
OpenStack-Ansible Documentation:
os_ironic role

Release 18.1.0.dev319

OpenStack-Ansible Contributors

Jul 10, 2024

CONTENTS

1 Configuring the Bare Metal (Ironic) Service (optional) 1
1.1 OpenStack-Ansible Deployment . 1
1.2 Setup Neutron Networks for Use With Ironic . 3
1.3 Building Ironic Images . 4
1.4 Creating an Ironic Flavor . 5
1.5 Enrolling Ironic Nodes . 7
1.6 Deploy a Baremetal Node Using Ironic . 9

2 Example LXC based Ironic deployment 11
2.1 BMAAS network address plan . 12
2.2 IPMI Interfaces . 13
2.3 Maximum size of the deployment . 13
2.4 Openstack-Ansible configuration . 14
2.5 Create the Neutron configuration . 15
2.6 Configure switch to allow ssh from Neutron . 16
2.7 Create the Neutron network for Ironic provisioning, cleaning and inspection 18
2.8 Create the Ironic configuration . 18
2.9 Deploy Neutron changes . 20
2.10 Deploy the ironic-specific nova services . 21
2.11 Deploy changes to HAProxy . 21
2.12 Deploy the Ironic and Inspector services . 21
2.13 Deploy the Horizon dashbaords for Ironic . 21
2.14 Using Ironic . 21
2.15 VXLAN project networks . 21

3 Configuring the Bare Metal (ironic) inspector service (optional) 23
3.1 Networking . 23
3.2 Required Overrides . 23
3.3 To enable LLDP discovery of switch ports during inspection 24
3.4 To enable LLDP discovery of switch system name during inspection 24

4 Deploying multiple Ironic nodes with different CPU architecures 25
4.1 Building ironic-python-agent deploy image for aarch64 25
4.2 Configuring Ironic for multiple architectures . 26
4.3 Enrolling an aarch64 node . 26
4.4 Building an aarch64 user image . 26

5 Debugging the Bare Metal (ironic) inspector service 29
5.1 Ironic Python Agent debug logs . 29

i

5.2 Pausing during a deployment . 29
5.3 Logging into IPA . 29

6 Default variables 31

7 Dependencies 47

8 Example playbook 49

9 Tags 51

ii

CHAPTER

ONE

CONFIGURING THE BARE METAL (IRONIC) SERVICE (OPTIONAL)

This section describes the general concepts involved in an Ironic deployment. It will be necessary for a
deployer to make decisions about how to apply the general concepts in their own environment to meet
a specific set of requirements. It should be understood that the Ironic service is highly configurable and
pluggable so there is no single reference design specified by the Ironic project team.

Note: This feature is experimental at this time and has not been fully production tested.

Ironic is an OpenStack project which provisions bare metal (as opposed to virtual) machines by leveraging
common technologies such as PXE boot and IPMI to cover a wide range of hardware, while supporting
pluggable drivers to allow vendor-specific functionality to be added.

OpenStacks Ironic project makes physical servers as easy to provision as virtual machines in a cloud.

1.1 OpenStack-Ansible Deployment

The use of Ironic within an OpenStack deployment leverages Nova to deploy baremetal instances when
an openstack server create command is issued using a baremetal flavor. So, in addition to Ironic
API services, a Nova compute service using an Ironic compute driver (as opposed to libvirt) must be
configured. The playbooks can automatically deploy this service when the inventory is configured ac-
cordingly.

To deploy Ironic, populate the respective groups within openstack_user_config.yml:

ironic-infra_hosts: *infrastructure_hosts
ironic-compute_hosts: *infrastructure_hosts

With the inventory updated, Ironic API and conductor services will be deployed on the infra/controller
nodes, along with a nova-compute service configured for use with Ironic.

OpenStack-Ansible is configured to support PXE-based deployments by default. To enable the use of
iPXE, which uses HTTP instead of TFTP for the full deployment, add the following override:

ironic_ipxe_enabled: yes

Note: With iPXE enabled, PXE is used to bootstrap into the iPXE loader. Deployment times are
considerably faster with iPXE vs PXE, and its configuration is highly recommended. When iPXE is
enabled, a web server is deployed on the conductor node(s) to host images and files.

1

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

Some drivers of the Baremetal service (in particular, any drivers using Direct deploy or Ansible deploy
interfaces, and some virtual media drivers) require target user images to be available over clean HTTP(S)
URL with NO authentication involved (neither username/password-based, nor token-based).

The default deploy method relies on Swift to provide this functionality. If Swift is not available in your
environment, then the following override can provide similar functionality by using the web server de-
ployed the conductor node(s) (see ironic_ipxe_enabled):

ironic_enable_web_server_for_images: yes

The Ironic ipmi hardware driver is enabled by default. Vendor-specific drivers, including iLO and
DRAC, are available for use with supported hardware. OpenStack-Ansible provides a set of drivers with
pre-configured hardware, boot, deploy, inspect, management, and power characteristics, including:

• agent_ilo

• agent_ipmitool

• agent_ipmitool_socat

• agent_irmc

• pxe_drac

• pxe_drac_inspector

• pxe_ilo

• pxe_ipmitool

• pxe_ipmitool_socat

• pxe_irmc

• pxe_snmp

Note: The characteristics of these drivers can be seen in further details by reviewing the
ironic_driver_types variable in the Ironic role.

To enable iLO and DRAC drivers, along with IPMI, set the following override:

ironic_drivers_enabled:
- agent_ipmitool
- pxe_ipmitool
- agent_ilo
- pxe_ilo
- pxe_drac

2 Chapter 1. Configuring the Bare Metal (Ironic) Service (optional)

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

1.2 Setup Neutron Networks for Use With Ironic

Ironic supports two main network interfaces: flat and neutron:

• The flat interface places all provisioned nodes and nodes being
deployed into a single layer 2 network.

• The neutron interface provides tenant-defined networking
(aka multi-tenancy) by integrating with Neutron, while also separating
tenant networks from the provisioning and cleaning provider networks.

With the flat network interface, inspection, cleaning, and provisioning functions will be performed on
the same flat provider network. All baremetal nodes will share the same VLAN and network/subnet
once deployed, which may present security challenges to tenants and to the control plane.

With the neutron network interface, inspection, cleaning, provisioning, and tenant networks can use
distict VLANs. However, an ML2 plugin such as networking-generic-switch must be used to con-
figure the respective switchports when switching between functions.

https://docs.openstack.org/openstack-ansible-os_neutron/latest/app-genericswitch.html

Note: Both the flat and neutron network interfaces require a cleaning network to be defined in
ironic.conf. For flat deployments, the cleaning network will be the same as the deployment network.

Create a network and subnet to be used by the baremetal instance for cleaning, provisioning, and post-
deployment use:

openstack network create \
--provider-network-type flat \
--provider-physical-network physnet1 \
myBaremetalNetwork

openstack subnet create \
--network myBaremetalNetwork \
--subnet-range 172.17.100.0/24 \
myBaremetalNetworkSubnet

Set an override to define the cleaning network name:

ironic_neutron_cleaning_network_name: "myBaremetalNetwork"

Note: Ironic multi-tenancy is an advanced topic that requires the use of a compatible ML2 driver such
as networking-generic-switch.

Important: Provisioning activities on baremetal instances require network access to the Ironic conduc-
tor (web) service and other OpenStack APIs. You must ensure routing exists between respective networks
for deployments to succeed.

1.2. Setup Neutron Networks for Use With Ironic 3

https://docs.openstack.org/openstack-ansible-os_neutron/latest/app-genericswitch.html

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

1.3 Building Ironic Images

Bare Metal provisioning requires two sets of images: the deploy images and the user images. The deploy
images consist of a kernel and ramdisk image that are used by Ironic to prepare the baremetal server for
actual OS deployment, whereas the user images are installed on the baremetal server to be used by the
end user.

For more information on building and uploading disk images for use with Ironic, refer to the following
documentation:

https://docs.openstack.org/ironic/latest/user/creating-images.html https://docs.openstack.org/ironic/
latest/install/configure-glance-images.html

There are two types of user images:

• Partition Images

• Whole Disk Images

For your convenience, the following steps have been provided to demonstrate creating partition-based
images.

Note: Images created using diskimage-builder must be built outside of an LXC container. For this
process, use one of the physical hosts within the environment or a virtual machine.

1. Install the necessary pre-requisites:

apt install qemu uuid-runtime curl

2. Install the disk-imagebuilder package:

pip install diskimage-builder

Important: Only use the --isolated flag if you are building on a node deployed by OpenStack-
Ansible, otherwise pip will not resolve the external package.

3. Create Ubuntu Focal kernel, ramdisk, and user images:

export IMAGE_NAME=my-image
export DIB_RELEASE=focal
export DIB_CLOUD_INIT_DATASOURCES="Ec2, ConfigDrive, OpenStack"
disk-image-create ubuntu baremetal dhcp-all-interfaces grub2 -o ${IMAGE_
↪→NAME}

4. Upload the created user images into the Image (Glance) Service:

Kernel image:
openstack image create my-image.kernel \
--public \
--disk-format aki \
--container-format aki \

(continues on next page)

4 Chapter 1. Configuring the Bare Metal (Ironic) Service (optional)

https://docs.openstack.org/ironic/latest/user/creating-images.html
https://docs.openstack.org/ironic/latest/install/configure-glance-images.html
https://docs.openstack.org/ironic/latest/install/configure-glance-images.html

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

(continued from previous page)

--file my-image.vmlinuz

Ramdisk image
openstack image create my-image.initrd \
--public \
--disk-format ari \
--container-format ari \
--file my-image.initrd

User image
openstack image create my-image \
--public \
--disk-format qcow2 \
--container-format bare \
--property kernel_id=<kernel image uuid> \
--property ramdisk_id=<ramdisk image uuid> \
--file my-image.qcow2

Note: When a baremetal instance is provisioned using a partition-based image, the kernel and ramdisk
images will be used for PXE when the local boot capability is not available.

1.4 Creating an Ironic Flavor

The use of flavors are necessary when creating instances using Nova, and baremetal flavors should be
used when targeting baremetal nodes for instances. The properties of the flavor, along with the defined
resource class, are useful to the scheduler when scheduling against libvirt or ironic compute services.

As an example, imagine an Ironic deployment has the following nodes:

- node-1:
resource_class: ironic-gold
properties:
cpus: 32
memory_mb: 32768
capabilities:

boot_mode: uefi,bios
- node-2:

resource_class: ironic-silver
properties:
cpus: 16
memory_mb: 16384

The operator might define the flavors as such:

- baremetal-gold
resources:
ironic-gold: 1

(continues on next page)

1.4. Creating an Ironic Flavor 5

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

(continued from previous page)

extra_specs:
capabilities: boot_mode:bios

- baremetal-gold-uefi
resources:
ironic-gold: 1

extra_specs:
capabilities: boot_mode:uefi

- baremetal-silver
resources:
ironic-silver: 1

A user booting an instance with either the baremetal-gold or baremetal-gold-uefi flavor would land on
node-1, because capabilities can still be passed down to ironic, and the resource_class on the node matche
what is required by flavor. The baremetal-silver flavor would match node-2.

