
OpenStack-Ansible Documentation:
haproxy_server role

Release 18.1.0.dev297

OpenStack-Ansible Contributors

Feb 25, 2025

CONTENTS

1 Configuring HAProxy (optional) 1
1.1 Making HAProxy highly-available . 1
1.2 Configuring keepalived ping checks . 2
1.3 Securing HAProxy communication with SSL certificates 3
1.4 Using Certificates from LetsEncrypt . 3
1.5 Configuring additional services . 5
1.6 Adding additional global VIP addresses . 5
1.7 Controlling HAProxy front-end binding . 6
1.8 Adding Access Control Lists to HAProxy front end . 7
1.9 Adding prometheus metrics to haproxy . 7

2 Default variables 9

3 Required variables 17

4 Dependencies 19

5 Example playbook 21

i

ii

CHAPTER

ONE

CONFIGURING HAPROXY (OPTIONAL)

HAProxy provides load balancing services and SSL termination when hardware load balancers are not
available for high availability architectures deployed by OpenStack-Ansible. The default HAProxy con-
figuration provides highly- available load balancing services via keepalived if there is more than one host
in the haproxy_hosts group.

Important

Ensure you review the services exposed by HAProxy and limit access to these services to trusted
users and networks only. For more details, refer to the Securing network access to OpenStack services
section.

Note

For a successful installation, you require a load balancer. You may prefer to make use of hardware
load balancers instead of HAProxy. If hardware load balancers are in use, then implement the load
balancing configuration for services prior to executing the deployment.

To deploy HAProxy within your OpenStack-Ansible environment, define target hosts to run HAProxy:

haproxy_hosts:
infra1:
ip: 172.29.236.101

infra2:
ip: 172.29.236.102

infra3:
ip: 172.29.236.103

There is an example configuration file already provided in /etc/openstack_deploy/conf.d/
haproxy.yml.example. Rename the file to haproxy.yml and configure it with the correct target hosts
to use HAProxy in an OpenStack-Ansible deployment.

1.1 Making HAProxy highly-available
If multiple hosts are found in the inventory, deploy HAProxy in a highly-available manner by installing
keepalived.

To make keepalived work, edit at least the following variables in user_variables.yml:

1

https://docs.openstack.org/openstack-ansible/latest/reference/architecture/security.html#securing-network-access-to-openstack-services

OpenStack-Ansible Documentation: haproxy_server role, Release 18.1.0.dev297

haproxy_keepalived_external_vip_cidr: 192.168.0.4/25
haproxy_keepalived_internal_vip_cidr: 172.29.236.54/16
haproxy_keepalived_external_interface: br-flat
haproxy_keepalived_internal_interface: br-mgmt

• haproxy_keepalived_internal_interface and haproxy_keepalived_external_interface
represent the interfaces on the deployed node where the keepalived nodes bind the internal and
external vip. By default, use br-mgmt.

• On the interface listed above, haproxy_keepalived_internal_vip_cidr and
haproxy_keepalived_external_vip_cidr represent the internal and external (respec-
tively) vips (with their prefix length).

• Set additional variables to adapt keepalived in your deployment. Refer to the user_variables.
yml for more descriptions.

To always deploy (or upgrade to) the latest stable version of keepalived. Edit the /etc/
openstack_deploy/user_variables.yml:

keepalived_use_latest_stable: True

The HAProxy nodes have group vars applied that define the configuration of keepalived. This configu-
ration is stored in group_vars/haproxy_all/keepalived.yml. It contains the variables needed for
the keepalived role (master and backup nodes).

Keepalived pings a public and private IP address to check its status. The default address
is 193.0.14.129. To change this default, set the keepalived_external_ping_address and
keepalived_internal_ping_address variables in the user_variables.yml file.

Note

The keepalived test works with IPv4 addresses only.

