
Octavia Documentation
Release 15.1.0.dev35

OpenStack Octavia Team

Nov 27, 2024

©2024 OpenStack Foundation

CONTENTS

1 Octavia Administration 2
1.1 Getting Started . 2

1.1.1 Introducing Octavia . 2
1.1.2 Octavia Glossary . 5
1.1.3 Developer / Operator Quick Start Guide . 7

1.2 Installation and Configuration Guides . 14
1.2.1 Building Octavia Amphora Images . 14
1.2.2 Octavia Certificate Configuration Guide . 20
1.2.3 Octavia Configuration Options . 27
1.2.4 Octavia Policies . 108

1.3 Optional Installation and Configuration Guides . 122
1.3.1 Available Provider Drivers . 122
1.3.2 Octavia Amphora Log Offloading . 124
1.3.3 Octavia API Auditing . 129
1.3.4 Octavia API Health Monitoring . 132
1.3.5 Octavia Flavors . 143
1.3.6 Running Octavia in Apache . 145
1.3.7 Octavia Amphora Failover Circuit Breaker . 145
1.3.8 Using SR-IOV Ports with Octavia . 148

1.4 Maintenance and Operations . 149
1.4.1 Operator Maintenance Guide . 149
1.4.2 octavia-status . 155
1.4.3 Load Balancing Service Upgrade Guide . 156

1.5 Operator Reference . 157
1.5.1 Octavia HAProxy Amphora API . 157
1.5.2 Octavia Event Notifications . 182

2 Octavia Command Line Interface 184

3 Octavia Configuration 185

4 Octavia Contributor 186
4.1 Contributor Guidelines . 186

4.1.1 So You Want to Contribute... 186
4.1.2 Octavia Constitution . 189
4.1.3 Octavia Style Commandments . 189

4.2 Contributor Reference . 192
4.2.1 Provider Driver Development Guide . 192
4.2.2 Debugging Octavia code . 225

i

4.2.3 Octavia Entity Relationship Diagram . 228
4.2.4 Octavia Controller Flows . 229
4.2.5 Guru Meditation Reports . 259

4.3 Internal APIs . 260
4.4 Design Documentation . 260

4.4.1 Version 0.5 (liberty) . 260
4.5 Project Specifications . 268

4.5.1 Version 0.5 (liberty) . 268
4.5.2 Version 0.8 (mitaka) . 314
4.5.3 Version 0.9 (newton) . 321
4.5.4 Version 1.0 (pike) . 345
4.5.5 Version 1.1 (queens) . 358
4.5.6 Version 14.0 (caracal) . 405
4.5.7 Version 15.0 (Dalmatian) . 409

4.6 Module Reference . 418
4.6.1 octavia . 418

5 Octavia Installation 952
5.1 Install and configure . 952

5.1.1 Install and configure for Ubuntu . 952
5.1.2 Additional configuration steps to configure amphorav2 provider 960

6 Octavia Reference 963

7 Octavia User 964
7.1 Cookbooks . 964

7.1.1 Basic Load Balancing Cookbook . 964
7.1.2 Layer 7 Cookbook . 984

7.2 Guides . 991
7.2.1 Layer 7 Load Balancing . 991
7.2.2 Octavia Provider Feature Matrix . 994
7.2.3 Monitoring Load Balancers . 1031

7.3 References . 1033
7.3.1 Octavia Software Development Kits (SDK) 1033

7.4 Videos . 1034

ii

Octavia Documentation, Release 15.1.0.dev35

Welcome to the OpenStack Octavia project documentation. Octavia brings network load balancing to
OpenStack.

See Introducing Octavia for an overview of Octavia.

For information on what is new see the Octavia Release Notes.

CONTENTS 1

https://docs.openstack.org/releasenotes/octavia/

CHAPTER

ONE

OCTAVIA ADMINISTRATION

1.1 Getting Started

1.1.1 Introducing Octavia
Welcome to Octavia!

Octavia is an open source, operator-scale load balancing solution designed to work with OpenStack.

Octavia was born out of the Neutron LBaaS project. Its conception influenced the transformation of the
Neutron LBaaS project, as Neutron LBaaS moved from version 1 to version 2. Starting with the Liberty
release of OpenStack, Octavia has become the reference implementation for Neutron LBaaS version 2.

Octavia accomplishes its delivery of load balancing services by managing a fleet of virtual machines,
containers, or bare metal serverscollectively known as amphorae which it spins up on demand. This on-
demand, horizontal scaling feature differentiates Octavia from other load balancing solutions, thereby
making Octavia truly suited "for the cloud".

Where Octavia fits into the OpenStack ecosystem

Load balancing is essential for enabling simple or automatic delivery scaling and availability. In turn,
application delivery scaling and availability must be considered vital features of any cloud. Together,
these facts imply that load balancing is a vital feature of any cloud.

Therefore, we consider Octavia to be as essential as Nova, Neutron, Glance or any other "core" project
that enables the essential features of a modern OpenStack cloud.

In accomplishing its role, Octavia makes use of other OpenStack projects:

• Nova - For managing amphora lifecycle and spinning up compute resources on demand.

• Neutron - For network connectivity between amphorae, tenant environments, and external net-
works.

• Barbican - For managing TLS certificates and credentials, when TLS session termination is con-
figured on the amphorae.

• Keystone - For authentication against the Octavia API, and for Octavia to authenticate with other
OpenStack projects.

• Glance - For storing the amphora virtual machine image.

• Oslo - For communication between Octavia controller components, making Octavia work within
the standard OpenStack framework and review system, and project code structure.

• Taskflow - Is technically part of Oslo; however, Octavia makes extensive use of this job flow system
when orchestrating back-end service configuration and management.

2

Octavia Documentation, Release 15.1.0.dev35

Octavia is designed to interact with the components listed previously. In each case, we’ve taken care to
define this interaction through a driver interface. That way, external components can be swapped out
with functionally-equivalent replacements without having to restructure major components of Octavia.
For example, if you use an SDN solution other than Neutron in your environment, it should be possible for
you to write an Octavia networking driver for your SDN environment, which can be a drop-in replacement
for the standard Neutron networking driver in Octavia.

As of Pike, it is recommended to run Octavia as a standalone load balancing solution. Neutron LBaaS
is deprecated in the Queens release, and Octavia is its replacement. Whenever possible, operators are
strongly advised to migrate to Octavia. For end-users, this transition should be relatively seamless,
because Octavia supports the Neutron LBaaS v2 API and it has a similar CLI interface. Alternatively, if
end-users cannot migrate on their side in the forseable future, operators could enable the experimental
Octavia proxy plugin in Neutron LBaaS.

It is also possible to use Octavia as a Neutron LBaaS plugin, in the same way as any other vendor. You
can think of Octavia as an "open source vendor" for Neutron LBaaS.

Octavia supports third-party vendor drivers just like Neutron LBaaS, and fully replaces Neutron LBaaS
as the load balancing solution for OpenStack.

For further information on OpenStack Neutron LBaaS deprecation, please refer to https://wiki.openstack.
org/wiki/Neutron/LBaaS/Deprecation.

Octavia terminology

Before you proceed further in this introduction, please note:

Experience shows thatwithin the subsegment of the IT industry that creates, deploys, and uses load bal-
ancing devices or services terminology is often used inconsistently. To reduce confusion, the Octavia
team has created a glossary of terms as they are defined and used within the context of the Octavia
project and Neutron LBaaS version 2. This glossary is available here: Octavia Glossary

If you are familiar with Neutron LBaaS version 1 terms and usage, it is especially important for you to
understand how the meanings of the terms "VIP," "load balancer," and "load balancing," have changed
in Neutron LBaaS version 2.

Our use of these terms should remain consistent with the Octavia Glossary throughout Octavia’s docu-
mentation, in discussions held by Octavia team members on public mailing lists, in IRC channels, and
at conferences. To avoid misunderstandings, it’s a good idea to familiarize yourself with these glossary
definitions.

1.1. Getting Started 3

https://wiki.openstack.org/wiki/Neutron/LBaaS/Deprecation
https://wiki.openstack.org/wiki/Neutron/LBaaS/Deprecation

Octavia Documentation, Release 15.1.0.dev35

A 10,000-foot overview of Octavia components

Controller Worker Driver

Certificate
Driver

Compute
Driver

Network
Driver

Amphora
Driver

NeutronNova
Barbican /
Castellan

Oslo
Messaging

Octavia API

Octavia
Worker

Health
Manager

Housekeeping
Manager

Database

Amphora

Amphora
Driver

Driver Agent

Octavia version 4.0 consists of the following major components:

• amphorae - Amphorae are the individual virtual machines, containers, or bare metal servers that
accomplish the delivery of load balancing services to tenant application environments. In Octavia
version 0.8, the reference implementation of the amphorae image is an Ubuntu virtual machine
running HAProxy.

• controller - The Controller is the "brains" of Octavia. It consists of five sub-components, which
are individual daemons. They can be run on separate back-end infrastructure if desired:

– API Controller - As the name implies, this subcomponent runs Octavia’s API. It takes API
requests, performs simple sanitizing on them, and ships them off to the controller worker over
the Oslo messaging bus.

– Controller Worker - This subcomponent takes sanitized API commands from the API con-
troller and performs the actions necessary to fulfill the API request.

– Health Manager - This subcomponent monitors individual amphorae to ensure they are up
and running, and otherwise healthy. It also handles failover events if amphorae fail unexpect-
edly.

– Housekeeping Manager - This subcomponent cleans up stale (deleted) database records and
manages amphora certificate rotation.

– Driver Agent - The driver agent receives status and statistics updates from provider drivers.

• network - Octavia cannot accomplish what it does without manipulating the network environment.
Amphorae are spun up with a network interface on the "load balancer network," and they may also
plug directly into tenant networks to reach back-end pool members, depending on how any given

1.1. Getting Started 4

Octavia Documentation, Release 15.1.0.dev35

load balancing service is deployed by the tenant.

For a more complete description of Octavia’s components, please see the Octavia v0.5 Component Design
document within this documentation repository.

1.1.2 Octavia Glossary
As the Octavia project evolves, it’s important that people working on Octavia, users using Octavia, and
operators deploying Octavia use a common set of terminology in order to avoid misunderstandings and
confusion. To that end, we are providing the following glossary of terms.

Note also that many of these terms are expanded upon in design documents in this same repository. What
follows is a brief but necessarily incomplete description of these terms.

Amphora
Virtual machine, container, dedicated hardware, appliance or device that actually performs the task
of load balancing in the Octavia system. More specifically, an amphora takes requests from clients
on the front-end and distributes these to back-end systems. Amphorae communicate with their
controllers over the LB Network through a driver interface on the controller.

Amphora Load Balancer Driver
Component of the controller that does all the communication with amphorae. Drivers communi-
cate with the controller through a generic base class and associated methods, and translate these
into control commands appropriate for whatever type of software is running on the back-end am-
phora corresponding with the driver. This communication happens over the LB network.

Apolocation
Term used to describe when two or more amphorae are not colocated on the same physical hardware
(which is often essential in HA topologies). May also be used to describe two or more loadbal-
ancers which are not colocated on the same amphora.

Controller
Daemon with access to both the LB Network and OpenStack components which coordinates and
manages the overall activity of the Octavia load balancing system. Controllers will usually use an
abstracted driver interface (usually a base class) for communicating with various other components
in the OpenStack environment in order to facilitate loose coupling with these other components.
These are the "brains" of the Octavia system.

HAProxy
Load balancing software used in the reference implementation for Octavia. (See http://www.
haproxy.org/). HAProxy processes run on amphorae and actually accomplish the task of delivering
the load balancing service.

Health Monitor
An object that defines a check method for each member of the pool. The health monitor itself is a
pure-db object which describes the method the load balancing software on the amphora should use
to monitor the health of back-end members of the pool with which the health monitor is associated.

L7 Policy
Layer 7 Policy

Collection of L7 rules that get logically ANDed together as well as a routing policy for any given
HTTP or terminated HTTPS client requests which match said rules. An L7 Policy is associated
with exactly one HTTP or terminated HTTPS listener.

For example, a user could specify an L7 policy that any client request that matches the L7 rule
"request URI starts with ’/api’" should get routed to the "api" pool.

1.1. Getting Started 5

http://www.haproxy.org/
http://www.haproxy.org/

Octavia Documentation, Release 15.1.0.dev35

L7 Rule
Layer 7 Rule

Single logical expression used to match a condition present in a given HTTP or terminated HTTPS
request. L7 rules typically match against a specific header or part of the URI and are used in
conjunction with L7 policies to accomplish L7 switching. An L7 rule is associated with exactly
one L7 policy.

For example, a user could specify an L7 rule that matches any request URI path that begins with
"/api"

L7 Switching
Layer 7 Switching

This is a load balancing feature specific to HTTP or terminated HTTPS sessions, in which different
client requests are routed to different back-end pools depending on one or more layer 7 policies the
user might configure.

For example, using L7 switching, a user could specify that any requests with a URI path that starts
with "/api" get routed to the "api" back-end pool, and that all other requests get routed to the default
pool.

LB Network
Load Balancer Network. The network over which the controller(s) and amphorae communicate.
The LB network itself will usually be a nova or neutron network to which both the controller and
amphorae have access, but is not associated with any one tenant. The LB Network is generally also
not part of the undercloud and should not be directly exposed to any OpenStack core components
other than the Octavia Controller.

Listener
Object representing the listening endpoint of a load balanced service. TCP / UDP port, as well
as protocol information and other protocol- specific details are attributes of the listener. Notably,
though, the IP address is not.

Load Balancer
Object describing a logical grouping of listeners on one or more VIPs and associated with one or
more amphorae. (Our "Loadbalancer" most closely resembles a Virtual IP address in other load
balancing implementations.) Whether the load balancer exists on more than one amphora depends
on the topology used. The load balancer is also often the root object used in various Octavia APIs.

Load Balancing
The process of taking client requests on a front-end interface and distributing these to a number of
back-end servers according to various rules. Load balancing allows for many servers to participate
in delivering some kind TCP or UDP service to clients in an effectively transparent and often
highly-available and scalable way (from the client’s perspective).

Member
Object representing a single back-end server or system that is a part of a pool. A member is
associated with only one pool.

Octavia
Octavia is an operator-grade open source load balancing solution. Also known as the Octavia
system or Octavia project. The term by itself should be used to refer to the system as a whole and
not any individual component within the Octavia load balancing system.

Pool
Object representing the grouping of members to which the listener forwards client requests. Note
that a pool is associated with only one listener, but a listener might refer to several pools (and

1.1. Getting Started 6

Octavia Documentation, Release 15.1.0.dev35

switch between them using layer 7 policies).

TLS Termination
Transport Layer Security Termination

Type of load balancing protocol where HTTPS sessions are terminated (decrypted) on the amphora
as opposed to encrypted packets being forwarded on to back-end servers without being decrypted
on the amphora. Also known as SSL termination. The main advantages to this type of load balanc-
ing are that the payload can be read and / or manipulated by the amphora, and that the expensive
tasks of handling the encryption are off-loaded from the back-end servers. This is particularly
useful if layer 7 switching is employed in the same listener configuration.

VIP
Virtual IP Address

Single service IP address which is associated with a load balancer. This is similar to what is de-
scribed here: http://en.wikipedia.org/wiki/Virtual_IP_address In a highly available load balancing
topology in Octavia, the VIP might be assigned to several amphorae, and a layer-2 protocol like
CARP, VRRP, or HSRP (or something unique to the networking infrastructure) might be used to
maintain its availability. In layer-3 (routed) topologies, the VIP address might be assigned to an
upstream networking device which routes packets to amphorae, which then load balance requests
to back-end members.

1.1.3 Developer / Operator Quick Start Guide
This document is intended for developers and operators. For an end-user guide, please see the end-user
quick-start guide and cookbook in this documentation repository.

Running Octavia in devstack

tl;dr

• 8GB RAM minimum

• "vmx" or "svm" in /proc/cpuinfo

• Ubuntu 18.04 or later

• On that host, copy and run as root: octavia/devstack/contrib/new-octavia-devstack.sh

System requirements

Octavia in devstack with a default (non-HA) configuration will deploy one amphora VM per loadbalancer
deployed. The current default amphora image also requires at least 1GB of RAM to run effectively. As
such it is important that your devstack environment has enough resources dedicated to it to run all its
necessary components. For most devstack environments, the limiting resource will be RAM. At the
present time, we recommend at least 12GB of RAM for the standard devstack defaults, or 8GB of RAM
if cinder and swift are disabled. More is recommended if you also want to run a couple of application
server VMs (so that Octavia has something to load balance within your devstack environment).

Also, because the current implementation of Octavia delivers load balancing services using amphorae
that run as Nova virtual machines, it is effectively mandatory to enable nested virtualization. The software
will work with software emulated CPUs, but be unusably slow. The idea is to make sure the BIOS of
the systems you’re running your devstack on have virtualization features enabled (Intel VT-x, AMD-V,
etc.), and the virtualization software you’re using exposes these features to the guest VM (sometimes
called nested virtualization). For more information, see: Configure DevStack with KVM-based Nested
Virtualization

1.1. Getting Started 7

http://en.wikipedia.org/wiki/Virtual_IP_address
https://docs.openstack.org/devstack/latest/guides/devstack-with-nested-kvm.html
https://docs.openstack.org/devstack/latest/guides/devstack-with-nested-kvm.html

Octavia Documentation, Release 15.1.0.dev35

The devstack environment we recommend should be running Ubuntu Linux 18.04 or later. These in-
structions may work for other Linux operating systems or environments. However, most people doing
development on Octavia are using Ubuntu for their test environment, so you will probably have the easiest
time getting your devstack working with that OS.

Deployment

1. Deploy an Ubuntu 18.04 or later Linux host with at least 8GB of RAM. (This can be a VM, but
again, make sure you have nested virtualization features enabled in your BIOS and virtualization
software.)

2. Copy devstack/contrib/new-octavia-devstack.sh from this source repository onto that
host.

3. Run new-octavia-devstack.sh as root.

4. Deploy loadbalancers, listeners, etc.

Running Octavia in production

Notes

Disclaimers

This document is not a definitive guide for deploying Octavia in every production environment. There are
many ways to deploy Octavia depending on the specifics and limitations of your situation. For example, in
our experience, large production environments often have restrictions, hidden "features" or other elements
in the network topology which mean the default Neutron networking stack (with which Octavia was
designed to operate) must be modified or replaced with a custom networking solution. This may also
mean that for your particular environment, you may need to write your own custom networking driver to
plug into Octavia. Obviously, instructions for doing this are beyond the scope of this document.

We hope this document provides the cloud operator or distribution creator with a basic understanding
of how the Octavia components fit together practically. Through this, it should become more obvious
how components of Octavia can be divided or duplicated across physical hardware in a production cloud
environment to aid in achieving scalability and resiliency for the Octavia load balancing system.

In the interest of keeping this guide somewhat high-level and avoiding obsolescence or
operator/distribution-specific environment assumptions by specifying exact commands that should
be run to accomplish the tasks below, we will instead just describe what needs to be done and leave
it to the cloud operator or distribution creator to "do the right thing" to accomplish the task for their
environment. If you need guidance on specific commands to run to accomplish the tasks described
below, we recommend reading through the plugin.sh script in devstack subdirectory of this project. The
devstack plugin exercises all the essential components of Octavia in the right order, and this guide will
mostly be an elaboration of this process.

Environment Assumptions

The scope of this guide is to provide a basic overview of setting up all the components of Octavia in a
production environment, assuming that the default in-tree drivers and components (including a "standard"
Neutron install) are going to be used.

For the purposes of this guide, we will therefore assume the following core components have already
been set up for your production OpenStack environment:

• Nova

1.1. Getting Started 8

Octavia Documentation, Release 15.1.0.dev35

• Neutron

• Glance

• Barbican (if TLS offloading functionality is enabled)

• Keystone

• Rabbit

• MySQL

Production Deployment Walkthrough

Create Octavia User

By default Octavia will use the ’octavia’ user for keystone authentication, and the admin user for interac-
tions with all other services.

You must:

• Create ’octavia’ user.

• Add the ’admin’ role to this user.

Load Balancer Network Configuration

Octavia makes use of an "LB Network" exclusively as a management network that the controller uses
to talk to amphorae and vice versa. All the amphorae that Octavia deploys will have interfaces and
IP addresses on this network. Therefore, it’s important that the subnet deployed on this network be
sufficiently large to allow for the maximum number of amphorae and controllers likely to be deployed
throughout the lifespan of the cloud installation.

At the present time, though IPv4 subnets are used by default for the LB Network (for example:
172.16.0.0/12), IPv6 subnets can be used for the LB Network.

The LB Network is isolated from tenant networks on the amphorae by means of network namespaces on
the amphorae. Therefore, operators need not be concerned about overlapping subnet ranges with tenant
networks.

You must also create a Neutron security group which will be applied to amphorae created on the LB
network. It needs to allow amphorae to send UDP heartbeat packets to the health monitor (by default,
UDP port 5555), and ingress on the amphora’s API (by default, TCP port 9443). It can also be helpful
to allow SSH access to the amphorae from the controller for troubleshooting purposes (ie. TCP port 22),
though this is not strictly necessary in production environments.

Amphorae will send periodic health checks to the controller’s health manager. Any firewall protecting
the interface on which the health manager listens must allow these packets from amphorae on the LB
Network (by default, UDP port 5555).

Finally, you need to add routing or interfaces to this network such that the Octavia controller (which will
be described below) is able to communicate with hosts on this network. This also implies you should
have some idea where you’re going to run the Octavia controller components.

You must:

• Create the ’lb-mgmt-net’.

• Assign the ’lb-mgmt-net’ to the admin tenant.

1.1. Getting Started 9

Octavia Documentation, Release 15.1.0.dev35

• Create a subnet and assign it to the ’lb-mgmt-net’.

• Create neutron security group for amphorae created on the ’lb-mgmt-net’. which allows appropri-
ate access to the amphorae.

• Update firewall rules on the host running the octavia health manager to allow health check messages
from amphorae.

• Add appropriate routing to / from the ’lb-mgmt-net’ such that egress is allowed, and the controller
(to be created later) can talk to hosts on this network.

Create Amphora Image

Octavia deploys amphorae based on a virtual machine disk image. By default we use the OpenStack
diskimage-builder project for this. Scripts to accomplish this are within the diskimage-create directory
of this repository. In addition to creating the disk image, configure a Nova flavor to use for amphorae,
and upload the disk image to glance.

You must:

• Create amphora disk image using OpenStack diskimage-builder.

• Create a Nova flavor for the amphorae.

• Add amphora disk image to glance.

• Tag the above glance disk image with ’amphora’.

Install Octavia Controller Software

This seems somewhat obvious, but the important things to note here are that you should put this some-
where on the network where it will have access to the database (to be initialized below), the oslo mes-
saging system, and the LB network. Octavia uses the standard python setuptools, so installation of the
software itself should be straightforward.

Running multiple instances of the individual Octavia controller components on separate physical hosts
is recommended in order to provide scalability and availability of the controller software.

The Octavia controller presently consists of several components which may be split across several phys-
ical machines. For the 4.0 release of Octavia, the important (and potentially separable) components are
the controller worker, housekeeper, health manager and API controller. Please see the component di-
agrams elsewhere in this repository’s documentation for detailed descriptions of each. Please use the
following table for hints on which controller components need access to outside resources:

Component Resource
LB Network Database OSLO messaging

API No Yes Yes
controller worker Yes Yes Yes
health monitor Yes Yes No
housekeeper Yes Yes No

In addition to talking to each other via Oslo messaging, various controller components must also com-
municate with other OpenStack components, like nova, neutron, barbican, etc. via their APIs.

You must:

1.1. Getting Started 10

Octavia Documentation, Release 15.1.0.dev35

• Pick appropriate host(s) to run the Octavia components.

• Install the dependencies for Octavia.

• Install the Octavia software.

Create Octavia Keys and Certificates

Octavia presently allows for one method for the controller to communicate with amphorae: The amphora
REST API. Both amphora API and Octavia controller do bi-directional certificate-based authentication in
order to authenticate and encrypt communication. You must therefore create appropriate TLS certificates
which will be used for key signing, authentication, and encryption. There is a detailed Octavia Certificate
Configuration Guide to guide you through this process.

Please note that certificates created with this guide may not meet your organization’s security policies,
since they are self-signed certificates with arbitrary bit lengths, expiration dates, etc. Operators should
obviously follow their own security guidelines in creating these certificates.

In addition to the above, it can sometimes be useful for cloud operators to log into running amphorae
to troubleshoot problems. The standard method for doing this is to use SSH from the host running the
controller worker. In order to do this, you must create an SSH public/private key pair specific to your
cloud (for obvious security reasons). You must add this keypair to nova. You must then also update
octavia.conf with the keypair name you used when adding it to nova so that amphorae are initialized with
it on boot.

See the Troubleshooting Tips section below for an example of how an operator can SSH into an amphora.

You must:

• Create TLS certificates for communicating with the amphorae.

• Create SSH keys for communicating with the amphorae.

• Add the SSH keypair to nova.

Configuring Octavia

Going into all of the specifics of how Octavia can be configured is actually beyond the scope of this
document. For full documentation of this, please see the configuration reference: Octavia Configuration
Options

A configuration template can be found in etc/octavia.conf in this repository.

It’s also important to note that this configuration file will need to be updated with UUIDs of the LB
network, amphora security group, amphora image tag, SSH key path, TLS certificate path, database
credentials, etc.

At a minimum, the configuration should specify the following, beyond the defaults. Your specific envi-
ronment may require more than this:

1.1. Getting Started 11

Octavia Documentation, Release 15.1.0.dev35

Section Configuration parameter
DEFAULT transport_url
database connection
certificates ca_certificate
certificates ca_private_key
certificates ca_private_key_passphrase
controller_worker amp_boot_network_list
controller_worker amp_flavor_id
controller_worker amp_image_owner_id
controller_worker amp_image_tag
controller_worker amp_secgroup_list
controller_worker amp_ssh_key_name1

controller_worker amphora_driver
controller_worker compute_driver
controller_worker loadbalancer_topology
controller_worker network_driver
haproxy_amphora client_cert
haproxy_amphora server_ca
health_manager bind_ip
health_manager controller_ip_port_list
health_manager heartbeat_key
keystone_authtoken admin_password
keystone_authtoken admin_tenant_name
keystone_authtoken admin_user
keystone_authtoken www_authenticate_uri
keystone_authtoken auth_version
oslo_messaging topic
oslo_messaging_rabbit rabbit_host
oslo_messaging_rabbit rabbit_userid
oslo_messaging_rabbit rabbit_password

You must:

• Create or update /etc/octavia/octavia.conf appropriately.

Initialize Octavia Database

This is controlled through alembic migrations under the octavia/db directory in this repository. A tool
has been created to aid in the initialization of the octavia database. This should be available under /usr/
local/bin/octavia-db-manage on the host on which the octavia controller worker is installed. Note
that this tool looks at the /etc/octavia/octavia.conf file for its database credentials, so initializing
the database must happen after Octavia is configured.

It’s also important to note here that all of the components of the Octavia controller will need direct
access to the database (including the API handler), so you must ensure these components are able to
communicate with whichever host is housing your database.

You must:

• Create database credentials for Octavia.
1 This is technically optional, but extremely useful for troubleshooting.

1.1. Getting Started 12

Octavia Documentation, Release 15.1.0.dev35

• Add these to the /etc/octavia/octavia.conf file.

• Run /usr/local/bin/octavia-db-manage upgrade head on the controller worker host to
initialize the octavia database.

Launching the Octavia Controller

We recommend using upstart / systemd scripts to ensure the components of the Octavia controller are
all started and kept running. It of course doesn’t hurt to first start by running these manually to ensure
configuration and communication is working between all the components.

You must:

• Make sure each Octavia controller component is started appropriately.

Install Octavia extension in Horizon

This isn’t strictly necessary for all cloud installations, however, if yours makes use of the Horizon GUI
interface for tenants, it is probably also a good idea to make sure that it is configured with the Octavia
extension.

You may:

• Install the octavia GUI extension in Horizon

Test deployment

If all of the above instructions have been followed, it should now be possible to deploy load balancing
services using the OpenStack CLI, communicating with the Octavia v2 API.

Example:

openstack loadbalancer create --name lb1 --vip-subnet-id private-subnet
openstack loadbalancer show lb1
openstack loadbalancer listener create --name listener1 --protocol HTTP --
↪→protocol-port 80 lb1

Upon executing the above, log files should indicate that an amphora is deployed to house the load balancer,
and that this load balancer is further modified to include a listener. The amphora should be visible to the
octavia or admin tenant using the openstack server list command, and the listener should respond
on the load balancer’s IP on port 80 (with an error 503 in this case, since no pool or members have been
defined yetbut this is usually enough to see that the Octavia load balancing system is working). For more
information on configuring load balancing services as a tenant, please see the end-user quick-start guide
and cookbook.

Troubleshooting Tips

The troubleshooting hints in this section are meant primarily for developers or operators troubleshoot-
ing underlying Octavia components, rather than end-users or tenants troubleshooting the load balancing
service itself.

1.1. Getting Started 13

Octavia Documentation, Release 15.1.0.dev35

SSH into Amphorae

If you are using the reference amphora image, it may be helpful to log into running amphorae when
troubleshooting service problems. To do this, first discover the lb_network_ip address of the amphora
you would like to SSH into by looking in the amphora table in the octavia database. Then from the host
housing the controller worker, run:

ssh -i /etc/octavia/.ssh/octavia_ssh_key ubuntu@[lb_network_ip]

1.2 Installation and Configuration Guides

1.2.1 Building Octavia Amphora Images
Octavia is an operator-grade reference implementation for Load Balancing as a Service (LBaaS) for
OpenStack. The component of Octavia that does the load balancing is known as amphora. Amphora
may be a virtual machine, may be a container, or may run on bare metal. Creating images for bare metal
amphora installs is outside the scope of this version but may be added in a future release.

Prerequisites

Python pip should be installed as well as the python modules found in the requirements.txt file.

To do so, you can use the following command on Ubuntu:

$ # Install python pip
$ sudo apt install python-pip
$ # Eventually create a virtualenv
$ sudo apt install python-virtualenv
$ virtualenv octavia_disk_image_create
$ source octavia_disk_image_create/bin/activate
$ # Install octavia requirements
$ cd octavia/diskimage-create
$ pip install -r requirements.txt

Your cache directory should have at least 1GB available, the working directory will need ~1.5GB, and
your image destination will need ~500MB

The script will use the version of diskimage-builder installed on your system, or it can be overridden by
setting the following environment variables:

DIB_REPO_PATH = /<some directory>/diskimage-builder
DIB_ELEMENTS = /<some directory>/diskimage-builder/elements

The following packages are required on each platform:

Ubuntu

$ sudo apt install qemu-utils git kpartx debootstrap

Fedora, CentOS and Red Hat Enterprise Linux

$ sudo dnf install qemu-img git e2fsprogs policycoreutils-python-utils

1.2. Installation and Configuration Guides 14

Octavia Documentation, Release 15.1.0.dev35

Test Prerequisites

The tox image tests require libguestfs-tools 1.24 or newer. Libguestfs allows testing the Amphora image
without requiring root privileges. On Ubuntu systems you also need to give read access to the kernels
for the user running the tests:

$ sudo chmod 0644 /boot/vmlinuz*

Usage

This script and associated elements will build Amphora images. Current support is with an Ubuntu and
CentOS Stream base OS and HAProxy. The script can use RHEL and Fedora as a base OS but these will
not initially be tested or supported. As the project progresses and/or the diskimage-builder project adds
support for additional base OS options they may become available for Amphora images. This does not
mean that they are necessarily supported or tested.

Note

If your cloud has multiple hardware architectures available to nova, remember to set the appropriate
hw_architecture property on the image when you load it into glance. For example, when loading
an amphora image built for "amd64" you would add "--property hw_architecture=’x86_64’" to your
"openstack image create" command line.

The script will use environment variables to customize the build beyond the Octavia project defaults,
such as adding elements.

The supported and tested image is created by using the diskimage-create.sh defaults (no command line
parameters or environment variables set). As the project progresses we may add additional supported
configurations.

Command syntax:

$ diskimage-create.sh
[-a **amd64** | armhf | aarch64 | ppc64le]
[-b **haproxy**]
[-c **~/.cache/image-create** | <cache directory>]
[-d **jammy**/**9-stream**/**9** | <other release id>]
[-e]
[-f]
[-g **repository branch** | stable/train | stable/stein | ...]
[-h]
[-i **ubuntu-minimal** | fedora | centos-minimal | rhel | rocky]
[-k <kernel package name>]
[-l <log file>]
[-m]
[-n]
[-o **amphora-x64-haproxy** | <filename>]
[-p]
[-r <root password>]
[-s **2** | <size in GB>]
[-t **qcow2** | tar]

(continues on next page)

1.2. Installation and Configuration Guides 15

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

[-v]
[-w <working directory>]
[-x]
[-y]

'-a' is the architecture type for the image (default: amd64)
'-b' is the backend type (default: haproxy)
'-c' is the path to the cache directory (default: ~/.cache/image-create)
'-d' distribution release id (default on ubuntu: jammy)
'-e' enable complete mandatory access control systems when available␣

↪→(default: permissive)
'-f' disable tmpfs for build
'-g' build the image for a specific OpenStack Git branch (default:␣

↪→current repository branch)
'-h' display help message
'-i' is the base OS (default: ubuntu-minimal)
'-k' is the kernel meta package name, currently only for ubuntu-minimal␣

↪→base OS (default: linux-image-virtual)
'-l' is output logfile (default: none)
'-m' enable vCPU pinning optimizations (default: disabled)
'-n' disable sshd (default: enabled)
'-o' is the output image file name
'-p' install amphora-agent from distribution packages (default: disabled)"
'-r' enable the root account in the generated image (default: disabled)
'-s' is the image size to produce in gigabytes (default: 2)
'-t' is the image type (default: qcow2)
'-v' display the script version
'-w' working directory for image building (default: .)
'-x' enable tracing for diskimage-builder
'-y' enable FIPS 140-2 mode in the amphora image

Building Images for Alternate Branches

By default, the diskimage-create.sh script will build an amphora image using the Octavia Git branch of
the repository. If you need an image for a specific branch, such as "stable/train", you need to specify the
"-g" option with the branch name. An example for "stable/train" would be:

diskimage-create.sh -g stable/train

Advanced Git Branch/Reference Based Images

If you need to build an image from a local repository or with a specific Git reference or branch, you will
need to set some environment variables for diskimage-builder.

Note

These advanced settings will override the "-g" diskimage-create.sh setting.

1.2. Installation and Configuration Guides 16

Octavia Documentation, Release 15.1.0.dev35

Building From a Local Octavia Repository

Set the DIB_REPOLOCATION_amphora_agent variable to the location of the Git repository containing
the amphora agent:

export DIB_REPOLOCATION_amphora_agent=/opt/stack/octavia

Building With a Specific Git Reference

Set the DIB_REPOREF_amphora_agent variable to point to the Git branch or reference of the amphora
agent:

export DIB_REPOREF_amphora_agent=refs/changes/40/674140/7

See the Environment Variables section below for additional information and examples.

Amphora Agent Upper Constraints

You may also need to specify which version of the OpenStack upper-constraints.txt file will be used to
build the image. For example, to specify the "stable/train" upper constraints Git branch, set the following
environment variable:

export DIB_REPOLOCATION_upper_constraints=https://opendev.org/openstack/
↪→requirements/raw/branch/stable/train/upper-constraints.txt

See Dependency Management for OpenStack Projects for more information.

Environment Variables

These are optional environment variables that can be set to override the script defaults.

DIB_REPOLOCATION_amphora_agent

• Location of the amphora-agent code that will be installed in the image.

• Default: https://opendev.org/openstack/octavia

• Example: /tmp/octavia

DIB_REPOREF_amphora_agent

• The Git reference to checkout for the amphora-agent code inside the image.

• Default: The current branch

• Example: stable/stein

• Example: refs/changes/40/674140/7

DIB_REPOLOCATION_octavia_lib

• Location of the octavia-lib code that will be installed in the image.

• Default: https://opendev.org/openstack/octavia-lib

• Example: /tmp/octavia-lib

DIB_REPOREF_octavia_lib

• The Git reference to checkout for the octavia-lib code inside the image.

1.2. Installation and Configuration Guides 17

https://docs.openstack.org/project-team-guide/dependency-management.html
https://opendev.org/openstack/octavia
https://opendev.org/openstack/octavia-lib

Octavia Documentation, Release 15.1.0.dev35

• Default: master or stable branch for released OpenStack series installs.

• Example: stable/ussuri

• Example: refs/changes/19/744519/2

DIB_REPOLOCATION_upper_constraints

• Location of the upper-constraints.txt file used for the image.

• Default: The upper-constraints.txt for the current branch

• Example: https://opendev.org/openstack/requirements/raw/branch/master/
upper-constraints.txt

• Example: https://opendev.org/openstack/requirements/raw/branch/stable/train/
upper-constraints.txt

CLOUD_INIT_DATASOURCES

• Comma separated list of cloud-int datasources

• Default: ConfigDrive

• Options: NoCloud, ConfigDrive, OVF, MAAS, Ec2, <others>

• Reference: https://launchpad.net/cloud-init

DIB_DISTRIBUTION_MIRROR

• URL to a mirror for the base OS selected

• Default: None

DIB_ELEMENTS

• Override the elements used to build the image

• Default: None

DIB_LOCAL_ELEMENTS

• Elements to add to the build (requires DIB_LOCAL_ELEMENTS_PATH be specified)

• Default: None

DIB_LOCAL_ELEMENTS_PATH

• Path to the local elements directory

• Default: None

DIB_REPO_PATH

• Directory containing diskimage-builder

• Default: <directory above OCTAVIA_HOME>/diskimage-builder

• Reference: https://github.com/openstack/diskimage-builder

OCTAVIA_REPO_PATH

• Directory containing octavia

• Default: <directory above the script location>

• Reference: https://github.com/openstack/octavia

1.2. Installation and Configuration Guides 18

https://opendev.org/openstack/requirements/raw/branch/master/upper-constraints.txt
https://opendev.org/openstack/requirements/raw/branch/master/upper-constraints.txt
https://opendev.org/openstack/requirements/raw/branch/stable/train/upper-constraints.txt
https://opendev.org/openstack/requirements/raw/branch/stable/train/upper-constraints.txt
https://launchpad.net/cloud-init
https://github.com/openstack/diskimage-builder
https://github.com/openstack/octavia

Octavia Documentation, Release 15.1.0.dev35

DIB_OCTAVIA_AMP_USE_NFTABLES

• Boolean that configures nftables inside the amphora image

• Required for SR-IOV enabled amphora

• Default: True

Using distribution packages for amphora agent

By default, amphora agent is installed from Octavia Git repository. To use distribution packages, use the
"-p" option.

Note this needs a base system image with the required repositories enabled (for example RDO repositories
for CentOS/Fedora). One of these variables must be set:

DIB_LOCAL_IMAGE

• Path to the locally downloaded image

• Default: None

DIB_CLOUD_IMAGES

• Directory base URL to download the image from

• Default: depends on the distribution

RHEL specific variables

Building a RHEL-based image requires:

• a Red Hat Enterprise Linux KVM Guest Image, manually download from the Red Hat Cus-
tomer Portal. Set the DIB_LOCAL_IMAGE variable to point to the file. More details at:
<DIB_REPO_PATH>/elements/rhel

• a Red Hat subscription for the matching Red Hat OpenStack Platform repository if you want
to install the amphora agent from the official distribution package (requires setting -p option
in diskimage-create.sh). Set the needed registration parameters depending on your configu-
ration. More details at: <DIB_REPO_PATH>/elements/rhel-common

Here is an example with Customer Portal registration and OSP 15 repository:

$ export DIB_LOCAL_IMAGE='/tmp/rhel-server-8.0-x86_64-kvm.qcow2'

$ export REG_METHOD='portal' REG_REPOS='rhel-8-server-openstack-15-rpms'

$ export REG_USER='<user>' REG_PASSWORD='<password>' REG_AUTO_ATTACH=true

This example uses registration via a Satellite (the activation key must enable an OSP repository):

$ export DIB_LOCAL_IMAGE='/tmp/rhel-server-8.1-x86_64-kvm.qcow2'

$ export REG_METHOD='satellite' REG_ACTIVATION_KEY="<activation key>"

$ export REG_SAT_URL="<satellite url>" REG_ORG="<satellite org>"

1.2. Installation and Configuration Guides 19

Octavia Documentation, Release 15.1.0.dev35

Building in a virtualenv with tox

To make use of a virtualenv for Python dependencies you may run tox. Note that you may still need to
install binary dependencies on the host for the build to succeed.

If you wish to customize your build modify tox.ini to pass on relevant environment variables or com-
mand line arguments to the diskimage-create.sh script.

$ tox -e build

Container Support

The Docker command line required to import a tar file created with this script is:

$ docker import - image:amphora-x64-haproxy < amphora-x64-haproxy.tar

References

This documentation and script(s) leverage prior work by the OpenStack TripleO and Sahara teams. Thank
you to everyone that worked on them for providing a great foundation for creating Octavia Amphora
images.

• https://opendev.org/openstack/diskimage-builder

• https://opendev.org/openstack/tripleo-image-elements

• https://opendev.org/openstack/sahara-image-elements

Copyright

Copyright 2014 Hewlett-Packard Development Company, L.P.

All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in
compliance with the License. You may obtain a copy of the License at

• http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is
distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied. See the License for the specific language governing permissions and limitations
under the License.

1.2.2 Octavia Certificate Configuration Guide
This document is intended for Octavia administrators setting up certificate authorities for the two-way
TLS authentication used in Octavia for command and control of Amphora.

This guide does not apply to the configuration of TERMINATED_TLS listeners on load balancers. See
the Load Balancing Cookbook for instructions on creating TERMINATED_TLS listeners.

1.2. Installation and Configuration Guides 20

https://opendev.org/openstack/diskimage-builder
https://opendev.org/openstack/tripleo-image-elements
https://opendev.org/openstack/sahara-image-elements
http://www.apache.org/licenses/LICENSE-2.0
../../user/guides/basic-cookbook.html#deploy-a-tls-terminated-https-load-balancer

Octavia Documentation, Release 15.1.0.dev35

Two-way TLS Authentication in Octavia

The Octavia controller processes communicate with the Amphora over a TLS connection much like an
HTTPS connection to a website. However, Octavia validates that both sides are trusted by doing a two-
way TLS authentication.

Note

This is a simplification of the full TLS handshake process. See the TLS 1.3 RFC 8446 for the full
handshake.

Phase One

When a controller process, such as the Octavia worker process, connects to an Amphora, the Amphora
will present its server certificate to the controller. The controller will then validate it against the server
Certificate Authority (CA) certificate stored on the controller. If the presented certificate is validated
against the server CA certificate, the connection goes into phase two of the two-way TLS authentication.

Phase Two

Once phase one is complete, the controller will present its client certificate to the Amphora. The Amphora
will then validate the certificate against the client CA certificate stored inside the Amphora. If this
certificate is successfully validated, the rest of the TLS handshake will continue to establish the secure
communication channel between the controller and the Amphora.

Certificate Lifecycles

The server certificates are uniquely generated for each amphora by the controller using the server cer-
tificate authority certificates and keys. These server certificates are automatically rotated by the Octavia
housekeeping controller process as they near expiration.

The client certificates are used for the Octavia controller processes. These are managed by the operator
and due to their use on the control plane of the cloud, typically have a long lifetime.

See the Operator Maintenance Guide for more information about the certificate lifecycles.

Creating the Certificate Authorities

As discussed above, this configuration uses two certificate authorities; one for the server certificates, and
one for the client certificates.

Note

Technically Octavia can be run using just one certificate authority by using it to issue certificates for
both roles. However, this weakens the security as a server certificate from an amphora could be used
to impersonate a controller. We recommend you use two certificate authorities for all deployments
outside of testing.

For this document we are going to setup simple OpenSSL based certificate authorities. However, any
standards compliant certificate authority software can be used to create the required certificates.

1.2. Installation and Configuration Guides 21

https://tools.ietf.org/html/rfc8446
operator-maintenance.html#rotating-cryptographic-certificates

Octavia Documentation, Release 15.1.0.dev35

1. Create a working directory for the certificate authorities. Make sure to set the proper permissions
on this directory such that others cannot access the private keys, random bits, etc. being generated
here.

$ mkdir certs
$ chmod 700 certs
$ cd certs

2. Create the OpenSSL configuration file. This can be shared between the two certificate authorities.

$ vi openssl.cnf

OpenSSL root CA configuration file.

[ca]
`man ca`
default_ca = CA_default

[CA_default]
Directory and file locations.
dir = ./
certs = $dir/certs
crl_dir = $dir/crl
new_certs_dir = $dir/newcerts
database = $dir/index.txt
serial = $dir/serial
RANDFILE = $dir/private/.rand

The root key and root certificate.
private_key = $dir/private/ca.key.pem
certificate = $dir/certs/ca.cert.pem

For certificate revocation lists.
crlnumber = $dir/crlnumber
crl = $dir/crl/ca.crl.pem
crl_extensions = crl_ext
default_crl_days = 30

SHA-1 is deprecated, so use SHA-2 instead.
default_md = sha256

name_opt = ca_default
cert_opt = ca_default
default_days = 3650
preserve = no
policy = policy_strict

[policy_strict]
The root CA should only sign intermediate certificates that match.
See the POLICY FORMAT section of `man ca`.
countryName = match

(continues on next page)

1.2. Installation and Configuration Guides 22

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

stateOrProvinceName = match
organizationName = match
organizationalUnitName = optional
commonName = supplied
emailAddress = optional

[req]
Options for the `req` tool (`man req`).
default_bits = 2048
distinguished_name = req_distinguished_name
string_mask = utf8only

SHA-1 is deprecated, so use SHA-2 instead.
default_md = sha256

Extension to add when the -x509 option is used.
x509_extensions = v3_ca

[req_distinguished_name]
See <https://en.wikipedia.org/wiki/Certificate_signing_request>.
countryName = Country Name (2 letter code)
stateOrProvinceName = State or Province Name
localityName = Locality Name
0.organizationName = Organization Name
organizationalUnitName = Organizational Unit Name
commonName = Common Name
emailAddress = Email Address

Optionally, specify some defaults.
countryName_default = US
stateOrProvinceName_default = Oregon
localityName_default =
0.organizationName_default = OpenStack
organizationalUnitName_default = Octavia
emailAddress_default =
commonName_default = example.org

[v3_ca]
Extensions for a typical CA (`man x509v3_config`).
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid:always,issuer
basicConstraints = critical, CA:true
keyUsage = critical, digitalSignature, cRLSign, keyCertSign

[usr_cert]
Extensions for client certificates (`man x509v3_config`).
basicConstraints = CA:FALSE
nsCertType = client, email
nsComment = "OpenSSL Generated Client Certificate"

(continues on next page)

1.2. Installation and Configuration Guides 23

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid,issuer
keyUsage = critical, nonRepudiation, digitalSignature, keyEncipherment
extendedKeyUsage = clientAuth, emailProtection

[server_cert]
Extensions for server certificates (`man x509v3_config`).
basicConstraints = CA:FALSE
nsCertType = server
nsComment = "OpenSSL Generated Server Certificate"
subjectKeyIdentifier = hash
authorityKeyIdentifier = keyid,issuer:always
keyUsage = critical, digitalSignature, keyEncipherment
extendedKeyUsage = serverAuth

[crl_ext]
Extension for CRLs (`man x509v3_config`).
authorityKeyIdentifier=keyid:always

3. Make any locally required configuration changes to the openssl.cnf. Some settings to consider are:

• The default certificate lifetime is 10 years.

• The default bit length is 2048.

4. Make directories for the two certificate authorities.

$ mkdir client_ca
$ mkdir server_ca

5. Starting with the server certificate authority, prepare the CA.

$ cd server_ca
$ mkdir certs crl newcerts private
$ chmod 700 private
$ touch index.txt
$ echo 1000 > serial

6. Create the server CA key.

• You will need to specify a passphrase to protect the key file.

$ openssl genpkey -algorithm RSA -out private/ca.key.pem -aes-128-cbc -
↪→pkeyopt rsa_keygen_bits:4096
$ chmod 400 private/ca.key.pem

7. Create the server CA certificate.

• You will need to specify the passphrase used in step 6.

• You will also be asked to provide details for the certificate. These are up to you and should
be appropriate for your organization.

• You may want to mention this is the server CA in the common name field.

1.2. Installation and Configuration Guides 24

Octavia Documentation, Release 15.1.0.dev35

• Since this is the CA certificate, you might want to give it a very long lifetime, such as twenty
years shown in this example command.

$ openssl req -config ../openssl.cnf -key private/ca.key.pem -new -x509 -
↪→days 7300 -sha256 -extensions v3_ca -out certs/ca.cert.pem

8. Moving to the client certificate authority, prepare the CA.

$ cd ../client_ca
$ mkdir certs crl csr newcerts private
$ chmod 700 private
$ touch index.txt
$ echo 1000 > serial

9. Create the client CA key.

• You will need to specify a passphrase to protect the key file.

$ openssl genpkey -algorithm RSA -out private/ca.key.pem -aes-128-cbc -
↪→pkeyopt rsa_keygen_bits:4096
$ chmod 400 private/ca.key.pem

10. Create the client CA certificate.

• You will need to specify the passphrase used in step 9.

• You will also be asked to provide details for the certificate. These are up to you and should
be appropriate for your organization.

• You may want to mention this is the client CA in the common name field.

• Since this is the CA certificate, you might want to give it a very long lifetime, such as twenty
years shown in this example command.

$ openssl req -config ../openssl.cnf -key private/ca.key.pem -new -x509 -
↪→days 7300 -sha256 -extensions v3_ca -out certs/ca.cert.pem

11. Create a key for the client certificate to use.

• You can create one certificate and key to be used by all of the controllers or you can create a
unique certificate and key for each controller.

• You will need to specify a passphrase to protect the key file.

$ openssl genpkey -algorithm RSA -out private/client.key.pem -aes-128-cbc␣
↪→-pkeyopt rsa_keygen_bits:2048

12. Create the certificate request for the client certificate used on the controllers.

• You will need to specify the passphrase used in step 11.

• You will also be asked to provide details for the certificate. These are up to you and should
be appropriate for your organization.

• You must fill in the common name field.

• You may want to mention this is the client certificate in the common name field, or the indi-
vidual controller information.

1.2. Installation and Configuration Guides 25

Octavia Documentation, Release 15.1.0.dev35

$ openssl req -config ../openssl.cnf -new -sha256 -key private/client.key.
↪→pem -out csr/client.csr.pem

13. Sign the client certificate request.

• You will need to specify the CA passphrase used in step 9.

• Since this certificate is used on the control plane, you might want to give it a very long
lifetime, such as twenty years shown in this example command.

$ openssl ca -config ../openssl.cnf -extensions usr_cert -days 7300 -
↪→notext -md sha256 -in csr/client.csr.pem -out certs/client.cert.pem

14. Create a concatenated client certificate and key file.

• You will need to specify the CA passphrase used in step 11.

$ openssl rsa -in private/client.key.pem -out private/client.cert-and-key.
↪→pem
$ cat certs/client.cert.pem >> private/client.cert-and-key.pem

Configuring Octavia

In this section we will configure Octavia to use the certificates and keys created during the Creating the
Certificate Authorities section.

1. Copy the required files over to your Octavia controllers.

• Only the Octavia worker, health manager, and housekeeping processes will need access to
these files.

• The first command should return you to the "certs" directory created in step 1 of the Creating
the Certificate Authorities section.

• These commands assume you are running the octavia processes under the "octavia" user.

• Note, some of these steps should be run with "sudo" and are indicated by the "#" prefix.

$ cd ..
mkdir /etc/octavia/certs
chmod 700 /etc/octavia/certs
cp server_ca/private/ca.key.pem /etc/octavia/certs/server_ca.key.pem
chmod 700 /etc/octavia/certs/server_ca.key.pem
cp server_ca/certs/ca.cert.pem /etc/octavia/certs/server_ca.cert.pem
cp client_ca/certs/ca.cert.pem /etc/octavia/certs/client_ca.cert.pem
cp client_ca/private/client.cert-and-key.pem /etc/octavia/certs/client.
↪→cert-and-key.pem
chmod 700 /etc/octavia/certs/client.cert-and-key.pem
chown -R octavia.octavia /etc/octavia/certs

2. Configure the [certificates] section of the octavia.conf file.

• Only the Octavia worker, health manager, and housekeeping processes will need these set-
tings.

1.2. Installation and Configuration Guides 26

Octavia Documentation, Release 15.1.0.dev35

• The "<server CA passphrase>" should be replaced with the passphrase that was used in step
6 of the Creating the Certificate Authorities section.

[certificates]
cert_generator = local_cert_generator
ca_certificate = /etc/octavia/certs/server_ca.cert.pem
ca_private_key = /etc/octavia/certs/server_ca.key.pem
ca_private_key_passphrase = <server CA key passphrase>

3. Configure the [controller_worker] section of the octavia.conf file.

• Only the Octavia worker, health manager, and housekeeping processes will need these set-
tings.

[controller_worker]
client_ca = /etc/octavia/certs/client_ca.cert.pem

4. Configure the [haproxy_amphora] section of the octavia.conf file.

• Only the Octavia worker, health manager, and housekeeping processes will need these set-
tings.

[haproxy_amphora]
client_cert = /etc/octavia/certs/client.cert-and-key.pem
server_ca = /etc/octavia/certs/server_ca.cert.pem

5. Start the controller processes.

systemctl start octavia-worker
systemctl start octavia-healthmanager
systemctl start octavia-housekeeping

1.2.3 Octavia Configuration Options

Table of Contents

• Octavia Configuration Options

– DEFAULT

– amphora_agent

– api_settings

– audit

– certificates

– cinder

– compute

– controller_worker

– database

1.2. Installation and Configuration Guides 27

Octavia Documentation, Release 15.1.0.dev35

– driver_agent

– glance

– haproxy_amphora

– health_manager

– house_keeping

– keepalived_vrrp

– keystone_authtoken

– networking

– neutron

– nova

– oslo_messaging

– oslo_messaging_kafka

– oslo_messaging_notifications

– oslo_messaging_rabbit

– oslo_middleware

– quotas

– service_auth

– task_flow

DEFAULT

host

Type
hostname

Default
<server-hostname.example.com>

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

The hostname Octavia is running on

octavia_plugins

Type
string

Default
hot_plug_plugin

Name of the controller plugin to use

log_options

1.2. Installation and Configuration Guides 28

Octavia Documentation, Release 15.1.0.dev35

Type
boolean

Default
True

Mutable
This option can be changed without restarting.

Enables or disables logging values of all registered options when starting a service (at DEBUG
level).

graceful_shutdown_timeout

Type
integer

Default
60

Mutable
This option can be changed without restarting.

Specify a timeout after which a gracefully shutdown server will exit. Zero value means endless
wait.

debug

Type
boolean

Default
False

Mutable
This option can be changed without restarting.

If set to true, the logging level will be set to DEBUG instead of the default INFO level.

log_config_append

Type
string

Default
<None>

Mutable
This option can be changed without restarting.

The name of a logging configuration file. This file is appended to any existing logging configuration
files. For details about logging configuration files, see the Python logging module documentation.
Note that when logging configuration files are used then all logging configuration is set in the con-
figuration file and other logging configuration options are ignored (for example, log-date-format).

Table 1: Deprecated Variations

Group Name
DEFAULT log-config
DEFAULT log_config

1.2. Installation and Configuration Guides 29

Octavia Documentation, Release 15.1.0.dev35

log_date_format

Type
string

Default
%Y-%m-%d %H:%M:%S

Defines the format string for %(asctime)s in log records. Default: the value above . This option is
ignored if log_config_append is set.

log_file

Type
string

Default
<None>

(Optional) Name of log file to send logging output to. If no default is set, logging will go to stderr
as defined by use_stderr. This option is ignored if log_config_append is set.

Table 2: Deprecated Variations

Group Name
DEFAULT logfile

log_dir

Type
string

Default
<None>

(Optional) The base directory used for relative log_file paths. This option is ignored if
log_config_append is set.

Table 3: Deprecated Variations

Group Name
DEFAULT logdir

watch_log_file

Type
boolean

Default
False

Uses logging handler designed to watch file system. When log file is moved or removed this handler
will open a new log file with specified path instantaneously. It makes sense only if log_file option
is specified and Linux platform is used. This option is ignored if log_config_append is set.

1.2. Installation and Configuration Guides 30

Octavia Documentation, Release 15.1.0.dev35

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
This function is known to have bene broken for long time, and depends on
the unmaintained library

use_syslog

Type
boolean

Default
False

Use syslog for logging. Existing syslog format is DEPRECATED and will be changed later to
honor RFC5424. This option is ignored if log_config_append is set.

use_journal

Type
boolean

Default
False

Enable journald for logging. If running in a systemd environment you may wish to enable jour-
nal support. Doing so will use the journal native protocol which includes structured metadata in
addition to log messages.This option is ignored if log_config_append is set.

syslog_log_facility

Type
string

Default
LOG_USER

Syslog facility to receive log lines. This option is ignored if log_config_append is set.

use_json

Type
boolean

Default
False

Use JSON formatting for logging. This option is ignored if log_config_append is set.

use_stderr

Type
boolean

Default
False

1.2. Installation and Configuration Guides 31

Octavia Documentation, Release 15.1.0.dev35

Log output to standard error. This option is ignored if log_config_append is set.

use_eventlog

Type
boolean

Default
False

Log output to Windows Event Log.

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
Windows support is no longer maintained.

log_color

Type
boolean

Default
False

(Optional) Set the ’color’ key according to log levels. This option takes effect only when logging
to stderr or stdout is used. This option is ignored if log_config_append is set.

log_rotate_interval

Type
integer

Default
1

The amount of time before the log files are rotated. This option is ignored unless log_rotation_type
is set to "interval".

log_rotate_interval_type

Type
string

Default
days

Valid Values
Seconds, Minutes, Hours, Days, Weekday, Midnight

Rotation interval type. The time of the last file change (or the time when the service was started)
is used when scheduling the next rotation.

max_logfile_count

Type
integer

1.2. Installation and Configuration Guides 32

Octavia Documentation, Release 15.1.0.dev35

Default
30

Maximum number of rotated log files.

max_logfile_size_mb

Type
integer

Default
200

Log file maximum size in MB. This option is ignored if "log_rotation_type" is not set to "size".

log_rotation_type

Type
string

Default
none

Valid Values
interval, size, none

Log rotation type.

Possible values

interval
Rotate logs at predefined time intervals.

size
Rotate logs once they reach a predefined size.

none
Do not rotate log files.

logging_context_format_string

Type
string

Default
%(asctime)s.%(msecs)03d %(process)d %(levelname)s %(name)s
[%(global_request_id)s %(request_id)s %(user_identity)s]
%(instance)s%(message)s

Format string to use for log messages with context. Used by oslo_log.formatters.ContextFormatter

logging_default_format_string

Type
string

Default
%(asctime)s.%(msecs)03d %(process)d %(levelname)s %(name)s [-]
%(instance)s%(message)s

1.2. Installation and Configuration Guides 33

Octavia Documentation, Release 15.1.0.dev35

Format string to use for log messages when context is undefined. Used by
oslo_log.formatters.ContextFormatter

logging_debug_format_suffix

Type
string

Default
%(funcName)s %(pathname)s:%(lineno)d

Additional data to append to log message when logging level for the message is DEBUG. Used by
oslo_log.formatters.ContextFormatter

logging_exception_prefix

Type
string

Default
%(asctime)s.%(msecs)03d %(process)d ERROR %(name)s
%(instance)s

Prefix each line of exception output with this format. Used by
oslo_log.formatters.ContextFormatter

logging_user_identity_format

Type
string

Default
%(user)s %(project)s %(domain)s %(system_scope)s
%(user_domain)s %(project_domain)s

Defines the format string for %(user_identity)s that is used in logging_context_format_string.
Used by oslo_log.formatters.ContextFormatter

default_log_levels

Type
list

Default
['amqp=WARN', 'amqplib=WARN', 'boto=WARN', 'qpid=WARN',
'sqlalchemy=WARN', 'suds=INFO', 'oslo.messaging=INFO',
'oslo_messaging=INFO', 'iso8601=WARN', 'requests.packages.
urllib3.connectionpool=WARN', 'urllib3.connectionpool=WARN',
'websocket=WARN', 'requests.packages.urllib3.util.retry=WARN',
'urllib3.util.retry=WARN', 'keystonemiddleware=WARN',
'routes.middleware=WARN', 'stevedore=WARN', 'taskflow=WARN',
'keystoneauth=WARN', 'oslo.cache=INFO', 'oslo_policy=INFO',
'dogpile.core.dogpile=INFO']

List of package logging levels in logger=LEVEL pairs. This option is ignored if log_config_append
is set.

publish_errors

1.2. Installation and Configuration Guides 34

Octavia Documentation, Release 15.1.0.dev35

Type
boolean

Default
False

Enables or disables publication of error events.

instance_format

Type
string

Default
"[instance: %(uuid)s] "

The format for an instance that is passed with the log message.

instance_uuid_format

Type
string

Default
"[instance: %(uuid)s] "

The format for an instance UUID that is passed with the log message.

rate_limit_interval

Type
integer

Default
0

Interval, number of seconds, of log rate limiting.

rate_limit_burst

Type
integer

Default
0

Maximum number of logged messages per rate_limit_interval.

rate_limit_except_level

Type
string

Default
CRITICAL

Valid Values
CRITICAL, ERROR, INFO, WARNING, DEBUG, ”

Log level name used by rate limiting. Logs with level greater or equal to rate_limit_except_level
are not filtered. An empty string means that all levels are filtered.

1.2. Installation and Configuration Guides 35

Octavia Documentation, Release 15.1.0.dev35

fatal_deprecations

Type
boolean

Default
False

Enables or disables fatal status of deprecations.

rpc_conn_pool_size

Type
integer

Default
30

Minimum Value
1

Size of RPC connection pool.

Table 4: Deprecated Variations

Group Name
DEFAULT rpc_conn_pool_size

conn_pool_min_size

Type
integer

Default
2

The pool size limit for connections expiration policy

conn_pool_ttl

Type
integer

Default
1200

The time-to-live in sec of idle connections in the pool

executor_thread_pool_size

Type
integer

Default
64

Size of executor thread pool when executor is threading or eventlet.

1.2. Installation and Configuration Guides 36

Octavia Documentation, Release 15.1.0.dev35

Table 5: Deprecated Variations

Group Name
DEFAULT rpc_thread_pool_size

rpc_response_timeout

Type
integer

Default
60

Seconds to wait for a response from a call.

transport_url

Type
string

Default
rabbit://

The network address and optional user credentials for connecting to the messaging backend, in
URL format. The expected format is:

driver://[user:pass@]host:port[,[userN:passN@]hostN:portN]/virtual_host?query

Example: rabbit://rabbitmq:password@127.0.0.1:5672//

For full details on the fields in the URL see the documentation of oslo_messaging.TransportURL
at https://docs.openstack.org/oslo.messaging/latest/reference/transport.html

control_exchange

Type
string

Default
octavia

The default exchange under which topics are scoped. May be overridden by an exchange name
specified in the transport_url option.

rpc_ping_enabled

Type
boolean

Default
False

Add an endpoint to answer to ping calls. Endpoint is named oslo_rpc_server_ping

1.2. Installation and Configuration Guides 37

https://docs.openstack.org/oslo.messaging/latest/reference/transport.html

Octavia Documentation, Release 15.1.0.dev35

amphora_agent

agent_server_ca

Type
string

Default
/etc/octavia/certs/client_ca.pem

The ca which signed the client certificates

agent_server_cert

Type
string

Default
/etc/octavia/certs/server.pem

The server certificate for the agent server to use

agent_server_network_dir

Type
string

Default
<None>

The directory where new network interfaces are located

agent_request_read_timeout

Type
integer

Default
180

The time in seconds to allow a request from the controller to run before terminating the socket.

agent_tls_protocol

Type
string

Default
TLSv1.2

Valid Values
SSLv3, TLSv1, TLSv1.1, TLSv1.2, TLSv1.3

Minimum TLS protocol for communication with the amphora agent.

admin_log_targets

Type
list

Default
<None>

1.2. Installation and Configuration Guides 38

Octavia Documentation, Release 15.1.0.dev35

List of log server ip and port pairs for Administrative logs. Additional hosts are backup to
the primary server. If none is specified remote logging is disabled. Example 127.0.0.1:10514,
192.168.0.1:10514

tenant_log_targets

Type
list

Default
<None>

List of log server ip and port pairs for tenant traffic logs. Additional hosts are backup to the
primary server. If none is specified remote logging is disabled. Example 127.0.0.1:10514,
192.168.0.1:10514

user_log_facility

Type
integer

Default
0

Minimum Value
0

Maximum Value
7

LOG_LOCAL facility number to use for user traffic logs.

administrative_log_facility

Type
integer

Default
1

Minimum Value
0

Maximum Value
7

LOG_LOCAL facility number to use for amphora processes logs.

log_protocol

Type
string

Default
UDP

Valid Values
TCP, UDP

The log forwarding transport protocol. One of UDP or TCP.

1.2. Installation and Configuration Guides 39

Octavia Documentation, Release 15.1.0.dev35

log_retry_count

Type
integer

Default
5

The maximum attempts to retry connecting to the logging host.

log_retry_interval

Type
integer

Default
2

The time, in seconds, to wait between retries connecting to the logging host.

log_queue_size

Type
integer

Default
10000

The queue size (messages) to buffer log messages.

logging_template_override

Type
string

Default
<None>

Custom logging configuration template.

forward_all_logs

Type
boolean

Default
False

When True, the amphora will forward all of the system logs (except tenant traffic logs) to the admin
log target(s). When False, only amphora specific admin logs will be forwarded.

disable_local_log_storage

Type
boolean

Default
False

When True, no logs will be written to the amphora filesystem. When False, log files will be written
to the local filesystem.

1.2. Installation and Configuration Guides 40

Octavia Documentation, Release 15.1.0.dev35

amphora_id

Type
string

Default
<None>

The amphora ID.

amphora_udp_driver

Type
string

Default
keepalived_lvs

The UDP API backend for amphora agent.

Warning

This option is deprecated for removal since Wallaby. Its value may be silently ignored in the
future.

Reason
amphora-agent will not support any other backend than keepalived_lvs.

api_settings

bind_host

Type
ip address

Default
127.0.0.1

The host IP to bind to

bind_port

Type
port number

Default
9876

Minimum Value
0

Maximum Value
65535

The port to bind to

auth_strategy

1.2. Installation and Configuration Guides 41

Octavia Documentation, Release 15.1.0.dev35

Type
string

Default
keystone

Valid Values
noauth, keystone, testing

The auth strategy for API requests.

allow_pagination

Type
boolean

Default
True

Allow the usage of pagination

allow_sorting

Type
boolean

Default
True

Allow the usage of sorting

allow_filtering

Type
boolean

Default
True

Allow the usage of filtering

allow_field_selection

Type
boolean

Default
True

Allow the usage of field selection

pagination_max_limit

Type
string

Default
1000

The maximum number of items returned in a single response. The string ’infinite’ or a negative
integer value means ’no limit’

1.2. Installation and Configuration Guides 42

Octavia Documentation, Release 15.1.0.dev35

api_base_uri

Type
string

Default
<None>

Base URI for the API for use in pagination links. This will be autodetected from the request if not
overridden here.

allow_tls_terminated_listeners

Type
boolean

Default
True

Allow users to create TLS Terminated listeners?

allow_ping_health_monitors

Type
boolean

Default
True

Allow users to create PING type Health Monitors?

allow_prometheus_listeners

Type
boolean

Default
True

Allow users to create PROMETHEUS type listeners?

enabled_provider_drivers

Type
dict

Default
{'amphora': 'The Octavia Amphora driver.', 'octavia':
'Deprecated alias of the Octavia Amphora driver.'}

A comma separated list of dictionaries of the enabled provider driver names and descriptions. Must
match the driver name in the octavia.api.drivers entrypoint.

default_provider_driver

Type
string

Default
amphora

Default provider driver.

1.2. Installation and Configuration Guides 43

Octavia Documentation, Release 15.1.0.dev35

udp_connect_min_interval_health_monitor

Type
integer

Default
3

The minimum health monitor delay interval for the UDP-CONNECT Health Monitor type. A
negative integer value means ’no limit’.

healthcheck_enabled

Type
boolean

Default
False

When True, the oslo middleware healthcheck endpoint is enabled in the Octavia API.

healthcheck_refresh_interval

Type
integer

Default
5

The interval healthcheck plugins should cache results, in seconds.

default_listener_ciphers

Type
string

Default
TLS_AES_256_GCM_SHA384:TLS_CHACHA20_POLY1305_SHA256:TLS_AES_128_GCM_SHA256:DHE-RSA-AES256-GCM-SHA384:DHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES256-SHA256:DHE-RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA384:ECDHE-RSA-AES128-SHA256

Default OpenSSL cipher string (colon-separated) for new TLS-enabled listeners.

default_pool_ciphers

Type
string

Default
TLS_AES_256_GCM_SHA384:TLS_CHACHA20_POLY1305_SHA256:TLS_AES_128_GCM_SHA256:DHE-RSA-AES256-GCM-SHA384:DHE-RSA-AES128-GCM-SHA256:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES256-SHA256:DHE-RSA-AES128-SHA256:ECDHE-RSA-AES256-SHA384:ECDHE-RSA-AES128-SHA256

Default OpenSSL cipher string (colon-separated) for new TLS-enabled pools.

tls_cipher_prohibit_list

Type
string

Default
''

Colon separated list of OpenSSL ciphers. Usage of these ciphers will be blocked.

1.2. Installation and Configuration Guides 44

Octavia Documentation, Release 15.1.0.dev35

Table 6: Deprecated Variations

Group Name
api_settings tls_cipher_blacklist

default_listener_tls_versions

Type
list

Default
['TLSv1.2', 'TLSv1.3']

List of TLS versions to use for new TLS-enabled listeners.

default_pool_tls_versions

Type
list

Default
['TLSv1.2', 'TLSv1.3']

List of TLS versions to use for new TLS-enabled pools.

minimum_tls_version

Type
string

Default
<None>

Valid Values
SSLv3, TLSv1, TLSv1.1, TLSv1.2, TLSv1.3, <None>

Minimum allowed TLS version for listeners and pools.

default_listener_alpn_protocols

Type
list

Default
['h2', 'http/1.1', 'http/1.0']

List of ALPN protocols to use for new TLS-enabled listeners.

default_pool_alpn_protocols

Type
list

Default
['h2', 'http/1.1', 'http/1.0']

List of ALPN protocols to use for new TLS-enabled pools.

1.2. Installation and Configuration Guides 45

Octavia Documentation, Release 15.1.0.dev35

audit

enabled

Type
boolean

Default
False

Enable auditing of API requests

audit_map_file

Type
string

Default
/etc/octavia/octavia_api_audit_map.conf

Path to audit map file for octavia-api service. Used only when API audit is enabled.

ignore_req_list

Type
string

Default
''

Comma separated list of REST API HTTP methods to be ignored during audit. For example:
auditing will not be done on any GET or POST requests if this is set to "GET,POST". It is used
only when API audit is enabled.

certificates

cert_manager

Type
string

Default
barbican_cert_manager

Name of the cert manager to use

cert_generator

Type
string

Default
local_cert_generator

Name of the cert generator to use

barbican_auth

Type
string

1.2. Installation and Configuration Guides 46

Octavia Documentation, Release 15.1.0.dev35

Default
barbican_acl_auth

Name of the Barbican authentication method to use

service_name

Type
string

Default
<None>

The name of the certificate service in the keystone catalog

endpoint

Type
string

Default
<None>

A new endpoint to override the endpoint in the keystone catalog.

region_name

Type
string

Default
<None>

Region in Identity service catalog to use for communication with the barbican service.

endpoint_type

Type
string

Default
publicURL

The endpoint_type to be used for barbican service.

ca_certificates_file

Type
string

Default
<None>

CA certificates file path for the key manager service (such as Barbican).

insecure

Type
boolean

Default
False

1.2. Installation and Configuration Guides 47

Octavia Documentation, Release 15.1.0.dev35

Disable certificate validation on SSL connections

ca_certificate

Type
string

Default
/etc/ssl/certs/ssl-cert-snakeoil.pem

Absolute path to the CA Certificate for signing. Defaults to env[OS_OCTAVIA_TLS_CA_CERT].

ca_private_key

Type
string

Default
/etc/ssl/private/ssl-cert-snakeoil.key

Absolute path to the Private Key for signing. Defaults to env[OS_OCTAVIA_TLS_CA_KEY].

ca_private_key_passphrase

Type
string

Default
<None>

Passphrase for the Private Key. Defaults to env[OS_OCTAVIA_CA_KEY_PASS] or None.

server_certs_key_passphrase

Type
string

Default
insecure-key-do-not-use-this-key

Passphrase for encrypting Amphora Certificates and Private Keys. Must be 32, base64(url) com-
patible, characters long. Defaults to env[TLS_PASS_AMPS_DEFAULT] or insecure-key-do-not-
use-this-key

signing_digest

Type
string

Default
sha256

Certificate signing digest. Defaults to env[OS_OCTAVIA_CA_SIGNING_DIGEST] or "sha256".

cert_validity_time

Type
integer

Default
2592000

1.2. Installation and Configuration Guides 48

Octavia Documentation, Release 15.1.0.dev35

The validity time for the Amphora Certificates (in seconds).

cinder

service_name

Type
string

Default
<None>

The name of the cinder service in the keystone catalog

endpoint

Type
string

Default
<None>

A new endpoint to override the endpoint in the keystone catalog.

region_name

Type
string

Default
<None>

Region in Identity service catalog to use for communication with the OpenStack services.

endpoint_type

Type
string

Default
publicURL

Endpoint interface in identity service to use

ca_certificates_file

Type
string

Default
<None>

CA certificates file path

availability_zone

Type
string

Default
<None>

1.2. Installation and Configuration Guides 49

Octavia Documentation, Release 15.1.0.dev35

Availability zone to use for creating Volume

insecure

Type
boolean

Default
False

Disable certificate validation on SSL connections

volume_size

Type
integer

Default
16

Size of volume, in GB, for Amphora instance

volume_type

Type
string

Default
<None>

Type of volume for Amphorae volume root disk

volume_create_retry_interval

Type
integer

Default
5

Interval time to wait volume is created in available state

volume_create_timeout

Type
integer

Default
300

Timeout to wait for volume creation success

volume_create_max_retries

Type
integer

Default
5

Maximum number of retries to create volume

1.2. Installation and Configuration Guides 50

Octavia Documentation, Release 15.1.0.dev35

compute

max_retries

Type
integer

Default
15

The maximum attempts to retry an action with the compute service.

retry_interval

Type
integer

Default
1

Seconds to wait before retrying an action with the compute service.

retry_backoff

Type
integer

Default
1

The seconds to backoff retry attempts.

retry_max

Type
integer

Default
10

The maximum interval in seconds between retry attempts.

controller_worker

workers

Type
integer

Default
1

Minimum Value
1

Number of workers for the controller-worker service.

amp_active_retries

Type
integer

1.2. Installation and Configuration Guides 51

Octavia Documentation, Release 15.1.0.dev35

Default
30

Retry attempts to wait for Amphora to become active

amp_active_wait_sec

Type
integer

Default
10

Seconds to wait between checks on whether an Amphora has become active

amp_flavor_id

Type
string

Default
''

Nova instance flavor id for the Amphora

amp_image_tag

Type
string

Default
''

Glance image tag for the Amphora image to boot. Use this option to be able to update the image
without reconfiguring Octavia.

amp_image_owner_id

Type
string

Default
''

Restrict glance image selection to a specific owner ID. This is a recommended security setting.

amp_ssh_key_name

Type
string

Default
''

Optional SSH keypair name, in nova, that will be used for the authorized_keys inside the amphora.

amp_timezone

Type
string

1.2. Installation and Configuration Guides 52

Octavia Documentation, Release 15.1.0.dev35

Default
UTC

The timezone to use in the Amphora as represented in /usr/share/zoneinfo.

amp_boot_network_list

Type
list

Default
''

List of networks to attach to the Amphorae. All networks defined in the list will be attached to
each amphora.

amp_secgroup_list

Type
list

Default
''

List of security groups to attach to the Amphora.

client_ca

Type
string

Default
/etc/octavia/certs/ca_01.pem

Client CA for the amphora agent to use

amphora_driver

Type
string

Default
amphora_haproxy_rest_driver

Name of the amphora driver to use

compute_driver

Type
string

Default
compute_nova_driver

Name of the compute driver to use

network_driver

Type
string

1.2. Installation and Configuration Guides 53

Octavia Documentation, Release 15.1.0.dev35

Default
allowed_address_pairs_driver

Name of the network driver to use

volume_driver

Type
string

Default
volume_noop_driver

Valid Values
volume_noop_driver, volume_cinder_driver

Name of the volume driver to use

image_driver

Type
string

Default
image_glance_driver

Valid Values
image_noop_driver, image_glance_driver

Name of the image driver to use

distributor_driver

Type
string

Default
distributor_noop_driver

Name of the distributor driver to use

statistics_drivers

Type
list

Default
['stats_db']

List of drivers for updating amphora statistics.

loadbalancer_topology

Type
string

Default
SINGLE

Valid Values
ACTIVE_STANDBY, SINGLE

1.2. Installation and Configuration Guides 54

Octavia Documentation, Release 15.1.0.dev35

Mutable
This option can be changed without restarting.