Note: A flavor can request exactly one instance of a bare metal resource class.

When creating a baremetal flavor, its useful to add the RAM and CPU properties as a convenience to
users, although they are not used for scheduling. In addition, the DISK property is also not used for
scheduling, but is still used to determine the root partition size.

openstack flavor create \
--ram 32768 \
--vcpu 32 \
--disk 120 \
baremetal-gold

After creation, associate each flavor with one custom resource class. The name of a custom resource
class that corresponds to a nodes resource class (in the Bare Metal service) is:

• the bare metal nodes resource class all upper-cased

• prefixed with CUSTOM_

• all punctuation replaced with an underscore

openstack flavor set \
--property resources:CUSTOM_IRONIC_GOLD=1 \
baremetal-gold

Note: Ensure the resource class defined in the flavor matches that of the baremetal node, otherwise, the
scheduler will not find eligible hosts. In the example provided, the resource class is ironic-gold.

Another set of flavor properties must be used to disable scheduling based on standard properties for a
bare metal flavor:

openstack flavor set --property resources:VCPU=0 baremetal-gold
openstack flavor set --property resources:MEMORY_MB=0 baremetal-gold
openstack flavor set --property resources:DISK_GB=0 baremetal-gold

6 Chapter 1. Configuring the Bare Metal (Ironic) Service (optional)

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

Lastly, a boot_option capability can be set to speed up booting after the deployment:

openstack flavor set --property capabilities:'boot_option=local' baremetal-
↪→gold

Note: Specifying the local boot option allows the deployed baremetal instance to boot directly to disk
instead of network.

1.5 Enrolling Ironic Nodes

Enrolling baremetal nodes makes then available to the Ironic service. The properties of a given node
will allow Ironic to determine how an image should be deployed on the node, including using IPMI or
vendor-specific out-of-band interfaces. Some properties are optional, and may rely on defaults set by the
operator or within OpenStack-Ansible. Others are required, and may be noted as such.

Some things should be known about the baremetal node prior to enrollment, including:

• Node Name

• Driver

• Deploy Interface (based on driver)

• Provisioning Interface (MAC Address)

• IPMI or OOB Credentials

• OOB Management IP

• Deploy Kernel Image UUID (from Glance)

• Deploy Ramdisk Image UUID (from Glance)

• Boot Mode (bios or uefi)

• Network Interface (flat or neutron)

Note: Kernel and ramdisk images may be provided by the diskimage-builder process, or may be
downloaded from opendev.org:

https://tarballs.opendev.org/openstack/ironic-python-agent/dib/ https://docs.openstack.org/ironic/latest/
install/deploy-ramdisk.html

Important: The deploy kernel and ramdisk should be updated on a regular basis to match the OpenStack
release of the underlying infrastructure. The Ironic Python Agent that runs on the ramdisk interfaces with
Ironic APIs, and should be kept in sync.

To enroll a node, use the openstack baremetal node create command. The example below
demonstrates the creation of a baremetal node with the following characteristics:

1.5. Enrolling Ironic Nodes 7

https://tarballs.opendev.org/openstack/ironic-python-agent/dib/
https://docs.openstack.org/ironic/latest/install/deploy-ramdisk.html
https://docs.openstack.org/ironic/latest/install/deploy-ramdisk.html

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

node_name=baremetal01
node_mac="f0:92:1c:0c:1f:88" # MAC address of PXE interface (em1 as␣
↪→example)
deploy_aki=ironic-deploy-aki # Kernel image
deploy_ari=ironic-deploy-ari # Ramdisk image
resource=ironic-gold # Ironic resource class (matches flavor as␣
↪→CUSTOM_IRONIC_GOLD)
phys_arch=x86_64
phys_cpus=32
phys_ram=32768
phys_disk=270
ipmi_username=root
ipmi_password=calvin
ipmi_address=172.19.0.22
boot_mode=bios
network_interface=flat

Important: The Ironic conductor service must be able to communicate with the OOB IP address to
perform provisioning functions.

openstack baremetal node create \
--driver ipmi \
--deploy-interface direct \
--driver-info ipmi_username=$ipmi_username \
--driver-info ipmi_password=$ipmi_password \
--driver-info ipmi_address=$ipmi_address \
--driver-info deploy_kernel=`openstack image show $deploy_aki -c id |awk '/

↪→id / {print $4}'` \
--driver-info deploy_ramdisk=`openstack image show $deploy_ari -c id |awk '/

↪→id / {print $4}'` \
--property cpus=$phys_cpus \
--property memory_mb=$phys_ram \
--property local_gb=$phys_disk \
--property cpu_arch=$phys_arch \
--property capabilities='boot_option:local,disk_label:gpt' \
--resource-class $resource \
--network-interface $network_interface \
--name $node_name

The node will first appear in an enroll state. To make it available for provisioning, set the state to
manage, then available:

openstack baremetal node manage baremetal01
openstack baremetal node provide baremetal01
openstack baremetal node list --fit

+--------------------------------------+-------------+---------------+--------
↪→-----+--------------------+-------------+

(continues on next page)

8 Chapter 1. Configuring the Bare Metal (Ironic) Service (optional)

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

(continued from previous page)

| UUID | Name | Instance UUID | Power␣
↪→State | Provisioning State | Maintenance |
+--------------------------------------+-------------+---------------+--------
↪→-----+--------------------+-------------+
| c362890d-5d7a-4dc3-ad29-7dac0bf49344 | baremetal01 | None | power␣
↪→off | available | False |
+--------------------------------------+-------------+---------------+--------
↪→-----+--------------------+-------------+

Next, create a baremetal port using the openstack baremetal port create command:

node_name=baremetal01
node_mac="f0:92:1c:0c:1f:88"
openstack baremetal port create $node_mac \
--node `openstack baremetal node show $node_name -c uuid |awk -F "|" '/ uuid ␣
↪→/ {print $3}'`

+-----------------------+--------------------------------------+
| Field | Value |
+-----------------------+--------------------------------------+
address	f0:92:1c:0c:1f:88
created_at	2021-12-17T20:36:19+00:00
extra	{}
internal_info	{}
is_smartnic	False
local_link_connection	{}
node_uuid	c362890d-5d7a-4dc3-ad29-7dac0bf49344
physical_network	None
portgroup_uuid	None
pxe_enabled	True
updated_at	None
uuid	44e5d872-ffa5-45f5-a5aa-7147c523e593
+-----------------------+--------------------------------------+

Note: The baremetal port is used to setup Neutron to provide DHCP services during provisioning. When
the neutron network interface is used, the respective switchport can be managed by OpenStack.

1.6 Deploy a Baremetal Node Using Ironic

Baremetal instances can be deployed using the openstack server create command and a baremetal
flavor. Unless the image has been created with support for passwords, an SSH key must be provided. The
baremetal instance relies on Neutron DHCP and metadata services, just like a virtual instance.

openstack server create \
--flavor baremetal-gold \
--image focal-server-cloudimg-amd64 \

(continues on next page)

1.6. Deploy a Baremetal Node Using Ironic 9

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

(continued from previous page)

--key-name myKey \
--network myBaremetalNetwork \
myBaremetalInstance

Important: If you do not have an ssh key readily available, set one up with ssh-keygen and/or create
one with openstack keypair create. Otherwise, you will not be able to connect to the deployed
instance.

10 Chapter 1. Configuring the Bare Metal (Ironic) Service (optional)

CHAPTER

TWO

EXAMPLE LXC BASED IRONIC DEPLOYMENT

This section describes a specific deployment of Ironic using Openstack-Ansible. A number of design
choices are made which illustrate how to configure the Ironic service for a specific set of requirements.

Deployment design decisions:

• LXC containers are used in the openstack control plane

• A single bmaas network is used for Ironic provisioning, cleaning and inspection

• The bmaas network is not routable to any other networks nor to the internal VIP

• Multitenancy is used with Ironic servers attached to project networks

• networking-generic-switch will be used to control network devices to achieve multitenancy

• Cisco NXOS switches

• The deployment uses VXLAN project networks

A number of these design decisions are opinionated and could be changed, e.g. allowing the bmaas
network to be routed to other networks including the internal VIP would result in some simplification.

This example is illustrative of a specific set of deployment requirements but is not intended to be followed
rigidly. It demonstrates some of the capabilities of Ironic and Openstack-Ansible and how to approach
most parts of a practical deployment of Ironic at small to modest scales.

Warning: Consideration should be given to the security of IPMI or other out-of-band interfaces
which are notoriously buggy and often have vendor specific in-band tools which allow the BMC
and its firmware to be manipulated from userspace. Understand the risks of allowing IPMI/BMC
interfaces to share a physical interface with onboard ethernet ports, this feature will allow full access
to the management interface of a deployed Ironic node. For high security environments or where the
users are untrusted consult your hardware vendor for appropriate hardening steps.

11

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

2.1 BMAAS network address plan

In this example the subnet for the bmaas network is 10.88.104.0/24. The size of the subnet determines
the maximum number of nodes in the Ironic deployment.

Address Purpose
10.88.104.0 to .10 Reserve for potential physical routers / SVI
10.88.104.11 to .29 Control plane Ironic container interfaces
10.88.104.64 to .95 Neutron DHCP allocation pool in Ironic_Network
10.88.104.96 to .127 Ironic Inspector DHCP pool range
10.88.104.128 to .254 Static IPs manually assigned to IPMI/iDRAC

In this deployment the bmaas network combines several functions for simplicity. It would be possible
to use separate networks for inspection, cleaning and provisioning but that is beyond the scope of this
example.

The subnet is divided into several address ranges, a reservation for future interfaces on physical routers, or
a gateway address if the subnet is to be made routable in the future. A small number of addresses are then

12 Chapter 2. Example LXC based Ironic deployment

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

reserved for the bmaas network to connect to the Ironic containers in the control plane, and the remainder
of the addresses are shared between a neutron network for provisioning, a range for Ironic Inspector to
allocate with DHCP and finally a block of addresses for the IPMI (or other protocol) management ports
of the Ironic nodes.

Note: This example will use VLAN ID 3003 for the bmaas network but any available VLAN ID could
be used.

Warning: This example collapses the Ironic IPMI, provisioning, cleaning and inspection networks
into the same subnet. It is possible to make these be separate from each other by creating a network for
each different function and updating the container networks and Ironic service configuration suitably.
In particular it should be understood that the nodes are untrusted during the cleaning phase and will
be in an arbitrary state as left by the previous user.

