver,
'cinder.volume.drivers.netapp.common.NetAppDriver'.
NB. When using NetApp drivers you may want to adjust your
env.d/cinder.yml file to run cinder-volumes in containers.
#
Option: netapp_storage_family (required, string)
Access method, typically 'ontap_7mode' or 'ontap_cluster'.
#
Option: netapp_storage_protocol (required, string)
Transport method, typically 'scsi' or 'nfs'. NFS transport also
requires the 'nfs_shares_config' option.
#
Option: nfs_shares_config (required, string)
For NFS transport, name of the file containing shares.
↪→Typically
'/etc/cinder/nfs_shares'.
#
Option: netapp_server_hostname (required, string)
NetApp server hostname.
#
Option: netapp_server_port (required, integer)
NetApp server port, typically 80 or 443.
#
Option: netapp_login (required, string)
NetApp server username.
#
Option: netapp_password (required, string)
NetApp server password.
#
Example:
#
Define an OpenStack storage host:
#
storage_hosts:
lvm-storage1:
ip: 172.29.236.131
#
Example:
#
Use the LVM iSCSI backend in availability zone 'cinderAZ_1':
#
container_vars:
cinder_storage_availability_zone: cinderAZ_1
cinder_default_availability_zone: cinderAZ_1
cinder_backends:
lvm:

(continues on next page)

1.5. OpenStack-Ansible Reference 197

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

volume_backend_name: LVM_iSCSI
volume_driver: cinder.volume.drivers.lvm.LVMVolumeDriver
volume_group: cinder-volumes
iscsi_ip_address: "{{ cinder_storage_address }}"
limit_container_types: cinder_volume
#
Example:
#
Use the NetApp iSCSI backend via Data ONTAP 7-mode in availability zone
'cinderAZ_2':
#
container_vars:
cinder_storage_availability_zone: cinderAZ_2
cinder_default_availability_zone: cinderAZ_1
cinder_backends:
netapp:
volume_backend_name: NETAPP_iSCSI
volume_driver: cinder.volume.drivers.netapp.common.NetAppDriver
netapp_storage_family: ontap_7mode
netapp_storage_protocol: iscsi
netapp_server_hostname: hostname
netapp_server_port: 443
netapp_login: username
netapp_password: password
#
Example
#
Use the QNAP iSCSI backend in availability zone
'cinderAZ_2':
#
container_vars:
cinder_storage_availability_zone: cinderAZ_2
cinder_default_availability_zone: cinderAZ_1
cinder_backends:
limit_container_types: cinder_volume
qnap:
volume_backend_name: "QNAP 1 VOLUME"
volume_driver: cinder.volume.drivers.qnap.QnapISCSIDriver
qnap_management_url : http://10.10.10.5:8080
qnap_poolname: "Storage Pool 1"
qnap_storage_protocol: iscsi
qnap_server_port: 8080
iscsi_ip_address: 172.29.244.5
san_login: username
san_password: password
san_thin_provision: True
#
#
Example:
#
Use the ceph RBD backend in availability zone 'cinderAZ_3':
#
container_vars:
cinder_storage_availability_zone: cinderAZ_3
cinder_default_availability_zone: cinderAZ_1
cinder_backends:

(continues on next page)

198 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

limit_container_types: cinder_volume
volumes_hdd:
volume_driver: cinder.volume.drivers.rbd.RBDDriver
rbd_pool: volumes_hdd
rbd_ceph_conf: /etc/ceph/ceph.conf
rbd_flatten_volume_from_snapshot: 'false'
rbd_max_clone_depth: 5
rbd_store_chunk_size: 4
rados_connect_timeout: -1
volume_backend_name: volumes_hdd
rbd_user: "{{ cinder_ceph_client }}"
rbd_secret_uuid: "{{ cinder_ceph_client_uuid }}"
#
#
Example:
#
Use the cephfs (NATIVE) backend with manila:
#
container_vars:
manila_default_share_type: cephfs1
manila_backends:
cephfs1:
driver_handles_share_servers: False
share_backend_name: CEPHFS1
share_driver: manila.share.drivers.cephfs.driver.CephFSDriver
cephfs_conf_path: /etc/ceph/ceph.conf
cephfs_auth_id: manila
cephfs_cluster_name: ceph
cephfs_enable_snapshots: False
filter_function: "share.size >= 0"
goodness_function: "share.size >= 0"
#
#
Use the cephfs + NFS backend with manila:
#
container_vars:
manila_default_share_type: cephfsnfs1
manila_backends:
cephfsnfs1:
driver_handles_share_servers: False
share_backend_name: CEPHFSNFS1
share_driver: manila.share.drivers.cephfs.driver.CephFSDriver
cephfs_ganesha_server_ip: 172.16.24.200
cephfs_protocol_helper_type: NFS
cephfs_conf_path: /etc/ceph/ceph.conf
cephfs_auth_id: manila
filter_function: "share.size >= 0"
goodness_function: "share.size >= 0"
#
#
Example:
#
Use the lvm backend with manila:
#
container_vars:
manila_default_share_type: nfs-share1

(continues on next page)

1.5. OpenStack-Ansible Reference 199

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

manila_backends:
nfs-share1:
share_backend_name: NFS_SHARE1
share_driver: manila.share.drivers.lvm.LVMShareDriver
driver_handles_share_servers: False
lvm_share_volume_group: manila-shares
lvm_share_export_ips: 10.1.1.1
filter_function: "share.size >= 0"
goodness_function: "share.size >= 0"
#
#
#
Example:
#
Use the generic backend with manila:
#
container_vars:
manila_default_share_type: generic
manila_backends:
generic:
share_backend_name: GENERIC
share_driver: manila.share.drivers.generic.GenericShareDriver
driver_handles_share_servers: True
service_instance_flavor_id: 100
service_image_name: manila-service-image
service_instance_user: manila
service_instance_password: manila
interface_driver: manila.network.linux.interface.
↪→BridgeInterfaceDriver
filter_function: "share.size >= 0"
goodness_function: "share.size >= 0"
#