You can adapt keepalived to your environment by either using our override mechanisms (per host
with userspace host_vars, per group with userspace“group_vars“, or globally using the userspace
user_variables.yml file)

If you wish to deploy multiple haproxy hosts without keepalived and provide your own means for
failover between them, edit /etc/openstack_deploy/user_variables.yml to skip the deployment
of keepalived. To do this, set the following:

haproxy_use_keepalived: False

1.2 Configuring keepalived ping checks
OpenStack-Ansible configures keepalived with a check script that pings an external resource and uses
that ping to determine if a node has lost network connectivity. If the pings fail, keepalived fails over to
another node and HAProxy serves requests there.

The destination address, ping count and ping interval are configurable via Ansible variables in /etc/
openstack_deploy/user_variables.yml:

2 Chapter 1. Configuring HAProxy (optional)

OpenStack-Ansible Documentation: haproxy_server role, Release 18.1.0.dev297

keepalived_external_ping_address: # Public IP address to ping
keepalived_internal_ping_address: # Private IP address to ping
keepalived_ping_count: # ICMP packets to send (per interval)
keepalived_ping_interval: # How often ICMP packets are sent

By default, OpenStack-Ansible configures keepalived to ping one of the root DNS servers operated by
RIPE. You can change this IP address to a different external address or another address on your internal
network.

If external connectivity fails, it is important that internal services can still access an HAProxy instance.
In a situation, when ping to some external host fails and internal ping is not separated, all keepalived
instances enter the fault state despite internal connectivity being still available. Separate ping check for
internal and external connectivity ensures that when one instance fails the other VIP remains in operation.

1.3 Securing HAProxy communication with SSL certificates
The OpenStack-Ansible project provides the ability to secure HAProxy communications with self-signed
or user-provided SSL certificates. By default, self-signed certificates are used with HAProxy. However,
you can provide your own certificates by using the following Ansible variables:

haproxy_user_ssl_cert: # Path to certificate
haproxy_user_ssl_key: # Path to private key
haproxy_user_ssl_ca_cert: # Path to CA certificate

Refer to Securing services with SSL certificates for more information on these configuration options and
how you can provide your own certificates and keys to use with HAProxy. User provided certificates
should be folded and formatted at 64 characters long. Single line certificates will not be accepted by
HAProxy and will result in SSL validation failures. Please have a look here for information on converting
your certificate to various formats.

1.4 Using Certificates from LetsEncrypt
If you want to use LetsEncrypt SSL Service you can activate the feature by providing the follow-
ing configuration in /etc/openstack_deploy/user_variables.yml. Note that this requires that
external_lb_vip_address in /etc/openstack_deploy/openstack_user_config.yml is set to
the external DNS address.

The following variables must be set for the haproxy hosts.

haproxy_ssl_letsencrypt_enable: True
haproxy_ssl_letsencrypt_email: example@example.com
haproxy_interval: 2000

The following variables serve as an example for how to configure a single HAProxy providing SSL
termination for a service on the same host, served from 127.0.0.1:80. An additional HAProxy backend
is configured which will receive the acme-challenge requests when certificates are renewed.

haproxy_service_configs:
the external facing service which serves the apache test site, with a acl␣

↪→for LE requests
- haproxy_service_name: test

(continues on next page)

1.3. Securing HAProxy communication with SSL certificates 3

https://docs.openstack.org/openstack-ansible/latest/user/security/index.html
https://search.thawte.com/support/ssl-digital-certificates/index?page=content&actp=CROSSLINK&id=SO26449
https://search.thawte.com/support/ssl-digital-certificates/index?page=content&actp=CROSSLINK&id=SO26449
https://letsencrypt.org/

OpenStack-Ansible Documentation: haproxy_server role, Release 18.1.0.dev297

(continued from previous page)

haproxy_redirect_http_port: 80 #redirect port 80␣
↪→to port ssl
haproxy_redirect_scheme: "https if !{ ssl_fc } !{ path_beg /.well-known/

↪→acme-challenge/ }" #redirect all non-ssl traffic to ssl except acme-
↪→challenge
haproxy_port: 443
haproxy_frontend_acls: #use a frontend␣

↪→ACL specify the backend to use for acme-challenge
letsencrypt-acl:
rule: "path_beg /.well-known/acme-challenge/"
backend_name: letsencrypt

haproxy_ssl: True
haproxy_backend_nodes: #apache is running␣

↪→on locally on 127.0.0.1:80 serving a dummy site
- name: local-test-service
ip_addr: 127.0.0.1

haproxy_balance_type: http
haproxy_backend_port: 80
haproxy_backend_options:

- "httpchk HEAD /" # request to use␣
↪→for health check for the example service

an internal only service for acme-challenge whose backend is certbot on␣
↪→the haproxy host
- haproxy_service_name: letsencrypt
haproxy_backend_nodes:

- name: localhost
ip_addr: {{ ansible_host }} #certbot binds to␣

↪→the internal IP
backend_rise: 1 #quick rise and␣

↪→fall time for multinode deployment to succeed
backend_fall: 2
haproxy_bind:

- 127.0.0.1 #bind to 127.0.0.1␣
↪→as the local internal address will be used by certbot
haproxy_port: 8888 #certbot is␣

↪→configured with http-01-port to be 8888
haproxy_balance_type: http

It is possible to use an HA configuration of HAProxy with certificates initialised and renewed using
certbot by setting haproxy_backend_nodes for the LetsEncrypt service to include all HAProxy internal
addresses. Each HAProxy instance will be checking for certbot running on its own node plus each of the
others, and direct any incoming acme-challenge requests to the HAProxy instance which is performing
a renewal.

Domains which will be covered by Lets Encrypt certificate are defined with
haproxy_ssl_letsencrypt_domains variable, which can be set to a list. By default certificate
will be issued only for external_lb_vip_address.

Another important aspect is defining a list of frontends, for which issued certificate will be used. By
default, it is goind to be used only for VIPs with type external. You can control and define type by

4 Chapter 1. Configuring HAProxy (optional)

OpenStack-Ansible Documentation: haproxy_server role, Release 18.1.0.dev297

overriding a variable haproxy_vip_binds.

It is necessary to configure certbot to bind to the HAproxy node local internal IP address via the
haproxy_ssl_letsencrypt_certbot_bind_address variable in a H/A setup.

1.5 Configuring additional services
Additional haproxy service entries can be configured by setting haproxy_extra_services in /etc/
openstack_deploy/user_variables.yml

For more information on the service dict syntax, please reference playbooks/vars/configs/
haproxy_config.yml

An example HTTP service could look like:

haproxy_extra_services:
- haproxy_service_name: extra-web-service
haproxy_backend_nodes: "{{ groups['service_group'] | default([]) }}"
haproxy_ssl: "{{ haproxy_ssl }}"
haproxy_port: 10000
haproxy_balance_type: http
If backend connections should be secured with SSL (default False)
haproxy_backend_ssl: True
haproxy_backend_ca: /path/to/ca/cert.pem
Or to use system CA for validation
haproxy_backend_ca: True
Or if certificate validation should be disabled
haproxy_backend_ca: False

Additionally, you can specify haproxy services that are not managed in the Ansible inventory by manually
specifying their hostnames/IP Addresses:

haproxy_extra_services:
- haproxy_service_name: extra-non-inventory-service
haproxy_backend_nodes:

- name: nonInvHost01
ip_addr: 172.0.1.1

- name: nonInvHost02
ip_addr: 172.0.1.2

- name: nonInvHost03
ip_addr: 172.0.1.3

haproxy_ssl: "{{ haproxy_ssl }}"
haproxy_port: 10001
haproxy_balance_type: http

1.6 Adding additional global VIP addresses
In some cases, you might need to add additional internal VIP addresses to the load balancer front
end. You can use the HAProxy role to add additional VIPs to all front ends by setting them in the
extra_lb_vip_addresses or extra_lb_tls_vip_addresses variables.