Load balancer topology configuration. SINGLE - One amphora per load balancer. AC-
TIVE_STANDBY - Two amphora per load balancer.

user_data_config_drive

Type
boolean

Default
False

If True, build cloud-init user-data that is passed to the config drive on Amphora boot instead of
personality files. If False, utilize personality files.

Warning

This option is deprecated for removal since Antelope(2023.1). Its value may be silently ignored
in the future.

Reason
User_data nova option is not used and is too small to replace the config_drive.

amphora_delete_retries

Type
integer

Default
5

Number of times an amphora delete should be retried.

amphora_delete_retry_interval

Type
integer

Default
5

Time, in seconds, between amphora delete retries.

event_notifications

Type
boolean

Default
True

Enable octavia event notifications. See oslo_messaging_notifications section for additional re-
quirements.

db_commit_retry_attempts

1.2. Installation and Configuration Guides 55

Octavia Documentation, Release 15.1.0.dev35

Type
integer

Default
2000

The number of times the database action will be attempted.

db_commit_retry_initial_delay

Type
integer

Default
1

The initial delay before a retry attempt.

db_commit_retry_backoff

Type
integer

Default
1

The time to backoff retry attempts.

db_commit_retry_max

Type
integer

Default
5

The maximum amount of time to wait between retry attempts.

database

sqlite_synchronous

Type
boolean

Default
True

If True, SQLite uses synchronous mode.

backend

Type
string

Default
sqlalchemy

The back end to use for the database.

1.2. Installation and Configuration Guides 56

Octavia Documentation, Release 15.1.0.dev35

connection

Type
string

Default
<None>

The SQLAlchemy connection string to use to connect to the database.

slave_connection

Type
string

Default
<None>

The SQLAlchemy connection string to use to connect to the slave database.

mysql_sql_mode

Type
string

Default
TRADITIONAL

The SQL mode to be used for MySQL sessions. This option, including the default, overrides any
server-set SQL mode. To use whatever SQL mode is set by the server configuration, set this to no
value. Example: mysql_sql_mode=

mysql_wsrep_sync_wait

Type
integer

Default
<None>

For Galera only, configure wsrep_sync_wait causality checks on new connections. Default is None,
meaning don’t configure any setting.

connection_recycle_time

Type
integer

Default
3600

Connections which have been present in the connection pool longer than this number of seconds
will be replaced with a new one the next time they are checked out from the pool.

max_pool_size

Type
integer

Default
5

1.2. Installation and Configuration Guides 57

Octavia Documentation, Release 15.1.0.dev35

Maximum number of SQL connections to keep open in a pool. Setting a value of 0 indicates no
limit.

max_retries

Type
integer

Default
10

Maximum number of database connection retries during startup. Set to -1 to specify an infinite
retry count.

retry_interval

Type
integer

Default
10

Interval between retries of opening a SQL connection.

max_overflow

Type
integer

Default
50

If set, use this value for max_overflow with SQLAlchemy.

connection_debug

Type
integer

Default
0

Minimum Value
0

Maximum Value
100

Verbosity of SQL debugging information: 0=None, 100=Everything.

connection_trace

Type
boolean

Default
False

Add Python stack traces to SQL as comment strings.

1.2. Installation and Configuration Guides 58

Octavia Documentation, Release 15.1.0.dev35

pool_timeout

Type
integer

Default
<None>

If set, use this value for pool_timeout with SQLAlchemy.

use_db_reconnect

Type
boolean

Default
False

Enable the experimental use of database reconnect on connection lost.

db_retry_interval

Type
integer

Default
1

Seconds between retries of a database transaction.

db_inc_retry_interval

Type
boolean

Default
True

If True, increases the interval between retries of a database operation up to db_max_retry_interval.

db_max_retry_interval

Type
integer

Default
10

If db_inc_retry_interval is set, the maximum seconds between retries of a database operation.

db_max_retries

Type
integer

Default
20

Maximum retries in case of connection error or deadlock error before error is raised. Set to -1 to
specify an infinite retry count.

1.2. Installation and Configuration Guides 59

Octavia Documentation, Release 15.1.0.dev35

connection_parameters

Type
string

Default
''

Optional URL parameters to append onto the connection URL at connect time; specify as
param1=value1¶m2=value2&...

driver_agent

status_socket_path

Type
string

Default
/var/run/octavia/status.sock

Path to the driver status unix domain socket file.

stats_socket_path

Type
string

Default
/var/run/octavia/stats.sock

Path to the driver statistics unix domain socket file.

get_socket_path

Type
string

Default
/var/run/octavia/get.sock

Path to the driver get unix domain socket file.

status_request_timeout

Type
integer

Default
5

Time, in seconds, to wait for a status update request.

status_max_processes

Type
integer

Default
50

1.2. Installation and Configuration Guides 60

Octavia Documentation, Release 15.1.0.dev35

Maximum number of concurrent processes to use servicing status updates.

stats_request_timeout

Type
integer

Default
5

Time, in seconds, to wait for a statistics update request.

stats_max_processes

Type
integer

Default
50

Maximum number of concurrent processes to use servicing statistics updates.

get_request_timeout

Type
integer

Default
5

Time, in seconds, to wait for a get request.

get_max_processes

Type
integer

Default
50

Maximum number of concurrent processes to use servicing get requests.

max_process_warning_percent

Type
floating point

Default
0.75

Minimum Value
0.01

Maximum Value
0.99

Percentage of max_processes (both status and stats) in use to start logging warning messages about
an overloaded driver-agent.

1.2. Installation and Configuration Guides 61

Octavia Documentation, Release 15.1.0.dev35

provider_agent_shutdown_timeout

Type
integer

Default
60

The time, in seconds, to wait for provider agents to shutdown after the exit event has been set.

enabled_provider_agents

Type
list

Default
''

List of enabled provider agents. The driver-agent will launch these agents at startup.

glance

service_name

Type
string

Default
<None>

The name of the glance service in the keystone catalog

endpoint

Type
string

Default
<None>

A new endpoint to override the endpoint in the keystone catalog.

region_name

Type
string

Default
<None>

Region in Identity service catalog to use for communication with the OpenStack services.

endpoint_type

Type
string

Default
publicURL

Endpoint interface in identity service to use

1.2. Installation and Configuration Guides 62

Octavia Documentation, Release 15.1.0.dev35

ca_certificates_file

Type
string

Default
<None>

CA certificates file path

insecure

Type
boolean

Default
False

Disable certificate validation on SSL connections

haproxy_amphora

base_path

Type
string

Default
/var/lib/octavia

Base directory for amphora files.

base_cert_dir

Type
string

Default
/var/lib/octavia/certs

Base directory for cert storage.

haproxy_template

Type
string

Default
<None>

Custom haproxy template.

connection_logging

Type
boolean

Default
True

Set this to False to disable connection logging.

1.2. Installation and Configuration Guides 63

Octavia Documentation, Release 15.1.0.dev35

connection_max_retries

Type
integer

Default
120

Retry threshold for connecting to amphorae.

connection_retry_interval

Type
integer

Default
5

Retry timeout between connection attempts in seconds.

active_connection_max_retries

Type
integer

Default
15

Retry threshold for connecting to active amphorae.

active_connection_retry_interval

Type
integer

Default
2

Retry timeout between connection attempts in seconds for active amphora.

Table 7: Deprecated Variations

Group Name
haproxy_amphora active_connection_rety_interval

failover_connection_max_retries

Type
integer

Default
2

Retry threshold for connecting to an amphora in failover.

failover_connection_retry_interval

Type
integer

1.2. Installation and Configuration Guides 64

Octavia Documentation, Release 15.1.0.dev35

Default
5

Retry timeout between connection attempts in seconds for amphora in failover.

build_rate_limit

Type
integer

Default
-1

Number of amphorae that could be built per controller worker, simultaneously.

build_active_retries

Type
integer

Default
120

Retry threshold for waiting for a build slot for an amphorae.

build_retry_interval

Type
integer

Default
5

Retry timeout between build attempts in seconds.

haproxy_stick_size

Type
string

Default
10k

Size of the HAProxy stick table. Accepts k, m, g suffixes.

user_log_format

Type
string

Default
{{ project_id }} {{ lb_id }} %f %ci %cp %t %{+Q}r %ST %B %U
%[ssl_c_verify] %{+Q}[ssl_c_s_dn] %b %s %Tt %tsc

Log format string for user flow logging.

bind_host

Type
ip address

1.2. Installation and Configuration Guides 65

Octavia Documentation, Release 15.1.0.dev35

Default
::

The host IP to bind to

bind_port

Type
port number

Default
9443

Minimum Value
0

Maximum Value
65535

The port to bind to

lb_network_interface

Type
string

Default
o-hm0

Network interface through which to reach amphora, only required if using IPv6 link local addresses.

haproxy_cmd

Type
string

Default
/usr/sbin/haproxy

The full path to haproxy

respawn_count

Type
integer

Default
2

The respawn count for haproxy’s upstart script

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
upstart support has been removed and this option is no longer used.

1.2. Installation and Configuration Guides 66

Octavia Documentation, Release 15.1.0.dev35

respawn_interval

Type
integer

Default
2

The respawn interval for haproxy’s upstart script

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
upstart support has been removed and this option is no longer used.

rest_request_conn_timeout

Type
floating point

Default
10

The time in seconds to wait for a REST API to connect.

rest_request_read_timeout

Type
floating point

Default
60

The time in seconds to wait for a REST API response.

timeout_client_data

Type
integer

Default
50000

Frontend client inactivity timeout.

timeout_member_connect

Type
integer

Default
5000

Backend member connection timeout.

1.2. Installation and Configuration Guides 67

Octavia Documentation, Release 15.1.0.dev35

timeout_member_data

Type
integer

Default
50000

Backend member inactivity timeout.

timeout_tcp_inspect

Type
integer

Default
0

Time to wait for TCP packets for content inspection.

client_cert

Type
string

Default
/etc/octavia/certs/client.pem

The client certificate to talk to the agent

server_ca

Type
string

Default
/etc/octavia/certs/server_ca.pem

The ca which signed the server certificates

api_db_commit_retry_attempts

Type
integer

Default
15

The number of times the database action will be attempted.

api_db_commit_retry_initial_delay

Type
integer

Default
1

The initial delay before a retry attempt.

1.2. Installation and Configuration Guides 68

Octavia Documentation, Release 15.1.0.dev35

api_db_commit_retry_backoff

Type
integer

Default
1

The time to backoff retry attempts.

api_db_commit_retry_max

Type
integer

Default
5

The maximum amount of time to wait between retry attempts.

default_connection_limit

Type
integer

Default
50000

Default connection_limit for listeners, used when setting "-1" or when unsetting connection_limit
with the listener API.

health_manager

bind_ip

Type
ip address

Default
127.0.0.1

IP address the controller will listen on for heart beats

bind_port

Type
port number

Default
5555

Minimum Value
0

Maximum Value
65535

Port number the controller will listen on for heart beats

1.2. Installation and Configuration Guides 69

Octavia Documentation, Release 15.1.0.dev35

failover_threads

Type
integer

Default
10

Number of threads performing amphora failovers.

health_update_threads

Type
integer

Default
<None>

Number of processes for amphora health update.

stats_update_threads

Type
integer

Default
<None>

Number of processes for amphora stats update.

heartbeat_key

Type
string

Default
<None>

Mutable
This option can be changed without restarting.

key used to validate amphora sending the message

heartbeat_timeout

Type
integer

Default
60

Interval, in seconds, to wait before failing over an amphora.

health_check_interval

Type
integer

Default
3

Sleep time between health checks in seconds.

1.2. Installation and Configuration Guides 70

Octavia Documentation, Release 15.1.0.dev35

sock_rlimit

Type
integer

Default
0

sets the value of the heartbeat recv buffer

failover_threshold

Type
integer

Default
<None>

Stop failovers if the count of simultaneously failed amphora reaches this number. This may prevent
large scale accidental failover events, like in the case of network failures or read-only database
issues.

controller_ip_port_list

Type
list

Default
[]

Mutable
This option can be changed without restarting.

List of controller ip and port pairs for the heartbeat receivers. Example 127.0.0.1:5555,
192.168.0.1:5555

heartbeat_interval

Type
integer

Default
10

Mutable
This option can be changed without restarting.

Sleep time between sending heartbeats.

house_keeping

cleanup_interval

Type
integer

Default
30

DB cleanup interval in seconds

1.2. Installation and Configuration Guides 71

Octavia Documentation, Release 15.1.0.dev35

amphora_expiry_age

Type
integer

Default
604800

Amphora expiry age in seconds

load_balancer_expiry_age

Type
integer

Default
604800

Load balancer expiry age in seconds

cert_interval

Type
integer

Default
3600

Certificate check interval in seconds

cert_expiry_buffer

Type
integer

Default
1209600

Seconds until certificate expiration

cert_rotate_threads

Type
integer

Default
10

Number of threads performing amphora certificate rotation

keepalived_vrrp

vrrp_advert_int

Type
integer

Default
1

Amphora role and priority advertisement interval in seconds.

1.2. Installation and Configuration Guides 72

Octavia Documentation, Release 15.1.0.dev35

vrrp_check_interval

Type
integer

Default
5

VRRP health check script run interval in seconds.

vrrp_fail_count

Type
integer

Default
2

Number of successive failures before transition to a fail state.

vrrp_success_count

Type
integer

Default
2

Number of consecutive successes before transition to a success state.

vrrp_garp_refresh_interval

Type
integer

Default
5

Time in seconds between gratuitous ARP announcements from the MASTER.

vrrp_garp_refresh_count

Type
integer

Default
2

Number of gratuitous ARP announcements to make on each refresh interval.

keystone_authtoken

www_authenticate_uri

Type
string

Default
<None>

1.2. Installation and Configuration Guides 73

Octavia Documentation, Release 15.1.0.dev35

Complete "public" Identity API endpoint. This endpoint should not be an "admin" endpoint, as
it should be accessible by all end users. Unauthenticated clients are redirected to this endpoint
to authenticate. Although this endpoint should ideally be unversioned, client support in the wild
varies. If you’re using a versioned v2 endpoint here, then this should not be the same endpoint the
service user utilizes for validating tokens, because normal end users may not be able to reach that
endpoint.

Table 8: Deprecated Variations

Group Name
keystone_authtoken auth_uri

auth_uri

Type
string

Default
<None>

Complete "public" Identity API endpoint. This endpoint should not be an "admin" endpoint, as
it should be accessible by all end users. Unauthenticated clients are redirected to this endpoint
to authenticate. Although this endpoint should ideally be unversioned, client support in the wild
varies. If you’re using a versioned v2 endpoint here, then this should not be the same endpoint the
service user utilizes for validating tokens, because normal end users may not be able to reach that
endpoint. This option is deprecated in favor of www_authenticate_uri and will be removed in the
S release.

Warning

This option is deprecated for removal since Queens. Its value may be silently ignored in the
future.

Reason
The auth_uri option is deprecated in favor of www_authenticate_uri and will
be removed in the S release.

auth_version

Type
string

Default
<None>

API version of the Identity API endpoint.

interface

Type
string

Default
internal

1.2. Installation and Configuration Guides 74

Octavia Documentation, Release 15.1.0.dev35

Interface to use for the Identity API endpoint. Valid values are "public", "internal" (default) or
"admin".

delay_auth_decision

Type
boolean

Default
False

Do not handle authorization requests within the middleware, but delegate the authorization deci-
sion to downstream WSGI components.

http_connect_timeout

Type
integer

Default
<None>

Request timeout value for communicating with Identity API server.

http_request_max_retries

Type
integer

Default
3

How many times are we trying to reconnect when communicating with Identity API Server.

cache

Type
string

Default
<None>

Request environment key where the Swift cache object is stored. When auth_token middleware is
deployed with a Swift cache, use this option to have the middleware share a caching backend with
swift. Otherwise, use the memcached_servers option instead.

certfile

Type
string

Default
<None>

Required if identity server requires client certificate

keyfile

Type
string

1.2. Installation and Configuration Guides 75

Octavia Documentation, Release 15.1.0.dev35

Default
<None>

Required if identity server requires client certificate

cafile

Type
string

Default
<None>

A PEM encoded Certificate Authority to use when verifying HTTPs connections. Defaults to
system CAs.

insecure

Type
boolean

Default
False

Verify HTTPS connections.

region_name

Type
string

Default
<None>

The region in which the identity server can be found.

memcached_servers

Type
list

Default
<None>

Optionally specify a list of memcached server(s) to use for caching. If left undefined, tokens will
instead be cached in-process.

Table 9: Deprecated Variations

Group Name
keystone_authtoken memcache_servers

token_cache_time

Type
integer

Default
300

1.2. Installation and Configuration Guides 76

Octavia Documentation, Release 15.1.0.dev35

In order to prevent excessive effort spent validating tokens, the middleware caches previously-seen
tokens for a configurable duration (in seconds). Set to -1 to disable caching completely.

memcache_security_strategy

Type
string

Default
None

Valid Values
None, MAC, ENCRYPT

(Optional) If defined, indicate whether token data should be authenticated or authenticated and
encrypted. If MAC, token data is authenticated (with HMAC) in the cache. If ENCRYPT, token
data is encrypted and authenticated in the cache. If the value is not one of these options or empty,
auth_token will raise an exception on initialization.

memcache_secret_key

Type
string

Default
<None>

(Optional, mandatory if memcache_security_strategy is defined) This string is used for key deriva-
tion.

memcache_pool_dead_retry

Type
integer

Default
300

(Optional) Number of seconds memcached server is considered dead before it is tried again.

memcache_pool_maxsize

Type
integer

Default
10

(Optional) Maximum total number of open connections to every memcached server.

memcache_pool_socket_timeout

Type
integer

Default
3

(Optional) Socket timeout in seconds for communicating with a memcached server.

1.2. Installation and Configuration Guides 77

Octavia Documentation, Release 15.1.0.dev35

memcache_pool_unused_timeout

Type
integer

Default
60

(Optional) Number of seconds a connection to memcached is held unused in the pool before it is
closed.

memcache_pool_conn_get_timeout

Type
integer

Default
10

(Optional) Number of seconds that an operation will wait to get a memcached client connection
from the pool.

memcache_use_advanced_pool

Type
boolean

Default
True

(Optional) Use the advanced (eventlet safe) memcached client pool.

include_service_catalog

Type
boolean

Default
True

(Optional) Indicate whether to set the X-Service-Catalog header. If False, middleware will not ask
for service catalog on token validation and will not set the X-Service-Catalog header.

enforce_token_bind

Type
string

Default
permissive

Used to control the use and type of token binding. Can be set to: "disabled" to not check token
binding. "permissive" (default) to validate binding information if the bind type is of a form known
to the server and ignore it if not. "strict" like "permissive" but if the bind type is unknown the token
will be rejected. "required" any form of token binding is needed to be allowed. Finally the name
of a binding method that must be present in tokens.

service_token_roles

Type
list

1.2. Installation and Configuration Guides 78

Octavia Documentation, Release 15.1.0.dev35

Default
['service']

A choice of roles that must be present in a service token. Service tokens are allowed to request
that an expired token can be used and so this check should tightly control that only actual services
should be sending this token. Roles here are applied as an ANY check so any role in this list
must be present. For backwards compatibility reasons this currently only affects the allow_expired
check.

service_token_roles_required

Type
boolean

Default
False

For backwards compatibility reasons we must let valid service tokens pass that don’t pass the ser-
vice_token_roles check as valid. Setting this true will become the default in a future release and
should be enabled if possible.

service_type

Type
string

Default
<None>

The name or type of the service as it appears in the service catalog. This is used to validate tokens
that have restricted access rules.

auth_type

Type
unknown type

Default
<None>

Authentication type to load

Table 10: Deprecated Variations

Group Name
keystone_authtoken auth_plugin

auth_section

Type
unknown type

Default
<None>

Config Section from which to load plugin specific options

1.2. Installation and Configuration Guides 79

Octavia Documentation, Release 15.1.0.dev35

networking

max_retries

Type
integer

Default
15

The maximum attempts to retry an action with the networking service.

retry_interval

Type
integer

Default
1

Seconds to wait before retrying an action with the networking service.

retry_backoff

Type
integer

Default
1

The seconds to backoff retry attempts.

retry_max

Type
integer

Default
10

The maximum interval in seconds between retry attempts.

port_detach_timeout

Type
integer

Default
300

Seconds to wait for a port to detach from an amphora.

allow_vip_network_id

Type
boolean

Default
True

Can users supply a network_id for their VIP?

1.2. Installation and Configuration Guides 80

Octavia Documentation, Release 15.1.0.dev35

allow_vip_subnet_id

Type
boolean

Default
True

Can users supply a subnet_id for their VIP?

allow_vip_port_id

Type
boolean

Default
True

Can users supply a port_id for their VIP?

valid_vip_networks

Type
list

Default
<None>

List of network_ids that are valid for VIP creation. If this field is empty, no validation is performed.

reserved_ips

Type
list

Default
['169.254.169.254']

List of IP addresses reserved from being used for member addresses. IPv6 addresses should be in
expanded, uppercase form.

allow_invisible_resource_usage

Type
boolean

Default
False

When True, users can use network resources they cannot normally see as VIP or member subnets.
Making this True may allow users to access resources on subnets they do not normally have access
to via neutron RBAC policies.

neutron

endpoint

Type
string

1.2. Installation and Configuration Guides 81

Octavia Documentation, Release 15.1.0.dev35

Default
<None>

A new endpoint to override the endpoint in the keystone catalog.

Warning

This option is deprecated for removal since 2023.2/Bobcat. Its value may be silently ignored
in the future.

Reason
The endpoint_override option defined by keystoneauth1 is the new name for
this option.

endpoint_type

Type
string

Default
<None>

Endpoint interface in identity service to use

Warning

This option is deprecated for removal since 2023.2/Bobcat. Its value may be silently ignored
in the future.

Reason
This option was replaced by the valid_interfaces option defined by key-
stoneauth.

ca_certificates_file

Type
string

Default
<None>

CA certificates file path

Warning

This option is deprecated for removal since 2023.2/Bobcat. Its value may be silently ignored
in the future.

Reason
The cafile option defined by keystoneauth1 is the new name for this option.

1.2. Installation and Configuration Guides 82

Octavia Documentation, Release 15.1.0.dev35

nova

service_name

Type
string

Default
<None>

The name of the nova service in the keystone catalog

endpoint

Type
string

Default
<None>

A new endpoint to override the endpoint in the keystone catalog.

region_name

Type
string

Default
<None>

Region in Identity service catalog to use for communication with the OpenStack services.

endpoint_type

Type
string

Default
publicURL

Endpoint interface in identity service to use

ca_certificates_file

Type
string

Default
<None>

CA certificates file path

insecure

Type
boolean

Default
False

Disable certificate validation on SSL connections

1.2. Installation and Configuration Guides 83

Octavia Documentation, Release 15.1.0.dev35

enable_anti_affinity

Type
boolean

Default
False

Flag to indicate if nova anti-affinity feature is turned on. This option is only used when creating
amphorae in ACTIVE_STANDBY topology.

anti_affinity_policy

Type
string

Default
anti-affinity

Valid Values
anti-affinity, soft-anti-affinity

Sets the anti-affinity policy for nova

random_amphora_name_length

Type
integer

Default
0

If non-zero, generate a random name of the length provided for each amphora, in the format "a[A-
Z0-9]*". Otherwise, the default name format will be used: "amphora-{UUID}".

availability_zone

Type
string

Default
<None>

Availability zone to use for creating Amphorae

oslo_messaging

topic

Type
string

Default
<None>

Topic (i.e. Queue) Name

1.2. Installation and Configuration Guides 84

Octavia Documentation, Release 15.1.0.dev35

oslo_messaging_kafka

kafka_max_fetch_bytes

Type
integer

Default
1048576

Max fetch bytes of Kafka consumer

kafka_consumer_timeout

Type
floating point

Default
1.0

Default timeout(s) for Kafka consumers

pool_size

Type
integer

Default
10

Pool Size for Kafka Consumers

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
Driver no longer uses connection pool.

conn_pool_min_size

Type
integer

Default
2

The pool size limit for connections expiration policy

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
Driver no longer uses connection pool.

1.2. Installation and Configuration Guides 85

Octavia Documentation, Release 15.1.0.dev35

conn_pool_ttl

Type
integer

Default
1200

The time-to-live in sec of idle connections in the pool

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
Driver no longer uses connection pool.

consumer_group

Type
string

Default
oslo_messaging_consumer

Group id for Kafka consumer. Consumers in one group will coordinate message consumption

producer_batch_timeout

Type
floating point

Default
0.0

Upper bound on the delay for KafkaProducer batching in seconds

producer_batch_size

Type
integer

Default
16384

Size of batch for the producer async send

compression_codec

Type
string

Default
none

Valid Values
none, gzip, snappy, lz4, zstd

The compression codec for all data generated by the producer. If not set, compression will not be
used. Note that the allowed values of this depend on the kafka version

1.2. Installation and Configuration Guides 86

Octavia Documentation, Release 15.1.0.dev35

enable_auto_commit

Type
boolean

Default
False

Enable asynchronous consumer commits

max_poll_records

Type
integer

Default
500

The maximum number of records returned in a poll call

security_protocol

Type
string

Default
PLAINTEXT

Valid Values
PLAINTEXT, SASL_PLAINTEXT, SSL, SASL_SSL

Protocol used to communicate with brokers

sasl_mechanism

Type
string

Default
PLAIN

Mechanism when security protocol is SASL

ssl_cafile

Type
string

Default
''

CA certificate PEM file used to verify the server certificate

ssl_client_cert_file

Type
string

Default
''

Client certificate PEM file used for authentication.

1.2. Installation and Configuration Guides 87

Octavia Documentation, Release 15.1.0.dev35

ssl_client_key_file

Type
string

Default
''

Client key PEM file used for authentication.

ssl_client_key_password

Type
string

Default
''

Client key password file used for authentication.

oslo_messaging_notifications

driver

Type
multi-valued

Default
''

The Drivers(s) to handle sending notifications. Possible values are messaging, messagingv2, rout-
ing, log, test, noop

Table 11: Deprecated Variations

Group Name
DEFAULT notification_driver

transport_url

Type
string

Default
<None>

A URL representing the messaging driver to use for notifications. If not set, we fall back to the
same configuration used for RPC.

Table 12: Deprecated Variations

Group Name
DEFAULT notification_transport_url

1.2. Installation and Configuration Guides 88

Octavia Documentation, Release 15.1.0.dev35

topics

Type
list

Default
['notifications']

AMQP topic used for OpenStack notifications.

Table 13: Deprecated Variations

Group Name
rpc_notifier2 topics
DEFAULT notification_topics

retry

Type
integer

Default
-1

The maximum number of attempts to re-send a notification message which failed to be delivered
due to a recoverable error. 0 - No retry, -1 - indefinite

oslo_messaging_rabbit

amqp_durable_queues

Type
boolean

Default
False

Use durable queues in AMQP. If rabbit_quorum_queue is enabled, queues will be durable and this
value will be ignored.

amqp_auto_delete

Type
boolean

Default
False

Auto-delete queues in AMQP.

Table 14: Deprecated Variations

Group Name
DEFAULT amqp_auto_delete

1.2. Installation and Configuration Guides 89

Octavia Documentation, Release 15.1.0.dev35

ssl

Type
boolean

Default
False

Connect over SSL.

Table 15: Deprecated Variations

Group Name
oslo_messaging_rabbit rabbit_use_ssl

ssl_version

Type
string

Default
''

SSL version to use (valid only if SSL enabled). Valid values are TLSv1 and SSLv23. SSLv2,
SSLv3, TLSv1_1, and TLSv1_2 may be available on some distributions.

Table 16: Deprecated Variations

Group Name
oslo_messaging_rabbit kombu_ssl_version

ssl_key_file

Type
string

Default
''

SSL key file (valid only if SSL enabled).

Table 17: Deprecated Variations

Group Name
oslo_messaging_rabbit kombu_ssl_keyfile

ssl_cert_file

Type
string

Default
''

1.2. Installation and Configuration Guides 90

Octavia Documentation, Release 15.1.0.dev35

SSL cert file (valid only if SSL enabled).

Table 18: Deprecated Variations

Group Name
oslo_messaging_rabbit kombu_ssl_certfile

ssl_ca_file

Type
string

Default
''

SSL certification authority file (valid only if SSL enabled).

Table 19: Deprecated Variations

Group Name
oslo_messaging_rabbit kombu_ssl_ca_certs

ssl_enforce_fips_mode

Type
boolean

Default
False

Global toggle for enforcing the OpenSSL FIPS mode. This feature requires Python support. This is
available in Python 3.9 in all environments and may have been backported to older Python versions
on select environments. If the Python executable used does not support OpenSSL FIPS mode, an
exception will be raised.

heartbeat_in_pthread

Type
boolean

Default
False

(DEPRECATED) It is recommend not to use this option anymore. Run the health check heartbeat
thread through a native python thread by default. If this option is equal to False then the health
check heartbeat will inherit the execution model from the parent process. For example if the parent
process has monkey patched the stdlib by using eventlet/greenlet then the heartbeat will be run
through a green thread. This option should be set to True only for the wsgi services.

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

1.2. Installation and Configuration Guides 91

Octavia Documentation, Release 15.1.0.dev35

Reason
The option is related to Eventlet which will be removed. In addition this
has never worked as expected with services using eventlet for core service
framework.

kombu_reconnect_delay

Type
floating point

Default
1.0

Minimum Value
0.0

Maximum Value
4.5

How long to wait (in seconds) before reconnecting in response to an AMQP consumer cancel
notification.

Table 20: Deprecated Variations

Group Name
DEFAULT kombu_reconnect_delay

kombu_compression

Type
string

Default
<None>

EXPERIMENTAL: Possible values are: gzip, bz2. If not set compression will not be used. This
option may not be available in future versions.

kombu_missing_consumer_retry_timeout

Type
integer

Default
60

How long to wait a missing client before abandoning to send it its replies. This value should not
be longer than rpc_response_timeout.

Table 21: Deprecated Variations

Group Name
oslo_messaging_rabbit kombu_reconnect_timeout

1.2. Installation and Configuration Guides 92

Octavia Documentation, Release 15.1.0.dev35

kombu_failover_strategy

Type
string

Default
round-robin

Valid Values
round-robin, shuffle

Determines how the next RabbitMQ node is chosen in case the one we are currently connected to
becomes unavailable. Takes effect only if more than one RabbitMQ node is provided in config.

rabbit_login_method

Type
string

Default
AMQPLAIN

Valid Values
PLAIN, AMQPLAIN, EXTERNAL, RABBIT-CR-DEMO

The RabbitMQ login method.

Table 22: Deprecated Variations

Group Name
DEFAULT rabbit_login_method

rabbit_retry_interval

Type
integer

Default
1

How frequently to retry connecting with RabbitMQ.

rabbit_retry_backoff

Type
integer

Default
2

How long to backoff for between retries when connecting to RabbitMQ.

Table 23: Deprecated Variations

Group Name
DEFAULT rabbit_retry_backoff

1.2. Installation and Configuration Guides 93

Octavia Documentation, Release 15.1.0.dev35

rabbit_interval_max

Type
integer

Default
30

Maximum interval of RabbitMQ connection retries. Default is 30 seconds.

rabbit_ha_queues

Type
boolean

Default
False

Try to use HA queues in RabbitMQ (x-ha-policy: all). If you change this option, you must wipe
the RabbitMQ database. In RabbitMQ 3.0, queue mirroring is no longer controlled by the x-ha-
policy argument when declaring a queue. If you just want to make sure that all queues (except
those with auto-generated names) are mirrored across all nodes, run: "rabbitmqctl set_policy HA
’^(?!amq.).*’ ’{"ha-mode": "all"}’ "

Table 24: Deprecated Variations

Group Name
DEFAULT rabbit_ha_queues

rabbit_quorum_queue

Type
boolean

Default
False

Use quorum queues in RabbitMQ (x-queue-type: quorum). The quorum queue is a modern queue
type for RabbitMQ implementing a durable, replicated FIFO queue based on the Raft consensus
algorithm. It is available as of RabbitMQ 3.8.0. If set this option will conflict with the HA queues
(rabbit_ha_queues) aka mirrored queues, in other words the HA queues should be disabled.
Quorum queues are also durable by default so the amqp_durable_queues option is ignored when
this option is enabled.

rabbit_transient_quorum_queue

Type
boolean

Default
False

Use quorum queues for transients queues in RabbitMQ. Enabling this option will then make sure
those queues are also using quorum kind of rabbit queues, which are HA by default.

rabbit_quorum_delivery_limit

1.2. Installation and Configuration Guides 94

Octavia Documentation, Release 15.1.0.dev35

Type
integer

Default
0

Each time a message is redelivered to a consumer, a counter is incremented. Once the redelivery
count exceeds the delivery limit the message gets dropped or dead-lettered (if a DLX exchange has
been configured) Used only when rabbit_quorum_queue is enabled, Default 0 which means dont
set a limit.

rabbit_quorum_max_memory_length

Type
integer

Default
0

By default all messages are maintained in memory if a quorum queue grows in length it can put
memory pressure on a cluster. This option can limit the number of messages in the quorum queue.
Used only when rabbit_quorum_queue is enabled, Default 0 which means dont set a limit.

Table 25: Deprecated Variations

Group Name
oslo_messaging_rabbit rabbit_quroum_max_memory_length

rabbit_quorum_max_memory_bytes

Type
integer

Default
0

By default all messages are maintained in memory if a quorum queue grows in length it can put
memory pressure on a cluster. This option can limit the number of memory bytes used by the
quorum queue. Used only when rabbit_quorum_queue is enabled, Default 0 which means dont set
a limit.

Table 26: Deprecated Variations

Group Name
oslo_messaging_rabbit rabbit_quroum_max_memory_bytes

rabbit_transient_queues_ttl

Type
integer

Default
1800

Minimum Value
0

1.2. Installation and Configuration Guides 95

Octavia Documentation, Release 15.1.0.dev35

Positive integer representing duration in seconds for queue TTL (x-expires). Queues which are
unused for the duration of the TTL are automatically deleted. The parameter affects only reply
and fanout queues. Setting 0 as value will disable the x-expires. If doing so, make sure you have
a rabbitmq policy to delete the queues or you deployment will create an infinite number of queue
over time.In case rabbit_stream_fanout is set to True, this option will control data retention policy
(x-max-age) for messages in the fanout queue rather then the queue duration itself. So the oldest
data in the stream queue will be discarded from it once reaching TTL Setting to 0 will disable
x-max-age for stream which make stream grow indefinitely filling up the diskspace

rabbit_qos_prefetch_count

Type
integer

Default
0

Specifies the number of messages to prefetch. Setting to zero allows unlimited messages.

heartbeat_timeout_threshold

Type
integer

Default
60

Number of seconds after which the Rabbit broker is considered down if heartbeat’s keep-alive fails
(0 disables heartbeat).

heartbeat_rate

Type
integer

Default
3

How often times during the heartbeat_timeout_threshold we check the heartbeat.

direct_mandatory_flag

Type
boolean

Default
True

(DEPRECATED) Enable/Disable the RabbitMQ mandatory flag for direct send. The direct send
is used as reply, so the MessageUndeliverable exception is raised in case the client queue does not
exist.MessageUndeliverable exception will be used to loop for a timeout to lets a chance to sender
to recover.This flag is deprecated and it will not be possible to deactivate this functionality anymore

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

1.2. Installation and Configuration Guides 96

Octavia Documentation, Release 15.1.0.dev35

Reason
Mandatory flag no longer deactivable.

enable_cancel_on_failover

Type
boolean

Default
False

Enable x-cancel-on-ha-failover flag so that rabbitmq server will cancel and notify consumerswhen
queue is down

use_queue_manager

Type
boolean

Default
False

Should we use consistant queue names or random ones

hostname

Type
string

Default
node1.example.com

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

Hostname used by queue manager. Defaults to the value returned by socket.gethostname().

processname

Type
string

Default
nova-api

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

Process name used by queue manager

rabbit_stream_fanout

Type
boolean

Default
False

1.2. Installation and Configuration Guides 97

Octavia Documentation, Release 15.1.0.dev35

Use stream queues in RabbitMQ (x-queue-type: stream). Streams are a new persistent and repli-
cated data structure ("queue type") in RabbitMQ which models an append-only log with non-
destructive consumer semantics. It is available as of RabbitMQ 3.9.0. If set this option will replace
all fanout queues with only one stream queue.

oslo_middleware

max_request_body_size

Type
integer

Default
114688

The maximum body size for each request, in bytes.

Table 27: Deprecated Variations

Group Name
DEFAULT osapi_max_request_body_size
DEFAULT max_request_body_size

quotas

default_load_balancer_quota

Type
integer

Default
-1

Default per project load balancer quota.

default_listener_quota

Type
integer

Default
-1

Default per project listener quota.

default_member_quota

Type
integer

Default
-1

Default per project member quota.

default_pool_quota

Type
integer

1.2. Installation and Configuration Guides 98

Octavia Documentation, Release 15.1.0.dev35

Default
-1

Default per project pool quota.

default_health_monitor_quota

Type
integer

Default
-1

Default per project health monitor quota.

default_l7policy_quota

Type
integer

Default
-1

Default per project l7policy quota.

default_l7rule_quota

Type
integer

Default
-1

Default per project l7rule quota.

service_auth

auth_url

Type
unknown type

Default
<None>

Authentication URL

auth_type

Type
unknown type

Default
<None>

Authentication type to load

Table 28: Deprecated Variations

Group Name
service_auth auth_plugin

1.2. Installation and Configuration Guides 99

Octavia Documentation, Release 15.1.0.dev35

cafile

Type
string

Default
<None>

PEM encoded Certificate Authority to use when verifying HTTPs connections.

certfile

Type
string

Default
<None>

PEM encoded client certificate cert file

collect_timing

Type
boolean

Default
False

Collect per-API call timing information.

default_domain_id

Type
unknown type

Default
<None>

Optional domain ID to use with v3 and v2 parameters. It will be used for both the user and project
domain in v3 and ignored in v2 authentication.

default_domain_name

Type
unknown type

Default
<None>

Optional domain name to use with v3 API and v2 parameters. It will be used for both the user and
project domain in v3 and ignored in v2 authentication.

domain_id

Type
unknown type

Default
<None>

Domain ID to scope to

1.2. Installation and Configuration Guides 100

Octavia Documentation, Release 15.1.0.dev35

domain_name

Type
unknown type

Default
<None>

Domain name to scope to

insecure

Type
boolean

Default
False

Verify HTTPS connections.

keyfile

Type
string

Default
<None>

PEM encoded client certificate key file

password

Type
unknown type

Default
<None>

User’s password

project_domain_id

Type
unknown type

Default
<None>

Domain ID containing project

project_domain_name

Type
unknown type

Default
<None>

Domain name containing project

1.2. Installation and Configuration Guides 101

Octavia Documentation, Release 15.1.0.dev35

project_id

Type
unknown type

Default
<None>

Project ID to scope to

Table 29: Deprecated Variations

Group Name
service_auth tenant-id
service_auth tenant_id

project_name

Type
unknown type

Default
<None>

Project name to scope to

Table 30: Deprecated Variations

Group Name
service_auth tenant-name
service_auth tenant_name

split_loggers

Type
boolean

Default
False

Log requests to multiple loggers.

system_scope

Type
unknown type

Default
<None>

Scope for system operations

tenant_id

Type
unknown type

1.2. Installation and Configuration Guides 102

Octavia Documentation, Release 15.1.0.dev35

Default
<None>

Tenant ID

tenant_name

Type
unknown type

Default
<None>

Tenant Name

timeout

Type
integer

Default
<None>

Timeout value for http requests

trust_id

Type
unknown type

Default
<None>

ID of the trust to use as a trustee use

user_domain_id

Type
unknown type

Default
<None>

User’s domain id

user_domain_name

Type
unknown type

Default
<None>

User’s domain name

user_id

Type
unknown type

Default
<None>

1.2. Installation and Configuration Guides 103

Octavia Documentation, Release 15.1.0.dev35

User id

username

Type
unknown type

Default
<None>

Username

Table 31: Deprecated Variations

Group Name
service_auth user-name
service_auth user_name

task_flow

engine

Type
string

Default
parallel

Valid Values
serial, parallel

TaskFlow engine to use.

Possible values

serial
Runs all tasks on a single thread

parallel
Schedules tasks onto different threads to allow for running non-dependent tasks simultane-
ously

max_workers

Type
integer

Default
5

The maximum number of workers

disable_revert

Type
boolean

1.2. Installation and Configuration Guides 104

Octavia Documentation, Release 15.1.0.dev35

Default
False

If True, disables the controller worker taskflow flows from reverting. This will leave resources in
an inconsistent state and should only be used for debugging purposes.

persistence_connection

Type
string

Default
sqlite://

Persistence database, which will be used to store tasks states. Database connection url with db
name

jobboard_enabled

Type
boolean

Default
False

If True, enables TaskFlow jobboard.

jobboard_backend_driver

Type
string

Default
redis_taskflow_driver

Valid Values
redis_taskflow_driver, zookeeper_taskflow_driver, etcd_taskflow_driver

Jobboard backend driver that will monitor job state.

Possible values

redis_taskflow_driver
Driver that will use Redis to store job states.

zookeeper_taskflow_driver
Driver that will use Zookeeper to store job states.

etcd_taskflow_driver
Driver that will user Etcd to store job states.

jobboard_backend_hosts

Type
list

Default
['127.0.0.1']

Jobboard backend server host(s).

1.2. Installation and Configuration Guides 105

Octavia Documentation, Release 15.1.0.dev35

jobboard_backend_port

Type
port number

Default
6379

Minimum Value
0

Maximum Value
65535

Jobboard backend server port

jobboard_backend_username

Type
string

Default
<None>

Jobboard backend server user name

jobboard_backend_password

Type
string

Default
<None>

Jobboard backend server password

jobboard_backend_namespace

Type
string

Default
octavia_jobboard

Jobboard name that should be used to store taskflow job id and claims for it.

jobboard_redis_backend_db

Type
integer

Default
0

Minimum Value
0

Database ID in redis server.

1.2. Installation and Configuration Guides 106

Octavia Documentation, Release 15.1.0.dev35

jobboard_redis_sentinel

Type
string

Default
<None>

Sentinel name if it is used for Redis.

jobboard_redis_sentinel_username

Type
string

Default
<None>

Redis Sentinel server user name

jobboard_redis_sentinel_password

Type
string

Default
<None>

Redis Sentinel server password

jobboard_redis_backend_ssl_options

Type
dict

Default
{'ssl': False, 'ssl_keyfile': None, 'ssl_certfile': None,
'ssl_ca_certs': None, 'ssl_cert_reqs': 'required'}

Redis jobboard backend ssl configuration options.

jobboard_redis_sentinel_ssl_options

Type
dict

Default
{'ssl': False, 'ssl_keyfile': None, 'ssl_certfile': None,
'ssl_ca_certs': None, 'ssl_cert_reqs': 'required'}

Redis sentinel ssl configuration options.

jobboard_zookeeper_ssl_options

Type
dict

Default
{'use_ssl': False, 'keyfile': None, 'keyfile_password':
None, 'certfile': None, 'verify_certs': True}

Zookeeper jobboard backend ssl configuration options.

1.2. Installation and Configuration Guides 107

Octavia Documentation, Release 15.1.0.dev35

jobboard_etcd_ssl_options

Type
dict

Default
{'use_ssl': False, 'ca_cert': None, 'cert_key': None,
'cert_cert': None}

Etcd jobboard backend ssl configuration options.

jobboard_etcd_timeout

Type
integer

Default
<None>

Timeout when communicating with the Etcd backend.

jobboard_etcd_api_path

Type
string

Default
<None>

API Path of the Etcd server.

jobboard_expiration_time

Type
integer

Default
30

For backends like redis claiming jobs requiring setting the expiry - how many seconds the claim
should be retained for.

jobboard_save_logbook

Type
boolean

Default
False

If for analysis required saving logbooks info, set this parameter to True. By default remove logbook
from persistence backend when job completed.

1.2.4 Octavia Policies

Warning

1.2. Installation and Configuration Guides 108

Octavia Documentation, Release 15.1.0.dev35

JSON formatted policy file is deprecated since Octavia 8.0.0 (Wallaby). This oslopolicy-convert-
json-to-yaml tool will migrate your existing JSON-formatted policy file to YAML in a backward-
compatible way.

Octavia Advanced Role Based Access Control (RBAC)

Octavia adopted the "Advanced Role Based Access Control (RBAC)" default policies in the Pike release
of OpenStack. This provides a fine-grained default access control policy for the Octavia service.

The Octavia Advanced RBAC goes beyond the OpenStack legacy RBAC policies of allowing "owners
and admins" full access to all services. It also provides a more fine-grained RBAC policy than the newer
Keystone Default Roles .

The default policy is to not allow access unless the auth_strategy is ’noauth’.

Users must be a member of one of the following roles to have access to the load-balancer API:

role:load-balancer_observer
User has access to load-balancer read-only APIs.

role:load-balancer_global_observer
User has access to load-balancer read-only APIs including resources owned by others.

role:load-balancer_member
User has access to load-balancer read and write APIs.

role:load-balancer_quota_admin
User is considered an admin for quota APIs only.

role:load-balancer_admin
User is considered an admin for all load-balancer APIs including resources owned by others.

role:admin and system_scope:all
User is admin to all service APIs, including Octavia.

Note

’is_admin:True’ is a policy rule that takes into account the auth_strategy == noauth configuration
setting. It is equivalent to ’rule:context_is_admin or {auth_strategy == noauth}’ if that would be
valid syntax.

These roles are in addition to the Keystone Default Roles:

• role:reader

• role:member

In addition, the Octavia API supports Keystone scoped tokens. When enabled in Oslo Policy, users will
need to present a token scoped to either the "system" or a specific "project". See the section Upgrade
Considerations for more information.

See the section Managing Octavia User Roles for examples and advice on how to apply these RBAC
policies in production.

1.2. Installation and Configuration Guides 109

https://docs.openstack.org/oslo.policy/latest/cli/oslopolicy-convert-json-to-yaml.html
https://docs.openstack.org/oslo.policy/latest/cli/oslopolicy-convert-json-to-yaml.html
https://docs.openstack.org/keystone/latest/admin/service-api-protection.html
https://docs.openstack.org/keystone/latest/admin/service-api-protection.html

Octavia Documentation, Release 15.1.0.dev35

Legacy Admin or Owner Policy Override File

An alternate policy file has been provided in octavia/etc/policy called admin_or_owner-policy.yaml that
removes the load-balancer RBAC role requirement. Please see the README.rst in that directory for
more information.

This will drop the role requirements to allow access to all with the "admin" role or if the user is a member
of the project that created the resource. All users have access to the Octavia API to create and manage
load balancers under their project.

OpenStack Default Roles Policy Override File

An alternate policy file has been provided in octavia/etc/policy called keystone_default_roles-policy.yaml
that removes the load-balancer RBAC role requirement. Please see the README.rst in that directory for
more information.

This policy will honor the following Keystone Default Roles in the Octavia API:

• Admin

• Project scoped - Reader

• Project scoped - Member

In addition, there is an alternate policy file that enables system scoped tokens checking called
keystone_default_roles_scoped-policy.yaml.

• System scoped - Admin

• System scoped - Reader

• Project scoped - Reader

• Project scoped - Member

Managing Octavia User Roles

User and group roles are managed through the Keystone (identity) project.

A role can be added to a user with the following command:

openstack role add --project <project name or id> --user <user name or id>
↪→<role>

An example where user "jane", in the "engineering" project, gets a new role "load-balancer_member":

openstack role add --project engineering --user jane load-balancer_member

Keystone Group Roles

Roles can also be assigned to Keystone groups. This can simplify the management of user roles greatly.

For example, your cloud may have a "users" group defined in Keystone. This group is set up to have all
of the regular users of your cloud as a member. If you want all of your users to have access to the load
balancing service Octavia, you could add the "load-balancer_member" role to the "users" group:

openstack role add --domain default --group users load-balancer_member

1.2. Installation and Configuration Guides 110

https://docs.openstack.org/keystone/latest/admin/service-api-protection.html
https://docs.openstack.org/keystone/latest/admin/identity-concepts.html

Octavia Documentation, Release 15.1.0.dev35

Upgrade Considerations

Starting with the Wallaby release of Octavia, Keystone token scopes and default roles can be enforced. By
default, in the Wallaby release, Oslo Policy will not be enforcing these new roles and scopes. However,
at some point in the future they may become the default. You may want to enable them now to be ready
for the later transition. This section will describe those settings.

The Oslo Policy project defines two configuration settings, among others, that can be set in the Octavia
configuration file to influence how policies are handled in the Octavia API. Those two settings are en-
force_scope and enforce_new_defaults.

[oslo_policy] enforce_scope

Keystone has introduced the concept of token scopes. Currently, Oslo Policy defaults to not enforce the
scope validation of a token for backward compatibility reasons.

The Octavia API supports enforcing the Keystone token scopes as of the Wallaby release. If you are
ready to start enforcing the Keystone token scope in the Octavia API you can add the following setting
to your Octavia API configuration file:

[oslo_policy]
enforce_scope = True

Currently the primary effect of this setting is to allow a system scoped admin token when performing
administrative API calls to the Octavia API. It will also allow system scoped reader tokens to have the
equivalent of the load-balancer_global_observer role.

The Octavia API already enforces the project scoping in Keystone tokens.

[oslo_policy] enforce_new_defaults

The Octavia Wallaby release added support for Keystone Default Roles in the default policies. The pre-
vious Octavia Advanced RBAC policies have now been deprecated in favor of the new policies requiring
one of the new Keystone Default Roles. Currently, Oslo Policy defaults to using the deprecated policies
that do not require the new Keystone Default Roles for backward compatibility.

The Octavia API supports requiring these new Keystone Default Roles as of the Wallaby release. If you
are ready to start requiring these roles you can enable the new policies by adding the following setting to
your Octavia API configuration file:

[oslo_policy]
enforce_new_defaults = True

When the new default policies are enabled in the Octavia API, users with the load-balancer:observer role
will also require the Keystone default role of "role:reader". Users with the load-balancer:member role
will also require the Keystone default role of "role:member".

Sample File Generation

To generate a sample policy.yaml file from the Octavia defaults, run the oslo policy generation script:

oslopolicy-sample-generator
--config-file etc/policy/octavia-policy-generator.conf
--output-file policy.yaml.sample

1.2. Installation and Configuration Guides 111

https://docs.openstack.org/oslo.policy/latest
https://docs.openstack.org/oslo.policy/latest/configuration/index.html#oslo_policy.enforce_scope
https://docs.openstack.org/oslo.policy/latest/configuration/index.html#oslo_policy.enforce_scope
https://docs.openstack.org/oslo.policy/latest/configuration/index.html#oslo_policy.enforce_new_defaults
https://docs.openstack.org/keystone/latest/admin/tokens-overview.html#authorization-scopes
https://docs.openstack.org/keystone/latest/admin/service-api-protection.html
https://docs.openstack.org/keystone/latest/admin/service-api-protection.html
https://docs.openstack.org/keystone/latest/admin/service-api-protection.html
https://docs.openstack.org/keystone/latest/admin/service-api-protection.html

Octavia Documentation, Release 15.1.0.dev35

Merged File Generation

This will output a policy file which includes all registered policy defaults and all policies configured with
a policy file. This file shows the effective policy in use by the project:

oslopolicy-policy-generator
--config-file etc/policy/octavia-policy-generator.conf

This tool uses the output_file path from the config-file.

List Redundant Configurations

This will output a list of matches for policy rules that are defined in a configuration file where the rule
does not differ from a registered default rule. These are rules that can be removed from the policy file
with no change in effective policy:

oslopolicy-list-redundant
--config-file etc/policy/octavia-policy-generator.conf

Default Octavia Policies - API Effective Rules

This section will list the RBAC rules the Octavia API will use followed by a list of the roles that will be
allowed access.

Without enforce_scope and enforce_new_defaults:

• load-balancer:read

– load-balancer_admin

– load-balancer_global_observer

– load-balancer_member and <project member>

– load-balancer_observer and <project member>

– role:admin

• load-balancer:read-global

– load-balancer_admin

– load-balancer_global_observer

– role:admin

• load-balancer:write

– load-balancer_admin

– load-balancer_member and <project member>

– role:admin

• load-balancer:read-quota

– load-balancer_admin

– load-balancer_global_observer

– load-balancer_member and <project member>

1.2. Installation and Configuration Guides 112

https://docs.openstack.org/oslo.policy/latest/configuration/index.html#oslo_policy.enforce_scope
https://docs.openstack.org/oslo.policy/latest/configuration/index.html#oslo_policy.enforce_new_defaults

Octavia Documentation, Release 15.1.0.dev35

– load-balancer_observer and <project member>

– load-balancer_quota_admin

– role:admin

• load-balancer:read-quota-global

– load-balancer_admin

– load-balancer_global_observer

– load-balancer_quota_admin

– role:admin

• load-balancer:write-quota

– load-balancer_admin

– load-balancer_quota_admin

– role:admin

With enforce_scope and enforce_new_defaults:

• load-balancer:read

– load-balancer_admin

– load-balancer_global_observer

– load-balancer_member and <project member> and role:member

– load-balancer_observer and <project member> and role:reader

– role:admin and system_scope:all

– role:reader and system_scope:all

• load-balancer:read-global

– load-balancer_admin

– load-balancer_global_observer

– role:admin and system_scope:all

– role:reader and system_scope:all

• load-balancer:write

– load-balancer_admin

– load-balancer_member and <project member> and role:member

– role:admin and system_scope:all

• load-balancer:read-quota

– load-balancer_admin

– load-balancer_global_observer

– load-balancer_member and <project member> and role:member

– load-balancer_observer and <project member> and role:reader

1.2. Installation and Configuration Guides 113

https://docs.openstack.org/oslo.policy/latest/configuration/index.html#oslo_policy.enforce_scope
https://docs.openstack.org/oslo.policy/latest/configuration/index.html#oslo_policy.enforce_new_defaults

Octavia Documentation, Release 15.1.0.dev35

– load-balancer_quota_admin

– role:admin and system_scope:all

– role:reader and system_scope:all

• load-balancer:read-quota-global

– load-balancer_admin

– load-balancer_global_observer

– load-balancer_quota_admin

– role:admin and system_scope:all

– role:reader and system_scope:all

• load-balancer:write-quota

– load-balancer_admin

– load-balancer_quota_admin

– role:admin and system_scope:all

Default Octavia Policies - Generated From The Octavia Code

Intended scope(s): project
#"project-member": "role:member and project_id:%(project_id)s"

Intended scope(s): project
#"project-reader": "role:reader and project_id:%(project_id)s"

Intended scope(s): project
#"context_is_admin": "role:load-balancer_admin or role:admin"

DEPRECATED
"context_is_admin":"role:admin or role:load-balancer_admin" has been
deprecated since W in favor of "context_is_admin":"role:load-
balancer_admin or role:admin".
The Octavia API now requires the OpenStack default roles and scoped
tokens. See
https://docs.openstack.org/octavia/latest/configuration/policy.html
and https://docs.openstack.org/keystone/latest/contributor/services.
html#reusable-default-roles for more information.

Intended scope(s): project
#"load-balancer:owner": "project_id:%(project_id)s"

Intended scope(s): project
#"load-balancer:observer_and_owner": "role:load-balancer_observer and␣
↪→rule:project-reader"

DEPRECATED
"load-balancer:observer_and_owner":"role:load-balancer_observer and
rule:load-balancer:owner" has been deprecated since W in favor of

(continues on next page)

1.2. Installation and Configuration Guides 114

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

"load-balancer:observer_and_owner":"role:load-balancer_observer and
rule:project-reader".
The Octavia API now requires the OpenStack default roles and scoped
tokens. See
https://docs.openstack.org/octavia/latest/configuration/policy.html
and https://docs.openstack.org/keystone/latest/contributor/services.
html#reusable-default-roles for more information.

Intended scope(s): project
#"load-balancer:global_observer": "role:load-balancer_global_observer"

Intended scope(s): project
#"load-balancer:member_and_owner": "role:load-balancer_member and␣
↪→rule:project-member"

DEPRECATED
"load-balancer:member_and_owner":"role:load-balancer_member and
rule:load-balancer:owner" has been deprecated since W in favor of
"load-balancer:member_and_owner":"role:load-balancer_member and
rule:project-member".
The Octavia API now requires the OpenStack default roles and scoped
tokens. See
https://docs.openstack.org/octavia/latest/configuration/policy.html
and https://docs.openstack.org/keystone/latest/contributor/services.
html#reusable-default-roles for more information.

Intended scope(s): project
#"load-balancer:admin": "is_admin:True or role:load-balancer_admin or␣
↪→role:admin"

Intended scope(s): project
#"load-balancer:read": "rule:load-balancer:observer_and_owner or rule:load-
↪→balancer:global_observer or rule:load-balancer:member_and_owner or␣
↪→rule:load-balancer:admin"

Intended scope(s): project
#"load-balancer:read-global": "rule:load-balancer:global_observer or␣
↪→rule:load-balancer:admin"

Intended scope(s): project
#"load-balancer:write": "rule:load-balancer:member_and_owner or rule:load-
↪→balancer:admin"

Intended scope(s): project
#"load-balancer:read-quota": "rule:load-balancer:observer_and_owner or␣
↪→rule:load-balancer:global_observer or rule:load-balancer:member_and_owner␣
↪→or role:load-balancer_quota_admin or rule:load-balancer:admin"

Intended scope(s): project

(continues on next page)

1.2. Installation and Configuration Guides 115

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

#"load-balancer:read-quota-global": "rule:load-balancer:global_observer or␣
↪→role:load-balancer_quota_admin or rule:load-balancer:admin"

Intended scope(s): project
#"load-balancer:write-quota": "role:load-balancer_quota_admin or rule:load-
↪→balancer:admin"

List Flavors
GET /v2.0/lbaas/flavors
#"os_load-balancer_api:flavor:get_all": "rule:load-balancer:read"

Create a Flavor
POST /v2.0/lbaas/flavors
#"os_load-balancer_api:flavor:post": "rule:load-balancer:admin"

Update a Flavor
PUT /v2.0/lbaas/flavors/{flavor_id}
#"os_load-balancer_api:flavor:put": "rule:load-balancer:admin"

Show Flavor details
GET /v2.0/lbaas/flavors/{flavor_id}
#"os_load-balancer_api:flavor:get_one": "rule:load-balancer:read"

Remove a Flavor
DELETE /v2.0/lbaas/flavors/{flavor_id}
#"os_load-balancer_api:flavor:delete": "rule:load-balancer:admin"

List Flavor Profiles
GET /v2.0/lbaas/flavorprofiles
#"os_load-balancer_api:flavor-profile:get_all": "rule:load-balancer:admin"

Create a Flavor Profile
POST /v2.0/lbaas/flavorprofiles
#"os_load-balancer_api:flavor-profile:post": "rule:load-balancer:admin"

Update a Flavor Profile
PUT /v2.0/lbaas/flavorprofiles/{flavor_profile_id}
#"os_load-balancer_api:flavor-profile:put": "rule:load-balancer:admin"

Show Flavor Profile details
GET /v2.0/lbaas/flavorprofiles/{flavor_profile_id}
#"os_load-balancer_api:flavor-profile:get_one": "rule:load-balancer:admin"

Remove a Flavor Profile
DELETE /v2.0/lbaas/flavorprofiles/{flavor_profile_id}
#"os_load-balancer_api:flavor-profile:delete": "rule:load-balancer:admin"

List Availability Zones
GET /v2.0/lbaas/availabilityzones

(continues on next page)

1.2. Installation and Configuration Guides 116

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

#"os_load-balancer_api:availability-zone:get_all": "rule:load-balancer:read"

Create an Availability Zone
POST /v2.0/lbaas/availabilityzones
#"os_load-balancer_api:availability-zone:post": "rule:load-balancer:admin"

Update an Availability Zone
PUT /v2.0/lbaas/availabilityzones/{availability_zone_id}
#"os_load-balancer_api:availability-zone:put": "rule:load-balancer:admin"

Show Availability Zone details
GET /v2.0/lbaas/availabilityzones/{availability_zone_id}
#"os_load-balancer_api:availability-zone:get_one": "rule:load-balancer:read"

Remove an Availability Zone
DELETE /v2.0/lbaas/availabilityzones/{availability_zone_id}
#"os_load-balancer_api:availability-zone:delete": "rule:load-balancer:admin"

List Availability Zones
GET /v2.0/lbaas/availabilityzoneprofiles
#"os_load-balancer_api:availability-zone-profile:get_all": "rule:load-
↪→balancer:admin"

Create an Availability Zone
POST /v2.0/lbaas/availabilityzoneprofiles
#"os_load-balancer_api:availability-zone-profile:post": "rule:load-
↪→balancer:admin"

Update an Availability Zone
PUT /v2.0/lbaas/availabilityzoneprofiles/{availability_zone_profile_id}
#"os_load-balancer_api:availability-zone-profile:put": "rule:load-
↪→balancer:admin"

Show Availability Zone details
GET /v2.0/lbaas/availabilityzoneprofiles/{availability_zone_profile_id}
#"os_load-balancer_api:availability-zone-profile:get_one": "rule:load-
↪→balancer:admin"

Remove an Availability Zone
DELETE /v2.0/lbaas/availabilityzoneprofiles/{availability_zone_profile_id}
#"os_load-balancer_api:availability-zone-profile:delete": "rule:load-
↪→balancer:admin"

List Health Monitors of a Pool
GET /v2/lbaas/healthmonitors
#"os_load-balancer_api:healthmonitor:get_all": "rule:load-balancer:read"

List Health Monitors including resources owned by others
GET /v2/lbaas/healthmonitors

(continues on next page)

1.2. Installation and Configuration Guides 117

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

#"os_load-balancer_api:healthmonitor:get_all-global": "rule:load-
↪→balancer:read-global"

Create a Health Monitor
POST /v2/lbaas/healthmonitors
#"os_load-balancer_api:healthmonitor:post": "rule:load-balancer:write"

Show Health Monitor details
GET /v2/lbaas/healthmonitors/{healthmonitor_id}
#"os_load-balancer_api:healthmonitor:get_one": "rule:load-balancer:read"

Update a Health Monitor
PUT /v2/lbaas/healthmonitors/{healthmonitor_id}
#"os_load-balancer_api:healthmonitor:put": "rule:load-balancer:write"

Remove a Health Monitor
DELETE /v2/lbaas/healthmonitors/{healthmonitor_id}
#"os_load-balancer_api:healthmonitor:delete": "rule:load-balancer:write"

List L7 Policys
GET /v2/lbaas/l7policies
#"os_load-balancer_api:l7policy:get_all": "rule:load-balancer:read"

List L7 Policys including resources owned by others
GET /v2/lbaas/l7policies
#"os_load-balancer_api:l7policy:get_all-global": "rule:load-balancer:read-
↪→global"

Create a L7 Policy
POST /v2/lbaas/l7policies
#"os_load-balancer_api:l7policy:post": "rule:load-balancer:write"

Show L7 Policy details
GET /v2/lbaas/l7policies/{l7policy_id}
#"os_load-balancer_api:l7policy:get_one": "rule:load-balancer:read"

Update a L7 Policy
PUT /v2/lbaas/l7policies/{l7policy_id}
#"os_load-balancer_api:l7policy:put": "rule:load-balancer:write"

Remove a L7 Policy
DELETE /v2/lbaas/l7policies/{l7policy_id}
#"os_load-balancer_api:l7policy:delete": "rule:load-balancer:write"

List L7 Rules
GET /v2/lbaas/l7policies/{l7policy_id}/rules
#"os_load-balancer_api:l7rule:get_all": "rule:load-balancer:read"

Create a L7 Rule

(continues on next page)

1.2. Installation and Configuration Guides 118

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

POST /v2/lbaas/l7policies/{l7policy_id}/rules
#"os_load-balancer_api:l7rule:post": "rule:load-balancer:write"

Show L7 Rule details
GET /v2/lbaas/l7policies/{l7policy_id}/rules/{l7rule_id}
#"os_load-balancer_api:l7rule:get_one": "rule:load-balancer:read"

Update a L7 Rule
PUT /v2/lbaas/l7policies/{l7policy_id}/rules/{l7rule_id}
#"os_load-balancer_api:l7rule:put": "rule:load-balancer:write"

Remove a L7 Rule
DELETE /v2/lbaas/l7policies/{l7policy_id}/rules/{l7rule_id}
#"os_load-balancer_api:l7rule:delete": "rule:load-balancer:write"

List Listeners
GET /v2/lbaas/listeners
#"os_load-balancer_api:listener:get_all": "rule:load-balancer:read"

List Listeners including resources owned by others
GET /v2/lbaas/listeners
#"os_load-balancer_api:listener:get_all-global": "rule:load-balancer:read-
↪→global"

Create a Listener
POST /v2/lbaas/listeners
#"os_load-balancer_api:listener:post": "rule:load-balancer:write"

Show Listener details
GET /v2/lbaas/listeners/{listener_id}
#"os_load-balancer_api:listener:get_one": "rule:load-balancer:read"

Update a Listener
PUT /v2/lbaas/listeners/{listener_id}
#"os_load-balancer_api:listener:put": "rule:load-balancer:write"

Remove a Listener
DELETE /v2/lbaas/listeners/{listener_id}
#"os_load-balancer_api:listener:delete": "rule:load-balancer:write"

Show Listener statistics
GET /v2/lbaas/listeners/{listener_id}/stats
#"os_load-balancer_api:listener:get_stats": "rule:load-balancer:read"

List Load Balancers
GET /v2/lbaas/loadbalancers
#"os_load-balancer_api:loadbalancer:get_all": "rule:load-balancer:read"

List Load Balancers including resources owned by others

(continues on next page)

1.2. Installation and Configuration Guides 119

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

GET /v2/lbaas/loadbalancers
#"os_load-balancer_api:loadbalancer:get_all-global": "rule:load-balancer:read-
↪→global"

Create a Load Balancer
POST /v2/lbaas/loadbalancers
#"os_load-balancer_api:loadbalancer:post": "rule:load-balancer:write"

Show Load Balancer details
GET /v2/lbaas/loadbalancers/{loadbalancer_id}
#"os_load-balancer_api:loadbalancer:get_one": "rule:load-balancer:read"

Update a Load Balancer
PUT /v2/lbaas/loadbalancers/{loadbalancer_id}
#"os_load-balancer_api:loadbalancer:put": "rule:load-balancer:write"

Remove a Load Balancer
DELETE /v2/lbaas/loadbalancers/{loadbalancer_id}
#"os_load-balancer_api:loadbalancer:delete": "rule:load-balancer:write"

Show Load Balancer statistics
GET /v2/lbaas/loadbalancers/{loadbalancer_id}/stats
#"os_load-balancer_api:loadbalancer:get_stats": "rule:load-balancer:read"

Show Load Balancer status
GET /v2/lbaas/loadbalancers/{loadbalancer_id}/status
#"os_load-balancer_api:loadbalancer:get_status": "rule:load-balancer:read"

Failover a Load Balancer
PUT /v2/lbaas/loadbalancers/{loadbalancer_id}/failover
#"os_load-balancer_api:loadbalancer:put_failover": "rule:load-balancer:admin"

List Members of a Pool
GET /v2/lbaas/pools/{pool_id}/members
#"os_load-balancer_api:member:get_all": "rule:load-balancer:read"

Create a Member
POST /v2/lbaas/pools/{pool_id}/members
#"os_load-balancer_api:member:post": "rule:load-balancer:write"

Show Member details
GET /v2/lbaas/pools/{pool_id}/members/{member_id}
#"os_load-balancer_api:member:get_one": "rule:load-balancer:read"

Update a Member
PUT /v2/lbaas/pools/{pool_id}/members/{member_id}
#"os_load-balancer_api:member:put": "rule:load-balancer:write"

Remove a Member

(continues on next page)

1.2. Installation and Configuration Guides 120

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

DELETE /v2/lbaas/pools/{pool_id}/members/{member_id}
#"os_load-balancer_api:member:delete": "rule:load-balancer:write"

List Pools
GET /v2/lbaas/pools
#"os_load-balancer_api:pool:get_all": "rule:load-balancer:read"

List Pools including resources owned by others
GET /v2/lbaas/pools
#"os_load-balancer_api:pool:get_all-global": "rule:load-balancer:read-global"

Create a Pool
POST /v2/lbaas/pools
#"os_load-balancer_api:pool:post": "rule:load-balancer:write"

Show Pool details
GET /v2/lbaas/pools/{pool_id}
#"os_load-balancer_api:pool:get_one": "rule:load-balancer:read"

Update a Pool
PUT /v2/lbaas/pools/{pool_id}
#"os_load-balancer_api:pool:put": "rule:load-balancer:write"

Remove a Pool
DELETE /v2/lbaas/pools/{pool_id}
#"os_load-balancer_api:pool:delete": "rule:load-balancer:write"

List enabled providers
GET /v2/lbaas/providers
#"os_load-balancer_api:provider:get_all": "rule:load-balancer:read"

List Quotas
GET /v2/lbaas/quotas
#"os_load-balancer_api:quota:get_all": "rule:load-balancer:read-quota"

List Quotas including resources owned by others
GET /v2/lbaas/quotas
#"os_load-balancer_api:quota:get_all-global": "rule:load-balancer:read-quota-
↪→global"

Show Quota details
GET /v2/lbaas/quotas/{project_id}
#"os_load-balancer_api:quota:get_one": "rule:load-balancer:read-quota"

Update a Quota
PUT /v2/lbaas/quotas/{project_id}
#"os_load-balancer_api:quota:put": "rule:load-balancer:write-quota"

Reset a Quota

(continues on next page)

1.2. Installation and Configuration Guides 121

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

DELETE /v2/lbaas/quotas/{project_id}
#"os_load-balancer_api:quota:delete": "rule:load-balancer:write-quota"

Show Default Quota for a Project
GET /v2/lbaas/quotas/{project_id}/default
#"os_load-balancer_api:quota:get_defaults": "rule:load-balancer:read-quota"

List Amphorae
GET /v2/octavia/amphorae
#"os_load-balancer_api:amphora:get_all": "rule:load-balancer:admin"

Show Amphora details
GET /v2/octavia/amphorae/{amphora_id}
#"os_load-balancer_api:amphora:get_one": "rule:load-balancer:admin"

Delete an Amphora
DELETE /v2/octavia/amphorae/{amphora_id}
#"os_load-balancer_api:amphora:delete": "rule:load-balancer:admin"

Update Amphora Agent Configuration
PUT /v2/octavia/amphorae/{amphora_id}/config
#"os_load-balancer_api:amphora:put_config": "rule:load-balancer:admin"

Failover Amphora
PUT /v2/octavia/amphorae/{amphora_id}/failover
#"os_load-balancer_api:amphora:put_failover": "rule:load-balancer:admin"

Show Amphora statistics
GET /v2/octavia/amphorae/{amphora_id}/stats
#"os_load-balancer_api:amphora:get_stats": "rule:load-balancer:admin"

List the provider flavor capabilities.
GET /v2/lbaas/providers/{provider}/flavor_capabilities
#"os_load-balancer_api:provider-flavor:get_all": "rule:load-balancer:admin"

List the provider availability zone capabilities.
GET /v2/lbaas/providers/{provider}/availability_zone_capabilities
#"os_load-balancer_api:provider-availability-zone:get_all": "rule:load-
↪→balancer:admin"

1.3 Optional Installation and Configuration Guides

1.3.1 Available Provider Drivers
Octavia supports enabling multiple provider drivers via the Octavia v2 API. Drivers, other than the ref-
erence Amphora driver, exist outside of the Octavia repository and are not maintained by the Octavia
team. This list is intended to provide a place for operators to discover and find available load balancing
provider drivers.

