Octavia Documentation
Release 15.1.0.dev35

OpenStack Octavia Team

Nov 27, 2024

©2024 OpenStack Foundation

CONTENTS

1 Octavia Administration 2
1.1 Getting Started L. e e e e e e e e e 2
1.1.1 Introducing Octavia it 2

1.1.2 Octavia Glossary v i v it e e e e e 5

1.1.3 Developer / Operator Quick Start Guide 7

1.2 Installation and Configuration Guides 14
1.2.1 Building Octavia AmphoraImages 14

1.2.2 Octavia Certificate Configuration Guide 20

1.2.3 Octavia Configuration Options 27

1.2.4 OctaviaPolicies e 108

1.3 Optional Installation and Configuration Guides 122
1.3.1 Awvailable Provider Drivers, 122

1.3.2 Octavia Amphora Log Offloading 124

1.3.3 Octavia API Auditing 129

1.3.4 Octavia API Health Monitoring 132

1.3.5 OctaviaFlavors e 143

1.3.6 Running Octaviain Apache 145

1.3.7 Octavia Amphora Failover Circuit Breaker 145

1.3.8 Using SR-IOV Ports with Octavia 148

1.4 Maintenance and Operationsot e e e e 149
1.4.1 Operator Maintenance Guide 149

1,42 octavia-Statls e e e e e e e 155

1.4.3 Load Balancing Service Upgrade Guide 156

1.5 Operator Reference e 157
1.5.1 Octavia HAProxy Amphora API 157

1.5.2 Octavia Event Notifications 182

2 Octavia Command Line Interface 184
3 Octavia Configuration 185
4 Octavia Contributor 186
4.1 Contributor Guidelines e 186
4.1.1 SoYouWantto Contribute... 186

4.1.2 Octavia Constitution e 189

4.1.3 Octavia Style Commandments 189

4.2 Contributor Reference L 192
4.2.1 Provider Driver Development Guide 192

422 Debugging Octaviacode i 225

4.2.3 Octavia Entity Relationship Diagram 228

424 Octavia Controller Flows 229
4.2.5 Guru Meditation Reports oL o 259
43 Internal APIs e 260
4.4 Design Documentation e e e e e e 260
441 Version 0.5 (liberty) 260
4.5 Project Specifications e e e e 268
45.1 Version 0.5 (liberty) 268
452 Version 0.8 (mitaka) 314
453 Version 0.9 (newton) e e e e e e e 321
454 Version 1.0 (pike) 345
4.5.5 Version 1.1 (queens) i i i e e e e e e 358
45.6 Version14.0(caracal) e e 405
457 Version 15.0 (Dalmatian) 409
4.6 Module Reference 418
4.6.1 octavia. e e e e e e e e e e e 418
Octavia Installation 952
5.1 Inmstalland configure 952
5.1.1 Install and configure for Ubuntu 952
5.1.2 Additional configuration steps to configure amphorav2 provider 960
Octavia Reference 963
Octavia User 964
7.1 Cookbooks e e e 964
7.1.1 Basic Load Balancing Cookbook 964
7.1.2 Layer 7Cookbook 984
7.2 Guides e e e e e e e e e e 991
7.2.1 Layer7Load Balancing 991
7.2.2 Octavia Provider Feature Matrix 994
7.2.3 Monitoring Load Balancers 1031
7.3 References 1033
7.3.1 Octavia Software Development Kits (SDK) 1033
T4 VIideos e e 1034

Octavia Documentation, Release 15.1.0.dev35

Welcome to the OpenStack Octavia project documentation. Octavia brings network load balancing to
OpenStack.

See Introducing Octavia for an overview of Octavia.

For information on what is new see the Octavia Release Notes.

CONTENTS 1

https://docs.openstack.org/releasenotes/octavia/

CHAPTER
ONE

OCTAVIA ADMINISTRATION

1.1 Getting Started

1.1.1 Introducing Octavia
Welcome to Octavia!
Octavia is an open source, operator-scale load balancing solution designed to work with OpenStack.

Octavia was born out of the Neutron LBaaS project. Its conception influenced the transformation of the
Neutron LBaaS project, as Neutron LBaaS moved from version 1 to version 2. Starting with the Liberty
release of OpenStack, Octavia has become the reference implementation for Neutron LBaaS version 2.

Octavia accomplishes its delivery of load balancing services by managing a fleet of virtual machines,
containers, or bare metal serverscollectively known as amphorae which it spins up on demand. This on-
demand, horizontal scaling feature differentiates Octavia from other load balancing solutions, thereby
making Octavia truly suited "for the cloud".

Where Octavia fits into the OpenStack ecosystem

Load balancing is essential for enabling simple or automatic delivery scaling and availability. In turn,
application delivery scaling and availability must be considered vital features of any cloud. Together,
these facts imply that load balancing is a vital feature of any cloud.

Therefore, we consider Octavia to be as essential as Nova, Neutron, Glance or any other "core" project
that enables the essential features of a modern OpenStack cloud.

In accomplishing its role, Octavia makes use of other OpenStack projects:
* Nova - For managing amphora lifecycle and spinning up compute resources on demand.

* Neutron - For network connectivity between amphorae, tenant environments, and external net-
works.

* Barbican - For managing TLS certificates and credentials, when TLS session termination is con-
figured on the amphorae.

* Keystone - For authentication against the Octavia API, and for Octavia to authenticate with other
OpenStack projects.

* Glance - For storing the amphora virtual machine image.

* Oslo - For communication between Octavia controller components, making Octavia work within
the standard OpenStack framework and review system, and project code structure.

» Taskflow - Is technically part of Oslo; however, Octavia makes extensive use of this job flow system
when orchestrating back-end service configuration and management.

Octavia Documentation, Release 15.1.0.dev35

Octavia is designed to interact with the components listed previously. In each case, we’ve taken care to
define this interaction through a driver interface. That way, external components can be swapped out
with functionally-equivalent replacements without having to restructure major components of Octavia.
For example, if you use an SDN solution other than Neutron in your environment, it should be possible for
you to write an Octavia networking driver for your SDN environment, which can be a drop-in replacement
for the standard Neutron networking driver in Octavia.

As of Pike, it is recommended to run Octavia as a standalone load balancing solution. Neutron LBaaS
is deprecated in the Queens release, and Octavia is its replacement. Whenever possible, operators are
strongly advised to migrate to Octavia. For end-users, this transition should be relatively seamless,
because Octavia supports the Neutron LBaaS v2 API and it has a similar CLI interface. Alternatively, if
end-users cannot migrate on their side in the forseable future, operators could enable the experimental
Octavia proxy plugin in Neutron LBaaS.

It is also possible to use Octavia as a Neutron LBaaS plugin, in the same way as any other vendor. You
can think of Octavia as an "open source vendor" for Neutron LBaaS.

Octavia supports third-party vendor drivers just like Neutron LBaaS, and fully replaces Neutron LBaaS
as the load balancing solution for OpenStack.

For further information on OpenStack Neutron LBaaS deprecation, please refer to https://wiki.openstack.
org/wiki/Neutron/LBaaS/Deprecation.

Octavia terminology
Before you proceed further in this introduction, please note:

Experience shows thatwithin the subsegment of the IT industry that creates, deploys, and uses load bal-
ancing devices or services terminology is often used inconsistently. To reduce confusion, the Octavia
team has created a glossary of terms as they are defined and used within the context of the Octavia
project and Neutron LBaaS version 2. This glossary is available here: Octavia Glossary

If you are familiar with Neutron LBaaS version 1 terms and usage, it is especially important for you to
understand how the meanings of the terms "VIP," "load balancer," and "load balancing," have changed
in Neutron LBaaS version 2.

Our use of these terms should remain consistent with the Octavia Glossary throughout Octavia’s docu-
mentation, in discussions held by Octavia team members on public mailing lists, in IRC channels, and
at conferences. To avoid misunderstandings, it’s a good idea to familiarize yourself with these glossary
definitions.

1.1. Getting Started 3

https://wiki.openstack.org/wiki/Neutron/LBaaS/Deprecation
https://wiki.openstack.org/wiki/Neutron/LBaaS/Deprecation

Octavia Documentation, Release 15.1.0.dev35

A 10,000-foot overview of Octavia components

Octavia API

Amphora Oslo Octavia Health Housekeeping
Driver Messaging Worker Manager Manager

Database Controller Worker Driver

Amphora Certificate Compute Network
Driver Agent Driver Driver Driver Driver

Amphora Barbican /
Castellan

Octavia version 4.0 consists of the following major components:

» amphorae - Amphorae are the individual virtual machines, containers, or bare metal servers that
accomplish the delivery of load balancing services to tenant application environments. In Octavia
version (.8, the reference implementation of the amphorae image is an Ubuntu virtual machine
running HAProxy.

* controller - The Controller is the "brains" of Octavia. It consists of five sub-components, which
are individual daemons. They can be run on separate back-end infrastructure if desired:

— API Controller - As the name implies, this subcomponent runs Octavia’s API. It takes API
requests, performs simple sanitizing on them, and ships them off to the controller worker over
the Oslo messaging bus.