The following example shows extra VIP addresses defined in the user_variables.yml file:

1.5. Configuring additional services 5

OpenStack-Ansible Documentation: haproxy_server role, Release 18.1.0.dev297

extra_lb_vip_addresses:
- 10.0.0.10
- 192.168.0.10

The following example shows extra VIP addresses with TLS enabled defined in the user_variables.
yml file:

extra_lb_tls_vip_addresses:
- 10.0.0.10
- 192.168.0.10

1.7 Controlling HAProxy front-end binding
Haproxy frontend can bind either to some specific IP (VIP) address or ethernet interface. A vari-
able which controls this behaviour is haproxy_vip_binds. It is used for the service, unless
haproxy_bind is defined on the service level. In that case service.haproxy_bind has prescedence
over haproxy_vip_binds.

haproxy_vip_binds is generated by the role from other convenience variables,
like haproxy_bind_external_lb_vip_address, haproxy_bind_external_lb_vip_interface,
haproxy_bind_internal_lb_vip_address and haproxy_bind_internal_lb_vip_interface.

Though you still can override haproxy_vip_binds to fine-control the binding process of HAProxy
instance.

1.7.1 Overriding the address haproxy will bind to
In some cases you may want to override the default of having haproxy bind to the addresses specified in
external_lb_vip_address and internal_lb_vip_address. For example if those are hostnames
and you want haproxy to bind to IP addresses while preserving the names for TLS- certificates and
endpoint URIs.

This can be set in the user_variables.yml file:

haproxy_bind_external_lb_vip_address: 10.0.0.10
haproxy_bind_internal_lb_vip_address: 192.168.0.10

1.7.2 Binding haproxy to interface
In some cases it might be more convenient to bind haproxy to the interface rather then a specific IP
address. For example, this is handy if you decide to balance load between HAProxy instances using
DNS RR, where each HAProxy will have its own VIP which will failover to others.

Binding to the interface can be set by providing following variables in the user_variables.yml file:

haproxy_bind_external_lb_vip_address: "*"
haproxy_bind_internal_lb_vip_address: "*"
haproxy_bind_external_lb_vip_interface: bond0
haproxy_bind_internal_lb_vip_interface: br-mgmt

6 Chapter 1. Configuring HAProxy (optional)

OpenStack-Ansible Documentation: haproxy_server role, Release 18.1.0.dev297

1.8 Adding Access Control Lists to HAProxy front end
Adding ACL rules in HAProxy is easy. You just need to define haproxy_acls and add the rules in the
variable

Here is an example that shows how to achieve the goal

- haproxy_service_name: influxdb-relay
haproxy_acls:
write_queries:
rule: "path_sub -i write"

read_queries:
rule: "path_sub -i query"
backend_name: "influxdb"

This will add two acl rules path_sub -i write and path_sub -i query to the front end and use the
backend specified in the rule. If no backend is specified it will use a default haproxy_service_name
backend.

If a frontend service directs to multiple backend services using ACLs, and a backend service does not
require its own corresponding front-end, the haproxy_backend_only option can be specified:

- haproxy_service_name: influxdb
haproxy_backend_only: true # Directed by the 'influxdb-relay' service above
haproxy_backend_nodes:
- name: influxdb-service
ip_addr: 10.100.10.10

1.9 Adding prometheus metrics to haproxy
Since haproxy 2.0 its possible to exposes prometheus metrics. https://www.haproxy.com/blog/
haproxy-exposes-a-prometheus-metrics-endpoint/ if you need to create a frontend for it you can use
the haproxy_frontend_only option:

- haproxy_service_name: prometheus-metrics
haproxy_port: 8404
haproxy_bind:
- '127.0.0.1'

haproxy_whitelist_networks: "{{ haproxy_whitelist_networks }}"
haproxy_frontend_only: True
haproxy_frontend_raw:
- 'http-request use-service prometheus-exporter if { path /metrics }'

haproxy_service_enabled: True
haproxy_balance_type: 'http'

This Ansible role installs the HAProxy Load Balancer service.

To clone or view the source code for this repository, visit the role repository for haproxy_server.