1.3. Optional Installation and Configuration Guides 122

Octavia Documentation, Release 15.1.0.dev35

This list is a "best effort" to keep updated, so please check with your favorite load balancer provider to
see if they support OpenStack load balancing. If they don’t, make a request for support!

Note

The provider drivers listed here may not be maintained by the OpenStack LBaaS (Octavia) team.
Please submit bugs for these projects through their respective bug tracking systems.

Drivers are installed on all of your Octavia API instances using pip and automatically integrated with
Octavia using setuptools entry points. Once installed, operators can enable the provider by adding the
provider to the Octavia configuration file enabled_provider_drivers setting in the [api_settings] section.
Be sure to install and enable the provider on all of your Octavia API instances.

A10 Networks OpenStack Octavia Driver

A10 Networks Octavia Driver for Thunder, vThunder and AX Series Appliances.

Default provider name: a10

The driver source: https://github.com/a10networks/a10-octavia/

The documentation: https://github.com/a10networks/a10-octavia/

Where to report issues with the driver: Contact A10 Networks

Amphora

This is the reference driver for Octavia, meaning it is used for testing the Octavia code base. It is an open
source, scalable, and highly available load balancing provider. It adopts taskflow jobboard feature and
saves task states into the persistence backend, this allows to continue task execution if controller work
was interrupted.

Default provider name: amphora

The driver package: https://pypi.org/project/octavia/

The driver source: https://opendev.org/openstack/octavia/

The documentation: https://docs.openstack.org/octavia/latest/

Where to report issues with the driver: https://launchpad.net/octavia

F5 Networks Provider Driver for OpenStack Octavia by SAP SE

F5 Networks Provider Driver for OpenStack Octavia provided by SAP SE.

Default provider name: f5

The driver source: https://github.com/sapcc/octavia-f5-provider-driver

Where to report issues with the driver: Contact SAP SE

OVN Octavia Provider Driver

OVN provides virtual networking for Open vSwitch and is a component of the Open vSwitch project.
This project provides integration between OpenStack Octavia and OVN.

Default provider name: ovn

1.3. Optional Installation and Configuration Guides 123

http://setuptools.readthedocs.io/en/latest/pkg_resources.html?#entry-points
https://docs.openstack.org/octavia/latest/configuration/configref.html#api_settings.enabled_provider_drivers
https://github.com/a10networks/a10-octavia/
https://github.com/a10networks/a10-octavia/
https://pypi.org/project/octavia/
https://opendev.org/openstack/octavia/
https://docs.openstack.org/octavia/latest/
https://launchpad.net/octavia
https://github.com/sapcc/octavia-f5-provider-driver

Octavia Documentation, Release 15.1.0.dev35

The driver package: https://pypi.org/project/ovn-octavia-provider/

The driver source: https://opendev.org/openstack/ovn-octavia-provider

The documentation: https://docs.openstack.org/ovn-octavia-provider/latest/

Where to report issues with the driver: https://bugs.launchpad.net/neutron/+bugs?field.tag=
ovn-octavia-provider

Radware Provider Driver for OpenStack Octavia

Radware provider driver for OpenStack Octavia.

Default provider name: radware

The driver package: https://pypi.org/project/radware_octavia_rocky_driver/

The documentation: https://pypi.org/project/radware_octavia_rocky_driver/

Where to report issues with the driver: Contact Radware

VMware NSX

VMware NSX Octavia Driver.

Default provider name: vmwareedge

The driver package: https://pypi.org/project/vmware-nsx/

The driver source: https://opendev.org/x/vmware-nsx

Where to report issues with the driver: https://bugs.launchpad.net/vmware-nsx

1.3.2 Octavia Amphora Log Offloading
The default logging configuration will store the logs locally, on the amphora filesystem with file rotation.

Octavia Amphorae can offload their log files via the syslog protocol to syslog receivers via the load
balancer management network (lb-mgmt-net). This allows log aggregation of both administrative logs
and also tenant traffic flow logs. The syslog receivers can either be local to the load balancer management
network or routable via the load balancer management network. By default any syslog receiver that
supports UDP or TCP syslog protocol can be used, however the operator also has the option to create an
override rsyslog configuration template to enable other features or protocols their Amphora image may
support.

This guide will discuss the features of Amphora log offloading and how to configure them.

Administrative Logs

The administrative log offloading feature of the Amphora covers all of the system logging inside the
Amphora except for the tenant flow logs. Tenant flow logs can be sent to and processed by the same
syslog receiver used by the administrative logs, but they are configured separately.

All administrative log messages will be sent using the native log format for the application sending the
message.

1.3. Optional Installation and Configuration Guides 124

https://pypi.org/project/ovn-octavia-provider/
https://opendev.org/openstack/ovn-octavia-provider
https://docs.openstack.org/ovn-octavia-provider/latest/
https://bugs.launchpad.net/neutron/+bugs?field.tag=ovn-octavia-provider
https://bugs.launchpad.net/neutron/+bugs?field.tag=ovn-octavia-provider
https://pypi.org/project/radware_octavia_rocky_driver/
https://pypi.org/project/radware_octavia_rocky_driver/
https://pypi.org/project/vmware-nsx/
https://opendev.org/x/vmware-nsx
https://bugs.launchpad.net/vmware-nsx

Octavia Documentation, Release 15.1.0.dev35

Enabling Administrative Log Offloading

One or more syslog receiver endpoints must be configured in the Octavia configuration file to enable ad-
ministrative log offloading. The first endpoint will be the primary endpoint to receive the syslog packets.
Read the Failover Considerations section for information about how to use multiple target servers.

To configure administrative log offloading, set the following setting in your Octavia configuration file for
all of the controllers and restart them:

[amphora_agent]
admin_log_targets = 192.0.2.1:10514

In this example, the syslog receiver will be 192.0.2.1 on port 10514. If log_protocol is not specified UDP
will be used.

Note

Make sure your syslog receiver endpoints are accessible from the load balancer management net-
work and you have configured the required security group or firewall rules to allow the traffic. These
endpoints can be routable addresses from the load balancer management network.

The load balancer related administrative logs will be sent using a LOG_LOCAL[0-7] facility. The facility
number defaults to 1, but is configurable using the administrative_log_facility setting in the Octavia
configuration file.

To configure administrative log facility, set the following setting in your Octavia configuration file for all
of the controllers and restart them:

[amphora_agent]
administrative_log_facility = 1

Forwarding All Administrative Logs

By default, the Amphorae will only forward load balancer related administrative logs, such as the haproxy
admin logs, keepalived, and Amphora agent logs. You can optionally configure the Amphorae to send
all of the administrative logs from the Amphora, such as the kernel, system, and security logs. Even with
this setting the tenant flow logs will not be included. You can configure tenant flow log forwarding in the
Tenant Flow Logs section.

The load balancer related administrative logs will be sent using the LOG_LOCAL[0-7] configured using
the administrative_log_facility setting. All other administrative log messages will use their native syslog
facilities.

To configure the Amphorae to forward all administrative logs, set the following setting in your Octavia
configuration file for all of the controllers and restart them:

[amphora_agent]
forward_all_logs = True

1.3. Optional Installation and Configuration Guides 125

Octavia Documentation, Release 15.1.0.dev35

Tenant Flow Logs

Enabling Tenant Flow Log Offloading

One or more syslog receiver endpoints must be configured in the Octavia configuration file to enable
tenant flow log offloading. The first endpoint will be the primary endpoint to receive the syslog packets.
The endpoints configured for tenant flow log offloading may be the same endpoints as the administrative
log offloading configuration. Read the Failover Considerations section for information about how to use
multiple target servers.

Warning

Tenant flow logging can produce a large number of syslog messages depending on how many con-
nections the load balancers are receiving. Tenant flow logging produces one log entry per connection
to the load balancer. We recommend you monitor, size, and configure your syslog receivers appro-
priately based on the expected number of connections your load balancers will be handling.

To configure tenant flow log offloading, set the following setting in your Octavia configuration file for all
of the controllers and restart them:

[amphora_agent]
tenant_log_targets = 192.0.2.1:10514

In this example, the syslog receiver will be 192.0.2.1 on port 10514. If log_protocol is not specified UDP
will be used.

Note

Make sure your syslog receiver endpoints are accessible from the load balancer management net-
work and you have configured the required security group or firewall rules to allow the traffic. These
endpoints can be routable addresses from the load balancer management network.

The load balancer related tenant flow logs will be sent using a LOG_LOCAL[0-7] facility. The facility
number defaults to 0, but is configurable using the user_log_facility setting in the Octavia configuration
file.

To configure the tenant flow log facility, set the following setting in your Octavia configuration file for
all of the controllers and restart them:

[amphora_agent]
user_log_facility = 0

Tenant Flow Log Format

The default tenant flow log format is:

project_id loadbalancer_id listener_id client_ip client_port data_time
request_string http_status bytes_read bytes_uploaded
client_certificate_verify(0 or 1) client_certificate_distinguised_name
pool_id member_id processing_time(ms) termination_state

1.3. Optional Installation and Configuration Guides 126

Octavia Documentation, Release 15.1.0.dev35

Any field that is unknown or not applicable to the connection will have a ’-’ character in its place.

An example log entry when using rsyslog as the syslog receiver is:

Note

The prefix[1] in this example comes from the rsyslog receiver and is not part of the syslog message
from the amphora.

[1] "Jun 12 00:44:13 amphora-3e0239c3-5496-4215-b76c-6abbe18de573 haproxy[1644]:"

Jun 12 00:44:13 amphora-3e0239c3-5496-4215-b76c-6abbe18de573 haproxy[1644]:␣
↪→5408b89aa45b48c69a53dca1aaec58db fd8f23df-960b-4b12-ba62-2b1dff661ee7␣
↪→261ecfc2-9e8e-4bba-9ec2-3c903459a895 172.24.4.1 41152 12/Jun/2019:00:44:13.
↪→030 "GET / HTTP/1.1" 200 76 73 - "" e37e0e04-68a3-435b-876c-cffe4f2138a4␣
↪→6f2720b3-27dc-4496-9039-1aafe2fee105 4 --

Custom Tenant Flow Log Format

You can optionally specify a custom log format for the tenant flow logs. This string follows the HAProxy
log format variables with the exception of the "{{ project_id }}" and "{{ lb_id }}" variables that will be
replaced by the Octavia Amphora driver. These custom variables are optional.

See the HAProxy documentation for Custom log format variable definitions.

To configure a custom log format, set the following setting in your Octavia configuration file for all of
the controllers and restart them:

[haproxy_amphora]
user_log_format = '{{ project_id }} {{ lb_id }} %f %ci %cp %t %{+Q}r %ST %B
↪→%U %[ssl_c_verify] %{+Q}[ssl_c_s_dn] %b %s %Tt %tsc'

Failover Considerations

In order to provide protection against potential data loss because of downtime of a single syslog server,
it may be a advisable to use multiple log targets. In such configuration log_protocol needs to be set to
TCP. With the UDP syslog protocol, RSyslog is unable to detect if the primary endpoint has failed.

Also pay attention to the log_retry_count and log_retry_interval settings when using multiple log targets.
You might want to set log_retry_count to 0 and use a higher value for log_retry_interval. Values up to
1800 (30 minutes) are possible. That way the failover will happen immediately after the client detects that
the server became unavailable. In such case, that server won’t be used again for at least log_retry_interval
seconds after that event. In the following example the primary syslog receiver will be 192.0.2.1 on port
10514. The backup syslog receiver will be 2001:db8:1::10 on port 10514.

[amphora_agent]
admin_log_targets = 192.0.2.1:10514, 2001:db8:1::10:10514
tenant_log_targets = 192.0.2.1:10514, 2001:db8:1::10:10514
log_protocol = TCP
log_retry_count = 0
log_retry_interval = 1800

1.3. Optional Installation and Configuration Guides 127

http://cbonte.github.io/haproxy-dconv/1.9/configuration.html#8.2.4

Octavia Documentation, Release 15.1.0.dev35

Disabling Logging

There may be cases where you need to disable logging inside the Amphora, such as complying with
regulatory standards. Octavia provides multiple options for disabling Amphora logging.

Disable Local Log Storage

This setting stops log entries from being written to the disk inside the Amphora. Logs can still be sent
via Amphora log offloading if log offloading is configured for the Amphorae. Enabling this setting may
provide a performance benefit to the load balancer.

Warning

This feature disables ALL log storage in the Amphora, including kernel, system, and security logging.

Note

If you enable this setting and are not using Amphora log offloading, we recommend you also Disable
Tenant Flow Logging to improve load balancing performance.

To disable local log storage in the Amphora, set the following setting in your Octavia configuration file
for all of the controllers and restart them:

[amphora_agent]
disable_local_log_storage = True

Disable Tenant Flow Logging

This setting allows you to disable tenant flow logging irrespective of the other logging configuration
settings. It will take precedent over the other settings. When this setting is enabled, no tenant flow
(connection) logs will be written to the disk inside the Amphora or be sent via the Amphora log offloading.

Note

Disabling tenant flow logging can also improve the load balancing performance of the amphora. Due
to the potential performance improvement, we recommend you enable this setting when using the
Disable Local Log Storage setting.

To disable tenant flow logging, set the following setting in your Octavia configuration file for all of the
controllers and restart them:

[haproxy_amphora]
connection_logging = False

1.3. Optional Installation and Configuration Guides 128

Octavia Documentation, Release 15.1.0.dev35

1.3.3 Octavia API Auditing
The keystonemiddleware audit middleware supports delivery of Cloud Auditing Data Federation (CADF)
audit events via Oslo messaging notifier capability. Based on notification_driver configuration, audit
events can be routed to messaging infrastructure (notification_driver = messagingv2) or can be routed to
a log file (notification_driver = log).

More information about the CADF format can be found on the DMTF Cloud Auditing Data Federation
website.

Audit middleware creates two events per REST API interaction. First event has information extracted
from request data and the second one has request outcome (response).

Configuring Octavia API Auditing

Auditing can be enabled by making the following changes to the Octavia configuration file on your Oc-
tavia API instance(s).

1. Enable auditing:

[audit]
...
enabled = True

2. Optionally specify the location of the audit map file:

[audit]
...
audit_map_file = /etc/octavia/octavia_api_audit_map.conf

The default audit map file location is /etc/octavia/octavia_api_audit_map.conf.

3. Copy the audit map file from the octavia/etc/audit directory to the location specified in the previous
step. A sample file has been provided in octavia/etc/audit/octavia_api_audit_map.conf.sample.

4. Optionally specify the REST HTTP methods you do not want to audit:

[audit]
...
ignore_req_list =

5. Specify the driver to use for sending the audit notifications:

[audit_middleware_notifications]
...
driver = log

Driver options are: messaging, messagingv2, routing, log, noop

6. Optionally specify the messaging topic:

[audit_middleware_notifications]
...
topics =

7. Optionally specify the messaging transport URL:

1.3. Optional Installation and Configuration Guides 129

https://docs.openstack.org/keystonemiddleware/latest/audit.html
https://www.dmtf.org/standards/cadf
https://www.dmtf.org/standards/cadf

Octavia Documentation, Release 15.1.0.dev35

[audit_middleware_notifications]
...
transport_url =

8. Restart your Octavia API processes.

Sampe Audit Events

Request

{
"event_type": "audit.http.request",
"timestamp": "2018-10-11 22:42:22.721025",
"payload": {
"typeURI": "http://schemas.dmtf.org/cloud/audit/1.0/event",
"eventTime": "2018-10-11T22:42:22.720112+0000",
"target": {
"id": "octavia",
"typeURI": "service/load-balancer/loadbalancers",
"addresses": [{
"url": "http://10.21.21.53/load-balancer",
"name": "admin"

}, {
"url": "http://10.21.21.53/load-balancer",
"name": "private"

}, {
"url": "http://10.21.21.53/load-balancer",
"name": "public"

}],
"name": "octavia"

},
"observer": {
"id": "target"

},
"tags": ["correlation_id?value=e5b34bc3-4837-54fa-9892-8e65a9a2e73a"],
"eventType": "activity",
"initiator": {
"typeURI": "service/security/account/user",
"name": "admin",
"credential": {
"token": "***",
"identity_status": "Confirmed"

},
"host": {
"agent": "openstacksdk/0.17.2 keystoneauth1/3.11.0 python-requests/2.

↪→19.1 CPython/2.7.12",
"address": "10.21.21.53"

},
"project_id": "90168d185e504b5580884a235ba31612",
"id": "2af901396a424d5ca9dffa725226e8c7"

(continues on next page)

1.3. Optional Installation and Configuration Guides 130

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

},
"action": "read/list",
"outcome": "pending",
"id": "8cf14af5-246e-5739-a11e-513ca13b7d36",
"requestPath": "/load-balancer/v2.0/lbaas/loadbalancers"

},
"priority": "INFO",
"publisher_id": "uwsgi",
"message_id": "63264e0e-e60f-4adc-a656-0d87ab5d6329"

}

Response

{
"event_type": "audit.http.response",
"timestamp": "2018-10-11 22:42:22.853129",
"payload": {
"typeURI": "http://schemas.dmtf.org/cloud/audit/1.0/event",
"eventTime": "2018-10-11T22:42:22.720112+0000",
"target": {
"id": "octavia",
"typeURI": "service/load-balancer/loadbalancers",
"addresses": [{
"url": "http://10.21.21.53/load-balancer",
"name": "admin"

}, {
"url": "http://10.21.21.53/load-balancer",
"name": "private"

}, {
"url": "http://10.21.21.53/load-balancer",
"name": "public"

}],
"name": "octavia"

},
"observer": {
"id": "target"

},
"tags": ["correlation_id?value=e5b34bc3-4837-54fa-9892-8e65a9a2e73a"],
"eventType": "activity",
"initiator": {
"typeURI": "service/security/account/user",
"name": "admin",
"credential": {
"token": "***",
"identity_status": "Confirmed"

},
"host": {
"agent": "openstacksdk/0.17.2 keystoneauth1/3.11.0 python-requests/2.

↪→19.1 CPython/2.7.12",
(continues on next page)

1.3. Optional Installation and Configuration Guides 131

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

"address": "10.21.21.53"
},
"project_id": "90168d185e504b5580884a235ba31612",
"id": "2af901396a424d5ca9dffa725226e8c7"

},
"reason": {
"reasonCode": "200",
"reasonType": "HTTP"

},
"reporterchain": [{
"reporterTime": "2018-10-11T22:42:22.852613+0000",
"role": "modifier",
"reporter": {
"id": "target"

}
}],
"action": "read/list",
"outcome": "success",
"id": "8cf14af5-246e-5739-a11e-513ca13b7d36",
"requestPath": "/load-balancer/v2.0/lbaas/loadbalancers"

},
"priority": "INFO",
"publisher_id": "uwsgi",
"message_id": "7cd89dce-af6e-40c5-8634-e87d1ed32a3c"

}

1.3.4 Octavia API Health Monitoring
The Octavia API provides a health monitoring endpoint that can be used by external load balancers to
manage the Octavia API pool. When properly configured, the health monitoring endpoint will reflect the
full operational status of the Octavia API.

The Octavia API health monitoring endpoint extends the OpenStack Oslo middleware healthcheck library
to test the Octavia Pecan API framework and associated services.

Oslo Healthcheck Queries

Oslo middleware healthcheck supports HTTP "GET" and "HEAD" methods.

The response from Oslo middleware healthcheck can be customized by specifying the acceptable re-
sponse type for the request.

Oslo middleware healthcheck currently supports the following types:

• text/plain

• text/html

• application/json

If the requested type is not one of the above, it defaults to text/plain.

1.3. Optional Installation and Configuration Guides 132

https://docs.openstack.org/oslo.middleware/latest/reference/healthcheck_plugins.html

Octavia Documentation, Release 15.1.0.dev35

Note

The content of the response "reasons" will vary based on the backend plugins enabled in Oslo mid-
dleware healthcheck. It is a best practice to only rely on the HTTP status code for Octavia API health
monitoring.

Example Responses

Example passing output for text/plain with detailed False:

$ curl -i http://198.51.100.10/load-balancer/healthcheck

HTTP/1.1 200 OK
Date: Mon, 16 Mar 2020 18:10:27 GMT
Server: Apache/2.4.29 (Ubuntu)
Content-Type: text/plain; charset=UTF-8
Content-Length: 2
x-openstack-request-id: req-9c6f4303-63a7-4f30-8afc-39340658702f
Connection: close
Vary: Accept-Encoding

OK

Example failing output for text/plain with detailed False:

$ curl -i http://198.51.100.10/load-balancer/healthcheck

HTTP/1.1 503 Service Unavailable
Date: Mon, 16 Mar 2020 18:42:12 GMT
Server: Apache/2.4.29 (Ubuntu)
Content-Type: text/plain; charset=UTF-8
Content-Length: 36
x-openstack-request-id: req-84024269-2dfb-41ad-bfda-b3e1da138bba
Connection: close

Example passing output for text/html with detailed False:

$ curl -i -H "Accept: text/html" http://198.51.100.10/load-balancer/
↪→healthcheck

HTTP/1.1 200 OK
Date: Mon, 16 Mar 2020 18:25:11 GMT
Server: Apache/2.4.29 (Ubuntu)
Content-Type: text/html; charset=UTF-8
Content-Length: 239
x-openstack-request-id: req-b212d619-146f-4b50-91a3-5da16051badc
Connection: close
Vary: Accept-Encoding

<HTML>
(continues on next page)

1.3. Optional Installation and Configuration Guides 133

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

<HEAD><TITLE>Healthcheck Status</TITLE></HEAD>
<BODY>

<H2>Result of 1 checks:</H2>
<TABLE bgcolor="#ffffff" border="1">
<TBODY>
<TR>

<TH>
Reason
</TH>
</TR>
<TR>

<TD>OK</TD>

</TR>
</TBODY>
</TABLE>
<HR></HR>

</BODY>
</HTML>

Example failing output for text/html with detailed False:

$ curl -i -H "Accept: text/html" http://198.51.100.10/load-balancer/
↪→healthcheck

HTTP/1.1 503 Service Unavailable
Date: Mon, 16 Mar 2020 18:42:22 GMT
Server: Apache/2.4.29 (Ubuntu)
Content-Type: text/html; charset=UTF-8
Content-Length: 273
x-openstack-request-id: req-c91dd214-85ca-4d33-9fa3-2db81566d9e5
Connection: close

<HTML>
<HEAD><TITLE>Healthcheck Status</TITLE></HEAD>
<BODY>

<H2>Result of 1 checks:</H2>
<TABLE bgcolor="#ffffff" border="1">
<TBODY>
<TR>

<TH>
Reason
</TH>
</TR>

(continues on next page)

1.3. Optional Installation and Configuration Guides 134

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

<TR>

<TD>The Octavia database is unavailable.</TD>

</TR>
</TBODY>
</TABLE>
<HR></HR>

</BODY>
</HTML>

Example passing output for application/json with detailed False:

$ curl -i -H "Accept: application/json" http://192.51.100.10/load-balancer/
↪→healthcheck

HTTP/1.1 200 OK
Date: Mon, 16 Mar 2020 18:34:42 GMT
Server: Apache/2.4.29 (Ubuntu)
Content-Type: application/json
Content-Length: 62
x-openstack-request-id: req-417dc85c-e64e-496e-a461-494a3e6a5479
Connection: close

{
"detailed": false,
"reasons": [

"OK"
]

}

Example failing output for application/json with detailed False:

$ curl -i -H "Accept: application/json" http://192.51.100.10/load-balancer/
↪→healthcheck

HTTP/1.1 503 Service Unavailable
Date: Mon, 16 Mar 2020 18:46:28 GMT
Server: Apache/2.4.29 (Ubuntu)
Content-Type: application/json
Content-Length: 96
x-openstack-request-id: req-de50b057-6105-4fca-a758-c872ef28bbfa
Connection: close

{
"detailed": false,
"reasons": [

"The Octavia database is unavailable."
]

(continues on next page)

1.3. Optional Installation and Configuration Guides 135

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

}

Example Detailed Responses

Example passing output for text/plain with detailed True:

$ curl -i http://198.51.100.10/load-balancer/healthcheck

HTTP/1.1 200 OK
Date: Mon, 16 Mar 2020 18:10:27 GMT
Server: Apache/2.4.29 (Ubuntu)
Content-Type: text/plain; charset=UTF-8
Content-Length: 2
x-openstack-request-id: req-9c6f4303-63a7-4f30-8afc-39340658702f
Connection: close
Vary: Accept-Encoding

OK

Example failing output for text/plain with detailed True:

$ curl -i http://198.51.100.10/load-balancer/healthcheck

HTTP/1.1 503 Service Unavailable
Date: Mon, 16 Mar 2020 23:41:23 GMT
Server: Apache/2.4.29 (Ubuntu)
Content-Type: text/plain; charset=UTF-8
Content-Length: 36
x-openstack-request-id: req-2cd046cb-3a6c-45e3-921d-5f4a9e65c63e
Connection: close

Example passing output for text/html with detailed True:

$ curl -i -H "Accept: text/html" http://198.51.100.10/load-balancer/
↪→healthcheck

HTTP/1.1 200 OK
Date: Mon, 16 Mar 2020 22:11:54 GMT
Server: Apache/2.4.29 (Ubuntu)
Content-Type: text/html; charset=UTF-8
Content-Length: 9927
x-openstack-request-id: req-ae7404c9-b183-46dc-bb1b-e5f4e4984a57
Connection: close
Vary: Accept-Encoding

<HTML>
<HEAD><TITLE>Healthcheck Status</TITLE></HEAD>
<BODY>
<H1>Server status</H1>
Server hostname:<PRE>devstack2</PRE>

(continues on next page)

1.3. Optional Installation and Configuration Guides 136

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

Current time:<PRE>2020-03-16 22:11:54.320529</PRE>
Python version:<PRE>3.6.9 (default, Nov 7 2019, 10:44:02)
[GCC 8.3.0]</PRE>
Platform:<PRE>Linux-4.15.0-88-generic-x86_64-with-Ubuntu-18.04-bionic

↪→</PRE>
<HR></HR>
<H2>Garbage collector:</H2>
Counts:<PRE>(28, 10, 4)</PRE>
Thresholds:<PRE>(700, 10, 10)</PRE>
<HR></HR>
<H2>Result of 1 checks:</H2>
<TABLE bgcolor="#ffffff" border="1">
<TBODY>
<TR>
<TH>
Kind
</TH>
<TH>
Reason
</TH>
<TH>
Details
</TH>

</TR>
<TR>
<TD>OctaviaDBCheckResult</TD>

<TD>OK</TD>
<TD></TD>
</TR>
</TBODY>
</TABLE>
<HR></HR>
<H2>1 greenthread(s) active:</H2>
<TABLE bgcolor="#ffffff" border="1">
<TBODY>
<TR>

<TD><PRE> <...> </PRE></TD>
</TR>
</TBODY>
</TABLE>
<HR></HR>
<H2>1 thread(s) active:</H2>
<TABLE bgcolor="#ffffff" border="1">
<TBODY>
<TR>

<TD><PRE> <...> </PRE></TD>
</TR>
</TBODY>

(continues on next page)

1.3. Optional Installation and Configuration Guides 137

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

</TABLE>
</BODY>
</HTML>

Example failing output for text/html with detailed True:

$ curl -i -H "Accept: text/html" http://198.51.100.10/load-balancer/
↪→healthcheck

HTTP/1.1 503 Service Unavailable
Date: Mon, 16 Mar 2020 23:43:52 GMT
Server: Apache/2.4.29 (Ubuntu)
Content-Type: text/html; charset=UTF-8
Content-Length: 10211
x-openstack-request-id: req-39b65058-6dc3-4069-a2d5-8a9714dba61d
Connection: close

<HTML>
<HEAD><TITLE>Healthcheck Status</TITLE></HEAD>
<BODY>
<H1>Server status</H1>
Server hostname:<PRE>devstack2</PRE>
Current time:<PRE>2020-03-16 23:43:52.411127</PRE>
Python version:<PRE>3.6.9 (default, Nov 7 2019, 10:44:02)
[GCC 8.3.0]</PRE>
Platform:<PRE>Linux-4.15.0-88-generic-x86_64-with-Ubuntu-18.04-bionic

↪→</PRE>
<HR></HR>
<H2>Garbage collector:</H2>
Counts:<PRE>(578, 10, 4)</PRE>
Thresholds:<PRE>(700, 10, 10)</PRE>
<HR></HR>
<H2>Result of 1 checks:</H2>
<TABLE bgcolor="#ffffff" border="1">
<TBODY>
<TR>
<TH>
Kind
</TH>
<TH>
Reason
</TH>
<TH>
Details
</TH>

</TR>
<TR>
<TD>OctaviaDBCheckResult</TD>

<TD>The Octavia database is unavailable.</TD>
(continues on next page)

1.3. Optional Installation and Configuration Guides 138

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

<TD>Database health check failed due to: (pymysql.err.OperationalError)␣
↪→(2003, "Can't connect to MySQL server on '127.0.0.1'␣
↪→([Errno 111] Connection refused)")
[SQL: SELECT 1]
(Background on this error at: http://sqlalche.me/e/e3q8).</TD>
</TR>
</TBODY>
</TABLE>
<HR></HR>
<H2>1 greenthread(s) active:</H2>
<TABLE bgcolor="#ffffff" border="1">
<TBODY>
<TR>

<TD><PRE> <...> </PRE></TD>
</TR>
</TBODY>
</TABLE>
<HR></HR>
<H2>1 thread(s) active:</H2>
<TABLE bgcolor="#ffffff" border="1">
<TBODY>
<TR>

<TD><PRE> <...> </PRE></TD>
</TR>
</TBODY>
</TABLE>
</BODY>
</HTML>

Example passing output for application/json with detailed True:

$ curl -i -H "Accept: application/json" http://192.51.100.10/load-balancer/
↪→healthcheck

HTTP/1.1 200 OK
Date: Mon, 16 Mar 2020 22:05:26 GMT
Server: Apache/2.4.29 (Ubuntu)
Content-Type: application/json
Content-Length: 9298
x-openstack-request-id: req-d3913655-6e3f-4086-a252-8bb297ea5fd6
Connection: close

{
"detailed": true,
"gc": {

"counts": [
27,
10,
4

],
(continues on next page)

1.3. Optional Installation and Configuration Guides 139

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

"threshold": [
700,
10,
10

]
},
"greenthreads": [

<...>
],
"now": "2020-03-16 22:05:26.431429",
"platform": "Linux-4.15.0-88-generic-x86_64-with-Ubuntu-18.04-bionic",
"python_version": "3.6.9 (default, Nov 7 2019, 10:44:02) \n[GCC 8.3.0]

↪→",
"reasons": [

{
"class": "OctaviaDBCheckResult",
"details": "",
"reason": "OK"

}
],
"threads": [

<...>
]

}

Example failing output for application/json with detailed True:

$ curl -i -H "Accept: application/json" http://192.51.100.10/load-balancer/
↪→healthcheck

HTTP/1.1 503 Service Unavailable
Date: Mon, 16 Mar 2020 23:56:43 GMT
Server: Apache/2.4.29 (Ubuntu)
Content-Type: application/json
Content-Length: 9510
x-openstack-request-id: req-3d62ea04-9bdb-4e19-b218-1a81ff7d7337
Connection: close

{
"detailed": true,
"gc": {

"counts": [
178,
0,
5

],
"threshold": [

700,
10,
10

(continues on next page)

1.3. Optional Installation and Configuration Guides 140

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

]
},
"greenthreads": [

<...>
],
"now": "2020-03-16 23:58:23.361209",
"platform": "Linux-4.15.0-88-generic-x86_64-with-Ubuntu-18.04-bionic",
"python_version": "3.6.9 (default, Nov 7 2019, 10:44:02) \n[GCC 8.3.0]

↪→",
"reasons": [

{
"class": "OctaviaDBCheckResult",
"details": "(pymysql.err.OperationalError) (2003, \"Can't␣

↪→connect to MySQL server on '127.0.0.1' ([Errno 111] Connection refused)\")\
↪→n(Background on this error at: http://sqlalche.me/e/e3q8)",

"reason": "The Octavia database is unavailable."
}

],
"threads": [

<...>
]

}

Oslo Healthcheck Plugins

The Octavia API health monitoring endpoint, implemented with Oslo middleware healthcheck, is ex-
tensible using optional backend plugins. There are currently plugins provided by the Oslo middleware
library and plugins provided by Octavia.

Oslo middleware provided plugins

• disable_by_file

• disable_by_files_ports

Octavia provided plugins

• octavia_db_check

Warning

Some plugins may have long timeouts. It is a best practice to configure your healthcheck query to have
connection, read, and/or data timeouts. The appropriate values will be unique to each deployment
depending on the cloud performance, number of plugins, etc.

Enabling Octavia API Health Monitoring

To enable the Octavia API health monitoring endpoint, the proper configuration file settings need to be
updated and the Octavia API processes need to be restarted.

Start by enabling the endpoint:

1.3. Optional Installation and Configuration Guides 141

https://docs.openstack.org/oslo.middleware/latest/reference/healthcheck_plugins.html#disable-by-file
https://docs.openstack.org/oslo.middleware/latest/reference/healthcheck_plugins.html#disable-by-files-ports

Octavia Documentation, Release 15.1.0.dev35

[api_settings]
healthcheck_enabled = True

When the healthcheck_enabled setting is False, queries of the /healthcheck will receive an HTTP 404
Not Found response.

You will then need to select the desired monitoring backend plugins:

[healthcheck]
backends = octavia_db_check

Note

When no plugins are configured, the behavior of Oslo middleware healthcheck changes. Not only
does it not run any tests, it will return 204 results instead of 200.

The Octavia API health monitoring endpoint does not require a keystone token for access to allow external
load balancers to query the endpoint. For this reason we recommend you restrict access to it on your
external load balancer to prevent abuse.

As an additional protection, the API will cache results for a configurable period of time. This means that
queries to the health monitoring endpoint will return cached results until the refresh interval has expired,
at which point the health check plugin will rerun the check.

By default, the refresh interval is five seconds. This can be configured by adjusting the
healthcheck_refresh_interval setting in the Octavia configuration file:

[api_settings]
healthcheck_refresh_interval = 5

Optionally you can enable the "detailed" mode in Oslo middleware healthcheck. This will cause Oslo
middleware healthcheck to return additional information about the API instance. It will also provide
exception details if one was raised during the health check. This setting is False and disabled by default
in the Octavia API.

[healthcheck]
detailed = True

Warning

Enabling the ’detailed’ setting will expose sensitive details about the API process. Do not enabled
this unless you are sure it will not pose a security risk to your API instances. We highly recommend
you do not enable this.

Using Octavia API Health Monitoring

The Octavia API health monitoring endpoint can be accessed via the /healthmonitor path on the Octavia
API endpoint.

For example, if your Octavia (load-balancer) endpoint in keystone is:

1.3. Optional Installation and Configuration Guides 142

https://docs.openstack.org/api-ref/load-balancer/v2/index.html#service-endpoints
https://docs.openstack.org/api-ref/load-balancer/v2/index.html#service-endpoints

Octavia Documentation, Release 15.1.0.dev35

https://10.21.21.78/load-balancer

You would access the Octavia API health monitoring endpoint via:

https://10.21.21.78/load-balancer/healthcheck

A keystone token is not required to access this endpoint.

Octavia Plugins

octavia_db_check

The octavia_db_check plugin validates the API instance has a working connection to the Octavia
database. It executes a SQL no-op query, ’SELECT 1;’, against the database.

Note

Many OpenStack services and libraries, such as oslo.db and sqlalchemy, also use the no-op query,
’SELECT 1;’ for health checks.

The possible octavia_db_check results are:

Request Result Status Code "reason" Message
GET Pass 200 OK
HEAD Pass 204
GET Fail 503 The Octavia database is unavailable.
HEAD Fail 503

When running Oslo middleware healthcheck in "detailed" mode, the "details" field will have additional
information about the error encountered, including the exception details if they were available.

1.3.5 Octavia Flavors
Octavia flavors are a powerful tool for operators to bring enhanced load balancing capabilities to their
users. An Octavia flavor is a predefined set of provider configuration options that are created by the
operator. When an user requests a load balancer they can request the load balancer be built with one of
the defined flavors. Flavors are defined per provider driver and expose the unique capabilities of each
provider.

This document is intended to explain the flavors capability for operators that wish to create flavors for
their users.

There are three steps to creating a new Octavia flavor:

1. Decide on the provider flavor capabilities that will be configured in the flavor.

2. Create the flavor profile with the flavor capabilities.

3. Create the user facing flavor.

1.3. Optional Installation and Configuration Guides 143

Octavia Documentation, Release 15.1.0.dev35

Provider Capabilities

To start the process of defining a flavor, you will want to look at the flavor capabilities that the provider
driver exposes. To do this you can use the provider driver flavor capabilities API or the OpenStack client.

openstack loadbalancer provider capability list <provider>

With the default RBAC policy, this command is only available to administrators.

This will list all of the flavor capabilities the provider supports and may be configured via a flavor.

As an example, the amphora provider supports the loadbalancer_topology capability, among many oth-
ers:

+-----------------------+---+
| name | description |
+-----------------------+---+
loadbalancer_topology	The load balancer topology. One of: SINGLE - One
	amphora per load balancer. ACTIVE_STANDBY - Two
	amphora per load balancer.
...	...
+-----------------------+---+

Flavor Profiles

The next step in the process of creating a flavor is to define a flavor profile. The flavor profile includes
the provider and the flavor data. The flavor capabilities are the supported flavor data settings for a given
provider. A flavor profile can be created using the flavor profile API or the OpenStack client.

For example, to create a flavor for the amphora provider, we would create the following flavor profile:

openstack loadbalancer flavorprofile create --name amphora-single-profile --
↪→provider amphora --flavor-data '{"loadbalancer_topology": "SINGLE"}'

With the default RBAC policy, this command is only available to administrators.

This will create a flavor profile for the amphora provider that creates a load balancer with a single am-
phora. When you create a flavor profile, the settings are validated with the provider to make sure the
provider can support the capabilities specified.

The output of the command above is:

+---------------+--------------------------------------+
| Field | Value |
+---------------+--------------------------------------+
id	72b53ac2-b191-48eb-8f73-ed012caca23a
name	amphora-single-profile
provider_name	amphora
flavor_data	{"loadbalancer_topology": "SINGLE"}
+---------------+--------------------------------------+

1.3. Optional Installation and Configuration Guides 144

https://docs.openstack.org/api-ref/load-balancer/v2/index.html
https://docs.openstack.org/api-ref/load-balancer/v2/index.html#create-flavor-profile

Octavia Documentation, Release 15.1.0.dev35

Flavors

Finally we will create the user facing Octavia flavor. This defines the information users will see and
use to create a load balancer with an Octavia flavor. The name of the flavor is the term users can use
when creating a load balancer. We encourage you to include a detailed description for users to clearly
understand the capabilities of the flavor you are providing.

To continue the example above, to create a flavor with the flavor profile we created in the previous step
we call:

openstack loadbalancer flavor create --name standalone-lb --flavorprofile␣
↪→amphora-single-profile --description "A non-high availability load balancer␣
↪→for testing." --enable

This will create a user visible Octavia flavor that will create a load balancer that uses one amphora and
is not highly available. Users can specify this flavor when creating a new load balancer. Disabled flavors
are still visible to users, but they will not be able to create a load balancer using the flavor.

The output of the command above is:

+-------------------+--------------------------------------+
| Field | Value |
+-------------------+--------------------------------------+
id	25cda2d8-f735-4744-b936-d30405c05359
name	standalone-lb
flavor_profile_id	72b53ac2-b191-48eb-8f73-ed012caca23a
enabled	True
description	A non-high availability load
	balancer for testing.
+-------------------+--------------------------------------+

At this point, the flavor is available for use by users creating new load balancers.

1.3.6 Running Octavia in Apache
To run Octavia in apache2, copy the httpd/octavia-api.conf sample configuration file to the appro-
priate location for the Apache server.

On Debian/Ubuntu systems it is:

/etc/apache2/sites-available/octavia-api.conf

Restart Apache to have it start serving Octavia.

1.3.7 Octavia Amphora Failover Circuit Breaker
During a large infrastructure outage, the automatic failover of stale amphorae can lead to a mass failover
event and create a considerable amount of extra load on servers. By using the amphora failover circuit
breaker feature, you can avoid these unwanted failover events. The circuit breaker is a configurable
threshold value that you can set, and will stop amphorae from automatically failing over whenever that
threshold value is met. The circuit breaker feature is disabled by default.

1.3. Optional Installation and Configuration Guides 145

Octavia Documentation, Release 15.1.0.dev35

Configuration

You define the threshold value for the failover circuit breaker feature by setting the failover_threshold
variable. The failover_threshold variable is a member of the health_manager group within the configu-
ration file /etc/octavia/octavia.conf.

Whenever the number of stale amphorae reaches or surpasses the value of failover_threshold, Octavia
performs the following actions:

• stops automatic failovers of amphorae.

• sets the status of the stale amphorae to FAILOVER_STOPPED.

• logs an error message.

The line below shows a typical error message:

ERROR octavia.db.repositories [-] Stale amphora count reached the threshold␣
↪→(3). 4 amphorae were set into FAILOVER_STOPPED status.

Note

Base the value that you set for failover_threshold on the size of your environment. We recommend
that you set the value to a number greater than the typical number of amphorae that you estimate to
run on a single host, or to a value that reflects between 20% and 30% of the total number of amphorae.

Error Recovery

Automatic Error Recovery

For amphorae whose status is FAILOVER_STOPPED, Octavia will automatically reset their status to
ALLOCATED after receiving new updates from these amphorae.

Manual Error Recovery

To recover from the FAILOVER_STOPPED condition, you must manually reduce the value of the stale
amphorae below the circuit breaker threshold.

You can use the openstack loadbalancer amphora list command to list the amphorae that are in
FAILOVER_STOPPED state. Use the openstack loadbalancer amphora failover command to
manually trigger the amphora to failover.

In this example, failover_threshold = 3 and an infrastructure outage caused four amphorae to become
unavailable. After the health manager process detects this state, it sets the status of all stale amphorae to
FAILOVER_STOPPED as shown below.

openstack loadbalancer amphora list
+--------------------------------------+--------------------------------------
↪→+------------------+--------+---------------+------------+
| id | loadbalancer_id ␣
↪→| status | role | lb_network_ip | ha_ip |
+--------------------------------------+--------------------------------------
↪→+------------------+--------+---------------+------------+
| 79f0e06d-446d-448a-9d2b-c3b89d0c700d | 8fd2cac5-cbca-4bb1-bcfc-daba43e097ab␣

(continues on next page)

1.3. Optional Installation and Configuration Guides 146

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

↪→| FAILOVER_STOPPED | BACKUP | 192.168.0.108 | 192.0.2.17 |
| 9c0416d7-6293-4f13-8f67-61e5d757b36e | 4b13dda1-296a-400c-8248-1abad5728057␣
↪→| ALLOCATED | MASTER | 192.168.0.198 | 192.0.2.42 |
| e11208b7-f13d-4db3-9ded-1ee6f70a0502 | 8fd2cac5-cbca-4bb1-bcfc-daba43e097ab␣
↪→| FAILOVER_STOPPED | MASTER | 192.168.0.154 | 192.0.2.17 |
| ceea9fff-71a2-48c8-a968-e51dc440c572 | ab513cb3-8f5d-461e-b7ae-a06b5083a371␣
↪→| ALLOCATED | MASTER | 192.168.0.149 | 192.0.2.26 |
| a1351933-2270-493c-8201-d8f9f9fe42f7 | 4b13dda1-296a-400c-8248-1abad5728057␣
↪→| FAILOVER_STOPPED | BACKUP | 192.168.0.103 | 192.0.2.42 |
| 441718e7-0956-436b-9f99-9a476339d7d2 | ab513cb3-8f5d-461e-b7ae-a06b5083a371␣
↪→| FAILOVER_STOPPED | BACKUP | 192.168.0.148 | 192.0.2.26 |
+--------------------------------------+--------------------------------------
↪→+------------------+--------+---------------+------------+

After operators have resolved the infrastructure outage, they might need to manually trigger failovers to
return to normal operation. In this example, two manual failovers are necessary to get the number of stale
amphorae below the configured threshold of three:

openstack loadbalancer amphora failover --wait 79f0e06d-446d-448a-9d2b-
↪→c3b89d0c700d
openstack loadbalancer amphora list
+--------------------------------------+--------------------------------------
↪→+------------------+--------+---------------+------------+
| id | loadbalancer_id ␣
↪→| status | role | lb_network_ip | ha_ip |
+--------------------------------------+--------------------------------------
↪→+------------------+--------+---------------+------------+
| 9c0416d7-6293-4f13-8f67-61e5d757b36e | 4b13dda1-296a-400c-8248-1abad5728057␣
↪→| ALLOCATED | MASTER | 192.168.0.198 | 192.0.2.42 |
| e11208b7-f13d-4db3-9ded-1ee6f70a0502 | 8fd2cac5-cbca-4bb1-bcfc-daba43e097ab␣
↪→| FAILOVER_STOPPED | MASTER | 192.168.0.154 | 192.0.2.17 |
| ceea9fff-71a2-48c8-a968-e51dc440c572 | ab513cb3-8f5d-461e-b7ae-a06b5083a371␣
↪→| ALLOCATED | MASTER | 192.168.0.149 | 192.0.2.26 |
| a1351933-2270-493c-8201-d8f9f9fe42f7 | 4b13dda1-296a-400c-8248-1abad5728057␣
↪→| FAILOVER_STOPPED | BACKUP | 192.168.0.103 | 192.0.2.42 |
| 441718e7-0956-436b-9f99-9a476339d7d2 | ab513cb3-8f5d-461e-b7ae-a06b5083a371␣
↪→| FAILOVER_STOPPED | BACKUP | 192.168.0.148 | 192.0.2.26 |
| cf734b57-6019-4ec0-8437-115f76d1bbb0 | 8fd2cac5-cbca-4bb1-bcfc-daba43e097ab␣
↪→| ALLOCATED | BACKUP | 192.168.0.141 | 192.0.2.17 |
+--------------------------------------+--------------------------------------
↪→+------------------+--------+---------------+------------+
openstack loadbalancer amphora failover --wait e11208b7-f13d-4db3-9ded-
↪→1ee6f70a0502
openstack loadbalancer amphora list
+--------------------------------------+--------------------------------------
↪→+-----------+--------+---------------+------------+
| id | loadbalancer_id ␣
↪→| status | role | lb_network_ip | ha_ip |
+--------------------------------------+--------------------------------------
↪→+-----------+--------+---------------+------------+

(continues on next page)

1.3. Optional Installation and Configuration Guides 147

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

| 9c0416d7-6293-4f13-8f67-61e5d757b36e | 4b13dda1-296a-400c-8248-1abad5728057␣
↪→| ALLOCATED | MASTER | 192.168.0.198 | 192.0.2.42 |
| ceea9fff-71a2-48c8-a968-e51dc440c572 | ab513cb3-8f5d-461e-b7ae-a06b5083a371␣
↪→| ALLOCATED | MASTER | 192.168.0.149 | 192.0.2.26 |
| cf734b57-6019-4ec0-8437-115f76d1bbb0 | 8fd2cac5-cbca-4bb1-bcfc-daba43e097ab␣
↪→| ALLOCATED | BACKUP | 192.168.0.141 | 192.0.2.17 |
| d2909051-402e-4e75-86c9-ec6725c814a1 | 8fd2cac5-cbca-4bb1-bcfc-daba43e097ab␣
↪→| ALLOCATED | MASTER | 192.168.0.25 | 192.0.2.17 |
| 5133e01a-fb53-457b-b810-edbb5202437e | 4b13dda1-296a-400c-8248-1abad5728057␣
↪→| ALLOCATED | BACKUP | 192.168.0.76 | 192.0.2.42 |
| f82eff89-e326-4e9d-86bc-58c720220a3f | ab513cb3-8f5d-461e-b7ae-a06b5083a371␣
↪→| ALLOCATED | BACKUP | 192.168.0.86 | 192.0.2.26 |
+--------------------------------------+--------------------------------------
↪→+-----------+--------+---------------+------------+

After the number of stale amphorae falls below the configured threshold value, normal operation resumes
and the automatic failover process attempts to restore the remaining stale amphorae.

1.3.8 Using SR-IOV Ports with Octavia
Single Root I/O Virtualization (SR-IOV) can significantly reduce the latency through an Octavia Am-
phora based load balancer while maximizing bandwith and request rates. With Octavia Amphora load
balancers, you can attach SR-IOV Virtual Functions (VF) as the VIP port and/or backend member ports.

Enabling SR-IOV on Your Compute Hosts

To allow Octavia load balancers to use SR-IOV, you must configure nova and neutron to make SR-IOV
available on at least one compute host. Please follow the Networking Guide to setup your compute hosts
for SR-IOV.

Configuring Host Aggregates, Compute and Octavia Flavors

Octavia hot-plugs the network ports into the Amphora as the load balancer is being provisioned. This
means we need to use host aggregates and compute flavor properties to make sure the Amphora are
created on SR-IOV enable compute hosts with the correct networks.

Host Aggregates

This configuration can be as simple or complex as you need it to be. A simple approach would be to add
one property for the SR-IOV host aggregate, such as:

$ openstack aggregate create sriov_aggregate
$ openstack aggregate add host sriov_aggregate sriov-host.example.org
$ openstack aggregate set --property sriov-nic=true sriov_aggregate

A more advanced configuration may list out the specific networks that are available via the SR-IOV VFs:

$ openstack aggregate create sriov_aggregate
$ openstack aggregate add host sriov_aggregate sriov-host.example.org
$ openstack aggregate set --property public-sriov=true --property members-
↪→sriov=true sriov_aggregate

1.3. Optional Installation and Configuration Guides 148

https://docs.openstack.org/neutron/latest/admin/config-sriov.html

Octavia Documentation, Release 15.1.0.dev35

Compute Flavors

Next we need to create a compute flavor that includes the required properties to match the host aggregate.
Here is an example for a basic Octavia Amphora compute flavor using the advanced host aggregate
discussed in the previous section:

$ openstack flavor create --id amphora-sriov-flavor --ram 1024 --disk 3 --
↪→vcpus 1 --private sriov.amphora --property hw_rng:allowed=True --property␣
↪→public-sriov=true --property members-sriov=true

Note

This flavor is marked "private" so must be created inside the Octavia service account project.

Octavia Flavors

Now that we have the compute service setup to properly place our Amphora instances on hosts with
SR-IOV NICs on the right networks, we can create an Octavia flavor that will use the compute flavor.

$ openstack loadbalancer flavorprofile create --name amphora-sriov-profile --
↪→provider amphora --flavor-data '{"compute_flavor": "amphora-sriov-flavor",
↪→"sriov_vip": true}'
$ openstack loadbalancer flavor create --name SRIOV-public-members --
↪→flavorprofile amphora-sriov-profile --description "A load balancer that␣
↪→uses SR-IOV for the 'public' network and 'members' network." --enable

Building the Amphora Image

Neutron does not support security groups on SR-IOV ports, so Octavia will use nftables inside the Am-
phroa to provide network security. The amphora image must be built with nftables enabled for SR-IOV
enabled load balancers. Images with nftables enabled can be used for both SR-IOV enabled load bal-
ancers as well as load balancers that are not using SR-IOV ports. When the SR-IOV for load balancer
VIP ports feature was added to Octavia, the default setting for using nftables has been changed to True.
Prior to this it needed to be enabled by setting an environment variable before building the Amphora
image:

$ export DIB_OCTAVIA_AMP_USE_NFTABLES=True
$./diskimage-create.sh

1.4 Maintenance and Operations

1.4.1 Operator Maintenance Guide
This document is intended for operators. For a developer guide see the Developer / Operator Quick Start
Guide in this documentation repository. For an end-user guide, please see the Basic Load Balancing
Cookbook in this documentation repository.

1.4. Maintenance and Operations 149

Octavia Documentation, Release 15.1.0.dev35

Monitoring

Monitoring Load Balancer Amphora

Octavia will monitor the load balancing amphorae itself and initiate failovers and/or replacements if they
malfunction. Therefore, most installations won’t need to monitor the amphorae running the load balancer.

Octavia will log each failover to the corresponding health manager logs. It is advisable to use log analytics
to monitor failover trends to notice problems in the OpenStack installation early. We have seen neutron
(network) connectivity issues, Denial of Service attacks, and nova (compute) malfunctions lead to a
higher than normal failover rate. Alternatively, the monitoring of the other services showed problems as
well, so depending on your overall monitoring strategy this might be optional.

If additional monitoring is necessary, review the corresponding calls on the amphora agent REST inter-
face (see Octavia HAProxy Amphora API)

Monitoring Pool Members

Octavia will use the health information from the underlying load balancing subsystems to determine the
health of members. This information will be streamed to the Octavia database and made available via
the status tree or other API methods. For critical applications we recommend to poll this information in
regular intervals.

Monitoring Load Balancers

You should monitor the provisioning status of a load balancer, and send alerts if the provisioning status
is not ACTIVE. Alerts should not be triggered when an application is making regular changes to the pool
and enters several PENDING stages.

The provisioning status of load balancer objects reflect the status of the control plane being able to contact
and successfully provision a create, update, and delete request. The operating status of a load balancer
object reports on the current functional status of the load balancer.

For example, a load balancer might have a provisioning status of ERROR, but an operating status of
ONLINE. This could be caused by a neutron networking failure that blocked that last requested update to
the load balancer configuration from successfully completing. In this case the load balancer is continuing
to process traffic through the load balancer, but might not have applied the latest configuration updates
yet.

A load balancer in a PENDING provisioning status is immutable, it cannot be updated or deleted by
another process, this PENDING status acts as a lock on the resource. If a database outage occurs while a
load balancer is deleted, created or updated, the Octavia control plane will try to remove the PENDING
status and set it to ERROR during a long period of time (around 2h45min with the default settings), to
prevent the resource from remaining immutable.

Monitoring load balancer functionality

You can monitor the operational status of your load balancer using the openstack loadbalancer status
show command. It reports the current operation status of the load balancer and its child objects.

You might also want to use an external monitoring service that connects to your load balancer listeners
and monitors them from outside of the cloud. This type of monitoring indicates if there is a failure
outside of Octavia that might impact the functionality of your load balancer, such as router failures,
network connectivity issues, and so on.

1.4. Maintenance and Operations 150

Octavia Documentation, Release 15.1.0.dev35

Monitoring Octavia Control Plane

To monitor the Octavia control plane we recommend process monitoring of the main Octavia processes:

• octavia-api

• octavia-worker

• octavia-health-manager

• octavia-housekeeping

The Monasca project has a plugin for such monitoring (see Monasca Octavia plugin). Please refer to this
project for further information.

Octavia’s control plane components are shared nothing and can be scaled linearly. For high availabil-
ity of the control plane we recommend to run at least one set of components in each availability zone.
Furthermore, the octavia-api endpoint could be behind a load balancer or other HA technology. That
said, if one or more components fail the system will still be available (though potentially degraded). For
instance if you have installed one set of components in each of the three availability zones even if you
lose a whole zone Octavia will still be responsive and available - only if you lose the Octavia control
plane in all three zones will the service be unavailable. Please note this only addresses control plane
availability; the availability of the load balancing function depends highly on the chosen topology and
the anti-affinity settings. See our forthcoming HA guide for more details.

Additionally, we recommend to monitor the Octavia API endpoint(s). There currently is no special url
to use so just polling the root URL in regular intervals is sufficient.

There is a host of information in the log files which can be used for log analytics. A few examples of
what could be monitored are:

• Amphora Build Rate - to determine load of the system

• Amphora Build Time - to determine how long it takes to build an amphora

• Failures/Errors - to be notified of system problems early

Rotating the Amphora Images

Octavia will start load balancers with a pre-built image which contain the amphora agent, a load balancing
application, and are seeded with cryptographic certificates through the config drive at start up.

Rotating the image means making a load balancer amphora running with an old image failover to an
amphora with a new image. This should be without any measurable interruption in the load balancing
functionality when using ACTIVE/STANDBY topology. Standalone load balancers might experience a
short outage.

Here are some reasons you might need to rotate the amphora image:

• There has been a (security) update to the underlying operating system

• You want to deploy a new version of the amphora agent or haproxy

• The cryptographic certificates and/or keys on the amphora have been compromised.

• Though not related to rotating images, this procedure might be invoked if you are switching to a
different flavor for the underlying virtual machine.

1.4. Maintenance and Operations 151

https://github.com/openstack/monasca-agent/blob/master/monasca_setup/detection/plugins/octavia.py

Octavia Documentation, Release 15.1.0.dev35

Preparing a New Amphora Image

To prepare a new amphora image you will need to use diskimage-create.sh as described in the README
in the diskimage-create directory.

For instance, in the octavia/diskimage-create directory, run:

./diskimage-create.sh

Once you have created a new image you will need to upload it into glance. The following shows how to
do this if you have set the image tag in the Octavia configuration file. Make sure to use a user with the
same tenant as the Octavia service account:

openstack image create --file amphora-x64-haproxy.qcow2 \
--disk-format qcow2 --tag <amphora-image-tag> --private \
--container-format bare /var/lib/octavia/amphora-x64-haproxy.qcow2

If you didn’t configure image tags and instead configured an image id, you will need to update the Octavia
configuration file with the new id and restart the Octavia services (except octavia-api).

Generating a List of Load Balancers to Rotate

The easiest way to generate a list, is to just list the IDs of all load balancers:

openstack loadbalancer list -c id -f value

Take note of the IDs.

Rotating a Load Balancer

Octavia has an API call to initiate the failover of a load balancer:

openstack loadbalancer failover <loadbalancer id>

You can observe the failover by querying octavia openstack load balancer show <loadbalancer
id> until the load balancer goes ACTIVE again.

Best Practices/Optimizations

Since a failover puts significant load on the OpenStack installation by creating new virtual machines and
ports, it should either be done at a very slow pace, during a time with little load, or with the right throttling
enabled in Octavia. The throttling will make sure to prioritize failovers higher than other operations and
depending on how many failovers are initiated this might crowd out other operations.

Rotating Cryptographic Certificates

Octavia secures the communication between the amphora agent and the control plane with two-way SSL
encryption. To accomplish that, several certificates are distributed in the system:

• Control plane:

– Amphora certificate authority (CA) certificate: Used to validate amphora certificates if Oc-
tavia acts as a Certificate Authority to issue new amphora certificates

– Client certificate: Used to authenticate with the amphora

1.4. Maintenance and Operations 152

Octavia Documentation, Release 15.1.0.dev35

• Amphora:

– Client CA certificate: Used to validate control plane client certificate

– Amphora certificate: Presented to control plane processes to prove amphora identity.

The heartbeat UDP packets emitted from the amphora are secured with a symmetric encryption key. This
is set by the configuration option heartbeat_key in the health_manager section. We recommend setting
it to a random string of a sufficient length.

Rotating Amphora Certificates

For the server part Octavia will act as a certificate authority itself to issue amphora certificates to be used
by each amphora. Octavia will also monitor those certificates and refresh them before they expire.

There are three ways to initiate a rotation manually:

• Change the expiration date of the certificate in the database. Octavia will then rotate the amphora
certificates with newly issued ones. This requires the following:

– Client CA certificate hasn’t expired or the corresponding client certificate on the control plane
hasn’t been issued by a different client CA (in case the authority was compromised)

– The Amphora CA certificate on the control plane didn’t change in any way which jeopar-
dizes validation of the amphora certificate (e.g. the certificate was reissued with a new pri-
vate/public key)

• If the amphora CA changed in a way which jeopardizes validation of the amphora certificate an
operator can manually upload newly issued amphora certificates by switching off validation of the
old amphora certificate. This requires a client certificate which can be validated by the client CA
file on the amphora. Refer to Octavia HAProxy Amphora API for more details.

• If the client certificate on the control plane changed in a way that it can’t be validated by the client
certificate authority certificate on the amphora, a failover (see Rotating Amphora Certificates) of
all amphorae needs to be initiated. Until the failover is completed the amphorae can’t be controlled
by the control plane.

Rotating the Certificate Authority Certificates

If there is a compromise of the certificate authorities’ certificates, or they expired, new ones need to be
installed into the system. If Octavia is not acting as the certificate authority only the certificate authority’s
cert needs to be changed in the system so amphora can be authenticated again.

• Issue new certificates (see the script in the bin folder of Octavia if Octavia is acting as the certificate
authority) or follow the instructions of the third-party certificate authority. Copy the certificate and
the private key (if Octavia acts as a certificate authority) where Octavia can find them.

• If the previous certificate files haven’t been overridden, adjust the paths to the new certs in the
configuration file and restart all Octavia services (except octavia-api).

Review Rotating Amphora Certificates above to determine if and how the amphora certificates needs to
be rotated.

1.4. Maintenance and Operations 153

Octavia Documentation, Release 15.1.0.dev35

Rotating Client Certificates

If the client certificates expired new ones need to be issued and installed on the system:

• Issue a new client certificate (see the script in the bin folder of Octavia if self signed certificates
are used) or use the ones provided to you by your certificate authority.

• Copy the new cert where Octavia can find it.

• If the previous certificate files haven’t been overridden, adjust the paths to the new certs in the
configuration file. In all cases restart all Octavia services except octavia-api.

If the client CA certificate has been replaced in addition to rotating the client certificate the new client CA
certificate needs to be installed in the system. After that initiate a failover of all amphorae to distribute
the new client CA cert. Until the failover is completed the amphorae can’t be controlled by the control
plane.

Changing The Heartbeat Encryption Key

Special caution needs to be taken to replace the heartbeat encryption key. Once this is changed Octavia
can’t read any heartbeats and will assume all amphora are in an error state and initiate an immediate
failover.

In preparation, read the chapter on Best Practices/Optimizations in the Failover section.

Given the risks involved with changing this key it should not be changed during routine maintenance but
only when a compromise is strongly suspected.

Note

For future versions of Octavia an "update amphora" API is planned which will allow this key to be
changed without failover. At that time there would be a procedure to halt health monitoring while the
keys are rotated and then resume health monitoring.

Handling a VM Node Failure

If a node fails which is running amphora, Octavia will automatically failover the amphora to a different
node (capacity permitting). In some cases, the node can be recovered (e.g. through a hard reset) and
the hypervisor might bring back the amphora vms. In this case, an operator should manually delete all
amphora on this specific node since Octavia assumes they have been deleted as part of the failover and
will not touch them again.

Note

As a safety measure an operator can, prior to deleting, manually check if the VM is in use. First,
use the Amphora API to obtain the current list of amphorae, then match the nova instance ID to the
compute_id column in the amphora API response (it is not currently possible to filter amphora by
compute_id). If there are any matches where the amphora status is not ’DELETED’, the amphora is
still considered to be in use.

1.4. Maintenance and Operations 154

Octavia Documentation, Release 15.1.0.dev35

Evacuating a Specific Amphora from a Host

In some cases an amphora needs to be evacuated either because the host is being shutdown for mainte-
nance or as part of a failover. Octavia has a rich amphora API to do that.

First use the amphora API to find the specific amphora. Then, if not already performed, disable schedul-
ing to this host in nova. Lastly, initiate a failover of the specific amphora with the failover command on
the amphora API.

Alternatively, a live migration might also work if it happens quick enough for Octavia not to notice a
stale amphora (the default configuration is 60s).

1.4.2 octavia-status

CLI interface for Octavia status commands

Synopsis

octavia-status <category> <command> [<args>]

Description

octavia-status is a tool that provides routines for checking the status of a Octavia deployment.

Options

The standard pattern for executing a octavia-status command is:

octavia-status <category> <command> [<args>]

Run without arguments to see a list of available command categories:

octavia-status

Categories are:

• upgrade

Detailed descriptions are below:

You can also run with a category argument such as upgrade to see a list of all commands in that category:

octavia-status upgrade

These sections describe the available categories and arguments for octavia-status.

Upgrade

octavia-status upgrade check
Performs a release-specific readiness check before restarting services with new code. For example,
missing or changed configuration options, incompatible object states, or other conditions that could
lead to failures while upgrading.

Return Codes

1.4. Maintenance and Operations 155

Octavia Documentation, Release 15.1.0.dev35

Return code Description
0 All upgrade readiness checks passed successfully and there is nothing to do.
1 At least one check encountered an issue and requires further investigation.

This is considered a warning but the upgrade may be OK.
2 There was an upgrade status check failure that needs to be investigated. This

should be considered something that stops an upgrade.
255 An unexpected error occurred.

History of Checks

4.0.0 (Stein)

• Sample check to be filled in with checks as they are added in Stein.

1.4.3 Load Balancing Service Upgrade Guide
This document outlines steps and notes for operators for reference when upgrading their Load Balancing
service from previous versions of OpenStack.

Plan the upgrade

Before jumping right in to the upgrade process, there are a few considerations operators should observe:

• Carefully read the release notes, particularly the upgrade section.

• Upgrades are only supported between sequential releases. For example, upgrading from Pike to
Queens is supported while from Pike to Rocky is not.

• It is expected that each Load Balancing provider provides its own upgrade documentation. Please
refer to it for upgrade instructions.

• The Load Balancing service builds on top of other OpenStack services, e.g. Compute, Networking,
Image and Identify. On a staging environment, upgrade the Load Balancing service and verify it
works as expected. For example, a good indicator would be the successful run of Octavia Tempest
tests <https://opendev.org/openstack/octavia-tempest-plugin>.

Cold upgrade

In a cold upgrade (also known as offline upgrade and non-rolling upgrade), the Load Balancing service
is not available because all the control plane services have to be taken down. No data plane disruption
should result during the course of upgrading. In the case of the Load Balancing service, it means no
downtime nor reconfiguration of service-managed resources (e.g. load balancers, listeners, pools and
members).

1. Run the octavia-status upgrade check command to validate that Octavia is ready for upgrade.

2. Gracefully stop all Octavia processes. We recommend in this order: Housekeeping, Health man-
ager, API, Worker.

3. Optional: Make a backup of the database.

4. Upgrade all Octavia control plane nodes to the next release. Remember to also upgrade library
dependencies (e.g. octavia-lib). If upgrading Octavia from distribution packages, your system
package manager is expected to handle this automatically.

1.4. Maintenance and Operations 156

Octavia Documentation, Release 15.1.0.dev35

5. Verify that all configuration option names are up-to-date with latest Octavia version. For example,
pay special attention to deprecated configurations.

6. Run octavia-db-manage upgrade head from any Octavia node to upgrade the database and
run any corresponding database migrations.

7. Start all Octavia processes.

8. Build a new image and upload it to the Image service. Do not forget to tag the image. We rec-
ommend updating images frequently to include latest bug fixes and security issues on installed
software (operating system, amphora agent and its dependencies).

Amphorae upgrade

Amphorae upgrade may be required in the advent of API incompatibility between the running amphora
agent (old version) and Octavia services (new version). Octavia will automatically recover by failing over
amphorae and thus new amphora instances will be running on latest amphora agent code. The drawback
in that case is data plane downtime during failover. API breakage is a very rare case, and would be
highlighted in the release notes if this scenario occurs.

Upgrade testing

Grenade is an OpenStack test harness project that validates upgrade scenarios between releases. It uses
DevStack to initially perform a base OpenStack install and then upgrade to a target version.

Octavia has a Grenade plugin and a CI gate job that validates cold upgrades of an OpenStack deployment
with Octavia enabled. The plugin creates load balancing resources and verifies that resources are still
working during and after upgrade.

1.5 Operator Reference

1.5.1 Octavia HAProxy Amphora API

Introduction

This document describes the API interface between the reference haproxy driver and its corresponding
haproxy-based amphorae.

Octavia reference haproxy amphorae use a web service API for configuration and control. This API
should be secured through the use of TLS encryption as well as bi-directional verification of client- and
server-side certificates. (The exact process for generating and distributing these certificates should be
covered in another document.)

In addition to the web service configuration and control interface, the amphorae may use an HMAC-
signed UDP protocol for communicating regular, less- vital information to the controller (ex. statistics
updates and health checks). Information on this will also be covered in another document.

If a given loadbalancer is being serviced by multiple haproxy amphorae at the same time, configuration
and control actions should be made on all these amphorae at approximately the same time. (Amphorae
do not communicate directly with each other, except in an active-standby topology, and then this com-
munication is limited to fail-over protocols.)

1.5. Operator Reference 157

https://docs.openstack.org/grenade/latest/
https://opendev.org/openstack/octavia/src/branch/master/devstack/upgrade

Octavia Documentation, Release 15.1.0.dev35

Contents

• Octavia HAProxy Amphora API

– Introduction

∗ Versioning

∗ Response codes

∗ A note about storing state

– API

∗ Get amphora info

∗ Get amphora details

∗ Get interface

∗ Get all listeners’ statuses

∗ Start or Stop a load balancer

∗ Delete a listener

∗ Upload SSL certificate PEM file

∗ Get SSL certificate md5sum

∗ Delete SSL certificate PEM file

∗ Upload load balancer haproxy configuration

∗ Get loadbalancer haproxy configuration

∗ Plug VIP

∗ Plug Network

∗ Upload SSL server certificate PEM file for Controller Communication

∗ Upload keepalived configuration

∗ Start, Stop, or Reload keepalived

∗ Update the amphora agent configuration

Versioning

All Octavia APIs (including internal APIs like this one) are versioned. For the purposes of this document,
the initial version of this API shall be 1.0.

Response codes

Typical response codes are:

• 200 OK - Operation was completed as requested.

• 201 Created - Operation successfully resulted in the creation / processing of a file.

• 202 Accepted - Command was accepted but is not completed. (Note that this is used for asyn-

1.5. Operator Reference 158

Octavia Documentation, Release 15.1.0.dev35

chronous processing.)

• 400 Bad Request - API handler was unable to complete request.

• 401 Unauthorized - Authentication of the client certificate failed.

• 404 Not Found - The requested file was not found.

• 500 Internal Server Error - Usually indicates a permissions problem

• 503 Service Unavailable - Usually indicates a change to a listener was attempted during a transition
of amphora topology.

A note about storing state

In the below API, it will become apparent that at times the amphora will need to be aware of the state of
things (topology-wise, or simply in terms running processes on the amphora). When it comes to storing
or gathering this data, we should generally prefer to try to resolve these concerns in the following order.
Note also that not every kind of state data will use all of the steps in this list:

1. Get state information by querying running processes (ex. parsing haproxy status page or querying
iptables counters, etc.)

2. Get state by consulting on-disk cache generated by querying running processes. (In the case where
state information is relatively expensive to collect-- eg. package version listings.)

3. Get state by consulting stored configuration data as sent by the controller. (ex. amphora topology,
haproxy configuration or TLS certificate data)

4. Get state by querying a controller API (not described here).

In no case should the amphora assume it ever has direct access to the Octavia database. Also, sensitive
data (like TLS certificates) should be stored in a secure way (ex. memory filesystem).

API

Get amphora info

• URL: /info

• Method: GET

• URL params: none

• Data params: none

• Success Response:

– Code: 200

∗ Content: JSON formatted listing of several basic amphora data.

• Error Response:

– none

JSON Response attributes:

• hostname - amphora hostname

• uuid - amphora UUID

• haproxy_version - Version of the haproxy installed

1.5. Operator Reference 159

Octavia Documentation, Release 15.1.0.dev35

• api_version - Version of haproxy amphora API in use

Notes: The data in this request is used by the controller for determining the amphora and API version
numbers.

It’s also worth noting that this is the only API command that doesn’t have a version string prepended to
it.

Examples:

• Success code 200:

{
'hostname': 'octavia-haproxy-img-00328.local',
'uuid': '6e2bc8a0-2548-4fb7-a5f0-fb1ef4a696ce',
'haproxy_version': '1.5.11',
'api_version': '0.1',

}

Get amphora details

• URL: /1.0/details

• Method: GET

• URL params: none

• Data params: none

• Success Response:

– Code: 200

∗ Content: JSON formatted listing of various amphora statistics.

• Error Response:

– none

JSON Response attributes:

• hostname - amphora hostname

• uuid - amphora UUID

• haproxy_version - Version of the haproxy installed

• api_version - Version of haproxy amphora API/agent in use

• network_tx - Current total outbound bandwidth in bytes/sec (30-second snapshot)

• network_rx - Current total inbound bandwidth in bytes/sec (30-second snapshot)

• active - Boolean (is amphora in an "active" role?)

• haproxy_count - Number of running haproxy processes

• cpu - list of percent CPU usage broken down into:

– total

– user

– system

1.5. Operator Reference 160

Octavia Documentation, Release 15.1.0.dev35

– soft_irq

• memory - memory usage in kilobytes broken down into:

– total

– free

– available

– buffers

– cached

– swap_used

– shared

– slab

– committed_as

• disk - disk usage in kilobytes for root filesystem, listed as:

– used

– available

• load - System load (list)

• topology - One of SINGLE, ACTIVE-STANDBY, ACTIVE-ACTIVE

• topology_status - One of OK, TOPOLOGY-CHANGE

• listeners - list of listener UUIDs being serviced by this amphora

• packages - list of load-balancing related packages installed with versions (eg. OpenSSL, haproxy,
nginx, etc.)

Notes: The data in this request is meant to provide intelligence for an auto-scaling orchestration controller
(heat) in order to determine whether additional (or fewer) virtual amphorae are necessary to handle load.
As such, we may add additional parameters to the JSON listing above if they prove to be useful for making
these decisions.

The data in this request is also used by the controller for determining overall health of the amphora,
currently-configured topology and role, etc.