— Controller Worker - This subcomponent takes sanitized API commands from the API con-
troller and performs the actions necessary to fulfill the API request.

— Health Manager - This subcomponent monitors individual amphorae to ensure they are up
and running, and otherwise healthy. It also handles failover events if amphorae fail unexpect-
edly.

— Housekeeping Manager - This subcomponent cleans up stale (deleted) database records and
manages amphora certificate rotation.

— Driver Agent - The driver agent receives status and statistics updates from provider drivers.

* network - Octavia cannot accomplish what it does without manipulating the network environment.
Amphorae are spun up with a network interface on the "load balancer network," and they may also
plug directly into tenant networks to reach back-end pool members, depending on how any given

1.1. Getting Started 4

Octavia Documentation, Release 15.1.0.dev35

load balancing service is deployed by the tenant.

For a more complete description of Octavia’s components, please see the Octavia v0.5 Component Design
document within this documentation repository.

1.1.2 Octavia Glossary

As the Octavia project evolves, it’s important that people working on Octavia, users using Octavia, and
operators deploying Octavia use a common set of terminology in order to avoid misunderstandings and
confusion. To that end, we are providing the following glossary of terms.

Note also that many of these terms are expanded upon in design documents in this same repository. What
follows is a brief but necessarily incomplete description of these terms.

Amphora
Virtual machine, container, dedicated hardware, appliance or device that actually performs the task
of load balancing in the Octavia system. More specifically, an amphora takes requests from clients
on the front-end and distributes these to back-end systems. Amphorae communicate with their
controllers over the LB Network through a driver interface on the controller.

Amphora Load Balancer Driver
Component of the controller that does all the communication with amphorae. Drivers communi-
cate with the controller through a generic base class and associated methods, and translate these
into control commands appropriate for whatever type of software is running on the back-end am-
phora corresponding with the driver. This communication happens over the LB network.

Apolocation
Term used to describe when two or more amphorae are not colocated on the same physical hardware
(which is often essential in HA topologies). May also be used to describe two or more loadbal-
ancers which are not colocated on the same amphora.

Controller
Daemon with access to both the LB Network and OpenStack components which coordinates and
manages the overall activity of the Octavia load balancing system. Controllers will usually use an
abstracted driver interface (usually a base class) for communicating with various other components
in the OpenStack environment in order to facilitate loose coupling with these other components.
These are the "brains" of the Octavia system.

HAProxy
Load balancing software used in the reference implementation for Octavia. (See http://www.
haproxy.org/). HAProxy processes run on amphorae and actually accomplish the task of delivering
the load balancing service.

Health Monitor
An object that defines a check method for each member of the pool. The health monitor itself is a
pure-db object which describes the method the load balancing software on the amphora should use
to monitor the health of back-end members of the pool with which the health monitor is associated.

L7 Policy

Layer 7 Policy
Collection of L7 rules that get logically ANDed together as well as a routing policy for any given
HTTP or terminated HTTPS client requests which match said rules. An L7 Policy is associated
with exactly one HTTP or terminated HTTPS listener.

For example, a user could specify an L7 policy that any client request that matches the L7 rule

son

"request URI starts with */api’" should get routed to the "api" pool.

1.1. Getting Started 5

http://www.haproxy.org/
http://www.haproxy.org/

Octavia Documentation, Release 15.1.0.dev35

L7 Rule

Layer 7 Rule
Single logical expression used to match a condition present in a given HTTP or terminated HTTPS
request. L7 rules typically match against a specific header or part of the URI and are used in
conjunction with L7 policies to accomplish L7 switching. An L7 rule is associated with exactly
one L7 policy.

For example, a user could specify an L7 rule that matches any request URI path that begins with
ll/api "

L7 Switching

Layer 7 Switching
This is a load balancing feature specific to HTTP or terminated HTTPS sessions, in which different
client requests are routed to different back-end pools depending on one or more layer 7 policies the
user might configure.

For example, using L7 switching, a user could specify that any requests with a URI path that starts
with "/api" get routed to the "api" back-end pool, and that all other requests get routed to the default
pool.

LB Network
Load Balancer Network. The network over which the controller(s) and amphorae communicate.
The LB network itself will usually be a nova or neutron network to which both the controller and
amphorae have access, but is not associated with any one tenant. The LB Network is generally also
not part of the undercloud and should not be directly exposed to any OpenStack core components
other than the Octavia Controller.

Listener
Object representing the listening endpoint of a load balanced service. TCP / UDP port, as well
as protocol information and other protocol- specific details are attributes of the listener. Notably,
though, the IP address is not.

Load Balancer
Object describing a logical grouping of listeners on one or more VIPs and associated with one or
more amphorae. (Our "Loadbalancer” most closely resembles a Virtual IP address in other load
balancing implementations.) Whether the load balancer exists on more than one amphora depends
on the topology used. The load balancer is also often the root object used in various Octavia APIs.

Load Balancing
The process of taking client requests on a front-end interface and distributing these to a number of
back-end servers according to various rules. Load balancing allows for many servers to participate
in delivering some kind TCP or UDP service to clients in an effectively transparent and often
highly-available and scalable way (from the client’s perspective).

Member
Object representing a single back-end server or system that is a part of a pool. A member is
associated with only one pool.

Octavia
Octavia is an operator-grade open source load balancing solution. Also known as the Octavia
system or Octavia project. The term by itself should be used to refer to the system as a whole and
not any individual component within the Octavia load balancing system.

Pool
Object representing the grouping of members to which the listener forwards client requests. Note
that a pool is associated with only one listener, but a listener might refer to several pools (and

1.1. Getting Started 6

Octavia Documentation, Release 15.1.0.dev35

switch between them using layer 7 policies).

TLS Termination

Transport Layer Security Termination
Type of load balancing protocol where HTTPS sessions are terminated (decrypted) on the amphora
as opposed to encrypted packets being forwarded on to back-end servers without being decrypted
on the amphora. Also known as SSL termination. The main advantages to this type of load balanc-
ing are that the payload can be read and / or manipulated by the amphora, and that the expensive
tasks of handling the encryption are off-loaded from the back-end servers. This is particularly
useful if layer 7 switching is employed in the same listener configuration.

VIP

Virtual IP Address
Single service IP address which is associated with a load balancer. This is similar to what is de-
scribed here: http://en.wikipedia.org/wiki/Virtual _IP_address In a highly available load balancing
topology in Octavia, the VIP might be assigned to several amphorae, and a layer-2 protocol like
CARP, VRRP, or HSRP (or something unique to the networking infrastructure) might be used to
maintain its availability. In layer-3 (routed) topologies, the VIP address might be assigned to an
upstream networking device which routes packets to amphorae, which then load balance requests
to back-end members.

1.1.3 Developer / Operator Quick Start Guide

This document is intended for developers and operators. For an end-user guide, please see the end-user
quick-start guide and cookbook in this documentation repository.

Running Octavia in devstack

tl;dr

8GB RAM minimum
e "yvmx" or "svm" in /proc/cpuinfo
e Ubuntu 18.04 or later

* On that host, copy and run as root: octavia/devstack/contrib/new-octavia-devstack.sh

System requirements

Octavia in devstack with a default (non-HA) configuration will deploy one amphora VM per loadbalancer
deployed. The current default amphora image also requires at least 1GB of RAM to run effectively. As
such it is important that your devstack environment has enough resources dedicated to it to run all its
necessary components. For most devstack environments, the limiting resource will be RAM. At the
present time, we recommend at least 12GB of RAM for the standard devstack defaults, or 8GB of RAM
if cinder and swift are disabled. More is recommended if you also want to run a couple of application
server VMs (so that Octavia has something to load balance within your devstack environment).

Also, because the current implementation of Octavia delivers load balancing services using amphorae
that run as Nova virtual machines, it is effectively mandatory to enable nested virtualization. The software
will work with software emulated CPUs, but be unusably slow. The idea is to make sure the BIOS of
the systems you’re running your devstack on have virtualization features enabled (Intel VT-x, AMD-V,
etc.), and the virtualization software you're using exposes these features to the guest VM (sometimes
called nested virtualization). For more information, see: Configure DevStack with KVM-based Nested
Virtualization

1.1. Getting Started 7

http://en.wikipedia.org/wiki/Virtual_IP_address
https://docs.openstack.org/devstack/latest/guides/devstack-with-nested-kvm.html
https://docs.openstack.org/devstack/latest/guides/devstack-with-nested-kvm.html

Octavia Documentation, Release 15.1.0.dev35

The devstack environment we recommend should be running Ubuntu Linux 18.04 or later. These in-
structions may work for other Linux operating systems or environments. However, most people doing
development on Octavia are using Ubuntu for their test environment, so you will probably have the easiest
time getting your devstack working with that OS.

Deployment

1. Deploy an Ubuntu 18.04 or later Linux host with at least 8GB of RAM. (This can be a VM, but
again, make sure you have nested virtualization features enabled in your BIOS and virtualization
software.)