2.2 IPMI Interfaces

When configuring IPMI interfaces for Ironic nodes, the following steps are recommended:

• Use static IP allocations for the IPMI interfaces, unless there is already a very reliable means of
allocating addresses with DHCP. The Ironic team do not consider the Neutron DHCP agent to be
suitable for assigning addresses to the IPMI interfaces.

• Use dedicated IPMI ports on Ironic nodes especially if multitenancy is required. A node with a
shared onboard ethernet/IPMI port will have that port moved into the tenant network when de-
ployment is complete and the Ironic control plane will no longer be able to communicate with the
management interface of the node.

2.3 Maximum size of the deployment

The maximum size of this Ironic deployment is limited by the address alloction in the bmaas network.
In this example there can be a maximum of 127 server BMC interfaces in the range 10.88.104.128/25.

The maxiumum number of servers that can be simultanously provisioned is determined by the address
allocation to the Neutron DHCP pool.

The maximum number of servers that can be simultanously inspected is determined by the address allo-
cation to the Ironic Inspector DHCP pool.

To increase the size of the deployment, the size of the bmaas subnet should be increased and the addresses
allocated to meet the number of required nodes and maximum number of simultaneous nodes being
provisioned and inspected.

2.2. IPMI Interfaces 13

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

2.4 Openstack-Ansible configuration

Once the address plan has been decided, the Openstack-Ansible configuration can be updated to match.

The existing cidr_networks and used_ips sections in /etc/openstack_deploy/
openstack_user_config.yml must have extra entries to describe the network range available
for the Ansible inventory to assign to Ironic control plane containers, in this example all addresses in the
bmaas network are marked as used except the range 10.88.104.11 to 10.88.104.29.

An additional network is defined in the provider_networks list which represents the connection be-
tween the bridge br-bmaas on the controller and eth15 inside the ironic service containers.

The bmaas network must be extended from the control plane hosts to the switch ports connected to the
Ironic node IPMI interfaces, and also to switch ports connected to the interfaces on the Ironic nodes that
will be used for PXEboot. This will typically be a VLAN allocated specifically for Ironic provisioning.

The hosts for the Ironic control plane containers are assigned.

Note: It is the responsibility of the deployer to create br-bmaas on the controller nodes and ensure that it
is connected to the correct VLAN ID for the bmaas network. Configuration of host networking is outside
the scope of Openstack-Ansible.

Note: The range key in the provider network definition is not used but its useful as an reminder in the
config file of the VLAN ID.

cidr_networks:
<existing entries>
bmaas: 10.88.104.0/24 # for containers on the bmaas network

used_ips:
<existing entries>
bmaas ips
- "10.88.104.0,10.88.104.10" # reserve for routers or other␣

↪→infrastructure
- "10.88.104.30,10.88.104.255" # reserve for ironic IPMI and provisioning

provider_networks:
<existing entries>
Network definition to connect Ironic LXC containers to the bmaas network
on the infra hosts
- network:

net_name: physnet_neutron
container_type: "veth"
container_bridge: "br-bmaas"
container_interface: "eth15"
ip_from_q: bmaas
type: "vlan"
range: "3003:3003"
group_binds:

(continues on next page)

14 Chapter 2. Example LXC based Ironic deployment

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

(continued from previous page)

- ironic_api_container
- ironic_compute_container
- ironic_inspector_container

ironic API and conductor
ironic-infra_hosts:
infra1: *_infra1_
infra2: *_infra2_
infra3: *_infra3_

nova used by ironic for machine state management
ironic-compute_hosts:
infra1: *_infra1_
infra2: *_infra2_
infra3: *_infra3_

Ironic-inspector can only support a single instance at the moment
High availability for ironic-inspector is not yet implemented
ironic-inspector_hosts:
infra1: *_infra1_

Note: This example uses YAML Anchors to simplify openstack_user_config.yml allowing the IP
addresses of the infra nodes to be defined only once. See https://yaml.org/spec/1.2.2/#alias-nodes.

2.5 Create the Neutron configuration

Enable the Neutron baremetal and genericswitch mechanism drivers by updating /etc/
openstack_deploy/group_vars/neutron_server.yml

neutron_plugin_types:

- ml2.genericswitch
- ml2.baremetal

keep the ml2 drivers in this order
see https://storyboard.openstack.org/#!/story/2008686
neutron_ml2_mechanism_drivers: "genericswitch,baremetal"

Configure neutron networking-generic-switch to know about the switches that the Ironic nodes are con-
nected to in /etc/openstack_deploy/user_variables.yml. These switches are programmed by
neutron to switch the Ironic nodes between the provisioning and project networks once deployment is
complete. This is enabling multitenancy for Ironic.

This example is for a Cisco NXOS based switch, which uses the same command set as a Cisco IOS based
switch for the functions needed by networking-generic-switch. There is no specific device_type for
NXOS.

2.5. Create the Neutron configuration 15

https://yaml.org/spec/1.2.2/#alias-nodes

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

Note: A MAC address for the switch must be specified in the neutron config, but Cisco and some other
switch vendors present a unique MAC address per port so the MAC address as seen from the client cannot
be used to identify the switch. For IOS/NXOS networking-generic-switch uses the field switch_info
from the Ironic node local_link_connection information rather than match a MAC address when
choosing which switch to configure for a particular node.

neutron_neutron_conf_overrides:
genericswitch:my-switch-name: # This should match the hostname␣

↪→configured on the switch
device_type: netmiko_cisco_ios # It is really NXOS but the␣

↪→commands are the same
ngs_mac_address: "cc:46:d6:64:4b:41" # Doesn't seem to matter but is␣

↪→required - this is taken from an SVI on the mgmt network
ip: "10.80.240.3" # An IP on the switch which has␣

↪→ssh access from the br-mgmt network, loopback, SVI or mgmt0 as needed
username: "neutron" # The user that Neutron will SSH␣

↪→to the switch as
password: "supersecret" # The password that Neutron will␣

↪→use to SSH to the switch
key_file: <ssh key file> # An SSH key may be used instead␣

↪→of a password
ngs_manage_vlans: "False" # VLANs are already provisioned on␣

↪→the switch so tell neutron not to create/delete VLANs

Note: The configuration for networking-generic-switch is added to neturon.conf rather than
ml2_conf_genericswitch.ini as the config needs to be read by both neutron-rpc-server and neutron-
server. neutron-server is a uwsgi service in openstack-ansible so is only passed one config file, see
https://bugs.launchpad.net/openstack-ansible/+bug/1987405

Note: If there is already an override in place for this variable then extend the existing override rather
than making a second one.

2.6 Configure switch to allow ssh from Neutron

To achieve multitenancy, Neutron will connect to the specified switch and configure the port for the Ironic
node being provisioned to be in the correct project VLAN once the deployment is complete. During
deployment Neutron will ensure that the node is in the bmaas provisioning network as specified in the
Ironic config.

A suitable user and credential must exist on the switch. The SSH connection will originate from the
Neutron processes running on the OpenStack control plane, on the mgmt network. There must be an IP
route from the mgmt network to an interface on the switch which permits SSH login. That interface could
be a physical management port (mgmt0 on NXOS), a loopback interface, an SVI or another interface with
an IP address. SSH communication with the switch can happen either in-band or out-of-band depending
on the requirements of the deployment.

16 Chapter 2. Example LXC based Ironic deployment

https://bugs.launchpad.net/openstack-ansible/+bug/1987405

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

This example config is for a neutron user using password authentication on an NXOS switch as seen
by show run. The config applied on the switch gives the neutron user access to a minimal set of
commands for configuring VLAN membership on specific ports.

To control the commands that the neutron user is allowed to issue on the Cisco Nexus switch create a
role:

role name neutron-role
rule 3 permit command configure t
rule 2 permit read-write feature interface
rule 1 permit read
vlan policy deny
permit vlan 3003-3003
permit vlan 3100-3200

interface policy deny
permit interface Ethernet1/1
permit interface Ethernet1/2
permit interface Ethernet1/3
permit interface Ethernet1/4
permit interface Ethernet1/5
permit interface Ethernet1/6
permit interface Ethernet1/7
permit interface Ethernet1/8

This role allows the neutron user assign a port to VLAN 3003 which is the bmaas network and is
used during node provisioning. Any project VLANS that nodes should be able to be moved into after
deployment should also be permitted, range 3100-3200 here.

The interfaces which the neutron user is permitted to modify are listed, in this case individually but
consult the switch documentation for other options such as a regular expression.

A similar config can be made on an Arista switch, where a much more explicit list of allowed CLI
commands must be defined using regular expressions.

role neutron-role
10 permit mode exec command configure
20 permit mode exec command terminal width 511
30 permit mode exec command terminal length 0
40 permit mode exec command enable
50 permit mode exec command copy running-config startup-config
60 permit mode config command interface
70 permit mode if-Et([1-9]|27|29)\/1 command switchport mode access
80 permit mode if-Et([1-9]|27|29)\/1 command (no)*switchport access vlan␣

↪→(3003|3966)
90 permit mode if-Et([1-9]|27|29)\/1 command no switchport mode trunk
100 permit mode if-Et([1-9]|27|29)\/1 command switchport trunk allowed␣

↪→vlan none
110 permit mode config command copy running-config startup-config

Create the user and password, which must match those in the neutron.conf / genericswitch config
file options:

2.6. Configure switch to allow ssh from Neutron 17

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

username neutron password 5 <ENCRYPTED-PASSWORD-HERE> role neutron-role

Allow SSH to the switch from the expected IP addresses, for example a pair out of band management
hosts 192.168.0.100/31 and the OpenStack mgmt network 10.80.240.0/24.

ip access-list ACL_ALLOW_SSH_VTY
10 permit tcp 192.168.0.100/31 any eq 22
20 permit tcp 10.80.240.0/22 any eq 22

line vty
session-limit 5
exec-timeout 10
access-class ACL_ALLOW_SSH_VTY in

2.7 Create the Neutron network for Ironic provisioning, cleaning
and inspection

openstack network create \
--internal \
--provider-network-type vlan \
--provider-physical-network physnet_neutron \
--provider-segment 3003 \
Ironic_Network

openstack subnet create \
--allocation-pool 10.88.104.64-10.88.104.95 \
--dhcp \
--subnet-range 10.88.104.0/24
--gateway none
Ironic_Subnet

2.8 Create the Ironic configuration

In /etc/openstack_deploy/user_variables_ironic.yml

IRONIC

ironic_ipxe_enabled: yes # use HTTP image download from the␣
↪→ironic conductor container
ironic_enable_web_server_for_images: yes # use same web server to cache user␣
↪→images