Examples

• Success code 200:

{
'hostname': 'octavia-haproxy-img-00328.local',
'uuid': '6e2bc8a0-2548-4fb7-a5f0-fb1ef4a696ce',
'haproxy_version': '1.5.11',
'api_version': '0.1',
'networks': {

'eth0': {
'network_tx': 3300138,
'network_rx': 982001, }}

'active': 'TRUE',
'haproxy_count': 3,

(continues on next page)

1.5. Operator Reference 161

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

'cpu':{
'total': 0.43,
'user': 0.30,
'system': 0.05,
'soft_irq': 0.08,

},
'memory':{
'total': 4087402,
'free': 760656,
'available': 2655901,
'buffers': 90980,
'cached': 1830143,
'swap_used': 943,
'shared': 105792,
'slab': 158819,
'committed_as': 2643480,

},
'disk':{
'used': 1234567,
'available': 5242880,

},
'load': [0.50, 0.45, 0.47],
'tolopogy': 'SINGLE',
'topology_status': 'OK',
'listeners':[
'02d0da8d-fc65-4bc4-bc46-95cadb2315d2',
'98e706a7-d22c-422f-9632-499fd83e12c0',

],
'packages':[
{'haproxy': '1.5.1'},
{'bash': '4.3.23'},
{'lighttpd': '1.4.33-1'},
{'openssl': '1.0.1f'},
<cut for brevity>

],
}

Get interface

• URL: /1.0/interface/:ip

• Method: GET

• URL params:

– :ip = the ip address to find the interface name

• Data params: none

• Success Response:

– Code: 200

1.5. Operator Reference 162

Octavia Documentation, Release 15.1.0.dev35

∗ Content: OK

∗ Content: JSON formatted interface

• Error Response:

– Code: 400

∗ Content: Bad IP address version

– Code: 404

∗ Content: Error interface not found for IP address

• Response:

OK
eth1

Examples:

• Success code 200:

GET URL:
https://octavia-haproxy-img-00328.local/1.0/interface/10.0.0.1

JSON Response:
{
'message': 'OK',
'interface': 'eth1'

}

• Error code 404:

GET URL:
https://octavia-haproxy-img-00328.local/1.0/interface/10.5.0.1

JSON Response:
{
'message': 'Error interface not found for IP address',

}

• Error code 404:

GET URL:
https://octavia-haproxy-img-00328.local/1.0/interface/10.6.0.1.1

JSON Response:
{
'message': 'Bad IP address version',

}

1.5. Operator Reference 163

Octavia Documentation, Release 15.1.0.dev35

Get all listeners’ statuses

• URL: /1.0/listeners

• Method: GET

• URL params: none

• Data params: none

• Success Response:

– Code: 200

∗ Content: JSON-formatted listing of each listener’s status

• Error Response:

– none

JSON Response attributes:

Note that the command will return an array of all listeners’ statuses. Each listener status contains the
following attributes:

• status - One of the operational status: ACTIVE, STOPPED, ERROR - future versions might
support provisioning status: PENDING_CREATE, PENDING_UPDATE, PENDING_DELETE,
DELETED

• uuid - Listener UUID

• type - One of: TCP, HTTP, TERMINATED_HTTPS

Notes: Note that this returns a status if: the pid file exists, the stats socket exists, or an haproxy configu-
ration is present (not just if there is a valid haproxy configuration).

Examples

• Success code 200:

[{
'status': 'ACTIVE',
'uuid': 'e2dfddc0-5b9e-11e4-8ed6-0800200c9a66',
'type': 'HTTP',

},
{
'status': 'STOPPED',
'uuid': '19d45130-5b9f-11e4-8ed6-0800200c9a66',
'type': 'TERMINATED_HTTPS',

}]

Start or Stop a load balancer

• URL: /1.0/loadbalancer/:object_id/:action

• Method: PUT

• URL params:

– :object_id = Object UUID

1.5. Operator Reference 164

Octavia Documentation, Release 15.1.0.dev35

– :action = One of: start, stop, reload

• Data params: none

• Success Response:

– Code: 202

∗ Content: OK

∗ (Also contains preliminary results of attempt to start / stop / soft restart (reload) the
haproxy daemon)

• Error Response:

– Code: 400

∗ Content: Invalid request

– Code: 404

∗ Content: Listener Not Found

– Code: 500

∗ Content: Error starting / stopping / reload_config haproxy

∗ (Also contains error output from attempt to start / stop / soft restart (reload) haproxy)

– Code: 503

∗ Content: Topology transition in progress

• Response:

OK
Configuration file is valid
haproxy daemon for 85e2111b-29c4-44be-94f3-e72045805801 started (pid 32428)

Examples:

• Success code 201:

PUT URL:
https://octavia-haproxy-img-00328.local/1.0/loadbalancer/85e2111b-29c4-44be-
↪→94f3-e72045805801/start

JSON Response:
{
'message': 'OK',
'details': 'Configuration file is valid\nhaproxy daemon for 85e2111b-29c4-

↪→44be-94f3-e72045805801 started',
}

• Error code 400:

1.5. Operator Reference 165

Octavia Documentation, Release 15.1.0.dev35

PUT URL:
https://octavia-haproxy-img-00328.local/1.0/loadbalancer/85e2111b-29c4-44be-
↪→94f3-e72045805801/BAD_TEST_DATA

JSON Response:
{
'message': 'Invalid Request',
'details': 'Unknown action: BAD_TEST_DATA',

}

• Error code 404:

PUT URL:
https://octavia-haproxy-img-00328.local/1.0/loadbalancer/04bff5c3-5862-4a13-
↪→b9e3-9b440d0ed50a/stop

JSON Response:
{
'message': 'Listener Not Found',
'details': 'No loadbalancer with UUID: 04bff5c3-5862-4a13-b9e3-9b440d0ed50a

↪→',
}

• Error code 500:

PUT URL:
https://octavia-haproxy-img-00328.local/1.0/loadbalancer/85e2111b-29c4-44be-
↪→94f3-e72045805801/stop

Response:
{
'message': 'Error stopping haproxy',
'details': 'haproxy process with PID 3352 not found',

}

• Error code 503:

Response:
{
'message': 'Topology transition in progress',

}

Delete a listener

• URL: /1.0/listeners/:listener

• Method: DELETE

• URL params:

– :listener = Listener UUID

• Data params: none

1.5. Operator Reference 166

Octavia Documentation, Release 15.1.0.dev35

• Success Response:

– Code: 200

∗ Content: OK

• Error Response:

– Code: 404

∗ Content: Not Found

– Code: 503

∗ Content: Topology transition in progress

• Response:

OK

• Implied actions:

– Stop listener

– Delete IPs, iptables accounting rules, etc. from this amphora if they’re no longer in use.

– Clean up listener configuration directory.

– Delete listener’s SSL certificates

– Clean up logs (ship final logs to logging destination if configured)

– Clean up stats socket.

Examples

• Success code 200:

DELETE URL:
https://octavia-haproxy-img-00328.local/1.0/listeners/04bff5c3-5862-4a13-b9e3-
↪→9b440d0ed50a

JSON Response:
{
'message': 'OK'

}

• Error code 404:

DELETE URL:
https://octavia-haproxy-img-00328.local/1.0/listeners/04bff5c3-5862-4a13-b9e3-
↪→9b440d0ed50a

JSON Response:
{
'message': 'Listener Not Found',
'details': 'No listener with UUID: 04bff5c3-5862-4a13-b9e3-9b440d0ed50a',

}

1.5. Operator Reference 167

Octavia Documentation, Release 15.1.0.dev35

• Error code 503:

Response:
{
'message': 'Topology transition in progress',

}

Upload SSL certificate PEM file

• URL: /1.0/loadbalancer/:loadbalancer_id/certificates/:filename.pem

• Method: PUT

• URL params:

– :loadbalancer_id = Load balancer UUID

– :filename = PEM filename (see notes below for naming convention)

• Data params: Certificate data. (PEM file should be a concatenation of unencrypted RSA key,
certificate and chain, in that order)

• Success Response:

– Code: 201

∗ Content: OK

• Error Response:

– Code: 400

∗ Content: No certificate found

– Code: 400

∗ Content: No RSA key found

– Code: 400

∗ Content: Certificate and key do not match

– Code: 404

∗ Content: Not Found

– Code: 503

∗ Content: Topology transition in progress

• Response:

OK

Notes: * filename.pem should match the primary CN for which the certificate is valid. All-caps WILD-
CARD should be used to replace an asterisk in a wildcard certificate (eg. a CN of ’*.example.com’ should
have a filename of ’WILDCARD.example.com.pem’). Filenames must also have the .pem extension. *
In order for the new certificate to become effective the haproxy needs to be explicitly restarted

Examples:

1.5. Operator Reference 168

Octavia Documentation, Release 15.1.0.dev35

• Success code 201:

PUT URI:
https://octavia-haproxy-img-00328.local/1.0/loadbalancer/85e2111b-29c4-44be-
↪→94f3-e72045805801/certificates/www.example.com.pem
(Put data should contain the certificate information, concatenated as
described above)

JSON Response:
{
'message': 'OK'

}

• Error code 400:

PUT URI:
https://octavia-haproxy-img-00328.local/1.0/loadbalancer/85e2111b-29c4-44be-
↪→94f3-e72045805801/certificates/www.example.com.pem
(If PUT data does not contain a certificate)

JSON Response:
{
'message': 'No certificate found'

}

• Error code 400:

PUT URI:
https://octavia-haproxy-img-00328.local/1.0/loadbalancer/85e2111b-29c4-44be-
↪→94f3-e72045805801/certificates/www.example.com.pem
(If PUT data does not contain an RSA key)

JSON Response:
{
'message': 'No RSA key found'

}

• Error code 400:

PUT URI:
https://octavia-haproxy-img-00328.local/1.0/loadbalancer/85e2111b-29c4-44be-
↪→94f3-e72045805801/certificates/www.example.com.pem
(If the first certificate and the RSA key do not have the same modulus.)

JSON Response:
{
'message': 'Certificate and key do not match'

}

• Error code 404:

1.5. Operator Reference 169

Octavia Documentation, Release 15.1.0.dev35

PUT URI:
https://octavia-haproxy-img-00328.local/1.0/loadbalancer/85e2111b-29c4-44be-
↪→94f3-e72045805801/certificates/www.example.com.pem

JSON Response:
{
'message': 'Listener Not Found',
'details': 'No loadbalancer with UUID: 04bff5c3-5862-4a13-b9e3-9b440d0ed50a

↪→',
}

• Error code 503:

Response:
{
'message': 'Topology transition in progress',

}

Get SSL certificate md5sum

• URL: /1.0/loadbalancer/:loadbalancer_id/certificates/:filename.pem

• Method: GET

• URL params:

– :loadbalancer_id = Load balancer UUID

– :filename = PEM filename (see notes below for naming convention)

• Data params: none

• Success Response:

– Code: 200

∗ Content: PEM file md5sum

• Error Response:

– Code: 404

∗ Content: Not Found

• Response:

<certificate PEM file md5 sum>

• Implied actions: none

Notes: The md5sum is the sum from the raw certificate data as stored on the amphora (which will usually
include the RSA key, certificate and chain concatenated together). Note that we don’t return any actual
raw certificate data as the controller should already know this information, and unnecessarily disclosing
it over the wire from the amphora is a security risk.

Examples:

1.5. Operator Reference 170

Octavia Documentation, Release 15.1.0.dev35

• Success code 200:

JSON response:
{
'md5sum': 'd8f6629d5e3c6852fa764fb3f04f2ffd',

}

• Error code 404:

JSON Response:
{
'message': 'Listener Not Found',
'details': 'No loadbalancer with UUID: 04bff5c3-5862-4a13-b9e3-

↪→9b440d0ed50a',
}

• Error code 404:

JSON Response:
{
'message': 'Certificate Not Found',
'details': 'No certificate with file name: www.example.com.pem',

}

Delete SSL certificate PEM file

• URL: /1.0/loadbalancer/:loadbalancer_id/certificates/:filename.pem

• Method: DELETE

• URL params:

– :loadbalancer_id = Load balancer UUID

– :filename = PEM filename (see notes below for naming convention)

• Data params: none

• Success Response:

– Code: 200

∗ Content: OK

• Error Response:

– Code: 404

∗ Content: Not found

– Code: 503

∗ Content: Topology transition in progress

• Implied actions:

– Clean up listener configuration directory if it’s now empty.

Examples:

1.5. Operator Reference 171

Octavia Documentation, Release 15.1.0.dev35

• Success code 200:

DELETE URL:
https://octavia-haproxy-img-00328.local/1.0/loadbalancer/85e2111b-29c4-44be-
↪→94f3-e72045805801/certificates/www.example.com.pem

JSON Response:
{
'message': 'OK'

}

• Error code 404:

DELETE URL:
https://octavia-haproxy-img-00328.local/1.0/loadbalancer/85e2111b-29c4-44be-
↪→94f3-e72045805801/certificates/www.example.com.pem

JSON Response:
{
'message': 'Certificate Not Found',
'details': 'No certificate with file name: www.example.com.pem',

}

• Error code 503:

Response:
{
'message': 'Topology transition in progress',

}

Upload load balancer haproxy configuration

• URL: /1.0/loadbalancer/:amphora_id/:loadbalancer_id/haproxy

• Method: PUT

• URL params:

– :loadbalancer_id = Load Balancer UUID

– :amphora_id = Amphora UUID

• Data params: haproxy configuration file for the listener

• Success Response:

– Code: 201

∗ Content: OK

• Error Response:

– Code: 400

∗ Content: Invalid configuration

∗ (Also includes error output from configuration check command)

1.5. Operator Reference 172

Octavia Documentation, Release 15.1.0.dev35

– Code: 503

∗ Content: Topology transition in progress

• Response:

OK
Configuration file is valid

• Implied actions:

– Do a syntax check on haproxy configuration file prior to an attempt to run it.

– Add resources needed for stats, logs, and connectivity

Notes: The uploaded configuration file should be a complete and syntactically-correct haproxy config.
The amphora does not have intelligence to generate these itself and has only rudimentary ability to parse
certain features out of the configuration file (like bind addresses and ports for purposes of setting up stats,
and specially formatted comments meant to indicate pools and members that will be parsed out of the
haproxy daemon status interface for tracking health and stats).

Examples:

• Success code 201:

PUT URL:
https://octavia-haproxy-img-00328.local/1.0/loadbalancer/d459b1c8-54b0-4030-
↪→9bec-4f449e73b1ef/85e2111b-29c4-44be-94f3-e72045805801/haproxy
(Upload PUT data should be a raw haproxy.conf file.)

JSON Response:
{
'message': 'OK'

}

• Error code 400:

JSON Response:
{
'message': 'Invalid request',
'details': '[ALERT] 300/013045 (28236) : parsing [haproxy.cfg:4]: unknown␣

↪→keyword 'BAD_LINE' out of section.\n[ALERT] 300/013045 (28236) : Error(s)␣
↪→found in configuration file : haproxy.cfg\n[ALERT] 300/013045 (28236) :␣
↪→Fatal errors found in configuration.',
}

• Error code 503:

Response:
{
'message': 'Topology transition in progress',

}

1.5. Operator Reference 173

Octavia Documentation, Release 15.1.0.dev35

Get loadbalancer haproxy configuration

• URL: /1.0/loadbalancer/:loadbalancer_id/haproxy

• Method: GET

• URL params:

– :loadbalancer_id = Load balancer UUID

• Data params: none

• Success Response:

– Code: 200

∗ Content: haproxy configuration file for the listener

• Error Response:

– Code: 404

∗ Content: Not found

• Response:

Config file for 85e2111b-29c4-44be-94f3-e72045805801
(cut for brevity)

• Implied actions: none

Examples:

• Success code 200:

GET URL:
https://octavia-haproxy-img-00328.local/1.0/loadbalancer/85e2111b-29c4-44be-
↪→94f3-e72045805801/haproxy

Response is the raw haproxy.cfg:

Config file for 85e2111b-29c4-44be-94f3-e72045805801
(cut for brevity)

• Error code 404:

JSON Response:
{
'message': 'Loadbalancer Not Found',
'details': 'No loadbalancer with UUID: 04bff5c3-5862-4a13-b9e3-

↪→9b440d0ed50a',
}

1.5. Operator Reference 174

Octavia Documentation, Release 15.1.0.dev35

Plug VIP

• URL: /1.0/plug/vip/:ip

• Method: Post

• URL params:

– :ip = the vip’s ip address

• Data params:

• subnet_cidr: The vip subnet in cidr notation

• gateway: The vip subnet gateway address

• mac_address: The mac address of the interface to plug

• Success Response:

– Code: 202

∗ Content: OK

• Error Response: * Code: 400

– Content: Invalid IP

– Content: Invalid subnet information

– Code: 404

∗ Content: No suitable network interface found

– Code: 500

∗ Content: Error plugging VIP

∗ (Also contains error output from the ip up command)

– Code: 503

∗ Content: Topology transition in progress

• Response:

OK
VIP <vip> ip plugged on interface <interface>

• Implied actions:

– Look for an interface marked as down (recently added port)

– Assign VIP

– Bring that interface up

Examples:

• Success code 202:

1.5. Operator Reference 175

Octavia Documentation, Release 15.1.0.dev35

POST URL:
https://octavia-haproxy-img-00328.local/1.0/plug/vip/203.0.113.2

JSON POST parameters:
{
'subnet_cidr': '203.0.113.0/24',
'gateway': '203.0.113.1',
'mac_address': '78:31:c1:ce:0b:3c'

}

JSON Response:
{
'message': 'OK',
'details': 'VIP 203.0.113.2 plugged on interface eth1'

}

• Error code 400:

JSON Response:
{
'message': 'Invalid VIP',

}

• Error code 404:

JSON Response:
{
'message': 'No suitable network interface found',

}

Plug Network

• URL: /1.0/plug/network/

• Method: POST

• URL params: none

• Data params:

• mac_address: The mac address of the interface to plug

• Success Response:

– Code: 202

∗ Content: OK

• Error Response:

– Code: 404

∗ Content: No suitable network interface found

– Code: 500

∗ Content: Error plugging Port

1.5. Operator Reference 176

Octavia Documentation, Release 15.1.0.dev35

∗ (Also contains error output from the ip up command)

– Code: 503

∗ Content: Topology transition in progress

• Response:

OK
Plugged interface <interface>

Examples:

• Success code 202:

POST URL:
https://octavia-haproxy-img-00328.local/1.0/plug/network/

JSON POST parameters:
{
'mac_address': '78:31:c1:ce:0b:3c'

}

JSON Response:
{
'message': 'OK',
'details': 'Plugged interface eth1'

}

• Error code 404:

JSON Response:
{
'message': 'No suitable network interface found',

}

Upload SSL server certificate PEM file for Controller Communication

• URL: /1.0/certificate

• Method: PUT

• Data params: Certificate data. (PEM file should be a concatenation of unencrypted RSA key,
certificate and chain, in that order)

• Success Response:

– Code: 202

∗ Content: OK

• Error Response:

– Code: 400

1.5. Operator Reference 177

Octavia Documentation, Release 15.1.0.dev35

∗ Content: No certificate found

– Code: 400

∗ Content: No RSA key found

– Code: 400

∗ Content: Certificate and key do not match

• Response:

OK

Notes: Since certificates might be valid for a time smaller than the amphora is in existence this add a
way to rotate them. Once the certificate is uploaded the agent is being recycled so depending on the
implementation the service might not be available for some time.

Examples:

• Success code 202:

PUT URI:
https://octavia-haproxy-img-00328.local/1.0/certificate
(Put data should contain the certificate information, concatenated as
described above)

JSON Response:
{
'message': 'OK'

}

• Error code 400:

PUT URI:
https://octavia-haproxy-img-00328.local/1.0/certificates
(If PUT data does not contain a certificate)

JSON Response:
{
'message': 'No certificate found'

}

• Error code 400:

PUT URI:
https://octavia-haproxy-img-00328.local/1.0/certificate
(If PUT data does not contain an RSA key)

JSON Response:
{
'message': 'No RSA key found'

}

1.5. Operator Reference 178

Octavia Documentation, Release 15.1.0.dev35

• Error code 400:

PUT URI:
https://octavia-haproxy-img-00328.local/1.0/certificate
(If the first certificate and the RSA key do not have the same modulus.)

JSON Response:
{
'message': 'Certificate and key do not match'

}

Upload keepalived configuration

• URL: /1.0/vrrp/upload

• Method: PUT

• URL params: none

• Data params: none

• Success Response:

– Code: 200

∗ Content: OK

• Error Response:

– Code: 500

∗ Content: Failed to upload keepalived configuration.

• Response:

OK

Examples:

• Success code 200:

PUT URI:
https://octavia-haproxy-img-00328.local/1.0/vrrp/upload

JSON Response:
{
'message': 'OK'

}

Start, Stop, or Reload keepalived

• URL: /1.0/vrrp/:action

• Method: PUT

• URL params:

– :action = One of: start, stop, reload

1.5. Operator Reference 179

Octavia Documentation, Release 15.1.0.dev35

• Data params: none

• Success Response:

– Code: 202

∗ Content: OK

• Error Response:

– Code: 400

∗ Content: Invalid Request

– Code: 500

∗ Content: Failed to start / stop / reload keepalived service:

∗ (Also contains error output from attempt to start / stop / reload keepalived)

• Response:

OK
keepalived started

Examples:

• Success code 202:

PUT URL:
https://octavia-haproxy-img-00328.local/1.0/vrrp/start

JSON Response:
{
'message': 'OK',
'details': 'keepalived started',

}

• Error code: 400

PUT URL:
https://octavia-haproxy-img-00328.local/1.0/vrrp/BAD_TEST_DATA

JSON Response:
{
'message': 'Invalid Request',
'details': 'Unknown action: BAD_TEST_DATA',

}

• Error code: 500

PUT URL:
https://octavia-haproxy-img-00328.local/1.0/vrrp/stop

JSON Response:
(continues on next page)

1.5. Operator Reference 180

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

{
'message': 'Failed to stop keepalived service: keeepalived process with PID␣

↪→3352 not found',
'details': 'keeepalived process with PID 3352 not found',

}

Update the amphora agent configuration

• URL: /1.0/config

• Method: PUT

• Data params: A amphora-agent configuration file

• Success Response:

– Code: 202

∗ Content: OK

• Error Response:

– Code: 500

∗ message: Unable to update amphora-agent configuration.

∗ details: (The exception details)

• Response:

OK

• Implied actions:

– The running amphora-agent configuration file is mutated.

Notes: Only options that are marked mutable in the oslo configuration will be updated.

Examples:

• Success code 202:

PUT URL:
https://octavia-haproxy-img-00328.local/1.0/config
(Upload PUT data should be a raw amphora-agent.conf file.)

JSON Response:
{
'message': 'OK'

}

• Error code 500:

1.5. Operator Reference 181

Octavia Documentation, Release 15.1.0.dev35

JSON Response:
{
'message': 'Unable to update amphora-agent configuration.',
'details': *(The exception output)*,

}

1.5.2 Octavia Event Notifications
Octavia uses the oslo messaging notification system to send notifications for certain events, such as "oc-
tavia.loadbalancer.create.end" after the completion of a loadbalancer create operation.

Configuring oslo messaging for event notifications

By default, the notifications driver in oslo_messaging is set to an empty string; therefore, this option
must be configured in order for notifications to be sent. Valid options are defined in oslo.messaging
documentation. The example provided below is the format produced by the messagingv2 driver.

You may specify a custom list of topics on which to send notifications. A topic is created for each notifi-
cation level, with a dot and the level appended to the value(s) specified in this list, e.g.: notifications.info,
octavia-notifications.info, etc..

Oslo messaging supports separate backends for RPC and notifications. If different from the [DEFAULT]
transport_url configuration, you must specify the transport_url in the [oslo_messaging_notifications]
section of your octavia.conf configuration.

[oslo_messaging_notifications]
driver = messagingv2
topics = octavia-notifications,notifications
transport_url = transport://user:pass@host1:port/virtual_host

Event Types

Event types supported in Octavia are:

'octavia.loadbalancer.update.end'

'octavia.loadbalancer.create.end'

'octavia.loadbalancer.delete.end'

Example Notification

The payload for an oslo.message notification for Octavia loadbalancer events is the complete loadbalancer
dict in json format. The complete contents of an oslo.message notification for a loadbalancer event in
Octavia follows the format of the following example:

{
"message_id": "d84a3800-06ca-410e-a1a3-b40a02306a97",
"publisher_id": null,
"event_type": "octavia.loadbalancer.create.end",
"priority": "INFO",
"payload": {
"enabled": true,

(continues on next page)

1.5. Operator Reference 182

https://docs.openstack.org/oslo.messaging/latest/configuration/opts.html#oslo-messaging-notifications
https://docs.openstack.org/oslo.messaging/latest/configuration/opts.html#oslo-messaging-notifications

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

"availability_zone": null,
"created_at": "2022-04-22T23:02:14.000000",
"description": "",
"flavor_id": null,
"id": "8d4c8f66-7ac1-408e-82d5-59f6fcdea9ee",
"listeners": [],
"name": "my-octavia-loadbalancer",
"operating_status": "OFFLINE",
"pools": [],
"project_id": "qs59p6z696cp9cho8ze96edddvpfyvgz",
"provider": "amphora",
"provisioning_status": "PENDING_CREATE",
"tags": [],
"updated_at": null,
"vip": {
"ip_address": "192.168.100.2",
"network_id": "849b08a9-4397-4d6e-929d-90efc055ab8e",
"port_id": "303870a4-bbc3-428c-98dd-492f423869d9",
"qos_policy_id": null,
"subnet_id": "d59311ee-ed3a-42c0-ac97-cebf7945facc"

}
},
"timestamp": "2022-04-22 23:02:15.717375",
"_unique_id": "71f03f00c96342328f09dbd92fe0d398",
"_context_user": null,
"_context_tenant": "qs59p6z696cp9cho8ze96edddvpfyvgz",
"_context_system_scope": null,
"_context_project": "qs59p6z696cp9cho8ze96edddvpfyvgz",
"_context_domain": null,
"_context_user_domain": null,
"_context_project_domain": null,
"_context_is_admin": false,
"_context_read_only": false,
"_context_show_deleted": false,
"_context_auth_token": null,
"_context_request_id": "req-072bab53-1b9b-46fa-92b0-7f04305c31bf",
"_context_global_request_id": null,
"_context_resource_uuid": null,
"_context_roles": [],
"_context_user_identity": "- qs59p6z696cp9cho8ze96edddvpfyvgz - - -",
"_context_is_admin_project": true

}

Disabling Event Notifications

By default, event notifications are enabled (see configuring oslo messaging section above for additional
requirements). To disable this feature, use the following setting in your Octavia configuration file:

[controller_worker]
event_notifications = False

1.5. Operator Reference 183

CHAPTER

TWO

OCTAVIA COMMAND LINE INTERFACE

Octavia has an OpenStack Client plugin available as the native Command Line Interface (CLI).

Please see the python-octaviaclient documentation for documentation on installing and using the CLI.

184

https://docs.openstack.org/python-octaviaclient/latest/

CHAPTER

THREE

OCTAVIA CONFIGURATION

185

CHAPTER

FOUR

OCTAVIA CONTRIBUTOR

4.1 Contributor Guidelines

4.1.1 So You Want to Contribute...
For general information on contributing to OpenStack, please check out the contributor guide to get
started. It covers all the basics that are common to all OpenStack projects: the accounts you need, the
basics of interacting with our Gerrit review system, how we communicate as a community, etc.

Below will cover the more project specific information you need to get started with Octavia.

Communication

IRC
People working on the Octavia project may be found in the #openstack-lbaas channel on the
IRC network described in https://docs.openstack.org/contributors/common/irc.html during work-
ing hours in their timezone. The channel is logged, so if you ask a question when no one is
around, you can check the log to see if it’s been answered: http://eavesdrop.openstack.org/irclogs/
%23openstack-lbaas/

Weekly Meeting
The Octavia team meets weekly on IRC. Please see the OpenStack meetings page for the cur-
rent meeting details and ICS file: http://eavesdrop.openstack.org/#Octavia_Meeting Meetings are
logged: http://eavesdrop.openstack.org/meetings/octavia/

Mailing List
We use the openstack-discuss@lists.openstack.org mailing list for asynchronous discussions or to
communicate with other OpenStack teams. Use the prefix [octavia] in your subject line (it’s a
high-volume list, so most people use email filters).

More information about the mailing list, including how to subscribe and read the archives, can be
found at: http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss

Virtual Meet-ups
From time to time, the Octavia project will have video meetings to address topics not easily covered
by the above methods. These are announced well in advance at the weekly meeting and on the
mailing list.

Physical Meet-ups
The Octavia project usually has a presence at the OpenDev/OpenStack Project Team Gathering
that takes place at the beginning of each development cycle. Planning happens on an etherpad
whose URL is announced at the weekly meetings and on the mailing list.

186

https://docs.openstack.org/contributors/
https://docs.openstack.org/contributors/common/irc.html
http://eavesdrop.openstack.org/irclogs/%23openstack-lbaas/
http://eavesdrop.openstack.org/irclogs/%23openstack-lbaas/
http://eavesdrop.openstack.org/#Octavia_Meeting
http://eavesdrop.openstack.org/meetings/octavia/
mailto:openstack-discuss@lists.openstack.org
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss

Octavia Documentation, Release 15.1.0.dev35

Contacting the Core Team

The octavia-core team is an active group of contributors who are responsible for directing and maintaining
the Octavia project. As a new contributor, your interaction with this group will be mostly through code
reviews, because only members of octavia-core can approve a code change to be merged into the code
repository.

Note

Although your contribution will require reviews by members of octavia-core, these aren’t the only
people whose reviews matter. Anyone with a gerrit account can post reviews, so you can ask other
developers you know to review your code ... and you can review theirs. (A good way to learn your
way around the codebase is to review other people’s patches.)

If you’re thinking, "I’m new at this, how can I possibly provide a helpful review?", take a look at How
to Review Changes the OpenStack Way.

There are also some Octavia project specific reviewing guidelines in the Octavia Style Commandments
section of the Octavia Contributor Guide.

You can learn more about the role of core reviewers in the OpenStack governance documentation: https:
//docs.openstack.org/contributors/common/governance.html#core-reviewer

The membership list of octavia-core is maintained in gerrit: https://review.opendev.org/#/admin/groups/
370,members

You can also find the members of the octavia-core team at the Octavia weekly meetings.

New Feature Planning

The Octavia team use both Request For Enhancement (RFE) and Specifications (specs) processes for new
features.

RFE
When a feature being proposed is easy to understand and will have limited scope, the requester
will create an RFE in Launchpad. This is a bug report that includes the tag [RFE] in the subject
prefix.

Once an RFE bug report is created, a core reviewer or the Project Team Lead (PTL) will approved
the RFE by setting the Importance field to Wishlist. This signals that the core team understands the
feature being proposed and enough detail has been provided to make sure the core team understands
the goal of the change.

specs
If the new feature is a major change or addition to Octavia that will need a detailed design to be
successful, the Octavia team requires a specification (spec) proposal be submitted as a patch.

Octavia specification documents are stored in the /octavia/specs directory in the main Octavia
git repository: https://opendev.org/openstack/octavia/src/branch/master/specs This directory in-
cludes a template.rst file that includes instructions for creating a new Octavia specification.

These specification documents are then rendered and included in the Project Specifications section
of the Octavia Contributor Guide.

Feel free to ask in #openstack-lbaas or at the weekly meeting if you have an idea you want to develop
and you’re not sure whether it requires an RFE or a specification.

4.1. Contributor Guidelines 187

https://docs.openstack.org/project-team-guide/review-the-openstack-way.html
https://docs.openstack.org/project-team-guide/review-the-openstack-way.html
https://docs.openstack.org/contributors/common/governance.html#core-reviewer
https://docs.openstack.org/contributors/common/governance.html#core-reviewer
https://review.opendev.org/#/admin/groups/370,members
https://review.opendev.org/#/admin/groups/370,members
https://opendev.org/openstack/octavia/src/branch/master/specs
https://opendev.org/openstack/octavia/src/branch/master/specs/template.rst
https://docs.openstack.org/octavia/latest/contributor/index.html#project-specifications

Octavia Documentation, Release 15.1.0.dev35

The Octavia project observes the OpenStack-wide deadlines, for example, final release of non-client
libraries (octavia-lib), final release for client libraries (python-octaviaclient), feature freeze, etc. These
are noted and explained on the release schedule for the current development cycle available at: https:
//releases.openstack.org/

Task Tracking

We track our tasks in Launchpad.

If you’re looking for some smaller, easier work item to pick up and get started on, search for the ’low-
hanging-fruit’ tag.

When you start working on a bug, make sure you assign it to yourself. Otherwise someone else may also
start working on it, and we don’t want to duplicate efforts. Also, if you find a bug in the code and want
to post a fix, make sure you file a bug (and assign it to yourself!) just in case someone else comes across
the problem in the meantime.

Reporting a Bug

You found an issue and want to make sure we are aware of it? You can do so on Launchpad.

Please remember to include the following information:

• The version of Octavia and OpenStack you observed the issue in.

• Steps to reproduce.

• Expected behavior.

• Observed behavior.

• The log snippet that contains any error information. Please include the lines directly before the
error message(s) as they provide context for the error.

Getting Your Patch Merged

The Octavia project policy is that a patch must have two +2s reviews from the core reviewers before it
can be merged.

Patches for Octavia projects must include unit and functional tests that cover the new code. Octavia
projects include the "openstack-tox-cover" testing job to help identify test coverage gaps in a patch. This
can also be run locally by running "tox -e cover".

In addition, some changes may require a release note. Any patch that changes functionality, adds func-
tionality, or addresses a significant bug should have a release note. Release notes can be created using
the "reno" tool by running "reno new <summary-message>".

Keep in mind that the best way to make sure your patches are reviewed in a timely manner is to review
other people’s patches. We’re engaged in a cooperative enterprise here.

Project Team Lead Duties

All common PTL duties are enumerated in the PTL guide.

4.1. Contributor Guidelines 188

https://releases.openstack.org/
https://releases.openstack.org/
https://launchpad.net/octavia
https://launchpad.net/octavia
https://docs.openstack.org/project-team-guide/ptl.html

Octavia Documentation, Release 15.1.0.dev35

4.1.2 Octavia Constitution
This document defines the guiding principles that project leadership will be following in creating, im-
proving and maintaining the Octavia project.

Octavia is an OpenStack project

This means we try to run things the same way other "canonized" OpenStack projects operate from a
procedural perspective. This is because we hope that Octavia will eventually become a standard part of
any OpenStack deployment.

Octavia is as open as OpenStack

Octavia tries to follow the same standards for openness that the OpenStack project also strives to follow:
https://wiki.openstack.org/wiki/Open We are committed to open design, development, and community.

Octavia is "free"

We mean that both in the "beer" and in the "speech" sense. That is to say, the reference implementation for
Octavia should be made up only of open source components that share the same kind of unencumbered
licensing that OpenStack uses.

Note that this does not mean we are against having vendors develop products which can replace some of
the components within Octavia. (For example, the Octavia VM images might be replaced by a vendor’s
proprietary VM image.) Rather, it means that:

• The reference implementation should always be open source and unencumbered.

• We are typically not interested in making design compromises in order to work with a vendor’s
proprietary product. If a vendor wants to develop a component for Octavia, then the vendor should
bend to Octavia’s needs, not the other way around.

Octavia is a load balancer for large operators

That’s not to say that small operators can’t use it. (In fact, we expect it to work well for small deployments,
too.) But what we mean here is that if in creating, improving or maintaining Octavia we somehow make
it unable to meet the needs of a typical large operator (or that operator’s users), then we have failed.

Octavia follows the best coding and design conventions

For the most part, Octavia tries to follow the coding standards set forth for the OpenStack project in
general: https://docs.openstack.org/hacking/latest More specific additional standards can be found in the
HACKING.rst file in the same directory as this constitution.

Any exceptions should be well justified and documented. (Comments in or near the breach in coding
standards are usually sufficient documentation.)

4.1.3 Octavia Style Commandments
This project was ultimately spawned from work done on the Neutron project. As such, we tend to follow
Neutron conventions regarding coding style.

• We follow the OpenStack Style Commandments: https://docs.openstack.org/hacking/latest

4.1. Contributor Guidelines 189

https://wiki.openstack.org/wiki/Open
https://docs.openstack.org/hacking/latest
https://docs.openstack.org/hacking/latest

Octavia Documentation, Release 15.1.0.dev35

Octavia Specific Commandments

• [O316] Change assertTrue(isinstance(A, B)) by optimal assert like assertIsInstance(A, B).

• [O318] Change assert(Not)Equal(A, None) or assert(Not)Equal(None, A) by optimal assert like
assertIs(Not)None(A).

• [O319] Validate that debug level logs are not translated.

• [O321] Validate that jsonutils module is used instead of json

• [O322] Don’t use author tags

• [O323] Change assertEqual(True, A) or assertEqual(False, A) to the more specific assertTrue(A)
or assertFalse(A)

• [O324] Method’s default argument shouldn’t be mutable

• [O338] Change assertEqual(A in B, True), assertEqual(True, A in B), assertEqual(A in B, False)
or assertEqual(False, A in B) to the more specific assertIn/NotIn(A, B)

• [O339] LOG.warn() is not allowed. Use LOG.warning()

• [O340] Don’t use xrange()

• [O341] Don’t translate logs.

• [0342] Exception messages should be translated

• [O343] Python 3: do not use basestring.

• [O344] Python 3: do not use dict.iteritems.

• [O345] Usage of Python eventlet module not allowed

• [O346] Don’t use backslashes for line continuation.

• [O347] Taskflow revert methods must have **kwargs.

Creating Unit Tests

For every new feature, unit tests should be created that both test and (implicitly) document the usage of
said feature. If submitting a patch for a bug that had no unit test, a new passing unit test should be added.
If a submitted bug fix does have a unit test, be sure to add a new one that fails without the patch and
passes with the patch.

Everything is python

Although OpenStack apparently allows either python or C++ code, at this time we don’t envision needing
anything other than python (and standard, supported open source modules) for anything we intend to do
in Octavia.

Idempotency

With as much as is going on inside Octavia, its likely that certain messages and commands will be
repeatedly processed. It’s important that this doesn’t break the functionality of the load balancing service.
Therefore, as much as possible, algorithms and interfaces should be made as idempotent as possible.

4.1. Contributor Guidelines 190

Octavia Documentation, Release 15.1.0.dev35

Centralize intelligence, de-centralize workload

This means that tasks which need to be done relatively infrequently but require either additional knowl-
edge about the state of other components in the Octavia system, advanced logic behind decisions, or oth-
erwise a high degree of intelligence should be done by centralized components (ex. controllers) within
the Octavia system. Examples of this might include:

• Generating haproxy configuration files

• Managing the lifecycle of Octavia amphorae

• Moving a loadbalancer instance from one Octavia amphora to another.

On the other hand, tasks done extremely often, or which entail a significant load on the system should
be pushed as far out to the most horizontally scalable components as possible. Examples of this might
include:

• Serving actual client requests to end-users (ie. running haproxy)

• Monitoring pool members for failure and sending notifications about this

• Processing log files

There will often be a balance that needs to be struck between these two design considerations for any
given task for which an algorithm needs to be designed. In considering how to strike this balance, always
consider the conditions that will be present in a large operator environment.

Also, as a secondary benefit of centralizing intelligence, minor feature additions and bugfixes can often
be accomplished in a large operator environment without having to touch every Octavia amphora running
in said environment.

All APIs are versioned

This includes "internal" APIs between Octavia components. Experience coding in the Neutron LBaaS
project has taught us that in a large project with many heterogeneous parts, throughout the lifecycle of
this project, different parts will evolve at different rates. It is important that these components are allowed
to do so without hindering or being hindered by parallel development in other components.

It is also likely that in very large deployments, there might be tens- or hundreds-of-thousands of individual
instances of a given component deployed (most likely, the Octavia amphorae). It is unreasonable to expect
a large operator to update all of these components at once. Therefore it is likely that for a significant
amount of time during a roll-out of a new version, both the old and new versions of a given component
must be able to be controlled or otherwise interfaced with by the new components.

Both of the above considerations can be allowed for if we use versioning of APIs where components
interact with each other.

Octavia must also keep in mind Neutron LBaaS API versions. Octavia must have the ability to support
multiple simultaneous Neutron LBaaS API versions in an effort to allow for Neutron LBaaS API depre-
cation of URIs. The rationale is that Neutron LBaaS API users should have the ability to transition from
one version to the next easily.

Scalability and resilience are as important as functionality

Octavia is meant to be an operator scale load balancer. As such, it’s usually not enough just to get
something working: It also needs to be scalable. For most components, "scalable" implies horizontally
scalable.

4.1. Contributor Guidelines 191

Octavia Documentation, Release 15.1.0.dev35

In any large operational environment, resilience to failures is a necessity. Practically speaking, this means
that all components of the system that make up Octavia should be monitored in one way or another,
and that where possible automatic recovery from the most common kinds of failures should become a
standard feature. Where automatic recovery is not an option, then some form of notification about the
failure should be implemented.

Avoid premature optimization

Understand that being "high performance" is often not the same thing as being "scalable." First get the
thing to work in an intelligent way. Only worry about making it fast if speed becomes an issue.

Don’t repeat yourself

Octavia strives to follow DRY principles. There should be one source of truth, and repetition of code
should be avoided.

Security is not an afterthought

The load balancer is often both the most visible public interface to a given user application, but load
balancers themselves often have direct access to sensitive components and data within the application
environment. Security bugs will happen, but in general we should not approve designs which have known
significant security problems, or which could be made more secure by better design.

Octavia should follow industry standards

By "industry standards" we either mean RFCs or well-established best practices. We are generally not
interested in defining new standards if a prior open standard already exists. We should also avoid doing
things which directly or indirectly contradict established standards.

Use of pre-commit checks

pre-commit is a software tool that allows us to manage pre-commit checks as part of the Git repository’s
configuration and to run checks as Git pre-commit hooks (or other types of Git hooks) automatically on
developer machines. It helps to catch and fix common issues before they get pushed to the server. After
the installation of the tool (e.g. on Fedora via sudo dnf install pre-commit) simply cd to the Git repository
and run pre-commit install to let the tool install its Git pre-commit hook. From now on these predefined
checks will run on files that you change in new Git commits.

4.2 Contributor Reference

4.2.1 Provider Driver Development Guide
This document is intended as a guide for developers creating provider drivers for the Octavia API. This
guide is intended to be an up to date version of the provider driver specification previously approved.

How Provider Drivers Integrate

Available drivers will be enabled by entries in the Octavia configuration file. Drivers will be loaded via
stevedore and Octavia will communicate with drivers through a standard class interface defined below.
Most driver functions will be asynchronous to Octavia, and Octavia will provide a library of functions
that give drivers a way to update status and statistics. Functions that are synchronous are noted below.

Octavia API functions not listed here will continue to be handled by the Octavia API and will not call
into the driver. Examples would be show, list, and quota requests.

4.2. Contributor Reference 192

https://pre-commit.com/
../specs/version1.1/enable-provider-driver.html

Octavia Documentation, Release 15.1.0.dev35

In addition, drivers may provide a provider agent that the Octavia driver-agent will launch at start up.
This is a long-running process that is intended to support the provider driver.

Driver Entry Points

Provider drivers will be loaded via stevedore. Drivers will have an entry point defined in their setup tools
configuration using the Octavia driver namespace "octavia.api.drivers". This entry point name will be
used to enable the driver in the Octavia configuration file and as the "provider" parameter users specify
when creating a load balancer. An example for the octavia reference driver would be:

amphora = octavia.api.drivers.amphora_driver.driver:AmphoraProviderDriver

In addition, provider drivers may provide a provider agent also defined by a setup tools entry point. The
provider agent namespace is "octavia.driver_agent.provider_agents". This will be called once, at Octavia
driver-agent start up, to launch a long-running process. Provider agents must be enabled in the Octavia
configuration file. An example provider agent entry point would be:

amphora_agent = octavia.api.drivers.amphora_driver.agent:AmphoraProviderAgent

Stable Provider Driver Interface

Provider drivers should only access the following Octavia APIs. All other Octavia APIs are not consid-
ered stable or safe for provider driver use and may change at any time.

• octavia_lib.api.drivers.data_models

• octavia_lib.api.drivers.driver_lib

• octavia_lib.api.drivers.exceptions

• octavia_lib.api.drivers.provider_base

• octavia_lib.common.constants

Octavia Provider Driver API

Provider drivers will be expected to support the full interface described by the Octavia API, cur-
rently v2.0. If a driver does not implement an API function, drivers should fail a request by raising a
NotImplementedError exception. If a driver implements a function but does not support a particular
option passed in by the caller, the driver should raise an UnsupportedOptionError.

It is recommended that drivers use the jsonschema package or voluptuous to validate the request against
the current driver capabilities.

See the Exception Model below for more details.

Note

Driver developers should refer to the official Octavia API reference document for details of the fields
and expected outcome of these calls.

4.2. Contributor Reference 193

https://docs.openstack.org/stevedore/latest/
https://github.com/Julian/jsonschema
https://pypi.org/project/voluptuous
https://docs.openstack.org/api-ref/load-balancer/v2/index.html

Octavia Documentation, Release 15.1.0.dev35

Load balancer

Create

Creates a load balancer.

Octavia will pass in the load balancer object with all requested settings.

The load balancer will be in the PENDING_CREATE provisioning_status and OFFLINE operating_status
when it is passed to the driver. The driver will be responsible for updating the provisioning status of the
load balancer to either ACTIVE if successfully created, or ERROR if not created.

The Octavia API will accept and do basic API validation of the create request from the user. The load
balancer python object representing the request body will be passed to the driver create method as it was
received and validated with the following exceptions:

1. The provider will be removed as this is used for driver selection.

2. The flavor will be expanded from the provided ID to be the full dictionary representing the flavor
metadata.

Load balancer object

As of the writing of this specification the create load balancer object may contain the following:

Name Type Description
admin_state_up bool Admin state: True if up, False if down.
description string A human-readable description for the resource.
flavor dict The flavor keys and values.
availability_zone dict The availability zone keys and values.
listeners list A list of Listener objects.
loadbalancer_id string ID of load balancer to create.
name string Human-readable name of the resource.
pools list A list of Pool object.
project_id string ID of the project owning this resource.
vip_address string The IP address of the Virtual IP (VIP).
vip_network_id string The ID of the network for the VIP.
vip_port_id string The ID of the VIP port.
vip_qos_policy_id string The ID of the qos policy for the VIP.
vip_subnet_id string The ID of the subnet for the VIP.

The driver is expected to validate that the driver supports the request and raise an exception if the request
cannot be accepted.

VIP port creation

Some provider drivers will want to create the Neutron port for the VIP, and others will want Octavia
to create the port instead. In order to support both use cases, the create_vip_port() method will ask
provider drivers to create a VIP port. If the driver expects Octavia to create the port, the driver will raise
a NotImplementedError exception. Octavia will call this function before calling loadbalancer_create() in
order to determine if it should create the VIP port. Octavia will call create_vip_port() with a loadbalancer
ID and a partially defined VIP dictionary. Provider drivers that support port creation will create the port
and return a fully populated VIP dictionary.

VIP dictionary

4.2. Contributor Reference 194

Octavia Documentation, Release 15.1.0.dev35

Name Type Description
project_id string ID of the project owning this resource.
vip_address string The IP address of the Virtual IP (VIP).
vip_network_id string The ID of the network for the VIP.
vip_port_id string The ID of the VIP port.
vip_qos_policy_id string The ID of the qos policy for the VIP.
vip_subnet_id string The ID of the subnet for the VIP.

Creating a Fully Populated Load Balancer

If the "listener" option is specified, the provider driver will iterate through the list and create all of the
child objects in addition to creating the load balancer instance.

Delete

Removes an existing load balancer.

Octavia will pass in the load balancer object and cascade boolean as parameters.

The load balancer will be in the PENDING_DELETE provisioning_status when it is passed to the driver. The
driver will notify Octavia that the delete was successful by setting the provisioning_status to DELETED.
If the delete failed, the driver will update the provisioning_status to ERROR.

The API includes an option for cascade delete. When cascade is set to True, the provider driver will
delete all child objects of the load balancer.

Failover

Performs a failover of a load balancer.

Octavia will pass in the load balancer ID as a parameter.

The load balancer will be in the PENDING_UPDATE provisioning_status when it is passed to the driver.
The driver will update the provisioning_status of the load balancer to either ACTIVE if successfully failed
over, or ERROR if not failed over.

Failover can mean different things in the context of a provider driver. For example, the Octavia driver
replaces the current amphora(s) with another amphora. For another provider driver, failover may mean
failing over from an active system to a standby system.

Update

Modifies an existing load balancer using the values supplied in the load balancer object.

Octavia will pass in the original load balancer object which is the baseline for the update, and a load
balancer object with the fields to be updated. Fields not updated by the user will contain "Unset" as
defined in the data model.

As of the writing of this specification the update load balancer object may contain the following:

4.2. Contributor Reference 195

Octavia Documentation, Release 15.1.0.dev35

Name Type Description
admin_state_up bool Admin state: True if up, False if down.
description string A human-readable description for the resource.
loadbalancer_id string ID of load balancer to update.
name string Human-readable name of the resource.
vip_qos_policy_id string The ID of the qos policy for the VIP.

The load balancer will be in the PENDING_UPDATE provisioning_status when it is passed to the driver. The
driver will update the provisioning_status of the load balancer to either ACTIVE if successfully updated,
or ERROR if the update was not successful.

The driver is expected to validate that the driver supports the request. The method will then return or
raise an exception if the request cannot be accepted.

Abstract class definition

class Driver(object):

def create_vip_port(self, loadbalancer_id, vip_dictionary):
"""Creates a port for a load balancer VIP.

If the driver supports creating VIP ports, the driver will create a
VIP port and return the vip_dictionary populated with the vip_port_id.
If the driver does not support port creation, the driver will raise
a NotImplementedError.

:param: loadbalancer_id (string): ID of loadbalancer.
:param: vip_dictionary (dict): The VIP dictionary.
:returns: VIP dictionary with vip_port_id.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: The driver does not support creating
VIP ports.

"""
raise NotImplementedError()

def loadbalancer_create(self, loadbalancer):
"""Creates a new load balancer.

:param loadbalancer (object): The load balancer object.
:return: Nothing if the create request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: The driver does not support create.
:raises UnsupportedOptionError: The driver does not
support one of the configuration options.

"""
raise NotImplementedError()

def loadbalancer_delete(self, loadbalancer, cascade=False):
"""Deletes a load balancer.

(continues on next page)

4.2. Contributor Reference 196

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

:param loadbalancer (object): The load balancer object.
:param cascade (bool): If True, deletes all child objects (listeners,
pools, etc.) in addition to the load balancer.

:return: Nothing if the delete request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
"""
raise NotImplementedError()

def loadbalancer_failover(self, loadbalancer_id):
"""Performs a fail over of a load balancer.

:param loadbalancer_id (string): ID of the load balancer to failover.
:return: Nothing if the failover request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises: NotImplementedError if driver does not support request.
"""
raise NotImplementedError()

def loadbalancer_update(self, old_loadbalancer, new_loadbalancer):
"""Updates a load balancer.

:param old_loadbalancer (object): The baseline load balancer object.
:param new_loadbalancer (object): The updated load balancer object.
:return: Nothing if the update request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: The driver does not support request.
:raises UnsupportedOptionError: The driver does not
support one of the configuration options.

"""
raise NotImplementedError()

Listener

Create

Creates a listener for a load balancer.

Octavia will pass in the listener object with all requested settings.

The listener will be in the PENDING_CREATE provisioning_status and OFFLINE operating_status when it
is passed to the driver. The driver will be responsible for updating the provisioning status of the listener
to either ACTIVE if successfully created, or ERROR if not created.

The Octavia API will accept and do basic API validation of the create request from the user. The listener
python object representing the request body will be passed to the driver create method as it was received
and validated with the following exceptions:

1. The project_id will be removed, if present, as this field is now deprecated. The listener will inherit the
project_id from the parent load balancer. 2. The default_tls_container_ref will be expanded and provided
to the driver in PEM format. 3. The sni_container_refs will be expanded and provided to the driver in
PEM format.

4.2. Contributor Reference 197

Octavia Documentation, Release 15.1.0.dev35

Listener object

As of the writing of this specification the create listener object may contain the following:

Name Type Description
ad-
min_state_up

bool Admin state: True if up, False if down.

client_authenticationstring The TLS client authentication mode. One of the options NONE, OPTIONAL or
MANDATORY.

client_ca_tls_container_datastring A PEM encoded certificate.
client_ca_tls_container_refstring The reference to the secrets container.
client_crl_container_datastring A PEM encoded CRL file.
client_crl_container_refstring The reference to the secrets container.
connec-
tion_limit

int The max number of connections permitted for this listener. Default is -1, which
is infinite connections.

de-
fault_pool

ob-
ject

A Pool object.

de-
fault_pool_id

string The ID of the pool used by the listener if no L7 policies match.

de-
fault_tls_container_data

dict A TLS container dict.

de-
fault_tls_container_refs

string The reference to the secrets container.

description string A human-readable description for the listener.
in-
sert_headers

dict A dictionary of optional headers to insert into the request before it is sent to the
backend member. See Supported HTTP Header Insertions. Keys and values are
specified as strings.

l7policies list A list of L7policy objects.
listener_id string ID of listener to create.
loadbal-
ancer_id

string ID of load balancer.

name string Human-readable name of the listener.
project_id string ID of the project owning this resource.
protocol string Protocol type: One of HTTP, HTTPS, TCP, or TERMINATED_HTTPS.
proto-
col_port

int Protocol port number.

sni_container_datalist A list of TLS container dict.
sni_container_refslist A list of references to the SNI secrets containers.
time-
out_client_data

int Frontend client inactivity timeout in milliseconds.

time-
out_member_connect

int Backend member connection timeout in milliseconds.

time-
out_member_data

int Backend member inactivity timeout in milliseconds.

time-
out_tcp_inspect

int Time, in milliseconds, to wait for additional TCP packets for content inspection.

al-
lowed_cidrs

list List of IPv4 or IPv6 CIDRs.

As of the writing of this specification the TLS container dictionary contains the following:

4.2. Contributor Reference 198

Octavia Documentation, Release 15.1.0.dev35

Key Type Description
certificate string The PEM encoded certificate.
intermediates List A list of intermediate PEM certificates.
passphrase string The private_key passphrase.
primary_cn string The primary common name of the certificate.
private_key string The PEM encoded private key.

As of the writing of this specification the Supported HTTP Header Insertions are:

Key Type Description
X-
Forwarded-
For

bool When True a X-Forwarded-For header is inserted into the request to the backend
member that specifies the client IP address.

X-
Forwarded-
Port

int A X-Forwarded-Port header is inserted into the request to the backend member that
specifies the integer provided. Typically this is used to indicate the port the client
connected to on the load balancer.

X-
Forwarded-
Proto

bool A X-Forwarded-Proto header is inserted into the end of request to the backend
member. HTTP for the HTTP listener protocol type, HTTPS for the TERMI-
NATED_HTTPS listener protocol type.

X-SSL-
Client-
Verify

string When "true" a X-SSL-Client-Verify header is inserted into the request to the
backend member that contains 0 if the client authentication was successful, or an
result error number greater than 0 that align to the openssl verify error codes.

X-SSL-
Client-
Has-
Cert

string When "true" a X-SSL-Client-Has-Cert header is inserted into the request to the
backend member that is ”true” if a client authentication certificate was presented,
and ”false” if not. Does not indicate validity.

X-SSL-
Client-
DN

string When "true" a X-SSL-Client-DN header is inserted into the request to the back-
end member that contains the full Distinguished Name of the certificate presented
by the client.

X-SSL-
Client-
CN

string When "true" a X-SSL-Client-CN header is inserted into the request to the back-
end member that contains the Common Name from the full Distinguished Name of
the certificate presented by the client.

X-SSL-
Issuer

string When "true" a X-SSL-Issuer header is inserted into the request to the backend
member that contains the full Distinguished Name of the client certificate issuer.

X-SSL-
Client-
SHA1

string When "true" a X-SSL-Client-SHA1 header is inserted into the request to the back-
end member that contains the SHA-1 fingerprint of the certificate presented by the
client in hex string format.

X-SSL-
Client-
Not-
Before

string When "true" a X-SSL-Client-Not-Before header is inserted into the request to
the backend member that contains the start date presented by the client as a formatted
string YYMMDDhhmmss[Z].

X-SSL-
Client-
Not-
After

string When "true" a X-SSL-Client-Not-After header is inserted into the request to
the backend member that contains the end date presented by the client as a formatted
string YYMMDDhhmmss[Z].

Creating a Fully Populated Listener

If the "default_pool" or "l7policies" option is specified, the provider driver will create all of the child

4.2. Contributor Reference 199

Octavia Documentation, Release 15.1.0.dev35

objects in addition to creating the listener instance.

Delete

Deletes an existing listener.

Octavia will pass the listener object as a parameter.

The listener will be in the PENDING_DELETE provisioning_status when it is passed to the driver. The
driver will notify Octavia that the delete was successful by setting the provisioning_status to DELETED.
If the delete failed, the driver will update the provisioning_status to ERROR.

Update

Modifies an existing listener using the values supplied in the listener object.

Octavia will pass in the original listener object which is the baseline for the update, and a listener object
with the fields to be updated. Fields not updated by the user will contain "Unset" as defined in the data
model.

As of the writing of this specification the update listener object may contain the following:

4.2. Contributor Reference 200

Octavia Documentation, Release 15.1.0.dev35

Name Type Description
ad-
min_state_up

bool Admin state: True if up, False if down.

client_authenticationstring The TLS client authentication mode. One of the options NONE, OPTIONAL or
MANDATORY.

client_ca_tls_container_datastring A PEM encoded certificate.
client_ca_tls_container_refstring The reference to the secrets container.
client_crl_container_datastring A PEM encoded CRL file.
client_crl_container_refstring The reference to the secrets container.
connec-
tion_limit

int The max number of connections permitted for this listener. Default is -1,
which is infinite connections.

de-
fault_pool_id

string The ID of the pool used by the listener if no L7 policies match.

de-
fault_tls_container_data

dict A TLS container dict.

de-
fault_tls_container_refs

string The reference to the secrets container.

description string A human-readable description for the listener.
in-
sert_headers

dict A dictionary of optional headers to insert into the request before it is sent
to the backend member. See Supported HTTP Header Insertions. Keys and
values are specified as strings.

listener_id string ID of listener to update.
name string Human-readable name of the listener.
sni_container_datalist A list of TLS container dict.
sni_container_refslist A list of references to the SNI secrets containers.
time-
out_client_data

int Frontend client inactivity timeout in milliseconds.

time-
out_member_connect

int Backend member connection timeout in milliseconds.

time-
out_member_data

int Backend member inactivity timeout in milliseconds.

time-
out_tcp_inspect

int Time, in milliseconds, to wait for additional TCP packets for content inspec-
tion.

al-
lowed_cidrs

list | List of IPv4 or IPv6 CIDRs.

The listener will be in the PENDING_UPDATE provisioning_status when it is passed to the driver. The
driver will update the provisioning_status of the listener to either ACTIVE if successfully updated, or
ERROR if the update was not successful.

The driver is expected to validate that the driver supports the request. The method will then return or
raise an exception if the request cannot be accepted.

Abstract class definition

class Driver(object):
def listener_create(self, listener):

"""Creates a new listener.

:param listener (object): The listener object.
(continues on next page)

4.2. Contributor Reference 201

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

:return: Nothing if the create request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
:raises UnsupportedOptionError: if driver does not
support one of the configuration options.

"""
raise NotImplementedError()

def listener_delete(self, listener):
"""Deletes a listener.

:param listener (object): The listener object.
:return: Nothing if the delete request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
"""
raise NotImplementedError()

def listener_update(self, old_listener, new_listener):
"""Updates a listener.

:param old_listener (object): The baseline listener object.
:param new_listener (object): The updated listener object.
:return: Nothing if the update request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
:raises UnsupportedOptionError: if driver does not
support one of the configuration options.

"""
raise NotImplementedError()

Pool

Create

Creates a pool for a load balancer.

Octavia will pass in the pool object with all requested settings.

The pool will be in the PENDING_CREATE provisioning_status and OFFLINE operating_status when it is
passed to the driver. The driver will be responsible for updating the provisioning status of the pool to
either ACTIVE if successfully created, or ERROR if not created.

The Octavia API will accept and do basic API validation of the create request from the user. The pool
python object representing the request body will be passed to the driver create method as it was received
and validated with the following exceptions:

1. The project_id will be removed, if present, as this field is now deprecated. The listener will inherit
the project_id from the parent load balancer.

Pool object

As of the writing of this specification the create pool object may contain the following:

4.2. Contributor Reference 202

Octavia Documentation, Release 15.1.0.dev35

Name Type Description
ad-
min_state_up

bool Admin state: True if up, False if down.

ca_tls_container_datastring A PEM encoded certificate.
ca_tls_container_refstring The reference to the secrets container.
crl_container_datastring A PEM encoded CRL file.
crl_container_refstring The reference to the secrets container.
description string A human-readable description for the pool.
healthmon-
itor

ob-
ject

A Healthmonitor object.

lb_algorithm string Load balancing algorithm: One of ROUND_ROBIN,
LEAST_CONNECTIONS, SOURCE_IP or SOURCE_IP_PORT.

loadbal-
ancer_id

string ID of load balancer.

listener_id string ID of listener.
members list A list of Member objects.
name string Human-readable name of the pool.
pool_id string ID of pool to create.
project_id string ID of the project owning this resource.
protocol string Protocol type: One of HTTP, HTTPS, PROXY, or TCP.
ses-
sion_persistence

dict Defines session persistence as one of {’type’: <’HTTP_COOKIE’
| ’SOURCE_IP’>} OR {’type’: ’APP_COOKIE’, ’cookie_name’:
<cookie_name>}

tls_container_datadict A TLS container dict.
tls_container_refstring The reference to the secrets container.
tls_enabled bool True when backend re-encryption is enabled.

Delete

Removes an existing pool and all of its members.

Octavia will pass the pool object as a parameter.

The pool will be in the PENDING_DELETE provisioning_status when it is passed to the driver. The driver
will notify Octavia that the delete was successful by setting the provisioning_status to DELETED. If the
delete failed, the driver will update the provisioning_status to ERROR.

Update

Modifies an existing pool using the values supplied in the pool object.

Octavia will pass in the original pool object which is the baseline for the update, and a pool object with
the fields to be updated. Fields not updated by the user will contain "Unset" as defined in the data model.

As of the writing of this specification the update pool object may contain the following:

4.2. Contributor Reference 203

Octavia Documentation, Release 15.1.0.dev35

Name Type Description
ad-
min_state_up

bool Admin state: True if up, False if down.

ca_tls_container_datastring A PEM encoded certificate.
ca_tls_container_refstring The reference to the secrets container.
crl_container_datastring A PEM encoded CRL file.
crl_container_refstring The reference to the secrets container.
description string A human-readable description for the pool.
lb_algorithm string Load balancing algorithm: One of ROUND_ROBIN,

LEAST_CONNECTIONS, or SOURCE_IP.
name string Human-readable name of the pool.
pool_id string ID of pool to update.
ses-
sion_persistence

dict Defines session persistence as one of {’type’: <’HTTP_COOKIE’
| ’SOURCE_IP’>} OR {’type’: ’APP_COOKIE’, ’cookie_name’:
<cookie_name>}

tls_container_datadict A TLS container dict.
tls_container_refstring The reference to the secrets container.
tls_enabled bool True when backend re-encryption is enabled.

The pool will be in the PENDING_UPDATE provisioning_status when it is passed to the driver. The driver
will update the provisioning_status of the pool to either ACTIVE if successfully updated, or ERROR if the
update was not successful.

The driver is expected to validate that the driver supports the request. The method will then return or
raise an exception if the request cannot be accepted.

Abstract class definition

class Driver(object):
def pool_create(self, pool):

"""Creates a new pool.

:param pool (object): The pool object.
:return: Nothing if the create request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
:raises UnsupportedOptionError: if driver does not
support one of the configuration options.

"""
raise NotImplementedError()

def pool_delete(self, pool):
"""Deletes a pool and its members.

:param pool (object): The pool object.
:return: Nothing if the create request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
"""
raise NotImplementedError()

(continues on next page)

4.2. Contributor Reference 204

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

def pool_update(self, old_pool, new_pool):
"""Updates a pool.

:param old_pool (object): The baseline pool object.
:param new_pool (object): The updated pool object.
:return: Nothing if the create request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
:raises UnsupportedOptionError: if driver does not
support one of the configuration options.

"""
raise NotImplementedError()

Member

Create

Creates a member for a pool.

Octavia will pass in the member object with all requested settings.

The member will be in the PENDING_CREATE provisioning_status and OFFLINE operating_status when it
is passed to the driver. The driver will be responsible for updating the provisioning status of the member
to either ACTIVE if successfully created, or ERROR if not created.

The Octavia API will accept and do basic API validation of the create request from the user. The member
python object representing the request body will be passed to the driver create method as it was received
and validated with the following exceptions:

1. The project_id will be removed, if present, as this field is now deprecated. The member will inherit
the project_id from the parent load balancer.

Member object

As of the writing of this specification the create member object may contain the following:

4.2. Contributor Reference 205

Octavia Documentation, Release 15.1.0.dev35

NameType Description
ad-
dress

string The IP address of the backend member to receive traffic from the load balancer.

ad-
min_state_up

bool Admin state: True if up, False if down.

backupbool Is the member a backup? Backup members only receive traffic when all non-backup
members are down.

mem-
ber_id

string ID of member to create.

mon-
i-
tor_address

string An alternate IP address used for health monitoring a backend member.

mon-
i-
tor_port

int An alternate protocol port used for health monitoring a backend member.

name string Human-readable name of the member.
pool_idstring ID of pool.
project_idstring ID of the project owning this resource.
pro-
to-
col_port

int The port on which the backend member listens for traffic.

sub-
net_id

string Subnet ID.

weightint The weight of a member determines the portion of requests or connections it services
compared to the other members of the pool. For example, a member with a weight of
10 receives five times as many requests as a member with a weight of 2. A value of 0
means the member does not receive new connections but continues to service existing
connections. A valid value is from 0 to 256. Default is 1.

Delete

Removes a pool member.

Octavia will pass the member object as a parameter.

The member will be in the PENDING_DELETE provisioning_status when it is passed to the driver. The
driver will notify Octavia that the delete was successful by setting the provisioning_status to DELETED.
If the delete failed, the driver will update the provisioning_status to ERROR.

Update

Modifies an existing member using the values supplied in the listener object.

Octavia will pass in the original member object which is the baseline for the update, and a member object
with the fields to be updated. Fields not updated by the user will contain "Unset" as defined in the data
model.

As of the writing of this specification the update member object may contain the following:

4.2. Contributor Reference 206

Octavia Documentation, Release 15.1.0.dev35

NameType Description
ad-
min_state_up

bool Admin state: True if up, False if down.

backupbool Is the member a backup? Backup members only receive traffic when all non-backup
members are down.

mem-
ber_id

string ID of member to update.

mon-
i-
tor_address

string An alternate IP address used for health monitoring a backend member.

mon-
i-
tor_port

int An alternate protocol port used for health monitoring a backend member.

name string Human-readable name of the member.
weightint The weight of a member determines the portion of requests or connections it services

compared to the other members of the pool. For example, a member with a weight of
10 receives five times as many requests as a member with a weight of 2. A value of 0
means the member does not receive new connections but continues to service existing
connections. A valid value is from 0 to 256. Default is 1.

The member will be in the PENDING_UPDATE provisioning_status when it is passed to the driver. The
driver will update the provisioning_status of the member to either ACTIVE if successfully updated, or
ERROR if the update was not successful.

The driver is expected to validate that the driver supports the request. The method will then return or
raise an exception if the request cannot be accepted.

Batch Update

Set the state of members for a pool in one API call. This may include creating new members, deleting
old members, and updating existing members. Existing members are matched based on address/port
combination.

For example, assume a pool currently has two members. These members have the following ad-
dress/port combinations: ’192.0.2.15:80’ and ’192.0.2.16:80’. Now assume a PUT request is made that
includes members with address/port combinations: ’192.0.2.16:80’ and ’192.0.2.17:80’. The member
’192.0.2.15:80’ will be deleted because it was not in the request. The member ’192.0.2.16:80’ will be
updated to match the request data for that member, because it was matched. The member ’192.0.2.17:80’
will be created, because no such member existed.

The members will be in the PENDING_CREATE, PENDING_UPDATE, or PENDING_DELETE provision-
ing_status when it is passed to the driver. The driver will update the provisioning_status of the members
to either ACTIVE or DELETED if successfully updated, or ERROR if the update was not successful.

The batch update method will supply a list of Member objects. Existing members not in this list should
be deleted, existing members in the list should be updated, and members in the list that do not already
exist should be created.

Abstract class definition

class Driver(object):
def member_create(self, member):

(continues on next page)

4.2. Contributor Reference 207

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

"""Creates a new member for a pool.

:param member (object): The member object.
:return: Nothing if the create request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
:raises UnsupportedOptionError: if driver does not
support one of the configuration options.

"""
raise NotImplementedError()

def member_delete(self, member):

"""Deletes a pool member.

:param member (object): The member object.
:return: Nothing if the create request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
"""
raise NotImplementedError()

def member_update(self, old_member, new_member):

"""Updates a pool member.

:param old_member (object): The baseline member object.
:param new_member (object): The updated member object.
:return: Nothing if the create request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
:raises UnsupportedOptionError: if driver does not
support one of the configuration options.

"""
raise NotImplementedError()

def member_batch_update(self, pool_id, members):
"""Creates, updates, or deletes a set of pool members.

:param pool_id (string): The id of the pool to update.
:param members (list): List of member objects.
:return: Nothing if the create request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
:raises UnsupportedOptionError: if driver does not
support one of the configuration options.

"""
raise NotImplementedError()

4.2. Contributor Reference 208

Octavia Documentation, Release 15.1.0.dev35

Health Monitor

Create

Creates a health monitor on a pool.

Octavia will pass in the health monitor object with all requested settings.

The health monitor will be in the PENDING_CREATE provisioning_status and OFFLINE operating_status
when it is passed to the driver. The driver will be responsible for updating the provisioning status of the
health monitor to either ACTIVE if successfully created, or ERROR if not created.

The Octavia API will accept and do basic API validation of the create request from the user. The health-
monitor python object representing the request body will be passed to the driver create method as it was
received and validated with the following exceptions:

1. The project_id will be removed, if present, as this field is now deprecated. The listener will inherit
the project_id from the parent load balancer.

Healthmonitor object

Name Type Description
ad-
min_state_up

bool Admin state: True if up, False if down.

delay int The interval, in seconds, between health checks.
do-
main_name

string The domain name to be passed in the host header for health monitor checks.

ex-
pected_codes

string The expected HTTP status codes to get from a successful health check. This may
be a single value, a list, or a range.

health-
moni-
tor_id

string ID of health monitor to create.

http_methodstring The HTTP method that the health monitor uses for requests. One of CONNECT,
DELETE, GET, HEAD, OPTIONS, PATCH, POST, PUT, or TRACE.

http_versionfloat The HTTP version to use for health monitor connections. One of ’1.0’ or ’1.1’.
Defaults to ’1.0’.

max_retries int The number of successful checks before changing the operating status of the mem-
ber to ONLINE.

max_retries_downint The number of allowed check failures before changing the operating status of the
member to ERROR. A valid value is from 1 to 10.

name string Human-readable name of the monitor.
pool_id string The pool to monitor.
project_id string ID of the project owning this resource.
timeout int The time, in seconds, after which a health check times out. This value must be less

than the delay value.
type string The type of health monitor. One of HTTP, HTTPS, PING, SCTP, TCP, TLS-

HELLO or UDP-CONNECT.
url_path string The HTTP URL path of the request sent by the monitor to test the health of a

backend member. Must be a string that begins with a forward slash (/).

4.2. Contributor Reference 209

Octavia Documentation, Release 15.1.0.dev35

Delete

Deletes an existing health monitor.

Octavia will pass in the health monitor object as a parameter.

The health monitor will be in the PENDING_DELETE provisioning_status when it is passed to the driver.
The driver will notify Octavia that the delete was successful by setting the provisioning_status to
DELETED. If the delete failed, the driver will update the provisioning_status to ERROR.

Update

Modifies an existing health monitor using the values supplied in the health monitor object.

Octavia will pass in the original health monitor object which is the baseline for the update, and a health
monitor object with the fields to be updated. Fields not updated by the user will contain "Unset" as
defined in the data model.

As of the writing of this specification the update health monitor object may contain the following:

Name Type Description
ad-
min_state_up

bool Admin state: True if up, False if down.

delay int The interval, in seconds, between health checks.
do-
main_name

string The domain name to be passed in the host header for health monitor checks.

ex-
pected_codes

string The expected HTTP status codes to get from a successful health check. This may
be a single value, a list, or a range.

health-
moni-
tor_id

string ID of health monitor to create.

http_methodstring The HTTP method that the health monitor uses for requests. One of CONNECT,
DELETE, GET, HEAD, OPTIONS, PATCH, POST, PUT, or TRACE.

http_versionfloat The HTTP version to use for health monitor connections. One of ’1.0’ or ’1.1’.
Defaults to ’1.0’.

max_retries int The number of successful checks before changing the operating status of the mem-
ber to ONLINE.

max_retries_downint The number of allowed check failures before changing the operating status of the
member to ERROR. A valid value is from 1 to 10.

name string Human-readable name of the monitor.
timeout int The time, in seconds, after which a health check times out. This value must be less

than the delay value.
url_path string The HTTP URL path of the request sent by the monitor to test the health of a

backend member. Must be a string that begins with a forward slash (/).

The health monitor will be in the PENDING_UPDATE provisioning_status when it is passed to the driver.
The driver will update the provisioning_status of the health monitor to either ACTIVE if successfully
updated, or ERROR if the update was not successful.

The driver is expected to validate that the driver supports the request. The method will then return or
raise an exception if the request cannot be accepted.

Abstract class definition

4.2. Contributor Reference 210

Octavia Documentation, Release 15.1.0.dev35

class Driver(object):
def health_monitor_create(self, healthmonitor):

"""Creates a new health monitor.

:param healthmonitor (object): The health monitor object.
:return: Nothing if the create request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
:raises UnsupportedOptionError: if driver does not
support one of the configuration options.

"""
raise NotImplementedError()

def health_monitor_delete(self, healthmonitor):
"""Deletes a healthmonitor_id.