2. Copy devstack/contrib/new-octavia-devstack.sh from this source repository onto that
host.

3. Run new-octavia-devstack.sh as root.

4. Deploy loadbalancers, listeners, etc.

Running Octavia in production

Notes
Disclaimers

This document is not a definitive guide for deploying Octavia in every production environment. There are
many ways to deploy Octavia depending on the specifics and limitations of your situation. For example, in
our experience, large production environments often have restrictions, hidden "features" or other elements
in the network topology which mean the default Neutron networking stack (with which Octavia was
designed to operate) must be modified or replaced with a custom networking solution. This may also
mean that for your particular environment, you may need to write your own custom networking driver to
plug into Octavia. Obviously, instructions for doing this are beyond the scope of this document.

We hope this document provides the cloud operator or distribution creator with a basic understanding
of how the Octavia components fit together practically. Through this, it should become more obvious
how components of Octavia can be divided or duplicated across physical hardware in a production cloud
environment to aid in achieving scalability and resiliency for the Octavia load balancing system.

In the interest of keeping this guide somewhat high-level and avoiding obsolescence or
operator/distribution-specific environment assumptions by specifying exact commands that should
be run to accomplish the tasks below, we will instead just describe what needs to be done and leave
it to the cloud operator or distribution creator to "do the right thing" to accomplish the task for their
environment. If you need guidance on specific commands to run to accomplish the tasks described
below, we recommend reading through the plugin.sh script in devstack subdirectory of this project. The
devstack plugin exercises all the essential components of Octavia in the right order, and this guide will
mostly be an elaboration of this process.

Environment Assumptions

The scope of this guide is to provide a basic overview of setting up all the components of Octavia in a
production environment, assuming that the default in-tree drivers and components (including a "standard"
Neutron install) are going to be used.

For the purposes of this guide, we will therefore assume the following core components have already
been set up for your production OpenStack environment:

e Nova

1.1. Getting Started 8

Octavia Documentation, Release 15.1.0.dev35

* Neutron

* Glance

* Barbican (if TLS offloading functionality is enabled)
» Keystone

* Rabbit

* MySQL

Production Deployment Walkthrough
Create Octavia User

By default Octavia will use the ’octavia’ user for keystone authentication, and the admin user for interac-
tions with all other services.

You must:
¢ Create ’octavia’ user.

¢ Add the ’admin’ role to this user.

Load Balancer Network Configuration

Octavia makes use of an "LB Network" exclusively as a management network that the controller uses
to talk to amphorae and vice versa. All the amphorae that Octavia deploys will have interfaces and
IP addresses on this network. Therefore, it’s important that the subnet deployed on this network be
sufficiently large to allow for the maximum number of amphorae and controllers likely to be deployed
throughout the lifespan of the cloud installation.

At the present time, though IPv4 subnets are used by default for the LB Network (for example:
172.16.0.0/12), IPv6 subnets can be used for the LB Network.

The LB Network is isolated from tenant networks on the amphorae by means of network namespaces on
the amphorae. Therefore, operators need not be concerned about overlapping subnet ranges with tenant
networks.

You must also create a Neutron security group which will be applied to amphorae created on the LB
network. It needs to allow amphorae to send UDP heartbeat packets to the health monitor (by default,
UDP port 5555), and ingress on the amphora’s API (by default, TCP port 9443). It can also be helpful
to allow SSH access to the amphorae from the controller for troubleshooting purposes (ie. TCP port 22),
though this is not strictly necessary in production environments.

Amphorae will send periodic health checks to the controller’s health manager. Any firewall protecting
the interface on which the health manager listens must allow these packets from amphorae on the LB
Network (by default, UDP port 5555).

Finally, you need to add routing or interfaces to this network such that the Octavia controller (which will
be described below) is able to communicate with hosts on this network. This also implies you should
have some idea where you’re going to run the Octavia controller components.

You must:
* Create the ’Ib-mgmt-net’.

* Assign the ’Ib-mgmt-net’ to the admin tenant.

1.1. Getting Started 9

Octavia Documentation, Release 15.1.0.dev35

* Create a subnet and assign it to the ’1b-mgmt-net’.

* Create neutron security group for amphorae created on the ’Ib-mgmt-net’. which allows appropri-
ate access to the amphorae.

» Update firewall rules on the host running the octavia health manager to allow health check messages
from amphorae.

* Add appropriate routing to / from the 'lb-mgmt-net’ such that egress is allowed, and the controller
(to be created later) can talk to hosts on this network.

Create Amphora Image

Octavia deploys amphorae based on a virtual machine disk image. By default we use the OpenStack
diskimage-builder project for this. Scripts to accomplish this are within the diskimage-create directory
of this repository. In addition to creating the disk image, configure a Nova flavor to use for amphorae,
and upload the disk image to glance.

You must:
* Create amphora disk image using OpenStack diskimage-builder.
* Create a Nova flavor for the amphorae.
* Add amphora disk image to glance.

* Tag the above glance disk image with amphora’.

Install Octavia Controller Software

This seems somewhat obvious, but the important things to note here are that you should put this some-
where on the network where it will have access to the database (to be initialized below), the oslo mes-
saging system, and the LB network. Octavia uses the standard python setuptools, so installation of the
software itself should be straightforward.

Running multiple instances of the individual Octavia controller components on separate physical hosts
is recommended in order to provide scalability and availability of the controller software.

The Octavia controller presently consists of several components which may be split across several phys-
ical machines. For the 4.0 release of Octavia, the important (and potentially separable) components are
the controller worker, housekeeper, health manager and API controller. Please see the component di-
agrams elsewhere in this repository’s documentation for detailed descriptions of each. Please use the
following table for hints on which controller components need access to outside resources:

Component Resource
LB Network Database OSLO messaging
API No Yes Yes
controller worker Yes Yes Yes
health monitor Yes Yes No
housekeeper Yes Yes No

In addition to talking to each other via Oslo messaging, various controller components must also com-
municate with other OpenStack components, like nova, neutron, barbican, etc. via their APIs.

You must:

1.1. Getting Started 10

Octavia Documentation, Release 15.1.0.dev35

* Pick appropriate host(s) to run the Octavia components.
* Install the dependencies for Octavia.

¢ Install the Octavia software.

Create Octavia Keys and Certificates

Octavia presently allows for one method for the controller to communicate with amphorae: The amphora
REST API. Both amphora API and Octavia controller do bi-directional certificate-based authentication in
order to authenticate and encrypt communication. You must therefore create appropriate TLS certificates
which will be used for key signing, authentication, and encryption. There is a detailed Octavia Certificate
Configuration Guide to guide you through this process.

Please note that certificates created with this guide may not meet your organization’s security policies,
since they are self-signed certificates with arbitrary bit lengths, expiration dates, etc. Operators should
obviously follow their own security guidelines in creating these certificates.

In addition to the above, it can sometimes be useful for cloud operators to log into running amphorae
to troubleshoot problems. The standard method for doing this is to use SSH from the host running the
controller worker. In order to do this, you must create an SSH public/private key pair specific to your
cloud (for obvious security reasons). You must add this keypair to nova. You must then also update
octavia.conf with the keypair name you used when adding it to nova so that amphorae are initialized with
it on boot.

See the Troubleshooting Tips section below for an example of how an operator can SSH into an amphora.
You must:

* Create TLS certificates for communicating with the amphorae.

* Create SSH keys for communicating with the amphorae.

* Add the SSH keypair to nova.

Configuring Octavia

Going into all of the specifics of how Octavia can be configured is actually beyond the scope of this
document. For full documentation of this, please see the configuration reference: Octavia Configuration
Options

A configuration template can be found in etc/octavia. conf in this repository.

It’s also important to note that this configuration file will need to be updated with UUIDs of the LB
network, amphora security group, amphora image tag, SSH key path, TLS certificate path, database
credentials, etc.

At a minimum, the configuration should specify the following, beyond the defaults. Your specific envi-
ronment may require more than this:

1.1. Getting Started 11

Octavia Documentation, Release 15.1.0.dev35

Section Configuration parameter
DEFAULT transport_url

database connection

certificates ca_certificate

certificates ca_private_key

certificates ca_private_key_passphrase

controller_worker
controller_worker
controller_worker
controller_worker
controller_worker
controller_worker
controller_worker
controller_worker
controller_worker
controller_worker
haproxy_amphora
haproxy_amphora
health_manager
health_manager
health_manager
keystone_authtoken
keystone_authtoken
keystone_authtoken
keystone_authtoken
keystone_authtoken
oslo_messaging
oslo_messaging_rabbit
oslo_messaging_rabbit
oslo_messaging_rabbit

amp_boot_network_list
amp_flavor_id
amp_image_owner_id
amp_image_tag
amp_secgroup_list
amp_ssh_key_name
amphora_driver
compute_driver
loadbalancer_topology
network_driver
client_cert

server_ca

bind_ip
controller_ip_port_list
heartbeat_key
admin_password
admin_tenant_name
admin_user
www_authenticate_uri
auth_version

topic

rabbit_host
rabbit_userid
rabbit_password

1

You must:

* Create or update /etc/octavia/octavia.conf appropriately.