#
Level: log_hosts (optional)
List of target hosts on which to deploy logging services. Recommend
one minimum target host for this service.
#
Level: <value> (required, string)
Hostname of a target host.
#
Option: ip (required, string)
IP address of this target host, typically the IP address assigned to
the management bridge.
#
Example:
#
Define a logging host:
#
log_hosts:
log1:
ip: 172.29.236.171
#

#
Level: haproxy_hosts (optional)

(continues on next page)

200 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

List of target hosts on which to deploy HAProxy. Recommend at least one
target host for this service if hardware load balancers are not being
used.
#
Level: <value> (required, string)
Hostname of a target host.
#
Option: ip (required, string)
IP address of this target host, typically the IP address assigned to
the management bridge.
#
#
Example:
#
Define a virtual load balancer (HAProxy):
#
While HAProxy can be used as a virtual load balancer, it is recommended
↪→to use
a physical load balancer in a production environment.
#
haproxy_hosts:
lb1:
ip: 172.29.236.100
lb2:
ip: 172.29.236.101
#
In case of the above scenario(multiple hosts),HAProxy can be deployed in
↪→a
highly-available manner by installing keepalived.
#
To make keepalived work, edit at least the following variables
in ``user_variables.yml``:
haproxy_keepalived_external_vip_cidr: 192.168.0.4/25
haproxy_keepalived_internal_vip_cidr: 172.29.236.54/16
haproxy_keepalived_external_interface: br-flat
haproxy_keepalived_internal_interface: br-mgmt
#
To always deploy (or upgrade to) the latest stable version of keepalived.
Edit the ``/etc/openstack_deploy/user_variables.yml``:
keepalived_package_state: latest
#
The group_vars/all/keepalived.yml contains the keepalived
variables that are fed into the keepalived role during
the haproxy playbook.
You can change the keepalived behavior for your
deployment. Refer to the ``user_variables.yml`` file for
more information.
#
Keepalived can ping a public and private IP address to check its status.
↪→ To
enable this feature, set the ``keepalived_external_ping_address`` and
``keepalived_internal_ping_address`` variables in the ``user_variables.
↪→yml``
file.

1.5. OpenStack-Ansible Reference 201

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Inspecting and manipulating the inventory

Warning: Never edit or delete the files /etc/openstack_deploy/
openstack_inventory.json or /etc/openstack_deploy/
openstack_hostnames_ips.yml. This can lead to file corruptions, and problems with
the inventory: hosts and container could disappear and new ones would appear, breaking your
existing deployment.

The file scripts/inventory-manage.py is used to produce human readable output based on the
/etc/openstack_deploy/openstack_inventory.json file.

The same script can be used to safely remove hosts from the inventory, export the inventory based on
hosts, and clear IP addresses from containers within the inventory files.

Operations taken by this script only affect the /etc/opentstack_deploy/
openstack_inventory.json file; any new or removed information must be set by running
playbooks.

Viewing the inventory

The /etc/openstack_deploy/openstack_inventory.json file is read by default. An al-
ternative file can be specified with --file.

A list of all hosts can be seen with the --list-host/-l argument

To see a listing of hosts and containers by their group, use --list-groups/-g.

To see all of the containers, use --list-containers/-G.

Removing a host

A host can be removed with the --remove-item/-r parameter.

Use the hosts name as an argument.

Removing a group

A host group can be removed with the --remove-group/-d parameter.

Use the groupss name as an argument. You can repeat argument multiple times to remove several groups
at once.

202 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Exporting host information

Information on a per-host basis can be obtained with the --export/-e parameter.

This JSON output has two top-level keys: hosts and all.

hosts contains a map of a hosts name to its variable and group data.

all contains global network information such as the load balancer IPs and provider network metadata.

Clearing existing container IP addresses

The --clear-ips parameter can be used to remove all container IP address information from the
openstack_inventory.json file. Baremetal hosts will not be changed.

This will not change the LXC configuration until the associated playbooks are run and the containers
restarted, which will result in API downtime.

Any changes to the containers must also be reflected in the deployments load balancer.

Advanced inventory topics

Changing the base environment directory

The --environment/-e argument will take the path to a directory containing an env.d directory.
This defaults to inventory/ in the OpenStack-Ansible codebase.

Contents of this directory are populated into the environment before the env.d found in the directory
specified by --config.

Dynamic Inventory API documentation

dynamic_inventory.args(arg_list)
Setup argument Parsing.

1.5.4 Advanced configuration

The OpenStack-Ansible project provides a basic OpenStack environment, but many deployers will wish
to extend the environment based on their needs. This could include installing extra services, changing
package versions, or overriding existing variables.

Using these extension points, deployers can provide a more opinionated installation of OpenStack that
may include their own software.

1.5. OpenStack-Ansible Reference 203

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Overriding default configuration

Variable precedence

Role defaults

Every role has a file, defaults/main.ymlwhich holds the usual variables overridable by a deployer,
like a regular Ansible role. This defaults are the closest possible to OpenStack standards.

They can be overridden at multiple levels.

Group vars and host vars

OpenStack-Ansible provides safe defaults for deployers in its group_vars folder. They take care of the
wiring between different roles, like for example storing information on how to reach RabbitMQ from
nova role.

You can override the existing group vars (and host vars) by creating your own folder in
/etc/openstack_deploy/group_vars (and /etc/openstack_deploy/host_vars respectively).

If you want to change the location of the override folder, you can adapt your openstack-ansible.rc file,
or export GROUP_VARS_PATH and HOST_VARS_PATH during your shell session.

Role vars

Every role makes use of additional variables in vars/ which take precedence over group vars.

These variables are typically internal to the role and are not designed to be overridden. However, de-
ployers may choose to override them using extra-vars by placing the overrides into the user variables
file.

User variables

If you want to globally override variable, you can define the variable you want to override in a /etc/
openstack_deploy/user_*.yml file. It will apply on all hosts.

user_*.yml files in more details

Files in /etc/openstack_deploy beginning with user_ will be automatically sourced in any
openstack-ansible command. Alternatively, the files can be sourced with the -e parameter of the
ansible-playbook command.

user_variables.yml and user_secrets.yml are used directly by OpenStack-Ansible.
Adding custom variables used by your own roles and playbooks to these files is not recommended.
Doing so will complicate your upgrade path by making comparison of your existing files with later ver-
sions of these files more arduous. Rather, recommended practice is to place your own variables in files
named following the user_*.yml pattern so they will be sourced alongside those used exclusively by
OpenStack-Ansible.