:param healthmonitor (object): The health monitor object.
:return: Nothing if the create request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
"""
raise NotImplementedError()

def health_monitor_update(self, old_healthmonitor, new_healthmonitor):
"""Updates a health monitor.

:param old_healthmonitor (object): The baseline health monitor
object.

:param new_healthmonitor (object): The updated health monitor object.
:return: Nothing if the create request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
:raises UnsupportedOptionError: if driver does not
support one of the configuration options.

"""
raise NotImplementedError()

L7 Policy

Create

Creates an L7 policy.

Octavia will pass in the L7 policy object with all requested settings.

The L7 policy will be in the PENDING_CREATE provisioning_status and OFFLINE operating_status when
it is passed to the driver. The driver will be responsible for updating the provisioning status of the L7
policy to either ACTIVE if successfully created, or ERROR if not created.

The Octavia API will accept and do basic API validation of the create request from the user. The l7policy
python object representing the request body will be passed to the driver create method as it was received
and validated with the following exceptions:

4.2. Contributor Reference 211

Octavia Documentation, Release 15.1.0.dev35

1. The project_id will be removed, if present, as this field is now deprecated. The l7policy will inherit
the project_id from the parent load balancer.

L7policy object

As of the writing of this specification the create l7policy object may contain the following:

Name Type Description
action string The L7 policy action. One of REDIRECT_TO_POOL, REDIRECT_TO_URL,

or REJECT.
ad-
min_state_up

bool Admin state: True if up, False if down.

description string A human-readable description for the L7 policy.
l7policy_id string The ID of the L7 policy.
listener_id string The ID of the listener.
name string Human-readable name of the L7 policy.
position int The position of this policy on the listener. Positions start at 1.
project_id string ID of the project owning this resource.
redi-
rect_http_code

int The HTTP status code to be returned on a redirect policy.

redi-
rect_pool_id

string Requests matching this policy will be redirected to the pool with this ID. Only
valid if action is REDIRECT_TO_POOL.

redi-
rect_prefix

string Requests matching this policy will be redirected to this Prefix URL. Only valid
if action is REDIRECT_PREFIX.

redirect_url string Requests matching this policy will be redirected to this URL. Only valid if action
is REDIRECT_TO_URL.

rules list A list of l7rule objects.

Creating a Fully Populated L7 policy

If the "rules" option is specified, the provider driver will create all of the child objects in addition to
creating the L7 policy instance.

Delete

Deletes an existing L7 policy.

Octavia will pass in the L7 policy object as a parameter.

The l7policy will be in the PENDING_DELETE provisioning_status when it is passed to the driver. The
driver will notify Octavia that the delete was successful by setting the provisioning_status to DELETED.
If the delete failed, the driver will update the provisioning_status to ERROR.

Update

Modifies an existing L7 policy using the values supplied in the l7policy object.

Octavia will pass in the original L7 policy object which is the baseline for the update, and an L7 policy
object with the fields to be updated. Fields not updated by the user will contain "Unset" as defined in the
data model.

As of the writing of this specification the update L7 policy object may contain the following:

4.2. Contributor Reference 212

Octavia Documentation, Release 15.1.0.dev35

Name Type Description
action string The L7 policy action. One of REDIRECT_TO_POOL, REDIRECT_TO_URL,

or REJECT.

ad-
min_state_up

bool Admin state: True if up, False if down.

description string A human-readable description for the L7 policy.
l7policy_id string The ID of the L7 policy.
name string Human-readable name of the L7 policy.
position int The position of this policy on the listener. Positions start at 1.
redi-
rect_http_code

int The HTTP status code to be returned on a redirect policy.

redi-
rect_pool_id

string Requests matching this policy will be redirected to the pool with this ID. Only
valid if action is REDIRECT_TO_POOL.

redi-
rect_prefix

string Requests matching this policy will be redirected to this Prefix URL. Only valid
if action is REDIRECT_PREFIX.

redirect_url string Requests matching this policy will be redirected to this URL. Only valid if action
is REDIRECT_TO_URL.

The L7 policy will be in the PENDING_UPDATE provisioning_status when it is passed to the driver. The
driver will update the provisioning_status of the L7 policy to either ACTIVE if successfully updated, or
ERROR if the update was not successful.

The driver is expected to validate that the driver supports the request. The method will then return or
raise an exception if the request cannot be accepted.

Abstract class definition

class Driver(object):
def l7policy_create(self, l7policy):

"""Creates a new L7 policy.

:param l7policy (object): The l7policy object.
:return: Nothing if the create request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
:raises UnsupportedOptionError: if driver does not
support one of the configuration options.

"""
raise NotImplementedError()

def l7policy_delete(self, l7policy):
"""Deletes an L7 policy.

:param l7policy (object): The l7policy object.
:return: Nothing if the delete request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
"""
raise NotImplementedError()

(continues on next page)

4.2. Contributor Reference 213

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

def l7policy_update(self, old_l7policy, new_l7policy):
"""Updates an L7 policy.

:param old_l7policy (object): The baseline l7policy object.
:param new_l7policy (object): The updated l7policy object.
:return: Nothing if the update request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
:raises UnsupportedOptionError: if driver does not
support one of the configuration options.

"""
raise NotImplementedError()

L7 Rule

Create

Creates a new L7 rule for an existing L7 policy.

Octavia will pass in the L7 rule object with all requested settings.

The L7 rule will be in the PENDING_CREATE provisioning_status and OFFLINE operating_status when it
is passed to the driver. The driver will be responsible for updating the provisioning status of the L7 rule
to either ACTIVE if successfully created, or ERROR if not created.

The Octavia API will accept and do basic API validation of the create request from the user. The l7rule
python object representing the request body will be passed to the driver create method as it was received
and validated with the following exceptions:

1. The project_id will be removed, if present, as this field is now deprecated. The listener will inherit
the project_id from the parent load balancer.

L7rule object

As of the writing of this specification the create l7rule object may contain the following:

Name Type Description
ad-
min_state_up

bool Admin state: True if up, False if down.

com-
pare_type

string The comparison type for the L7 rule. One of CONTAINS, ENDS_WITH,
EQUAL_TO, REGEX, or STARTS_WITH.

invert bool When True the logic of the rule is inverted. For example, with invert True, equal
to would become not equal to.

key string The key to use for the comparison. For example, the name of the cookie to eval-
uate.

l7policy_id string The ID of the L7 policy.
l7rule_id string The ID of the L7 rule.
project_id string ID of the project owning this resource.
type string The L7 rule type. One of COOKIE, FILE_TYPE, HEADER, HOST_NAME, or

PATH.
value string The value to use for the comparison. For example, the file type to compare.

4.2. Contributor Reference 214

Octavia Documentation, Release 15.1.0.dev35

Delete

Deletes an existing L7 rule.

Octavia will pass in the L7 rule object as a parameter.

The L7 rule will be in the PENDING_DELETE provisioning_status when it is passed to the driver. The
driver will notify Octavia that the delete was successful by setting the provisioning_status to DELETED.
If the delete failed, the driver will update the provisioning_status to ERROR.

Update

Modifies an existing L7 rule using the values supplied in the l7rule object.

Octavia will pass in the original L7 rule object which is the baseline for the update, and an L7 rule object
with the fields to be updated. Fields not updated by the user will contain "Unset" as defined in the data
model.

As of the writing of this specification the update L7 rule object may contain the following:

Name Type Description
ad-
min_state_up

bool Admin state: True if up, False if down.

com-
pare_type

string The comparison type for the L7 rule. One of CONTAINS, ENDS_WITH,
EQUAL_TO, REGEX, or STARTS_WITH.

invert bool When True the logic of the rule is inverted. For example, with invert True, equal
to would become not equal to.

key string The key to use for the comparison. For example, the name of the cookie to eval-
uate.

l7rule_id string The ID of the L7 rule.
type string The L7 rule type. One of COOKIE, FILE_TYPE, HEADER, HOST_NAME, or

PATH.
value string The value to use for the comparison. For example, the file type to compare.

The L7 rule will be in the PENDING_UPDATE provisioning_status when it is passed to the driver. The
driver will update the provisioning_status of the L7 rule to either ACTIVE if successfully updated, or
ERROR if the update was not successful.

The driver is expected to validate that the driver supports the request. The method will then return or
raise an exception if the request cannot be accepted.

Abstract class definition

class Driver(object):
def l7rule_create(self, l7rule):

"""Creates a new L7 rule.

:param l7rule (object): The L7 rule object.
:return: Nothing if the create request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
:raises UnsupportedOptionError: if driver does not

(continues on next page)

4.2. Contributor Reference 215

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

support one of the configuration options.
"""
raise NotImplementedError()

def l7rule_delete(self, l7rule):

"""Deletes an L7 rule.

:param l7rule (object): The L7 rule object.
:return: Nothing if the delete request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
"""
raise NotImplementedError()

def l7rule_update(self, old_l7rule, new_l7rule):

"""Updates an L7 rule.

:param old_l7rule (object): The baseline L7 rule object.
:param new_l7rule (object): The updated L7 rule object.
:return: Nothing if the update request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
:raises UnsupportedOptionError: if driver does not
support one of the configuration options.

"""
raise NotImplementedError()

Flavor

Octavia flavors are defined in a separate flavor specification. Support for flavors will be provided through
two provider driver interfaces, one to query supported flavor metadata keys and another to validate that
a flavor is supported. Both functions are synchronous.

get_supported_flavor_metadata

Retrieves a dictionary of supported flavor keys and their description. For example:

{"topology": "The load balancer topology for the flavor. One of: SINGLE,␣
↪→ACTIVE_STANDBY",
"compute_flavor": "The compute driver flavor to use for the load balancer␣
↪→instances"}

validate_flavor

Validates that the driver supports the flavor metadata dictionary.

The validate_flavor method will be passed a flavor metadata dictionary that the driver will validate. This
is used when an operator uploads a new flavor that applies to the driver.

4.2. Contributor Reference 216

../specs/version1.0/flavors.html

Octavia Documentation, Release 15.1.0.dev35

The validate_flavor method will either return or raise a UnsupportedOptionError exception.

Following are interface definitions for flavor support:

def get_supported_flavor_metadata():
"""Returns a dictionary of flavor metadata keys supported by this driver.

The returned dictionary will include key/value pairs, 'name' and
'description.'

:returns: The flavor metadata dictionary
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: The driver does not support flavors.
"""
raise NotImplementedError()

def validate_flavor(flavor_metadata):
"""Validates if driver can support flavor as defined in flavor_metadata.

:param flavor_metadata (dict): Dictionary with flavor metadata.
:return: Nothing if the flavor is valid and supported.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: The driver does not support flavors.
:raises UnsupportedOptionError: if driver does not

support one of the configuration options.
"""
raise NotImplementedError()

Availability Zone

Octavia availability zones have no explicit spec, but are modeled closely after the existing flavor spec-
ification. Support for availability_zones will be provided through two provider driver interfaces, one
to query supported availability zone metadata keys and another to validate that an availability zone is
supported. Both functions are synchronous.

get_supported_availability_zone_metadata

Retrieves a dictionary of supported availability zone keys and their description. For example:

{"compute_zone": "The compute availability zone to use for this loadbalancer.
↪→",
"management_network": "The management network ID for the loadbalancer.",
"valid_vip_networks": "List of network IDs that are allowed for VIP use.␣
↪→This overrides/replaces the list of allowed networks configured in `octavia.
↪→conf`."}

validate_availability_zone

Validates that the driver supports the availability zone metadata dictionary.

The validate_availability_zone method will be passed an availability zone metadata dictionary that the
driver will validate. This is used when an operator uploads a new availability zone that applies to the

4.2. Contributor Reference 217

../specs/version1.0/flavors.html
../specs/version1.0/flavors.html

Octavia Documentation, Release 15.1.0.dev35

driver.

The validate_availability_zone method will either return or raise a UnsupportedOptionError excep-
tion.

Following are interface definitions for availability zone support:

def get_supported_availability_zone_metadata():
"""Returns a dict of supported availability zone metadata keys.

The returned dictionary will include key/value pairs, 'name' and
'description.'

:returns: The availability zone metadata dictionary
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: The driver does not support AZs.
"""

raise NotImplementedError()

def validate_availability_zone(availability_zone_metadata):
"""Validates if driver can support the availability zone.

:param availability_zone_metadata: Dictionary with az metadata.
:type availability_zone_metadata: dict
:return: Nothing if the availability zone is valid and supported.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: The driver does not support availability
zones.

:raises UnsupportedOptionError: if driver does not
support one of the configuration options.

"""
raise NotImplementedError()

Exception Model

DriverError

This is a catch all exception that drivers can return if there is an unexpected error. An example might be
a delete call for a load balancer the driver does not recognize. This exception includes two strings: The
user fault string and the optional operator fault string. The user fault string, "user_fault_string", will be
provided to the API requester. The operator fault string, "operator_fault_string", will be logged in the
Octavia API log file for the operator to use when debugging.

class DriverError(Exception):
user_fault_string = _("An unknown driver error occurred.")
operator_fault_string = _("An unknown driver error occurred.")

def __init__(self, *args, **kwargs):
self.user_fault_string = kwargs.pop('user_fault_string',

self.user_fault_string)
self.operator_fault_string = kwargs.pop('operator_fault_string',

self.operator_fault_string)
(continues on next page)

4.2. Contributor Reference 218

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

super(DriverError, self).__init__(*args, **kwargs)

NotImplementedError

Driver implementations may not support all operations, and are free to reject a request. If the driver does
not implement an API function, the driver will raise a NotImplementedError exception.

class NotImplementedError(Exception):
user_fault_string = _("A feature is not implemented by this driver.")
operator_fault_string = _("A feature is not implemented by this driver.")

def __init__(self, *args, **kwargs):
self.user_fault_string = kwargs.pop('user_fault_string',

self.user_fault_string)
self.operator_fault_string = kwargs.pop('operator_fault_string',

self.operator_fault_string)

super(NotImplementedError, self).__init__(*args, **kwargs)

UnsupportedOptionError

Provider drivers will validate that they can complete the request -- that all options are supported by
the driver. If the request fails validation, drivers will raise an UnsupportedOptionError exception. For
example, if a driver does not support a flavor passed as an option to load balancer create(), the driver
will raise an UnsupportedOptionError and include a message parameter providing an explanation of the
failure.

class UnsupportedOptionError(Exception):
user_fault_string = _("A specified option is not supported by this driver.

↪→")
operator_fault_string = _("A specified option is not supported by this␣

↪→driver.")

def __init__(self, *args, **kwargs):
self.user_fault_string = kwargs.pop('user_fault_string',

self.user_fault_string)
self.operator_fault_string = kwargs.pop('operator_fault_string',

self.operator_fault_string)

super(UnsupportedOptionError, self).__init__(*args, **kwargs)

Driver Support Library

Provider drivers need support for updating provisioning status, operating status, and statistics. Drivers
will not directly use database operations, and instead will callback to octavia-lib using a new API.

Warning

4.2. Contributor Reference 219

Octavia Documentation, Release 15.1.0.dev35

The methods listed here are the only callable methods for drivers. All other interfaces are not consid-
ered stable or safe for drivers to access. See Stable Provider Driver Interface for a list of acceptable
APIs for provider driver use.

Warning

This library is interim and will be removed when the driver support endpoint is made available. At
which point drivers will not import any code from octavia-lib.

Update Provisioning and Operating Status API

The update status API defined below can be used by provider drivers to update the provisioning and/or
operating status of Octavia resources (load balancer, listener, pool, member, health monitor, L7 policy,
or L7 rule).

For the following status API, valid values for provisioning status and operating status parameters are as
defined by Octavia status codes. If an existing object is not included in the input parameter, the status
remains unchanged.

Note

If the driver-agent exceeds its configured status_max_processes this call may block while it waits for
a status process slot to become available. The operator will be notified if the driver-agent approaches
or reaches the configured limit.

provisioning_status: status associated with lifecycle of the resource. See Octavia Provisioning Status
Codes.

operating_status: the observed status of the resource. See Octavia Operating Status Codes.

The dictionary takes this form:

{ "loadbalancers": [{"id": "123",
"provisioning_status": "ACTIVE",
"operating_status": "ONLINE"},...],

"healthmonitors": [],
"l7policies": [],
"l7rules": [],
"listeners": [],
"members": [],
"pools": []

}

def update_loadbalancer_status(status):
"""Update load balancer status.

:param status (dict): dictionary defining the provisioning status and
operating status for load balancer objects, including pools,
members, listeners, L7 policies, and L7 rules.

(continues on next page)

4.2. Contributor Reference 220

https://docs.openstack.org/api-ref/load-balancer/v2/index.html#provisioning-status-codes
https://docs.openstack.org/api-ref/load-balancer/v2/index.html#provisioning-status-codes
https://docs.openstack.org/api-ref/load-balancer/v2/index.html#operating-status-codes

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

:raises: UpdateStatusError
:returns: None
"""

Update Statistics API

Provider drivers can update statistics for listeners using the following API. Similar to the status function
above, a single dictionary with multiple listener statistics is used to update statistics in a single call. If an
existing listener is not included, the statistics that object remain unchanged.

Note

If the driver-agent exceeds its configured stats_max_processes this call may block while it waits for
a stats process slot to become available. The operator will be notified if the driver-agent approaches
or reaches the configured limit.

The general form of the input dictionary is a list of listener statistics:

{ "listeners": [{"id": "123",
"active_connections": 12,
"bytes_in": 238908,
"bytes_out": 290234,
"request_errors": 0,
"total_connections": 3530},...]

}

def update_listener_statistics(statistics):
"""Update listener statistics.

:param statistics (dict): Statistics for listeners:
id (string): ID of the listener.
active_connections (int): Number of currently active connections.
bytes_in (int): Total bytes received.
bytes_out (int): Total bytes sent.
request_errors (int): Total requests not fulfilled.
total_connections (int): The total connections handled.

:raises: UpdateStatisticsError
:returns: None
"""

Get Resource Support

Provider drivers may need to get information about an Octavia resource. As an example of its use, a
provider driver may need to sync with Octavia, and therefore need to fetch all of the Octavia resources
it is responsible for managing. Provider drivers can use the existing Octavia API to get these resources.
See the Octavia API Reference.

4.2. Contributor Reference 221

https://docs.openstack.org/api-ref/load-balancer/v2/index.html

Octavia Documentation, Release 15.1.0.dev35

API Exception Model

The driver support API will include exceptions: two API groups:

• UpdateStatusError

• UpdateStatisticsError

• DriverAgentNotFound

• DriverAgentTimeout

Each exception class will include a message field that describes the error and references to the failed
record if available.

class UpdateStatusError(Exception):
fault_string = _("The status update had an unknown error.")
status_object = None
status_object_id = None
status_record = None

def __init__(self, *args, **kwargs):
self.fault_string = kwargs.pop('fault_string',

self.fault_string)
self.status_object = kwargs.pop('status_object', None)
self.status_object_id = kwargs.pop('status_object_id', None)
self.status_record = kwargs.pop('status_record', None)

super(UpdateStatusError, self).__init__(self.fault_string,
*args, **kwargs)

class UpdateStatisticsError(Exception):
fault_string = _("The statistics update had an unknown error.")
stats_object = None
stats_object_id = None
stats_record = None

def __init__(self, *args, **kwargs):
self.fault_string = kwargs.pop('fault_string',

self.fault_string)
self.stats_object = kwargs.pop('stats_object', None)
self.stats_object_id = kwargs.pop('stats_object_id', None)
self.stats_record = kwargs.pop('stats_record', None)

super(UpdateStatisticsError, self).__init__(self.fault_string,
*args, **kwargs)

class DriverAgentNotFound(Exception):
fault_string = _("The driver-agent process was not found or not ready.")

def __init__(self, *args, **kwargs):
self.fault_string = kwargs.pop('fault_string', self.fault_string)
super(DriverAgentNotFound, self).__init__(self.fault_string,

(continues on next page)

4.2. Contributor Reference 222

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

*args, **kwargs)

class DriverAgentTimeout(Exception):
fault_string = _("The driver-agent timeout.")

def __init__(self, *args, **kwargs):
self.fault_string = kwargs.pop('fault_string', self.fault_string)
super(DriverAgentTimeout, self).__init__(self.fault_string,

*args, **kwargs)

Provider Agents

Provider agents are long-running processes started by the Octavia driver-agent process at start up. They
are intended to allow provider drivers a long running process that can handle periodic jobs for the provider
driver or receive events from another provider agent. Provider agents are optional and not required for a
successful Octavia provider driver.

Provider Agents have access to the same Stable Provider Driver Interface as the provider driver. A
provider agent must not access any other Octavia code.

Warning

The methods listed in the Driver Support Library section are the only Octavia callable methods for
provider agents. All other interfaces are not considered stable or safe for provider agents to access.
See Stable Provider Driver Interface for a list of acceptable APIs for provider agents use.

Declaring Your Provider Agent

The Octavia driver-agent will use stevedore to load enabled provider agents at start up. Provider agents
are enabled in the Octavia configuration file. Provider agents that are installed, but not enabled, will not
be loaded. An example configuration file entry for a provider agent is:

[driver_agent]
enabled_provider_agents = amphora_agent, noop_agent

The provider agent name must match the provider agent name declared in your python setup tools entry
point. For example:

octavia.driver_agent.provider_agents =
amphora_agent = octavia.api.drivers.amphora_driver.

↪→agent:AmphoraProviderAgent
noop_agent = octavia.api.drivers.noop_driver.agent:noop_provider_agent

Provider Agent Method Invocation

On start up of the Octavia driver-agent, the method defined in the entry point will be launched in its own
multiprocessing Process.

Your provider agent method will be passed a multiprocessing Event that will be used to signal that
the provider agent should shutdown. When this event is "set", the provider agent should grace-

4.2. Contributor Reference 223

https://docs.openstack.org/stevedore/latest/
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Process
https://docs.python.org/3/library/multiprocessing.html#multiprocessing.Event

Octavia Documentation, Release 15.1.0.dev35

fully shutdown. If the provider agent fails to exit within the Octavia configuration file setting
"provider_agent_shutdown_timeout" period, the driver-agent will forcefully shutdown the provider agent
with a SIGKILL signal.

Example Provider Agent Method

If, for example, you declared a provider agent as "my_agent":

octavia.driver_agent.provider_agents =
my_agent = example_inc.drivers.my_driver.agent:my_provider_agent

The signature of your "my_provider_agent" method would be:

def my_provider_agent(exit_event):

Documenting the Driver

Octavia provides two documents to let operators and users know about available drivers and their features.

Available Provider Drivers

The Available Provider Drivers document provides administrators with a guide to the available Octavia
provider drivers. Since provider drivers are not included in the Octavia source repositories, this guide is
an important tool for administrators to find your provider driver.

You can submit information for your provider driver by submitting a patch to the Octavia documentation
following the normal OpenStack process.

See the OpenStack Contributor Guide for more information on submitting a patch to OpenStack.

Octavia Provider Feature Matrix

The Octavia documentation includes a Octavia Provider Feature Matrix that informs users on which
Octavia features are supported by each provider driver.

The feature matrices are built using the Oslo sphinx-feature-classification library. This allows a simple
INI file format for describing the capabilities of an Octavia provider driver.

Each driver should define a [driver.<driver name>] section and then add a line to each feature specifying
the level of support the provider driver provides for the feature.

For example, the Amphora driver support for "admin_state_up" would add the following to the feature-
matrix-lb.ini file.

[driver.amphora]
title=Amphora Provider
link=https://docs.openstack.org/api-ref/load-balancer/v2/index.html

[operation.admin_state_up]
...
driver.amphora=complete

Valid driver feature support statuses are:

4.2. Contributor Reference 224

https://docs.openstack.org/contributors/
https://docs.openstack.org/sphinx-feature-classification/latest/

Octavia Documentation, Release 15.1.0.dev35

complete
Fully implemented, expected to work at all times.

partial
Implemented, but with caveats about when it will work.

missing
Not implemented at all.

You can also optionally provide additional, provider driver specific, notes for users by defining a "driver-
notes.<driver name>".

[operation.admin_state_up]
...
driver.amphora=complete
driver-notes.amphora=The Amphora driver fully supports admin_state_up.

Driver notes are highly recommended when a provider driver declares a partial status.

4.2.2 Debugging Octavia code
This document describes how to setup and debug Octavia code using your favorite IDE (e.g. PyCharm,
Visual Studio Code).

Prerequisites

• Octavia installed.

• IDE installed and Octavia added as project.

Setup

Both PyCharm Professional edition and Visual Studio Code offer remote debugging features that can be
used for debugging Octavia components.

Note

Before running a new Octavia process you should make sure that processes of that component are no
longer running. You can use ps aux in order to verify that.

PyCharm

Note

Remote debugging is a PyCharm Professional feature.

PyCharm offers two ways of debugging remotely1. In general, the "through a remote interpreter" ap-
proach is more convenient and should be preferred. On the other hand, the "Python debug server" ap-
proach is the only one that works for debugging the API component (because of uWSGI). Therefore, this
guide will explain both approaches.

1 https://www.jetbrains.com/help/pycharm/remote-debugging-with-product.html

4.2. Contributor Reference 225

https://www.jetbrains.com/help/pycharm/remote-debugging-with-product.html

Octavia Documentation, Release 15.1.0.dev35

Using a remote interpreter

First, configure a remote interpreter for the VM as documented in2. Adding a deployment configuration
with correct path mappings allows PyCharm to upload local changes to the remote host automatically.

Then, create a new Run/Debug Configuration by selecting Run -> Edit Configurations... in the menu bar.
Add a new configuration and make sure Module name is selected instead of Script path. Enter the module
name of the Octavia component you want to debug, for instance octavia.cmd.octavia_worker. Ad-
ditionally, add --config-file /etc/octavia/octavia.conf to Parameters. Then check whether
the right remote Python interpreter is selected. After you confirm the settings by clicking OK you should
be able to run/debug the Octavia component with that new run configuration.

Using a Python debug server

As mentioned above the "remote interpreter" approach does not work with Octavia-API because that
process is managed by uWSGI. Here the Python debug server approach3 needs to be used. You will need
to install the pydevd-pycharm via pip as shown when creating the run/debug configuration. However,
it is not necessary to modify the Python code in any way because Octavia code is already set up for it to
work.

Export DEBUGGER_TYPE, DEBUGGER_HOST and DEBUGGER_PORT (host and port of the system
running the IDE, respectively), and start the Octavia service you want to debug. For example, to debug
the Octavia API service:

$ export DEBUGGER_TYPE=pydev
$ export DEBUGGER_HOST=192.168.121.1
$ export DEBUGGER_PORT=5678
$ uwsgi --ini /etc/octavia/octavia-uwsgi.ini

Note

You must run the Octavia/uWSGI command directly. Starting it via systemctl will not work with
the debug server.

Visual Studio Code

While PyCharm synchronizes local changes with the remote host, Code will work on the remote envi-
ronment directly through a SSH tunnel. That means that you don’t even need to have source code on your
local machine in order to debug code on the remote.

Detail information about remote debugging over SSH can be found in the official Visual Studio Code
documentation4. This guide will focus on the essential steps only.

Using the remote development extension pack

Note

2 https://www.jetbrains.com/help/pycharm/remote-debugging-with-product.html#remote-interpreter
3 https://www.jetbrains.com/help/pycharm/remote-debugging-with-product.html#remote-debug-config
4 https://code.visualstudio.com/docs/remote/ssh

4.2. Contributor Reference 226

https://www.jetbrains.com/help/pycharm/remote-debugging-with-product.html#remote-interpreter
https://www.jetbrains.com/help/pycharm/remote-debugging-with-product.html#remote-debug-config
https://code.visualstudio.com/docs/remote/ssh

Octavia Documentation, Release 15.1.0.dev35

This approach will not work with the Octavia API component because that component is managed by
uWSGI.

After installing the Visual Studio Code Remote Development Extension Pack5 you need to open the Re-
mote Explorer view and connect to the SSH target. This will open a new window and on the bottom left
of that window you should see SSH: followed by the SSH host name. In the Explorer view you can then
choose to either clone a repository or open an existing folder on the remote. For instance when working
with devstack you might want to open /opt/stack or /opt/stack/octavia.

Next, you should configure the launch.json, which contains the run configurations. Use the following
template and adjust it to your needs:

{
// Use IntelliSense to learn about possible attributes.
// Hover to view descriptions of existing attributes.
// For more information, visit: https://go.microsoft.com/fwlink/?

↪→linkid=830387
"version": "0.2.0",
"configurations": [

{
"name": "Octavia Worker",
"type": "python",
"request": "launch",
"module": "octavia.cmd.octavia_worker",
"args": ["--config-file", "/etc/octavia/octavia.conf"],
"justMyCode": true

}
]

}

Make sure that the correct Python interpreter is selected in the status bar. In a devstack environment the
global Python interpreter /usr/bin/python3 should be the correct one. Now you can start debugging by
pressing F5.

Note

When running this the first time Visual Studio Code might ask you to install the Python debugger
extension on the remote, which you must do. Simply follow the steps shown in the IDE.

Using ptvsd

Warning

ptvsd has been deprecated and replaced by debugpy. However, debugpy doesn’t seem work with
uWSGI processes. The information in this section might be outdated.

Another example is debugging the Octavia API service with the ptvsd debugger:
5 https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.vscode-remote-extensionpack

4.2. Contributor Reference 227

https://marketplace.visualstudio.com/items?itemName=ms-vscode-remote.vscode-remote-extensionpack

Octavia Documentation, Release 15.1.0.dev35

$ export DEBUGGER_TYPE=ptvsd
$ export DEBUGGER_HOST=192.168.121.1
$ export DEBUGGER_PORT=5678
$ /usr/bin/uwsgi --ini /etc/octavia/octavia-uwsgi.ini -p 1

The service will connect to your IDE, at which point remote debugging is active. Resume the program
on the debugger to continue with the initialization of the service. At this point, the service should be
operational and you can start debugging.

Troubleshooting

Remote process does not connect with local PyCharm debug server

1. Check if the debug server is still running

2. Check if the values of the exported DEBUGGER_ variables above are correct.

3. Check if the remote machine can reach the port of the debug server:

$ nc -zvw10 $DEBUGGER_HOST $DEBUGGER_PORT

If it cannot connect, the connection may be blocked by a firewall.

4.2.3 Octavia Entity Relationship Diagram
Below is the current Octavia database data model.

• Solid stars are primary key columns.

• Hollow stars are foreign key columns.

• Items labeled as "PROPERTY" are data model relationships and are not present in the database.

generated by sadisplay v0.4.9

AdditionalVip

★ load_balancer_id VARCHAR(36)

★ subnet_id VARCHAR(36)

⚪ ip_address VARCHAR(64)

⚪ network_id VARCHAR(36)

⚪ port_id VARCHAR(36)

⚪ load_balancer PROPERTY

» ix_additional_vip_load_balancer_id INDEX(load_balancer_id)

LoadBalancer

★ id VARCHAR(36)

☆ availability_zone VARCHAR(255)

☆ flavor_id VARCHAR(36)

☆ operating_status VARCHAR(16)

☆ provisioning_status VARCHAR(16)

☆ topology VARCHAR(36)

⚪ created_at DATETIME

⚪ description VARCHAR(255)

⚪ enabled BOOLEAN

⚪ name VARCHAR(255)

⚪ project_id VARCHAR(36)

⚪ provider VARCHAR(64)

⚪ server_group_id VARCHAR(36)

⚪ updated_at DATETIME

⚪ _tags PROPERTY

⚪ additional_vips PROPERTY

⚪ amphorae PROPERTY

⚪ flavor PROPERTY

⚪ listeners PROPERTY

⚪ pools PROPERTY

⚪ vip PROPERTY

⚪ vrrp_group PROPERTY

load_balancer_id

Algorithm

★ name VARCHAR(255)

⚪ description VARCHAR(255)

Amphora

★ id VARCHAR(36)

☆ load_balancer_id VARCHAR(36)

☆ role VARCHAR(36)

☆ status VARCHAR(36)

⚪ cached_zone VARCHAR(255)

⚪ cert_busy BOOLEAN

⚪ cert_expiration DATETIME

⚪ compute_flavor VARCHAR(255)

⚪ compute_id VARCHAR(36)

⚪ created_at DATETIME

⚪ ha_ip VARCHAR(64)

⚪ ha_port_id VARCHAR(36)

⚪ image_id VARCHAR(36)

⚪ lb_network_ip VARCHAR(64)

⚪ updated_at DATETIME

⚪ vrrp_id INTEGER

⚪ vrrp_interface VARCHAR(16)

⚪ vrrp_ip VARCHAR(64)

⚪ vrrp_port_id VARCHAR(36)

⚪ vrrp_priority INTEGER

⚪ load_balancer PROPERTY

AmphoraRoles

★ name VARCHAR(255)

⚪ description VARCHAR(255)

roleload_balancer_id

ProvisioningStatus

★ name VARCHAR(255)

⚪ description VARCHAR(255)

status

AmphoraBuildRequest

★ amphora_id VARCHAR(36)

⚪ created_time DATETIME

⚪ priority INTEGER

⚪ status VARCHAR(16)

AmphoraBuildSlots

★ id INTEGER

⚪ slots_used INTEGER

AmphoraHealth

★ amphora_id VARCHAR(36)

⚪ busy BOOLEAN

⚪ last_update DATETIME

AvailabilityZone

★ name VARCHAR(255)

☆ availability_zone_profile_id VARCHAR(36)

⚪ description VARCHAR(255)

⚪ enabled BOOLEAN

⚪ availability_zone_profile PROPERTY

AvailabilityZoneProfile

★ id VARCHAR(36)

⚪ availability_zone_data VARCHAR(4096)

⚪ name VARCHAR(255)

⚪ provider_name VARCHAR(255)

availability_zone_profile_id

ClientAuthenticationMode

★ name VARCHAR(10)

Flavor

★ id VARCHAR(36)

☆ flavor_profile_id VARCHAR(36)

⚪ description VARCHAR(255)

⚪ enabled BOOLEAN

⚪ name VARCHAR(255)

⚪ flavor_profile PROPERTY

FlavorProfile

★ id VARCHAR(36)

⚪ flavor_data VARCHAR(4096)

⚪ name VARCHAR(255)

⚪ provider_name VARCHAR(255)

flavor_profile_id

HealthMonitor

★ id VARCHAR(36)

☆ operating_status VARCHAR(16)

☆ pool_id VARCHAR(36)

☆ provisioning_status VARCHAR(16)

☆ type VARCHAR(36)

⚪ created_at DATETIME

⚪ delay INTEGER

⚪ domain_name VARCHAR(255)

⚪ enabled BOOLEAN

⚪ expected_codes VARCHAR(64)

⚪ fall_threshold INTEGER

⚪ http_method VARCHAR(16)

⚪ http_version FLOAT

⚪ name VARCHAR(255)

⚪ project_id VARCHAR(36)

⚪ rise_threshold INTEGER

⚪ timeout INTEGER

⚪ updated_at DATETIME

⚪ url_path VARCHAR(2048)

⚪ _tags PROPERTY

⚪ pool PROPERTY

HealthMonitorType

★ name VARCHAR(255)

⚪ description VARCHAR(255)

type

OperatingStatus

★ name VARCHAR(255)

⚪ description VARCHAR(255)

operating_status

Pool

★ id VARCHAR(36)

☆ lb_algorithm VARCHAR(255)

☆ load_balancer_id VARCHAR(36)

☆ operating_status VARCHAR(16)

☆ protocol VARCHAR(16)

☆ provisioning_status VARCHAR(16)

⚪ alpn_protocols TEXT

⚪ ca_tls_certificate_id VARCHAR(255)

⚪ created_at DATETIME

⚪ crl_container_id VARCHAR(255)

⚪ description VARCHAR(255)

⚪ enabled BOOLEAN

⚪ name VARCHAR(255)

⚪ project_id VARCHAR(36)

⚪ tls_certificate_id VARCHAR(255)

⚪ tls_ciphers VARCHAR(2048)

⚪ tls_enabled BOOLEAN

⚪ tls_versions TEXT

⚪ updated_at DATETIME

⚪ _default_listeners PROPERTY

⚪ _tags PROPERTY

⚪ health_monitor PROPERTY

⚪ l7policies PROPERTY

⚪ load_balancer PROPERTY

⚪ members PROPERTY

⚪ session_persistence PROPERTY

pool_id

provisioning_status

L7Policy

★ id VARCHAR(36)

☆ action VARCHAR(36)

☆ listener_id VARCHAR(36)

☆ operating_status VARCHAR(16)

☆ provisioning_status VARCHAR(16)

☆ redirect_pool_id VARCHAR(36)

⚪ created_at DATETIME

⚪ description VARCHAR(255)

⚪ enabled BOOLEAN

⚪ name VARCHAR(255)

⚪ position INTEGER

⚪ project_id VARCHAR(36)

⚪ redirect_http_code INTEGER

⚪ redirect_prefix VARCHAR(255)

⚪ redirect_url VARCHAR(255)

⚪ updated_at DATETIME

⚪ _tags PROPERTY

⚪ l7rules PROPERTY

⚪ listener PROPERTY

⚪ redirect_pool PROPERTY

L7PolicyAction

★ name VARCHAR(255)

⚪ description VARCHAR(255)

action

Listener

★ id VARCHAR(36)

☆ client_authentication VARCHAR(10)

☆ default_pool_id VARCHAR(36)

☆ load_balancer_id VARCHAR(36)

☆ operating_status VARCHAR(16)

☆ protocol VARCHAR(16)

☆ provisioning_status VARCHAR(16)

⚪ alpn_protocols TEXT

⚪ client_ca_tls_certificate_id VARCHAR(255)

⚪ client_crl_container_id VARCHAR(255)

⚪ connection_limit INTEGER

⚪ created_at DATETIME

⚪ description VARCHAR(255)

⚪ enabled BOOLEAN

⚪ hsts_include_subdomains BOOLEAN

⚪ hsts_max_age INTEGER

⚪ hsts_preload BOOLEAN

⚪ insert_headers BLOB

⚪ name VARCHAR(255)

⚪ peer_port INTEGER

⚪ project_id VARCHAR(36)

⚪ protocol_port INTEGER

⚪ timeout_client_data INTEGER

⚪ timeout_member_connect INTEGER

⚪ timeout_member_data INTEGER

⚪ timeout_tcp_inspect INTEGER

⚪ tls_certificate_id VARCHAR(255)

⚪ tls_ciphers VARCHAR(2048)

⚪ tls_versions TEXT

⚪ updated_at DATETIME

⚪ _tags PROPERTY

⚪ allowed_cidrs PROPERTY

⚪ default_pool PROPERTY

⚪ l7policies PROPERTY

⚪ load_balancer PROPERTY

⚪ sni_containers PROPERTY

listener_id

operating_status

redirect_pool_id

provisioning_status

L7Rule

★ id VARCHAR(36)

☆ compare_type VARCHAR(36)

☆ l7policy_id VARCHAR(36)

☆ operating_status VARCHAR(16)

☆ provisioning_status VARCHAR(16)

☆ type VARCHAR(36)

⚪ created_at DATETIME

⚪ enabled BOOLEAN

⚪ invert BOOLEAN

⚪ key VARCHAR(255)

⚪ project_id VARCHAR(36)

⚪ updated_at DATETIME

⚪ value VARCHAR(255)

⚪ _tags PROPERTY

⚪ l7policy PROPERTY

l7policy_id

L7RuleCompareType

★ name VARCHAR(255)

⚪ description VARCHAR(255)

compare_type

L7RuleType

★ name VARCHAR(255)

⚪ description VARCHAR(255)

type

operating_statusprovisioning_status

LBTopology

★ name VARCHAR(255)

⚪ description VARCHAR(255)

client_authentication

load_balancer_id

operating_status

default_pool_id

Protocol

★ name VARCHAR(255)

⚪ description VARCHAR(255)

protocol

provisioning_status

ListenerCidr

★ cidr VARCHAR(64)

★ listener_id VARCHAR(36)

⚪ listener PROPERTY

listener_id

ListenerStatistics

★ amphora_id VARCHAR(36)

★ listener_id VARCHAR(36)

⚪ active_connections INTEGER

⚪ bytes_in BIGINT

⚪ bytes_out BIGINT

⚪ request_errors BIGINT

⚪ total_connections BIGINT

validate_non_negative_int() METHOD

availability_zone flavor_id topology operating_statusprovisioning_status

Member

★ id VARCHAR(36)

☆ operating_status VARCHAR(16)

☆ pool_id VARCHAR(36)

☆ provisioning_status VARCHAR(16)

⚪ backup BOOLEAN

⚪ created_at DATETIME

⚪ enabled BOOLEAN

⚪ ip_address VARCHAR(64)

⚪ monitor_address VARCHAR(64)

⚪ monitor_port INTEGER

⚪ name VARCHAR(255)

⚪ project_id VARCHAR(36)

⚪ protocol_port INTEGER

⚪ subnet_id VARCHAR(36)

⚪ updated_at DATETIME

⚪ weight INTEGER

⚪ _tags PROPERTY

⚪ pool PROPERTY

operating_status

pool_id

provisioning_status lb_algorithmload_balancer_id

operating_status

protocol

provisioning_status

Quotas

★ project_id VARCHAR(36)

⚪ health_monitor INTEGER

⚪ in_use_health_monitor INTEGER

⚪ in_use_l7policy INTEGER

⚪ in_use_l7rule INTEGER

⚪ in_use_listener INTEGER

⚪ in_use_load_balancer INTEGER

⚪ in_use_member INTEGER

⚪ in_use_pool INTEGER

⚪ l7policy INTEGER

⚪ l7rule INTEGER

⚪ listener INTEGER

⚪ load_balancer INTEGER

⚪ member INTEGER

⚪ pool INTEGER

SNI

★ listener_id VARCHAR(36)

★ tls_container_id VARCHAR(128)

⚪ position INTEGER

⚪ listener PROPERTY

listener_id

SessionPersistence

★ pool_id VARCHAR(36)

☆ type VARCHAR(36)

⚪ cookie_name VARCHAR(255)

⚪ persistence_granularity VARCHAR(64)

⚪ persistence_timeout INTEGER

⚪ pool PROPERTY

pool_id

SessionPersistenceType

★ name VARCHAR(255)

⚪ description VARCHAR(255)

type

VRRPAuthMethod

★ name VARCHAR(255)

⚪ description VARCHAR(255)

VRRPGroup

★ load_balancer_id VARCHAR(36)

☆ vrrp_auth_type VARCHAR(16)

⚪ advert_int INTEGER

⚪ vrrp_auth_pass VARCHAR(36)

⚪ vrrp_group_name VARCHAR(36)

⚪ load_balancer PROPERTY

load_balancer_idvrrp_auth_type

Vip

★ load_balancer_id VARCHAR(36)

⚪ ip_address VARCHAR(64)

⚪ network_id VARCHAR(36)

⚪ octavia_owned BOOLEAN

⚪ port_id VARCHAR(36)

⚪ qos_policy_id VARCHAR(36)

⚪ subnet_id VARCHAR(36)

⚪ vnic_type VARCHAR(64)

⚪ load_balancer PROPERTY

load_balancer_id

4.2. Contributor Reference 228

Octavia Documentation, Release 15.1.0.dev35

4.2.4 Octavia Controller Flows
Octavia uses OpenStack TaskFlow to orchestrate the actions the Octavia controller needs to take while
managing load balancers.

This document is meant as a reference for the key flows used in the Octavia controller.

The following are flow diagrams for the amphora V2 driver.

Amphora Flows

Contents

• Amphora Flows

– cert_rotate_amphora_flow

– get_create_amphora_flow

– get_failover_amphora_flow

cert_rotate_amphora_flow

linear_flow.Flow: octavia-cert-rotate-amphora-flow(len=5)

octavia.controller.worker.v2.tasks.lifecycle_tasks.AmphoraToErrorOnRevertTask==1.0

octavia.controller.worker.v2.tasks.cert_task.GenerateServerPEMTask==1.0

octavia.controller.worker.v2.tasks.amphora_driver_tasks.AmphoraCertUpload==1.0

octavia.controller.worker.v2.tasks.database_tasks.UpdateAmphoraDBCertExpiration==1.0

octavia.controller.worker.v2.tasks.database_tasks.UpdateAmphoraCertBusyToFalse==1.0

linear_flow.Flow: octavia-cert-rotate-amphora-flow(len=5)[$]

4.2. Contributor Reference 229

Octavia Documentation, Release 15.1.0.dev35

4.2. Contributor Reference 230

Octavia Documentation, Release 15.1.0.dev35

get_create_amphora_flow

linear_flow.Flow: octavia-create-amphora-flow(len=12)

octavia.controller.worker.v2.tasks.database_tasks.CreateAmphoraInDB==1.0

octavia.controller.worker.v2.tasks.lifecycle_tasks.AmphoraIDToErrorOnRevertTask==1.0

octavia.controller.worker.v2.tasks.cert_task.GenerateServerPEMTask==1.0

octavia.controller.worker.v2.tasks.database_tasks.UpdateAmphoraDBCertExpiration==1.0

octavia.controller.worker.v2.tasks.compute_tasks.CertComputeCreate==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkAmphoraBootingInDB==1.0

linear_flow.Flow: octavia-compute-create-retry-subflow(len=1)

octavia-compute-create-retry-subflow_retry==1.0

octavia.controller.worker.v2.tasks.compute_tasks.ComputeWait==1.0

linear_flow.Flow: octavia-compute-create-retry-subflow(len=1)[$]

octavia.controller.worker.v2.tasks.database_tasks.UpdateAmphoraInfo==1.0

linear_flow.Flow: octavia-create-amphora-retry-subflow(len=1)

octavia-create-amphora-retry-subflow_retry==1.0

octavia.controller.worker.v2.tasks.amphora_driver_tasks.AmphoraComputeConnectivityWait==1.0

linear_flow.Flow: octavia-create-amphora-retry-subflow(len=1)[$]

octavia.controller.worker.v2.tasks.database_tasks.ReloadAmphora==1.0

octavia.controller.worker.v2.tasks.amphora_driver_tasks.AmphoraFinalize==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkAmphoraReadyInDB==1.0

linear_flow.Flow: octavia-create-amphora-flow(len=12)[$]

4.2. Contributor Reference 231

Octavia Documentation, Release 15.1.0.dev35

4.2. Contributor Reference 232

Octavia Documentation, Release 15.1.0.dev35

get_failover_amphora_flow

linear_flow.Flow: octavia-failover-amphora-flow(len=15)

octavia.controller.worker.v2.tasks.lifecycle_tasks.LoadBalancerToErrorOnRevertTask==1.0

octavia.controller.worker.v2.tasks.lifecycle_tasks.AmphoraToErrorOnRevertTask==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkAmphoraPendingDeleteInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkAmphoraHealthBusy==1.0

octavia.controller.worker.v2.tasks.network_tasks.GetVIPSecurityGroupID==1.0

linear_flow.Flow: octavia-failover-loadbalancer-flow-octavia-create-amp-for-failover-subflow(len=9)

linear_flow.Flow: octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow(len=11)

octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-create-amphora-indb==1.0

octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-generate-serverpem==1.0

octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-update-cert-expiration==1.0

octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-cert-compute-create==1.0

octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-update-amphora-computeid==1.0

octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-mark-amphora-booting-indb==1.0

linear_flow.Flow: octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-compute-create-retry-subflow(len=1)

octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-compute-create-retry-subflow_retry==1.0

octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-compute-wait==1.0

linear_flow.Flow: octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-compute-create-retry-subflow(len=1)[$]

octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-update-amphora-info==1.0

linear_flow.Flow: octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-create-amphora-retry-subflow(len=1)

octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-create-amphora-retry-subflow_retry==1.0

octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-amp-compute-connectivity-wait==1.0

linear_flow.Flow: octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-create-amphora-retry-subflow(len=1)[$]

octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-amphora-finalize==1.0

octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-mark-amphora-allocated-indb==1.0

linear_flow.Flow: octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow(len=11)[$]

octavia-failover-loadbalancer-flow-create-vip-base-port==1.0

octavia-failover-loadbalancer-flow-attach-port==1.0

octavia-failover-loadbalancer-flow-update-amp-failover-details==1.0

octavia-failover-loadbalancer-flow-get-amphora-network-configs-by-id==1.0

octavia-failover-loadbalancer-flow-amphora-post-vip-plug==1.0

octavia-failover-loadbalancer-flow-calculate-amphora-delta==1.0

octavia-failover-loadbalancer-flow-handle-network-delta==1.0

octavia-failover-loadbalancer-flow-amphorae-post-network-plug==1.0

linear_flow.Flow: octavia-failover-loadbalancer-flow-octavia-create-amp-for-failover-subflow(len=9)[$]

linear_flow.Flow: octavia-delete-amphora-flow-amp1-id(len=7)

retry-octavia-delete-amphora-flow-amp1-id==1.0

amphora-to-error-on-revert-amp1-id==1.0

mark-amphora-pending-delete-amp1-id==1.0

mark-amphora-health-busy-amp1-id==1.0

delete-amphora-amp1-id==1.0

disable-amphora-health-monitoring-amp1-id==1.0

mark-amphora-deleted-amp1-id==1.0

delete-port-amp1-id-vrrp_port-1-id==1.0

linear_flow.Flow: octavia-delete-amphora-flow-amp1-id(len=7)[$]

octavia.controller.worker.v2.tasks.database_tasks.DisableAmphoraHealthMonitoring==1.0

octavia.controller.worker.v2.tasks.database_tasks.GetLoadBalancer==1.0

get-amphorae-from-lb==1.0

amphorae-get-connectivity-status==1.0

unordered_flow.Flow: octavia-update-amps-subflow(len=2)

0-octavia-amp-listeners-update==1.0 1-octavia-amp-listeners-update==1.0

unordered_flow.Flow: octavia-update-amps-subflow(len=2)[$]

linear_flow.Flow: octavia-get-vrrp-subflow-octavia-get-vrrp-subflow(len=2)

octavia-get-vrrp-subflow-octavia-get-vrrp-subflow-octavia-amp-get-network-config==1.0

unordered_flow.Flow: VRRP-update-subflow(len=2)

linear_flow.Flow: VRRP-amp-0-update-subflow(len=3) linear_flow.Flow: VRRP-amp-1-update-subflow(len=3)

octavia-get-vrrp-subflow-octavia-get-vrrp-subflow-0-octavia-amphora-update-vrrp-intf==1.0

octavia-get-vrrp-subflow-octavia-get-vrrp-subflow-0-octavia-amphora-vrrp-update==1.0

octavia-get-vrrp-subflow-octavia-get-vrrp-subflow-0-octavia-amphora-vrrp-start==1.0

linear_flow.Flow: VRRP-amp-0-update-subflow(len=3)[$]

unordered_flow.Flow: VRRP-update-subflow(len=2)[$]

octavia-get-vrrp-subflow-octavia-get-vrrp-subflow-1-octavia-amphora-update-vrrp-intf==1.0

octavia-get-vrrp-subflow-octavia-get-vrrp-subflow-1-octavia-amphora-vrrp-update==1.0

octavia-get-vrrp-subflow-octavia-get-vrrp-subflow-1-octavia-amphora-vrrp-start==1.0

linear_flow.Flow: VRRP-amp-1-update-subflow(len=3)[$]

linear_flow.Flow: octavia-get-vrrp-subflow-octavia-get-vrrp-subflow(len=2)[$]

unordered_flow.Flow: amphora-listener-start-subflow(len=2)

0-amphora-reload-listener==1.0 1-amphora-reload-listener==1.0

unordered_flow.Flow: amphora-listener-start-subflow(len=2)[$]

octavia.controller.worker.v2.tasks.database_tasks.MarkLBActiveInDB==1.0

linear_flow.Flow: octavia-failover-amphora-flow(len=15)[$]4.2. Contributor Reference 233

Octavia Documentation, Release 15.1.0.dev35

Health Monitor Flows

Contents

• Health Monitor Flows

– get_create_health_monitor_flow

– get_delete_health_monitor_flow

– get_update_health_monitor_flow

get_create_health_monitor_flow

linear_flow.Flow: octavia-create-health-monitor-flow(len=6)

octavia.controller.worker.v2.tasks.lifecycle_tasks.HealthMonitorToErrorOnRevertTask==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkHealthMonitorPendingCreateInDB==1.0

octavia.controller.worker.v2.tasks.amphora_driver_tasks.ListenersUpdate==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkHealthMonitorActiveInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkPoolActiveInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkLBAndListenersActiveInDB==1.0

linear_flow.Flow: octavia-create-health-monitor-flow(len=6)[$]

4.2. Contributor Reference 234

Octavia Documentation, Release 15.1.0.dev35

get_delete_health_monitor_flow

linear_flow.Flow: octavia-delete-health-monitor-flow(len=8)

octavia.controller.worker.v2.tasks.lifecycle_tasks.HealthMonitorToErrorOnRevertTask==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkHealthMonitorPendingDeleteInDB==1.0

octavia.controller.worker.v2.tasks.amphora_driver_tasks.ListenersUpdate==1.0

octavia.controller.worker.v2.tasks.database_tasks.DeleteHealthMonitorInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.DecrementHealthMonitorQuota==1.0

octavia.controller.worker.v2.tasks.database_tasks.UpdatePoolMembersOperatingStatusInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkPoolActiveInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkLBAndListenersActiveInDB==1.0

linear_flow.Flow: octavia-delete-health-monitor-flow(len=8)[$]

4.2. Contributor Reference 235

Octavia Documentation, Release 15.1.0.dev35

get_update_health_monitor_flow

linear_flow.Flow: octavia-update-health-monitor-flow(len=7)

octavia.controller.worker.v2.tasks.lifecycle_tasks.HealthMonitorToErrorOnRevertTask==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkHealthMonitorPendingUpdateInDB==1.0

octavia.controller.worker.v2.tasks.amphora_driver_tasks.ListenersUpdate==1.0

octavia.controller.worker.v2.tasks.database_tasks.UpdateHealthMonInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkHealthMonitorActiveInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkPoolActiveInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkLBAndListenersActiveInDB==1.0

linear_flow.Flow: octavia-update-health-monitor-flow(len=7)[$]

Layer 7 Policy Flows

Contents

• Layer 7 Policy Flows

– get_create_l7policy_flow

– get_delete_l7policy_flow

– get_update_l7policy_flow

4.2. Contributor Reference 236

Octavia Documentation, Release 15.1.0.dev35

get_create_l7policy_flow

linear_flow.Flow: octavia-create-l7policy-flow(len=5)

octavia.controller.worker.v2.tasks.lifecycle_tasks.L7PolicyToErrorOnRevertTask==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkL7PolicyPendingCreateInDB==1.0

octavia.controller.worker.v2.tasks.amphora_driver_tasks.ListenersUpdate==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkL7PolicyActiveInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkLBAndListenersActiveInDB==1.0

linear_flow.Flow: octavia-create-l7policy-flow(len=5)[$]

4.2. Contributor Reference 237

Octavia Documentation, Release 15.1.0.dev35

get_delete_l7policy_flow

linear_flow.Flow: octavia-delete-l7policy-flow(len=6)

octavia.controller.worker.v2.tasks.lifecycle_tasks.L7PolicyToErrorOnRevertTask==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkL7PolicyPendingDeleteInDB==1.0

octavia.controller.worker.v2.tasks.amphora_driver_tasks.ListenersUpdate==1.0

octavia.controller.worker.v2.tasks.database_tasks.DeleteL7PolicyInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.DecrementL7policyQuota==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkLBAndListenersActiveInDB==1.0

linear_flow.Flow: octavia-delete-l7policy-flow(len=6)[$]

4.2. Contributor Reference 238

Octavia Documentation, Release 15.1.0.dev35

get_update_l7policy_flow

linear_flow.Flow: octavia-update-l7policy-flow(len=6)

octavia.controller.worker.v2.tasks.lifecycle_tasks.L7PolicyToErrorOnRevertTask==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkL7PolicyPendingUpdateInDB==1.0

octavia.controller.worker.v2.tasks.amphora_driver_tasks.ListenersUpdate==1.0

octavia.controller.worker.v2.tasks.database_tasks.UpdateL7PolicyInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkL7PolicyActiveInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkLBAndListenersActiveInDB==1.0

linear_flow.Flow: octavia-update-l7policy-flow(len=6)[$]

Layer 7 Rule Flows

Contents

• Layer 7 Rule Flows

– get_create_l7rule_flow

– get_delete_l7rule_flow

– get_update_l7rule_flow

4.2. Contributor Reference 239

Octavia Documentation, Release 15.1.0.dev35

get_create_l7rule_flow

linear_flow.Flow: octavia-create-l7rule-flow(len=6)

octavia.controller.worker.v2.tasks.lifecycle_tasks.L7RuleToErrorOnRevertTask==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkL7RulePendingCreateInDB==1.0

octavia.controller.worker.v2.tasks.amphora_driver_tasks.ListenersUpdate==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkL7RuleActiveInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkL7PolicyActiveInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkLBAndListenersActiveInDB==1.0

linear_flow.Flow: octavia-create-l7rule-flow(len=6)[$]

4.2. Contributor Reference 240

Octavia Documentation, Release 15.1.0.dev35

get_delete_l7rule_flow

linear_flow.Flow: octavia-delete-l7policy-flow(len=7)

octavia.controller.worker.v2.tasks.lifecycle_tasks.L7RuleToErrorOnRevertTask==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkL7RulePendingDeleteInDB==1.0

octavia.controller.worker.v2.tasks.amphora_driver_tasks.ListenersUpdate==1.0

octavia.controller.worker.v2.tasks.database_tasks.DeleteL7RuleInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.DecrementL7ruleQuota==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkL7PolicyActiveInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkLBAndListenersActiveInDB==1.0

linear_flow.Flow: octavia-delete-l7policy-flow(len=7)[$]

4.2. Contributor Reference 241

Octavia Documentation, Release 15.1.0.dev35

get_update_l7rule_flow

linear_flow.Flow: octavia-update-l7rule-flow(len=7)

octavia.controller.worker.v2.tasks.lifecycle_tasks.L7RuleToErrorOnRevertTask==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkL7RulePendingUpdateInDB==1.0

octavia.controller.worker.v2.tasks.amphora_driver_tasks.ListenersUpdate==1.0

octavia.controller.worker.v2.tasks.database_tasks.UpdateL7RuleInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkL7RuleActiveInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkL7PolicyActiveInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkLBAndListenersActiveInDB==1.0

linear_flow.Flow: octavia-update-l7rule-flow(len=7)[$]

Listener Flows

Contents

• Listener Flows

– get_create_all_listeners_flow

– get_create_listener_flow

– get_delete_listener_flow

– get_update_listener_flow

4.2. Contributor Reference 242

Octavia Documentation, Release 15.1.0.dev35

get_create_all_listeners_flow

linear_flow.Flow: octavia-create-all-listeners-flow(len=5)

octavia.controller.worker.v2.tasks.database_tasks.GetListenersFromLoadbalancer==1.0

octavia.controller.worker.v2.tasks.database_tasks.ReloadLoadBalancer==1.0

octavia.controller.worker.v2.tasks.amphora_driver_tasks.ListenersUpdate==1.0

octavia.controller.worker.v2.tasks.network_tasks.UpdateVIP==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkHealthMonitorsOnlineInDB==1.0

linear_flow.Flow: octavia-create-all-listeners-flow(len=5)[$]

get_create_listener_flow

linear_flow.Flow: octavia-create-listener_flow(len=4)

octavia.controller.worker.v2.tasks.lifecycle_tasks.ListenersToErrorOnRevertTask==1.0

octavia.controller.worker.v2.tasks.amphora_driver_tasks.ListenersUpdate==1.0

octavia.controller.worker.v2.tasks.network_tasks.UpdateVIP==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkLBAndListenersActiveInDB==1.0

linear_flow.Flow: octavia-create-listener_flow(len=4)[$]

4.2. Contributor Reference 243

Octavia Documentation, Release 15.1.0.dev35

get_delete_listener_flow

linear_flow.Flow: octavia-delete-listener_flow(len=6)

octavia.controller.worker.v2.tasks.lifecycle_tasks.ListenerToErrorOnRevertTask==1.0

octavia.controller.worker.v2.tasks.amphora_driver_tasks.ListenerDelete==1.0

octavia.controller.worker.v2.tasks.network_tasks.UpdateVIPForDelete==1.0

octavia.controller.worker.v2.tasks.database_tasks.DeleteListenerInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.DecrementListenerQuota==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkLBActiveInDBByListener==1.0

linear_flow.Flow: octavia-delete-listener_flow(len=6)[$]

4.2. Contributor Reference 244

Octavia Documentation, Release 15.1.0.dev35

get_update_listener_flow

linear_flow.Flow: octavia-update-listener-flow(len=5)

octavia.controller.worker.v2.tasks.lifecycle_tasks.ListenerToErrorOnRevertTask==1.0

octavia.controller.worker.v2.tasks.amphora_driver_tasks.ListenersUpdate==1.0

octavia.controller.worker.v2.tasks.network_tasks.UpdateVIP==1.0

octavia.controller.worker.v2.tasks.database_tasks.UpdateListenerInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkLBAndListenersActiveInDB==1.0

linear_flow.Flow: octavia-update-listener-flow(len=5)[$]

Load Balancer Flows

Contents

• Load Balancer Flows

– get_cascade_delete_load_balancer_flow

– get_create_load_balancer_flow

– get_delete_load_balancer_flow

– get_failover_LB_flow

– get_update_load_balancer_flow

4.2. Contributor Reference 245

Octavia Documentation, Release 15.1.0.dev35

get_cascade_delete_load_balancer_flow

linear_flow.Flow: octavia-delete-loadbalancer-flow(len=13)

octavia.controller.worker.v2.tasks.lifecycle_tasks.LoadBalancerToErrorOnRevertTask==1.0

octavia.controller.worker.v2.tasks.compute_tasks.NovaServerGroupDelete==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkLBAmphoraeHealthBusy==1.0

unordered_flow.Flow: pool_delete_flow(len=2)

linear_flow.Flow: octavia-delete-pool-flow-6886a40b-1f2a-41a3-9ece-5c51845a7ac4(len=4) linear_flow.Flow: octavia-delete-pool-flow-08ada7a2-3eff-42c6-bdd8-b6f2ecd73358(len=4)

mark_pool_pending_delete_in_db_6886a40b-1f2a-41a3-9ece-5c51845a7ac4==1.0

count_pool_children_for_quota_6886a40b-1f2a-41a3-9ece-5c51845a7ac4==1.0

delete_pool_in_db_6886a40b-1f2a-41a3-9ece-5c51845a7ac4==1.0

decrement_pool_quota_6886a40b-1f2a-41a3-9ece-5c51845a7ac4==1.0

linear_flow.Flow: octavia-delete-pool-flow-6886a40b-1f2a-41a3-9ece-5c51845a7ac4(len=4)[$]

unordered_flow.Flow: pool_delete_flow(len=2)[$]

mark_pool_pending_delete_in_db_08ada7a2-3eff-42c6-bdd8-b6f2ecd73358==1.0

count_pool_children_for_quota_08ada7a2-3eff-42c6-bdd8-b6f2ecd73358==1.0

delete_pool_in_db_08ada7a2-3eff-42c6-bdd8-b6f2ecd73358==1.0

decrement_pool_quota_08ada7a2-3eff-42c6-bdd8-b6f2ecd73358==1.0

linear_flow.Flow: octavia-delete-pool-flow-08ada7a2-3eff-42c6-bdd8-b6f2ecd73358(len=4)[$]

unordered_flow.Flow: listeners_delete_flow(len=2)

linear_flow.Flow: octavia-delete-listener_flow-368dffc7-7440-4ee0-aca5-11052d001b05(len=3) linear_flow.Flow: octavia-delete-listener_flow-d9c45ec4-9dbe-491b-9f21-6886562348bf(len=3)

delete_update_vip_368dffc7-7440-4ee0-aca5-11052d001b05==1.0

delete_listener_in_db_368dffc7-7440-4ee0-aca5-11052d001b05==1.0

decrement_listener_quota_368dffc7-7440-4ee0-aca5-11052d001b05==1.0

linear_flow.Flow: octavia-delete-listener_flow-368dffc7-7440-4ee0-aca5-11052d001b05(len=3)[$]

unordered_flow.Flow: listeners_delete_flow(len=2)[$]

delete_update_vip_d9c45ec4-9dbe-491b-9f21-6886562348bf==1.0

delete_listener_in_db_d9c45ec4-9dbe-491b-9f21-6886562348bf==1.0

decrement_listener_quota_d9c45ec4-9dbe-491b-9f21-6886562348bf==1.0

linear_flow.Flow: octavia-delete-listener_flow-d9c45ec4-9dbe-491b-9f21-6886562348bf(len=3)[$]

octavia.controller.worker.v2.tasks.network_tasks.UnplugVIP==1.0

octavia.controller.worker.v2.tasks.network_tasks.DeallocateVIP==1.0

octavia.controller.worker.v2.tasks.compute_tasks.DeleteAmphoraeOnLoadBalancer==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkLBAmphoraeDeletedInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.DisableLBAmphoraeHealthMonitoring==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkLBDeletedInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.DecrementLoadBalancerQuota==1.0

octavia.controller.worker.v2.tasks.notification_tasks.SendDeleteNotification==1.0

linear_flow.Flow: octavia-delete-loadbalancer-flow(len=13)[$]

4.2. Contributor Reference 246

Octavia Documentation, Release 15.1.0.dev35

4.2. Contributor Reference 247

Octavia Documentation, Release 15.1.0.dev35

get_create_load_balancer_flow

linear_flow.Flow: octavia-create-loadbalancer-flow(len=11)

octavia.controller.worker.v2.tasks.lifecycle_tasks.LoadBalancerIDToErrorOnRevertTask==1.0

reload-lb-before-allocate-vip==1.0

octavia.controller.worker.v2.tasks.network_tasks.AllocateVIP==1.0

octavia.controller.worker.v2.tasks.database_tasks.UpdateVIPAfterAllocation==1.0

octavia.controller.worker.v2.tasks.database_tasks.UpdateAdditionalVIPsAfterAllocation==1.0

octavia.controller.worker.v2.tasks.network_tasks.UpdateVIPSecurityGroup==1.0

octavia.controller.worker.v2.tasks.network_tasks.GetSubnetFromVIP==1.0

unordered_flow.Flow: octavia-create-loadbalancer-flow(len=2)

linear_flow.Flow: MASTER-octavia-plug-net-subflow(len=6) linear_flow.Flow: BACKUP-octavia-plug-net-subflow(len=6)

linear_flow.Flow: MASTER-octavia-create-amp-for-lb-subflow(len=12)

MASTER-octavia-create-amp-for-lb-subflow-octavia-create-amphora-indb==1.0

MASTER-octavia-create-amp-for-lb-subflow-octavia-generate-serverpem==1.0

MASTER-octavia-create-amp-for-lb-subflow-octavia-update-cert-expiration==1.0

MASTER-octavia-create-amp-for-lb-subflow-octavia-cert-compute-create==1.0

MASTER-octavia-create-amp-for-lb-subflow-octavia-update-amphora-computeid==1.0

MASTER-octavia-create-amp-for-lb-subflow-octavia-mark-amphora-booting-indb==1.0

linear_flow.Flow: MASTER-octavia-create-amp-for-lb-subflow-octavia-compute-create-retry-subflow(len=1)

MASTER-octavia-create-amp-for-lb-subflow-octavia-compute-create-retry-subflow_retry==1.0

MASTER-octavia-create-amp-for-lb-subflow-octavia-compute-wait==1.0

linear_flow.Flow: MASTER-octavia-create-amp-for-lb-subflow-octavia-compute-create-retry-subflow(len=1)[$]

MASTER-octavia-create-amp-for-lb-subflow-octavia-update-amphora-info==1.0

linear_flow.Flow: MASTER-octavia-create-amp-for-lb-subflow-octavia-create-amphora-retry-subflow(len=1)

MASTER-octavia-create-amp-for-lb-subflow-octavia-create-amphora-retry-subflow_retry==1.0

MASTER-octavia-create-amp-for-lb-subflow-octavia-amp-compute-connectivity-wait==1.0

linear_flow.Flow: MASTER-octavia-create-amp-for-lb-subflow-octavia-create-amphora-retry-subflow(len=1)[$]

MASTER-octavia-create-amp-for-lb-subflow-octavia-amphora-finalize==1.0

MASTER-octavia-create-amp-for-lb-subflow-octavia-mark-amphora-allocated-indb==1.0

MASTER-octavia-create-amp-for-lb-subflow-octavia-mark-amp-master-indb==1.0

linear_flow.Flow: MASTER-octavia-create-amp-for-lb-subflow(len=12)[$]

MASTER-octavia-plug-net-subflow-octavia-amp-plug-vip==1.0

MASTER-octavia-plug-net-subflow-octavia-amp-apply-qos==1.0

MASTER-octavia-plug-net-subflow-ocatvia-amp-update-vip-data==1.0

MASTER-octavia-plug-net-subflow-octavia-amp-get-network-config==1.0

MASTER-octavia-plug-net-subflow-octavia-amp-post-vip-plug==1.0

linear_flow.Flow: MASTER-octavia-plug-net-subflow(len=6)[$]

unordered_flow.Flow: octavia-create-loadbalancer-flow(len=2)[$]

linear_flow.Flow: BACKUP-octavia-create-amp-for-lb-subflow(len=12)

BACKUP-octavia-create-amp-for-lb-subflow-octavia-create-amphora-indb==1.0

BACKUP-octavia-create-amp-for-lb-subflow-octavia-generate-serverpem==1.0

BACKUP-octavia-create-amp-for-lb-subflow-octavia-update-cert-expiration==1.0

BACKUP-octavia-create-amp-for-lb-subflow-octavia-cert-compute-create==1.0

BACKUP-octavia-create-amp-for-lb-subflow-octavia-update-amphora-computeid==1.0

BACKUP-octavia-create-amp-for-lb-subflow-octavia-mark-amphora-booting-indb==1.0

linear_flow.Flow: BACKUP-octavia-create-amp-for-lb-subflow-octavia-compute-create-retry-subflow(len=1)

BACKUP-octavia-create-amp-for-lb-subflow-octavia-compute-create-retry-subflow_retry==1.0

BACKUP-octavia-create-amp-for-lb-subflow-octavia-compute-wait==1.0

linear_flow.Flow: BACKUP-octavia-create-amp-for-lb-subflow-octavia-compute-create-retry-subflow(len=1)[$]

BACKUP-octavia-create-amp-for-lb-subflow-octavia-update-amphora-info==1.0

linear_flow.Flow: BACKUP-octavia-create-amp-for-lb-subflow-octavia-create-amphora-retry-subflow(len=1)

BACKUP-octavia-create-amp-for-lb-subflow-octavia-create-amphora-retry-subflow_retry==1.0

BACKUP-octavia-create-amp-for-lb-subflow-octavia-amp-compute-connectivity-wait==1.0

linear_flow.Flow: BACKUP-octavia-create-amp-for-lb-subflow-octavia-create-amphora-retry-subflow(len=1)[$]

BACKUP-octavia-create-amp-for-lb-subflow-octavia-amphora-finalize==1.0

BACKUP-octavia-create-amp-for-lb-subflow-octavia-mark-amphora-allocated-indb==1.0

BACKUP-octavia-create-amp-for-lb-subflow-octavia-mark-amp-backup-indb==1.0

linear_flow.Flow: BACKUP-octavia-create-amp-for-lb-subflow(len=12)[$]

BACKUP-octavia-plug-net-subflow-octavia-amp-plug-vip==1.0

BACKUP-octavia-plug-net-subflow-octavia-amp-apply-qos==1.0

BACKUP-octavia-plug-net-subflow-ocatvia-amp-update-vip-data==1.0

BACKUP-octavia-plug-net-subflow-octavia-amp-get-network-config==1.0

BACKUP-octavia-plug-net-subflow-octavia-amp-post-vip-plug==1.0

linear_flow.Flow: BACKUP-octavia-plug-net-subflow(len=6)[$]

linear_flow.Flow: octavia-post-loadbalancer-amp_association-subflow-octavia-post-loadbalancer-amp_association-subflow(len=4)

octavia-post-loadbalancer-amp_association-subflow-octavia-post-loadbalancer-amp_association-subflow-reload-lb-after-amp-assoc==1.0

octavia.controller.worker.v2.tasks.database_tasks.GetAmphoraeFromLoadbalancer==1.0

linear_flow.Flow: octavia-post-loadbalancer-amp_association-subflow-octavia-get-vrrp-subflow(len=4)

octavia-post-loadbalancer-amp_association-subflow-octavia-get-vrrp-subflow-octavia-create-vrrp-group-for-lb==1.0

octavia-post-loadbalancer-amp_association-subflow-octavia-get-vrrp-subflow-octavia-amp-get-network-config==1.0

amphorae-get-connectivity-status==1.0

unordered_flow.Flow: VRRP-update-subflow(len=2)

linear_flow.Flow: VRRP-amp-0-update-subflow(len=3) linear_flow.Flow: VRRP-amp-1-update-subflow(len=3)

octavia-post-loadbalancer-amp_association-subflow-octavia-get-vrrp-subflow-0-octavia-amphora-update-vrrp-intf==1.0

octavia-post-loadbalancer-amp_association-subflow-octavia-get-vrrp-subflow-0-octavia-amphora-vrrp-update==1.0

octavia-post-loadbalancer-amp_association-subflow-octavia-get-vrrp-subflow-0-octavia-amphora-vrrp-start==1.0

linear_flow.Flow: VRRP-amp-0-update-subflow(len=3)[$]

unordered_flow.Flow: VRRP-update-subflow(len=2)[$]

octavia-post-loadbalancer-amp_association-subflow-octavia-get-vrrp-subflow-1-octavia-amphora-update-vrrp-intf==1.0

octavia-post-loadbalancer-amp_association-subflow-octavia-get-vrrp-subflow-1-octavia-amphora-vrrp-update==1.0

octavia-post-loadbalancer-amp_association-subflow-octavia-get-vrrp-subflow-1-octavia-amphora-vrrp-start==1.0

linear_flow.Flow: VRRP-amp-1-update-subflow(len=3)[$]

linear_flow.Flow: octavia-post-loadbalancer-amp_association-subflow-octavia-get-vrrp-subflow(len=4)[$]

octavia.controller.worker.v2.tasks.database_tasks.UpdateLoadbalancerInDB==1.0

linear_flow.Flow: octavia-post-loadbalancer-amp_association-subflow-octavia-post-loadbalancer-amp_association-subflow(len=4)[$]

octavia.controller.worker.v2.tasks.database_tasks.MarkLBActiveInDB==1.0

octavia.controller.worker.v2.tasks.notification_tasks.SendCreateNotification==1.0

linear_flow.Flow: octavia-create-loadbalancer-flow(len=11)[$]4.2. Contributor Reference 248