Ensure values used during PXEboot refer directly to the correct interface␣
↪→on Ironic API container
instead of the internal VIP
ironic_http_url: "{{ ironic_ipxe_proto }}://{{ container_networks['bmaas_

(continues on next page)

18 Chapter 2. Example LXC based Ironic deployment

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

(continued from previous page)

↪→address']['address'] }}:{{ ironic_ipxe_port }}"
ironic_tftp_server_address: "{{ container_networks['bmaas_address']['address
↪→'] }}"

Enable ironic drivers
ironic_drivers_enabled: # Use PXE boot and IPMItool

- agent_ipmitool
- pxe_ipmitool
- pxe_drac # enables drivers for Dell iDrac interface

Configure Ironic to use Neutron networking
ironic_enabled_network_interfaces_list: "noop,neutron"
ironic_default_network_interface: neutron

Enable the default set of cleaning steps
ironic_automated_clean: yes

Configure the neutron networks that Ironc should use
ironic_neutron_provisioning_network_name: "Ironic_Network"
ironic_neutron_cleaning_network_name: "Ironic_Network"
ironic_neutron_inspection_network_name: "Ironic_Network"

Ensure ironic API (using uwsgi) listens on br-bmaas for agent callbacks
as well as the mgmt interface for the loadbalancer
ironic_uwsgi_bind_address: 0.0.0.0

Add ipa-insecure=1 to kernel parameters
Needed when ironic endpoint is available over https with self-signed cert.
ironic_kernel_append_params: "ipa-debug=1 systemd.journald.forward_to_
↪→console=yes ipa-insecure=1"

INI file overrides
ironic_ironic_conf_overrides:

Disable full device erasure (slow) and just metadata erasure, and replace␣
↪→with "Express erasure"
which tries to use firmware secure-erase command, but if that fails,␣

↪→reverts to metadata erasure.
See: https://docs.openstack.org/ironic/yoga/admin/cleaning.html#storage-

↪→cleaning-options
deploy:
erase_devices_priority: 0
erase_devices_metadata_priority: 0

conductor:
clean_step_priority_override: "deploy.erase_devices_express:5"

Direct IPA to callback directly to deploying ironic container (via BMAAS␣
↪→network)
instead of going via HAProxy on mgmt network. Only applies when bmaas␣

↪→network is isolated.

(continues on next page)

2.8. Create the Ironic configuration 19

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

(continued from previous page)

service_catalog:
endpoint_override: "http://{{ container_networks['bmaas_address']['address

↪→'] }}:6385"

Enable ipmitool's Serial-over-LAN terminal console for baremetal nodes
DEFAULT:
enabled_console_interfaces: "ipmitool-socat,no-console"

IRONIC INSPECTOR

Direct Inspector to callback directly to deploying ironic container (via␣
↪→BMAAS network)
instead of going via HAProxy on mgmt network. Only applies when bmaas␣
↪→network is isolated.
ironic_inspector_callback_url: "{{ ironic_inspector_service_internaluri_proto␣
↪→}}://{{ container_networks['bmaas_address']['address'] }}:{{ ironic_
↪→inspector_service_port }}/v1/continue"

Add ipa-insecure=1 to kernel parameters
Needed when inspector is available over https with self-signed cert.
ironic_inspector_extra_callback_parameters: "ipa-collect-lldp=1 ipa-insecure=1
↪→"

Ensure inspector API (using uwsgi) listens on br-bmaas for agent callbacks
as well as the mgmt interface for the loadbalancer
ironic_inspector_service_address: "0.0.0.0"

dnsmasq/dhcp information for inspector
ironic_inspector_dhcp_pool_range: 10.88.104.96 10.88.104.127
ironic_inspector_dhcp_subnet: 10.88.104.0/24
ironic_inspector_dhcp_subnet_mask: 255.255.255.0
ironic_inspector_dhcp_enable_gateway: False
ironic_inspector_dhcp_enable_nameservers: False

ironic_inspector_dhcp_interface: eth15 # connected to br-bmaas on the host

2.9 Deploy Neutron changes

openstack-ansible playbooks/os-neutron-install.yml

20 Chapter 2. Example LXC based Ironic deployment

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

2.10 Deploy the ironic-specific nova services

This deploys nova compute and nova console services to the ironic compute containers.

playbooks/os-nova-install.yml --limit ironic_all

2.11 Deploy changes to HAProxy

This will bring up the required Ironic, Inspector, and console endpoints.

openstack-ansible playbooks/haproxy-install.yml --tags haproxy_server-config

2.12 Deploy the Ironic and Inspector services

openstack-ansible playbooks/os-ironic-install.yml

2.13 Deploy the Horizon dashbaords for Ironic

openstack-ansible playbooks/os-horizon-install.yml

2.14 Using Ironic

Please refer to the general instructions in the Configuring Ironic section of this documentation.

2.15 VXLAN project networks

In this example Ironic multitenancy is implemented using VLANs. In an OpenStack deployment where
project networks are implemented using an overlay such as VXLAN, it will not be possible to attach
Ironic nodes directly to these networks. In addition, it is not possible for an end user to request that the
underlying implementation is VLAN when creating a project network.

In a cloud using overlay project networks it will be necessary for the cloud administrator to create VLAN
provider networks for users to attach Ironic nodes to and to share these into individual projects using
Neutron RBAC.

2.10. Deploy the ironic-specific nova services 21

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

22 Chapter 2. Example LXC based Ironic deployment

CHAPTER

THREE

CONFIGURING THE BARE METAL (IRONIC) INSPECTOR SERVICE
(OPTIONAL)

Note: This feature is experimental at this time and it has not been fully production tested yet.

Ironic Inspector is an Ironic service that deploys a tiny image called ironic-python-agent that gathers
information about a Bare Metal node. The data is then stored in the database for further use later. The
node is then updated with properties based in the introspection data.

The inspector configuration requires some pre-deployment steps to allow the Ironic playbook to make
the inspector functioning.

3.1 Networking

Ironic networking must be configured as normally done. The inspector and Ironic will both share the
TFTP server.

Networking will depend heavily on your environment. For example, the DHCP for both Ironic and in-
spector will come from the same subnet and will be a subset of the typical ironic allocated range.

3.2 Required Overrides

dnsmasq/dhcp information for inspector
ironic_inspector_dhcp_pool_range: <START> <END> (subset of ironic␣
↪→IPs)
ironic_inspector_dhcp_subnet: <IRONIC SUBNET CIDR>
ironic_inspector_dhcp_subnet_mask: 255.255.252.0
ironic_inspector_dhcp_gateway: <IRONIC GATEWAY>
ironic_inspector_dhcp_nameservers: 8.8.8.8

23

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

3.3 To enable LLDP discovery of switch ports during inspection

During inspection Ironic Inspector can automatically populate information into the node
local_link_connection which can automatically create a baremetal port for the node.

This example is suitable for switches that have a common MAC address per switch port and are iden-
tified to networking-generic-switch using the ngs_mac_address parameter which matches against the
switch_id field in the Ironic node local_link_connection information.

Set the following variables in /etc/openstack_deploy/user_variables.yml

enable LLDP discovery for inspector
ironic_inspector_processing_hooks: "$default_processing_hooks,lldp_basic,
↪→local_link_connection"
ironic_inspector_extra_callback_parameters: "ipa-collect-lldp=1"

3.4 To enable LLDP discovery of switch system name during in-
spection

This example is suitable for switches that have a different MAC address per switch port and are identified
to networking-generic-switch using the switch hostname which is matched against the switch_info
field in the Ironic node local_link_connection information.

An additional out-of-tree Ironic Inspector plugin is needed to obtain the system name of the switch and
write it to switch_info during inspection.

Set the following variables in /etc/openstack_deploy/user_variables.yml

enable LLDP discovery for inspector
ironic_inspector_processing_hooks: "$default_processing_hooks,lldp_basic,
↪→local_link_connection,system_name_llc"
ironic_inspector_extra_callback_parameters: "ipa-collect-lldp=1"

stackhpc inspector plugins
ironic_inspector_user_pip_packages:

- git+https://github.com/stackhpc/stackhpc-inspector-plugins@master
↪→#egg=stackhpc-inspector-plugins

24 Chapter 3. Configuring the Bare Metal (ironic) inspector service (optional)

CHAPTER

FOUR

DEPLOYING MULTIPLE IRONIC NODES WITH DIFFERENT CPU
ARCHITECURES

Ironic can deploy nodes with CPU architectures which do not match the CPU architecture of the control
plane. The default settings for Openstack-Ansible assume an x86-64 control plane deploying x86-64
Ironic nodes.

This documentation describes how to deploy aarch64 Ironic nodes using an x86-64 control plane. Other
combinations of architecture could be supported using the same approach with different variable defini-
tions.

This example assumes that Glance is used for Ironic image storage and the Ironic control plane web server
serves these for deployment.

4.1 Building ironic-python-agent deploy image for aarch64

There must be an ironic-python-agent kernel and initramfs built and uploaded to Glance for each archi-
tecture that needs to be deployed.

To build an aarch64 ironic-python-agent image using a Rocky Linux aarch64 host:

dnf install python3-virtualenv git qemu-img

virtualenv venv
source ./venv/bin/activate
pip install ironic-python-agent-builder

export DIB_REPOREF_ironic_python_agent=origin/master
export DIB_REPOREF_requirements=origin/master
ironic-python-agent-builder -o my-ipa --extra-args=--no-tmpfs --release 9-
↪→stream centos

• Replace origin/master with another branch reference in order to build specific versions of IPA,
for example stable/zed

25

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

4.2 Configuring Ironic for multiple architectures

This configuration assumes the use of iPXE. The settings required to support an additional architecture
are minimal. Ironic has a default setting for which EFI firmware file to use that can be overridden on a
per-architecture basis with the ipxe_bootfile_name_by_arch config setting.

On the control plane the aarch64 EFI iPXE firmware must be present in the tftp server root directory.
Note that not all distributions supply packages for EFI firmware for architectures different to the host so
it may be necessary to download architecture specific firmware directly from https://boot.ipxe.org

This example shows how to specify the iPXE boot firmware to use for aarch64 nodes, and where that
firmware should be obtained from to populate the tftp server.

ironic_ironic_conf_overrides:
Point to aarch64 uefi firmware on aarch64 platforms
pxe:
ipxe_bootfile_name_by_arch: 'aarch64:ipxe_aa64.efi'

ironic_tftp_extra_content:
- url: http://boot.ipxe.org/arm64-efi/ipxe.efi
name: ipxe_aa64.efi

Note: You must combine this override with any existing definition of
ironic_ironic_conf_overrides.

4.3 Enrolling an aarch64 node

When enrolling an aarch64 node the boot_mode must be uefi even if existing Ironic nodes use legacy
bios boot.