204 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

user_*.yml files contain YAML variables which are applied as extra-vars when executing
openstack-ansible to run playbooks. They will be sourced in alphanumeric order by
openstack-ansible. If duplicate variables occur in the user_*.yml files, the variable in the
last file read will take precedence.

Setting overrides in configuration files with config_template

All of the services that use YAML, JSON, or INI for configuration can receive overrides through the use
of a Ansible action plugin named config_template. The configuration template engine allows a
deployer to use a simple dictionary to modify or add items into configuration files at run time that may
not have a preset template option. All OpenStack-Ansible roles allow for this functionality where appli-
cable. Files available to receive overrides can be seen in the defaults/main.yml file as standard
empty dictionaries (hashes).

This module was not accepted into Ansible Core (see PR1 and PR2), and will never be.

config_template documentation

These are the options available as found within the virtual module documentation section.

module: config_template
version_added: 1.9.2
short_description: >

Renders template files providing a create/update override interface
description:

- The module contains the template functionality with the ability to
override items in config, in transit, through the use of a simple
dictionary without having to write out various temp files on target
machines. The module renders all of the potential jinja a user could
provide in both the template file and in the override dictionary which
is ideal for deployers who may have lots of different configs using a
similar code base.

- The module is an extension of the **copy** module and all of attributes
that can be set there are available to be set here.

options:
src:

description:
- Path of a Jinja2 formatted template on the local server. This can

be a relative or absolute path.
required: true
default: null

dest:
description:

- Location to render the template to on the remote machine.
required: true
default: null

config_overrides:
description:

- A dictionary used to update or override items within a
↪→configuration

template. The dictionary data structure may be nested. If the
↪→target

config file is an ini file the nested keys in the ``config_
↪→overrides``

(continues on next page)

1.5. OpenStack-Ansible Reference 205

https://github.com/ansible/ansible/pull/12555
https://github.com/ansible/ansible/pull/35453

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

will be used as section headers.
config_type:

description:
- A string value describing the target config type.

choices:
- ini
- json
- yaml

Example task using the config_template module

In this task the test.ini.j2 file is a template which will be rendered and written to disk at /tmp/
test.ini. The config_overrides entry is a dictionary (hash) which allows a deployer to set arbitrary
data as overrides to be written into the configuration file at run time. The config_type entry specifies the
type of configuration file the module will be interacting with; available options are yaml, json, and ini.

- name: Run config template ini
config_template:

src: test.ini.j2
dest: /tmp/test.ini
config_overrides: "{{ test_overrides }}"
config_type: ini

Here is an example override dictionary (hash)

test_overrides:
DEFAULT:

new_item: 12345

And here is the template file:

[DEFAULT]
value1 = abc
value2 = 123

The rendered file on disk, namely /tmp/test.ini looks like this:

[DEFAULT]
value1 = abc
value2 = 123
new_item = 12345

Discovering available overrides

All of these options can be specified in any way that suits your deployment. In terms of ease of use
and flexibility its recommended that you define your overrides in a user variable file such as /etc/
openstack_deploy/user_variables.yml.

The list of overrides available may be found by executing:

206 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

ls /etc/ansible/roles/*/defaults/main.yml -1 \
| xargs -I {} grep '_.*_overrides:' {} \
| egrep -v "^#|^\s" \
| sort -u

Note: Possible additional overrides can be found in the Tunable Section of each roles main.yml file,
such as /etc/ansible/roles/role_name/defaults/main.yml.

Overriding OpenStack configuration defaults

OpenStack has many configuration options available in .conf files (in a standard INI file format),
policy files (in a standard JSON format) and YAML files, and can therefore use the config_template
module described above.

OpenStack-Ansible enables you to reference any options in the OpenStack Configuration Refer-
ence through the use of a simple set of configuration entries in the /etc/openstack_deploy/
user_variables.yml.

Overriding .conf files

Most often, overrides are implemented for the <service>.conf files (for example, nova.conf).
These files use a standard INI file format.

For example, you might want to add the following parameters to the nova.conf file:

[DEFAULT]
remove_unused_original_minimum_age_seconds = 43200

[libvirt]
cpu_mode = host-model
disk_cachemodes = file=directsync,block=none

[database]
idle_timeout = 300
max_pool_size = 10

To do this, you use the following configuration entry in the /etc/openstack_deploy/
user_variables.yml file:

nova_nova_conf_overrides:
DEFAULT:

remove_unused_original_minimum_age_seconds: 43200
libvirt:

cpu_mode: host-model
disk_cachemodes: file=directsync,block=none

database:
idle_timeout: 300
max_pool_size: 10

Note: The general format for the variable names used for overrides is

1.5. OpenStack-Ansible Reference 207

https://docs.openstack.org/latest/configuration/
https://docs.openstack.org/latest/configuration/

OpenStack-Ansible Documentation, Release 23.4.5.dev7

<service>_<filename>_<file extension>_overrides. For example, the variable name
used in these examples to add parameters to the nova.conf file is nova_nova_conf_overrides.

The same way you can apply overrides to the uwsgi services. For example:

nova_api_os_compute_uwsgi_ini_overrides:
uwsgi:

limit: 1024

Note: Some roles, like uwsgi, are used for lot of roles, and have special overrides, (like
uwsgi_ini_overrides) which can be defined to impact all services which are using uwsgi. These variables
are special as they will have precedence over role defined *_uwsgi_ini_overrides.

You can also apply overrides on a per-host basis with the following configuration in the /etc/
openstack_deploy/openstack_user_config.yml file:

compute_hosts:
900089-compute001:

ip: 192.0.2.10
host_vars:

nova_nova_conf_overrides:
DEFAULT:

remove_unused_original_minimum_age_seconds: 43200
libvirt:

cpu_mode: host-model
disk_cachemodes: file=directsync,block=none

database:
idle_timeout: 300
max_pool_size: 10

Use this method for any files with the INI format for in OpenStack projects deployed in OpenStack-
Ansible.