Octavia Documentation, Release 15.1.0.dev35

get_delete_load_balancer_flow

linear_flow.Flow: octavia-delete-loadbalancer-flow(len=11)

octavia.controller.worker.v2.tasks.lifecycle_tasks.LoadBalancerToErrorOnRevertTask==1.0

octavia.controller.worker.v2.tasks.compute_tasks.NovaServerGroupDelete==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkLBAmphoraeHealthBusy==1.0

octavia.controller.worker.v2.tasks.network_tasks.UnplugVIP==1.0

octavia.controller.worker.v2.tasks.network_tasks.DeallocateVIP==1.0

octavia.controller.worker.v2.tasks.compute_tasks.DeleteAmphoraeOnLoadBalancer==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkLBAmphoraeDeletedInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.DisableLBAmphoraeHealthMonitoring==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkLBDeletedInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.DecrementLoadBalancerQuota==1.0

octavia.controller.worker.v2.tasks.notification_tasks.SendDeleteNotification==1.0

linear_flow.Flow: octavia-delete-loadbalancer-flow(len=11)[$]

4.2. Contributor Reference 249

Octavia Documentation, Release 15.1.0.dev35

4.2. Contributor Reference 250

Octavia Documentation, Release 15.1.0.dev35

get_failover_LB_flow
linear_flow.Flow: octavia-failover-loadbalancer-flow(len=32)

octavia.controller.worker.v2.tasks.lifecycle_tasks.LoadBalancerToErrorOnRevertTask==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkAmphoraPendingDeleteInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkAmphoraHealthBusy==1.0

octavia.controller.worker.v2.tasks.network_tasks.AllocateVIPforFailover==1.0

octavia.controller.worker.v2.tasks.database_tasks.UpdateVIPAfterAllocation==1.0

octavia.controller.worker.v2.tasks.database_tasks.UpdateAdditionalVIPsAfterAllocation==1.0

octavia.controller.worker.v2.tasks.network_tasks.UpdateVIPSecurityGroup==1.0

linear_flow.Flow: octavia-failover-loadbalancer-flow-octavia-create-amp-for-failover-subflow(len=9)

linear_flow.Flow: octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow(len=12)

octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-create-amphora-indb==1.0

octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-generate-serverpem==1.0

octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-update-cert-expiration==1.0

octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-cert-compute-create==1.0

octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-update-amphora-computeid==1.0

octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-mark-amphora-booting-indb==1.0

linear_flow.Flow: octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-compute-create-retry-subflow(len=1)

octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-compute-create-retry-subflow_retry==1.0

octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-compute-wait==1.0

linear_flow.Flow: octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-compute-create-retry-subflow(len=1)[$]

octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-update-amphora-info==1.0

linear_flow.Flow: octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-create-amphora-retry-subflow(len=1)

octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-create-amphora-retry-subflow_retry==1.0

octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-amp-compute-connectivity-wait==1.0

linear_flow.Flow: octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-create-amphora-retry-subflow(len=1)[$]

octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-amphora-finalize==1.0

octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-mark-amphora-allocated-indb==1.0

octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-mark-amp-backup-indb==1.0

linear_flow.Flow: octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow(len=12)[$]

octavia-failover-loadbalancer-flow-create-vip-base-port==1.0

octavia-failover-loadbalancer-flow-attach-port==1.0

octavia-failover-loadbalancer-flow-update-amp-failover-details==1.0

octavia-failover-loadbalancer-flow-get-amphora-network-configs-by-id==1.0

octavia-failover-loadbalancer-flow-amphora-post-vip-plug==1.0

octavia-failover-loadbalancer-flow-calculate-amphora-delta==1.0

octavia-failover-loadbalancer-flow-handle-network-delta==1.0

octavia-failover-loadbalancer-flow-amphorae-post-network-plug==1.0

linear_flow.Flow: octavia-failover-loadbalancer-flow-octavia-create-amp-for-failover-subflow(len=9)[$]

octavia-mark-amp-backup-indb==1.0

linear_flow.Flow: octavia-delete-amphora-flow-amp4-id(len=7)

retry-octavia-delete-amphora-flow-amp4-id==1.0

amphora-to-error-on-revert-amp4-id==1.0

mark-amphora-pending-delete-amp4-id==1.0

mark-amphora-health-busy-amp4-id==1.0

delete-amphora-amp4-id==1.0

disable-amphora-health-monitoring-amp4-id==1.0

mark-amphora-deleted-amp4-id==1.0

delete-port-amp4-id-vrrp_port-4-id==1.0

linear_flow.Flow: octavia-delete-amphora-flow-amp4-id(len=7)[$]

octavia.controller.worker.v2.tasks.database_tasks.ReloadLoadBalancer==1.0

octavia-amp-listeners-update==1.0

BACKUP-octavia-create-vrrp-group-for-lb==1.0

BACKUP-get-amphora-network-configs-by-id==1.0

BACKUP-octavia-amphora-update-vrrp-intf==1.0

BACKUP-octavia-amphora-vrrp-update==1.0

BACKUP-octavia-amphora-vrrp-start==1.0

BACKUP-octavia-amp-listeners-start==1.0

MASTER-mark-amphora-pending-delete==1.0

MASTER-mark-amphora-health-busy==1.0

linear_flow.Flow: MASTER-octavia-failover-loadbalancer-flow-octavia-create-amp-for-failover-subflow(len=9)

linear_flow.Flow: MASTER-octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow(len=12)

MASTER-octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-create-amphora-indb==1.0

MASTER-octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-generate-serverpem==1.0

MASTER-octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-update-cert-expiration==1.0

MASTER-octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-cert-compute-create==1.0

MASTER-octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-update-amphora-computeid==1.0

MASTER-octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-mark-amphora-booting-indb==1.0

linear_flow.Flow: MASTER-octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-compute-create-retry-subflow(len=1)

MASTER-octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-compute-create-retry-subflow_retry==1.0

MASTER-octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-compute-wait==1.0

linear_flow.Flow: MASTER-octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-compute-create-retry-subflow(len=1)[$]

MASTER-octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-update-amphora-info==1.0

linear_flow.Flow: MASTER-octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-create-amphora-retry-subflow(len=1)

MASTER-octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-create-amphora-retry-subflow_retry==1.0

MASTER-octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-amp-compute-connectivity-wait==1.0

linear_flow.Flow: MASTER-octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-create-amphora-retry-subflow(len=1)[$]

MASTER-octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-amphora-finalize==1.0

MASTER-octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-mark-amphora-allocated-indb==1.0

MASTER-octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow-octavia-mark-amp-master-indb==1.0

linear_flow.Flow: MASTER-octavia-failover-loadbalancer-flow-octavia-failover-loadbalancer-flow-octavia-create-amp-for-lb-subflow(len=12)[$]

MASTER-octavia-failover-loadbalancer-flow-create-vip-base-port==1.0

MASTER-octavia-failover-loadbalancer-flow-attach-port==1.0

MASTER-octavia-failover-loadbalancer-flow-update-amp-failover-details==1.0

MASTER-octavia-failover-loadbalancer-flow-get-amphora-network-configs-by-id==1.0

MASTER-octavia-failover-loadbalancer-flow-amphora-post-vip-plug==1.0

MASTER-octavia-failover-loadbalancer-flow-calculate-amphora-delta==1.0

MASTER-octavia-failover-loadbalancer-flow-handle-network-delta==1.0

MASTER-octavia-failover-loadbalancer-flow-amphorae-post-network-plug==1.0

linear_flow.Flow: MASTER-octavia-failover-loadbalancer-flow-octavia-create-amp-for-failover-subflow(len=9)[$]

octavia-mark-amp-master-indb==1.0

linear_flow.Flow: octavia-delete-amphora-flow-amp3-id(len=7)

retry-octavia-delete-amphora-flow-amp3-id==1.0

amphora-to-error-on-revert-amp3-id==1.0

mark-amphora-pending-delete-amp3-id==1.0

mark-amphora-health-busy-amp3-id==1.0

delete-amphora-amp3-id==1.0

disable-amphora-health-monitoring-amp3-id==1.0

mark-amphora-deleted-amp3-id==1.0

delete-port-amp3-id-vrrp_port-3-id==1.0

linear_flow.Flow: octavia-delete-amphora-flow-amp3-id(len=7)[$]

MASTER-disable-amphora-health-monitoring==1.0

unordered_flow.Flow: octavia-delete-extra-amphorae-flow(len=0)

unordered_flow.Flow: octavia-delete-extra-amphorae-flow(len=0)[$]

MASTER-reload-lb-after-amp-assoc==1.0

MASTER-get-amphorae-from-lb==1.0

MASTER-amphorae-get-connectivity-status==1.0

unordered_flow.Flow: octavia-update-amps-subflow(len=2)

amphora-0-octavia-amp-listeners-update==1.0 amphora-1-octavia-amp-listeners-update==1.0

unordered_flow.Flow: octavia-update-amps-subflow(len=2)[$]

linear_flow.Flow: MASTER-octavia-get-vrrp-subflow-octavia-get-vrrp-subflow(len=2)

MASTER-octavia-get-vrrp-subflow-octavia-get-vrrp-subflow-octavia-amp-get-network-config==1.0

unordered_flow.Flow: VRRP-update-subflow(len=2)

linear_flow.Flow: VRRP-amp-0-update-subflow(len=3) linear_flow.Flow: VRRP-amp-1-update-subflow(len=3)

MASTER-octavia-get-vrrp-subflow-octavia-get-vrrp-subflow-0-octavia-amphora-update-vrrp-intf==1.0

MASTER-octavia-get-vrrp-subflow-octavia-get-vrrp-subflow-0-octavia-amphora-vrrp-update==1.0

MASTER-octavia-get-vrrp-subflow-octavia-get-vrrp-subflow-0-octavia-amphora-vrrp-start==1.0

linear_flow.Flow: VRRP-amp-0-update-subflow(len=3)[$]

unordered_flow.Flow: VRRP-update-subflow(len=2)[$]

MASTER-octavia-get-vrrp-subflow-octavia-get-vrrp-subflow-1-octavia-amphora-update-vrrp-intf==1.0

MASTER-octavia-get-vrrp-subflow-octavia-get-vrrp-subflow-1-octavia-amphora-vrrp-update==1.0

MASTER-octavia-get-vrrp-subflow-octavia-get-vrrp-subflow-1-octavia-amphora-vrrp-start==1.0

linear_flow.Flow: VRRP-amp-1-update-subflow(len=3)[$]

linear_flow.Flow: MASTER-octavia-get-vrrp-subflow-octavia-get-vrrp-subflow(len=2)[$]

MASTER-amphora-reload-listener==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkLBActiveInDB==1.0

linear_flow.Flow: octavia-failover-loadbalancer-flow(len=32)[$]4.2. Contributor Reference 251

Octavia Documentation, Release 15.1.0.dev35

get_update_load_balancer_flow

linear_flow.Flow: octavia-update-loadbalancer-flow(len=6)

octavia.controller.worker.v2.tasks.lifecycle_tasks.LoadBalancerToErrorOnRevertTask==1.0

octavia.controller.worker.v2.tasks.network_tasks.ApplyQos==1.0

octavia.controller.worker.v2.tasks.amphora_driver_tasks.ListenersUpdate==1.0

octavia.controller.worker.v2.tasks.database_tasks.UpdateLoadbalancerInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkLBActiveInDB==1.0

octavia.controller.worker.v2.tasks.notification_tasks.SendUpdateNotification==1.0

linear_flow.Flow: octavia-update-loadbalancer-flow(len=6)[$]

Member Flows

Contents

• Member Flows

– get_batch_update_members_flow

– get_create_member_flow

– get_delete_member_flow

– get_update_member_flow

4.2. Contributor Reference 252

Octavia Documentation, Release 15.1.0.dev35

get_batch_update_members_flow

linear_flow.Flow: octavia-batch-update-members-flow(len=9)

unordered_flow.Flow: octavia-unordered-member-updates-flow(len=3)

octavia-member-to-error-on-revert-flow-deleted==1.0 octavia-member-to-error-on-revert-flow-created==1.0 octavia-member-to-error-on-revert-flow-updated==1.0

unordered_flow.Flow: octavia-unordered-member-updates-flow(len=3)[$]

octavia.controller.worker.v2.tasks.network_tasks.CalculateDelta==1.0

octavia.controller.worker.v2.tasks.network_tasks.HandleNetworkDeltas==1.0

octavia.controller.worker.v2.tasks.network_tasks.GetAmphoraeNetworkConfigs==1.0

octavia.controller.worker.v2.tasks.amphora_driver_tasks.AmphoraePostNetworkPlug==1.0

octavia.controller.worker.v2.tasks.amphora_driver_tasks.ListenersUpdate==1.0

unordered_flow.Flow: octavia-unordered-member-active-flow(len=0)

unordered_flow.Flow: octavia-unordered-member-active-flow(len=0)[$]

octavia.controller.worker.v2.tasks.database_tasks.MarkPoolActiveInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkLBAndListenersActiveInDB==1.0

linear_flow.Flow: octavia-batch-update-members-flow(len=9)[$]

4.2. Contributor Reference 253

Octavia Documentation, Release 15.1.0.dev35

get_create_member_flow

linear_flow.Flow: octavia-create-member-flow(len=10)

octavia.controller.worker.v2.tasks.lifecycle_tasks.MemberToErrorOnRevertTask==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkMemberPendingCreateInDB==1.0

octavia.controller.worker.v2.tasks.network_tasks.CalculateDelta==1.0

octavia.controller.worker.v2.tasks.network_tasks.HandleNetworkDeltas==1.0

octavia.controller.worker.v2.tasks.network_tasks.GetAmphoraeNetworkConfigs==1.0

octavia.controller.worker.v2.tasks.amphora_driver_tasks.AmphoraePostNetworkPlug==1.0

octavia.controller.worker.v2.tasks.amphora_driver_tasks.ListenersUpdate==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkMemberActiveInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkPoolActiveInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkLBAndListenersActiveInDB==1.0

linear_flow.Flow: octavia-create-member-flow(len=10)[$]

4.2. Contributor Reference 254

Octavia Documentation, Release 15.1.0.dev35

get_delete_member_flow

linear_flow.Flow: octavia-delete-member-flow(len=11)

octavia.controller.worker.v2.tasks.lifecycle_tasks.MemberToErrorOnRevertTask==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkMemberPendingDeleteInDB==1.0

octavia.controller.worker.v2.tasks.network_tasks.CalculateDelta==1.0

octavia.controller.worker.v2.tasks.network_tasks.HandleNetworkDeltas==1.0

octavia.controller.worker.v2.tasks.network_tasks.GetAmphoraeNetworkConfigs==1.0

octavia.controller.worker.v2.tasks.amphora_driver_tasks.AmphoraePostNetworkPlug==1.0

octavia.controller.worker.v2.tasks.amphora_driver_tasks.ListenersUpdate==1.0

octavia.controller.worker.v2.tasks.database_tasks.DeleteMemberInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.DecrementMemberQuota==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkPoolActiveInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkLBAndListenersActiveInDB==1.0

linear_flow.Flow: octavia-delete-member-flow(len=11)[$]

4.2. Contributor Reference 255

Octavia Documentation, Release 15.1.0.dev35

get_update_member_flow

linear_flow.Flow: octavia-update-member-flow(len=7)

octavia.controller.worker.v2.tasks.lifecycle_tasks.MemberToErrorOnRevertTask==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkMemberPendingUpdateInDB==1.0

octavia.controller.worker.v2.tasks.amphora_driver_tasks.ListenersUpdate==1.0

octavia.controller.worker.v2.tasks.database_tasks.UpdateMemberInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkMemberActiveInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkPoolActiveInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkLBAndListenersActiveInDB==1.0

linear_flow.Flow: octavia-update-member-flow(len=7)[$]

Pool Flows

Contents

• Pool Flows

– get_create_pool_flow

– get_delete_pool_flow

– get_update_pool_flow

4.2. Contributor Reference 256

Octavia Documentation, Release 15.1.0.dev35

get_create_pool_flow

linear_flow.Flow: octavia-create-pool-flow(len=5)

octavia.controller.worker.v2.tasks.lifecycle_tasks.PoolToErrorOnRevertTask==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkPoolPendingCreateInDB==1.0

octavia.controller.worker.v2.tasks.amphora_driver_tasks.ListenersUpdate==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkPoolActiveInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkLBAndListenersActiveInDB==1.0

linear_flow.Flow: octavia-create-pool-flow(len=5)[$]

4.2. Contributor Reference 257

Octavia Documentation, Release 15.1.0.dev35

get_delete_pool_flow

linear_flow.Flow: octavia-delete-pool-flow(len=7)

octavia.controller.worker.v2.tasks.lifecycle_tasks.PoolToErrorOnRevertTask==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkPoolPendingDeleteInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.CountPoolChildrenForQuota==1.0

octavia.controller.worker.v2.tasks.amphora_driver_tasks.ListenersUpdate==1.0

octavia.controller.worker.v2.tasks.database_tasks.DeletePoolInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.DecrementPoolQuota==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkLBAndListenersActiveInDB==1.0

linear_flow.Flow: octavia-delete-pool-flow(len=7)[$]

4.2. Contributor Reference 258

Octavia Documentation, Release 15.1.0.dev35

get_update_pool_flow

linear_flow.Flow: octavia-update-pool-flow(len=6)

octavia.controller.worker.v2.tasks.lifecycle_tasks.PoolToErrorOnRevertTask==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkPoolPendingUpdateInDB==1.0

octavia.controller.worker.v2.tasks.amphora_driver_tasks.ListenersUpdate==1.0

octavia.controller.worker.v2.tasks.database_tasks.UpdatePoolInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkPoolActiveInDB==1.0

octavia.controller.worker.v2.tasks.database_tasks.MarkLBAndListenersActiveInDB==1.0

linear_flow.Flow: octavia-update-pool-flow(len=6)[$]

4.2.5 Guru Meditation Reports
Octavia contains a mechanism whereby developers and system administrators can generate a report about
the state of a running Octavia executable. This report is called a Guru Meditation Report (GMR for short).

Generating a GMR

A GMR can be generated by sending the USR2 signal to any Octavia process with support (see below).
The GMR will then be outputted as standard error for that particular process.

For example, suppose that octavia-api has process id 8675, and was run with 2>/var/log/octavia/
octavia-api-err.log. Then, kill -USR2 8675will trigger the Guru Meditation report to be printed
to /var/log/octavia/octavia-api-err.log.

Structure of a GMR

The GMR is designed to be extensible; any particular executable may add its own sections. However, the
base GMR consists of several sections:

Package
Shows information about the package to which this process belongs, including version information.

4.2. Contributor Reference 259

Octavia Documentation, Release 15.1.0.dev35

Threads
Shows stack traces and thread ids for each of the threads within this process.

Green Threads
Shows stack traces for each of the green threads within this process (green threads don’t have thread
ids).

Configuration
Lists all the configuration options currently accessible via the CONF object for the current process.

Adding Support for GMRs to New Executables

Adding support for a GMR to a given executable is fairly easy.

First import the module:

from oslo_reports import guru_meditation_report as gmr
from octavia import version

Then, register any additional sections (optional):

TextGuruMeditation.register_section('Some Special Section',
some_section_generator)

Finally (under main), before running the "main loop" of the executable (usually service.
server(server) or something similar), register the GMR hook:

TextGuruMeditation.setup_autorun(version)

Extending the GMR

As mentioned above, additional sections can be added to the GMR for a particular executable. For more
information, see the inline documentation under oslo.reports

4.3 Internal APIs

Note

The documents listed below are design documents and specifications created and approved at a previ-
ous point in time. The code base and current functionality may deviate from these original documents.
Please see the Octavia documentation for the current feature details.

4.4 Design Documentation

4.4.1 Version 0.5 (liberty)

Octavia v0.5 Component Design

Please refer to the following diagram of the Octavia v0.5 components:

4.3. Internal APIs 260

Octavia Documentation, Release 15.1.0.dev35

Octavia component design (v0.5)

Neutron

LBaaS

Octavia

LB Network

Networking Services Networking Driver

User API Handler
Driver

 Controller
 Health Monitor

 Amphora LB Driver

Operator API Handler

Database

Amphora

Amphora

Amphora

This milestone release of Octavia concentrates on making the service delivery scalable (though individ-
ual listeners are not horizontally scalable at this stage), getting API and other interfaces between major
components correct, without worrying about making the command and control layer scalable.

Note that this design is not yet "operator grade" but is a good first step to achieving operator grade (which
will occur with version 1 of Octavia).

LBaaS Components

The entities in this section describe components that are part of the Neutron LBaaS project, with which
Octavia interfaces to deliver load balancing services.

USER API HANDLER

This is the front-end that users (and user GUIs or what have you) talk to manipulate load balancing
services.

Notes:

• All implementation details are hidden from the user in this interface

• Performs a few simple sanity checks on user-supplied data, but otherwise looks to a driver provide
more detail around whether what the user is asking for is possible on the driver’s implementation.

• Any functionality that the user asks for that their back-end flavor / driver doesn’t support will be
met with an error when the user attempts to configure services this way. (There may be multiple
kinds of errors: "incomplete configuration" would be non-fatal and allow DB objects to be created
/ altered. "incompatible configuration" would be fatal and disallow DB objects from being created
/ associations made.) Examples of this include: UDP protocol for a listener on a driver/flavor that
uses only haproxy as its back-end.

• Drivers should also be able to return ’out of resources’ or ’some other error occurred’ errors (hope-
fully with helpful error messages).

• This interface is stateless, though drivers may keep state information in a database. In any case,
this interface should be highly scalable.

• Talks some "intermediate driver interface" with the driver. This takes the form of python objects
passed directly within the python code to the driver.

4.4. Design Documentation 261

Octavia Documentation, Release 15.1.0.dev35

LBaaS / Octavia Crossover

The entities in this section are "glue" components which allow Octavia to interface with other services in
the OpenStack environment. The idea here is that we want Octavia to be as loosely-coupled as possible
with those services with which it must interact in order to keep these interfaces as clean as possible.

Initially, all the components in this section will be entirely under the purview of the Octavia project.
Over time some of these components might be eliminated entirely, or reduced in scope as these third-
party services evolve and increase in cleanly-consumable functionality.

DRIVER

This is the part of the load balancing service that actually interfaces between the (sanitized) user and
operator configuration and the back-end load balancing appliances or other "service providing entity."

Notes:

• Configuration of the driver is handled via service profile definitions in association with the Neutron
flavor framework. Specifically, a given flavor has service profiles associated with it, and service
profiles which specify the Octavia driver will include meta-data (in the form of JSON configura-
tion) which is used by the driver to define implementation specifics (for example, HA configuration
and other details).

• Driver will be loaded by the daemon that does the user API and operator API. It is not, in and of
itself, its own daemon, though a given vendor’s back-end may contain its own daemons or other
services that the driver interfaces with.

• It is thought that the driver front-end should be stateless in order to make it horizontally scalable
and to preserves the statelessness of the user and operator API handlers. Note that the driver may
interface with back-end components which need not be stateless.

• It is also possible for multiple instances of the driver will talk to the same amphora at the same
time. Emphasis on the idempotency of the update algorithms used should help minimize the issues
this can potentially cause.

NETWORK DRIVER

In order to keep Octavia’s design more clean as a pure consumer of network services, yet still be able to
develop Octavia at a time when it is impossible to provide the kind of load balancing services we need to
provide without "going around" the existing Neutron API, we have decided to write a "network driver"
component which does those dirty back-end configuration commands via an API we write, until these can
become a standard part of Neutron. This component should be as loosely coupled with Octavia as Octavia
will be with Neutron and present a standard interface to Octavia for accomplishing network configuration
tasks (some of which will simply be a direct correlation with existing Neutron API commands).

Notes:

• This is a daemon or "unofficial extension", presumably living on a Neutron network node which
should have "back door" access to all things Neutron and exposes an API that should only be used
by Octavia.

• Exactly what API will be provided by this driver will be defined as we continue to build out the
reference implementation for Octavia.

• Obviously, as we discover missing functionality in the Neutron API, we should work with the
Neutron core devs to get these added to the API in a timely fashion: We want the Network driver
to be as lightweight as possible.

4.4. Design Documentation 262

Octavia Documentation, Release 15.1.0.dev35

Octavia Components

Everything from here down are entities that have to do with the Octavia driver and load balancing system.
Other vendor drivers are unlikely to have the same components and internal structure. It is planned that
Octavia will become the new reference implementation for LBaaS, though it of course doesn’t need to be
the only one. (In fact, a given operator should be able to use multiple vendors with potentially multiple
drivers and multiple driver configurations through the Neutron Flavor framework.)

OPERATOR API HANDLER

This is exactly like the USER API HANDLER in function, except that implementation details are exposed
to the operator, and certain admin-level features are exposed (ex. listing a given tenant’s loadbalancers,
& etc.)

It’s also anticipated that the Operator API needs will vary enough from implementation to implemen-
tation that no single Operator API will be sufficient for the needs of all vendor implementations. (And
operators will definitely have implementation-specific concerns.) Also, we anticipate that most vendors
will already have an operator API or other interface which is controlled and configured outsite the purview
of OpenStack in general. As such it makes sense for Octavia to have its own operator API / interface.

Notes:

• This interface is stateless. State should be managed by the controller, and stored in a highly avail-
able database.

CONTROLLER

This is the component providing all the command and control for the amphorae. On the front end, it takes
its commands and controls from the LBaaS driver.

It should be noted that in later releases of Octavia, the controller functions will be split across several
components. At this stage we are less concerned with how this internal communication will happen,
and are most concerned with ensuring communication with amphorae, the amphora LB driver, and the
Network driver are all made as perfect as possible.

Among the controller’s responsibilities are:

• Sending configuration and certificate information to an amphora LB driver, which in the reference
implementation will be generating configuration files for haproxy and PEM-formatted user certifi-
cates and sending these to individual amphorae. Configuration files will be generated from jinja
templates kept in an template directory specific to the haproxy driver.

• Processing the configuration updates that need to be applied to individual amphorae, as sent by the
amphora LB driver.

• Interfacing with network driver to plumb additional interfaces on the amphorae as necessary.

• Monitoring the health of all amphorae (via a driver interface).

• Receiving and routing certain kinds of notifications originating on the amphorae (ex. "member
down")

• This is a stateful service, and should keep its state in a central, highly available database of some
sort.

• Respecting colocation / apolocation requirements of loadbalancers as set forth by users.

4.4. Design Documentation 263

Octavia Documentation, Release 15.1.0.dev35

• Receiving notifications, statistics data and other short, regular messages from amphorae and rout-
ing them to the appropriate entity.

• Responding to requests from amphorae for configuration data.

• Responding to requests from the user API or operator API handler driver for data about specific
loadbalancers or sub-objects, their status, and statistics.

• Amphora lifecycle management, including interfacing with Nova and Neutron to spin up new am-
phorae as necessary and handle initial configuration and network plumbing for their LB network
interface, and cleaning this up when an amphora is destroyed.

• Maintaining a pool of spare amphorae (ie. spawning new ones as necessary and deleting ones from
the pool when we have too much inventory here.)

• Gracefully spinning down "dirty old amphorae"

• Loading and calling configured amphora drivers.

Notes:

• Almost all the intelligence around putting together and validating loadbalancer configurations will
live here-- the Amphora API is meant to be as simple as possible so that minor feature improve-
ments do not necessarily entail pushing out new amphorae across an entire installation.

• The size of the spare amphora pool should be determined by the flavor being offered.

• The controller also handles spinning up amphorae in the case of a true active/standby topology (ie.
where the spares pool is effectively zero.) It should have enough intelligence to communicate to
Nova that these amphorae should not be on the same physical host in this topology.

• It also handles spinning up new amphorae when one fails in the above topology.

• Since spinning up a new amphora is a task that can take a long time, the controller should spawn
a job or child process which handles this highly asynchronous request.

AMPHORA LOAD BALANCER (LB) DRIVER

This is the abstraction layer that the controller talks to for communicating with the amphorae. Since
we want to keep Octavia flexible enough so that certain components (like the amphora) can be replaced
by third party products if the operator so desires, it’s important to keep many of the implementation-
specific details contained within driver layers. An amphora LB driver also gives the operator the ability to
have different open-source amphorae with potentially different capabilities (accessed via different flavors)
which can be handy for, for example, field-testing a new amphora image.

The reference implementation for the amphora LB driver will be for the amphora described below.

Responsibilities of the amphora LB driver include:

• Generating configuration files for haproxy and PEM-formatted user certificates and sending these
to individual amphorae. Configuration files will be generated from jinja templates kept in an tem-
plate directory specific to the haproxy driver.

• Handling all communication to and from amphorae.

4.4. Design Documentation 264

Octavia Documentation, Release 15.1.0.dev35

LB NETWORK

This is the subnet that controllers will use to communicate with amphorae. This means that controllers
must have connectivity (either layer 2 or routed) to this subnet in order to function, and vice versa. Since
amphorae will be communicating on it, this means the network is not part of the "undercloud."

Notes:

• As certain sensitive data (TLS private keys, for example) will be transmitted over this commu-
nication infrastructure, all messages carrying a sensitive payload should be done via encrypted
and authenticated means. Further, we recommend that messages to and from amphorae be signed
regardless of the sensitivity of their content.

AMPHORAE

This is a Nova VM which actually provides the load balancing services as configured by the user. Re-
sponsibilities of these entities include:

• Actually accomplishing the load balancing services for user-configured loadbalancers using
haproxy.

• Sending regular heartbeats (which should include some status information).

• Responding to specific requests from the controller for very basic loadbalancer or sub-object status
data, including statistics.

• Doing common high workload, low intelligence tasks that we don’t want to burden the controller
with. (ex. Shipping listener logs to a swift data store, if configured.)

• Sending "edge" notifications (ie. status changes) to the controller when members go up and down,
when listeners go up and down, etc.

Notes:

• Each amphora will generally need its own dedicated LB network IP address, both so that we don’t
accidentally bind to any IP:port the user wants to use for loadbalancing services, and so that an
amphora that is not yet in use by any loadbalancer service can still communicate on the network
and receive commands from its controller. Whether this IP address exists on the same subnet as
the loadbalancer services it hosts is immaterial, so long as front-end and back-end interfaces can
be plumbed after an amphora is launched.

• Since amphorae speak to controllers in a "trusted" way, it’s important to ensure that users do not
have command-line access to the amphorae. In other words, the amphorae should be a black box
from the users’ perspective.

• Amphorae will be powered using haproxy 1.5 initially. We may decide to use other software (es-
pecially for TLS termination) later on.

• The "glue scripts" which communicate with the controller should be as lightweight as possible:
Intelligence about how to put together an haproxy config, for example, should not live on the
amphora. Rather, the amphora should perform simple syntax checks, start / restart haproxy if the
checks pass, and report success/failure of the haproxy restart.

• With few exceptions, most of the API commands the amphora will ever do should be safely handled
synchronously (ie. nothing should take longer than a second or two to complete).

• Connection logs, and other things anticipated to generate a potential large amount of data should
be communicated by the amphora directly to which ever service is going to consume that data. (for

4.4. Design Documentation 265

Octavia Documentation, Release 15.1.0.dev35

example, if logs are being shunted off to swift on a nightly basis, the amphora should handle this
directly and not go through the controller.)

INTERNAL HEALTH MONITORS

There are actually a few of these, all of which need to be driven by some daemon(s) which periodically
check that heartbeats from monitored entities are both current and showing "good" status, if applicable.
Specifically:

• Controllers need to be able to monitor the availability and overall health of amphorae they control.
For active amphorae, this check should happen pretty quickly: About once every 5 seconds. For
spare amphorae, the check can happen much more infrequently (say, once per minute).

The idea here is that internal health monitors will monitor a periodic heartbeat coming from the am-
phorae, and take appropriate action (assuming these are down) if they fail to check in with a heartbeat
frequently enough. This means that internal health monitors need to take the form of a daemon which is
constantly checking for and processing heartbeat requests (and updating controller or amphorae statuses,
and triggering other events as appropriate).

Some notes on Controller <-> Amphorae communications

In order to keep things as scalable as possible, the thought was that short, periodic and arguably less
vital messages being emitted by the amphora and associated controller would be done via HMAC-signed
UDP, and more vital, more sensitive, and potentially longer transactional messages would be handled via
a RESTful API on the controller, accessed via bi-directionally authenticated HTTPS.

Specifically, we should expect the following to happen over UDP: * heartbeats from the amphora VM to
the controller

• stats data from the amphora to the controller

• "edge" alert notifications (change in status) from the amphora to the controller

• Notification of pending tasks in queue from controller to amphora

And the following would happen over TCP: * haproxy / tls certificate configuration changes

Supported Amphora Virtual Appliance Topologies

Initially, I propose we support two topologies with version 0.5 of Octavia:

Option 1: "Single active node + spares pool"

• This is similar to what HP is doing right now with Libra: Each amphora is stand-alone with a
frequent health-check monitor in place and upon failure, an already-spun-up amphora is moved
from the spares pool and configured to take the old one’s place. This allows for acceptable recov-
ery times on amphora failure while still remaining efficient, as far as VM resource utilization is
concerned.

Option 2: "True Active / Standby"

• This is similar to what Blue Box is doing right now where amphorae are deployed in pairs and use
corosync / pacemaker to monitor each other’s health and automatically take over (usually in less
than 5 seconds) if the "active" node fails. This provides for the fastest possible recovery time on
hardware failure, but is much less efficient, as far as VM resource utilization is concerned.

4.4. Design Documentation 266

Octavia Documentation, Release 15.1.0.dev35

• In this topology a floating IP address (different from a Neutron floating IP!) is used to determine
which amphora is the "active" one at any given time.

• In this topology, both amphorae need to be colocated on the same subnet. As such a "spares pool"
doesn’t make sense for this type of layout, unless all spares are on the same management network
with the active nodes.

We considered also supporting "Single node" topology, but this turns out to be the same thing as option
1 above with a spares pool size of zero.

Supported Network Topologies

This is actually where things get tricky, as far as amphora plumbing is concerned. And it only grows
trickier when we consider that front-end connectivity (ie. to the ’loadbalancer’ vip_address) and back-
end connectivity (ie. to members of a loadbalancing pool) can be handled in different ways. Having said
this, we can break things down into LB network, front-end and back-end topology to discuss the various
possible permutations here.

LB Network

Each amphora needs to have a connection to a LB network. And each controller needs to have access
to this management network (this could be layer-2 or routed connectivity). Command and control will
happen via the amphorae’s LB network IP.

Front-end topologies

There are generally two ways to handle the amphorae’s connection to the front-end IP address (this is the
vip_address of the loadbalancer object):

Option 1: Layer-2 connectivity

The amphora can have layer-2 connectivity to the neutron network which is host to the subnet on which
the loadbalancer vip_address resides. In this scenario, the amphora would need to send ARP responses to
requests for the vip_address, and therefore amphorae need to have interfaces plumbed on said vip_address
subnets which participate in ARP.

Note that this is somewhat problematic for active / standby virtual appliance topologies because the
vip_address for a given load balancer effectively becomes a highly-available IP address (a true floating
VIP), which means on service failover from active to standby, the active amphora needs to relinquish all
the vip_addresses it has, and the standby needs to take them over and start up haproxy services. This is
OK if a given amphora only has a few load balancers, but can lead to several minutes’ down-time during
a graceful failover if there are a dozen or more load balancers on the active/standby amphora pair. It’s
also more risky: The standby node might not be able to start up all the haproxy services during such a
failover. What’s more, most types of VRRP-like services which handle floating IPs require amphorae
to have an additional IP address on the subnet housing the floating vip_address in order for the standby
amphora to monitor the active amphora.

Also note that in this topology, amphorae need an additional virtual network interface plumbed when
new front-end loadbalancer vip_addresses are assigned to them which exist on subnets to which they
don’t already have access.

Option 2: Routed (layer-3) connectivity

In this layout, static routes are injected into the routing infrastructure (Neutron) which essentially allow
traffic destined for any given loadbalancer vip_address to be routed to an IP address which lives on the
amphora. (I would recommend this be something other than the LB network IP.) In this topology, it’s

4.4. Design Documentation 267

Octavia Documentation, Release 15.1.0.dev35

actually important that the loadbalancer vip_address does not exist in any subnet with potential front-end
clients because in order for traffic to reach the loadbalancer, it must pass through the routing infrastructure
(and in this case, front-end clients would attempt layer-2 connectivity to the vip_address).

This topology also works much better for active/standby configurations, because both the active and
standby amphorae can bind to the vip_addresses of all their assigned loadbalancer objects on a dummy,
non-ARPing interface, both can be running all haproxy services at the same time, and keep the standby
server processes from interfering with active loadbalancer traffic through the use of fencing scripts on
the amphorae. Static routing is accomplished to a highly available floating "routing IP" (using some
VRRP-like service for just this IP) which becomes the trigger for the fencing scripts on the amphora. In
this scenario, fail-overs are both much more reliable, and can be accomplished in usually < 5 seconds.

Further, in this topology, amphorae do not need any additional virtual interfaces plumbed when new
front-end loadbalancer vip_addresses are assigned to them.

Back-end topologies

There are also two ways that amphorae can potentially talk to back-end member IP addresses. Unlike
the front-end topologies (where option 1 and option 2 are basically mutually exclusive, if not practically
exclusive) both of these types of connectivity can be used on a single amphora, and indeed, within a
single loadbalancer configuration.

Option 1: Layer-2 connectivity

This is layer-2 connectivity to back-end members, and is implied when a member object has a subnet_id
assigned to it. In this case, the existence of the subnet_id implies amphorae need to have layer-2 con-
nectivity to that subnet, which means they need to have a virtual interface plumbed to it, as well as an
IP address on the subnet. This type of connectivity is useful for "secure" back-end subnets that exist
behind a NATing firewall where PAT is not in use on the firewall. (In this way it effectively bypasses
the firewall.) We anticipate this will be the most common form of back-end connectivity in use by most
OpenStack users.

Option 2: Routed (layer-3) connectivity

This is routed connectivity to back-end members. This is implied when a member object does not have
a subnet_id specified. In this topology, it is assumed that member ip_addresses are reachable through
standard neutron routing, and therefore connections to them can be initiated from the amphora’s default
gateway. No new virtual interfaces need to be plumbed for this type of connectivity to members.

4.5 Project Specifications

4.5.1 Version 0.5 (liberty)

Amphora Driver Interface

https://blueprints.launchpad.net/octavia/+spec/amphora-driver-interface

This blueprint describes how a driver will interface with the controller. It will describe the base class
and other classes required. It will not describe the REST interface needed to talk to an amphora nor how
health information or statistics are gathered from the amphora.

4.5. Project Specifications 268

https://blueprints.launchpad.net/octavia/+spec/amphora-driver-interface

Octavia Documentation, Release 15.1.0.dev35

Problem description

The controller needs to talk through a driver to the amphora to allow for custom APIs and custom ren-
dering of configuration data for different amphora implementations.

The controller will heavily utilize taskflow [2] to accomplish its goals so it is highly encouraged for
drivers to use taskflow to organize their work, too.

Proposed change

Establish a base class to model the desire functionality:

class AmphoraLoadBalancerDriver(object):

def update(self, listener, vip):
"""updates the amphora with a new configuration

for the listener on the vip.
"""
raise NotImplementedError

def stop(self, listener, vip):
"""stops the listener on the vip."""
return None

def start(self, listener, vip):
"""starts the listener on the vip."""
return None

def delete(self, listener, vip):
"""deletes the listener on the vip."""
raise NotImplementedError

def get_info(self, amphora):
"""Get detailed information about an amphora

returns information about the amphora, e.g. {"Rest Interface":
"1.0", "Amphorae": "1.0", "packages":{"ha proxy":"1.5"},
"network-interfaces": {"eth0":{"ip":...}} some information might
come from querying the amphora
"""
raise NotImplementedError

def get_diagnostics(self, amphora):
"""OPTIONAL - Run diagnostics

run some expensive self tests to determine if the amphora and the
lbs are healthy the idea is that those tests are triggered more
infrequent than the heartbeat
"""
raise NotImplementedError

(continues on next page)

4.5. Project Specifications 269

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

def finalize_amphora(self, amphora):
"""OPTIONAL - called once an amphora has been build but before

any listeners are configured. This is a hook for drivers who need
to do additional work before am amphora becomes ready to accept
listeners. Please keep in mind that amphora might be kept in am
offline pool after this call.
"""
pass

def post_network_plug(self, amphora, port):
"""OPTIONAL - called after adding a compute instance to a network.

This will perform any necessary actions to allow for connectivity
for that network on that instance.

port is an instance of octavia.network.data_models.Port. It
contains information about the port, subnet, and network that
was just plugged.
"""

def post_vip_plug(self, load_balancer, amphorae_network_config):
"""OPTIONAL - called after plug_vip method of the network driver.

This is to do any additional work needed on the amphorae to plug
the vip, such as bring up interfaces.

amphorae_network_config is a dictionary of objects that include
network specific information about each amphora's connections.
"""

def start_health_check(self, health_mixin):
"""start check health

:param health_mixin: health mixin object
:type amphora: object

Start listener process and calls HealthMixin to update
databases information.
"""
pass

def stop_health_check(self):
"""stop check health

Stop listener process and calls HealthMixin to update
databases information.
"""
pass

4.5. Project Specifications 270

Octavia Documentation, Release 15.1.0.dev35

The referenced listener is a listener object and vip a vip as described in our model. The model is detached
from the DB so the driver can’t write to the DB. Because our initial goal is to render a whole config no
special methods for adding nodes, health monitors, etc. are supported at this juncture. This might be
added in later versions.

No method for obtaining logs has been added. This will be done in a future blueprint.

Exception Model

The driver is expected to raise the following well defined exceptions

• NotImplementedError - this functionality is not implemented/not supported

• AmphoraDriverError - a super class for all other exceptions and the catch
all if no specific exception can be found

– NotFoundError - this amphora couldn’t be found/ was deleted by nova

– InfoException - gathering information about this amphora failed

– NetworkConfigException - gathering network information failed

– UnauthorizedException - the driver can’t access the amphora

– TimeOutException - contacting the amphora timed out

– UnavailableException - the amphora is temporary unavailable

– SuspendFaied - this load balancer couldn’t be suspended

– EnableFailed - this load balancer couldn’t be enabled

– DeleteFailed - this load balancer couldn’t be deleted

– ProvisioningErrors - those are errors which happen during provisioning

∗ ListenerProvisioningError - could not provision Listener

∗ LoadBalancerProvisoningError - could not provision LoadBalancer

∗ HealthMonitorProvisioningError - could not provision HealthMonitor

∗ NodeProvisioningError - could not provision Node

Health and Stat Mixin

It has been suggested to gather health and statistic information via UDP packets emitted from the am-
phora. This requires each driver to spin up a thread to listen on a UDP port and then hand the information
to the controller as a mixin to make sense of it.

Here is the mixin definition:

class HealthMixIn(object):
def update_health(health):

#map: {"amphora-status":HEALTHY, loadbalancers: {"loadbalancer-id": {
↪→"loadbalancer-status": HEALTHY,

"listeners":{"listener-id":{"listener-status":HEALTHY, "nodes":{
↪→"node-id":HEALTHY, ...}}, ...}, ...}}

only items whose health has changed need to be submitted
awesome update code

(continues on next page)

4.5. Project Specifications 271

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

pass

class StatsMixIn(object):
def update_stats(stats):

#uses map {"loadbalancer-id":{"listener-id": {"bytes-in": 123, "bytes_
↪→out":123, "active_connections":123,

"total_connections", 123}, ...}
elements are named to keep it extensible for future versions
#awesome update code and code to send to ceilometer
pass

Things a good driver should do:

• Non blocking IO - throw an appropriate exception instead to wait forever; use timeouts on sockets

• We might employ a circuit breaker to insulate driver problems from controller problems [1]

• Use appropriate logging

• Use the preferred threading model

This will be demonstrated in the Noop-driver code.

Alternatives

Require all amphora to implement a common REST interface and use that as the integration point.

Data model impact

None

REST API impact

None

Security impact

None

Notifications impact

None - since initial version

Other end user impact

None

Performance Impact

Minimal

4.5. Project Specifications 272

Octavia Documentation, Release 15.1.0.dev35

Other deployer impact

Deployers need to make sure to bundle the compatible versions of amphora, driver, controller --

Developer impact

Need to write towards this clean interface.

Implementation

Assignee(s)

German Eichberger

Work Items

• Write abstract interface

• Write Noop driver

• Write tests

Dependencies

None

Testing

• Unit tests with tox and Noop-Driver

• tempest tests with Noop-Driver

Documentation Impact

None - we won’t document the interface for 0.5. If that changes we need to write an interface documen-
tation so 3rd party drivers know what we expect.

References

[1] https://martinfowler.com/bliki/CircuitBreaker.html [2] https://docs.openstack.org/taskflow/latest/

Compute Driver Interface

https://blueprints.launchpad.net/octavia/+spec/compute-driver-interface

This blueprint describes how a driver will interface with Nova to manage the creation and deletion of
amphora instances. It will describe the base class and other classes required to create, delete, manage the
execution state, and query the status of amphorae.

Problem description

The controller needs to be able to create, delete, and monitor the status of amphora instances. The
amphorae may be virtual machines, containers, bare-metal servers, or dedicated hardware load balancers.
This interface should hide the implementation details of the amphorae from the caller to the maximum
extent possible.

4.5. Project Specifications 273

https://martinfowler.com/bliki/CircuitBreaker.html
https://docs.openstack.org/taskflow/latest/
https://blueprints.launchpad.net/octavia/+spec/compute-driver-interface

Octavia Documentation, Release 15.1.0.dev35

This interface will provide means to specify:

• type (VM, Container, bare metal)

• flavor (provides means to specify memory and storage capacity)

• what else?

Proposed change

Establish an abstract base class to model the desired functionality:

class AmphoraComputeDriver(object):

def build(self, amphora_type = VM, amphora_flavor = None,
image_id = None, keys = None, sec_groups = None,
network_ids = None,config_drive_files = None,user_data=None):

""" build a new amphora.

:param amphora_type: The type of amphora to create. For
version 0.5, only VM is supported. In the future this
may support Container, BareMetal, and HWLoadBalancer.
:param amphora_flavor: Optionally specify a flavor. The
interpretation of this parameter will depend upon the
amphora type and may not be applicable to all types.
:param image_id: ID of the base image for a VM amphora
:param keys: Optionally specify a list of ssh public keys
:param sec_groups: Optionally specify list of security
groups
:param network_ids: A list of network_ids to attach to
the amphora
:config_drive_files: A dict of files to overwrite on
the server upon boot. Keys are file names (i.e. /etc/passwd)
and values are the file contents (either as a string or as
a file-like object). A maximum of five entries is allowed,
and each file must be 10k or less.
:param user_data: user data to pass to be exposed by the
metadata server this can be a file type object as well or
a string

:returns: The id of the new instance.

"""

raise NotImplementedError

def delete(self, amphora_id):
""" delete the specified amphora
"""

raise NotImplementedError
(continues on next page)

4.5. Project Specifications 274

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

def status(self, amphora_id):

""" Check whether the specified amphora is up

:param amphora_id: the ID of the desired amphora
:returns: the nova response from the amphora
"""
raise NotImplementedError

def get_amphora(self, amphora_name = None, amphora_id = None):
""" Try to find an amphora given its name or id

:param amphora_name: the name of the desired amphora
:param amphora_id: the id of the desired amphora
:returns: the amphora object
"""
raise NotImplementedError

Exception Model

The driver is expected to raise the following well defined exceptions:

• NotImplementedError - this functionality is not implemented/not supported

• AmphoraComputeError - a super class for all other exceptions and the catch
all if no specific exception can be found

– AmphoraBuildError - An amphora of the specified type could not be built

– DeleteFailed - this amphora couldn’t be deleted

• InstanceNotFoundError - an instance matching the desired criteria could not be found

• NotSuspendedError - resume() attempted on an instance that was not suspended

Things a good driver should do:

• Non blocking operations - If an operation will take a long time to execute, perform it asyn-
chronously. The definition of "a long time" is open to interpretation, but a common UX guideline
is 200 ms

• We might employ a circuit breaker to insulate driver problems from controller problems [1]

• Use appropriate logging

• Use the preferred threading model

This will be demonstrated in the Noop-driver code.

4.5. Project Specifications 275

Octavia Documentation, Release 15.1.0.dev35

Alternatives

Data model impact

None

REST API impact

None

Security impact

None

Notifications impact

None - since initial version

Other end user impact

None

Performance Impact

Minimal

Other deployer impact

Deployers need to make sure to bundle the compatible versions of amphora, driver, controller --

Developer impact

Need to write towards this clean interface.

Implementation

Assignee(s)

Al Miller

Work Items

• Write abstract interface

• Write Noop driver

• Write tests

Dependencies

None

4.5. Project Specifications 276

Octavia Documentation, Release 15.1.0.dev35

Testing

• Unit tests with tox and Noop-Driver

• tempest tests with Noop-Driver

Documentation Impact

None - this is an internal interface and need not be externally documented.

References

[1] http://martinfowler.com/bliki/CircuitBreaker.html

Octavia Base Image

Launchpad blueprint:

https://blueprints.launchpad.net/octavia/+spec/base-image

Octavia is an operator-grade reference implementation for Load Balancing as a Service (LBaaS) for
OpenStack. The component of Octavia that does the load balancing is known as amphora. Amphora
may be a virtual machine, may be a container, or may run on bare metal. Creating images for bare metal
amphora installs is outside the scope of this 0.5 specification but may be added in a future release.

Amphora will need a base image that can be deployed by Octavia to provide load balancing.

Problem description

Octavia needs a method for generating base images to be deployed as load balancing entities.

Proposed change

Leverage the OpenStack diskimage-builder project [1] tools to provide a script that builds qcow2 images
or a tar file suitable for use in creating containers. This script will be modeled after the OpenStack Sahara
[2] project’s diskimage-create.sh script.

This script and associated elements will build Amphora images. Initial support with be with an Ubuntu
OS and HAProxy. The script will be able to use Fedora or CentOS as a base OS but these will not initially
be tested or supported. As the project progresses and/or the diskimage-builder project adds support for
additional base OS options they may become available for Amphora images. This does not mean that
they are necessarily supported or tested.

The script will use environment variables to customize the build beyond the Octavia project defaults,
such as adding elements.

The initial supported and tested image will be created using the diskimage-create.sh defaults (no com-
mand line parameters or environment variables set). As the project progresses we may add additional
supported configurations.

Command syntax:

$ diskimage-create.sh
[-a i386 | amd64 | armhf]
[-b haproxy]

4.5. Project Specifications 277

http://martinfowler.com/bliki/CircuitBreaker.html
https://blueprints.launchpad.net/octavia/+spec/base-image

Octavia Documentation, Release 15.1.0.dev35

[-c ~/.cache/image-create | <cache directory>]
[-h]
[-i ubuntu | fedora | centos]
[-o amphora-x64-haproxy | <filename>]
[-r <root password>]
[-s 5 | <size in GB>]
[-t qcow2 | tar]
[-w <working directory>]

’-a’ is the architecture type for the image (default: amd64)
’-b’ is the backend type (default: haproxy)
’-c’ is the path to the cache directory (default: ~/.cache/image-create)
’-h’ display help message
’-i’ is the base OS (default: ubuntu)
’-o’ is the output image file name
’-r’ enable the root account in the generated image (default: disabled)
’-s’ is the image size to produce in gigabytes (default: 5)
’-t’ is the image type (default: qcow2)
’-w’ working directory for image building (default: .)

Environment variables supported by the script:
DIB_DISTRIBUTION_MIRROR - URL to a mirror for the base OS selected (-i).
DIB_REPO_PATH - Path to the diskimage-builder repository (default: ../../diskimage-builder)
ELEMENTS_REPO_PATH - Path to the /tripleo-image-elements repository (default:
../../tripleo-image-elements)
DIB_ELEMENTS - Override the elements used to build the image
DIB_LOCAL_ELEMENTS - Elements to add to the build (requires
DIB_LOCAL_ELEMENTS_PATH be specified)
DIB_LOCAL_ELEMENTS_PATH - Path to the local elements directory

Container support

The Docker command line required to import a tar file created with this script is [3]:

$ docker import - image:amphora-x64-haproxy < amphora-x64-haproxy.tar

Alternatives

Deployers can manually create an image or container, but they would need to make sure the required
components are included.

4.5. Project Specifications 278

Octavia Documentation, Release 15.1.0.dev35

Data model impact

None

REST API impact

None

Security impact

None

Notifications impact

None

Other end user impact

None

Performance Impact

None

Other deployer impact

This script will make creating an Octavia Amphora image or container simple.

Developer impact

None

Implementation

Assignee(s)

Michael Johnson <johnsom>

Work Items

1. Write diskimage-create.sh script based on Sahara project’s script.

2. Identify the list of packages required for Octavia Amphora.

3. Create required elements not provided by the diskimage-builder project.

4. Create unit tests

Dependencies

This script will depend on the OpenStack diskimage-builder project.

4.5. Project Specifications 279

Octavia Documentation, Release 15.1.0.dev35

Testing

Initial testing will be completed using the default settings for the diskimage-create.sh tool.

• Unit tests with tox

– Validate that the image is the correct size and mounts via loopback

– Check that a valid kernel is installed

– Check that HAProxy and all required packages are installed

• tempest tests

Documentation Impact

References

[1] https://github.com/openstack/diskimage-builder
[2] https://github.com/openstack/sahara-image-elements
[3] https://github.com/openstack/diskimage-builder/blob/master/docs/docker.md

Octavia v0.5 master component design document

Problem description

We need to define the various components that will make up Octavia v0.5.

Proposed change

This is the first functional release of Octavia, incorporating a scalable service delivery layer, but not yet
concerned with a scalable command and control layer.

See doc/source/design/version0.5 for a detailed description of the v0.5 component design.

Alternatives

We’re open to suggestions, but note that later designs already discussed on the mailing list will incorporate
several features of this design.

Data model impact

Octavia 0.5 introduces the main data model which will also be used in subsequent releases.

REST API impact

None

Security impact

The only sensitive data used in Octavia 0.5 are the TLS private keys used with TERMINATED_HTTPS
functionality. However, the back-end storage aspect of these secrets will be handled by Barbican.

Octavia amphorae will also need to keep copies of these secrets locally in order to facilitate seamless
service restarts. These local stores should be made on a memory filesystem.

4.5. Project Specifications 280

https://github.com/openstack/diskimage-builder
https://github.com/openstack/sahara-image-elements
https://github.com/openstack/diskimage-builder/blob/master/docs/docker.md

Octavia Documentation, Release 15.1.0.dev35

Notifications impact

None

Other end user impact

None

Performance Impact

None

Other deployer impact

Operator API and UI may need to be changed as a result of this specification.

Developer impact

None beyond implementing the spec. :)

Implementation

Assignee(s)

Lots of us will be working on this!

Work Items

Again, lots of things to be done here.

Dependencies

Barbican

Testing

A lot of new tests will need to be written to test the separate components, their interfaces, and likely
failure scenarios.

Documentation Impact

This specification largely defines the documentation of the component design.

Component design is becoming a part of the project standard documentation.

References

Mailing list discussion of similar designs earlier this year

4.5. Project Specifications 281

Octavia Documentation, Release 15.1.0.dev35

Octavia Controller

Launchpad blueprint:

https://blueprints.launchpad.net/octavia/+spec/controller

Octavia is an operator-grade reference implementation for Load Balancing as a Service (LBaaS) for
OpenStack. The component of Octavia that does the load balancing is known as Amphora.

The component of Octavia that provides command and control of the Amphora is the Octavia controller.

Problem description

Octavia requires a controller component that provides the following capabilities:

• Processing Amphora configuration updates and making them available to the Amphora driver

• Providing certificate information to the Amphora driver

• Deploying Amphora instances

• Managing the Amphora spares pool

• Cleaning up Amphora instances that are no longer needed

• Monitoring the health of Amphora instances

• Processing alerts and messages from the Amphora (example "member down")

• Respecting colocation / apolocation / flavor requirements of the Amphora

• Processing statistical data from the Amphora including communicating with metering services,
such as Ceilometer (https://blueprints.launchpad.net/ceilometer/+spec/ceilometer-meter-lbaas)

• Responding to API requests sent by the API processes

• Proxy Amphora data to other OpenStack services such as Swift for log file archival

Proposed change

The Octavia controller will consist of the following components:

• Amphora Driver

• Queue Consumer

• Certificate Library

• Compute Driver

• Controller Worker

• Health Manager

• Housekeeping Manager

• Network Driver

• Services Proxy

4.5. Project Specifications 282

https://blueprints.launchpad.net/octavia/+spec/controller
https://blueprints.launchpad.net/ceilometer/+spec/ceilometer-meter-lbaas

Octavia Documentation, Release 15.1.0.dev35

Controller

Amphora Driver

Queue
Consumer

Health
Manager

Message
Handler

Housekeeping
(Spares/Cleanup)

Manager

Controller
Worker

Services
Proxy

SWIFT

Amphorae

Config
Handler

Stats
Handler

Ceilometer

Log
Handler

Database

APIs

Oslo
Messaging

Nova Neutron Certificate
Library

Barbican

The manager and proxy components should be implemented as independent processes to provide a level
of autonomy to these controller functions.

The highly available database will provide the persistent "brain" for the Octavia controller. Octavia
controller processes will share state and information about the Amphora, load balancers, and listeners
via the database. It is expected that the Octavia controller and Amphora driver will directly interact with
the database but the Amphorae will never directly access the database.

By using a highly available database, Octavia controllers themselves do not directly keep any stateful
information on Amphorae. Because of this, Amphorae are not assigned to any specific controller. Any
controller is able to service monitoring, heartbeat, API, and other requests coming to or from Amphorae.

Amphora Driver

The Amphora driver abstracts the backend implementation of an Amphora. The controller will interact
with Amphora via the Amphora driver. This interface is defined in the amphora-driver-interface specifi-
cation.

Queue Consumer

The Queue Consumer is event driven and tasked with servicing requests from the API components via
an Oslo messaging. It is also the primary lifecycle management component for Amphora.

To service requests the Queue Consumer will spawn a Controller Worker process. Spawning a separate
process makes sure that the Queue Consumer can continue to service API requests while the longer
running deployment process is progressing.

Messages received via Oslo messaging will include the load balancer ID, requested action, and configu-
ration update data. Passing the configuration update data via Oslo messaging allows the deploy worker to
rollback to a "last known good" configuration should there be a problem with the configuration update.
The spawned worker will use this information to access the Octavia database to gather any additional
details that may be required to complete the requested action.

Compute Driver

The Compute Driver abstracts the implementation of instantiating the virtual machine, container, appli-
ance, or device that the Amphora will run in.

Controller Worker

4.5. Project Specifications 283

Octavia Documentation, Release 15.1.0.dev35

The Controller Worker is spawned from the Queue Consumer or the Health Manager. It interfaces with
the compute driver (in some deployment scenarios), network driver, and Amphora driver to activate
Amphora instances, load balancers, and listeners.

When a request for a new instance or failover is received the Controller Worker will have responsibility
for connecting the appropriate networking ports to the Amphora via the network driver and triggering a
configuration push via the Amphora driver. This will include validating that the targeted Amphora has
the required networks plumbed to the Amphora.

The Amphora configured by the Controller Worker may be an existing Amphora instance, a new Am-
phora from the spares pool, or a newly created Amphora. This determination will be made based on the
apolocation requirements of the load balancer, the load balancer count on the existing Amphora, and the
availability of ready spare Amphora in the spares pool.

The Controller Worker will be responsible for passing in the required metadata via config drive when
deploying an Amphora. This metadata will include: a list of controller IP addresses, controller certificate
authority certificate, and the Amphora certificate and key file.

The main flow of the Controller Worker is described in the amphora-lifecycle-management specification
as the Activate Amphora sequence.

Certificate Library

The Certificate Library provides an abstraction for workers to access security data stored in OpenStack
Barbican from the Amphora Driver. It will provide a short term (1 minute) cache of the security contents
to facilitate the efficient startup of a large number of listeners sharing security content.

Health Manager

The Health Manager is tasked with checking for missing or unhealthy Amphora stored in the highly avail-
able database. The amphora-lifecycle-management specification details the health monitoring sequence.

The health monitor will have a separate thread that checks these timestamps on a configurable interval
to see if the Amphora has not provided a heartbeat in the required amount of time which is another
configurable setting. Should a Amphora fail to report a heartbeat in the configured interval the Health
Manager will initiate a failover of the Amphora by spawning a deploy worker and will update the status
of the listener in the database.

The Health Manager will have to be aware of the load balancer associated with the failed listener to decide
if it needs to fail over additional listeners to migrate the failed listener to a new Amphora.

Housekeeping Manager

The Housekeeping Manager will manage the spare Amphora pool and the teardown of Amphora that
are no longer needed. On a configurable interval the Housekeeping Manager will check the Octavia
database to identify the required cleanup and maintenance actions. The amphora-lifecycle-management
specification details the Create, Spare, and Delete Amphora sequences the Housekeeping Manager will
follow.

The operator can specify a number of Amphora instances to be held in a spares pool. Building Amphora
instances can take a long time so the Housekeeping Manager will spawn threads to manage the number
of Amphorae in the spares pool.

The Housekeeping Manager will interface with the compute driver, network driver, and the Certificate
Manager to accomplish the create and delete actions.

Network Driver

The Network Driver abstracts the implementation of connecting an Amphora to the required networks.

4.5. Project Specifications 284

Octavia Documentation, Release 15.1.0.dev35

Services Proxy

The Services Proxy enables Amphora to reach other cloud services directly over the Load Balancer Net-
work where the controller may need to provide authentication tokens on behalf of the Amphora, such as
when archiving load balancer traffic logs into customer swift containers.

Alternatives

Data model impact

REST API impact

Security impact

Notifications impact

Other end user impact

Performance Impact

Other deployer impact

Developer impact

Implementation

Assignee(s)

Michael Johnson <johnsom>

Work Items

Dependencies

Testing

Documentation Impact

References

Amphora lifecycle management: https://review.opendev.org/#/c/130424/
LBaaS metering:

https://blueprints.launchpad.net/ceilometer/+spec/ceilometer-meter-lbaas

Controller Worker (deploy-worker)

Launchpad blueprint:

https://blueprints.launchpad.net/octavia/+spec/controller-worker

Octavia is an operator-grade reference implementation for Load Balancing as a Service (LBaaS) for
OpenStack. The component of Octavia that does the load balancing is known as Amphora.

The component of Octavia that provides command and control of the Amphora is the Octavia controller.

4.5. Project Specifications 285

https://review.opendev.org/#/c/130424/
https://blueprints.launchpad.net/ceilometer/+spec/ceilometer-meter-lbaas
https://blueprints.launchpad.net/octavia/+spec/controller-worker

Octavia Documentation, Release 15.1.0.dev35

Problem description

Components of the Octavia controller require a shared library that provides the orchestration of cre-
ate/update/delete actions for Octavia objects such as load balancers and listeners.

It is expected that this library will be used by the Queue Consumer to service API requests, by the
Housekeeping Manager to manage the spare Amphora pool, and by the Health Manager to fail over
failed objects.

Proposed change

The Controller Worker will be implemented as a class that provides methods to facilitate the cre-
ate/update/delete actions. This class will be responsible for managing the number of simultaneous oper-
ations being executed by coordinating through the Octavia database.

The Controller Worker will provide a base class that sets up and initializes the TaskFlow engines required
to complete the action. Users of the library will then call the appropriate method for the action. These
methods setup and launch the appropriate flow. Each flow will be contained in a separate class for code
reuse and supportability.

The Controller Worker library will provide the following methods:

def create_amphora(self):
"""Creates an Amphora.

:returns: amphora_id
"""
raise NotImplementedError

def delete_amphora(self, amphora_id):
"""Deletes an existing Amphora.

:param amphora_id: ID of the amphora to delete
:returns: None
:raises AmphoraNotFound: The referenced Amphora was not found
"""
raise NotImplementedError

def create_load_balancer(self, load_balancer_id):
"""Creates a load balancer by allocating Amphorae.

:param load_balancer_id: ID of the load balancer to create
:returns: None
:raises NoSuitableAmphora: Unable to allocate an Amphora.
"""
raise NotImplementedError

def update_load_balancer(self, load_balancer_id, load_balancer_updates):
"""Updates a load balancer.

:param load_balancer_id: ID of the load balancer to update
:param load_balancer_updates: Dict containing updated load balancer
attributes

(continues on next page)

4.5. Project Specifications 286

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

:returns: None
:raises LBNotFound: The referenced load balancer was not found
"""
raise NotImplementedError

def delete_load_balancer(self, load_balancer_id):
"""Deletes a load balancer by de-allocating Amphorae.

:param load_balancer_id: ID of the load balancer to delete
:returns: None
:raises LBNotFound: The referenced load balancer was not found
"""
raise NotImplementedError

def create_listener(self, listener_id):
"""Creates a listener.

:param listener_id: ID of the listener to create
:returns: None
:raises NoSuitableLB: Unable to find the load balancer
"""
raise NotImplementedError

def update_listener(self, listener_id, listener_updates):
"""Updates a listener.

:param listener_id: ID of the listener to update
:param listener_updates: Dict containing updated listener attributes
:returns: None
:raises ListenerNotFound: The referenced listener was not found
"""
raise NotImplementedError

def delete_listener(self, listener_id):
"""Deletes a listener.

:param listener_id: ID of the listener to delete
:returns: None
:raises ListenerNotFound: The referenced listener was not found
"""
raise NotImplementedError

def create_pool(self, pool_id):
"""Creates a node pool.

:param pool_id: ID of the pool to create
:returns: None
:raises NoSuitableLB: Unable to find the load balancer
"""

(continues on next page)

4.5. Project Specifications 287

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

raise NotImplementedError

def update_pool(self, pool_id, pool_updates):
"""Updates a node pool.

:param pool_id: ID of the pool to update
:param pool_updates: Dict containing updated pool attributes
:returns: None
:raises PoolNotFound: The referenced pool was not found
"""
raise NotImplementedError

def delete_pool(self, pool_id):
"""Deletes a node pool.

:param pool_id: ID of the pool to delete
:returns: None
:raises PoolNotFound: The referenced pool was not found
"""
raise NotImplementedError

def create_health_monitor(self, health_monitor_id):
"""Creates a health monitor.

:param health_monitor_id: ID of the health monitor to create
:returns: None
:raises NoSuitablePool: Unable to find the node pool
"""
raise NotImplementedError

def update_health_monitor(self, health_monitor_id, health_monitor_updates):
"""Updates a health monitor.

:param health_monitor_id: ID of the health monitor to update
:param health_monitor_updates: Dict containing updated health monitor
attributes
:returns: None
:raises HMNotFound: The referenced health monitor was not found
"""
raise NotImplementedError

def delete_health_monitor(self, health_monitor_id):
"""Deletes a health monitor.

:param health_monitor_id: ID of the health monitor to delete
:returns: None
:raises HMNotFound: The referenced health monitor was not found
"""
raise NotImplementedError

(continues on next page)

4.5. Project Specifications 288

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

def create_member(self, member_id):
"""Creates a pool member.

:param member_id: ID of the member to create
:returns: None
:raises NoSuitablePool: Unable to find the node pool
"""
raise NotImplementedError

def update_member(self, member_id, member_updates):
"""Updates a pool member.

:param member_id: ID of the member to update
:param member_updates: Dict containing updated member attributes
:returns: None
:raises MemberNotFound: The referenced member was not found
"""
raise NotImplementedError

def delete_member(self, member_id):
"""Deletes a pool member.

:param member_id: ID of the member to delete
:returns: None
:raises MemberNotFound: The referenced member was not found
"""
raise NotImplementedError

def failover_amphora(self, amphora_id):
"""Failover an amphora

:param amp_id: ID of the amphora to fail over
:returns: None
:raises AmphoraNotFound: The referenced Amphora was not found
"""
raise NotImplementedError

Alternatives

This code could be included in the Queue Consumer component of the controller. However this would
not allow the library to be shared with other components of the controller, such as the Health Manager

Data model impact

REST API impact

None

4.5. Project Specifications 289

Octavia Documentation, Release 15.1.0.dev35

Security impact

Notifications impact

Other end user impact

Performance Impact

Other deployer impact

Developer impact

Implementation

Assignee(s)

Michael Johnson <johnsom>

Work Items

Dependencies

https://blueprints.launchpad.net/octavia/+spec/amphora-driver-interface https://blueprints.
launchpad.net/octavia/+spec/neutron-network-driver https://blueprints.launchpad.net/octavia/+spec/
nova-compute-driver

Testing

Unit tests

Documentation Impact

None

References

https://blueprints.launchpad.net/octavia/+spec/health-manager https://blueprints.launchpad.net/
octavia/+spec/housekeeping-manager https://blueprints.launchpad.net/octavia/+spec/queue-consumer

HAProxy Amphora API

https://blueprints.launchpad.net/octavia/+spec/appliance-api

The reference implementation of Octavia is going to make use of an haproxy- based amphora. As such,
there will be an haproxy reference driver that speaks a well-defined protocol to the haproxy-based am-
phora. This document is meant to be a foundation of this interface, outlining in sufficient detail the
various commands that will definitely be necessary. This design should be iterated upon as necessary
going forward.

Problem description

This API specification is necessary in order to fully develop the haproxy reference driver, both to ensure
this interface is well documented, and so that different people can work on different parts of bringing
Octavia to fruition.

4.5. Project Specifications 290

https://blueprints.launchpad.net/octavia/+spec/amphora-driver-interface
https://blueprints.launchpad.net/octavia/+spec/neutron-network-driver
https://blueprints.launchpad.net/octavia/+spec/neutron-network-driver
https://blueprints.launchpad.net/octavia/+spec/nova-compute-driver
https://blueprints.launchpad.net/octavia/+spec/nova-compute-driver
https://blueprints.launchpad.net/octavia/+spec/health-manager
https://blueprints.launchpad.net/octavia/+spec/housekeeping-manager
https://blueprints.launchpad.net/octavia/+spec/housekeeping-manager
https://blueprints.launchpad.net/octavia/+spec/queue-consumer
https://blueprints.launchpad.net/octavia/+spec/appliance-api

Octavia Documentation, Release 15.1.0.dev35

Proposed change

Note that this spec does not yet attempt to define the following, though these may follow shortly after
this initial spec is approved: * Method for bi-directional authentication between driver and amphora.
* Bootstrapping process of amphora * Transition process from "spare" to "active" amphora and other
amphora lifecycle transitions

This spec does attempt to provide an initial foundation for the following: * RESTful interface exposed
on amphora management

Alternatives

None

Data model impact

None (yet)

REST API impact

Please note that the proposed changes in this spec do NOT affect either the publicly-exposed user or
operator APIs, nor really anything above the haproxy reference driver.

Please see doc/main/api/haproxy-amphora-api.rst

Security impact

None yet, though bi-directional authentication between driver and amphora needs to be addressed.

Notifications impact

None

Other end user impact

None

Performance Impact

None

Other deployer impact

None

Developer impact

None

4.5. Project Specifications 291

Octavia Documentation, Release 15.1.0.dev35

Implementation

Assignee(s)

stephen-balukoff david-lenwell

Work Items

Dependencies

haproxy reference driver

Testing

Unit tests

Documentation Impact

None

References

None

Housekeeping Manager Specification

https://blueprints.launchpad.net/octavia/+spec/housekeeping-manager

Problem description

The Housekeeping Manager will manage the spare amphora pool and the teardown of amphorae that are
no longer needed. On a configurable interval the Housekeeping Manager will check the Octavia database
to identify the required cleanup and maintenance actions required. The amphora-lifecycle-management
specification details the Create and Deactivate amphora sequences the Housekeeping Manager will fol-
low.

Proposed change

The housekeeping manager will run as a daemon process which will perform the following actions:

• Read the following from the configuration file

– housekeeping_interval: The time (in seconds) that the housekeeping manager will sleep be-
fore running its checks again.

– spare_amphora_pool_size: The desired number of spare amphorae.

– maximum_deploying_amphora_count: The maximum number of amphorae that may be de-
ployed simultaneously.

– maximum_preserved_amphora_count: How many deactivated amphorae to preserve. 0
means delete, 1 or greater means keep up to that many amphorae for future diagnostics.
Only amphorae in the ERROR and PRESERVE states are eligible to be preserved. TODO:
Right now there is no PRESERVE state, for this to work we would need to define one in the
amphora spec.

4.5. Project Specifications 292

https://blueprints.launchpad.net/octavia/+spec/housekeeping-manager

Octavia Documentation, Release 15.1.0.dev35

– preservation_scheme

∗ "keep": keep all preserved amphorae

∗ "cycle": maintain a queue of preserved amphorae, deleting the oldest one when a new
amphora is preserved.

– preservation_method: Preservation must take into account the possibility that amphorae in-
stantiated in the future may reuse MAC addresses.

∗ "unplug": Disconnect the virtual NICs from the amphora

∗ "snapshot": Take a snapshot of the amphora, then stop it

• Get the spare pool size

– Log the spare pool size

– If the spare pool size is less than the spare pool target capacity, initiate creation of appropriate
number of amphorae.

• Obtain the list of deactivated amphorae and schedule their removal. If preservation_count > 0, and
there are fewer than that many amphorae in the preserved pool, preserve the amphora. After the
preserved pool size reaches preservation_count, use preservation_scheme to determine whether to
keep newly failed amphorae.

• Sleep for the time specified by housekeeping_interval.