1.8. Adding Access Control Lists to HAProxy front end 7

https://www.haproxy.com/blog/haproxy-exposes-a-prometheus-metrics-endpoint/
https://www.haproxy.com/blog/haproxy-exposes-a-prometheus-metrics-endpoint/
https://github.com/openstack/openstack-ansible-haproxy_server

OpenStack-Ansible Documentation: haproxy_server role, Release 18.1.0.dev297

8 Chapter 1. Configuring HAProxy (optional)

CHAPTER

TWO

DEFAULT VARIABLES

Validate Certificates when downloading hatop. May be set to "no" when proxy␣
↪→server
is intercepting the certificates.
haproxy_hatop_download_validate_certs: true

Set the package install state for distribution packages
Options are 'present' and 'latest'
haproxy_package_state: "latest"

Haproxy Configuration
haproxy_rise: 3
haproxy_fall: 3
haproxy_interval: 12000

Haproxy Stats
haproxy_stats_enabled: false
haproxy_stats_bind_address: 127.0.0.1
haproxy_stats_port: 1936
haproxy_stats_ssl: "{{ haproxy_ssl }}"
haproxy_stats_ssl_cert_path: "{{ haproxy_ssl_cert_path }}/
↪→somecustomstatscert.pem"
haproxy_stats_ssl_client_cert_ca: "{{ haproxy_ssl_cert_path }}/
↪→somecustomrootca.pem"
haproxy_username: admin
haproxy_stats_password: secrete
haproxy_stats_refresh_interval: 60
Prometheus stats are supported from HAProxy v2
Stats must be enabled above before this can be used
haproxy_stats_prometheus_enabled: false

Default haproxy backup nodes to empty list so this doesn't have to be
defined for each service.
haproxy_backup_nodes: []

Configuration lines to write directly into all frontends
haproxy_frontend_extra_raw: []
haproxy_frontend_redirect_extra_raw: "{{ haproxy_frontend_extra_raw }}"

(continues on next page)

9

OpenStack-Ansible Documentation: haproxy_server role, Release 18.1.0.dev297

(continued from previous page)

Default values for enabling HTTP/2 support
Note, that while HTTP/2 will be enabled on frontends that are covered with␣
↪→TLS,
backends can be configured to use HTTP/2 regardless of TLS.
haproxy_frontend_h2: true
haproxy_backend_h2: false

haproxy_service_configs: []
Example:
haproxy_service_configs:
- haproxy_service_name: haproxy_all
haproxy_backend_nodes: "{{ groups['haproxy_all'][0] }}"
haproxy_backup_nodes: "{{ groups['haproxy_all'][1:] }}"
haproxy_port: 80
haproxy_balance_type: http
haproxy_backend_options:
- "forwardfor"
- "httpchk"
- "httplog"
haproxy_backend_server_options:
- "inter 3000" # a contrived example, there are many␣
↪→server config options possible
haproxy_acls:
allow_list:
rule: "src 127.0.0.1/8 192.168.0.0/16 172.16.0.0/12 10.0.0.0/8"
backend_name: "mybackend"
haproxy_frontend_h2: True
haproxy_backend_h2: False
haproxy_frontend_acls:
letsencrypt-acl:
rule: "path_beg /.well-known/acme-challenge/"
backend_name: letsencrypt
haproxy_stick_table:
- "stick-table type ipv6 size 256k expire 10s store http_err_
↪→rate(10s)"
- "http-request track-sc0 src"
- "http-request deny deny_status 429 if { sc_http_err_rate(0) gt 20 }␣
↪→!{ src 10.0.0.0/8 } !{ src 172.16.0.0/12 } !{ src 192.168.0.0/16 }"
https://www.haproxy.com/blog/haproxy-exposes-a-prometheus-metrics-
↪→endpoint/
- haproxy_service_name: prometheus-metrics
haproxy_port: 8404
haproxy_bind:
- '127.0.0.1'
haproxy_allowlist_networks: "{{ haproxy_allowlist_networks }}"
haproxy_frontend_only: True
haproxy_balance_type: "http"
haproxy_frontend_raw:
- 'http-request use-service prometheus-exporter if { path /metrics }'

(continues on next page)