Overriding .json files

To implement access controls that are different from the ones in a standard OpenStack environment, you
can adjust the default policies applied by services. Policy files are in a JSON format.

For example, you might want to add the following policy in the policy.json file for the Identity
service (keystone):

{
"identity:foo": "rule:admin_required",
"identity:bar": "rule:admin_required"

}

To do this, you use the following configuration entry in the /etc/openstack_deploy/
user_variables.yml file:

keystone_policy_overrides:
identity:foo: "rule:admin_required"
identity:bar: "rule:admin_required"

208 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Note: The general format for the variable names used for overrides is
<service>_policy_overrides. For example, the variable name used in this example to add a
policy to the Identity service (keystone) policy.json file is keystone_policy_overrides.

Use this method for any files with the JSON format in OpenStack projects deployed in OpenStack-
Ansible.

To assist you in finding the appropriate variable name to use for overrides, the general format for the
variable name is <service>_policy_overrides.

Overriding .yml files

You can override .yml file values by supplying replacement YAML content.

Note: All default YAML file content is completely overwritten by the overrides, so the entire YAML
source (both the existing content and your changes) must be provided.

For example, you might want to define a meter exclusion for all hardware items in the default content of
the pipeline.yml file for the Telemetry service (ceilometer):

sources:
- name: meter_source
interval: 600
meters:

- "!hardware.*"
sinks:

- meter_sink
- name: foo_source
value: foo

To do this, you use the following configuration entry in the /etc/openstack_deploy/
user_variables.yml file:

ceilometer_pipeline_yaml_overrides:
sources:

- name: meter_source
interval: 600
meters:

- "!hardware.*"
sinks:

- meter_sink
- name: source_foo
value: foo

Note: The general format for the variable names used for overrides is
<service>_<filename>_<file extension>_overrides. For example, the variable
name used in this example to define a meter exclusion in the pipeline.yml file for the Telemetry
service (ceilometer) is ceilometer_pipeline_yaml_overrides.

1.5. OpenStack-Ansible Reference 209

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Adding extra python software

The system will allow you to install and build any package that is a python installable. The repository
infrastructure will look for and create any git based or PyPi installable package. When the package
is built the repo-build role will create the sources as Python wheels to extend the base system and
requirements.

While the pre-built packages in the repository-infrastructure are comprehensive, it may be needed to
change the source locations and versions of packages to suit different deployment needs. Adding addi-
tional repositories as overrides is as simple as listing entries within the variable file of your choice. Any
user_.*.yml file within the /etc/openstack_deployment directory will work to facilitate the addition
of a new packages.

swift_git_repo: https://private-git.example.org/example-org/swift
swift_git_install_branch: master

Additional lists of python packages can also be overridden using a user_.*.yml variable file.

swift_requires_pip_packages:
- virtualenv
- python-keystoneclient
- NEW-SPECIAL-PACKAGE

Once the variables are set call the play repo-build.yml to build all of the wheels within the reposi-
tory infrastructure. When ready run the target plays to deploy your overridden source code.

Adding extra network to container

In some cases it may be useful to have an ability to add extra network interface for some container group
(or just a single container). As an example this can be used for applying known fixed IP address from
another network for Designate service. We will show futher configuration based on this example. Lets
assume, that this network is 10.0.20.0/24 which is reachable through br-dns interface.

To add new interface with that network into dessignate containers, we need to do several actions in
openstack_user_config.yml.

Note: You may find detailed example of openstack_user_config.yml configuration in section open-
stack_user_config settings reference.

• Add this network in cidr_networks:

cidr_networks:
container: 172.29.236.0/22
tunnel: 172.29.240.0/22
storage: 172.29.244.0/22
designate: 10.0.20.0/24

• Describe network in provider_networks:

global_overrides:
provider_networks:

- network:
(continues on next page)

210 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(continued from previous page)

container_bridge: "br-dns"
container_type: "veth"
container_interface: "eth5"
ip_from_q: "designate"
type: "veth"
group_binds:

- dnsaas_hosts

• Define override for containers

Note: Adding gateway key will create default route inside container through it

dnsaas_hosts:
aio1:

ip: 172.29.236.100
container_vars:

container_extra_networks:
dns_address:

bridge: br-dns
interface: eth5
address: 10.0.20.100
netmask: 255.255.255.0
gateway: 10.0.20.1

Using OpenStack-Ansible within your project

Including OpenStack-Ansible in your project

Including the openstack-ansible repository within another project can be done in several ways:

• A git submodule pointed to a released tag.

• A script to automatically perform a git checkout of OpenStack-Ansible.

When including OpenStack-Ansible in a project, consider using a parallel directory structure as shown
in the ansible.cfg files section.

Also note that copying files into directories such as env.d or conf.d should be handled via some sort
of script within the extension project.

Including OpenStack-Ansible with your Ansible structure

You can create your own playbook, variable, and role structure while still including the OpenStack-
Ansible roles and libraries by setting environment variables or by adjusting /usr/local/bin/
openstack-ansible.rc.

The relevant environment variables for OpenStack-Ansible are as follows:

ANSIBLE_LIBRARY This variable should point to /etc/ansible/plugins/library. Doing
so allows roles and playbooks to access OpenStack-Ansibles included Ansible modules.

1.5. OpenStack-Ansible Reference 211

OpenStack-Ansible Documentation, Release 23.4.5.dev7

ANSIBLE_ROLES_PATH This variable should point to /etc/ansible/roles by default. This
allows Ansible to properly look up any OpenStack-Ansible roles that extension roles may refer-
ence.

ANSIBLE_INVENTORY This variable should point to openstack-ansible/inventory/
dynamic_inventory.py. With this setting, extensions have access to the same dynamic
inventory that OpenStack-Ansible uses.

The paths to the openstack-ansible top level directory can be relative in this file.

Consider this directory structure:

my_project
|
|- custom_stuff
| |
| |- playbooks
|- openstack-ansible
| |
| |- playbooks

The environment variables set would use ../openstack-ansible/playbooks/
<directory>.

Adding new or overriding roles in your OpenStack-Ansible installation

By default OpenStack-Ansible uses its ansible-role-requirements file to fetch the roles it requires for the
installation process.