• Return to the top

Establish a base class to model the desired functionality:

class HousekeepingManager(object):

""" Class to manage the spare amphora pool. This class should do
very little actual work, its main job is to monitor the spare pool
and schedule creation of new amphrae and removal of used amphrae.
By default, used amphorae will be deleted, but they may optionally
be preserved for future analysis.
"""

def get_spare_amphora_size(self):
""" Return the target capacity of the spare pool """
raise NotImplementedError

def get_ready_spare_amphora_count(self):
""" Return the number of available amphorae in the spare pool
"""
raise NotImplementedError

def create_amphora(self, num_to_create = 1):
""" Schedule the creation of the specified number of amphorae
to be added to the spare pool."""
raise NotImplementedError

def remove_amphora(self, amphora_ids):
""" Schedule the removal of the amphorae specified by

(continues on next page)

4.5. Project Specifications 293

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

amphora_ids."""
raise NotImplementedError

Exception Model

The manager is expected to raise or pass along the following well-defined exceptions:

• NotImplementedError - this functionality is not implemented/not supported

• AmphoraDriverError - a super class for all other exceptions and the catch
all if no specific exception can be found * NotFoundError - this amphora couldn’t be found/
was deleted by nova * UnauthorizedException - the driver can’t access the amphora * Un-
availableException - the amphora is temporary unavailable * DeleteFailed - this load balancer
couldn’t be deleted

Alternatives

Data model impact

Requires the addition of the housekeeping_interval, spare_pool_size, spare_amphora_pool_size, maxi-
mum_preserved_amphora_count, preservation_scheme, and preservation_method to the config.

REST API impact

None.

Security impact

Must follow standard practices for database access.

Notifications impact

Other deployer impact

Other end user impact

There should be no end-user-visible impact.

Performance Impact

The housekeeping_interval and spare_pool_size parameters will be adjustable by the operator in order
to balance resource usage against performance.

Developer impact

Developers of other modules need to be aware that amphorae may be created, deleted, or saved for diag-
nosis by this daemon.

4.5. Project Specifications 294

Octavia Documentation, Release 15.1.0.dev35

Implementation

Assignee(s)

Al Miller <ajmiller>

Work Items

• Write abstract interface

• Write Noop driver

• Write tests

Dependencies

Amphora driver Config manager

Testing

• Unit tests with tox and Noop-Driver

• tempest tests with Noop-Driver

Documentation Impact

None - we won’t document the interface for 0.5. If that changes we need to write an interface documen-
tation so 3rd party drivers know what we expect.

References

Network Driver Interface

Include the URL of your launchpad blueprint:

https://blueprints.launchpad.net/octavia/+spec/network-driver-interface

We need a generic interface in which to create networking resources. This is to allow implementations
that can support different networking infrastructures that accomplish frontend and backend connectivity.

Problem description

There is a need to define a generic interface for a networking service. An Octavia controller should not
know what networking infrastructure is being used underneath. It should only know an interface. This
interface is needed to support differing networking infrastructures.

Proposed change

In order to make the network driver as genericly functional as possible, it is broken down into methods
that Octavia will need at a high level to accomplish frontend and backend connectivity. The idea is that
to implement these methods it may require multiple requests to the networking service to accomplish the
end result. The interface is meant to promote stateless implementations and suffer no issues being run in
parallel.

4.5. Project Specifications 295

https://blueprints.launchpad.net/octavia/+spec/network-driver-interface

Octavia Documentation, Release 15.1.0.dev35

In the future we would like to create a common module that implementations of this interface can call
to setup a taskflow engine to promote using a common taskflow configuration. That however, can be left
once this has had time to mature.

Existing data model:

• class VIP

– load_balancer_id

– ip_address

– network_id - (neutron subnet)

– port_id - (neutron port)

• class Amphora

– load_balancer_id

– compute_id

– lb_network_ip

– status

– vrrp_ip - if an active/passive topology, this is the ip where the vrrp
communication between peers happens

– ha_ip - this is the highly available IP. In an active/passive topology
it most likely exists on the MASTER amphora and on failure it will be raised on the
BACKUP amphora. In an active/active topology it may exist on both amphorae. In
the end, it is up to the amphora driver to decide how to use this.

New data models:

• class Interface

– id

– network_id - (neutron subnet)

– amphora_id

– fixed_ips

• class Delta

– amphora_id

– compute_id

– add_nics

– delete_nics

• class Network

– id

– name

– subnets - (list of subnet ids)

– tenant_id

4.5. Project Specifications 296

Octavia Documentation, Release 15.1.0.dev35

– admin_state_up

– provider_network_type

– provider_physical_network

– provider_segmentation_id

– router_external

– mtu

• class Subnet

– id

– name

– network_id

– tenant_id

– gateway_ip

– cidr

– ip_version

• class Port

– id

– name

– device_id

– device_owner

– mac_address

– network_id

– status

– tenant_id

– admin_state_up

– fixed_ips - list of FixedIP objects

• FixedIP

– subnet_id

– ip_address

• AmphoraNetworkConfig

– amphora - Amphora object

– vip_subnet - Subnet object

– vip_port - Port object

– vrrp_subnet - Subnet object

– vrrp_port - Port object

4.5. Project Specifications 297

Octavia Documentation, Release 15.1.0.dev35

– ha_subnet - Subnet object

– ha_port - Port object

New Exceptions defined in the octavia.network package:

• NetworkException - Base Exception

• PlugVIPException

• UnplugVIPException

• PluggedVIPNotFound

• AllocateVIPException

• DeallocateVIPException

• PlugNetworkException

• UnplugNetworkException

• VIPInUse

• PortNotFound

• SubnetNotFound

• NetworkNotFound

• AmphoraNotFound

This class defines the methods for a fully functional network driver. Implementations of this interface
can expect a rollback to occur if any of the non-nullipotent methods raise an exception.

class AbstractNetworkDriver

• plug_vip(loadbalancer, vip)

– Sets up the routing of traffic from the vip to the load balancer and its amphorae.

– loadbalancer - instance of data_models.LoadBalancer

∗ this is to keep the parameters as generic as possible so different implementations can use
different properties of a load balancer. In the future we may want to just take in a list of
amphora compute ids and the vip data model.

– vip = instance of a VIP

– returns list of Amphora

– raises PlugVIPException, PortNotFound

• unplug_vip(loadbalancer, vip)

– Removes the routing of traffic from the vip to the load balancer and its amphorae.

– loadbalancer = instance of a data_models.LoadBalancer

– vip = instance of a VIP

– returns None

– raises UnplugVIPException, PluggedVIPNotFound

• allocate_vip(loadbalancer)

4.5. Project Specifications 298

Octavia Documentation, Release 15.1.0.dev35

– Allocates a virtual ip and reserves it for later use as the frontend connection of a load balancer.

– loadbalancer = instance of a data_models.LoadBalancer

– returns VIP instance

– raises AllocateVIPException, PortNotFound, SubnetNotFound

• deallocate_vip(vip)

– Removes any resources that reserved this virtual ip.

– vip = VIP instance

– returns None

– raises DeallocateVIPException, VIPInUse

• plug_network(compute_id, network_id, ip_address=None)

– Connects an existing amphora to an existing network.

– compute_id = id of an amphora in the compute service

– network_id = id of the network to attach

– ip_address = ip address to attempt to be assigned to interface

– returns Interface instance

– raises PlugNetworkException, AmphoraNotFound, NetworkNotFound

• unplug_network(compute_id, network_id, ip_address=None)

– Disconnects an existing amphora from an existing network. If ip_address is not specified
then all interfaces on that network will be unplugged.

– compute_id = id of an amphora in the compute service to unplug

– network_id = id of network to unplug amphora

– ip_address = ip address of interface to unplug

– returns None

– raises UnplugNetworkException, AmphoraNotFound, NetworkNotFound,
NetworkException

• get_plugged_networks(compute_id):

– Retrieves the current plugged networking configuration

– compute_id = id of an amphora in the compute service

– returns = list of Instance instances

• update_vip(loadbalancer):

– Hook for the driver to update the VIP information based on the state of the passed in load-
balancer

– loadbalancer: instance of a data_models.LoadBalancer

• get_network(network_id):

– Retrieves the network from network_id

4.5. Project Specifications 299

Octavia Documentation, Release 15.1.0.dev35

– network_id = id of an network to retrieve

– returns = Network data model

– raises NetworkException, NetworkNotFound

• get_subnet(subnet_id):

– Retrieves the subnet from subnet_id

– subnet_id = id of a subnet to retrieve

– returns = Subnet data model

– raises NetworkException, SubnetNotFound

• get_port(port_id):

– Retrieves the port from port_id

– port_id = id of a port to retrieve

– returns = Port data model

– raises NetworkException, PortNotFound

• failover_preparation(amphora):

– Prepare an amphora for failover

– amphora = amphora data model

– returns = None

– raises PortNotFound

Alternatives

• Straight Neutron Interface (networks, subnets, ports, floatingips)

• Straight Nova-Network Interface (network, fixed_ips, floatingips)

Data model impact

• The Interface data model defined above will just be a class. We may later decide that it needs to
be stored in the database, but we can optimize on that in a later review if needed.

REST API impact

None

Security impact

None

Notifications impact

None

4.5. Project Specifications 300

Octavia Documentation, Release 15.1.0.dev35

Other end user impact

None

Performance Impact

None

Other deployer impact

Need a service account to own the resources these methods create.

Developer impact

This will be creating an interface in which other code will be creating network resources.

Implementation

Assignee(s)

brandon-logan

Work Items

Define interface

Dependencies

None

Testing

None

Documentation Impact

Just docstrings on methods.

References

None

Nova Compute Driver

Blueprint: https://blueprints.launchpad.net/octavia/+spec/nova-compute-driver

Octavia needs to interact with nova for creation of VMs for this version. This spec will flesh out all the
methods described in the compute-driver-interface with nova VM specific commands.

4.5. Project Specifications 301

https://blueprints.launchpad.net/octavia/+spec/nova-compute-driver

Octavia Documentation, Release 15.1.0.dev35

Problem description

This spec details operations for creating, updating, and modifying amphora that will hold the actual load
balancer. It will utilize the nova client python api version 3 for the nova specific requests and commands.

Proposed change

Expose nova operations

• Build: Will need to build a virtual machine according to configuration parameters

– Will leverage the nova client ServerManager method "create" to build a server

• Get: Will need to retrieve details of the virtual machine from nova

– Will leverage the nova client ServerManager method "get" to retrieve a server, and return an
amphora object

• Delete: Will need to remove a virtual machine

– Will leverage the nova client ServerManager method "delete" for removal of server

• Status: Will need to retrieve the status of the virtual machine

– Will leverage the aforementioned get call to retrieve status of the server

Alternatives

None

Data model impact

Add fields to existing Amphora object

REST API impact

None

Security impact

None

Notifications impact

None

Other end user impact

None

Performance Impact

None

4.5. Project Specifications 302

Octavia Documentation, Release 15.1.0.dev35

Other deployer impact

None

Developer impact

Will need a nova service account and necessary credentials stored in config

Implementation

Assignee(s)

trevor-vardeman

Work Items

Expose nova operations

Dependencies

compute-driver-interface

Testing

Unit tests Functional tests

Documentation Impact

None

References

https://blueprints.launchpad.net/octavia/+spec/nova-compute-driver https://docs.openstack.org/
python-novaclient/latest/reference/api/index.html

Octavia Operator API Foundation

https://blueprints.launchpad.net/octavia/+spec/operator-api

Octavia needs the foundation of the Operator API created. This spec is not meant to address every
functionality needed in the operator API, only to create a solid foundation to iterate on in the future.

Problem description

This is needed because this will be the mechanism to actually communicate with Octavia. Doing CRUD
operations on all entities will be needed ASAP so that the system can be thoroughly tested.

Proposed change

Expose Pecan resources - Defined explicitly below in the REST API Impact

Create WSME types - These will be responsible for request validation and deserialization, and also re-
sponse serialization

4.5. Project Specifications 303

https://blueprints.launchpad.net/octavia/+spec/nova-compute-driver
https://docs.openstack.org/python-novaclient/latest/reference/api/index.html
https://docs.openstack.org/python-novaclient/latest/reference/api/index.html
https://blueprints.launchpad.net/octavia/+spec/operator-api

Octavia Documentation, Release 15.1.0.dev35

Setup paste deploy - This will be used in the future to interact with keystone and other middleware,
however at first this will not have any authentication so tenant_ids will just have to be made up uuids.

Create a handler interface and a noop logging implementation - A handler interface will be created. This
abstraction layer is needed because calling the controller in the resource layer will work for 0.5 but 1.0
will be sending it off to a queue. With this abstraction layer we can easily swap out a 0.5 controller with
a 1.0 controller.

Call database repositories - Most if not all resources will make a call to the database

Call handler - Only create, update, and delete operations should call the handler

Alternatives

None

Data model impact

Will need to add some methods to the database repository

REST API impact

Exposed Resources and Methods

POST /loadbalancers * Successful Status Code - 202 * JSON Request Body Attributes ** vip - an-
other JSON object with one required attribute from the following * net_port_id - uuid * subnet_id -
uuid * floating_ip_id - uuid * floating_ip_network_id - uuid ** tenant_id - string - optional - default
"0" * 36 (for now) ** name - string - optional - default null ** description - string - optional - default
null ** enabled - boolean - optional - default true * JSON Response Body Attributes ** id - uuid **
vip - another JSON object * net_port_id - uuid * subnet_id - uuid * floating_ip_id - uuid * float-
ing_ip_network_id - uuid ** tenant_id - string ** name - string ** description - string ** enabled -
boolean ** provisioning_status - string enum - (ACTIVE, PENDING_CREATE, PENDING_UPDATE,
PENDING_DELETE, DELETED, ERROR) ** operating_status - string enum - (ONLINE, OFFLINE,
DEGRADED, ERROR)

PUT /loadbalancers/{lb_id} * Successful Status Code - 202 * JSON Request Body Attributes ** name
- string ** description - string ** enabled - boolean * JSON Response Body Attributes ** id - uuid
** vip - another JSON object * net_port_id - uuid * subnet_id - uuid * floating_ip_id - uuid * float-
ing_ip_network_id - uuid ** tenant_id - string ** name - string ** description - string ** enabled -
boolean ** provisioning_status - string enum - (ACTIVE, PENDING_CREATE, PENDING_UPDATE,
PENDING_DELETE, DELETED, ERROR) ** operating_status - string enum - (ONLINE, OFFLINE,
DEGRADED, ERROR)

DELETE /loadbalancers/{lb_id} * Successful Status Code - 202 * No response or request body

GET /loadbalancers/{lb_id} * Successful Status Code - 200 * JSON Response Body Attributes ** id -
uuid ** vip - another JSON object * net_port_id - uuid * subnet_id - uuid * floating_ip_id - uuid *
floating_ip_network_id - uuid ** tenant_id - string ** name - string ** description - string ** enabled -
boolean ** provisioning_status - string enum - (ACTIVE, PENDING_CREATE, PENDING_UPDATE,
PENDING_DELETE, DELETED, ERROR) ** operating_status - string enum - (ONLINE, OFFLINE,
DEGRADED, ERROR)

GET /loadbalancers?tenant_id * Successful Status Code - 200 * tenant_id is an optional query parameter
to filter by tenant_id * returns a list of load balancers

4.5. Project Specifications 304

Octavia Documentation, Release 15.1.0.dev35

POST /loadbalancers/{lb_id}/listeners * Successful Status Code - 202 * JSON Request Body Attributes
** protocol - string enum - (TCP, HTTP, HTTPS) - required ** protocol_port - integer - required **
connection_limit - integer - optional ** default_tls_container_id - uuid - optional ** tenant_id - string
- optional - default "0" * 36 (for now) ** name - string - optional - default null ** description - string -
optional - default null ** enabled - boolean - optional - default true * JSON Response Body Attributes **
id - uuid ** protocol - string enum - (TCP, HTTP, HTTPS) ** protocol_port - integer ** connection_limit
- integer ** default_tls_container_id - uuid ** tenant_id - string - optional ** name - string - optional
** description - string - optional ** enabled - boolean - optional ** provisioning_status - string enum
- (ACTIVE, PENDING_CREATE, PENDING_UPDATE, PENDING_DELETE, DELETED, ERROR)
** operating_status - string enum - (ONLINE, OFFLINE, DEGRADED, ERROR)

PUT /loadbalancers/{lb_id}/listeners/{listener_id} * Successful Status Code - 202 * JSON Request Body
Attributes ** protocol - string enum ** protocol_port - integer ** connection_limit - integer ** de-
fault_tls_container_id - uuid ** name - string ** description - string ** enabled - boolean * JSON
Response Body Attributes ** id - uuid ** protocol - string enum - (TCP, HTTP, HTTPS) ** proto-
col_port - integer ** connection_limit - integer ** default_tls_container_id - uuid ** tenant_id - string
- optional ** name - string - optional ** description - string - optional ** enabled - boolean - optional
** provisioning_status - string enum - (ACTIVE, PENDING_CREATE, PENDING_UPDATE, PEND-
ING_DELETE, DELETED, ERROR) ** operating_status - string enum - (ONLINE, OFFLINE, DE-
GRADED, ERROR)

DELETE /loadbalancers/{lb_id}/listeners/{listener_id} * Successful Status Code - 202 * No response or
request body

GET /loadbalancers/{lb_id}/listeners/{listener_id} * Successful Status Code - 200 * JSON Response
Body Attributes ** id - uuid ** protocol - string enum - (TCP, HTTP, HTTPS) ** protocol_port -
integer ** connection_limit - integer ** default_tls_container_id - uuid ** tenant_id - string - op-
tional ** name - string - optional ** description - string - optional ** enabled - boolean - optional
** provisioning_status - string enum - (ACTIVE, PENDING_CREATE, PENDING_UPDATE, PEND-
ING_DELETE, DELETED, ERROR) ** operating_status - string enum - (ONLINE, OFFLINE, DE-
GRADED, ERROR)

GET /loadbalancers/{lb_id}/listeners * Successful Status Code - 200 * A list of listeners on load balancer
lb_id

POST /loadbalancers/{lb_id}/listeners/{listener_id}/pools * Successful Status Code - 202 * JSON Re-
quest Body Attributes ** protocol - string enum - (TCP, HTTP, HTTPS) - required ** lb_algorithm
- string enum - (ROUND_ROBIN, LEAST_CONNECTIONS, RANDOM) - required ** ses-
sion_persistence - JSON object - optional * type - string enum - (SOURCE_IP, HTTP_COOKIE)
- required * cookie_name - string - required for HTTP_COOKIE type ** tenant_id - string - optional
- default "0" * 36 (for now) ** name - string - optional - default null ** description - string - optional -
default null ** enabled - boolean - optional - default true * JSON Response Body Attributes ** id - uuid
** protocol - string enum - (TCP, HTTP, HTTPS) ** lb_algorithm - string enum - (ROUND_ROBIN,
LEAST_CONNECTIONS, RANDOM) ** session_persistence - JSON object * type - string enum -
(SOURCE_IP, HTTP_COOKIE) * cookie_name - string ** name - string ** description - string **
enabled - boolean ** operating_status - string enum - (ONLINE, OFFLINE, DEGRADED, ERROR)

PUT /loadbalancers/{lb_id}/listeners/{listener_id}/pools/{pool_id} * Successful Status Code - 202 *
JSON Request Body Attributes ** protocol - string enum - (TCP, HTTP, HTTPS) ** lb_algorithm -
string enum - (ROUND_ROBIN, LEAST_CONNECTIONS, RANDOM) ** session_persistence - JSON
object * type - string enum - (SOURCE_IP, HTTP_COOKIE) * cookie_name - string ** name -
string ** description - string ** enabled - boolean * JSON Response Body Attributes ** id - uuid **
protocol - string enum - (TCP, HTTP, HTTPS) ** lb_algorithm - string enum - (ROUND_ROBIN,
LEAST_CONNECTIONS, RANDOM) ** session_persistence - JSON object * type - string enum -

4.5. Project Specifications 305

Octavia Documentation, Release 15.1.0.dev35

(SOURCE_IP, HTTP_COOKIE) * cookie_name - string ** name - string ** description - string **
enabled - boolean ** operating_status - string enum - (ONLINE, OFFLINE, DEGRADED, ERROR)

DELETE /loadbalancers/{lb_id}/listeners/{listener_id}/pools/{pool_id} * Successful Status Code - 202
No request or response body

GET /loadbalancers/{lb_id}/listeners/{listener_id}/pools/{pool_id} * Successful Status Code - 200 *
JSON Response Body Attributes ** id - uuid ** protocol - string enum - (TCP, HTTP, HTTPS)
** lb_algorithm - string enum - (ROUND_ROBIN, LEAST_CONNECTIONS, RANDOM) ** ses-
sion_persistence - JSON object * type - string enum - (SOURCE_IP, HTTP_COOKIE) *
cookie_name - string ** name - string ** description - string ** enabled - boolean ** operating_status -
string enum - (ONLINE, OFFLINE, DEGRADED, ERROR)

GET /loadbalancers/{lb_id}/listeners/{listener_id}/pools * Successful Status Code - 200 * Returns a list
of pools

POST /loadbalancers/{lb_id}/listeners/{listener_id}/ pools/{pool_id}/healthmonitor * Successful Status
Code - 202 * JSON Request Body Attributes ** type - string enum - (HTTP, HTTPS, TCP) - required
** delay - integer - required ** timeout - integer - required ** fall_threshold - integer - required **
rise_threshold - integer - required ** http_method - string enum - (GET, POST, PUT, DELETE) - required
for HTTP(S) ** url_path - string - required for HTTP(S) ** expected_codes - comma delimited string -
required for HTTP(S) ** enabled - boolean - required - default true * JSON Response Body Attributes
** type - string enum - (HTTP, HTTPS, TCP) ** delay - integer ** timeout - integer ** fall_threshold
- integer ** rise_threshold - integer ** http_method - string enum - (GET, POST, PUT, DELETE) **
url_path - string ** expected_codes - comma delimited string ** enabled - boolean

PUT /loadbalancers/{lb_id}/listeners/{listener_id}/ pools/{pool_id}/healthmonitor * Successful Status
Code - 202 * JSON Request Body Attributes ** type - string enum - (HTTP, HTTPS, TCP) ** delay -
integer ** timeout - integer ** fall_threshold - integer ** rise_threshold - integer ** http_method - string
enum - (GET, POST, PUT, DELETE) ** url_path - string ** expected_codes - comma delimited string
** enabled - boolean * JSON Response Body Attributes ** type - string enum - (HTTP, HTTPS, TCP) **
delay - integer ** timeout - integer ** fall_threshold - integer ** rise_threshold - integer ** http_method
- string enum - (GET, POST, PUT, DELETE) ** url_path - string ** expected_codes - comma delimited
string ** enabled - boolean

DELETE /loadbalancers/{lb_id}/listeners/{listener_id}/ pools/{pool_id}/healthmonitor * Successful
Status Code - 202 No request or response body

GET /loadbalancers/{lb_id}/listeners/{listener_id}/ pools/{pool_id}/healthmonitor * Successful Status
Code - 200 * JSON Response Body Attributes ** type - string enum - (HTTP, HTTPS, TCP) ** delay -
integer ** timeout - integer ** fall_threshold - integer ** rise_threshold - integer ** http_method - string
enum - (GET, POST, PUT, DELETE) ** url_path - string ** expected_codes - comma delimited string
** enabled - boolean

POST /loadbalancers/{lb_id}/listeners/{listener_id}/ pools/{pool_id}/members * Successful Status
Code - 202 * JSON Request Body Attributes ** ip_address - IP Address - required ** protocol_port
- integer - required ** weight - integer - optional ** subnet_id - uuid - optional ** tenant_id - string -
optional - default "0" * 36 (for now) ** enabled - boolean - optional - default true * JSON Response
Body Attributes ** id - uuid ** ip_address - IP Address ** protocol_port - integer ** weight - integer **
subnet_id - uuid ** tenant_id - string ** enabled - boolean ** operating_status - string enum - (ONLINE,
OFFLINE, DEGRADED, ERROR)

PUT /loadbalancers/{lb_id}/listeners/{listener_id}/ pools/{pool_id}/members/{member_id} * Success-
ful Status Code - 202 * JSON Request Body Attributes ** protocol_port - integer - required ** weight
- integer - optional ** enabled - boolean - optional - default true * JSON Response Body Attributes **
id - uuid ** ip_address - IP Address ** protocol_port - integer ** weight - integer ** subnet_id - uuid

4.5. Project Specifications 306

Octavia Documentation, Release 15.1.0.dev35

** tenant_id - string ** enabled - boolean ** operating_status - string enum - (ONLINE, OFFLINE,
DEGRADED, ERROR)

DELETE /loadbalancers/{lb_id}/listeners/{listener_id}/ pools/{pool_id}/members/{member_id} * Suc-
cessful Status Code - 202 No request or response body

GET /loadbalancers/{lb_id}/listeners/{listener_id}/ pools/{pool_id}/members/{member_id} * Success-
ful Status Code - 200 * JSON Response Body Attributes ** id - uuid ** ip_address - IP Address **
protocol_port - integer ** weight - integer ** subnet_id - uuid ** tenant_id - string ** enabled - boolean
** operating_status - string enum - (ONLINE, OFFLINE, DEGRADED, ERROR)

GET /loadbalancers/{lb_id}/listeners/{listener_id}/ pools/{pool_id}/members * Successful Status Code
- 200 Returns a list of members

Security impact

No authentication with keystone

Notifications impact

None

Other end user impact

Not ready for end user

Performance Impact

None

Other deployer impact

None

Developer impact

None

Implementation

Assignee(s)

brandon-logan

Work Items

Expose Pecan resources Create WSME types Setup paste deploy Create a handler interface and a noop
logging implementation Call database repositories Call handler

4.5. Project Specifications 307

Octavia Documentation, Release 15.1.0.dev35

Dependencies

db-repositories

Testing

Unit tests

Documentation Impact

None

References

None

Queue Consumer

https://blueprints.launchpad.net/octavia/+spec/queue-consumer

This blueprint describes how Oslo messages are consumed, processed and delegated from the API-
controller queue to the controller worker component of Octavia. The component that is responsible
for these activities is called the Queue Consumer.

Problem description

Oslo messages need to be consumed by the controller and delegated to the proper controller worker.
Something needs to interface with the API-controller queue and spawn the controller workers. That
"something" is what we are calling the Queue Consumer.

Proposed change

The major component of the Queue Consumer will be a class that acts as a consumer to Oslo messages.
It will be responsible for configuring and starting a server that is then able to receive messages. There
will be a one-to-one mapping between API methods and consumer methods (see code snippet below).
Corresponding controller workers will be spawned depending on which consumer methods are called.

The threading will be handled by Oslo messaging using the ’eventlet’ executor. Using the ’eventlet’
executor will allow for message throttling and removes the need for the controller workers to manage
threads. The benefit of using the ’eventlet’ executor is that the Queue Consumer will not have to spawn
threads at all, since every message received will be in its own thread already. This means that the Queue
Consumer doesn’t spawn a controller worker, rather it just starts the execution of the deploy code.

An ’oslo_messaging’ configuration section will need to be added to octavia.conf for Oslo messaging
options. For the Queue Consumer, the ’rpc_thread_pool_size’ config option will need to be added. This
option will determine how many consumer threads will be able to read from the queue at any given time
(per consumer instance) and serve as a throttling mechanism for message consumption. For example, if
’rpc_thread_pool_size’ is set to 1 thread then only one controller worker will be able to conduct work.
When that controller worker completes its task then a new message can be consumed and a new controller
worker flow started.

Below are the planned interface methods for the queue consumer. The Queue Consumer will be listening
on the OCTAVIA_PROV (short for octavia provisioning) topic. The context parameter will be supplied
along with an identifier such as a load balancer id, listener id, etc. relevant to the particular interface

4.5. Project Specifications 308

https://blueprints.launchpad.net/octavia/+spec/queue-consumer

Octavia Documentation, Release 15.1.0.dev35

method. The context parameter is a dictionary and is reserved for metadata. For example, the Neutron
LBaaS agent leverages this parameter to send additional request information. Additionally, update meth-
ods include a *_updates parameter than includes the changes that need to be made. Thus, the controller
workers responsible for the update actions will need to query the database to retrieve the old state and
combine it with the updates to provision appropriately. If a rollback or exception occur, then the con-
troller worker will only need to update the provisioning status to ERROR and will not need to worry
about making database changes to attributes of the object being updated.

def create_load_balancer(self, context, load_balancer_id):
pass

def update_load_balancer(self, context, load_balancer_updates,
load_balancer_id):

pass

def delete_load_balancer(self, context, load_balancer_id):
pass

def create_listener(self, context, listener_id):
pass

def update_listener(self, context, listener_updates, listener_id):
pass

def delete_listener(self, context, listener_id):
pass

def create_pool(self, context, pool_id):
pass

def update_pool(self, context, pool_updates, pool_id):
pass

def delete_pool(self, context, pool_id):
pass

def create_health_monitor(self, context, health_monitor_id):
pass

def update_health_monitor(self, context, health_monitor_updates,
health_monitor_id):

pass

def delete_health_monitor(self, context, health_monitor_id):
pass

def create_member(self, context, member_id):
pass

def update_member(self, context, member_updates, member_id):
pass

(continues on next page)

4.5. Project Specifications 309

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

def delete_member(self, context, member_id):
pass

Alternatives

There are a variety of ways to consume from Oslo messaging. For example, instead of having a single
consumer on the controller we could have multiple consumers (i.e. one for CREATE messages, one for
UPDATE messages, etc.). However, since we merely need something to pass messages off to controller
workers other options are overkill.

Data model impact

While there is no direct data model impact it is worth noting that the API will not be persisting updates
to the database. Rather, delta updates will pass from the user all the way to the controller worker. Thus,
when the controller worker successfully completes the prescribed action, only then will it persist the
updates to the database. No API changes are necessary for create and update actions.

REST API impact

None

Security impact

None

Notifications impact

None

Other end user impact

None

Performance Impact

The only performance related item is queue throttling. This is done by design so that operators can safely
throttle incoming messages dependent on their specific needs.

Other deployer impact

Configuration options will need to be added to ocativa.conf. Please see above for more details.

Developer impact

None

4.5. Project Specifications 310

Octavia Documentation, Release 15.1.0.dev35

Implementation

Assignee(s)

jorge-miramontes

Work Items

• Implement consumer class

• Add executable queue-consumer.py to bin directory

Dependencies

https://blueprints.launchpad.net/octavia/+spec/controller-worker

Testing

Unit tests

Documentation Impact

None

References

None

TLS Data Security and Barbican

Launchpad blueprint:

https://blueprints.launchpad.net/octavia/+spec/tls-data-security

Octavia will have some need of secure storage for TLS related data. This BP is intended to identify all of
the data that needs secure storage, or any other interaction that will require the use of Barbican or another
secure solution.

Problem description

1. Octavia will support TLS Termination (including SNI), which will require us to store and retrieve
certificates and private keys from a secure repository.

2. Octavia will communicate with its Amphorae using TLS, so each Amphora will need a certificate for
the controller to validate.

3. Octavia will need TLS data for exposing its own API via HTTPS.

Proposed change

The initial supported implementation for TLS related functions will be Barbican, but the interface will
be generic such that other implementations could be created later.

4.5. Project Specifications 311

https://blueprints.launchpad.net/octavia/+spec/controller-worker
https://blueprints.launchpad.net/octavia/+spec/tls-data-security

Octavia Documentation, Release 15.1.0.dev35

Note

a sequence diagram describing the communication between the User, Octavia, Barbican and the Am-
phora API was removed, the diagram is still available in the documentation of older stable branches.

1. Create a CertificateManager interface for storing and retrieving certificate and private key pairs (and
intermediate certs / private key passphrase). Users will pass their TLS data to Octavia in the form of a
certificate_id, which is a reference to their data in some secure service. Octavia will store that certifi-
cate_id for each Listener/SNI and will retrieve the data when necessary. (Barbican specific: users will
need to add Octavia’s user account as an authorized user on the Container and all Secrets [1] so we catch
fetch the data on their behalf.)

We will need to validate the certificate data (including key and intermediates) when we initially receive
it, and will assume that it remains unchanged for the lifespan of the LB (in Barbican the data is immutable
so this is a safe assumption, I do not know how well this will work for other services). In the case of
invalid TLS data, we will reject the request with a 400 (if it is an initial create) or else put the LB into
ERROR status (if it is on a failover event or during some other non-interactive scenario).

Note

a sequence diagram describing the communication between the Octavia components was removed,
the diagram is still available in the documentation of older stable branches.

2. Create a CertificateGenerator interface to generate certificates from CSRs. When the controller creates
an Amphora, it will generate a private key and a CSR, generate a signed certificate from the CSR, and
include the private key and signed certificate in a ConfigDrive for the new Amphora. It will also include
a copy of the Controller’s certificate on the ConfigDrive. All future communications with the Amphora
will do certificate validation based on these certificates. For the Amphora, this will be based on our
(private) certificate authority and the CN of the Amphora’s cert matching the ID of the Amphora. For
the Controller, the cert should be a complete match with the version provided.

(The CertificateManager and CertificateGenerator interfaces are separate because while Barbican can
perform both functions, future implementations may need to use two distinct services to achieve both.)

3. The key/cert for the main Octavia API/controller should be maintained manually by the server opera-
tors using whatever configuration management they choose. We should not need to use a specific external
repo for this. The trusted CA Cert will also need to be retrieved from barbican and manually loaded in
the config.

Alternatives

We could skip the interface and just use Barbican directly, but that would be diverging from what seems
to be the accepted OpenStack model for Secret Store integration.

We could also store everything locally or in the DB, but that isn’t a real option for production systems
because it is incredibly insecure (though there will be a "dummy driver" that operates this way for devel-
opment purposes).

4.5. Project Specifications 312

https://docs.openstack.org/octavia/latest/contributor/specs/version0.5/tls-data-security.html
https://docs.openstack.org/octavia/latest/contributor/specs/version0.5/tls-data-security.html

Octavia Documentation, Release 15.1.0.dev35

Data model impact

Nothing new, the models for this should already be in place. Some of the columns/classes might need
to be renamed more generically (currently there is a tls_container_id column, which would become
tls_certificate_id to be more generic).

REST API impact

None

Security impact

Using Barbican is considered secure.

Notifications impact

None

Other end user impact

None

Performance Impact

Adding an external touchpoint (a certificate signing service) to the Amphora spin-up workflow will in-
crease the average time for readying an Amphora. This shouldn’t be a huge problem if the standby-pool
size is sufficient for the particular deployment.

Other deployer impact

None

Developer impact

None

Implementation

Assignee(s)

Adam Harwell (adam-harwell)

Work Items

1. Create CertificateManager interface.

2. Create CertificateGenerator interface.

3. Create BarbicanCertificateManager implementation.

4. Create BarbicanCertificateGenerator implementation.

5. Create unit tests!

4.5. Project Specifications 313

Octavia Documentation, Release 15.1.0.dev35

Dependencies

This script will depend on the OpenStack Barbican project, including some features that are still only at
the blueprint stage.

Testing

There will be testing. Yes.

Documentation Impact

Documentation changes will be primarily internal.

References

[1] https://review.opendev.org/#/c/127353/
[2] https://review.opendev.org/#/c/129048/

4.5.2 Version 0.8 (mitaka)

Active-Standby Amphora Setup using VRRP

https://blueprints.launchpad.net/octavia/+spec/activepassiveamphora

This blueprint describes how Octavia implements its Active/Standby solution. It will describe the high
level topology and the proposed code changes from the current supported Single topology to realize the
high availability loadbalancer scenario.

Problem description

A tenant should be able to start high availability loadbalancer(s) for the tenant’s backend services as
follows:

• The operator should be able to configure an Active/Standby topology through an octavia configu-
ration file, which the loadbalancer shall support. An Active/Standby topology shall be supported
by Octavia in addition to the Single topology that is currently supported.

• In Active/Standby, two Amphorae shall host a replicated configuration of the load balancing ser-
vices. Both amphorae will also deploy a Virtual Router Redundancy Protocol (VRRP) implemen-
tation [2].

• Upon failure of the master amphora, the backup one shall seamlessly take over the load balancing
functions. After the master amphora changes to a healthy status, the backup amphora shall give
up the load balancing functions to the master again (see [2] section 3 for details on master election
protocol).

• Fail-overs shall be seamless to end-users and fail-over time should be minimized.

• The following diagram illustrates the Active/Standby topology.

asciiflow:

+--------+
| Tenant |

(continues on next page)

4.5. Project Specifications 314

https://review.opendev.org/#/c/127353/
https://review.opendev.org/#/c/129048/
https://blueprints.launchpad.net/octavia/+spec/activepassiveamphora

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

|Service |
| (1) |
+--------+ +-----------+
| +--------+ +----+ Master +----+
| | Tenant | |VIP | Amphora |IP1 |
| |Service | +--+-+-----+-----+-+--+
	(M)			MGMT	VRRP	
+--------+		IP	IP1			
	Tenant	+--+--++----+				
	Network				+-----------------+ Floating +---------+	
v-v-------------^----+---v-^----v-^-+ Router	IP					
^---------------+----v-^---+------+-+Floating <-> VIP <----------+ Internet						
Management						
(MGMT)				+-----------------+ +---------+		
Network	+--+--++----+					
Paired	MGMT	VRRP				
		IP	IP2			
+-----------+	+-----+-----+					
Octavia	++---+ Backup +-+--+					
Controller		VIP	Amphora	IP2		
(s)	+----+-----------+----+					
+-----------+

• The newly introduced VRRP IPs shall communicate on the same tenant network (see security
impact for more details).

• The existing Haproxy Jinja configuration template shall include "peer" setup for state synchroniza-
tion over the VRRP IP addresses.

• The VRRP IP addresses shall work with both IPv4 and IPv6.

Proposed change

The Active/Standby loadbalancers require the following high level changes:

• Add support of VRRP in the amphora base image through Keepalived.

• Extend the controller worker to be able to spawn N amphorae associated with the same loadbalancer
on N different compute nodes (This takes into account future work on Active/Active topology).
The amphorae shall be allowed to use the VIP through "allow address pairing". These amphorae
shall replicate the same listeners, and pools configuration. Note: topology is a property of a load
balancer and not of one of its amphorae.

• Extend the amphora driver interface, the amphora REST driver, and Jinja configuration templates
for the newly introduced VRRP service [4].

• Develop a Keepalived driver.

• Extend the network driver to become aware of the different loadbalancer topologies and add support
of network creation. The network driver shall also pair the different amphorae in a given topology
to the same VIP address.

• Extend the controller worker to build the right flow/sub-flows according to the given topology. The
controller worker is also responsible of creating the correct stores needed by other flow/sub-flows.

4.5. Project Specifications 315

Octavia Documentation, Release 15.1.0.dev35

• Extend the Octavia configuration and Operator API to support the Active/Standby topology.

• MINOR: Extend the Health Manager to be aware of the role of the amphora (Master/Backup) [9].
If the health manager decided to spawn a new amphora to replace an unhealthy one (while a backup
amphora is already in service), it must replicate the same VRRP priorities, ids, and authentication
credentials to keep the loadbalancer in its appropriate configuration. Listeners associated with this
load balancer shall be put in a DEGRADED provisioning state.

Alternatives

We could use heartbeats as an alternative to VRRP, which is also a widely adopted solution. Heartbeats
better suit redundant file servers, filesystems, and databases rather than network services such as routers,
firewalls, and loadbalancers. Willy Tarreau, the creator of Haproxy, provides a detailed view on the major
differences between heartbeats and VRRP in [5].

Data model impact

The data model of the Octavia database shall be impacted as follows:

• A new column in the load_balancer table shall indicate its topology. The topology field takes
values from: SINGLE, or ACTIVE/STANDBY.

• A new column in the amphora table shall indicate an amphora’s role in the topology. If the topology
is SINGLE, the amphora role shall be STANDALONE. If the topology is ACTIVE/STANDBY,
the amphora role shall be either MASTER or BACKUP. This role field will also be of use for the
Active/Active topology.

• New value tables for the loadbalancer topology and the amphorae roles.

• New columns in the amphora table shall indicate the VRRP priority, the VRRP ID, and the VRRP
interface of the amphora.

• A new column in the listener table shall indicate the TCP port used for listener internal data syn-
chronization.

• VRRP groups define the common VRRP configurations for all listeners on an amphora. A new
table shall hold the VRRP groups main configuration primitives including at least: VRRP authen-
tication information, role and priority advertisement interval. Each Active/Standby loadbalancer
defines one and only one VRRP group.

REST API impact

** Changes to amphora API: see [11] **

PUT /listeners/{amphora_id}/{listener_id}/haproxy

PUT /vrrp/upload

PUT /vrrp/{action}

GET /interface/{ip_addr}

** Changes to operator API: see [10] **

POST /loadbalancers * Successful Status Code - 202 * JSON Request Body Attributes ** vip - an-
other JSON object with one required attribute from the following * net_port_id - uuid * subnet_id -
uuid * floating_ip_id - uuid * floating_ip_network_id - uuid ** tenant_id - string - optional - default
"0" * 36 (for now) ** name - string - optional - default null ** description - string - optional - default

4.5. Project Specifications 316

Octavia Documentation, Release 15.1.0.dev35

null ** enabled - boolean - optional - default true * JSON Response Body Attributes ** id - uuid **
vip - another JSON object * net_port_id - uuid * subnet_id - uuid * floating_ip_id - uuid * float-
ing_ip_network_id - uuid ** tenant_id - string ** name - string ** description - string ** enabled -
boolean ** provisioning_status - string enum - (ACTIVE, PENDING_CREATE, PENDING_UPDATE,
PENDING_DELETE, DELETED, ERROR) ** operating_status - string enum - (ONLINE, OFFLINE,
DEGRADED, ERROR) ** topology - string enum - (SINGLE, ACTIVE_STANDBY)

PUT /loadbalancers/{lb_id} * Successful Status Code - 202 * JSON Request Body Attributes ** name
- string ** description - string ** enabled - boolean * JSON Response Body Attributes ** id - uuid
** vip - another JSON object * net_port_id - uuid * subnet_id - uuid * floating_ip_id - uuid * float-
ing_ip_network_id - uuid ** tenant_id - string ** name - string ** description - string ** enabled -
boolean ** provisioning_status - string enum - (ACTIVE, PENDING_CREATE, PENDING_UPDATE,
PENDING_DELETE, DELETED, ERROR) ** operating_status - string enum - (ONLINE, OFFLINE,
DEGRADED, ERROR) ** topology - string enum - (SINGLE, ACTIVE_STANDBY)

GET /loadbalancers/{lb_id} * Successful Status Code - 200 * JSON Response Body Attributes ** id -
uuid ** vip - another JSON object * net_port_id - uuid * subnet_id - uuid * floating_ip_id - uuid *
floating_ip_network_id - uuid ** tenant_id - string ** name - string ** description - string ** enabled -
boolean ** provisioning_status - string enum - (ACTIVE, PENDING_CREATE, PENDING_UPDATE,
PENDING_DELETE, DELETED, ERROR) ** operating_status - string enum - (ONLINE, OFFLINE,
DEGRADED, ERROR) ** topology - string enum - (SINGLE, ACTIVE_STANDBY)

Security impact

• The VRRP driver must automatically add a security group rule to the amphora’s security group to
allow VRRP traffic (Protocol number 112) on the same tenant subnet.

• The VRRP driver shall automatically add a security group rule to allow Authentication Header
traffic (Protocol number 51).

• VRRP driver shall support authentication-type MD5.

• The HAProxy driver must be updated to automatically add a security group rule that allows multi-
peers to synchronize their states.

• Currently HAProxy does not support peer authentication, and state sync messages are in plaintext.

• At this point, VRRP shall communicate on the same tenant network. The rationale is to fail-over
based on a similar network interfaces condition which the tenant operates experience. Also, VRRP
traffic and sync messages shall naturally inherit same protections applied to the tenant network.
This may create fake fail-overs if the tenant network is under unplanned, heavy traffic. This is still
better than failing over while the master is actually serving tenant’s traffic or not failing over at all if
the master has failed services. Additionally, the Keepalived shall check the health of the HAproxy
service.

• In next steps the following shall be taken into account: * Tenant quotas and supported topologies.
* Protection of VRRP Traffic, HAproxy state sync, Router IDs, and pass phrases in both packets
and DB.

Notifications impact

None.

4.5. Project Specifications 317

Octavia Documentation, Release 15.1.0.dev35

Other end user impact

• The operator shall be able to specify the loadbalancer topology in the Octavia configuration file
(used by default).

Performance Impact

The Active/Standby can consume up to twice the resources (storage, network, compute) as required by
the Single Topology. Nevertheless, one single amphora shall be active (i.e. serving end-user) at any point
in time. If the Master amphora is healthy, the backup one shall remain idle until it receives no VRRP
advertisements from the master.

The VRRP requires executing health checks in the amphorae at fine grain granularity period. The health
checks shall be as lightweight as possible such that VRRP is able to execute all check scripts within a
predefined interval. If the check scripts failed to run within this predefined interval, VRRP may become
unstable and may alternate the amphorae roles between MASTER and BACKUP incorrectly.

Other deployer impact

• An amphora_topology config option shall be added. The controller worker shall change its taskflow
behavior according to the requirement of different topologies.

• By default, the amphora_topology is SINGLE and the ACTIVE/STANDBY topology shall be en-
abled/requested explicitly by operators.

• The Keepalived version deployed in the amphora image must be newer than 1.2.8 to support unicast
VRRP mode.

Developer impact

None.

Implementation

Assignee(s)

Sherif Abdelwahab (abdelwas)

Work Items

• Amphora image update to include Keepalived.

• Data model updates.

• Control Worker extensions.

• Keepalived driver.

• Update Network driver.

• Security rules.

• Update Amphora REST APIs and Jinja Configurations.

• Update Octavia Operator APIs.

4.5. Project Specifications 318

Octavia Documentation, Release 15.1.0.dev35

Dependencies

Keepalived version deployed in the amphora image must be newer than 1.2.8 to support unicast VRRP
mode.

Testing

• Unit tests with tox.

• Function tests with tox.

Documentation Impact

• Description of the different supported topologies: Single, Active/Standby.

• Octavia configuration file changes to enable the Active/Standby topology.

• CLI changes to enable the Active/Standby topology.

• Changes shall be introduced to the amphora APIs: see [11].

References

[1] Implementing High Availability Instances with Neutron using VRRP http://goo.gl/eP71g7

[2] RFC3768 Virtual Router Redundancy Protocol (VRRP)

[3] https://review.opendev.org/#/c/38230/

[4] http://www.keepalived.org/LVS-NAT-Keepalived-HOWTO.html

[5] http://www.formilux.org/archives/haproxy/1003/3259.html

[6] https://blueprints.launchpad.net/octavia/+spec/base-image

[7] https://blueprints.launchpad.net/octavia/+spec/controller-worker

[8] https://blueprints.launchpad.net/octavia/+spec/amphora-driver-interface

[9] https://blueprints.launchpad.net/octavia/+spec/controller

[10] https://blueprints.launchpad.net/octavia/+spec/operator-api

[11] doc/main/api/haproxy-amphora-api.rst

Allow to use Glance image tag to refer to desired Amphora image

https://blueprints.launchpad.net/octavia/+spec/use-glance-tags-to-manage-image

Currently, Octavia allows to define the Glance image ID to be used to boot new Amphoras. This spec
suggests another way to define the desired image, by using Glance tagging mechanism.

Problem description

The need to hardcode image ID in the service configuration file has drawbacks.

Specifically, when an updated image is uploaded into Glance, the operator is required to orchestrate
configuration file update on all Octavia nodes and then restart all Octavia workers to apply the change.
It is both complex and error prone.

4.5. Project Specifications 319

http://goo.gl/eP71g7
https://review.opendev.org/#/c/38230/
http://www.keepalived.org/LVS-NAT-Keepalived-HOWTO.html
http://www.formilux.org/archives/haproxy/1003/3259.html
https://blueprints.launchpad.net/octavia/+spec/base-image
https://blueprints.launchpad.net/octavia/+spec/controller-worker
https://blueprints.launchpad.net/octavia/+spec/amphora-driver-interface
https://blueprints.launchpad.net/octavia/+spec/controller
https://blueprints.launchpad.net/octavia/+spec/operator-api
https://blueprints.launchpad.net/octavia/+spec/use-glance-tags-to-manage-image

Octavia Documentation, Release 15.1.0.dev35

Proposed change

The spec suggests an alternative way to configure the desired Glance image to be used for Octavia: using
Glance image tagging feature.

Glance allows to tag an image with any tag which is represented by a string value.

With the proposed change, Octavia operator will be able to tell Octavia to use an image with the specified
tag. Then Octavia will talk to Glance to determine the exact image ID that is marked with the tag, before
booting a new Amphora.

Alternatives

Alternatively, we could make Nova talk to Glance to determine the desired image ID based on the tag
provided by Octavia. This approach is not supported by Nova community because they don’t want to
impose the complexity into their code base.

Another alternative is to use image name instead of its ID. Nova is capable of fetching the right image
from Glance by name as long as the name is unique. This is not optimal in case when the operator does
not want to remove the old Amphora image right after a new image is uploaded (for example, if the
operator wants to test the new image before cleaning up the old one).

Data model impact

None.

REST API impact

None.

Security impact

Image tags should be managed by the same user that owns the images themselves.

Notifications impact

None.

Other end user impact

The proposed change should not break existing mechanism. To achieve that, the new mechanism will be
guarded with a new configuration option that will store the desired Glance tag.

Performance Impact

If the feature is used, Octavia will need to reach to Glance before booting a new Amphora. The perfor-
mance impact is well isolated and is not expected to be significant.

Other deployer impact

The change couples Octavia with Glance. It should not be an issue since there are no use cases to use
Octavia without Glance installed.

4.5. Project Specifications 320

Octavia Documentation, Release 15.1.0.dev35

The new feature deprecates amp_image_id option. Operators that still use the old image referencing
mechanism will be advised to switch to the new option.

Eventually, the old mechanism will be removed from the tree.

Developer impact

None.

Implementation

Assignee(s)

Primary assignee:
ihrachys (Ihar Hrachyshka)

Work Items

• introduce glanceclient integration into nova compute driver

• introduce new configuration option to store the glance tag

• introduce devstack plugin support to configure the feature

• provide documentation for the new feature

Dependencies

None.

Testing

Unit tests will be written to cover the feature.

Octavia plugin will be switched to using the new glance image referencing mechanism. Tempest tests
will be implemented to test the new feature.

Documentation Impact

New feature should be documented in operator visible guides.

References

4.5.3 Version 0.9 (newton)

Distributor for Active-Active, N+1 Amphorae Setup

Attention

Please review the active-active topology blueprint first (Active-Active, N+1 Amphorae Setup)

https://blueprints.launchpad.net/octavia/+spec/active-active-topology

4.5. Project Specifications 321

https://blueprints.launchpad.net/octavia/+spec/active-active-topology

Octavia Documentation, Release 15.1.0.dev35

Problem description

This blueprint describes how Octavia implements a Distributor to support the active-active loadbalancer
(LB) solution, as described in the blueprint linked above. It presents the high-level Distributor design
and suggests high-level code changes to the current code base to realize this design.

In a nutshell, in an active-active topology, an Amphora Cluster of two or more active Amphorae col-
lectively provide the loadbalancing service. It is designed as a 2-step loadbalancing process; first, a
lightweight distribution of VIP traffic over an Amphora Cluster; then, full-featured loadbalancing of traf-
fic over the back-end members. Since a single loadbalancing service, which is addressable by a single
VIP address, is served by several Amphorae at the same time, there is a need to distribute incoming
requests among these Amphorae -- that is the role of the Distributor.

This blueprint uses terminology defined in the Octavia glossary when available, and defines new terms
to describe new components and features as necessary.

Note: Items marked with [P2] refer to lower priority features to be designed / implemented
only after initial release.

Proposed change

• Octavia shall implement a Distributor to support the active-active topology.

• The operator should be able to select and configure the Distributor (e.g., through an Octavia con-
figuration file or [P2] through a flavor framework).

• Octavia shall support a pluggable design for the Distributor, allowing different implementations.
In particular, the Distributor shall be abstracted through a driver, similarly to the current support
of Amphora implementations.

• Octavia shall support different provisioning types for the Distributor; including VM-based (the
default, similar to current Amphorae), [P2] container-based, and [P2] external (vendor-specific)
hardware.

• The operator shall be able to configure the distribution policies, including affinity and availability
(see below for details).

Architecture

High-level Topology Description

• The following diagram illustrates the Distributor’s role in an active-active topology:

Front-End Back-End
Internet Networks Networks
(world) (tenants) (tenants)

A B C A B C
floating IP

to VIP f.e. IPs Amphorae b.e.
LB A of IPs

VIP A Tenant A
GW

Routerfloating IP
to VIP f.e. IPs Amphorae b.e.
LB B of IPs

(continues on next page)

4.5. Project Specifications 322

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

VIP B Tenant B

floating IP
to VIP f.e. IPs Amphorae b.e.

LB C of IPs
VIP C Tenant C

arp arp arp

VIPVIPVIP

IP A IP B IP C

Distributor
(multi-tenant)

• In the above diagram, several tenants (A, B, C, ...) share the Distributor, yet the Amphorae, and
the front- and back-end (tenant) networks are not shared between tenants. (See also "Distributor
Sharing" below.) Note that in the initial code implementing the distributor, the distributor will
not be shared between tenants, until tests verifying the security of a shared distributor can be
implemented.

• The Distributor acts as a (one-legged) router, listening on each load balancer’s VIP and forwarding
to one of its Amphorae.

• Each load balancer’s VIP is advertised and answered by the Distributor. An arp request for any
of the VIP addresses is answered by the Distributor, hence any traffic sent for each VIP is received
by the Distributor (and forwarded to an appropriate Amphora).

• ARP is disabled on all the Amphorae for the VIP interface.

• The Distributor distributes the traffic of each VIP to an Amphora in the corresponding load balancer
Cluster.

• An example of high-level data flow:

1. Internet clients access a tenant service through an externally visible floating-IP (IPv4 or
IPv6).

2. The GW router maps the floating IP into a loadbalancer’s internal VIP on the tenant’s front-
end network.

3. (1st packet to VIP only) the GW send an arp request on VIP (tenant front-end) network.
The Distributor answers the arp request with its own MAC address on this network (all the
Amphorae on the network can serve the VIP, but do not answer the arp).

4. The GW router forwards the client request to the Distributor.

5. The Distributor forwards the packet to one of the Amphorae on the tenant’s front-end network
(distributed according to some policy, as described below), without changing the destination
IP (i.e., still using the VIP).

6. The Amphora accepts the packet and continues the flow on the tenant’s back-end network as
for other Octavia loadbalancer topologies (non active-active).

4.5. Project Specifications 323

Octavia Documentation, Release 15.1.0.dev35

7. The outgoing response packets from the Amphora are forwarded directly to the GW router
(that is, it does not pass through the Distributor).

Affinity of Flows to Amphorae

• Affinity is required to make sure related packets are forwarded to the same Amphora. At minimum,
since TCP connections are terminated at the Amphora, all packets that belong to the same flow
must be sent to the same Amphora. Enhanced affinity levels can be used to make sure that flows
with similar attributes are always sent to the same Amphora; this may be desired to achieve better
performance (see discussion below).

• [P2] The Distributor shall support different modes of client-to-Amphora affinity. The operator
should be able to select and configure the desired affinity level.

• Since the Distributor is L3 and the "heavy lifting" is expected to be done by the Amphorae, this
specification proposes implementing two practical affinity alternatives. Other affinity alternatives
may be implemented at a later time.

Source IP and source port
In this mode, the Distributor must always send packets from the same combination of Source
IP and Source port to the same Amphora. Since the Target IP and Target Port are fixed per
Listener, this mode implies that all packets from the same TCP flow are sent to the same
Amphora. This is the minimal affinity mode, as without it TCP connections will break.

Note: related flows (e.g., parallel client calls from the same HTML page) will typically be
distributed to different Amphorae; however, these should still be routed to the same back-end.
This could be guaranteed by using cookies and/or by synchronizing the stick-tables. Also,
the Amphorae in the Cluster could be configured to use the same hashing parameters (avoid
any random seed) to ensure all make similar decisions.

Source IP (default)
In this mode, the Distributor must always send packets from the same source IP to the same
Amphora, regardless of port. This mode allows TLS session reuse (e.g., through session ids),
where an abbreviated handshake can be used to improve latency and computation time.

The main disadvantage of sending all traffic from the same source IP to the same Amphora
is that it might lead to poor load distribution for large workloads that have the same source
IP (e.g., workload behind a single nat or proxy).

Note on TLS implications:
In some (typical) TLS sessions, the additional load incurred for each new session is
significantly larger than the load incurred for each new request or connection on the same
session; namely, the total load on each Amphora will be more affected by the number
of different source IPs it serves than by the number of connections. Moreover, since the
total load on the Cluster incurred by all the connections depends on the level of session
reuse, spreading a single source IP over multiple Amphorae increases the overall load
on the Cluster. Thus, a Distributor that uniformly spreads traffic without affinity per
source IP (e.g., uses per-flow affinity only) might cause an increase in overall load on
the Cluster that is proportional to the number of Amphorae. For example, in a scale-
out scenario (where a new Amphora is spawned to share the total load), moving some
flows to the new Amphora might increase the overall Cluster load, negating the benefit
of scaling-out.

Session reuse helps with the certificate exchange phase. Improvements in performance
with the certificate exchange depend on the type of keys used, and is greatest with RSA.

4.5. Project Specifications 324

Octavia Documentation, Release 15.1.0.dev35

Session reuse may be less important with other schemes; shared TLS session tickets
are another mechanism that may circumvent the problem; also, upcoming versions of
HA-Proxy may be able to obviate this problem by synchronizing TLS state between
Amphorae (similar to stick-table protocol).

• Per the agreement at the Mitaka mid-cycle, the default affinity shall be based on source-IP only and
a consistent hashing function (see below) shall be used to distribute flows in a predictable manner;
however, abstraction will be used to allow other implementations at a later time.

Forwarding with OVS and OpenFlow Rules

• The reference implementation of the Distributor shall use OVS for forwarding and configure the
Distributor through OpenFlow rules.

– OpenFlow rules can be implemented by a software switch (e.g., OVS) that can run on a
VM. Thus, can be created and managed by Octavia similarly to creation and management of
Amphora VMs.

– OpenFlow rules are supported by several HW switches, so the same control plane can be used
for both SW and HW implementations.

• Outline of Rules

– A group with the select method is used to distribute IP traffic over multiple Amphorae.
There is one bucket per Amphora -- adding an Amphora adds a new bucket and deleting
and Amphora removes the corresponding bucket.

– The select method supports (OpenFlow v1.5) hashed-based selection of the bucket. The
hash can be set up to use different fields, including by source IP only (default) and by source
IP and source port.

– All buckets route traffic back on the in-port (i.e., no forwarding between ports). This ensures
that the same front-end network is used (i.e., the Distributor does not route between front-end
networks; therefore, does not mix traffic of different tenants).

– The bucket actions do a re-write of the outgoing packets. It supports re-write of the desti-
nation MAC to that of the specific Amphora and re-write of the source MAC to that of the
Distributor interface (together these MAC re-writes provide L3 routing functionality).

Note: alternative re-write rules can be used to support other forwarding mechanisms.

– OpenFlow rules are also used to answer arp requests on the VIP. arp requests for each VIP
are captured, re-written as arp replies with the MAC address of the particular front-end
interface and sent back on the in-port. Again, there is no routing between interfaces.

• Handling Amphora failure

– Initial implementation will assume a fixed size for each cluster (no elasticity). The hashing
will be "consistent" by virtue of never changing the number of buckets. If the cluster size
is changed on the fly (there should not be an API to do so) then there are no guarantees on
shuffling.

– If an Amphora fails then remapping cannot be avoided -- all flows of the failed Amphora must
be remapped to a different one. Rather than mapping these flows to other active Amphorae in
the cluster, the reference implementation will map all flows to the cluster’s standby Amphora
(i.e. the "+1" Amphora in this "N+1" cluster). This ensures that the cluster size does not
change. The only change in the OpenFlow rules would be to replace the MAC of the failed
Amphora with that of the standby Amphora.

4.5. Project Specifications 325

Octavia Documentation, Release 15.1.0.dev35

– This implementation is very similar to Active-Standby fail-over. There will be a standby
Amphora that can serve traffic in case of failure. The differences from Active-Standby is
that a single Amphora acts as a standby for multiple ones; fail-over re-routing is handled
through the Distributor (rather than by VRRP); and a whole cluster of Amphorae is active
concurrently, to enable support of large workloads.

– Health Manager will trigger re-creation of a failed Amphora. Once the Amphora is ready it
becomes the new standby (no changes to OpenFlow rules).

– [P2] Handle concurrent failure of more than a single Amphora

• Handling Distributor failover

– To handle the event of a Distributor failover caused by a catastrophic failure of a Distributor,
and in order to preserve the client to Amphora affinity when the Distributor is replaced, the
Amphora registration process with the Distributor should preserve positional information.
This should ensure that when a new Distributor is created, Amphorae will be assigned to the
same buckets to which they were previously assigned.

– In the reference implementation, we propose making the Distributor API return the com-
plete list of Amphorae MAC addresses with positional information each time an Amphora is
registered or unregistered.

Specific proposed changes

Note: These are changes on top of the changes described in the "Active-Active, N+1 Amphorae Setup"
blueprint, (see https://blueprints.launchpad.net/octavia/+spec/active-active-topology)

• Create flow for the creation of an Amphora cluster with N active Amphora and one extra standby
Amphora. Set-up the Amphora roles accordingly.

• Support the creation, connection, and configuration of the various networks and interfaces as de-
scribed in high-level topology diagram. The Distributor shall have a separate interface for each
loadbalancer and shall not allow any routing between different ports. In particular, when a load-
balancer is created the Distributor should:

– Attach the Distributor to the loadbalancer’s front-end network by adding a VIP port to the
Distributor (the LB VIP Neutron port).

– Configure OpenFlow rules: create a group with the desired cluster size and with the given
Amphora MACs; create rules to answer arp requests for the VIP address.

Notes:
[P2] It is desirable that the Distributor be considered as a router by Neutron (to handle port se-
curity, network forwarding without arp spoofing, etc.). This may require changes to Neutron
and may also mean that Octavia will be a privileged user of Neutron.

Distributor needs to support IPv6 NDP

[P2] If the Distributor is implemented as a container then hot-plugging a port for each VIP
might not be possible.

If DVR is used then routing rules must be used to forward external traffic to the Distributor
rather than rely on arp. In particular, DVR messes-up noarp settings.

• Support Amphora failure recovery

4.5. Project Specifications 326

https://blueprints.launchpad.net/octavia/+spec/active-active-topology

Octavia Documentation, Release 15.1.0.dev35

– Modify the HM and failure recovery flows to add tasks to notify the ACM when ACTIVE-
ACTIVE topology is in use. If an active Amphora fails then it needs to be decommissioned
on the Distributor and replaced with the standby.

– Failed Amphorae should be recreated as a standby (in the new IN_CLUSTER_STANDBY
role). The standby Amphora should also be monitored and recovered on failure.

• Distributor driver and Distributor image

– The Distributor should be supported similarly to an amphora; namely, have its own abstract
driver.

– Distributor image (for reference implementation) should include OVS with a recent version
(>1.5) that supports hash-based bucket selection. As is done for Amphorae, Distributor image
should be installed with public keys to allow secure configuration by the Octavia controller.

– Reference implementation shall spawn a new Distributor VM as needed. It shall monitor its
health and handle recovery using heartbeats sent to the health monitor in a similar fashion
to how this is done presently with Amphorae. [P2] Spawn a new Distributor if the number
VIPs exceeds a given limit (to limit the number of Neutron ports attached to one Distributor).
[P2] Add configuration options and/or Operator API to allow operator to request a dedicated
Distributor for a VIP (or per tenant).

• Define a REST API for Distributor configuration (no SSH API). See below for details.

• Create data-model for Distributor.

Alternatives

TBD

Data model impact

Add table distributor with the following columns:

• id (sa.String(36) , nullable=False)
ID of Distributor instance.

• compute_id (sa.String(36), nullable=True)
ID of compute node running the Distributor.

• lb_network_ip (sa.String(64), nullable=True)
IP of Distributor on management network.

• status (sa.String(36), nullable=True)
Provisioning status

• vip_port_ids (list of sa.String(36))
List of Neutron port IDs. New VIFs may be plugged into the Distributor when a new LB is
created. We may need to store the Neutron port IDs in order to support fail-over from one
Distributor instance to another.

Add table distributor_health with the following columns:

• distributor_id (sa.String(36) , nullable=False)
ID of Distributor instance.

• last_update (sa.DateTime, nullable=False)
Last time distributor heartbeat was received by a health monitor.

4.5. Project Specifications 327

Octavia Documentation, Release 15.1.0.dev35

• busy (sa.Boolean, nullable=False)
Field indicating a create / delete or other action is being conducted on the distributor instance
(ie. to prevent a race condition when multiple health managers are in use).

Add table amphora_registration with the following columns. This describes which Amphorae are
registered with which Distributors and in which order:

• lb_id (sa.String(36) , nullable=False)
ID of load balancer.

• distributor_id (sa.String(36) , nullable=False)
ID of Distributor instance.

• amphora_id (sa.String(36) , nullable=False)
ID of Amphora instance.

• position (sa.Integer, nullable=True)
Order in which Amphorae are registered with the Distributor.

REST API impact

Distributor will be running its own rest API server. This API will be secured using two-way SSL authen-
tication, and use certificate rotation in the same way this is done with Amphorae today.

Following API calls will be addressed.

1. Post VIP Plug

Adding a VIP network interface to the Distributor involves tasks which run outside the Distributor
itself. Once these are complete, the Distributor must be configured to use the new interface. This
is a REST call, similar to what is currently done for Amphorae when connecting to a new member
network.

lb_id
An identifier for the particular loadbalancer/VIP. Used for subsequent register/unregister of
Amphorae.

vip_address
The IP of the VIP (for which IP to answer arp requests)

subnet_cidr
Netmask for the VIP’s subnet.

gateway
Gateway outbound packets from the VIP ip address should use.

mac_address
MAC address of the new interface corresponding to the VIP.

vrrp_ip
In the case of HA Distributor, this contains the IP address that will be used in setting up
the allowed address pairs relationship. (See Amphora VIP plugging under the ACTIVE-
STANDBY topology for an example of how this is used.)

host_routes
List of routes that should be added when the VIP is plugged.

alg_extras
Extra arguments related to the algorithm that will be used to distribute requests to Amphorae

4.5. Project Specifications 328

Octavia Documentation, Release 15.1.0.dev35

part of this load balancer configuration. This consists of an algorithm name and affinity type.
In the initial release of ACTIVE-ACTIVE, the only valid algorithm will be hash, and the
affinity type may be Source_IP or [P2] Source_IP_AND_port.

2. Pre VIP unplug

Removing a VIP network interface will involve several tasks on the Distributor to gracefully roll-
back OVS configuration and other details that were set-up when the VIP was plugged in.

lb_id
ID of the VIP’s loadbalancer that will be unplugged.

3. Register Amphorae

This adds Amphorae to the configuration for a given load balancer. The Distributor should respond
with a new list of all Amphorae registered with the Distributor with positional information.

lb_id
ID of the loadbalancer with which the Amphora will be registered

amphorae
List of Amphorae MAC addresses and (optional) position argument in which they should be
registered.

4. Unregister Amphorae

This removes Amphorae from the configuration for a given load balancer. The Distributor should
respond with a new list of all Amphorae registered with the Distributor with positional information.

lb_id
ID of the loadbalancer with which the Amphora will be registered

amphorae
List of Amphorae MAC addresses that should be unregistered with the Distributor.

Security impact

The Distributor is designed to be multi-tenant by default. (Note that the first reference implementation
will not be multi-tenant until tests can be developed to verify the security of a multi-tenant reference
distributor.) Although each tenant has its own front-end network, the Distributor is connected to all,
which might allow leaks between these networks. The rationale is two fold: First, the Distributor should
be considered as a trusted infrastructure component. Second, all traffic is external traffic before it reaches
the Amphora. Note that the GW router has exactly the same attributes; in other words, logically, we
can consider the Distributor to be an extension to the GW (or even use the GW HW to implement the
Distributor).

This approach might not be considered secure enough for some cases, such as, if LBaaS is used for
internal tier-to-tier communication inside a tenant network. Some tenants may want their loadbalancer’s
VIP to remain private and their front-end network to be isolated. In these cases, in order to accomplish
active-active for this tenant we would need separate dedicated Distributor instance(s).

Notifications impact

Other end user impact

Performance Impact

4.5. Project Specifications 329

Octavia Documentation, Release 15.1.0.dev35

Other deployer impact

Developer impact

Further Discussion

Note

This section captures some background, ideas, concerns, and remarks that were raised by various
people. Some of the items here can be considered for future/alternative design and some will hopefully
make their way into, yet to be written, related blueprints (e.g., auto-scaled topology).

[P2] Handling changes in Cluster size (manual or auto-scaled)

• The Distributor shall support different mechanism for preserving affinity of flows to Amphorae
following a change in the size of the Amphorae Cluster.

• The goal is to minimize shuffling of client-to-Amphora mapping during cluster size changes:

– When an Amphora is removed from the Cluster (e.g., due to failure or scale-down action),
all its flows are broken; however, flows to other Amphorae should not be affected. Also, if a
drain method is used to empty the Amphora of client flows (in the case of a graceful removal),
this should prevent disruption.

– When an Amphora is added to the Cluster (e.g., recovery of a failed Amphora), some new
flows should be distributed to the new Amphora; however, most flows should still go to the
same Amphora they were distributed to before the new Amphora was added. For example, if
the affinity of flows to Amphorae is per Source IP and a new Amphora was just added then
the Distributor should forward packets from this IP only one of only two Amphorae: either
the same Amphora as before or the Amphora that was added.

Using a simple hash to maintain affinity does not meet this goal.

For example, suppose we maintain affinity (for a fixed cluster size) using a hash (for randomiz-
ing key distribution) as chosen_amphora_id = hash(sourceIP # port) mod number_of_amphorae.
When a new Amphora is added or remove the number of Amphorae changes; thus, a different
Amphora will be chosen for most flows.

• Below are the couple of ways to tackle this shuffling problem.

Consistent Hashing
Consistent hashing is a hashing mechanism (regardless if key is based on IP or IP/port) that
preserves most hash mappings during changes in the size of the Amphorae Cluster. In par-
ticular, for a cluster with N Amphorae that grows to N+1 Amphorae, a consistent hashing
function ensures that, with high probability, only 1/N of inputs flows will be re-hashed (more
precisely, K/N keys will be rehashed). Note that, even with consistent hashing, some flows
will be remapped and there is only a statistical bound on the number of remapped flows.

The "classic" consistent hashing algorithm maps both server IDs and keys to hash values and
selects for each key the server with the closest hash value to the key hash value. Lookup
generally requires O(log N) to search for the "closest" server. Achieving good distribution
requires multiple hashes per server (~10s) -- although these can be pre-computed there is
an ~10s*N memory footprint. Other algorithms (e.g., MSFT’s Magleb) have better perfor-
mance, but provide weaker guarantees.

4.5. Project Specifications 330

Octavia Documentation, Release 15.1.0.dev35

There are several consistent hashing libraries available. None are supported in OVS.

– Ketama https://github.com/RJ/ketama

– Openstack swift https://docs.openstack.org/swift/latest/ring.html#ring

– Amazon dynamo http://www.allthingsdistributed.com/files/
amazon-dynamo-sosp2007.pdf

We should also strongly consider making any consistent hashing algorithm we develop avail-
able to all OpenStack components by making it part of an Oslo library.

Rendezvous hashing
This method provides similar properties to Consistent Hashing (i.e., a hashing function that
remaps only 1/N of keys when a cluster with N Amphorae grows to N+1 Amphorae.

For each server ID, the algorithm concatenates the key and server ID and computes a hash.
The server with the largest hash is chosen. This approach requires O(N) for each lookup, but
is much simpler to implement and has virtually no memory footprint. Through search-tree
encoding of the server IDs it is possible to achieve O(log N) lookup, but implementation is
harder and distribution is not as good. Another feature is that more than one server can be
chosen (e.g., two largest values) to handle larger loads -- not directly useful for the Distributor
use case.

Hybrid, Permutation-based approach
This is an alternative implementation of consistent hashing that may be simpler to implement.
Keys are hashed to a set of buckets; each bucket is pre-mapped to a random permutation of
the server IDs. Lookup is by computing a hash of the key to obtain a bucket and then going
over the permutation selecting the first server. If a server is marked as "down" the next server
in the list is chosen. This approach is similar to Rendezvous hashing if each key is directly
pre-mapped to a random permutation (and like it allows more than one server selection). If
the number of failed servers is small then lookup is about O(1); memory is O(N * #buckets),
where the granularity of distribution is improved by increasing the number of buckets. The
permutation-based approach is useful to support clusters of fixed size that need to handle a
few nodes going down and then coming back up. If there is an assumption on the number of
failures then memory can be reduced to O(max_failures * #buckets). This approach seems
to suit the Distributor Active-Active use-case for non-elastic workloads.

• Flow tracking is required, even with the above hash functions, to handle the (relatively few)
remapped flows. If an existing flow is remapped, its TCP connection would break. This is ac-
ceptable when an Amphora goes down and it flows are mapped to a new one. On the other hand,
it may be unacceptable when an Amphora is added to the cluster and 1/N of existing flows are
remapped. The Distributor may support different modes, as follows.

None / Stateless
In this mode, the Distributor applies its most recent forwarding rules, regardless of previous
state. Some existing flows might be remapped to a different Amphora and would be broken.
The client would have to recover and establish a connection with the new Amphora (it would
still be mapped to the same back-end, if possible). Combined with consistent (or similar)
hashing, this may be good enough for many web applications that are built for failure anyway,
and can restore their state upon reconnect.

Full flow Tracking
In this mode, the Distributor tracks existing flows to provide full affinity, i.e., only new flows
can be remapped to different Amphorae. The Linux connection tracking may be used (e.g.,
through IPTables or through OpenFlow); however, this might not scale well. Alternatively,

4.5. Project Specifications 331

https://github.com/RJ/ketama
https://docs.openstack.org/swift/latest/ring.html#ring
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

Octavia Documentation, Release 15.1.0.dev35

the Distributor can use an independent mechanism similar to HA-Proxy sticky-tables to track
the flows. Note that the Distributor only needs to track the mapping per source IP and source
port (unlike Linux connection tracking which follows the TCP state and related connections).

Use Ryu
Ryu is a well supported and tested python binding for issuing OpenFlow commands. Espe-
cially since Neutron recently moved to using this for many of the things it does, using this in
the Distributor might make sense for Octavia as well.