10 Chapter 2. Default variables

OpenStack-Ansible Documentation: haproxy_server role, Release 18.1.0.dev297

(continued from previous page)

haproxy_service_enabled: True

HAProxy maps (unrelated keys are omitted but are required as the previous␣
↪→service example)
Example:
haproxy_service_configs:
- state: present # state 'absent' will remove map␣
↪→entries defined in this service
haproxy_service_enabled: true # haproxy_service_enabled 'false'␣
↪→will remove map entries defined in this service
haproxy_service_name: "one"
haproxy_maps:
- 'use_backend %[req.hdr(host),lower,map(/etc/haproxy/route.map)]'
haproxy_map_entries:
- name: 'route' # this service contributes entries␣
↪→to the map called 'route'
order: 10 # prefix the name of the map␣
↪→fragment wih this string to control ordering of the assembled map
entries:
- compute.example.com nova-api
- dashboard.example.com horizon
- haproxy_service_name: "two"
- haproxy_service_name: "three"
haproxy_map_entries:
- name: 'route' # this service contributes to the␣
↪→map called 'route'
entries:
- s3.example.com radosgw
- sso.example.com keycloak
- name: 'rate' # and also to the map called 'rate'
state: present # individual map entries can be␣
↪→removed with state 'absent'
entries:
- /api/foo 20
- /api/bar 40
#
Results:
#
/etc/haproxy/route.map
s3.example.com radosgw
sso.example.com keycloak
compute.example.com nova-api
dashboard.example.com horizon
#
/etc/haproxy/rate.map
/api/foo 20
/api/bar 40

galera_monitoring_user: monitoring

(continues on next page)

11

OpenStack-Ansible Documentation: haproxy_server role, Release 18.1.0.dev297

(continued from previous page)

haproxy_bind_on_non_local: false

haproxy SSL
haproxy_ssl: true
haproxy_ssl_all_vips: false
haproxy_ssl_dh_param: 2048
haproxy_ssl_cert_path: /etc/haproxy/ssl
haproxy_ssl_bind_options: "ssl-min-ver TLSv1.2 prefer-client-ciphers"
haproxy_ssl_server_options: "ssl-min-ver TLSv1.2"
TLS v1.2 and below
haproxy_ssl_cipher_suite_tls12: >-

{{ haproxy_ssl_cipher_suite | default(ssl_cipher_suite_tls12 | default(
↪→'ECDH+AESGCM:ECDH+CHACHA20:ECDH+AES256:ECDH+AES128:!aNULL:!SHA1:!AESCCM')) }
↪→}
TLS v1.3
haproxy_ssl_cipher_suite_tls13: "{{ ssl_cipher_suite_tls13 | default('TLS_AES_
↪→128_GCM_SHA256:TLS_AES_256_GCM_SHA384:TLS_CHACHA20_POLY1305_SHA256') }}"

haproxy self signed certificate

Storage location for SSL certificate authority
haproxy_pki_dir: "{{ openstack_pki_dir | default('/etc/pki/haproxy-ca') }}"

Delegated host for operating the certificate authority
haproxy_pki_setup_host: "{{ openstack_pki_setup_host | default('localhost') }}
↪→"

Create a certificate authority if one does not already exist
haproxy_pki_create_ca: "{{ openstack_pki_authorities is not defined | bool }}"
haproxy_pki_regen_ca: ""
haproxy_pki_authorities:

- name: "HAProxyRoot"
country: "GB"
state_or_province_name: "England"
organization_name: "Example Corporation"
organizational_unit_name: "IT Security"
cn: "HAProxy Root CA"
provider: selfsigned
basic_constraints: "CA:TRUE"
key_usage:

- digitalSignature
- cRLSign
- keyCertSign

not_after: "+3650d"
- name: "HAProxyIntermediate"
country: "GB"
state_or_province_name: "England"
organization_name: "Example Corporation"
organizational_unit_name: "IT Security"

(continues on next page)

12 Chapter 2. Default variables

OpenStack-Ansible Documentation: haproxy_server role, Release 18.1.0.dev297

(continued from previous page)

cn: "HAProxy Intermediate CA"
provider: ownca
basic_constraints: "CA:TRUE,pathlen:0"
key_usage:

- digitalSignature
- cRLSign
- keyCertSign

not_after: "+3650d"
signed_by: "HAProxyRoot"

Installation details for certificate authorities
haproxy_pki_install_ca:

- name: "HAProxyRoot"
condition: "{{ haproxy_pki_create_ca }}"