Initialize Octavia Database

This is controlled through alembic migrations under the octavia/db directory in this repository. A tool
has been created to aid in the initialization of the octavia database. This should be available under /usr/
local/bin/octavia-db-manage on the host on which the octavia controller worker is installed. Note
that this tool looks at the /etc/octavia/octavia. conf file for its database credentials, so initializing
the database must happen after Octavia is configured.

It’s also important to note here that all of the components of the Octavia controller will need direct
access to the database (including the API handler), so you must ensure these components are able to
communicate with whichever host is housing your database.

You must:

¢ Create database credentials for Octavia.

! This is technically optional, but extremely useful for troubleshooting.

1.1. Getting Started 12

Octavia Documentation, Release 15.1.0.dev35

* Add these to the /etc/octavia/octavia.conf file.
e Run /usr/local/bin/octavia-db-manage upgrade head on the controller worker host to

initialize the octavia database.

Launching the Octavia Controller

We recommend using upstart / systemd scripts to ensure the components of the Octavia controller are
all started and kept running. It of course doesn’t hurt to first start by running these manually to ensure
configuration and communication is working between all the components.

You must:

* Make sure each Octavia controller component is started appropriately.

Install Octavia extension in Horizon

This isn’t strictly necessary for all cloud installations, however, if yours makes use of the Horizon GUI
interface for tenants, it is probably also a good idea to make sure that it is configured with the Octavia
extension.

You may:

 Install the octavia GUI extension in Horizon

Test deployment

If all of the above instructions have been followed, it should now be possible to deploy load balancing
services using the OpenStack CLI, communicating with the Octavia v2 API.

Example:

Upon executing the above, log files should indicate that an amphora is deployed to house the load balancer,
and that this load balancer is further modified to include a listener. The amphora should be visible to the
octavia or admin tenant using the openstack server list command, and the listener should respond
on the load balancer’s IP on port 80 (with an error 503 in this case, since no pool or members have been
defined yetbut this is usually enough to see that the Octavia load balancing system is working). For more
information on configuring load balancing services as a tenant, please see the end-user quick-start guide
and cookbook.

Troubleshooting Tips

The troubleshooting hints in this section are meant primarily for developers or operators troubleshoot-
ing underlying Octavia components, rather than end-users or tenants troubleshooting the load balancing
service itself.

1.1. Getting Started 13

Octavia Documentation, Release 15.1.0.dev35

SSH into Amphorae

If you are using the reference amphora image, it may be helpful to log into running amphorae when
troubleshooting service problems. To do this, first discover the 1b_network_ip address of the amphora
you would like to SSH into by looking in the amphora table in the octavia database. Then from the host
housing the controller worker, run:

1.2 Installation and Configuration Guides

1.2.1 Building Octavia Amphora Images

Octavia is an operator-grade reference implementation for Load Balancing as a Service (LBaaS) for
OpenStack. The component of Octavia that does the load balancing is known as amphora. Amphora
may be a virtual machine, may be a container, or may run on bare metal. Creating images for bare metal
amphora installs is outside the scope of this version but may be added in a future release.
Prerequisites

Python pip should be installed as well as the python modules found in the requirements.txt file.

To do so, you can use the following command on Ubuntu:

$

$ sudo apt install python-pip

$

$ sudo apt install python-virtualenv

$ virtualenv octavia_disk_image_create
octavia_disk_image_create/bin/activate

$

$

$ octavia/diskimage-create

$ pip install -r requirements.txt

Your cache directory should have at least 1GB available, the working directory will need ~1.5GB, and
your image destination will need ~500MB

The script will use the version of diskimage-builder installed on your system, or it can be overridden by
setting the following environment variables:

/<some directory>/diskimage-builder
/<some directory>/diskimage-builder/elements

The following packages are required on each platform:

Ubuntu

[$ sudo apt install gemu-utils git kpartx debootstrap]

Fedora, CentOS and Red Hat Enterprise Linux

[$ sudo dnf install gemu-img git e2fsprogs policycoreutils-python-utils }

1.2. Installation and Configuration Guides 14

Octavia Documentation, Release 15.1.0.dev35

Test Prerequisites

The tox image tests require libguestfs-tools 1.24 or newer. Libguestfs allows testing the Amphora image
without requiring root privileges. On Ubuntu systems you also need to give read access to the kernels
for the user running the tests:

$ sudo chmod /boot/vmlinuz*

Usage

This script and associated elements will build Amphora images. Current support is with an Ubuntu and
CentOS Stream base OS and HAProxy. The script can use RHEL and Fedora as a base OS but these will
not initially be tested or supported. As the project progresses and/or the diskimage-builder project adds
support for additional base OS options they may become available for Amphora images. This does not
mean that they are necessarily supported or tested.

Note

If your cloud has multiple hardware architectures available to nova, remember to set the appropriate
hw_architecture property on the image when you load it into glance. For example, when loading
an amphora image built for "amd64" you would add "--property hw_architecture="x86_64"" to your
"openstack image create" command line.

The script will use environment variables to customize the build beyond the Octavia project defaults,
such as adding elements.

The supported and tested image is created by using the diskimage-create.sh defaults (no command line
parameters or environment variables set). As the project progresses we may add additional supported
configurations.

Command syntax:

$ diskimage-create.sh

[-a **amd64** | armhf | aarch64 | ppc64le]

[-b **haproxy**]

[-c **~/.cache/image-create** | <cache directory>]

[-d **jammy**/**9-stream**/**9** | <other release id>]

[-el

[f]

[-g **repository branch** | stable/train | stable/stein | ...]
[-h]

[-i **ubuntu-minimal** | fedora | centos-minimal | rhel | rocky]
[-k <kernel package name>]

[-1 <log file>]

[-m]

[-n]

[-o **amphora-x64-haproxy** | <filename>]

[-p]

[-r <root password>]

[-s **2%* | <size in GB>]

[-t **qcow2** | tar]

(continues on next page)

1.2. Installation and Configuration Guides 15

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)
[-v]
[-w <working directory>]
[-x]
[-y]

'-a' is the architecture type for the image (default: amd64)
'-b' is the backend type (default: haproxy)
'-c' is the path to the cache directory (default: ~/.cache/image-create)
'-d' distribution release id (default on ubuntu: jammy)
'-e' enable complete mandatory access control systems when available.
— (default: permissive)
'-f' disable tmpfs for build
'-g' build the image for a specific OpenStack Git branch (default:.
—current repository branch)
'-h' display help message
'-i' is the base 0S (default: ubuntu-minimal)
'-k' is the kernel meta package name, currently only for ubuntu-minimal.
—base 0S (default: linux-image-virtual)
'-1'" is output logfile (default: none)
enable vCPU pinning optimizations (default: disabled)
-n' disable sshd (default: enabled)

'-0' is the output image file name

'-p' install amphora-agent from distribution packages (default: disabled)"
'-r' enable the root account in the generated image (default: disabled)
'-s' is the image size to produce in gigabytes (default: 2)

'-t' is the image type (default: gcow2)

display the script version

-w' working directory for image building (default: .)
-x' enable tracing for diskimage-builder

enable FIPS 140-2 mode in the amphora image

Building Images for Alternate Branches

By default, the diskimage-create.sh script will build an amphora image using the Octavia Git branch of
the repository. If you need an image for a specific branch, such as "stable/train", you need to specify the
"-g" option with the branch name. An example for "stable/train" would be:

[diskimage-create.sh -g stable/train

Advanced Git Branch/Reference Based Images

If you need to build an image from a local repository or with a specific Git reference or branch, you will
need to set some environment variables for diskimage-builder.

Note

These advanced settings will override the "-g" diskimage-create.sh setting.

1.2. Installation and Configuration Guides 16

Octavia Documentation, Release 15.1.0.dev35

Building From a Local Octavia Repository

Set the DIB_REPOLOCATION_amphora_agent variable to the location of the Git repository containing
the amphora agent:

/opt/stack/octavia }

Building With a Specific Git Reference

Set the DIB_REPOREF_amphora_agent variable to point to the Git branch or reference of the amphora
agent:

refs/changes/40/674140/7]

See the Environment Variables section below for additional information and examples.

Amphora Agent Upper Constraints

You may also need to specify which version of the OpenStack upper-constraints.txt file will be used to
build the image. For example, to specify the "stable/train" upper constraints Git branch, set the following
environment variable:

https://opendev.org/openstack/
—requirements/raw/branch/stable/train/upper-constraints.txt

See Dependency Management for OpenStack Projects for more information.