An example of the node capabilities including uefi boot would be:

capabilities='boot_option:local,disk_label:gpt,boot_mode:uefi'

Enrolling an aarch64 node is exactly the same as enrolling an x86_64 node, except that deploy_kernel
and deploy_ramdisk must be set to the aarch64 version of the deploy image.

4.4 Building an aarch64 user image

Example of building a whole-disk aarch64 user image on an existing aarch64 Ubuntu host:

sudo apt update
sudo apt install python3-venv qemu-utils
python3 -m venv venv
source ./venv/bin/activate
pip install diskimage-builder
DIB_RELEASE=jammy DIB_CLOUD_INIT_DATASOURCES=Ec2 disk-image-create -a arm64␣

(continues on next page)

26 Chapter 4. Deploying multiple Ironic nodes with different CPU architecures

https://boot.ipxe.org

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

(continued from previous page)

↪→ubuntu vm block-device-efi cloud-init-datasources -o baremetal-ubuntu-22.04-
↪→efi-arm64.qcow2

• The DIB_RELEASE=<name> environment variable tells the ubuntu element which version of
Ubuntu to create an image for. This defaults to Focal if left unspecified.

• The DIB_CLOUD_INIT_DATASOURCES=Ec2 environment variable is used by the
cloud-init-datasources element to force cloud-init to use its Ec2 datasource. The
native OpenStack datasource cant be used because it doesnt currently have working support for
bare metal instances until cloud-init version 23.1. (Since the OpenStack metadata service also
provides an EC2 compatible API, the Ec2 datasource is a reasonable workaround. (NB: This is
actually the default behaviour for Ubuntu cloud images, but for entirely unrelated reasons hence it
being worth making explicit here.)

Use a similar approach on a Rocky Linux aarch64 system to build a whole-disk user image of the latest
version of Rocky Linux:

DIB_RELEASE=9 DIB_CLOUD_INIT_DATASOURCES=Ec2 DIB_CLOUD_INIT_GROWPART_DEVICES=
↪→'["/"]' disk-image-create -a arm64 rocky-container vm block-device-efi␣
↪→cloud-init openssh-server cloud-init-datasources cloud-init-growpart -o␣
↪→baremetal-rocky-9-efi-arm64.qcow2

• The DIB_RELEASE=<number> environment variable tells the rocky-container element which
version of Rocky to create an image for.

• The cloud-init and openssh-server elements are essential since the Rocky container image
does not include these packages. (As an aside: the diskimage-builder documentation erro-
neously claims that the cloud-init element only works on Gentoo, but this is not the case).

• As with Ubuntu, setting DIB_CLOUD_INIT_DATASOURCES=Ec2 and using the
cloud-init-datasources element is necessary since the OpenStack cloud-init data-
source doesnt work. Unlike the Ubuntu case, using the Ec2 datasource is not the default and so
adding these options is essential to obtain a working image.

• DIB_CLOUD_INIT_GROWPART_DEVICES variable tells cloud-init-growpart to configure
cloud-init to grow the root partition on first boot which is must be explicitly set on some
OS/architecture combinations.

4.4. Building an aarch64 user image 27

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

28 Chapter 4. Deploying multiple Ironic nodes with different CPU architecures

CHAPTER

FIVE

DEBUGGING THE BARE METAL (IRONIC) INSPECTOR SERVICE

5.1 Ironic Python Agent debug logs

If IPA fails, a log file will be written to /var/log/ironic on the conductor node responsible for the
Ironic node being deployed.

A lot of useful information is collected including a copy of the journal log from the host.

5.2 Pausing during a deployment

To pause the deployment, possibly to log into an Ironic node running the IPA to do diagnostic work, the
node can have maintainance switched on either through the OpenStack CLI or Horizon web interface.

The ironic state machine will not change state again until maintainance mode is switched off, triggered
by a heartbeat from IPA. Note that you will have to wait for up to one heartbeat period for the deployment
to resume after switching off maintainance mode.

5.3 Logging into IPA

To perform diagnostic steps on an ironic node during deployment or cleaning it might be helpful to be
able to log into the node from the controller after the deploy image has booted.

To build a version of the deploy image which has the dynamic-login element enabled, in this case
building on a Rocky Linux host:

dnf install python3-virtualenv git qemu-img

virtualenv venv
source ./venv/bin/activate
pip install ironic-python-agent-builder

export DIB_REPOREF_ironic_python_agent=origin/stable/zed
export DIB_REPOREF_requirements=origin/stable/zed
ironic-python-agent-builder -e dynamic-login -o my-login-ipa --extra-args=--
↪→no-tmpfs --release 8-stream centos

Once the IPA kernel and initramfs are built, upload them to glance and set them as the deploy ker-
nel/initramfs for the Ironic node to log into during deployment.

29

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

Create a password to log into the Ironic node:

openssl passwd -1 -stdin <<< YOUR_PASSWORD | sed 's/\$/\$\$/g'

Set debugging options on the IPA kernel parameters in /etc/openstack_deploy/user_variables.
yml, substituing the encrypted password just generated into the rootpwd field. Ensure that the encrypted
password is enclosed in double quotation marks.

ironic_ironic_conf_overrides:
Set a password on the root user in IPA for debug purposes
pxe:
kernel_append_params: 'ipa-debug=1 systemd.journald.forward_to_

↪→console=yes rootpwd="<password-string>"'

Note: You must combine this override with any existing definition of
ironic_ironic_conf_overrides.

Deploy the configuration file changes to the Ironic control plane.

The node can now be cleaned or provisioned, possibly pausing the deployment by enabling maintainance
on the node and then logging into the node with SSH as the root user with the password previously
encrypted.

This is an OpenStack-Ansible role to deploy the Bare Metal (ironic) service. See the role-ironic spec for
more information.

To clone or view the source code for this repository, visit the role repository for os_ironic.

30 Chapter 5. Debugging the Bare Metal (ironic) inspector service

https://specs.openstack.org/openstack/openstack-ansible-specs/specs/mitaka/role-ironic.html
https://github.com/openstack/openstack-ansible-os_ironic

CHAPTER

SIX

DEFAULT VARIABLES

Defaults file for openstack-ansible-ironic

Verbosity Options
debug: False

python venv executable
ironic_venv_python_executable: "{{ openstack_venv_python_executable | default(
↪→'python3') }}"

Set the host which will execute the shade modules
for the service setup. The host must already have
clouds.yaml properly configured.
ironic_service_setup_host: "{{ openstack_service_setup_host | default(
↪→'localhost') }}"
ironic_service_setup_host_python_interpreter: >-

{{
openstack_service_setup_host_python_interpreter | default(

(ironic_service_setup_host == 'localhost') | ternary(ansible_playbook_
↪→python, ansible_facts['python']['executable']))
}}

Set the package install state for distribution packages
Options are 'present' and 'latest'
ironic_package_state: "{{ package_state | default('latest') }}"

ironic_git_repo: https://opendev.org/openstack/ironic
ironic_inspector_git_repo: https://opendev.org/openstack/ironic-inspector
ironic_git_install_branch: master
ironic_inspector_git_install_branch: master
ironic_upper_constraints_url: >-

{{ requirements_git_url | default('https://releases.openstack.org/
↪→constraints/upper/' ~ requirements_git_install_branch | default('master')) }
↪→}
ironic_git_constraints:

- "--constraint {{ ironic_upper_constraints_url }}"

ironic_pip_install_args: "{{ pip_install_options | default('') }}"

(continues on next page)

31

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

(continued from previous page)

Name of the virtual env to deploy into
ironic_venv_tag: "{{ venv_tag | default('untagged') }}"
ironic_bin: "/openstack/venvs/ironic-{{ ironic_venv_tag }}/bin"

System info
ironic_system_user_name: ironic
ironic_system_group_name: ironic
ironic_system_shell: /bin/bash
ironic_system_comment: ironic system user
ironic_system_home_folder: "/var/lib/{{ ironic_system_user_name }}"
ironic_system_slice_name: ironic
ironic_lock_dir: "{{ openstack_lock_dir | default('/run/lock') }}"

Ironic Program and Service names
python_ironic_client_program_name: ironic
ironic_services:
ironic-api:
group: ironic_api
service_name: ironic-api
init_config_overrides: "{{ ironic_api_init_config_overrides }}"
wsgi_app: True
wsgi_name: ironic-api-wsgi
uwsgi_overrides: "{{ ironic_api_uwsgi_ini_overrides }}"
uwsgi_port: "{{ ironic_service_port }}"
uwsgi_bind_address: "{{ ironic_uwsgi_bind_address }}"
uwsgi_tls: "{{ ironic_backend_ssl | ternary(ironic_uwsgi_tls, {}) }}"

ironic-conductor:
group: ironic_conductor
service_name: ironic-conductor
init_config_overrides: "{{ ironic_conductor_init_config_overrides }}"
execstarts: "{{ ironic_bin }}/ironic-conductor"

ironic-inspector:
group: ironic_inspector
service_name: ironic-inspector
init_config_overrides: "{{ ironic_inspector_init_config_overrides }}"
execstarts: "{{ ironic_bin }}/ironic-inspector"

ironic-inspector-dnsmasq:
group: ironic_inspector
service_name: ironic-inspector-dnsmasq
service_type: forking
systemd_user_name: root
systemd_group_name: root
init_config_overrides: "{{ ironic_inspector_dnsmasq_init_config_overrides␣

↪→}}"
execstarts: "/usr/sbin/dnsmasq --conf-file=/etc/ironic-inspector/

↪→inspector-dnsmasq.conf"
after_targets:

- openvswitch.service
- network.target

(continues on next page)

32 Chapter 6. Default variables

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

(continued from previous page)

state: stopped

ironic_service_name: ironic
ironic_service_type: baremetal
ironic_service_proto: http
ironic_service_publicuri_proto: "{{ openstack_service_publicuri_proto |␣
↪→default(ironic_service_proto) }}"
ironic_service_adminuri_proto: "{{ openstack_service_adminuri_proto |␣
↪→default(ironic_service_proto) }}"
ironic_service_internaluri_proto: "{{ openstack_service_internaluri_proto |␣
↪→default(ironic_service_proto) }}"
ironic_service_port: 6385
ironic_service_description: "Ironic baremetal provisioning service"
ironic_service_publicuri: "{{ ironic_service_publicuri_proto }}://{{ external_
↪→lb_vip_address }}:{{ ironic_service_port }}"
ironic_service_publicurl: "{{ ironic_service_publicuri }}"
ironic_service_adminuri: "{{ ironic_service_adminuri_proto }}://{{ internal_
↪→lb_vip_address }}:{{ ironic_service_port }}"
ironic_service_adminurl: "{{ ironic_service_adminuri }}"
ironic_service_internaluri: "{{ ironic_service_internaluri_proto }}://{{␣
↪→internal_lb_vip_address }}:{{ ironic_service_port }}"
ironic_service_internalurl: "{{ ironic_service_internaluri }}"
ironic_program_name: ironic-api
ironic_service_region: "{{ service_region | default('RegionOne') }}"
ironic_service_project_name: "service"
ironic_service_project_domain_id: default
ironic_service_user_domain_id: default
ironic_service_role_names:

- admin
- service

ironic_service_token_roles:
- service

ironic_service_token_roles_required: "{{ openstack_service_token_roles_
↪→required | default(True) }}"
ironic_service_in_ldap: "{{ service_ldap_backend_enabled | default(False) }}"

Enable interaction with Nova and Neutron from 2024.1 with default policy
If more than one service project name is necessary, then you may need to
override Ironic 'service_role' policy.
ironic_service_role_elevated_access: True

The name of the entry in container_networks for the bmaas network
This is the default provisioning / inspection / cleaning network for this␣
↪→role
ironic_container_network_name: "bmaas_address"

The name of the bridge on the host for the bmaas network
ironic_bmaas_bridge: "{{ container_networks[ironic_container_network_name][
↪→'bridge'] | default('bridge_undefined') }}"

(continues on next page)

33

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

(continued from previous page)

The address of this host on the bmaas network
ironic_bmaas_address: >-

{{
(is_metal | default(False)) | ternary(

ansible_facts[ironic_bmaas_bridge | replace('-','_')]['ipv4']['address
↪→'],

container_networks[ironic_container_network_name]['address']) | default(
↪→'address_undefined')
}}

The name of the interface on the bmaas network
This is the bmaas bridge name on metal, or the corresponding interface name␣
↪→in a container
ironic_bmaas_interface: >-

{{
(is_metal | default(False)) | ternary(

ironic_bmaas_bridge, container_networks[ironic_container_network_name][
↪→'interface']) | default('interface_undefined')
}}

Ironic image store information
#
Hosted Web Server
#
Set this to True to use http web server to host floppy
images and generated boot ISO. This requires http_root and
http_url to be configured in the [deploy] section of the
config file. If this is set to False, then Ironic will use
Swift to host the floppy images and generated boot_iso.
ironic_enable_web_server_for_images: False
ironic_http_bind_address: "{{ ironic_bmaas_address }}"
ironic_http_url: "{{ ironic_ipxe_proto }}://{{ ironic_http_bind_address }}:{{␣
↪→ironic_ipxe_port }}"
ironic_http_root: "/httpboot"
#
Swift Config
#
ironic_swift_image_container: glance_images
ironic_swift_api_version: v1
ironic_swift_url_endpoint_type: swift
The ironic swift auth account and swift endpoints will be generated using␣
↪→the
known swift data as provided by swift stat. If you wish to set either of␣
↪→these
items to something else define these variables.
ironic_swift_auth_account: AUTH_1234567890
ironic_swift_endpoint: https://localhost:8080

Is this Ironic installation working standalone?

(continues on next page)

34 Chapter 6. Default variables

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

(continued from previous page)

If you're wanting Ironic to work without being integrated to other OpenStack
services, set this to True, and update the dhcp configuration appropriately
ironic_standalone: False

Enables or disables automated cleaning. Automated cleaning
is a configurable set of steps, such as erasing disk drives,
that are performed on the node to ensure it is in a baseline
state and ready to be deployed to.
ironic_automated_clean: false
Set to 0 to disable erase devices on cleaning
ironic_erase_devices_priority: 10

Database
ironic_db_setup_host: "{{ openstack_db_setup_host | default('localhost') }}"
ironic_db_setup_python_interpreter: >-

{{
openstack_db_setup_python_interpreter | default(

(ironic_db_setup_host == 'localhost') | ternary(ansible_playbook_python,
↪→ ansible_facts['python']['executable']))
}}

ironic_galera_address: "{{ galera_address | default('127.0.0.1') }}"
ironic_galera_user: ironic
ironic_galera_database: ironic
ironic_galera_use_ssl: "{{ galera_use_ssl | default(False) }}"
ironic_galera_ssl_ca_cert: "{{ galera_ssl_ca_cert | default('') }}"
ironic_galera_port: "{{ galera_port | default('3306') }}"
ironic_db_max_overflow: "{{ openstack_db_max_overflow | default('50') }}"
ironic_db_max_pool_size: "{{ openstack_db_max_pool_size | default('5') }}"
ironic_db_pool_timeout: "{{ openstack_db_pool_timeout | default('30') }}"
ironic_db_connection_recycle_time: "{{ openstack_db_connection_recycle_time |␣
↪→default('600') }}"

Keystone authentication middleware
ironic_keystone_auth_plugin: password

Neutron network - Set these in a playbook/task - can be set manually.
Only "name" or "uuid" is needed, uuid will take preference if both are␣
↪→specified.
The cleaning and inspection network is not required to be set; they will␣
↪→default
to the provisioning network if not specified.
ironic_neutron_provisioning_network_uuid: "UUID for provisioning network in␣
↪→neutron"
ironic_neutron_cleaning_network_uuid: "UUID for cleaning network in neutron"
ironic_neutron_inspection_network_uuid: "UUID for inspection network in␣
↪→neutron"
ironic_neutron_provisioning_network_name: "Name of provisioning network in␣
↪→neutron"
ironic_neutron_cleaning_network_name: "Name of cleaning network in neutron"

(continues on next page)

35

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

(continued from previous page)

ironic_neutron_inspection_network_name: "Name of inspection network in␣
↪→neutron"

Integrated Openstack configuration
ironic_enabled_network_interfaces_list: "flat,noop{{ (ironic_neutron_
↪→provisioning_network_uuid is defined) | ternary(',neutron', '') }}"
ironic_default_network_interface: "{{ (ironic_neutron_provisioning_network_
↪→uuid is defined) | ternary('neutron', 'flat') }}"
ironic_auth_strategy: keystone
ironic_dhcp_provider: "{{ (ironic_standalone | bool) | ternary('none',
↪→'neutron') }}"
ironic_sync_power_state_interval: "{{ (ironic_standalone | bool) | ternary('-1
↪→', '60') }}"
ironic_db_connection_string: >-

mysql+pymysql://{{ ironic_galera_user }}:{{ ironic_container_mysql_password␣
↪→}}@{{ ironic_galera_address }}:{{ ironic_galera_port

}}/ironic?charset=utf8{% if ironic_galera_use_ssl | bool %}&ssl_verify_
↪→cert=true{%

if ironic_galera_ssl_ca_cert | length > 0 %}&ssl_ca={{ ironic_galera_
↪→ssl_ca_cert }}{% endif %}{% endif %}

Common configuration
ironic_node_name: ironic

ironic_tftp_server_address: "{{ ironic_bmaas_address }}"

Use this variable to add extra files into the ironic_tftp_root directory
ironic_tftp_extra_content:
- path: /some/local/dir/local-file.txt
name: local-file.txt
- url: http://boot.ipxe.org/arm64-efi/ipxe.efi
name: ipxe_aa64.efi
ironic_tftp_extra_content: []

ironic_pip_packages:
- "git+{{ ironic_git_repo }}@{{ ironic_git_install_branch }}#egg=ironic"
- cryptography
- osprofiler
- proliantutils
- PyMySQL
- pymemcache
- pysnmp
- python-dracclient
- python-ilorest-library
- python-ironicclient
- python-memcached
- python-scciclient
- python-swiftclient
- python-xclarityclient

(continues on next page)

36 Chapter 6. Default variables

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

(continued from previous page)

- sushy
- systemd-python

ipmitool-socat console settings
ironic_socat_bind_address: "{{ openstack_service_bind_address | default('0.0.
↪→0.0') }}"
ironic_socat_port_range: "10000:10099"

Specific pip packages provided by the user for the ironic service
ironic_user_pip_packages: []

ironic_inspector_pip_packages:
- "git+{{ ironic_inspector_git_repo }}@{{ ironic_inspector_git_install_

↪→branch }}#egg=ironic-inspector"
- python-ironic-inspector-client

Specific pip packages provided by the user for the ironic inspector service
ironic_inspector_user_pip_packages: []

Memcached override
ironic_memcached_servers: "{{ memcached_servers }}"

Oslo Messaging Info
RPC
ironic_oslomsg_rpc_host_group: "{{ oslomsg_rpc_host_group | default('rabbitmq_
↪→all') }}"
ironic_oslomsg_rpc_setup_host: "{{ (ironic_oslomsg_rpc_host_group in groups)␣
↪→| ternary(groups[ironic_oslomsg_rpc_host_group][0], 'localhost') }}"
ironic_oslomsg_rpc_transport: "{{ oslomsg_rpc_transport | default('rabbit') }}
↪→"
ironic_oslomsg_rpc_servers: "{{ oslomsg_rpc_servers | default('127.0.0.1') }}"
ironic_oslomsg_rpc_port: "{{ oslomsg_rpc_port | default('5672') }}"
ironic_oslomsg_rpc_use_ssl: "{{ oslomsg_rpc_use_ssl | default(False) }}"
ironic_oslomsg_rpc_userid: ironic
ironic_oslomsg_rpc_policies: []
vhost name depends on value of oslomsg_rabbit_quorum_queues. In case quorum␣
↪→queues
are not used - vhost name will be prefixed with leading `/`.
ironic_oslomsg_rpc_vhost:

- name: /ironic
state: "{{ ironic_oslomsg_rabbit_quorum_queues | ternary('absent',

↪→'present') }}"
- name: ironic
state: "{{ ironic_oslomsg_rabbit_quorum_queues | ternary('present',

↪→'absent') }}"

ironic_oslomsg_rpc_ssl_version: "{{ oslomsg_rpc_ssl_version | default('TLSv1_2
↪→') }}"
ironic_oslomsg_rpc_ssl_ca_file: "{{ oslomsg_rpc_ssl_ca_file | default('') }}"

(continues on next page)

37

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

(continued from previous page)

Notify
ironic_oslomsg_notify_configure: "{{ oslomsg_notify_configure |␣
↪→default(False) }}"
ironic_oslomsg_notify_host_group: "{{ oslomsg_notify_host_group | default(
↪→'rabbitmq_all') }}"
ironic_oslomsg_notify_setup_host: "{{ (ironic_oslomsg_notify_host_group in␣
↪→groups) | ternary(groups[ironic_oslomsg_notify_host_group][0], 'localhost')␣
↪→}}"
ironic_oslomsg_notify_transport: "{{ oslomsg_notify_transport | default(
↪→'rabbit') }}"
ironic_oslomsg_notify_servers: "{{ oslomsg_notify_servers | default('127.0.0.1
↪→') }}"
ironic_oslomsg_notify_port: "{{ oslomsg_notify_port | default('5672') }}"
ironic_oslomsg_notify_use_ssl: "{{ oslomsg_notify_use_ssl | default(False) }}"
ironic_oslomsg_notify_userid: "{{ ironic_oslomsg_rpc_userid }}"
ironic_oslomsg_notify_password: "{{ ironic_oslomsg_rpc_password }}"
ironic_oslomsg_notify_vhost: "{{ ironic_oslomsg_rpc_vhost }}"
ironic_oslomsg_notify_ssl_version: "{{ oslomsg_notify_ssl_version | default(
↪→'TLSv1_2') }}"
ironic_oslomsg_notify_ssl_ca_file: "{{ oslomsg_notify_ssl_ca_file | default('
↪→') }}"
ironic_oslomsg_notify_policies: []