HAProxy server certificate
haproxy_pki_keys_path: "{{ haproxy_pki_dir ~ '/certs/private/' }}"
haproxy_pki_certs_path: "{{ haproxy_pki_dir ~ '/certs/certs/' }}"
haproxy_pki_intermediate_cert_name: "{{ openstack_pki_service_intermediate_
↪→cert_name | default('HAProxyIntermediate') }}"
haproxy_pki_intermediate_cert_path: >-

{{ haproxy_pki_dir ~ '/roots/' ~ haproxy_pki_intermediate_cert_name ~ '/
↪→certs/' ~ haproxy_pki_intermediate_cert_name ~ '.crt' }}
haproxy_pki_regen_cert: ""
haproxy_pki_certificates: "{{ _haproxy_pki_certificates }}"

SSL certificate creation
haproxy_pki_create_certificates: "{{ haproxy_user_ssl_cert is not defined and␣
↪→haproxy_user_ssl_key is not defined }}"

Installation details for SSL certificates
haproxy_pki_install_certificates: "{{ _haproxy_pki_install_certificates }}"

activate letsencrypt option
haproxy_ssl_letsencrypt_enable: false
haproxy_ssl_letsencrypt_certbot_binary: "certbot"
haproxy_ssl_letsencrypt_certbot_backend_port: 8888
haproxy_ssl_letsencrypt_pre_hook_timeout: 5
haproxy_ssl_letsencrypt_certbot_bind_address: "{{ ansible_host }}"
haproxy_ssl_letsencrypt_certbot_challenge: "http-01"
haproxy_ssl_letsencrypt_email: "example@example.com"
haproxy_ssl_letsencrypt_config_path: "/etc/letsencrypt/live"
haproxy_ssl_letsencrypt_setup_extra_params: ""
haproxy_ssl_letsencrypt_acl:
letsencrypt-acl:
rule: "path_beg /.well-known/acme-challenge/"
backend_name: letsencrypt

Use alternative CA that supports ACME, can be a public or private CA
haproxy_ssl_letsencrypt_certbot_server: "https://acme-staging-v02.api.

(continues on next page)

13

OpenStack-Ansible Documentation: haproxy_server role, Release 18.1.0.dev297

(continued from previous page)

↪→letsencrypt.org/directory"
haproxy_ssl_letsencrypt_domains:

- "{{ external_lb_vip_address }}"

hatop extra package URL and checksum
haproxy_hatop_download_url: "https://github.com/jhunt/hatop/archive/refs/tags/
↪→v0.8.2.tar.gz"
haproxy_hatop_download_checksum:
↪→"sha256:7fac1f593f92b939cfce34175b593e43862eee8e25db251d03a910b37721fc5d"

Install hatop
haproxy_hatop_install: true

The location where the extra packages are downloaded to
haproxy_hatop_download_path: "/opt/cache/files"

haproxy default
Set the number of retries to perform on a server after a connection failure
haproxy_retries: "3"
Set the maximum inactivity time on the client side
haproxy_client_timeout: "50s"
Set the maximum time to wait for a connection attempt to a server to succeed
haproxy_connect_timeout: "10s"
Set the maximum allowed time to wait for a complete HTTP request
haproxy_http_request_timeout: "5s"
Set the maximum inactivity time on the server side
haproxy_server_timeout: "50s"
Set the HTTP keepalive mode to use
Disable persistent connections by default because they can cause issues␣
↪→when the server side closes the connection
at the same time a request is sent.
haproxy_keepalive_mode: "httpclose"

haproxy tuning params
haproxy_maxconn: 4096

Parameters below should only be specified if necessary, defaults are␣
↪→programmed in the template
haproxy_tuning_params:
tune.bufsize: 384000
tune.chksize: 16384
tune.comp_maxlevel: 1
tune.http_maxhdr: 101
tune.maxaccept: 64
tune.ssl_cachesize: 20000
tune.ssl_lifetime: 300
haproxy_tuning_params: {}

Add extra VIPs to all services

(continues on next page)

14 Chapter 2. Default variables

OpenStack-Ansible Documentation: haproxy_server role, Release 18.1.0.dev297

(continued from previous page)

extra_lb_vip_addresses: []