Environment Variables
These are optional environment variables that can be set to override the script defaults.
DIB_REPOLOCATION_amphora_agent
* Location of the amphora-agent code that will be installed in the image.
* Default: https://opendev.org/openstack/octavia
* Example: /tmp/octavia
DIB_REPOREF_amphora_agent
* The Git reference to checkout for the amphora-agent code inside the image.
* Default: The current branch
* Example: stable/stein
» Example: refs/changes/40/674140/7
DIB_REPOLOCATION_octavia_lib
* Location of the octavia-lib code that will be installed in the image.
* Default: https://opendev.org/openstack/octavia-lib
» Example: /tmp/octavia-lib
DIB_REPOREF _octavia_lib

* The Git reference to checkout for the octavia-lib code inside the image.

1.2. Installation and Configuration Guides 17

https://docs.openstack.org/project-team-guide/dependency-management.html
https://opendev.org/openstack/octavia
https://opendev.org/openstack/octavia-lib

Octavia Documentation, Release 15.1.0.dev35

* Default: master or stable branch for released OpenStack series installs.

* Example: stable/ussuri

» Example: refs/changes/19/744519/2
DIB_REPOLOCATION_upper_constraints

* Location of the upper-constraints.txt file used for the image.

* Default: The upper-constraints.txt for the current branch

* Example: https://opendev.org/openstack/requirements/raw/branch/master/
upper-constraints.txt

* Example: https://opendev.org/openstack/requirements/raw/branch/stable/train/
upper-constraints.txt

CLOUD_INIT_DATASOURCES
* Comma separated list of cloud-int datasources
* Default: ConfigDrive
* Options: NoCloud, ConfigDrive, OVF, MAAS, Ec2, <others>
* Reference: https://launchpad.net/cloud-init
DIB_DISTRIBUTION_MIRROR
* URL to a mirror for the base OS selected
* Default: None
DIB_ELEMENTS
* Override the elements used to build the image
* Default: None
DIB_LOCAL_ELEMENTS
» Elements to add to the build (requires DIB_LOCAL_ELEMENTS_PATH be specified)
* Default: None
DIB_LOCAL_ELEMENTS_PATH
* Path to the local elements directory
* Default: None
DIB_REPO_PATH
* Directory containing diskimage-builder
* Default: <directory above OCTAVIA_HOME>/diskimage-builder
* Reference: https://github.com/openstack/diskimage-builder
OCTAVIA_REPO_PATH
* Directory containing octavia
* Default: <directory above the script location>

* Reference: https://github.com/openstack/octavia

1.2. Installation and Configuration Guides 18

https://opendev.org/openstack/requirements/raw/branch/master/upper-constraints.txt
https://opendev.org/openstack/requirements/raw/branch/master/upper-constraints.txt
https://opendev.org/openstack/requirements/raw/branch/stable/train/upper-constraints.txt
https://opendev.org/openstack/requirements/raw/branch/stable/train/upper-constraints.txt
https://launchpad.net/cloud-init
https://github.com/openstack/diskimage-builder
https://github.com/openstack/octavia

Octavia Documentation, Release 15.1.0.dev35

DIB_OCTAVIA_AMP_USE_NFTABLES
* Boolean that configures nftables inside the amphora image
* Required for SR-IOV enabled amphora

e Default: True

Using distribution packages for amphora agent

By default, amphora agent is installed from Octavia Git repository. To use distribution packages, use the
"-p" option.

Note this needs a base system image with the required repositories enabled (for example RDO repositories
for CentOS/Fedora). One of these variables must be set:

DIB_LOCAL_IMAGE
* Path to the locally downloaded image
* Default: None
DIB_CLOUD_IMAGES
* Directory base URL to download the image from

* Default: depends on the distribution

RHEL specific variables

Building a RHEL-based image requires:

* a Red Hat Enterprise Linux KVM Guest Image, manually download from the Red Hat Cus-
tomer Portal. Set the DIB_LOCAL_IMAGE variable to point to the file. More details at:
<DIB_REPO_PATH>/elements/rhel

* a Red Hat subscription for the matching Red Hat OpenStack Platform repository if you want
to install the amphora agent from the official distribution package (requires setting -p option
in diskimage-create.sh). Set the needed registration parameters depending on your configu-
ration. More details at: <DIB_REPO_PATH>/elements/rhel-common

Here is an example with Customer Portal registration and OSP 15 repository:

$

This example uses registration via a Satellite (the activation key must enable an OSP repository):

$

1.2. Installation and Configuration Guides 19

Octavia Documentation, Release 15.1.0.dev35

Building in a virtualenv with tox

To make use of a virtualenv for Python dependencies you may run tox. Note that you may still need to
install binary dependencies on the host for the build to succeed.

If you wish to customize your build modify tox.ini to pass on relevant environment variables or com-
mand line arguments to the diskimage-create. sh script.

[s tox -e build

Container Support

The Docker command line required to import a tar file created with this script is:

[$ docker import - image:amphora-x64-haproxy < amphora-x64-haproxy.tar

References

This documentation and script(s) leverage prior work by the OpenStack TripleO and Sahara teams. Thank
you to everyone that worked on them for providing a great foundation for creating Octavia Amphora
images.

* https://opendev.org/openstack/diskimage-builder
* https://opendev.org/openstack/tripleo-image-elements

* https://opendev.org/openstack/sahara-image-elements

Copyright
Copyright 2014 Hewlett-Packard Development Company, L.P.
All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

* http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied. See the License for the specific language governing permissions and limitations
under the License.

1.2.2 Octavia Certificate Configuration Guide

This document is intended for Octavia administrators setting up certificate authorities for the two-way
TLS authentication used in Octavia for command and control of Amphora.

This guide does not apply to the configuration of TERMINATED_TLS listeners on load balancers. See
the Load Balancing Cookbook for instructions on creating TERMINATED_TLS listeners.

1.2. Installation and Configuration Guides 20

https://opendev.org/openstack/diskimage-builder
https://opendev.org/openstack/tripleo-image-elements
https://opendev.org/openstack/sahara-image-elements
http://www.apache.org/licenses/LICENSE-2.0
../../user/guides/basic-cookbook.html#deploy-a-tls-terminated-https-load-balancer

Octavia Documentation, Release 15.1.0.dev35

Two-way TLS Authentication in Octavia

The Octavia controller processes communicate with the Amphora over a TLS connection much like an
HTTPS connection to a website. However, Octavia validates that both sides are trusted by doing a two-
way TLS authentication.

Note

This is a simplification of the full TLS handshake process. See the TLS 1.3 RFC 8446 for the full
handshake.

Phase One

When a controller process, such as the Octavia worker process, connects to an Amphora, the Amphora
will present its server certificate to the controller. The controller will then validate it against the server
Certificate Authority (CA) certificate stored on the controller. If the presented certificate is validated
against the server CA certificate, the connection goes into phase two of the two-way TLS authentication.

Phase Two

Once phase one is complete, the controller will present its client certificate to the Amphora. The Amphora
will then validate the certificate against the client CA certificate stored inside the Amphora. If this
certificate is successfully validated, the rest of the TLS handshake will continue to establish the secure
communication channel between the controller and the Amphora.

Certificate Lifecycles

The server certificates are uniquely generated for each amphora by the controller using the server cer-
tificate authority certificates and keys. These server certificates are automatically rotated by the Octavia
housekeeping controller process as they near expiration.

The client certificates are used for the Octavia controller processes. These are managed by the operator
and due to their use on the control plane of the cloud, typically have a long lifetime.

See the Operator Maintenance Guide for more information about the certificate lifecycles.

Creating the Certificate Authorities

As discussed above, this configuration uses two certificate authorities; one for the server certificates, and
one for the client certificates.

Note

Technically Octavia can be run using just one certificate authority by using it to issue certificates for
both roles. However, this weakens the security as a server certificate from an amphora could be used
to impersonate a controller. We recommend you use two certificate authorities for all deployments
outside of testing.

For this document we are going to setup simple OpenSSL based certificate authorities. However, any
standards compliant certificate authority software can be used to create the required certificates.

1.2. Installation and Configuration Guides 21

https://tools.ietf.org/html/rfc8446
operator-maintenance.html#rotating-cryptographic-certificates

Octavia Documentation, Release 15.1.0.dev35

1. Create a working directory for the certificate authorities. Make sure to set the proper permissions
on this directory such that others cannot access the private keys, random bits, etc. being generated

here.

$ mkdir certs
$ chmod certs
$ certs

2. Create the OpenSSL configuration file. This can be shared between the two certificate authorities.

$ vi openssl.cnf

(continues on next page)

1.2. Installation and Configuration Guides 22

Octavia Documentation, Release 15.1.0.dev35

stateOrProvinceName match
organizationName match
organizationalUnitName optional
commonName supplied
emailAddress optional
[req]

(continued from previous page)

Options for the ‘req tool (‘man req’).

default_bits 2048
distinguished_name req_distingu
string_mask utf8only

SHA-1 is deprecated, so use SHA-
default_md sha256

Extension to add when the -x509
x509_extensions v3_ca

[req_distinguished_name]

See <https://en.wikipedia.org/wi
countryName

stateOrProvinceName

localityName

0.organizationName
organizationalUnitName

commonName

emailAddress

Optionally, specify some default
countryName_default
stateOrProvinceName_default
localityName_default
0.organizationName_default
organizationalUnitName_default
emailAddress_default
commonName_default

ished_name

2 instead.

option is used.

ki/Certificate_signing_request>.
Country Name (2 letter code)
State or Province Name

Locality Name

Organization Name
Organizational Unit Name

Common Name

Email Address

S
Us

Oregon

OpenStack
Octavia

example.org

keyid:always,issuer

[v3_ca]

Extensions for a typical CA ("man x509v3_config’).
subjectKeyIdentifier = hash

authorityKeyIdentifier

basicConstraints critical, CA:true

keyUsage = critical, digitalSignat

[usr_cert]

ure, cRLSign, keyCertSign

Extensions for client certificates (‘man x509v3_config’).