RabbitMQ integration
ironic_oslomsg_rabbit_quorum_queues: "{{ oslomsg_rabbit_quorum_queues |␣
↪→default(True) }}"
ironic_oslomsg_rabbit_stream_fanout: "{{ oslomsg_rabbit_stream_fanout |␣
↪→default(ironic_oslomsg_rabbit_quorum_queues) }}"
ironic_oslomsg_rabbit_transient_quorum_queues: "{{ oslomsg_rabbit_transient_
↪→quorum_queues | default(ironic_oslomsg_rabbit_stream_fanout) }}"
ironic_oslomsg_rabbit_qos_prefetch_count: "{{ oslomsg_rabbit_qos_prefetch_
↪→count | default(ironic_oslomsg_rabbit_stream_fanout | ternary(10, 0)) }}"
ironic_oslomsg_rabbit_queue_manager: "{{ oslomsg_rabbit_queue_manager |␣
↪→default(ironic_oslomsg_rabbit_quorum_queues) }}"
ironic_oslomsg_rabbit_quorum_delivery_limit: "{{ oslomsg_rabbit_quorum_
↪→delivery_limit | default(0) }}"
ironic_oslomsg_rabbit_quorum_max_memory_bytes: "{{ oslomsg_rabbit_quorum_max_
↪→memory_bytes | default(0) }}"

(Qdrouterd) integration
TODO(ansmith): Change structure when more backends will be supported
ironic_oslomsg_amqp1_enabled: "{{ ironic_oslomsg_rpc_transport == 'amqp' }}"

ironic_optional_oslomsg_amqp1_pip_packages:
- oslo.messaging[amqp1]

Auth
ironic_service_user_name: "ironic"

(continues on next page)

38 Chapter 6. Default variables

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

(continued from previous page)

WSGI settings
ironic_wsgi_threads: 1
ironic_wsgi_processes_max: 16
ironic_wsgi_processes: >-

{{ [[(ansible_facts['processor_vcpus'] // ansible_facts['processor_threads_
↪→per_core']) | default(1), 1] | max * 2, ironic_wsgi_processes_max] | min }}
ironic_uwsgi_bind_address: "{{ openstack_service_bind_address | default('0.0.
↪→0.0') }}"
ironic_uwsgi_tls:
crt: "{{ ironic_ssl_cert }}"
key: "{{ ironic_ssl_key }}"

OpenStack Services to integrate with

Glance
ironic_glance_auth_strategy: "{{ ironic_auth_strategy }}"
ironic_glance_service_project_name: "{{ glance_service_project_name | default(
↪→'service') }}"
ironic_glance_service_project_domain_id: "{{ glance_service_project_domain_id␣
↪→| default('default') }}"
ironic_glance_keystone_auth_plugin: "{{ glance_keystone_auth_plugin | default(
↪→'password') }}"
ironic_glance_service_user_name: "{{ glance_service_user_name | default(
↪→'glance') }}"
ironic_glance_service_user_domain_id: "{{ glance_service_user_domain_id |␣
↪→default('default') }}"
ironic_glance_keystone_auth_url: "{{ keystone_service_internalurl | default(
↪→'http://localhost:5000/v3') }}"

Neutron
ironic_neutron_auth_strategy: "{{ ironic_auth_strategy }}"

Config Overrides
ironic_ironic_conf_overrides: {}
ironic_rootwrap_conf_overrides: {}
ironic_policy_overrides: {}
ironic_api_uwsgi_ini_overrides: {}

pxe boot
ironic_kernel_append_params: "ipa-debug=1 systemd.journald.forward_to_
↪→console=yes"

ironic_api_init_config_overrides: {}
ironic_conductor_init_config_overrides: {}

driver definitions
ironic_drivers_enabled:

- no_driver

(continues on next page)

39

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

(continued from previous page)

- agent_ipmitool
- pxe_ipmitool

extra driver types defined by user
ironic_user_driver_types: {}

ironic_inspector_developer_mode: false
ironic_inspector_venv_python_executable: "{{ openstack_venv_python_executable␣
↪→| default('python2') }}"

System info
ironic_inspector_service_setup_host: "{{ openstack_service_setup_host |␣
↪→default('localhost') }}"
ironic_inspector_service_name: ironic-inspector
ironic_inspector_service_type: baremetal-introspection
ironic_inspector_service_description: "Ironic Baremetal Introspection Service"
ironic_inspector_service_publicuri_proto: "{{ openstack_service_publicuri_
↪→proto | default(ironic_service_proto) }}"
ironic_inspector_service_adminuri_proto: "{{ openstack_service_adminuri_proto␣
↪→| default(ironic_service_proto) }}"
ironic_inspector_service_internaluri_proto: "{{ openstack_service_internaluri_
↪→proto | default(ironic_service_proto) }}"
ironic_inspector_service_address: "{{ openstack_service_bind_address }}"
ironic_inspector_service_port: 5050
ironic_inspector_service_publicuri: "{{ ironic_inspector_service_publicuri_
↪→proto }}://{{ external_lb_vip_address }}:{{ ironic_inspector_service_port }}
↪→"
ironic_inspector_service_publicurl: "{{ ironic_inspector_service_publicuri }}"
ironic_inspector_service_adminuri: "{{ ironic_inspector_service_adminuri_
↪→proto }}://{{ internal_lb_vip_address }}:{{ ironic_inspector_service_port }}
↪→"
ironic_inspector_service_adminurl: "{{ ironic_inspector_service_adminuri }}"
ironic_inspector_service_internaluri: "{{ ironic_inspector_service_
↪→internaluri_proto }}://{{ internal_lb_vip_address }}:{{ ironic_inspector_
↪→service_port }}"
ironic_inspector_service_internalurl: "{{ ironic_inspector_service_
↪→internaluri }}"
ironic_inspector_service_role_names:

- admin
- service

ironic_inspector_service_token_roles:
- service

ironic_inspector_service_token_roles_required: "{{ openstack_service_token_
↪→roles_required | default(True) }}"
ironic_inspector_service_project_name: "service"
ironic_inspector_service_in_ldap: "{{ service_ldap_backend_enabled |␣
↪→default(False) }}"
ironic_inspector_service_domain_id: default
ironic_inspector_callback_url: >-

(continues on next page)

40 Chapter 6. Default variables

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

(continued from previous page)

{{ ironic_inspector_service_internaluri_proto }}://{{ internal_lb_vip_
↪→address }}:{{ ironic_inspector_service_port }}/v1/continue

Database
ironic_inspector_db_setup_host: "{{ openstack_db_setup_host | default(
↪→'localhost') }}"
ironic_inspector_db_setup_python_interpreter: >-

{{
openstack_db_setup_python_interpreter | default(

(ironic_inspector_db_setup_host == 'localhost') | ternary(ansible_
↪→playbook_python, ansible_facts['python']['executable']))
}}

ironic_inspector_galera_address: "{{ galera_address | default('127.0.0.1') }}"
ironic_inspector_galera_user: ironic-inspector
ironic_inspector_galera_database: ironic_inspector
ironic_inspector_galera_port: 3306
ironic_inspector_galera_use_ssl: "{{ galera_use_ssl | default(False) }}"
ironic_inspector_galera_ssl_ca_cert: "{{ galera_ssl_ca_cert | default('') }}"
ironic_inspector_db_max_overflow: "{{ openstack_db_max_overflow | default('50
↪→') }}"
ironic_inspector_db_max_pool_size: "{{ openstack_db_max_pool_size | default('5
↪→') }}"
ironic_inspector_db_pool_timeout: "{{ openstack_db_pool_timeout | default('30
↪→') }}"
ironic_inspector_db_connection_recycle_time: "{{ openstack_db_connection_
↪→recycle_time | default('600') }}"

ironic_inspector_pip_install_args: "{{ pip_install_options | default('') }}"

Ironic iPXE support
ironic_ipxe_enabled: False
ironic_ipxe_port: 8051
ironic_ipxe_proto: "http"

Auth
ironic_inspector_service_user_name: "ironic_inspector"

OpenStack Services to integrate with
Ironic swift store information
ironic_inspector_swift_user_name: swift-inspector
ironic_inspector_swift_role_names:

- member
- swiftoperator

Ironic deploy images need to be uploaded to glance.
ironic_deploy_image_glance_upload: True

Set the directory where the downloaded image will be stored
on the ironic_service_setup_host host. If the host is localhost,

(continues on next page)

41

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

(continued from previous page)

then the user running the playbook must have access to it.
ironic_deploy_image_path: "/root/openstack-ansible/ironic"
ironic_deploy_image_path_owner: "root"

The default download URL is like https://tarballs.opendev.org/openstack/
↪→ironic-python-agent/dib/files/ipa-centos8-stable-xena.initramfs
Allow various parts of this to be overidden to local mirrors, or replaced␣
↪→completely with custom settings
ironic_deploy_image_server: "https://tarballs.opendev.org/"
ironic_deploy_image_server_path: "openstack/ironic-python-agent/dib/files/"
ironic_deploy_image_base_name: "ipa-centos9-stable-2024.1"
ironic_deploy_image_kernel_name: "{{ ironic_deploy_image_base_name + '.kernel
↪→' }}"
ironic_deploy_image_initramfs_name: "{{ ironic_deploy_image_base_name + '.
↪→initramfs' }}"
ironic_deploy_image_list:

- url: "{{ ironic_deploy_image_server ~ ironic_deploy_image_server_path ~␣
↪→ironic_deploy_image_kernel_name }}"
sha_url: "{{ ironic_deploy_image_server ~ ironic_deploy_image_server_path␣

↪→~ ironic_deploy_image_kernel_name ~ '.sha256' }}"
container_format: 'aki'
disk_format: 'aki'
name: "{{ ironic_deploy_image_kernel_name }}"

- url: "{{ ironic_deploy_image_server ~ ironic_deploy_image_server_path ~␣
↪→ironic_deploy_image_initramfs_name }}"
sha_url: "{{ ironic_deploy_image_server ~ ironic_deploy_image_server_path␣