The roles will be fetched into the standard ANSIBLE_ROLES_PATH, which defaults to /etc/
ansible/roles.

ANSIBLE_ROLE_FILE is an environment variable pointing to the location of a YAML file which
ansible-galaxy can consume, specifying which roles to download and install. The default value for this
is ansible-role-requirements.yml.

You can override the ansible-role-requirement file used by defining the environment variable
ANSIBLE_ROLE_FILE before running the bootstrap-ansible.sh script.

It is now the responsibility of the deployer to maintain appropriate versions pins of the ansible roles if
an upgrade is required.

Maintaining local forks of ansible roles

The Train release of openstack-ansible adds an optional new config file which defaults to /
etc/openstack_deploy/user-role-requirements.yml. It is in the same format as
ansible-role-requirements.yml and can be used to add new roles or selectively override
existing ones. New roles listed in user-role-requirements.yml will be merged with those
in ansible-role-requirements.yml, and roles with matching names will override those in
ansible-role-requirements.yml. It is easy for a deployer to keep this file under their own
version control and out of the openstack-ansible tree.

This allows a deployer to either add new ansible roles, or override the location or SHA of existing
individual roles without replacing the original file entirely. It is also straightforward to include the

212 Chapter 1. Abstract

https://opendev.org/openstack/openstack-ansible/src/ansible-role-requirements.yml

OpenStack-Ansible Documentation, Release 23.4.5.dev7

1.5.5 Architecture

Many operational requirements have been taken into consideration for the design of the OpenStack-
Ansible project.

In this chapter, you can find details about why OpenStack-Ansible was architected in this way.

OpenStack-Ansible Manifesto

This project will be a Batteries included project. Which means deployer can expect that deploying
from any of the named feature branches or tags should provide an OpenStack cloud built for production
which will be available at the successful completion of the deployment.

Project scope

This project will be a Batteries included project. Which means deployer can expect that deploying
from any of the named feature branches or tags should provide an OpenStack cloud built for production
which will be available at the successful completion of the deployment.

However, this project solely focuses on the deployment of OpenStack and its requirements.

This project does not PXE boot hosts. Host setup and lifecycle management is left to the deployer. This
project also requires that bridges are setup within the hosts to allow the containers to attach to a local
bridge for network access. See also the Container networking.

Ansible Usage

Ansible provides an automation platform to simplify system and application deployment. Ansible man-
ages systems by using Secure Shell (SSH) instead of unique protocols that require remote daemons or
agents.

Ansible uses playbooks written in the YAML language for orchestration. For more information, see
Ansible - Intro to Playbooks.

Ansible is a simple yet powerful orchestration tool that is ideally equipped for deploying OpenStack-
powered clouds. The declarative nature of Ansible allows the deployer to turn an entire deployment into
a rather simple set of instructions.

Roles within the Openstack-Ansible umbrella are built using Ansible best practices and contain names-
paced variables that are human understandable. All roles are independant of each other and testable
separately.

All roles are built as Galaxy compatible roles even when the given role is not intended for standalone use.
While the project will offer a lot of built-in roles the deployer will be able to pull down or override roles
with external ones using the built-in Ansible capabilities. This allows extreme flexibility for deployers.

1.5. OpenStack-Ansible Reference 213

https://docs.openstack.org/openstack-ansible/wallaby/reference/architecture/container-networking.html
https://docs.ansible.com/playbooks_intro.html

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Source based deployments

When the OpenStack-Ansible project was created, it was required to provide a system able to override
any OpenStack upstream source code.

This means that OpenStack services and their python dependencies are built and installed from source
code as found within the OpenStack Git repositories by default, but allow deployers to point to their own
repositories.

This also allows developers to point to their own code for their work.

A source based deployment, for Python-built parts of OpenStack, makes sense when dealing with scale
and wanting consistency over long periods of time. A deployer should have the ability to deploy the same
OpenStack release on every node throughout the life cycle of the cloud, even when some components
are end of life. By providing a repository of the sources, the deployment can be re-created even years
after the initial deployment, assuming the underlying operating systems and packages stay the same.

This means that there will never be a time where OpenStack specific packages, as provided by the distri-
butions, are being used for OpenStack services. Third party repositories like CloudArchive and or RDO
may still be required within a given deployment but only as a means to meet application dependencies.

Containerized deployments

This project introduces containers as a means to abstract services from one another.

The use of containers allows for additional abstractions of entire application stacks to be run all within
the same physical host machines.

The containerized applications are sometimes grouped within a single container where it makes sense,
or distributed in multiple containers based on application and or architectural needs.

The default container architecture has been built in such a way to allow for scalability and highly avail-
able deployments.

The simple nature of machine containers allows the deployer to treat containers as physical machines.
The same concepts apply for machine containers and physical machines: This will allow deployers to
use existing operational tool sets to troubleshoot issues within a deployment and the ability to revert an
application or service within inventory to a known working state without having to re-kick a physical
host.

Not all services are containerized: some dont make sense to run within a container. Logic needs to be
applied in regards on how services are containerized. If their requirements cant be met due to system
limitations, (kernel, application maturity, etc), then the service is not set to run within a container.

Example of un-containerized services:

• Nova compute (for direct access to virtualization devices)

• Swift storage (for direct access to drive)

The containers are not a mean of securing a system. The containers were not chosen for any eventual
security safe guards. The machine containers were chosen because of their practicality with regard to
providing a more uniform OpenStack deployment. Even if the abstractions that the containers provides
do improve overall deployment security these potential benefits are not the intention of the containeriza-
tion of services.

214 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Security

Security is one of the top priorities within OpenStack-Ansible (OSA), and many security enhancements
for OpenStack clouds are available in deployments by default. This section provides a detailed overview
of the most important security enhancements.

Note: Every deployer has different security requirements. The OpenStack Security Guide has instruc-
tions and advice on how to operate and consume an OpenStack cloud by using the most secure methods.

Encrypted communication

Any OpenStack cloud has sensitive information transmitted between services, including user credentials,
service credentials or information about resources being created. Encrypting this traffic is critical in
environments where the network cannot be trusted. (For more information about securing the network,
see the Securing network access to OpenStack services section.)