CA:FALSE
client, email
"OpenSSL Generated Cli

basicConstraints
nsCertType
nsComment

ent Certificate"

(continues on next page)

1.2.

Installation and Configuration Guides

23

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

3. Make any locally required configuration changes to the openssl.cnf. Some settings to consider are:
* The default certificate lifetime is 10 years.
* The default bit length is 2048.

4. Make directories for the two certificate authorities.

$ mkdir client_ca
$ mkdir server_ca

5. Starting with the server certificate authority, prepare the CA.

$ server_ca

$ mkdir certs crl newcerts private
$ chmod private

$ touch index.txt

$ > serial

6. Create the server CA key.

* You will need to specify a passphrase to protect the key file.

$ openssl genpkey -algorithm RSA -out private/ca.key.pem -aes-128-cbc -
—pkeyopt rsa_keygen_bits:4096
$ chmod private/ca.key.pem

7. Create the server CA certificate.
* You will need to specify the passphrase used in step 6.

* You will also be asked to provide details for the certificate. These are up to you and should
be appropriate for your organization.

* You may want to mention this is the server CA in the common name field.

1.2. Installation and Configuration Guides 24

Octavia Documentation, Release 15.1.0.dev35

* Since this is the CA certificate, you might want to give it a very long lifetime, such as twenty
years shown in this example command.

$ openssl req -config ../openssl.cnf -key private/ca.key.pem -new -x509 -
—days -sha256 -extensions v3_ca -out certs/ca.cert.pem

8. Moving to the client certificate authority, prepare the CA.

$../client_ca

$ mkdir certs crl csr newcerts private
$ chmod private

$ touch index.txt

$ > serial

9. Create the client CA key.

* You will need to specify a passphrase to protect the key file.

$ openssl genpkey -algorithm RSA -out private/ca.key.pem -aes-128-cbc -
—pkeyopt rsa_keygen_bits:4096
$ chmod private/ca.key.pem

10. Create the client CA certificate.
* You will need to specify the passphrase used in step 9.

* You will also be asked to provide details for the certificate. These are up to you and should
be appropriate for your organization.

* You may want to mention this is the client CA in the common name field.

* Since this is the CA certificate, you might want to give it a very long lifetime, such as twenty
years shown in this example command.

—days -sha256 -extensions v3_ca -out certs/ca.cert.pem

$ openssl req -config ../openssl.cnf -key private/ca.key.pem -new -x509 - J

11. Create a key for the client certificate to use.

* You can create one certificate and key to be used by all of the controllers or you can create a
unique certificate and key for each controller.

* You will need to specify a passphrase to protect the key file.

$ openssl genpkey -algorithm RSA -out private/client.key.pem -aes-128-cbc.
—-pkeyopt rsa_keygen_bits:2048

- J

12. Create the certificate request for the client certificate used on the controllers.
* You will need to specify the passphrase used in step 11.

* You will also be asked to provide details for the certificate. These are up to you and should
be appropriate for your organization.

* You must fill in the common name field.

* You may want to mention this is the client certificate in the common name field, or the indi-
vidual controller information.

1.2. Installation and Configuration Guides 25

Octavia Documentation, Release 15.1.0.dev35

$ openssl req -config ../openssl.cnf -new -sha256 -key private/client.key.
—pem -out csr/client.csr.pem

13. Sign the client certificate request.
* You will need to specify the CA passphrase used in step 9.

* Since this certificate is used on the control plane, you might want to give it a very long
lifetime, such as twenty years shown in this example command.

$ openssl ca -config ../openssl.cnf -extensions usr_cert -days -
—notext -md sha256 -in csr/client.csr.pem -out certs/client.cert.pem

14. Create a concatenated client certificate and key file.

* You will need to specify the CA passphrase used in step 11.

$ openssl rsa -in private/client.key.pem -out private/client.cert-and-key.
—pem
$ cat certs/client.cert.pem >> private/client.cert-and-key.pem

Configuring Octavia

In this section we will configure Octavia to use the certificates and keys created during the Creating the
Certificate Authorities section.

1. Copy the required files over to your Octavia controllers.

* Only the Octavia worker, health manager, and housekeeping processes will need access to
these files.

* The first command should return you to the "certs" directory created in step 1 of the Creating
the Certificate Authorities section.

* These commands assume you are running the octavia processes under the "octavia" user.

* Note, some of these steps should be run with "sudo" and are indicated by the "#" prefix.

L

2. Configure the [certificates] section of the octavia.conf file.

* Only the Octavia worker, health manager, and housekeeping processes will need these set-
tings.

1.2. Installation and Configuration Guides 26

Octavia Documentation, Release 15.1.0.dev35

» The "<server CA passphrase>" should be replaced with the passphrase that was used in step
6 of the Creating the Certificate Authorities section.

[certificates]

3. Configure the [controller_worker] section of the octavia.conf file.

* Only the Octavia worker, health manager, and housekeeping processes will need these set-
tings.

[controller_worker]

4. Configure the [haproxy_amphora] section of the octavia.conf file.

* Only the Octavia worker, health manager, and housekeeping processes will need these set-
tings.

[haproxy_amphoral]

5. Start the controller processes.

1.2.3 Octavia Configuration Options

Table of Contents

* Octavia Configuration Options
— DEFAULT
— amphora_agent
— api_settings
— audit
— certificates
— cinder
— compute

— controller_worker

— database

1.2. Installation and Configuration Guides 27

Octavia Documentation, Release 15.1.0.dev35

— driver_agent

— glance

— haproxy_amphora

— health_manager

— house_keeping

— keepalived_vrrp

— keystone_authtoken

— networking

— neutron

- nova

— oslo_messaging

— oslo_messaging_kafka
— oslo_messaging_notifications
— oslo_messaging_rabbit
— oslo_middleware

— quotas

— service_auth

— task_flow

DEFAULT
host
Type
hostname
Default

<server-hostname.example.com>

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

The hostname Octavia is running on

octavia_plugins

Type

string

Default
hot_plug_plugin

Name of the controller plugin to use

log_options

1.2. Installation and Configuration Guides 28

Octavia Documentation, Release 15.1.0.dev35

Type
boolean

Default
True

Mutable
This option can be changed without restarting.

Enables or disables logging values of all registered options when starting a service (at DEBUG
level).

graceful _shutdown_timeout

Type

integer

Default
60

Mutable
This option can be changed without restarting.

Specify a timeout after which a gracefully shutdown server will exit. Zero value means endless

wait.
debug
Type
boolean
Default
False
Mutable

This option can be changed without restarting.
If set to true, the logging level will be set to DEBUG instead of the default INFO level.
log_config_append

Type
string

Default
<None>

Mutable
This option can be changed without restarting.

The name of a logging configuration file. This file is appended to any existing logging configuration
files. For details about logging configuration files, see the Python logging module documentation.
Note that when logging configuration files are used then all logging configuration is set in the con-
figuration file and other logging configuration options are ignored (for example, log-date-format).

Table 1: Deprecated Variations

Group Name

DEFAULT log-config
DEFAULT log_config

1.2. Installation and Configuration Guides 29

Octavia Documentation, Release 15.1.0.dev35

log_date_format
Type
string

Default
%Y-%m-%d %H:%M:%S

Defines the format string for %(asctime)s in log records. Default: the value above . This option is
ignored if log_config_append is set.

log_file
Type

string

Default
<None>

(Optional) Name of log file to send logging output to. If no default is set, logging will go to stderr
as defined by use_stderr. This option is ignored if log_config_append is set.

Table 2: Deprecated Variations

Group Name
DEFAULT logfile

log_dir

Type
string

Default
<None>

(Optional) The base directory used for relative log_file paths. This option is ignored if
log_config_append is set.

Table 3: Deprecated Variations

Group Name
DEFAULT logdir

watch_log_file

Type
boolean

Default
False

Uses logging handler designed to watch file system. When log file is moved or removed this handler
will open a new log file with specified path instantaneously. It makes sense only if log_file option
is specified and Linux platform is used. This option is ignored if log_config_append is set.