↪→~ ironic_deploy_image_initramfs_name ~ '.sha256' }}"
container_format: 'ari'
disk_format: 'ari'
name: "{{ ironic_deploy_image_initramfs_name }}"

allow user defined extra images to upload
ironic_extra_deploy_image_list: []

Ironic inspector
ironic_inspector_enable_discovery: True
ironic_inspector_openstack_db_connection_string: >-

mysql+pymysql://{{ ironic_inspector_galera_user }}:{{ ironic_inspector_
↪→container_mysql_password }}@{{ ironic_inspector_galera_address -}}:{{

ironic_inspector_galera_port }}/{{ ironic_inspector_galera_database }}?
↪→charset=utf8{%

if ironic_inspector_galera_use_ssl | bool %}&ssl_verify_cert=true{%
if ironic_inspector_galera_ssl_ca_cert | length > 0 %}&ssl_ca={{␣

↪→ironic_inspector_galera_ssl_ca_cert }}{% endif %}{% endif %}

define this to adjust the inspector processing hooks
Example:
ironic_inspector_processing_hooks: "$default_processing_hooks,lldp_basic,
↪→local_link_connection"

(continues on next page)

42 Chapter 6. Default variables

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

(continued from previous page)

pass additional kernel paramters to the deploy image
ironic_inspector_extra_callback_parameters: ''

Ironic inspector dhcp
ironic_inspector_dhcp_address: "{{ ironic_bmaas_address }}"
ironic_inspector_dhcp_pool_range: 192.168.0.51 192.168.0.150
ironic_inspector_dhcp_subnet: 192.168.0.0/22
ironic_inspector_dhcp_subnet_mask: 255.255.252.0
ironic_insepctor_dhcp_enable_gateway: True
ironic_inspector_dhcp_gateway: 192.168.0.1
ironic_inspector_dhcp_enable_nameservers: True
ironic_inspector_dhcp_nameservers: 192.168.0.1
ironic_inspector_dhcp_lease_time: 600

ironic_inspector_dhcp_type: dnsmasq # isc_dhcp
ironic_inspector_boot_mode: http # tftp
ironic_inspector_pxe_boot_mode: "{{ ironic_inspector_boot_mode }}"
ironic_inspector_httpboot_dir: "{{ ironic_http_root }}"
ironic_inspector_tftpboot_dir: "{{ ironic_tftpd_root }}"

ironic_inspector_dhcp_interface: "{{ ironic_bmaas_interface }}"
ironic_inspector_valid_interfaces: internal,public

Config Overrides
ironic_inspector_conf_overrides: {}
ironic_inspector_rootwrap_conf_overrides: {}
ironic_inspector_init_config_overrides: {}
ironic_inspector_dnsmasq_init_config_overrides: {}
pxe boot
ironic_inspector_pxe_append_params: "ipa-debug=1 systemd.journald.forward_to_
↪→console=yes" # ipa-inspection-collectors=default,logs,extra_hardware

ironic_inspector_pxe_filter: dnsmasq # iptables

ironic_inspector_oslomsg_rpc_host_group: "{{ oslomsg_rpc_host_group | default(
↪→'rabbitmq_all') }}"
ironic_inspector_oslomsg_rpc_setup_host: "{{ (ironic_oslomsg_rpc_host_group␣
↪→in groups) | ternary(groups[ironic_oslomsg_rpc_host_group][0], 'localhost')␣
↪→}}"
ironic_inspector_oslomsg_rpc_transport: "{{ oslomsg_rpc_transport | default(
↪→'rabbit') }}"
ironic_inspector_oslomsg_rpc_servers: "{{ oslomsg_rpc_servers | default('127.
↪→0.0.1') }}"
ironic_inspector_oslomsg_rpc_port: "{{ oslomsg_rpc_port | default('5672') }}"
ironic_inspector_oslomsg_rpc_use_ssl: "True"
ironic_inspector_oslomsg_rpc_userid: ironic
ironic_inspector_oslomsg_rpc_vhost: /ironic
ironic_inspector_oslomsg_rpc_ssl_version: "{{ oslomsg_rpc_ssl_version |␣

(continues on next page)

43

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

(continued from previous page)

↪→default('TLSv1_2') }}"
ironic_inspector_oslomsg_rpc_ssl_ca_file: "{{ oslomsg_rpc_ssl_ca_file |␣
↪→default('') }}"

ironic_inspector_oslomsg_notify_host_group: "{{ oslomsg_notify_host_group |␣
↪→default('rabbitmq_all') }}"
ironic_inspector_oslomsg_notify_setup_host: >-

{{ (ironic_inspector_oslomsg_notify_host_group in groups) |␣
↪→ternary(groups[ironic_inspector_oslomsg_notify_host_group][0], 'localhost')␣
↪→}}
ironic_inspector_oslomsg_notify_transport: "{{ oslomsg_notify_transport |␣
↪→default('rabbit') }}"
ironic_inspector_oslomsg_notify_servers: "{{ oslomsg_notify_servers | default(
↪→'127.0.0.1') }}"
ironic_inspector_oslomsg_notify_port: "{{ oslomsg_notify_port | default('5672
↪→') }}"
ironic_inspector_oslomsg_notify_use_ssl: "False"
ironic_inspector_oslomsg_notify_userid: "{{ ironic_inspector_oslomsg_rpc_
↪→userid }}"
ironic_inspector_oslomsg_notify_password: "{{ ironic_oslomsg_rpc_password }}"
ironic_inspector_oslomsg_notify_vhost: "{{ ironic_inspector_oslomsg_rpc_vhost␣
↪→}}"
ironic_inspector_oslomsg_notify_ssl_version: "{{ oslomsg_notify_ssl_version |␣
↪→default('TLSv1_2') }}"
ironic_inspector_oslomsg_notify_ssl_ca_file: "{{ oslomsg_notify_ssl_ca_file |␣
↪→default('') }}"

ironic_inspector_optional_oslomsg_amqp1_pip_packages:
- oslo.messaging[amqp1]

ironic_inspector_oslomsg_amqp1_enabled: True

###
Backend TLS
###

Define if communication between haproxy and service backends should be
encrypted with TLS.
ironic_backend_ssl: "{{ openstack_service_backend_ssl | default(False) }}"

Storage location for SSL certificate authority
ironic_pki_dir: "{{ openstack_pki_dir | default('/etc/openstack_deploy/pki') }
↪→}"

Delegated host for operating the certificate authority
ironic_pki_setup_host: "{{ openstack_pki_setup_host | default('localhost') }}"

ironic server certificate
ironic_pki_keys_path: "{{ ironic_pki_dir ~ '/certs/private/' }}"
ironic_pki_certs_path: "{{ ironic_pki_dir ~ '/certs/certs/' }}"

(continues on next page)

44 Chapter 6. Default variables

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

(continued from previous page)

ironic_pki_intermediate_cert_name: "{{ openstack_pki_service_intermediate_
↪→cert_name | default('ExampleCorpIntermediate') }}"
ironic_pki_regen_cert: ''
ironic_pki_san: "{{ openstack_pki_san | default('DNS:' ~ ansible_facts[
↪→'hostname'] ~ ',IP:' ~ management_address) }}"
ironic_pki_certificates:

- name: "ironic_{{ ansible_facts['hostname'] }}"
provider: ownca
cn: "{{ ansible_facts['hostname'] }}"
san: "{{ ironic_pki_san }}"
signed_by: "{{ ironic_pki_intermediate_cert_name }}"

ironic destination files for SSL certificates
ironic_ssl_cert: /etc/ironic/ironic.pem
ironic_ssl_key: /etc/ironic/ironic.key

Installation details for SSL certificates
ironic_pki_install_certificates:

- src: "{{ ironic_user_ssl_cert | default(ironic_pki_certs_path ~ 'ironic_'␣
↪→~ ansible_facts['hostname'] ~ '-chain.crt') }}"
dest: "{{ ironic_ssl_cert }}"
owner: "{{ ironic_system_user_name }}"
group: "{{ ironic_system_user_name }}"
mode: "0644"

- src: "{{ ironic_user_ssl_key | default(ironic_pki_keys_path ~ 'ironic_' ~␣
↪→ansible_facts['hostname'] ~ '.key.pem') }}"
dest: "{{ ironic_ssl_key }}"
owner: "{{ ironic_system_user_name }}"
group: "{{ ironic_system_user_name }}"
mode: "0600"

Define user-provided SSL certificates
ironic_user_ssl_cert: <path to cert on ansible deployment host>
ironic_user_ssl_key: <path to cert on ansible deployment host>

45

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

46 Chapter 6. Default variables

CHAPTER

SEVEN

DEPENDENCIES

This role needs pip >= 7.1 installed on the target host.

47

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

48 Chapter 7. Dependencies

CHAPTER

EIGHT

EXAMPLE PLAYBOOK

- name: Playbook for role testing
hosts: localhost
remote_user: root
roles:
- role: "os_ironic"

vars:
galera_root_user: root

vars_prompt:
- name: "galera_root_password"
prompt: "What is galera_root_password?"

49

OpenStack-Ansible Documentation: os_ironic role, Release 18.1.0.dev319

50 Chapter 8. Example playbook

CHAPTER

NINE

TAGS

This role supports the ironic-install and ironic-config tags. Use the ironic-install tag to
install and upgrade. Use the ironic-config tag to maintain configuration of the service.

51

	Configuring the Bare Metal (Ironic) Service (optional)
	OpenStack-Ansible Deployment
	Setup Neutron Networks for Use With Ironic
	Building Ironic Images
	Creating an Ironic Flavor
	Enrolling Ironic Nodes
	Deploy a Baremetal Node Using Ironic

	Example LXC based Ironic deployment
	BMAAS network address plan
	IPMI Interfaces
	Maximum size of the deployment
	Openstack-Ansible configuration
	Create the Neutron configuration
	Configure switch to allow ssh from Neutron
	Create the Neutron network for Ironic provisioning, cleaning and inspection
	Create the Ironic configuration
	Deploy Neutron changes
	Deploy the ironic-specific nova services
	Deploy changes to HAProxy
	Deploy the Ironic and Inspector services
	Deploy the Horizon dashbaords for Ironic
	Using Ironic
	VXLAN project networks

	Configuring the Bare Metal (ironic) inspector service (optional)
	Networking
	Required Overrides
	To enable LLDP discovery of switch ports during inspection
	To enable LLDP discovery of switch system name during inspection

	Deploying multiple Ironic nodes with different CPU architecures
	Building ironic-python-agent deploy image for aarch64
	Configuring Ironic for multiple architectures
	Enrolling an aarch64 node
	Building an aarch64 user image

	Debugging the Bare Metal (ironic) inspector service
	Ironic Python Agent debug logs
	Pausing during a deployment
	Logging into IPA

	Default variables
	Dependencies
	Example playbook
	Tags