Many of the services deployed with OpenStack-Ansible are encrypted by default or offer encryption as
an option. The playbooks generate self-signed certificates by default, but deployers have the option to
use their existing certificates, keys, and CA certificates.

To learn more about how to customize the deployment of encrypted communications, see Securing
services with SSL certificates.

Host security hardening

OpenStack-Ansible provides a comprehensive security hardening role that applies over 200 security
configurations as recommended by the Security Technical Implementation Guide (STIG) provided by
the Defense Information Systems Agency (DISA). These security configurations are widely used and
are distributed in the public domain by the United States government.

Host security hardening is required by several compliance and regulatory programs, such as the Payment
Card Industry Data Security Standard (PCI DSS) (Requirement 2.2).

By default, OpenStack-Ansible automatically applies the ansible-hardening role to all deployments. The
role has been carefully designed to perform as follows:

• Apply nondisruptively to a production OpenStack environment

• Balance security with OpenStack performance and functionality

• Run as quickly as possible

For more information about the security configurations, see the security hardening role documentation.

1.5. OpenStack-Ansible Reference 215

https://docs.openstack.org/security-guide
https://docs.openstack.org/ansible-hardening/
https://en.wikipedia.org/wiki/Security_Technical_Implementation_Guide
https://www.pcisecuritystandards.org/pci_security/
https://www.pcisecuritystandards.org/pci_security/
https://docs.openstack.org/ansible-hardening/

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Isolation

By default, OpenStack-Ansible provides isolation by default between the containers that run the Open-
Stack infrastructure (control plane) services and also between the virtual machines that end users spawn
within the deployment. This isolation is critical because it can prevent container or virtual machine
breakouts, or at least reduce the damage that breakouts might cause.

The Linux Security Modules (LSM) framework allows administrators to set mandatory access controls
(MAC) on a Linux system. MAC is different than discretionary access controls (DAC) because the
kernel enforces strict policies that no user can bypass. Although any user might be able to change a
DAC policy (such as chown bob secret.txt), only the root user can alter a MAC policy.

OpenStack-Ansible currently uses AppArmor to provide MAC policies on infrastructure servers and hy-
pervisors. The AppArmor configuration sets the access policies to prevent one container from accessing
the data of another container. For virtual machines, libvirtd uses the sVirt extensions to ensure that
one virtual machine cannot access the data or devices from another virtual machine.

These policies are applied and governed at the kernel level. Any process that violates a policy is denied
access to the resource. All denials are logged in auditd and are available at /var/log/audit/
audit.log.

Least privilege

The principle of least privilege is used throughout OpenStack-Ansible to limit the damage that could be
caused if an attacker gains access to any credentials.

OpenStack-Ansible configures unique username and password combinations for each service that in-
teracts with RabbitMQ and Galera/MariaDB. Each service that connects to RabbitMQ uses a separate
virtual host for publishing and consuming messages. The MariaDB users for each service are only
granted access only to the databases that they need to query.

Securing network access to OpenStack services

OpenStack clouds provide many services to end users, that enable them to build instances, provision
storage, and create networks. Each of these services exposes one or more service ports and API end-
points to the network.

However, some of the services within an OpenStack cloud are accessible to all end users, while others
are accessible only to administrators or operators on a secured network.

• Services that all end users can access

– These services include Compute (nova), Object Storage (swift), Networking (neutron), and
Image (glance).

– These services should be offered on a sufficiently restricted network that still allows all end
users to access the services.

– A firewall must be used to restrict access to the network.

• Services that only administrators or operators can access

– These services include MariaDB, Memcached, RabbitMQ, and the admin API endpoint for
the Identity (keystone) service.

216 Chapter 1. Abstract

https://en.wikipedia.org/wiki/Linux_Security_Modules
https://en.wikipedia.org/wiki/Mandatory_access_control
https://en.wikipedia.org/wiki/Discretionary_access_control
https://en.wikipedia.org/wiki/AppArmor
https://fedoraproject.org/wiki/Features/SVirt_Mandatory_Access_Control
https://en.wikipedia.org/wiki/Principle_of_least_privilege

OpenStack-Ansible Documentation, Release 23.4.5.dev7

– These services must be offered on a highly restricted network that is available only to ad-
ministrative users.

– A firewall must be used to restrict access to the network.

Limiting access to these networks has several benefits:

• Allows for network monitoring and alerting

• Prevents unauthorized network surveillance

• Reduces the chance of credential theft

• Reduces damage from unknown or unpatched service vulnerabilities

OpenStack-Ansible deploys HAProxy back ends for each service and restricts access for highly sensitive
services by making them available only on the management network. Deployers with external load
balancers must ensure that the back ends are configured securely and that firewalls prevent traffic from
crossing between networks.

For more information about recommended network policies for OpenStack clouds, see the API endpoint
process isolation and policy section of the OpenStack Security Guide

Service architecture

Introduction

OpenStack-Ansible has a flexible deployment configuration model that can deploy all services in sepa-
rate machine containers or on designated hosts without using containers, and all network traffic either
on a single network interface or on many network interfaces.

This flexibility enables deployers to choose how to deploy OpenStack in the appropriate way for the
specific use case.

The following sections describe the services that OpenStack-Ansible deploys.

Infrastructure services

OpenStack-Ansible deploys the following infrastructure components:

• MariaDB with Galera

All OpenStack services require an underlying database. MariaDB with Galera implements a mul-
timaster database configuration, which simplifies its use as a highly available database with a
simple failover model.

• RabbitMQ

OpenStack services use RabbitMQ for Advanced Message Queuing Protocol (AMQP). OSA de-
ploys RabbitMQ in a clustered configuration with all queues mirrored between the cluster nodes.
Because Telemetry (ceilometer) message queue traffic is quite heavy, for large environments we
recommend separating Telemetry notifications into a separate RabbitMQ cluster.