1.2. Installation and Configuration Guides 30

Octavia Documentation, Release 15.1.0.dev35

Warning
This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
This function is known to have bene broken for long time, and depends on
the unmaintained library

use_syslog

Type

boolean

Default
False

Use syslog for logging. Existing syslog format is DEPRECATED and will be changed later to
honor RFC5424. This option is ignored if log_config_append is set.

use_journal

Type
boolean

Default
False

Enable journald for logging. If running in a systemd environment you may wish to enable jour-
nal support. Doing so will use the journal native protocol which includes structured metadata in
addition to log messages.This option is ignored if log_config_append is set.

syslog_log_facility

Type
string

Default
LOG_USER

Syslog facility to receive log lines. This option is ignored if log_config_append is set.

use_json

Type
boolean

Default
False

Use JSON formatting for logging. This option is ignored if log_config_append is set.

use_stderr
Type
boolean

Default
False

1.2. Installation and Configuration Guides 31

Octavia Documentation, Release 15.1.0.dev35

Log output to standard error. This option is ignored if log_config_append is set.

use_eventlog

Type

boolean

Default
False

Log output to Windows Event Log.

Warning
This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
Windows support is no longer maintained.

log_color

Type
boolean

Default
False

(Optional) Set the *color’ key according to log levels. This option takes effect only when logging
to stderr or stdout is used. This option is ignored if log_config_append is set.

log_rotate_interval
Type
integer

Default
1

The amount of time before the log files are rotated. This option is ignored unless log_rotation_type
is set to "interval".

log_rotate_interval_type
Type
string

Default
days

Valid Values
Seconds, Minutes, Hours, Days, Weekday, Midnight

Rotation interval type. The time of the last file change (or the time when the service was started)
is used when scheduling the next rotation.

max_logfile_count

Type

integer

1.2. Installation and Configuration Guides 32

Octavia Documentation, Release 15.1.0.dev35

Default
30

Maximum number of rotated log files.
max_logfile_size_mb
Type
integer

Default
200

Log file maximum size in MB. This option is ignored if "log_rotation_type" is not set to "size".
log_rotation_type
Type
string

Default
none

Valid Values
interval, size, none

Log rotation type.

Possible values

interval
Rotate logs at predefined time intervals.
size
Rotate logs once they reach a predefined size.

none
Do not rotate log files.

logging_context_format_string

Type
string

Default
%(asctime)s.%(msecs)03d %(process)d %(levelname)s %(name)s
[%(global_request_id)s %(request_id)s %(user_identity)s]
%(instance)s%(message)s

Format string to use for log messages with context. Used by oslo_log.formatters.ContextFormatter
logging_default_format_string
Type
string

Default
%(asctime)s.%(msecs)03d %(process)d %(levelname)s %(name)s [-]
%(instance)s%(message)s

1.2. Installation and Configuration Guides 33

Octavia Documentation, Release 15.1.0.dev35

Format string to use for log messages when context is undefined. Used by
oslo_log.formatters.ContextFormatter

logging_debug_format_suffix

Type
string

Default
%(funcName)s %(pathname)s:%(lineno)d

Additional data to append to log message when logging level for the message is DEBUG. Used by
oslo_log.formatters.ContextFormatter

logging_exception_prefix

Type
string
Default
%(asctime)s.%(msecs)03d %(process)d ERROR %(name)s
%(instance)s
Prefix each line of exception output with this format. Used by

oslo_log.formatters.ContextFormatter

logging_user_identity_format

Type

string

Default
%(user)s %(project)s %(domain)s %(system_scope)s
%(user_domain)s %(project_domain)s

Defines the format string for %(user_identity)s that is used in logging_context_format_string.
Used by oslo_log.formatters.ContextFormatter

default_log_levels

Type

list

Default
['amgp=WARN', 'amgplib=WARN', 'boto=WARN', 'qpid=WARN',
'sqlalchemy=WARN', 'suds=INFO', 'oslo.messaging=INFO',
'oslo_messaging=INFO', 'iso8601=WARN', 'requests.packages.
urllib3.connectionpool=WARN', 'urllib3.connectionpool=WARN',
'websocket=WARN', 'requests.packages.urllib3.util.retry=WARN',
'urllib3.util.retry=WARN', 'keystonemiddleware=WARN',
'routes.middleware=WARN', 'stevedore=WARN', 'taskflow=WARN',
'keystoneauth=WARN', 'oslo.cache=INFO', 'oslo_policy=INFO',
'dogpile.core.dogpile=INFO"']

List of package logging levels in logger=LEVEL pairs. This option is ignored if log_config_append
is set.

publish_errors

1.2. Installation and Configuration Guides 34

Octavia Documentation, Release 15.1.0.dev35

Type
boolean

Default
False

Enables or disables publication of error events.

instance_format

Type
string

Default
"[instance: %(uuid)s] "

The format for an instance that is passed with the log message.

instance_uuid_format

Type
string

Default
"[instance: %(uuid)s] "

The format for an instance UUID that is passed with the log message.

rate_limit_interval

Type
integer

Default
0

Interval, number of seconds, of log rate limiting.

rate_limit_burst

Type
integer

Default
0

Maximum number of logged messages per rate_limit_interval.

rate_limit_except_level
Type
string

Default
CRITICAL

Valid Values
CRITICAL, ERROR, INFO, WARNING, DEBUG, ”

Log level name used by rate limiting. Logs with level greater or equal to rate_limit_except_level
are not filtered. An empty string means that all levels are filtered.

1.2. Installation and Configuration Guides 35

Octavia Documentation, Release 15.1.0.dev35

fatal_deprecations

Type
boolean

Default
False

Enables or disables fatal status of deprecations.

rpc_conn_pool_size

Type
integer

Default
30

Minimum Value
1

Size of RPC connection pool.

Table 4: Deprecated Variations

Group Name

DEFAULT rpc_conn_pool_size

conn_pool_min_size

Type
integer

Default
2

The pool size limit for connections expiration policy

conn_pool_ttl

Type
integer

Default
1200

The time-to-live in sec of idle connections in the pool

executor_thread_pool_size
Type
integer

Default
64

Size of executor thread pool when executor is threading or eventlet.

1.2. Installation and Configuration Guides

36

Octavia Documentation, Release 15.1.0.dev35

Table 5: Deprecated Variations

Group Name
DEFAULT rpc_thread_pool_size

rpc_response_timeout
Type
integer

Default
60

Seconds to wait for a response from a call.

transport_url
Type
string

Default
rabbit://

The network address and optional user credentials for connecting to the messaging backend, in
URL format. The expected format is:

driver://[user:pass @ host:port[,[userN:passN @ JhostN:portN]/virtual_host?query
Example: rabbit://rabbitmq:password@127.0.0.1:5672//

For full details on the fields in the URL see the documentation of oslo_messaging.TransportURL
at https://docs.openstack.org/oslo.messaging/latest/reference/transport.html

control_exchange
Type
string

Default
octavia

The default exchange under which topics are scoped. May be overridden by an exchange name
specified in the transport_url option.

rpc_ping_enabled

Type

boolean

Default
False

Add an endpoint to answer to ping calls. Endpoint is named oslo_rpc_server_ping

1.2. Installation and Configuration Guides 37

https://docs.openstack.org/oslo.messaging/latest/reference/transport.html

Octavia Documentation, Release 15.1.0.dev35

amphora_agent

agent_server_ca

Type
string

Default
/etc/octavia/certs/client_ca.pem

The ca which signed the client certificates

agent_server_cert

Type
string

Default
/etc/octavia/certs/server.pem

The server certificate for the agent server to use

agent_server_network_dir

Type
string

Default
<None>

The directory where new network interfaces are located

agent_request_read_timeout

Type
integer

Default
180

The time in seconds to allow a request from the controller to run before terminating the socket.

agent_tls_protocol

Type
string

Default
TLSv1.2

Valid Values
SSLv3, TLSv1, TLSv1.1, TLSv1.2, TLSv1.3

Minimum TLS protocol for communication with the amphora agent.

admin_log_targets

Type

list

Default
<None>

1.2. Installation and Configuration Guides 38

Octavia Documentation, Release 15.1.0.dev35

List of log server ip and port pairs for Administrative logs. Additional hosts are backup to

the primary server. If none is specified remote logging is disabled. Example 127.0.0.1:10514,
192.168.0.1:10514

tenant_log_targets
Type
list

Default
<None>

List of log server ip and port pairs for tenant traffic logs. Additional hosts are backup to the
primary server. If none is specified remote logging is disabled. Example 127.0.0.1:10514,
192.168.0.1:10514

user_log_facility
Type
integer

Default
0

Minimum Value
0

Maximum Value
7
LOG_LOCAL facility number to use for user traffic logs.
administrative_log_facility
Type
integer

Default
1

Minimum Value
0

Maximum Value
7

LOG_LOCAL facility number to use for amphora processes logs.
log_protocol

Type
string

Default
UDP

Valid Values
TCP, UDP

The log forwarding transport protocol. One of UDP or TCP.