Add extra TLS VIPs to all services
extra_lb_tls_vip_addresses: []

Option to override which address haproxy binds to for external vip.
haproxy_bind_external_lb_vip_address: "{{ external_lb_vip_address }}"

Option to override which address haproxy binds to for internal vip.
haproxy_bind_internal_lb_vip_address: "{{ internal_lb_vip_address }}"

Option to define if you need haproxy to bind on specific interface.
haproxy_bind_external_lb_vip_interface:
haproxy_bind_internal_lb_vip_interface:

Option to override haproxy frontend binds
Example:
haproxy_vip_binds:
- address: '*'
interface: bond0
type: external
- address: '192.168.0.10'
pki_san_records:
- internal.cloud
haproxy_vip_binds: "{{ haproxy_tls_vip_binds | default(_haproxy_vip_binds) }}"

Make the log socket available to the chrooted filesystem
haproxy_log_socket: "/dev/log"
haproxy_log_mount_point: "/var/lib/haproxy/dev/log"

Ansible group name which should be used for distrtibuting self signed SSL␣
↪→Certificates
haproxy_ansible_group_name: haproxy_all

security.txt
When security risks in web services are discovered by independent security
researchers who understand the severity of the risk, they often lack the
channels to disclose them properly. As a result, security issues may be
left unreported. security.txt defines a standard to help organizations
define the process for security researchers to disclose security
vulnerabilities securely. For more information see https://securitytxt.org/
This content will be hosted at /security.txt and /.well-known/security.txt
haproxy_security_txt_dir: "/etc/haproxy"
haproxy_security_txt_headers: |

HTTP/1.0 200 OK
Cache-Control: no-cache
Connection: close
Content-Type: text/plain; charset=utf-8

(continues on next page)

15

OpenStack-Ansible Documentation: haproxy_server role, Release 18.1.0.dev297

(continued from previous page)

haproxy_security_txt_content: ""
haproxy_security_txt_content: |
Please see https://securitytxt.org/ for details of the specification of␣
↪→this file

Allows to copy any static file to the destination hosts
haproxy_static_files_default:

- dest: "{{ haproxy_security_txt_dir }}/security.txt"
content: "{{ haproxy_security_txt_headers + '\n' + haproxy_security_txt_

↪→content }}"
condition: "{{ haproxy_security_txt_content is truthy }}"

haproxy_static_files_extra: []
haproxy_static_files: "{{ haproxy_static_files_default + haproxy_static_files_
↪→extra }}"

16 Chapter 2. Default variables

CHAPTER

THREE

REQUIRED VARIABLES

None.

17

OpenStack-Ansible Documentation: haproxy_server role, Release 18.1.0.dev297

18 Chapter 3. Required variables

CHAPTER

FOUR

DEPENDENCIES

None.

19

OpenStack-Ansible Documentation: haproxy_server role, Release 18.1.0.dev297

20 Chapter 4. Dependencies

CHAPTER

FIVE

EXAMPLE PLAYBOOK

- name: Install haproxy
hosts: haproxy
user: root
roles:
- role: haproxy_server
tags:
- haproxy-server

vars:
haproxy_service_configs:

- haproxy_service_name: group_name
haproxy_backend_nodes: "{{ groups['group_name'][0] }}"
haproxy_backup_nodes: "{{ groups['group_name'][1:] }}"
haproxy_port: 80
haproxy_balance_type: http
haproxy_backend_options:
- "forwardfor"
- "httpchk"
- "httplog"

haproxy_backend_arguments:
- "http-check expect string OK"

21

	Configuring HAProxy (optional)
	Making HAProxy highly-available
	Configuring keepalived ping checks
	Securing HAProxy communication with SSL certificates
	Using Certificates from LetsEncrypt
	Configuring additional services
	Adding additional global VIP addresses
	Controlling HAProxy front-end binding
	Overriding the address haproxy will bind to
	Binding haproxy to interface

	Adding Access Control Lists to HAProxy front end
	Adding prometheus metrics to haproxy

	Default variables
	Required variables
	Dependencies
	Example playbook