• Memcached

OpenStack services use Memcached for in-memory caching, which accelerates transactions. For
example, the OpenStack Identity service (keystone) uses Memcached for caching authentication

1.5. OpenStack-Ansible Reference 217

https://docs.openstack.org/security-guide/api-endpoints/api-endpoint-configuration-recommendations.html#network-policy
https://docs.openstack.org/security-guide/api-endpoints/api-endpoint-configuration-recommendations.html#network-policy
https://docs.openstack.org/security-guide

OpenStack-Ansible Documentation, Release 23.4.5.dev7

tokens, which ensures that token validation does not have to complete a disk or database transac-
tion every time the service is asked to validate a token.

• Repository

The repository holds the reference set of artifacts that are used for the installation of the environ-
ment. The artifacts include:

– A Git repository that contains a copy of the source code that is used to prepare the packages
for all OpenStack services

– Python wheels for all services that are deployed in the environment

– An apt/yum proxy cache that is used to cache distribution packages installed in the environ-
ment

• Load balancer

At least one load balancer is required for a deployment. OSA provides a deployment of HAProxy,
but we recommend using a physical load balancing appliance for production environments.

• Utility container

If a tool or object does not require a dedicated container, or if it is impractical to create a new
container for a single tool or object, it is installed in the utility container. The utility container
is also used when tools cannot be installed directly on a host. The utility container is prepared
with the appropriate credentials and clients to administer the OpenStack environment. It is set to
automatically use the internal service endpoints.

• Log aggregation host

A rsyslog service is optionally set up to receive rsyslog traffic from all hosts and containers. You
can replace rsyslog with any alternative log receiver.

• Unbound DNS container

Containers running an Unbound DNS caching service can optionally be deployed to cache DNS
lookups and to handle internal DNS name resolution. We recommend using this service for large-
scale production environments because the deployment will be significantly faster. If this service
is not used, OSA modifies /etc/hosts entries for all hosts in the environment.

OpenStack services

OSA is able to deploy a multitude of services. Have a look at the role maturity matrix to know the status
of the service you want to deploy.

Storage architecture

OpenStack has multiple storage realms to consider:

• Block Storage (cinder)

• Object Storage (swift)

• Image storage (glance)

• Ephemeral storage (nova)

• Filesystem storage (manila)

218 Chapter 1. Abstract

http://www.haproxy.org/
https://www.unbound.net/

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Block Storage (cinder)

The Block Storage (cinder) service manages volumes on storage devices in an environment. In a pro-
duction environment, the device presents storage via a storage protocol (for example, NFS, iSCSI, or
Ceph RBD) to a storage network (br-storage) and a storage management API to the management
network (br-mgmt). Instances are connected to the volumes via the storage network by the hypervisor
on the Compute host.

The following diagram illustrates how Block Storage is connected to instances.

Important: The LVMVolumeDriver is designed as a reference driver implementation, which we do
not recommend for production usage. The LVM storage back-end is a single-server solution that pro-
vides no high-availability options. If the server becomes unavailable, then all volumes managed by the
cinder-volume service running on that server become unavailable. Upgrading the operating system
packages (for example, kernel or iSCSI) on the server causes storage connectivity outages because the
iSCSI service (or the host) restarts.

Because of a limitation with container iSCSI connectivity, you must deploy the cinder-volume
service directly on a physical host (not into a container) when using storage back ends that connect via
iSCSI. This includes the LVMVolumeDriver and many of the drivers for commercial storage devices.

Note: The cinder-volume service does not run in a highly available configuration. When the
cinder-volume service is configured to manage volumes on the same back end from multiple hosts
or containers, one service is scheduled to manage the life cycle of the volume until an alternative ser-
vice is assigned to do so. This assignment can be made through the cinder-manage CLI tool. This
configuration might change if cinder volume active-active support spec is implemented.

Object Storage (swift)

The Object Storage (swift) service implements a highly available, distributed, eventually consistent
object/blob store that is accessible via HTTP/HTTPS.

The following diagram illustrates how data is accessed and replicated.

Image storage (glance)

The Image service (glance) can be configured to store images on a variety of storage back ends supported
by the glance_store drivers.

Important: When the File System store is used, the Image service has no mechanism of its own to
replicate the image between Image service hosts. We recommend using a shared storage back end (via
a file system mount) to ensure that allăglance-api services have access to all images. Doing so
prevents losing access to images when an infrastructure (control plane) host is lost.

The following diagram illustrates the interactions between the Image service, the storage device, and the
nova-compute service when an instance is created.

1.5. OpenStack-Ansible Reference 219

https://docs.openstack.org/cinder/latest/drivers.html#lvmvolumedriver
https://bugs.launchpad.net/ubuntu/+source/lxc/+bug/1226855
https://docs.openstack.org/cinder/latest/drivers.html#lvmvolumedriver
https://docs.openstack.org/cinder/latest/cli/cinder-manage.html
https://specs.openstack.org/openstack/cinder-specs/specs/mitaka/cinder-volume-active-active-support.html
https://docs.openstack.org/glance_store/drivers/

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Fig. 1: The diagram shows the following steps.

1.
A volume is created by the assigned
cinder-volume service using the appropriate
cinder driver. The volume is created by using an API
that is presented to the management network.

2.
After the volume is created, the nova-compute ser-
vice connects the Compute host hypervisor to the vol-
ume via the storage network.

3.
After the hypervisor is connected to the volume, it
presents the volume as a local hardware device to the
instance.

220 Chapter 1. Abstract

https://docs.openstack.org/cinder/drivers.html

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Fig. 2: The swift-proxy service is accessed by clients via the load balancer on the management net-
work (br-mgmt). The swift-proxy service communicates with the Account, Container, and Object
services on the Object Storage hosts via the storage network(br-storage). Replication between the
Object Storage hosts is done via the replication network (br-repl).

1.5. OpenStack-Ansible Reference 221

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Fig. 3: The diagram shows the following steps.

1 When a client requests an image, the glance-api service accesses the appropriate store on the storage
device over the storage network (br-storage) and pulls it into its cache. When the same image is
requested again, it is given to the client directly from the cache.

2 When an instance is scheduled for creation on a Compute host, the nova-compute service requests the
image from the glance-api service over the management network (br-mgmt).

3 After the image is retrieved, the nova-compute service stores the image in its own image cache. When
another instance is created with the same image, the image is retrieved from the local base image cache.