1.2. Installation and Configuration Guides 39

Octavia Documentation, Release 15.1.0.dev35

log_retry_count

Type
integer

Default
5

The maximum attempts to retry connecting to the logging host.

log_retry_interval

Type
integer

Default
2

The time, in seconds, to wait between retries connecting to the logging host.

log_queue_size

Type
integer

Default
10000

The queue size (messages) to buffer log messages.

logging_template_override

Type
string

Default
<None>

Custom logging configuration template.

forward_all_logs
Type
boolean

Default
False

When True, the amphora will forward all of the system logs (except tenant traffic logs) to the admin
log target(s). When False, only amphora specific admin logs will be forwarded.

disable_local_log_storage
Type
boolean

Default
False

When True, no logs will be written to the amphora filesystem. When False, log files will be written
to the local filesystem.

1.2. Installation and Configuration Guides 40

Octavia Documentation, Release 15.1.0.dev35

amphora_id
Type
string

Default
<None>

The amphora ID.
amphora_udp_driver
Type
string

Default
keepalived_lvs

The UDP API backend for amphora agent.

Warning

This option is deprecated for removal since Wallaby. Its value may be silently ignored in the
future.

Reason
amphora-agent will not support any other backend than keepalived_lvs.

api_settings

bind_host

Type
ip address

Default
127.0.0.1

The host IP to bind to
bind_port

Type
port number

Default
9876

Minimum Value
0

Maximum Value
65535

The port to bind to

auth_strategy

1.2. Installation and Configuration Guides 41

Octavia Documentation, Release 15.1.0.dev35

Type
string

Default
keystone

Valid Values
noauth, keystone, testing

The auth strategy for API requests.

allow_pagination

Type
boolean

Default
True

Allow the usage of pagination

allow_sorting

Type
boolean

Default
True

Allow the usage of sorting

allow_filtering

Type
boolean

Default
True

Allow the usage of filtering

allow_field_selection

Type

boolean

Default
True

Allow the usage of field selection
pagination_max_limit
Type
string

Default
1000

The maximum number of items returned in a single response. The string ’infinite’ or a negative
integer value means 'no limit’

1.2. Installation and Configuration Guides 42

Octavia Documentation, Release 15.1.0.dev35

api_base_uri

Type
string

Default
<None>

Base URI for the API for use in pagination links. This will be autodetected from the request if not
overridden here.

allow_tls_terminated_listeners

Type
boolean

Default
True

Allow users to create TLS Terminated listeners?

allow_ping_health_monitors

Type
boolean

Default
True

Allow users to create PING type Health Monitors?

allow_prometheus_listeners
Type
boolean

Default
True

Allow users to create PROMETHEUS type listeners?

enabled_provider_drivers
Type
dict

Default
{'amphora': 'The Octavia Amphora driver.', 'octavia':
'Deprecated alias of the Octavia Amphora driver.'}

A comma separated list of dictionaries of the enabled provider driver names and descriptions. Must
match the driver name in the octavia.api.drivers entrypoint.

default_provider_driver

Type
string

Default
amphora

Default provider driver.

1.2. Installation and Configuration Guides 43

Octavia Documentation, Release 15.1.0.dev35

udp_connect_min_interval_health_monitor

Type
integer

Default
3

The minimum health monitor delay interval for the UDP-CONNECT Health Monitor type. A
negative integer value means 'no limit’.

healthcheck_enabled

Type

boolean

Default
False

When True, the oslo middleware healthcheck endpoint is enabled in the Octavia API.

healthcheck_refresh_interval

Type

integer

Default
5

The interval healthcheck plugins should cache results, in seconds.

default_listener_ciphers

Type
string

Default
TLS_AES_256_GCM_SHA384:TLS_CHACHA20_POLY1305_SHA256:TLS_AES_128_GCM_SHA256 :DHE-

Default OpenSSL cipher string (colon-separated) for new TLS-enabled listeners.

default_pool_ciphers

Type
string

Default
TLS_AES_256_GCM_SHA384:TLS_CHACHA20_POLY1305_SHA256:TLS_AES_128_GCM_SHA256 :DHE-

Default OpenSSL cipher string (colon-separated) for new TLS-enabled pools.

tls_cipher_prohibit_list

Type
string

Default

Colon separated list of OpenSSL ciphers. Usage of these ciphers will be blocked.

1.2. Installation and Configuration Guides 44

Octavia Documentation, Release 15.1.0.dev35

Table 6: Deprecated Variations

Group Name

api_settings tls_cipher_blacklist

default_listener_tls_versions

Type
list

Default
['TLSv1.2', 'TLSv1.3']

List of TLS versions to use for new TLS-enabled listeners.

default_pool_tls_versions

Type
list

Default
['TLSv1.2', '"TLSv1l.3']

List of TLS versions to use for new TLS-enabled pools.

minimum_tls_version

Type
string

Default
<None>

Valid Values
SSLv3, TLSv1, TLSv1.1, TLSv1.2, TLSv1.3, <None>

Minimum allowed TLS version for listeners and pools.

default_listener_alpn_protocols

Type
list

Default
['h2', 'http/1.1', 'http/1.0']

List of ALPN protocols to use for new TLS-enabled listeners.

default_pool_alpn_protocols

Type
list

Default
['h2', 'http/1.1', 'http/1.0']

List of ALPN protocols to use for new TLS-enabled pools.

1.2. Installation and Configuration Guides

45

Octavia Documentation, Release 15.1.0.dev35

audit
enabled
Type
boolean
Default
False

Enable auditing of API requests

audit_map_file

Type
string

Default
/etc/octavia/octavia_api_audit_map.conf

Path to audit map file for octavia-api service. Used only when API audit is enabled.

ignore_req_list

Type
string

Default

Comma separated list of REST API HTTP methods to be ignored during audit. For example:
auditing will not be done on any GET or POST requests if this is set to "GET,POST". It is used
only when API audit is enabled.

certificates

cert_manager

Type
string

Default
barbican_cert_manager

Name of the cert manager to use
cert_generator
Type
string

Default
local_cert_generator

Name of the cert generator to use

barbican_auth

Type
string

1.2. Installation and Configuration Guides 46

Octavia Documentation, Release 15.1.0.dev35

Default
barbican_acl_auth

Name of the Barbican authentication method to use

service_name

Type
string

Default
<None>

The name of the certificate service in the keystone catalog

endpoint

Type
string

Default
<None>

A new endpoint to override the endpoint in the keystone catalog.
region_name
Type
string

Default
<None>

Region in Identity service catalog to use for communication with the barbican service.

endpoint_type

Type
string

Default
publicURL

The endpoint_type to be used for barbican service.

ca_certificates_file

Type
string

Default
<None>

CA certificates file path for the key manager service (such as Barbican).

insecure
Type
boolean

Default
False

1.2. Installation and Configuration Guides

47

Octavia Documentation, Release 15.1.0.dev35

Disable certificate validation on SSL connections

ca_certificate
Type
string

Default
/etc/ssl/certs/ssl-cert-snakeoil.pem

Absolute path to the CA Certificate for signing. Defaults to env[OS_OCTAVIA_TLS_CA_CERT].
ca_private_key
Type
string

Default
/etc/ssl/private/ssl-cert-snakeoil.key

Absolute path to the Private Key for signing. Defaults to env[OS_OCTAVIA_TLS_CA_KEY].

ca_private_key_passphrase
Type
string

Default
<None>

Passphrase for the Private Key. Defaults to env[OS_OCTAVIA_CA_KEY_PASS] or None.

server_certs_key_passphrase
Type
string

Default
insecure-key-do-not-use-this-key

Passphrase for encrypting Amphora Certificates and Private Keys. Must be 32, base64(url) com-
patible, characters long. Defaults to env[TLS_PASS_AMPS_DEFAULT] or insecure-key-do-not-
use-this-key

signing_digest

Type
string

Default
sha256

Certificate signing digest. Defaults to env[OS_OCTAVIA_CA_SIGNING_DIGEST] or "sha256".
cert_validity_time
Type
integer

Default
2592000

1.2. Installation and Configuration Guides 48

Octavia Documentation, Release 15.1.0.dev35

The validity time for the Amphora Certificates (in seconds).

cinder

service_name
Type
string

Default
<None>

The name of the cinder service in the keystone catalog

endpoint
Type
string

Default
<None>

A new endpoint to override the endpoint in the keystone catalog.

region_name
Type
string

Default
<None>

Region in Identity service catalog to use for communication with the OpenStack services.

endpoint_type

Type
string

Default
publicURL

Endpoint interface in identity service to use

ca_certificates_file
Type
string

Default
<None>

CA certificates file path

availability_zone
Type
string

Default
<None>

1.2. Installation and Configuration Guides

49

Octavia Documentation, Release 15.1.0.dev35

Availability zone to use for creating Volume

insecure

Type

boolean

Default
False

Disable certificate validation on SSL connections

volume_size

Type
integer

Default
16

Size of volume, in GB, for Amphora instance

volume_type

Type
string

Default
<None>

Type of volume for Amphorae volume root disk

volume_create_retry_interval

Type
integer

Default
5

Interval time to wait volume is created in available state

volume_create_timeout

Type
integer

Default
300

Timeout to wait for volume creation success

volume_create_max_retries

Type
integer

Default
5

Maximum number of ret