222 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Ephemeral storage (nova)

When the flavors in the Compute service are configured to provide instances with root or ephemeral
disks, the nova-compute service manages these allocations using its ephemeral disk storage location.

In many environments, the ephemeral disks are stored on the Compute hosts local disks, but for pro-
duction environments we recommend that the Compute hosts be configured to use a shared storage
subsystem instead. A shared storage subsystem allows quick, live instance migration between Compute
hosts, which is useful when the administrator needs to perform maintenance on the Compute host and
wants to evacuate it. Using a shared storage subsystem also allows the recovery of instances when a
Compute host goes offline. The administrator is able to evacuate the instance to another Compute host
and boot it up again. The following diagram illustrates the interactions between the storage device, the
Compute host, the hypervisor, and the instance.

Fig. 4: The diagram shows the following steps.

1 The Compute host is configured with access to the storage device. The Compute host accesses the storage
space via the storage network (br-storage) by using a storage protocol (for example, NFS, iSCSI, or
Ceph RBD).

2 The nova-compute service configures the hypervisor to present the allocated instance disk as a device
to the instance.

3 The hypervisor presents the disk as a device to the instance.

1.5. OpenStack-Ansible Reference 223

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Filesystem storage (manila)

The shared filesystem service (manila) can be configured to provide file systems on a variety of storage
back ends as supported by the manila_store drivers.

Fig. 5: The diagram shows a basic overview of the manila service.

Container networking

OpenStack-Ansible deploys Linux containers (LXC) and uses Linux bridging between the container
and the host interfaces to ensure that all traffic from containers flows over multiple host interfaces. This
appendix describes how the interfaces are connected and how traffic flows.

For more information about how the OpenStack Networking service (neutron) uses the interfaces for
instance traffic, please see the OpenStack Networking Guide.

For details on the configuration of networking for your environment, please have a look at open-
stack_user_config settings reference.

224 Chapter 1. Abstract

https://docs.openstack.org/manila/latest/configuration/shared-file-systems/drivers.html
https://docs.openstack.org/neutron/latest/admin/index.html

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Physical host interfaces

In a typical production environment, physical network interfaces are combined in bonded pairs for better
redundancy and throughput. Avoid using two ports on the same multiport network card for the same
bonded interface, because a network card failure affects both of the physical network interfaces used by
the bond.

Linux bridges

The combination of containers and flexible deployment options requires implementation of advanced
Linux networking features, such as bridges and namespaces.

• Bridges provide layer 2 connectivity (similar to switches) among physical, logical, and virtual
network interfaces within a host. After a bridge is created, the network interfaces are virtually
plugged in to it.

OpenStack-Ansible uses bridges to connect physical and logical network interfaces on the host to
virtual network interfaces within containers.

• Namespaces provide logically separate layer 3 environments (similar to routers) within a host.
Namespaces use virtual interfaces to connect with other namespaces, including the host names-
pace. These interfaces, often called veth pairs, are virtually plugged in between namespaces
similar to patch cables connecting physical devices such as switches and routers.

Each container has a namespace that connects to the host namespace with one or more veth
pairs. Unless specified, the system generates random names for veth pairs.

The following image demonstrates how the container network interfaces are connected to the hosts
bridges and physical network interfaces:

1.5. OpenStack-Ansible Reference 225

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Network diagrams

Hosts with services running in containers

The following diagram shows how all of the interfaces and bridges interconnect to provide network
connectivity to the OpenStack deployment:

The interface lxcbr0 provides connectivity for the containers to the outside world, thanks to dnsmasq

226 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

(dhcp/dns) + NAT.

Note: If you require additional network configuration for your container interfaces (like
changing the routes on eth1 for routes on the management network), please adapt your
openstack_user_config.yml file. See openstack_user_config settings reference for more de-
tails.

Services running on metal (deploying directly on the physical hosts)

OpenStack-Ansible deploys the Compute service on the physical host rather than in a container. The
following diagram shows how to use bridges for network connectivity:

1.5. OpenStack-Ansible Reference 227

OpenStack-Ansible Documentation, Release 23.4.5.dev7

Neutron traffic

The following diagram shows how the Networking service (neutron) agents work with the br-vlan
and br-vxlan bridges. Neutron is configured to use a DHCP agent, an L3 agent, and a Linux Bridge
agent within a networking-agents container. The diagram shows how DHCP agents provide information
(IP addresses and DNS servers) to the instances, and how routing works on the image.

228 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

1.5. OpenStack-Ansible Reference 229

OpenStack-Ansible Documentation, Release 23.4.5.dev7

The following diagram shows how virtual machines connect to the br-vlan and br-vxlan bridges
and send traffic to the network outside the host:

230 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

1.5. OpenStack-Ansible Reference 231

OpenStack-Ansible Documentation, Release 23.4.5.dev7

When Neutron agents are deployed on metal on a network node or collapsed infra/network node, the
Neutron Agents container and respective virtual interfaces are no longer implemented. In addition,
use of the host_bind_override override when defining provider networks allows Neutron to inter-
face directly with a physical interface or bond instead of the br-vlan bridge. The following diagram
reflects the differences in the virtual network layout.

232 Chapter 1. Abstract

OpenStack-Ansible Documentation, Release 23.4.5.dev7

The absence of br-vlan in-path of instance traffic is also reflected on compute nodes, as shown in the
following diagram.

1.5. OpenStack-Ansible Reference 233

OpenStack-Ansible Documentation, Release 23.4.5.dev7

1.5.6 Command Line Reference

Linux Container commands

The following are some useful commands to manage LXC:

• List containers and summary information such as operational state and network configuration:

lxc-ls --fancy

• Show container details including operational state, resource utilization, and veth pairs:

lxc-info --name container_name

• Start a container:

lxc-start --name container_name

• Attach to a container:

lxc-attach --name container_name

• Stop a container:

lxc-stop --name container_name

234 Chapter 1. Abstract

PYTHON MODULE INDEX

d
dynamic_inventory, 203

235

OpenStack-Ansible Documentation, Release 23.4.5.dev7

236 Python Module Index

INDEX

A
args() (in module dynamic_inventory), 203

D
dynamic_inventory

module, 203

M
module

dynamic_inventory, 203

237

	Abstract
	Python Module Index
	Index