Forwarding Data-path Implementation Alternatives

The current design uses L2 forwarding based only on L3 parameters and uses Direct Return routing (one-
legged). The rational behind this approach is to keep the Distributor as light as possible and have the
Amphorae do the bulk of the work. This allows one (or a few) Distributor instance(s) to serve all traffic
even for very large workloads. Other approaches are possible.

2-legged Router

• Distributor acts as router, being in-path on both directions.

• New network between Distributor and Amphorae -- Only Distributor on VIP subnet.

• No need to use MAC forwarding -- use routing rules

LVS

Use LVS for Distributor.

DNS

Use DNS for the Distributor.

• Use DNS to map to particular Amphorae. Distribution will be of domain name rather than VIP.

• No problem with per-flow affinity, as client will use same IP for entire TCP connection.

• Need a different public IP for each Amphora (no VIP)

Pure SDN

• Implement the OpenFlow rules directly in the network, without a Distributor instance.

• If the network infrastructure supports this then the Distributor can become more robust and very
lightweight, making it practical to have a dedicated Distributor per VIP (only the rules will be
dedicated as the network and SDN controller are shared resources)

Distributor Sharing

• The initial implementation of the Distributor will not be shared between tenants until tests can be
written to verify the security of this solution.

• The implementation should support different Distributor sharing and cardinality configurations.
This includes single-shared Distributor, multiple-dedicated Distributors, and multiple-shared Dis-
tributors. In particular, an abstraction layer should be used and the data-model should include an
association between the load balancer and Distributor.

4.5. Project Specifications 332

Octavia Documentation, Release 15.1.0.dev35

• A shared Distributor uses the least amount of resources, but may not meet isolation requirements
(performance and/or security) or might become a bottleneck.

Distributor High-Availability

• The Distributor should be highly-available (as this is one of the motivations for the active-active
topology). Once the initial active-active functionality is delivered, developing a highly available
distributor should take a high priority.

• A mechanism similar to the VRRP used on ACTIVE-STANDBY topology Amphorae can be used.

• Since the Distributor is stateless (for fixed cluster sizes and if no connection tracking is used) it is
possible to set up an active-active configuration and advertise more than one Distributor (e.g, for
ECMP).

• As a first step, the initial implementation will use a single Distributor instance (i.e., will not be
highly-available). Health Manager will monitor the Distributor health and initiate recovery if
needed.

• The implementation should support plugging-in a hardware-based implementation of the Distrib-
utor that may have its own high-availability support.

• In order to preserve client to Amphora affinity in the case of a failover, a VRRP-like HA Distributor
has several options. We could potentially push Amphora registrations to the standby Distributor
with the position arguments specified, in order to guarantee the active and standby Distributor
always have the same configuration. Or, we could invent and utilize a synchronization protocol
between the active and standby Distributors. This will be explored and decided when an HA Dis-
tributor specification is written and approved.

Implementation

Assignee(s)

Work Items

Dependencies

Testing

• Unit tests with tox.

• Function tests with tox.

Documentation Impact

References

https://blueprints.launchpad.net/octavia/+spec/base-image https://blueprints.launchpad.net/octavia/
+spec/controller-worker https://blueprints.launchpad.net/octavia/+spec/amphora-driver-interface
https://blueprints.launchpad.net/octavia/+spec/controller https://blueprints.launchpad.net/octavia/
+spec/operator-api Octavia HAProxy Amphora API https://blueprints.launchpad.net/octavia/+spec/
active-active-topology

4.5. Project Specifications 333

https://blueprints.launchpad.net/octavia/+spec/base-image
https://blueprints.launchpad.net/octavia/+spec/controller-worker
https://blueprints.launchpad.net/octavia/+spec/controller-worker
https://blueprints.launchpad.net/octavia/+spec/amphora-driver-interface
https://blueprints.launchpad.net/octavia/+spec/controller
https://blueprints.launchpad.net/octavia/+spec/operator-api
https://blueprints.launchpad.net/octavia/+spec/operator-api
https://blueprints.launchpad.net/octavia/+spec/active-active-topology
https://blueprints.launchpad.net/octavia/+spec/active-active-topology

Octavia Documentation, Release 15.1.0.dev35

Active-Active, N+1 Amphorae Setup

https://blueprints.launchpad.net/octavia/+spec/active-active-topology

Problem description

This blueprint describes how Octavia implements an active-active loadbalancer (LB) solution that is
highly-available through redundant Amphorae. It presents the high-level service topology and suggests
high-level code changes to the current code base to realize this scenario. In a nutshell, an Amphora
Cluster of two or more active Amphorae collectively provide the loadbalancing service.

The Amphora Cluster shall be managed by an Amphora Cluster Manager (ACM). The ACM shall pro-
vide an abstraction that allows different types of active-active features (e.g., failure recovery, elasticity,
etc.). The initial implementation shall not rely on external services, but the abstraction shall allow for
interaction with external ACMs (to be developed later).

This blueprint uses terminology defined in Octavia glossary when available, and defines new terms to
describe new components and features as necessary.

Note: Items marked with [P2] refer to lower priority features to be designed / implemented
only after initial release.

Proposed change

A tenant should be able to start a highly-available, loadbalancer for the tenant’s backend services as
follows:

• The operator should be able to configure an active-active topology through an Octavia configu-
ration file or [P2] through a Neutron flavor, which the loadbalancer shall support. Octavia shall
support active-active topologies in addition to the topologies that it currently supports.

• In an active-active topology, a cluster of two or more amphorae shall host a replicated configuration
of the load-balancing services. Octavia will manage this Amphora Cluster as a highly-available
service using a pool of active resources.

• The Amphora Cluster shall provide the load-balancing services and support the configurations that
are supported by a single Amphora topology, including L7 load-balancing, SSL termination, etc.

• The active-active topology shall support various Amphora types and implementations; including,
virtual machines, [P2] containers, and bare-metal servers.

• The operator should be able to configure the high-availability requirements for the active-active
load-balancing services. The operator shall be able to specify the number of healthy Amphorae
that must exist in the load-balancing Amphora Cluster. If the number of healthy Amphorae drops
under the desired number, Octavia shall automatically and seamlessly create and configure a new
Amphora and add it to the Amphora Cluster. [P2] The operator should be further able to define
that the Amphora Cluster shall be allocated on separate physical resources.

• An Amphora Cluster will collectively act to serve as a single logical loadbalancer as defined in
the Octavia glossary. Octavia will seamlessly distribute incoming external traffic among the Am-
phorae in the Amphora Cluster. To that end, Octavia will employ a Distributor component that
will forward external traffic towards the managed amphora instances. Conceptually, the Distributor
provides an extra level of load-balancing for an active-active Octavia application, albeit a simplified
one. Octavia should be able to support several Distributor implementations (e.g., software-based
and hardware-based) and different affinity models (at minimum, flow-affinity should be supported
to allow TCP connectivity between clients and Amphorae).

4.5. Project Specifications 334

https://blueprints.launchpad.net/octavia/+spec/active-active-topology

Octavia Documentation, Release 15.1.0.dev35

• The detailed design of the Distributor component will be described in a separate document (see
"Distributor for Active-Active, N+1 Amphorae Setup", active-active-distributor.rst).

High-level Topology Description

Single Tenant

• The following diagram illustrates the active-active topology:

Front-End Back-End
Internet Network Network
(world) (tenant) (tenant)

floating IP
Router to LB VIP Tenant
GW IP Amphora IP Service

(1) back (1)
VIP
MGMT

IP Tenant
Service

Distri- IP (2)
butor

VIP IP Amphora IP
MGMT (2) back Tenant

IP arp VIP Service
MGMT (3)

IP

Octavia LBaaS
Controller

IP Amphora IP
Amphora (k) back

Cluster Mgr. VIP Tenant
MGMT Service

IP (m)

Management Amphora Cluster Back-end Pool
Network 1..k 1..m

• An example of high-level data-flow:

1. Internet clients access a tenant service through an externally visible floating-IP (IPv4 or
IPv6).

2. If IPv4, a gateway router maps the floating IP into a loadbalancer’s internal VIP on the tenant’s
front-end network.

3. The (multi-tenant) Distributor receives incoming requests to the loadbalancer’s VIP. It acts
as a one-legged direct return LB, answering arp requests for the loadbalancer’s VIP (see
Distributor spec.).

4. The Distributor distributes incoming connections over the tenant’s Amphora Cluster, by for-

4.5. Project Specifications 335

Octavia Documentation, Release 15.1.0.dev35

warding each new connection opened with a loadbalancer’s VIP to a front-end MAC address
of an Amphora in the Amphora Cluster (layer-2 forwarding). Note: the Distributor may im-
plement other forwarding schemes to support more complex routing mechanisms, such as
DVR (see Distributor spec.).

5. An Amphora receives the connection and accepts traffic addressed to the loadbalancer’s VIP.
The front-end IPs of the Amphorae are allocated on the tenant’s front-end network. Each
Amphora accepts VIP traffic, but does not answer arp request for the VIP address.

6. The Amphora load-balances the incoming connections to the back-end pool of tenant servers,
by forwarding each external request to a member on the tenant network. The Amphora also
performs SSL termination if configured.

7. Outgoing traffic traverses from the back-end pool members, through the Amphora and directly
to the gateway (i.e., not through the Distributor).

Multi-tenant Support

• The following diagram illustrates the active-active topology with multiple tenants:

Front-End Back-End
Internet Networks Networks
(world) (tenant) (tenant)

B A A
floating IP

to LB VIP A Tenant A
RouterA IP Amphora A IPService

GW (1) back (1)
floating IP VIP

to LB VIP B MGMT
IP Tenant A

Service
M B A (2)

A IP Amphora A IP
(2) back

VIP Tenant A
MGMT Service

IP (3)

B A B

IP AA IP Amphora A IP
(k) back Tenant A

Distri- VIParp VIP Service
butor MGMT (m)

IP

IP B tenant A
= =

VIP B tenant B
B IP Amphora B IP
MGMT arp (1) back Tenant B

(continues on next page)

4.5. Project Specifications 336

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

IP VIP Service
MGMT (1)

IP

M Octavia LBaaS B B
Controller
B IP Amphora B IP

Amphora (q) back
Cluster Mgr. VIP Tenant B

MGMT Service
IP (r)

Management Amphora Clusters Back-end Pool
Network A(1..k), B(1..q) A(1..m),B(1..r)

• Both tenants A and B share the Distributor, but each has a different front-end network. The Dis-
tributor listens on both loadbalancers’ VIPs and forwards to either A’s or B’s Amphorae.

• The Amphorae and the back-end (tenant) networks are not shared between tenants.

Problem Details

• Octavia should support different Distributor implementations, similar to its support for different
Amphora types. The operator should be able to configure different types of algorithms for the
Distributor. All algorithms should provide flow-affinity to allow TLS termination at the amphora.
See Distributor for Active-Active, N+1 Amphorae Setup for details.

• Octavia controller shall seamlessly configure any newly created Amphora ([P2] including peer
state synchronization, such as sticky-tables, if needed) and shall reconfigure the other solution
components (e.g., Neutron) as needed. The controller shall further manage all Amphora life-cycle
events.

• Since it is impractical at scale for peer state synchronization to occur between all Amphorae part
of a single load balancer, Amphorae that are all part of a single load balancer configuration need
to be divided into smaller peer groups (consisting of 2 or 3 Amphorae) with which they should
synchronize state information.

Required changes

The active-active loadbalancers require the following high-level changes:

Amphora related changes

• Updated Amphora image to support active-active topology. The front-end still has both a unique IP
(to allow direct addressing on front-end network) and a VIP; however, it should not answer ARP
requests for the VIP address (all Amphorae in a single Amphora Cluster concurrently serve the
same VIP). Amphorae should continue to have a management IP on the LB Network so Octavia
can configure them. Amphorae should also generally support hot-plugging interfaces into back-end
tenant networks as they do in the current implementation. [P2] Finally, the Amphora configuration
may need to be changed to randomize the member list, in order to prevent synchronized decisions
by all Amphorae in the Amphora Cluster.

4.5. Project Specifications 337

Octavia Documentation, Release 15.1.0.dev35

• Extend data model to support active-active Amphora. This is somewhat similar to active-passive
(VRRP) support. Each Amphora needs to store its IP and port on its front-end network (similar to
ha_ip and ha_port_id in the current model) and its role should indicate it is in a cluster.

The provisioning status should be interpreted as referring to an Amphora only and not the load-
balancing service. The status of the load balancer should correspond to the number of ONLINE
Amphorae in the Cluster. If all Amphoae are ONLINE, the load balancer is also ONLINE. If a small
number of Amphorae are not ONLINE, then the load balancer is DEGRADED. If enough Amphorae
are not ONLINE (past a threshold), then the load balancer is DOWN.

• Rework some of the controller worker flows to support creation and deletion of Amphorae by the
ACM in an asynchronous manner. The compute node may be created/deleted independently of
the corresponding Amphora flow, triggered as events by the ACM logic (e.g., node update). The
flows do not need much change (beyond those implied by the changes in the data model), since the
post-creation/pre-deletion configuration of each Amphora is unchanged. This is also similar to the
failure recovery flow, where a recovery flow is triggered asynchronously.

• Create a flow (or task) for the controller worker for (de-)registration of Amphorae with Distributor.
The Distributor has to be aware of the current ONLINE Amphorae, to which it can forward traffic.
[P2] The Distributor can do very basic monitoring of the Amphorae health (primarily to make
sure network connectivity between the Distributor and Amphorae is working). Monitoring pool
member health will remain the purview of the pool health monitors.

• All the Amphorae in the Amphora Cluster shall replicate the same listeners, pools, and TLS con-
figuration, as they do now. We assume all Amphorae in the Amphora Cluster can perform exactly
the same load-balancing decisions and can be treated as equivalent by the Distributor (except for
affinity considerations).

• Extend the Amphora (REST) API and/or Plug VIP task to allow disabling of arp on the VIP.

• In order to prevent losing session_persistence data in the event of an Amphora failure, the Am-
phorae will need to be configured to share session_persistence data (via stick tables) with a subset
of other Amphorae that are part of the same load balancer configuration (ie. a peer group).

Amphora Cluster Manager driver for the active-active topology (new)

• Add an active-active topology to the topology types.

• Add a new driver to support creation/deletion of an Amphora Cluster via an ACM. This will re-use
existing controller-worker flows as much as possible. The reference ACM will call the existing
drivers to create compute nodes for the Amphorae and configure them.

• The ACM shall orchestrate creation and deletion of Amphora instances to meet the availability
requirements. Amphora failover will utilize the existing health monitor flows, with hooks to notify
the ACM when ACTIVE-ACTIVE topology is used. [P2] ACM shall handle graceful amphora re-
moval via draining (delay actual removal until existing connections are terminated or some timeout
has passed).

• Change the flow of LB creation. The ACM driver shall create an Amphora Cluster instance for
each new loadbalancer. It should maintain the desired number of Amphorae in the Cluster and
meet the high-availability configuration given by the operator. Note: a base functionality is already
supported by the Health Manager; it may be enough to support a fixed or dynamic cluster size. In
any case, existing flows to manage Amphora life cycle will be re-used in the reference ACM driver.

• The ACM shall be responsible for providing health, performance, and life-cycle management at
the Cluster-level rather than at Amphora-level. Maintaining the loadbalancer status (as described

4.5. Project Specifications 338

Octavia Documentation, Release 15.1.0.dev35

above) by some function of the collective status of all Amphorae in the Cluster is one example.
Other examples include tracking configuration changes, providing Cluster statistics, monitoring
and maintaining compute nodes for the Cluster, etc. The ACM abstraction would also support
pluggable ACM implementations that may provide more advance capabilities (e.g., elasticity, AZ
aware availability, etc.). The reference ACM driver will re-use existing components and/or code
which currently handle health, life-cycle, etc. management for other load balancer topologies.

• New data model for an Amphora Cluster which has a one-to-one mapping with the loadbalancer.
This defines the common properties of the Amphora Cluster (e.g., id, min. size, desired size, etc.)
and additional properties for the specific implementation.

• Add configuration file options to support configuration of an active-active Amphora Cluster. Add
default configuration. [P2] Add Operator API.

• Add or update documentation for new components added and new or changed functionality.

• Communication between the ACM and Distributors should be secured using two-way SSL cer-
tificate authentication much the same way this is accomplished between other Octavia controller
components and Amphorae today.

Network driver changes

• Support the creation, connection, and configuration of the various networks and interfaces as de-
scribed in ’high-level topology’ diagram.

• Adding a new loadbalancer requires attaching the Distributor to the loadbalancer’s front-end net-
work, adding a VIP port to the Distributor, and configuring the Distributor to answer arp requests
for the VIP. The Distributor shall have a separate interface for each loadbalancer and shall not allow
any routing between different ports; in particular, Amphorae of different tenants must not be able
to communicate with each other. In the reference implementation, this will be accomplished by
using separate OVS bridges per load balancer.

• Adding a new Amphora requires attaching it to the front-end and back-end networks (similar to
current implementation), adding the VIP (but with arp disabled), and registering the Amphora
with the Distributor. The tenant’s front-end and back-end networks must allow attachment of dy-
namically created Amphorae by involving the ACM (e.g., when the health monitor replaces a failed
Amphora). ([P2] extend the LBaaS API to allow specifying an address range for new Amphorae
usage, e.g., a subnet pool).

Amphora health-monitoring support

• Modify Health Manager to manage the health for an Amphora Cluster through the ACM; namely,
forward Amphora health change events to the ACM, so it can decide when the Amphora Cluster is
considered to be in healthy state. This should be done in addition to managing the health of each
Amphora. [P2] Monitor the Amphorae also on their front-end network (i.e., from the Distributor).

Distributor support

• Note: as mentioned above, the detailed design of the Distributor component is described in a
separate document). Some design considerations are highlighted below.

• The Distributor should be supported similarly to an Amphora; namely, have its own abstract driver.

• For a reference implementation, add support for a Distributor image.

• Define a REST API for Distributor configuration (no SSH API). The API shall support:

4.5. Project Specifications 339

Octavia Documentation, Release 15.1.0.dev35

– Add and remove a VIP (loadbalancer) and specify distribution parameters (e.g., affinity, al-
gorithm, etc.).

– Registration and de-registration of Amphorae.

– Status

– [P2] Macro-level stats

• Spawn Distributors (if using on demand Distributor compute nodes) and/or attach to existing ones
as needed. Manage health and life-cycle of the Distributor(s). Create, connect, and configure
Distributor networks as necessary.

• Create data model for the Distributor.

• Add Distributor driver and flows to (re-)configure the Distributor on creation/destruction of a new
loadbalancer (add/remove loadbalancer VIP) and [P2] configure the distribution algorithm for the
loadbalancer’s Amphora Cluster.

• Add flows to Octavia to (re-)configure the Distributor on adding/removing Amphorae from the
Amphora Cluster.

Packaging

• Extend Octavia installation scripts to create an image for the Distributor.

Alternatives

• Use external services to manage the cluster directly.
This utilizes functionality that already exists in OpenStack (e.g., like Heat and Ceilometer)
rather than replicating it. This approach would also benefit from future extensions to these
services. On the other hand, this adds undesirable dependencies on other projects (and their
corresponding teams), complicates handling of failures, and require defensive coding around
service calls. Furthermore, these services cannot handle the LB-specific control configura-
tion.

• Implement a nested Octavia
Use another layer of Octavia to distribute traffic across the Amphora Cluster (i.e., the Am-
phorae in the Cluster are back-end members of another Octavia instance). This approach has
the potential to provide greater flexibility (e.g., provide NAT and/or more complex distri-
bution algorithms). It also potentially reuses existing code. However, we do not want the
Distributor to proxy connections so HA-Proxy cannot be used. Furthermore, this approach
might significantly increase the overhead of the solution.

Data model impact

• loadbalancer table

– cluster_id: associated Amphora Cluster (no changes to table, 1-1 relationship from Cluster
data-model)

• lb_topology table

– new value: ACTIVE_ACTIVE

• amphora_role table

– new value: IN_CLUSTER

4.5. Project Specifications 340

Octavia Documentation, Release 15.1.0.dev35

• Distributor table (new): Distributor information, similar to Amphora. See Distributor for Active-
Active, N+1 Amphorae Setup

• Cluster table (new): an extension to loadbalancer (i.e., one-to-one mapping to load-balancer)

– id (primary key)

– cluster_name: identifier of Cluster instance for Amphora Cluster Manager

– desired_size: required number of Amphorae in Cluster. Octavia will create this many active-
active Amphorae in the Amphora Cluster.

– min_size: number of ACTIVE Amphorae in Cluster must be above this number for Amphora
Cluster status to be ACTIVE

– cooldown: cooldown period between successive add/remove Amphora operations (to avoid
thrashing)

– load_balancer_id: 1:1 relationship to loadbalancer

– distributor_id: N:1 relationship to Distributor. Support multiple Distributors

– provisioning_status

– operating_status

– enabled

– cluster_type: type of Amphora Cluster implementation

REST API impact

• Distributor REST API -- This is a new internal API that will be secured via two-way SSL certificate
authentication. See Distributor for Active-Active, N+1 Amphorae Setup

• Amphora REST API -- support configuration of disabling arp on VIP.

• [P2] LBaaS API -- support configuration of desired availability, perhaps by selecting a flavor (e.g.,
gold is a minimum of 4 Amphorae, platinum is a minimum of 10 Amphora).

• Operator API --

– Topology to use

– Cluster type

– Default availability parameters for the Amphora Cluster

Security impact

• See Distributor for Active-Active, N+1 Amphorae Setup for Distributor related security impact.

Notifications impact

None.

4.5. Project Specifications 341

Octavia Documentation, Release 15.1.0.dev35

Other end user impact

None.

Performance Impact

ACTIVE-ACTIVE should be able to deliver significantly higher performance than SINGLE or ACTIVE-
STANDBY topology. It will consume more resources to deliver this higher performance.

Other deployer impact

The reference ACM becomes a new process that is part of the Octavia control components (like the
controller worker, health monitor and housekeeper). If the reference implementation is used, a new
Distributor image will need to be created and stored in glance much the same way the Amphora image
is created and stored today.

Developer impact

None.

Implementation

Assignee(s)

@TODO

Work Items

@TODO

Dependencies

@TODO

Testing

• Unit tests with tox.

• Function tests with tox.

• Scenario tests.

Documentation Impact

Need to document all new APIs and API changes, new ACTIVE-ACTIVE topology design and features,
and new instructions for operators seeking to deploy Octavia with ACTIVE-ACTIVE topology.

References

https://blueprints.launchpad.net/octavia/+spec/base-image https://blueprints.launchpad.net/octavia/
+spec/controller-worker https://blueprints.launchpad.net/octavia/+spec/amphora-driver-interface
https://blueprints.launchpad.net/octavia/+spec/controller https://blueprints.launchpad.net/octavia/
+spec/operator-api Octavia HAProxy Amphora API https://blueprints.launchpad.net/octavia/+spec/
active-active-topology

4.5. Project Specifications 342

https://blueprints.launchpad.net/octavia/+spec/base-image
https://blueprints.launchpad.net/octavia/+spec/controller-worker
https://blueprints.launchpad.net/octavia/+spec/controller-worker
https://blueprints.launchpad.net/octavia/+spec/amphora-driver-interface
https://blueprints.launchpad.net/octavia/+spec/controller
https://blueprints.launchpad.net/octavia/+spec/operator-api
https://blueprints.launchpad.net/octavia/+spec/operator-api
https://blueprints.launchpad.net/octavia/+spec/active-active-topology
https://blueprints.launchpad.net/octavia/+spec/active-active-topology

Octavia Documentation, Release 15.1.0.dev35

Add statistics gathering API for loadbalancer

https://blueprints.launchpad.net/octavia/+spec/stats-support

Problem description

Currently, Octavia does not support the gathering of loadbalancer statistics. This causes inconsistencies
between the Octavia and Neutron-LBaaS APIs. Another point is that the statistics data we get from the
Octavia API for the listener only reflects the first record for the listener in the Octavia database, since
we’re supporting more topologies than SINGLE, this needs to be to fixed too.

Proposed change

Add one more data ’request_errors’ to indicate the number of request errors for each listener, we can get
this data from the stats of haproxy ’ereq’.

Add a new module ’stats’ to octavia.common with a class ’StatsMixin’ to do the actual statistics
calculation for both listener and loadbalancer. Make the mixin class as a new base class for oc-
tavia.api.v1.controllers.listener_statistics.ListenerStatisticsController, to make sure we get correct stats
from Octavia API.

Add a new module ’loadbalancer_statistics’ to octavia.api.v1.controllers with a class LoadbalancerStatis-
ticsController to provide a new REST API for gathering statistics at the loadbalancer level.

Use evenstream to serialize the statistics messages from the octavia to neutron-lbaas via oslo_messaging,
to keep consistent with neutron-lbaas API.

Alternatives

Update the ’stats’ method in neutron-lbaas for octavia driver, allow the neutron-lbaas to get stats from
octavia through REST API request, to keep consistent with neutron-lbaas API.

Data model impact

One new column for table listener_statistics will be introduced to represent request errors:

Field Type Null Key Default Extra
request_errors bigint(20) NO NULL

REST API impact

Add ’request_errors’ in the response of list listener statistics:

Example List listener statistics: JSON response

{
"listener": {

"bytes_in": 0,
"bytes_out": 0,
"active_connections": 0,
"total_connections": 0,
"request_errors": 0

(continues on next page)

4.5. Project Specifications 343

https://blueprints.launchpad.net/octavia/+spec/stats-support

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

}
}

Add a new API to list loadbalancer statistics

Lists loadbalancer statistics.

Request Type GET
Endpoint URL/v1/loadbalancers/{lb_id}/stats
Response Codes Success 200

Error 401, 404, 500

Example List loadbalancer statistics: JSON response

{
"loadbalancer": {

"bytes_in": 0,
"bytes_out": 0,
"active_connections": 0,
"total_connections": 0,
"request_errors": 0,
"listeners": [{

"id": "uuid"
"bytes_in": 0,
"bytes_out": 0,
"active_connections": 0,
"total_connections": 0,
"request_errors": 0,

}]
}

}

Security impact

None

Notifications impact

None

Other end user impact

None

Performance Impact

None

4.5. Project Specifications 344

Octavia Documentation, Release 15.1.0.dev35

Other deployer impact

None

Developer impact

None

Implementation

Assignee(s)

li, chen <shchenli@cn.ibm.com>

Work Items

• Extend current stats collection for listener amphora

• Add module ’stats’

• Add new API for gathering statistics at the loadbalancer level

• Update stats to neutron database

Dependencies

None

Testing

Function tests with tox.

Documentation Impact

Changes shall be introduced to the octavia APIs: see [1]

References

[1] https://docs.openstack.org/api-ref/load-balancer/v1/octaviaapi.html

4.5.4 Version 1.0 (pike)

Provider Flavor Framework

https://blueprints.launchpad.net/octavia/+spec/octavia-lbaas-flavors

A Provider Flavor framework provides a mechanism for providers to specify capabilities that are not
currently handled via the octavia api. It allows the operators to enable capabilities that may possibly be
unique to a particular provider or simply just not available at the moment within octavia. If it is a common
feature it is highly encouraged to have the non-existing features implemented via the standard Octavia
api. In addition operators can configure different flavors from a maintained list of provider capabilities.
This framework enables providers to supply new features with speed to market and provides operators
with an ease of use experience.

4.5. Project Specifications 345

mailto:shchenli@cn.ibm.com
https://docs.openstack.org/api-ref/load-balancer/v1/octaviaapi.html
https://blueprints.launchpad.net/octavia/+spec/octavia-lbaas-flavors

Octavia Documentation, Release 15.1.0.dev35

Problem description

Flavors are used in various services for specifying service capabilities and other parameters. Having the
ability to create loadbalancers with various capabilities (such as HA, throughput or ddos protection) gives
users a way to better plan their LB services and get a benefit of LBaaS functions which are not a part of
Octavia API. Since Octavia will become the new OpenStack LBaaS API, a new flavors API should be
developed inside Octavia.

As for now, Octavia does not support multi providers. The ability to define different LBaaS providers
is a mandatory feature for Octavia to be Openstack LbaaS API. Therefore, this spec depends on adding
multi providers support to Octavia. Service providers will be configured via Octavia configuration file.

Its important to mention that adding flavors capability to Octavia is not actually dependent on the work for
LBaaS API spinout, from Neutron to Octavia, to be completed. This capability can be added to Octavia
but not actually used until the API spinout is complete and Octavia becomes the official OpenStack LBaaS
API.

This spec is based on two existing specs from neutron:

Service Flavor Framework Flavor framework - Templates and meta-data

However, this is a spec for the first and basic flavors support. Following capabilities are not part of this
spec:

• Providing parameterized metainfo templates for provider profiles.

• Providing meta data for specific LBaaS object as part of its creation.

Proposed change

The Provider Flavor framework enables the ability to create distinct provider flavor profiles of supported
parameters. Operators will have the ability to query the provider driver interface for a list of supported
parameters. Operators can view the said list by provider and create flavors by selecting one or many
parameters from the list. The parameters that will be used to enable specific functionality will be json
type in transit and at rest. This json payload is assigned to a provider and a flavor name. Users then
have the option of selecting from any of the existing flavors and submitting the selected flavor upon the
creation of the load balancer. The following flavor name examples can be, but not limited to dev, stage,
prod or bronze, silver, gold. A provider can have many flavor names and a flavor name can be used by
only one provider. Each provider/flavor pair is assigned a group of meta-parameters and forms a flavor
profile. The flavor name or id is submitted when creating a load balancer.

The proposal is to add LBaaS service flavoring to Octavia. This will include following aspects:

• Adding new flavors API to Octavia API

• Adding flavors models to Octavia

• Adding flavors db tables to Octavia database

• Adding DB migration for new DB objects

• Ensuring backwards compatibility for loadbalancer objects which were created before flavors sup-
port. This is for both cases, when loadbalancer was created before multi providers support and
when loadbalancer was created with certain provider.

• Adding default entries to DB tables representing the default Octavia flavor and default Octavia
provider profile.

• Adding "default" flavor to devstack plugin.

4.5. Project Specifications 346

https://specs.openstack.org/openstack/neutron-specs/specs/liberty/neutron-flavor-framework.html
https://specs.openstack.org/openstack/neutron-specs/specs/mitaka/neutron-flavor-framework-templates.html

Octavia Documentation, Release 15.1.0.dev35

A sample use case of the operator flavor workflow would be the following:

• The operator queries the provider capabilities

• The operator create flavor profile

• The flavor profile is validated with provider driver

• The flavor profile is stored in octavia db

• The end user creates lb with the flavor

• The profile is validated against driver once again, upon every lb-create

Alternatives

An alternative is patchset-5 within this very same spec. While the concept is the same, the design is differ-
ent. Differences with patchset-5 to note is primarily with the data schemas. With patchset-5 the metadata
that is passed to the load balancer has a one to one relationship with the provider. Also key/values pairs
are stored in json as opposed to in normalized tables. And a list of provider supported capabilities is not
maintained. That said this alternative design is an option.

Data model impact

DB table ’flavor_profile’ introduced to represent the profile that is created when combining a provider
with a flavor.

Field Type Null Key Default
id varchar(36) NO PK generated
provider_name varchar(255) NO
metadata varchar(4096) NO

Note

The provider_name is the name the driver is advertised as via setuptools entry points. This will be
validated when the operator uploads the flavor profile and the metadata is validated.

DB table ’flavor’ introduced to represent flavors.

Field Type Null Key Default
id varchar(36) NO PK generated
name varchar(255) NO UK
description varchar(255) YES NULL
enabled tinyint(1) NO True
flavor_profile_id varchar(36) NO FK

DB table attribute ’load_balancer.flavor_id’ introduced to link a flavor to a load_balancer.

Field Type Null Key Default
flavor_id varchar(36) YES FK1 NULL

4.5. Project Specifications 347

Octavia Documentation, Release 15.1.0.dev35

REST API impact

FLAVOR(/flavors)

Attribute
Name

Type Access Default
Value

Validation/ Con-
version

Description

id string
(UUID)

RO, ad-
min

generated N/A identity

name string RO, ad-
min

” string human-readable name

description string RO, ad-
min

” string human-readable descrip-
tion

enabled bool RO, ad-
min

true bool toggle

fla-
vor_profile_id

string RO, ad-
min

string human-readable fla-
vor_profile_id

FLAVOR PROFILE(/flavorprofiles)

Attribute
Name

Type Ac-
cess

Default
Value

Validation/ Con-
version

Description

id string
(UUID)

admin generated N/A identity

name string admin ” string human-readable name
provider-id string admin ” string human-readable

provider-id
metadata string admin {} json flavor meta parameters

Security impact

The policy.json will be updated to allow all users to query the flavor listing and request details about a
specific flavor entry, with the exception of flavor metadata. All other REST points for create/update/delete
operations will be admin only. Additionally, the CRUD operations for Provider Profiles will be restricted
to administrators.

Notifications impact

N/A

Other end user impact

An existing LB cannot be updated with a different flavor profile. A flavor profile can only be applied
upon the creation of the LB. The flavor profile will be immutable.

Performance Impact

There will be a minimal overhead incurred when the logical representation is scheduled onto the actual
backend. Once the backend is selected, direct communications will occur via driver calls.

4.5. Project Specifications 348

Octavia Documentation, Release 15.1.0.dev35

IPv6 impact

None

Other deployer impact

The deployer will need to craft flavor configurations that they wish to expose to their users. During
migration the existing provider configurations will be converted into basic flavor types. Once migrated,
the deployer will have the opportunity to modify the flavor definitions.

Developer impact

The expected developer impact should be minimal as the framework only impacts the initial scheduling
of the logical service onto a backend. The driver implementations should remain unchanged except for
the addition of the metainfo call.

Community impact

This proposal allows operators to offer services beyond those directly implemented, and to do so in a way
that does not increase community maintenance or burden.

Provider driver impact

The provider driver should have the following abilities:

• Provide an interface to describe the available supported metadata options

• Provide an interface to validate the flavor metadata

• Be able to accept the flavor metadata parameters

• Exception handling for non-supported metadata

Implementation

Assignee(s)

• Evgeny Fedoruk (evgenyf)

• Carlos Puga (cpuga)

Work Items

• Implement the new models

• Implement the REST API Extension (including tests)

• Implementation migration script for existing deployments.

• Add client API support

• Add policies to the Octavia RBAC system

4.5. Project Specifications 349

Octavia Documentation, Release 15.1.0.dev35

Dependencies

Depends on provider support and provider drivers that support the validation interface and accept the
flavor profile metadata.

Testing

Tempest Tests

Tempest testing including new API and scenario tests to validate new entities.

Functional Tests

Functional tests will need to be created to cover the API and database changes.

API Tests

The new API extensions will be tested using functional tests.

Documentation Impact

User Documentation

User documentation will need be included to describe to users how to use flavors when building their
logical topology.

Operator Documentation

Operator documentation will need to be created to detail how to manage Flavors, Providers and their
respective Profiles.

Developer Documentation

Provider driver implementation documentation will need to be updated to cover the new interfaces ex-
pected of provider drivers and the structure of the metadata provided to the driver.

API Reference

The API reference documentation will need to be updated for the new API extensions.

References

[1] https://docs.openstack.org/api-ref/load-balancer/v2/index.html

LBaaS Alternative Monitoring IP/Port

https://blueprints.launchpad.net/octavia/+spec/lbaas-health-monitoring-port

In the current state, the health monitor IP address/port pair is derived from a load balancer’s pool mem-
ber’s address and protocol port. In some use cases it would be desirable to monitor a different IP ad-
dress/port pair for the health of a load balanced pool’s member than the already specified address and
protocol port. Due to the current state this is not possible.

Problem description

The use case where this would be desirable would be when the End User is making the health monitor
application on the member available on a IP/port that is mutually exclusive to the IP/port of the application
that is being load balanced on the member. The End User would find this advantageous when attempting

4.5. Project Specifications 350

https://docs.openstack.org/api-ref/load-balancer/v2/index.html
https://blueprints.launchpad.net/octavia/+spec/lbaas-health-monitoring-port

Octavia Documentation, Release 15.1.0.dev35

to limit access to health diagnostic information by not allowing it to be served over the main ingress
IP/port of their application.

Beyond limiting access to any health APIs, it allows the End Users to design different methods of health
monitoring, such as creating distinct daemons responsible for the health of their hosts applications.

Proposed change

The creation of a pool member would now allow the specification of an IP address and port to monitor
health. The process used to assess the health of pool members would now use this new IP address and
port to diagnose the member.

If a health monitor IP address or port is not specified the default behavior would be to use the IP address
and port specified by the member.

There would likely need to be some Horizon changes to support this feature, however by maintaining the
old behavior as the default we will not create a strong dependency.

Alternatives

An alternative is to not allow this functionality, and force all End Users to ensure their health checks are
available over the member’s load balanced IP address and protocol port.

As stated in the Problem Description this would force End Users to provide additional security around
their health diagnostic information so that they do not expose it to unintended audiences. Pushing this
requirement on the End User is a heavier burden and limits their configuration options of the applications
they run on Openstack that are load balanced.

Data model impact

The Member data model would gain two new member fields called monitor_port and monitor_address.
These two member fields would store the port and IP address, respectively, that the monitor will query
for the health of the load balancer’s listener’s pool member.

It is important to have the default behavior fall back on the address and protocol port of the member as
this will allow any migrations to not break existing deployments of Openstack.

Any Member data models without this new feature would have the fields default to the value of null to
signify that Octavia’s LBaaS service should use the member’s protocol port to assess health status.

REST API impact

There are two APIs that will need to be modified, only slightly, to facilitate this change.

Table 1: Octavia LBaaS APIs

Method URI
POST /v2.0/lbaas/pools/{pool_id}/members
PUT /v2.0/lbaas/pools/{pool_id}/members/{member_id}
GET /v2.0/lbaas/pools/{pool_id}/members/{member_id}

The POST and PUT calls will need two additional fields added to their JSON body data for the request
and the JSON response data.

4.5. Project Specifications 351

Octavia Documentation, Release 15.1.0.dev35

The GET call will need two additional fields as well, however they would only be added to the JSON
response data.

The fields to be added to each is:

Table 2: Added Fields

Attribute
Name

Type Ac-
cess

Default
Value

Validation Conver-
sion

Description

monitor_port int RW,
all

null int health check port (optional)

moni-
tor_address

string RW,
all

null types.IPAddressType() health check IP address (op-
tional)

Security impact

None

Notifications impact

None

Other end user impact

None

Performance Impact

None

Other deployer impact

None

Developer impact

Other plugins do not have to implement this feature as it is optional due to the default behavior. If they
decide to implement this feature, they would just need to supply the protocol port in their POSTs and
PUTs to the health monitor APIs.

Implementation

Assignee(s)

Primary assignee:
a.amerine

Other contributors:
None

4.5. Project Specifications 352

Octavia Documentation, Release 15.1.0.dev35

Work Items

• Alter the Member Data Model

• Alter Pool Member APIs

• Update API reference documentation to reflect changes

• Write or Alter Unit, Functional, and Tempest Tests to verify new functionality

Dependencies

None

Testing

Integration tests can be written to verify functionality. Generally, it should only require an existing Open-
stack deployment that is running LBaaS to verify health checks.

Documentation Impact

The REST API impact will need to be addressed in documentation so developers moving forward know
about the feature and can use it.

References

• Octavia Roadmap Considerations: Health monitoring on alternate IPs and/or ports (https://wiki.
openstack.org/wiki/Octavia/Roadmap)

• RFE Port based HealthMonitor in neutron_lbaas (https://launchpad.net/bugs/1541579)

Align octavia API With Neutron LBaaS API

Problem description

For the octavia API to truly be standalone, it needs to have capability parity with Neutron LBaaS’s API.
Neutron LBaaS has the luxury of piggy-backing off of Neutron’s API. This gives Neutron LBaaS’s API
resources many capabilities for free. This document is meant to enumerate those capabilities that the
octavia API does not possess at the time of this writing.

Proposed change

Complete the tasks enumerated in the Work Items section

Alternatives

• Do nothing and keep the status quo

Data model impact

There will be some minor data model changes to octavia in support of this change.

4.5. Project Specifications 353

https://wiki.openstack.org/wiki/Octavia/Roadmap
https://wiki.openstack.org/wiki/Octavia/Roadmap
https://launchpad.net/bugs/1541579

Octavia Documentation, Release 15.1.0.dev35

REST API impact

This change will have significant impact to the octavia API.

Security impact

This change will improve octavia security by adding keystone authentication.

Notifications impact

No expected change.

Other end user impact

Users will be able to use the new octavia API endpoint for LBaaS.

Performance Impact

This change may slightly improve performance by reducing the number of software layers requests will
traverse before responding to the request.

Other deployer impact

Over time the neutron-lbaas package will be deprecated and deployers will only require octavia for LBaaS.

Developer impact

This will simplify LBaaS development by reducing the number of databases as well as repositories that
require updating for LBaaS enhancements.

Implementation

Assignee(s)

blogan diltram johnsom rm_you dougwig

Work Items

Implement the following API Capabilities:

• Keystone Authentication

• Policy Engine

• Pagination

• Quotas

• Filtering lists by query parameter

• Fields by query parameter

• Add the same root API endpoints as n-lbaas

• Support "provider" option in the API to select a driver to spin up a load balancer.

• API Handler layer to become the same as n-lbaas driver layer and allow multiple handlers/drivers.

4.5. Project Specifications 354

Octavia Documentation, Release 15.1.0.dev35

• Neutron LBaaS V2 driver to octavia API Handler shim layer

Implement the following additional features that n-lbaas maintains:

• OSC extension via a new repository ’python-octaviaclient’

Other Features to be Considered:

• Notifications for resource creating, updating, and deleting.

• Flavors

• Agent namespace driver or some lightweight functional driver.

• Testing octavia with all of the above

• REST API Microversioning

Dependencies

None

Testing

Api tests from neutron-lbaas will be used to validate the new octavia API.

Documentation Impact

The octavia api reference will need to be updated.

References

Vip QoS Policy Application

Problem description

For real cases, the bandwidth of vip should be limited, because the upstream network resource is provided
by the ISP or other organizations. That means it is not free. The openstack provider or users should pay for
the limited bandwidth, for example, users buy the 50M bandwidth from ISP for openstack environment
to access Internet, also it will be used for the connection outside of openstack to access the servers in
openstack. And the servers are behind LoadBalance VIP. We cannot offer the whole bandwidth to the
servers, as maybe there also are the VMs want to access the external network. So we should take a
bandwidth limitation towards vip port.

Also, if the upstream network resource had been used up mostly, we still want the backend servers behind
loadbalancer are accessible and stable. The min bandwidth limitation is needed for this scenario.

For more QoS functions, in reality, we can’t limit our users or deployers to use loadbalance default drivers,
such as haproxy driver and Octavia driver. They may be more concerned about the fields/functions related
to QoS, like DSCP markings. They could integrate the third-party drivers which are concerned about
these fields.

Proposed change

This spec introduces the Neutron QoS function to meet the requirements. Currently, there are 3 ports(at
least) in the loadbalancer created by Octavia. One is from the lb-mgmt-net, the others are from the
vip-subnet, called "loadbalancer-LOADBALANCER_ID" and "octavia-lb-vrrp-LOADBALNCER_ID".

4.5. Project Specifications 355

Octavia Documentation, Release 15.1.0.dev35

The first one is vip port, the second one is for vrrp HA, and it will set "allowed_address_pairs" toward
vip fixed_ip. The QoS policy should focus on the attached port "octavia-lb-vrrp-LOADBALNCER_ID".

We could apply the Neutron QoS policy to the "octavia-lb-vrrp-LOADBALNCER_ID" ports, whether
the topology is active-active or standalone.

There are the following changes:

• Extend a new column named "qos_policy_id" in vip table.

• Extend Octavia API, we need pass the vip-qos-policy-id which created in Neutron into LoadBal-
ancer creation/update.

• Apply QoS policy on vip port in Loadbalancer working flow.

Alternatives

We accept the QoS parameters and implement the QoS function on our own.

Data model impact

In this spec, the QoS function will be provided by Neutron, so Octavia should know the relationship of
QoS policies and the vip port of Loadbalancers. There will be some minor data model changes to Octavia
in support of this change.

• vip table - qos_policy_id: associate QoS policy id with vip port.

REST API impact

Proposed attribute:

EXTEND_FIELDS = {
'vip_qos_policy_id':{'allow_post': True, 'allow_put': True,

'validate': {'type:uuid': None},
'is_visible': True,
'default': None}

}

The definition in Octavia is like::
vip_qos_policy_id = wtypes.wsattr(wtypes.UuidType())

Some samples in Loadbalancer creation/update. Users allow pass "vip_qos_policy_id".

Create/Update Loadbalancer Request:

POST/PUT /v2.0/lbaas/loadbalancers
{

"loadbalancer": {
"name": "loadbalancer1",
"description": "simple lb",
"project_id": "b7c1a69e88bf4b21a8148f787aef2081",
"tenant_id": "b7c1a69e88bf4b21a8148f787aef2081",
"vip_subnet_id": "013d3059-87a4-45a5-91e9-d721068ae0b2",
"vip_address": "10.0.0.4",
"admin_state_up": true,

(continues on next page)

4.5. Project Specifications 356

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

"flavor": "a7ae5d5a-d855-4f9a-b187-af66b53f4d04",
"vip_qos_policy_id": "b61f8b45-e888-4056-94f0-e3d5af96211f"

}
}

Response:
{

"loadbalancer": {
"admin_state_up": true,
"description": "simple lb",
"id": "a36c20d0-18e9-42ce-88fd-82a35977ee8c",
"listeners": [],
"name": "loadbalancer1",
"operating_status": "ONLINE",
"provisioning_status": "ACTIVE",
"project_id": "b7c1a69e88bf4b21a8148f787aef2081",
"tenant_id": "b7c1a69e88bf4b21a8148f787aef2081",
"vip_address": "10.0.0.4",
"vip_subnet_id": "013d3059-87a4-45a5-91e9-d721068ae0b2",
"flavor": "a7ae5d5a-d855-4f9a-b187-af66b53f4d04",
"provider": "sample_provider",
"pools": [],
"vip_qos_policy_id": "b61f8b45-e888-4056-94f0-e3d5af96211f"

}
}

Security impact

None

Notifications impact

No expected change.

Other end user impact

Users will be able to specify qos_policy to create/update Loadbalancers.

Performance Impact

• It will be a very short time to cost in loadbalancer creation, as we need validate the input QoS
policy.

• The QoS policy in Neutron side will affect the network performance based on the different types
of QoS rules.

4.5. Project Specifications 357

Octavia Documentation, Release 15.1.0.dev35

Other deployer impact

None

Developer impact

TBD.

Implementation

Assignee(s)

zhaobo reedip

Work Items

• Add the DB model and extend the table column.

• Extending Octavia V2 API to accept QoS policy.

• Add QoS application logic into Loadbalancer workflow.

• Add API validation code to validate access/existence of the qos_policy which created in Neutron.

• Add UTs to Octavia.

• Add API tests.

• Update CLI to accept QoS fields.

• Documentation work.

Dependencies

None

Testing

Unit tests, Functional tests, API tests and Scenario tests are necessary.

Documentation Impact

The Octavia API reference will need to be updated.

References

4.5.5 Version 1.1 (queens)

Distributor for L3 Active-Active, N+1 Amphora Setup

Attention

Please review the active-active topology blueprint first (Active-Active, N+1 Amphorae Setup)

https://blueprints.launchpad.net/octavia/+spec/l3-active-active

4.5. Project Specifications 358

https://blueprints.launchpad.net/octavia/+spec/l3-active-active

Octavia Documentation, Release 15.1.0.dev35

Problem description

This blueprint describes a L3 active-active distributor implementation to support the Octavia active-
active-topology. The L3 active-active distributor will leverage the capabilities of a layer 3 Clos network
fabric in order to distribute traffic to an Amphora Cluster of 1 or more amphoras. Specifically, the L3
active-active distributor design will leverage Equal Cost Multipath Load Sharing (ECMP) with anycast
routing to achieve traffic distribution across the Amphora Cluster. In this reference implementation, the
BGP routing protocol will be used to inject anycast routes into the L3 fabric.

In order to scale a single VIP address across multiple active amphoras it is required to have a distributor
to balance the traffic. By leveraging the existing capabilities of a modern L3 network, we can use the
network itself as the distributor. This approach has several advantages, which include:

• Traffic will be routed via the best path to the destination amphora. There is no need to add an
additional hop (distributor) between the network and the amphora.

• The distributor is not in the data path and simply becomes a function of the L3 network.

• The performance and scale of the distributor is the same as the L3 network.

• Native support for both IPv4 and IPv6, without customized logic for each address family.

Note: Items marked with [P2] refer to lower priority features to be designed / implemented
only after initial release.

Proposed change

• Octavia shall implement the L3 active-active distributor through a pluggable driver.

• The distributor control plane function (bgp speaker) will run inside the amphora and leverage the
existing amphora lifecycle manager.

• Each amphora will run a bgp speaker in the default namespace in order to announce the anycast VIP
into the L3 fabric. BGP peering and announcements will occur over the lb-mgmt-net network. The
anycast VIP will get advertised as a /32 or /128 route with a next-hop of the front-end IP assigned
to the amphora instance. The front-end network IPs must be directly routable from the L3 fabric,
such as in the provider networking model.

• Octavia shall implement the ability to specify an anycast VIP/subnet and front-end subnet (provider
network) when creating a new load balancer. The amphora will have ports on three networks
(anycast, front-end, management). The anycast VIP will get configured on the loopback interface
inside the amphora-haproxy network namespace.

• The operator shall be able to define a bgp peer profile, which includes the required metadata for
the amphora to establish a bgp peering session with the L3 fabric. The bgp peering information
will be passed into the amphora-agent configuration file via config drive during boot. The amphora
will use the bgp peering information to establish a BGP peer and announce its anycast VIP.

• [P2] Add the option to allow the bgp speaker to run on a dedicated amphora instance that is not
running the software load balancer (HAProxy). In this model a dedicated bgp speaker could adver-
tise anycast VIPs for one or more amphoras. Each BGP speaker (peer) can only announce a single
next-hop route for an anycast VIP. In order to perform ECMP load sharing, multiple dedicated
amphoras running bgp speakers will be required, each of them would then announce a different
next-hop address for the anycast VIP. Each next-hop address is the front-end (provider network) IP
of an amphora instance running the software load balancer.

• [P2] The Amphora Cluster will provide resilient flow handling in order to handle ECMP group
flow remapping events and support amphora connection draining.

4.5. Project Specifications 359

Octavia Documentation, Release 15.1.0.dev35

• [P2] Support Floating IPs (FIPs). In order to support FIPs the existing Neutron floatingips API
would need to be extended. This will be described in more detail in a separate spec in the Neutron
project.

Architecture

High-level Topology Description

The below diagram shows the interaction between 2 .. n amphora instances from each tenant and how
they interact with the L3 network distributor.

Management Front-End
Internet Network Networks
(World) (provider)

Amphora of Tenant A

MGMTns: defaultns: amphora-haproxyf.e.
IP ------------------------------ IP

BGP Anycast VIP
Speaker (loopback)

|
|

Peering Session 1..* |
---------------------------+

{anycast VIP}/32 next-hop {f.e. IP}

Amphora of Tenant B

MGMTns: defaultns: amphora-haproxyf.e.
IP ------------------------------ IP

BGP Anycast VIP
Speaker (loopback)

Distributor |
(L3 Network) |

Peering Session 1..* |
---------------------------+

{anycast VIP}/32 next-hop {f.e. IP}

Amphora of Tenant C

MGMTns: defaultns: amphora-haproxyf.e.
IP ------------------------------ IP

BGP Anycast VIP
Speaker (loopback)

|
(continues on next page)

4.5. Project Specifications 360

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

|
Peering Session 1..* |

---------------------------+
{anycast VIP}/32 next-hop {f.e. IP}

Anycast
1..* Network

• Whenever a new active-active amphora is instantiated it will create BGP peering session(s) over
the lb-mgmt-net to the L3 fabric. The BGP peer will need to have a neighbor definition in order to
allow the peering sessions from the amphoras. In order to ease configuration, a neighbor statement
allowing peers from the entire lb-mgmt-net IP prefix range can be defined: neighbor 10.10.10.
0/24

• The BGP peer IP can either be a route reflector (RR) or any other network device that will redis-
tribute routes learned from the amphora BGP speaker. In order to help scaling, it is possible to peer
with the ToR switch based on the rack the amphora instance is provisioned in. The configuration
can be simplified by creating an anycast loopback interface on each ToR switch, which will
provide a consistent BGP peer IP regardless of which rack or hypervisor is hosting the amphora
instance.

• Once a peering session is established between an amphora and the L3 fabric, the amphora will
need to announce its anycast VIP with a next-hop address of its front-end network IP. The front-
end network IP (provider) must be routable and reachable from the L3 network in order to be used.

• In order to leverage ECMP for distributing traffic across multiple amphoras, multiple equal-cost
routes must be installed into the network for the anycast VIP. This requires the L3 network to have
Multipath BGP enabled, so BGP installs multiple paths and does not select a single best path.

• After the amphoras in a cluster are initialized there will be an ECMP group with multiple equal-cost
routes for the anycast VIP. The data flow for traffic is highlighted below:

1. Traffic will ingress into the L3 network fabric with a destination IP address of the anycast
VIP.

2. If this is a new flow, the flow will get hashed to one of the next-hop addresses in the ECMP
group.

3. The packet will get sent to the front-end IP address of the amphora instance that was selected
from the above step.

4. The amphora will accept the packet and send it to the back-end server over the front-end
network or a directly attached back-end (tenant) network attached to the amphora.

5. The amphora will receive the response from the back-end server and forward it on to the
next-hop gateway of front-end (provider) network using the anycast VIP as the source IP
address.

6. All subsequent packets belonging to the same flow will get routed through the same path.

• Adding or removing members to a L3 active-active amphora cluster will result in flow remapping,
as different paths will be selected due to rehashing. It is recommended to enable the resilient
hashing feature on ECMP groups in order to minimize flow remapping.

4.5. Project Specifications 361

Octavia Documentation, Release 15.1.0.dev35

Distributor (BGP Speaker) Lifecycle

The below diagram shows the interaction between an amphora instance that is serving as a distributor
and the L3 network. In this example we are peering with the ToR switch in order to disseminate anycast
VIP routes into the L3 network.

+--+
| Initialize Distributor on Amphora |
+--+
| |
| +---------------+ +---------------+ |
	1		4	
	Amphora		Ready to	
	(boot)		announce	
			VIP(s)	
+-------+-------+ +-------+-------+				
	^			
v				
+-------+-------+ +-------+-------+				
	2		3 Establish	
	Read Config		BGP connection	
	Drive +----------->+ to ToR(s)			
	(BGP Config)		(BGP Speaker)	
+---------------+ +---------------+				
+--+

+--+
| Register AMP to Distributor or Listener Start |
+--+
| |
| +---------------+ +---------------+ |
	5		8	
	Amphora		Amphora	
	BGP Speaker		(Receives VIP	
	(Announce VIP)		Traffic)	
+-------+-------+ +-------+-------+				
	^			
	BGP Peering			
	Session(s)			
v				
+-------+-------+ +-------+-------+				
	6		7	
	ToR(s)		L3 Fabric	
	(Injects Route +----------->+ Accepts Route			

(continues on next page)

4.5. Project Specifications 362

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

| | into Fabric) | | (ECMP) | |
| +---------------+ +---------------+ |
| |
+--+

+--+
| Unregister AMP to Distributor or Listener Stop |
+--+
| |
| +---------------+ +---------------+ |
	9		12	
	Amphora		Amphora	
	BGP Speaker		(No longer sent	
	(Withdraw VIP)		VIP traffic)	
+-------+-------+ +-------+-------+				
	^			
	BGP Peering			
	Session(s)			
v				
+-------+-------+ +-------+-------+				
	10		11	
	ToR(s)		L3 Fabric	
	(Removes Route +----------->+ Removes Route			
	from Fabric)		(ECMP)	
+---------------+ +---------------+				
+--+

1. The amphora gets created and is booted. In this example, the amphora will perform both the load
balancing (HAProxy) and L3 Distributor function (BGP Speaker).

2. The amphora will read in the BGP configuration information from the config drive and configure
the BGP Speaker to peer with the ToR switch.

3. The BGP Speaker process will start and establish a BGP peering session with the ToR switch.

4. Once the BGP peering session is active, the amphora is ready to advertise its anycast VIP into the
network with a next-hop of its front-end IP address.

5. The BGP speaker will communicate using the BGP protocol and send a BGP "announce" message
to the ToR switch in order to announce a VIP route. If the amphora is serving as both a load
balancer and distributor the announcement will happen on listener start. Otherwise the announce
will happen on a register amphora request to the distributor.

6. The ToR switch will learn this new route and advertise it into the L3 fabric. At this point the L3
fabric will know of the new VIP route and how to reach it (via the ToR that just announced it).

7. The L3 fabric will create an ECMP group if it has received multiple route advertisements for the
same anycast VIP. This will result in a single VIP address with multiple next-hop addresses.

8. Once the route is accepted by the L3 fabric, traffic will get distributed to the recently registered
amphora (HAProxy).

4.5. Project Specifications 363

Octavia Documentation, Release 15.1.0.dev35

9. The BGP speaker will communicate using the BGP protocol and send a BGP "withdraw" message
to the ToR switch in order to withdraw a VIP route. If the amphora is serving as both a load
balancer and distributor the withdrawal will happen on listener stop. Otherwise the withdraw will
happen on an unregister amphora request to the distributor.

10. The ToR switch will tell the L3 fabric over BGP that the anycast VIP route for the amphora being
unregistered is no longer valid.

11. The L3 fabric will remove the VIP address with the next-hop address to the amphora (HAProxy)
being unregistered. It will keep all other existing VIP routes to other amphora (HAProxy) instances
until they are explicitly unregistered.

12. Once the route is removed the amphora (HAProxy) will no longer receive any traffic for the VIP.

Alternatives

TBD

Data model impact

Add the following columns to the existing vip table:

• distributor_id (String(36) , nullable=True)
ID of the distributor responsible for distributing traffic for the corresponding VIP.

Add table distributor with the following columns:

• id (String(36) , nullable=False)
ID of Distributor instance.

• distributor_type (String(36) , nullable=False)
Type of distributor L3_BGP.

• status (String(36) , nullable=True)
Provisioning status.

Update existing table amphora. An amphora can now serve as a distributor, lb, or both. The vrrp_*
tables will be renamed to frontend_* in order to make the purpose of this interface more apparent and to
better represent other use cases besides active/standy.

• load_balancer_id (String(36) , nullable=True)
This will be set to null if this amphora is a dedicated distributor and should not run HAProxy.

• service_type (String(36) , nullable=True)
New field added to the amphora table in order to describe the type of amphora. This field
is used to describe the function (service) the amphora provides. For example, if this is a
dedicated distributor the service type would be set to "distributor".

• frontend_ip (String(64) , nullable=True)
New name for former vrrp_ip field. This is the primary IP address inside the amphora-
haproxy namespace used for L3 communication to back-end members.

• frontend_subnet_id (String(36) , nullable=True)
New field added to the amphora table, which is the neutron subnet id of the front-end network
connected to the amphora.

• frontend_port_id (String(36) , nullable=True)
New name for former vrrp_port_id field. This represents the neutron port ID of a port at-

4.5. Project Specifications 364

Octavia Documentation, Release 15.1.0.dev35

tached to the front-end network. It should no longer be assumed that the front-end subnet is
the same as the VIP subnet.

• frontend_interface (String(16) , nullable=True)
New name for former vrrp_interface field.

• frontend_id (Integer , nullable=True)
New name for former vrrp_id field.

• frontend_priority (Integer , nullable=True)
New name for former vrrp_priority field.

Use existing table amphora_health with the following columns:

• amphora_id (String(36) , nullable=False)
ID of amphora instance running lb and/or implementing distributor function.

• last_update (DateTime , nullable=False)
Last time amphora heartbeat was received by a health monitor.

• busy (Boolean , nullable=False)
Field indicating a create / delete or other action is being conducted on the amphora instance
(ie. to prevent a race condition when multiple health managers are in use).

Add table amphora_registration with the below columns. This table determines the role of the
amphora. The amphora can be dedicated as a distributor, load balancer, or perform a combined role
of load balancing and distributor. A distributor amphora can be registered to multiple load balancers.

• amphora_id (String(36) , nullable=False)
ID of Amphora instance.

• load_balancer_id (String(36) , nullable=False)
ID of load balancer.

• distributor_id (String(36) , nullable=True)
ID of Distributor instance.

Add table distributor_l3_bgp_speaker with the following columns:

• id (String(36) , nullable=False)
ID of the BGP Speaker.

• ip_version (Integer , nullable=False)
Protocol version of the BGP speaker. IP version 4 or 6.

• local_as (Integer , nullable=False)
Local AS number for the BGP speaker.

Add table distributor_l3_bgp_peer with the following columns:

• id (String(36) , nullable=False)
ID of the BGP peer.

• peer_ip (String(64) , nullable=False)
The IP address of the BGP neighbor.

• remote_as (Integer , nullable=False)
Remote AS of the BGP peer.

• auth_type (String(16) , nullable=True)
Authentication type, such as md5. An additional parameter will need to be set in the octavia

4.5. Project Specifications 365

Octavia Documentation, Release 15.1.0.dev35

configuration file by the admin to set the md5 authentication password that will be used with
the md5 auth type.

• ttl_hops (Integer , nullable=True)
Number of hops between speaker and peer for ttl security 1-254.

• hold_time (Integer , nullable=True)
Amount of time in seconds that can elapse between messages from peer.

• keepalive_interval (Integer , nullable=True)
How often to send keep alive packets in seconds.

Add table distributor_l3_bgp_peer_registration with the following columns:

• distributor_l3_bgp_speaker_id (String(36) , nullable=False)
ID of the BGP Speaker.

• distributor_l3_bgp_peer_id (String(36) , nullable=False)
ID of the BGP peer.

Add table distributor_l3_amphora_bgp_speaker_registration with the following columns:

• distributor_l3_bgp_speaker_id (String(36) , nullable=False)
ID of the BGP Speaker.

• amphora_id (String(36) , nullable=False)
ID of amphora instance that the BGP speaker will run on.

Add table distributor_l3_amphora_vip_registration with the following columns:

• amphora_id (String(36) , nullable=False)
ID of the distributor amphora instance.

• load_balancer_id (String(36) , nullable=False)
The ID of the load balancer. This will be used to get the VIP IP address.

• nexthop_ip (String(64) , nullable=False)
The amphora front-end network IP used to handle VIP traffic. This is the next-hop address
that will be advertised for the VIP. This does not have to be an IP address of an amphora, as
it could be external such as for UDP load balancing.

• distributor_l3_bgp_peer_id (String(36) , nullable=True)
The BGP peer we will announce the anycast VIP to. If not specified, we will announce over
all peers.

REST API impact

• Octavia API -- Allow the user to specify a separate VIP/subnet and front-end subnet (provider
network) when creating a new load balancer. Currently the user can only specify the VIP subnet,
which results in both the VIP and front-end network being on the same subnet.

• Extended Amphora API -- The L3 BGP distributor driver will call the extended amphora API in
order to implement the control plane (BGP) and advertise new anycast VIP routes into the network.

The below extended amphora API calls will be implemented for amphoras running as a dedicated dis-
tributor:

1. Register Amphora

4.5. Project Specifications 366

Octavia Documentation, Release 15.1.0.dev35

This call will result in the BGP speaker announcing the anycast VIP into the L3 network with a
next-hop of the front-end IP of the amphora being registered. Prior to this call, the load balancing
amphora will have to configure the anycast VIP on the loopback interface inside the amphora-
haproxy namespace.

• amphora_id
ID of the amphora running the load balancer to register.

• vip_ip
The VIP IP address.

• nexthop_ip
The amphora’s front-end network IP address used to handle anycast VIP traffic.

• peer_id
ID of the peer that will be used to announce the anycast VIP. If not specified, VIP will
be announced across all peers.

2. Unregister Amphora

The BGP speaker will withdraw the anycast VIP route for the specified amphora from the L3
network. After the route is withdrawn, the anycast VIP IP will be removed from the loopback
interface on the load balancing amphora.

• amphora_id
ID of the amphora running the load balancer to unregister.

• vip_ip
The VIP IP address.

• nexthop_ip
The amphora’s front-end network IP Address used to handle anycast VIP traffic.

• peer_id
ID of the peer that will be used to withdraw the anycast VIP. If not specified, route will
be withdrawn from all peers.

3. List Amphora

Will return a list of all amphora IDs and their anycast VIP routes currently being advertised by the
BGP speaker.

4. [P2] Drain Amphora

All new flows will get redirected to other members of the cluster and existing flows will be drained.
Once the active flows have been drained, the BGP speaker will withdraw the anycast VIP route from
the L3 network and unconfigure the VIP from the lo interface.

5. [P2] Register VIP

This call will be used for registering anycast routes for non-amphora endpoints, such as for UDP
load balancing.

• vip_ip
The VIP IP address.

• nexthop_ip
The nexthop network IP Address used to handle anycast VIP traffic.

4.5. Project Specifications 367

Octavia Documentation, Release 15.1.0.dev35

• peer_id
ID of the peer that will be used to announce the anycast VIP. If not specified, route will
be announced from all peers.

6. [P2] Unregister VIP

This call will be used for unregistering anycast routes for non-amphora endpoints, such as for UDP
load balancing.

• vip_ip
The VIP IP address.

• nexthop_ip
The nexthop network IP Address used to handle anycast VIP traffic.

• peer_id
ID of the peer that will be used to withdraw the anycast VIP. If not specified, route will
be withdrawn from all peers.

6. [P2] List VIP

Will return a list of all non-amphora anycast VIP routes currently being advertised by the BGP
speaker.

Security impact

The distributor inherently supports multi-tenancy, as it is simply providing traffic distribution across mul-
tiple amphoras. Network isolation on a per tenant basis is handled by the amphoras themselves, as they
service only a single tenant. Further isolation can be provided by defining separate anycast network(s)
on a per tenant basis. Firewall or ACL policies can then be built around these prefixes.

To further enhance BGP security, route-maps, prefix-lists, and communities to control what routes are
allowed to be advertised in the L3 network from a particular BGP peer can be used. MD5 password and
GTSM can provide additional security to limit unauthorized BGP peers to the L3 network.

Notifications impact

Other end user impact

Performance Impact

Other deployer impact

Developer impact

Implementation

Assignee(s)

Work Items

Dependencies

Testing

• Unit tests with tox.

• Function tests with tox.

4.5. Project Specifications 368

Octavia Documentation, Release 15.1.0.dev35

Documentation Impact

The API-Ref documentation will need to be updated for load balancer create. An additional optional
parameter frontend_network_id will be added. If set, this parameter will result in the primary interface
inside the amphora-haproxy namespace getting created on the specified network. Default behavior is to
provision this interface on the VIP subnet.

References

• Active-Active Topology

Enable Provider Driver Support

Specification Table of Contents

• Enable Provider Driver Support

– Problem description

– Proposed change

∗ Driver Entry Points

∗ Octavia Provider Driver API

· Load balancer

· Listener

· Pool

· Member

· Health Monitor

· L7 Policy

· L7 Rule

· Flavor

· Exception Model

∗ Driver Support Library

· Update provisioning and operating status API

· Update statistics API

· Get Resource Support

· API Exception Model

∗ Alternatives

∗ Data model impact

∗ REST API impact

∗ Security impact

4.5. Project Specifications 369

https://blueprints.launchpad.net/octavia/+spec/active-active-topology/

Octavia Documentation, Release 15.1.0.dev35

∗ Notifications impact

∗ Other end user impact

∗ Performance Impact

∗ Other deployer impact

∗ Developer impact

– Implementation

∗ Assignee(s)

∗ Work Items

– Dependencies

– Testing

– Documentation Impact

– References

https://storyboard.openstack.org/#!/story/1655768

Provider drivers are implementations that give Octavia operators a choice of which load balancing sys-
tems to use in their Octavia deployment. Currently, the default Octavia driver is the only one available.
Operators may want to employ other load balancing implementations, including hardware appliances, in
addition to the default Octavia driver.

Problem description

Neutron LBaaS v2 supports a provider parameter, giving LBaaS users a way to direct LBaaS requests to
a specific backend driver. The Octavia API includes a provider parameter as well, but currently supports
one provider, the Octavia driver. Adding support for other drivers is needed. With this in place, operators
can configure load balancers using multiple providers, either the Octavia default or others.

Proposed change

Available drivers will be enabled by entries in the Octavia configuration file. Drivers will be loaded via
stevedore and Octavia will communicate with drivers through a standard class interface defined below.
Most driver functions will be asynchronous to Octavia, and Octavia will provide a library of functions
that give drivers a way to update status and statistics. Functions that are synchronous are noted below.

Octavia API functions not listed here will continue to be handled by the Octavia API and will not call
into the driver. Examples would be show, list, and quota requests.

Driver Entry Points

Provider drivers will be loaded via stevedore. Drivers will have an entry point defined in their setup tools
configuration using the Octavia driver namespace "octavia.api.drivers". This entry point name will be
used to enable the driver in the Octavia configuration file and as the "provider" parameter users specify
when creating a load balancer. An example for the octavia reference driver would be:

octavia = octavia.api.drivers.octavia.driver:OctaviaDriver

4.5. Project Specifications 370

https://storyboard.openstack.org/#!/story/1655768
https://docs.openstack.org/stevedore/latest/

Octavia Documentation, Release 15.1.0.dev35

Octavia Provider Driver API

Provider drivers will be expected to support the full interface described by the Octavia API, cur-
rently v2.0. If a driver does not implement an API function, drivers should fail a request by raising a
NotImplementedError exception. If a driver implements a function but does not support a particular
option passed in by the caller, the driver should raise an UnsupportedOptionError.

It is recommended that drivers use the jsonschema package or voluptuous to validate the request against
the current driver capabilities.

See the Exception Model below for more details.

Note

Driver developers should refer to the official Octavia API reference <https://docs.openstack.org/api-
ref/load-balancer/v2/index.html> document for details of the fields and expected outcome of these
calls.

Load balancer

• create

Creates a load balancer.

Octavia will pass in the load balancer object with all requested settings.

The load balancer will be in the PENDING_CREATE provisioning_status and OFFLINE operat-
ing_status when it is passed to the driver. The driver will be responsible for updating the pro-
visioning status of the load balancer to either ACTIVE if successfully created, or ERROR if not
created.

The Octavia API will accept and do basic API validation of the create request from the user. The
load balancer python object representing the request body will be passed to the driver create method
as it was received and validated with the following exceptions:

1. The provider will be removed as this is used for driver selection.

2. The flavor will be expanded from the provided ID to be the full dictionary representing the
flavor metadata.

Load balancer object

As of the writing of this specification the create load balancer object may contain the following:

4.5. Project Specifications 371

https://github.com/Julian/jsonschema
https://pypi.org/project/voluptuous/

Octavia Documentation, Release 15.1.0.dev35

Name Type Description
admin_state_up bool Admin state: True if up, False if down.
description string A human-readable description for the resource.
flavor dict The flavor keys and values.
listeners list A list of Listener objects.
loadbalancer_id string ID of load balancer to create.
name string Human-readable name of the resource.
pools list A list of Pool object.
project_id string ID of the project owning this resource.
vip_address string The IP address of the Virtual IP (VIP).
vip_network_id string The ID of the network for the VIP.
vip_port_id string The ID of the VIP port.
vip_qos_policy_id string The ID of the qos policy for the VIP.
vip_subnet_id string The ID of the subnet for the VIP.

The driver is expected to validate that the driver supports the request and raise an exception if the
request cannot be accepted.

VIP port creation

Some provider drivers will want to create the Neutron port for the VIP, and others will want Octavia
to create the port instead. In order to support both use cases, the create_vip_port() method will
ask provider drivers to create a VIP port. If the driver expects Octavia to create the port, the
driver will raise a NotImplementedError exception. Octavia will call this function before calling
loadbalancer_create() in order to determine if it should create the VIP port. Octavia will call
create_vip_port() with a loadbalancer ID and a partially defined VIP dictionary. Provider drivers
that support port creation will create the port and return a fully populated VIP dictionary.

VIP dictionary

Name Type Description
project_id string ID of the project owning this resource.
vip_address string The IP address of the Virtual IP (VIP).
vip_network_id string The ID of the network for the VIP.
vip_port_id string The ID of the VIP port.
vip_qos_policy_id string The ID of the qos policy for the VIP.
vip_subnet_id string The ID of the subnet for the VIP.

Creating a Fully Populated Load Balancer

If the "listener" option is specified, the provider driver will iterate through the list and create all of
the child objects in addition to creating the load balancer instance.

• delete

Removes an existing load balancer.

Octavia will pass in the load balancer object and cascade boolean as parameters.

The load balancer will be in the PENDING_DELETE provisioning_status when it is passed to the
driver. The driver will notify Octavia that the delete was successful by setting the provision-
ing_status to DELETED. If the delete failed, the driver will update the provisioning_status to ERROR.

4.5. Project Specifications 372

Octavia Documentation, Release 15.1.0.dev35

The API includes an option for cascade delete. When cascade is set to True, the provider driver
will delete all child objects of the load balancer.

• failover

Performs a failover of a load balancer.

Octavia will pass in the load balancer ID as a parameter.

The load balancer will be in the PENDING_UPDATE provisioning_status when it is passed to the
driver. The driver will update the provisioning_status of the load balancer to either ACTIVE if
successfully failed over, or ERROR if not failed over.

Failover can mean different things in the context of a provider driver. For example, the Octavia
driver replaces the current amphora(s) with another amphora. For another provider driver, failover
may mean failing over from an active system to a standby system.

• update

Modifies an existing load balancer using the values supplied in the load balancer object.

Octavia will pass in the original load balancer object which is the baseline for the update, and a
load balancer object with the fields to be updated.

As of the writing of this specification the update load balancer object may contain the following:

Name Type Description
admin_state_up bool Admin state: True if up, False if down.
description string A human-readable description for the resource.
loadbalancer_id string ID of load balancer to update.
name string Human-readable name of the resource.
vip_qos_policy_id string The ID of the qos policy for the VIP.

The load balancer will be in the PENDING_UPDATE provisioning_status when it is passed to the
driver. The driver will update the provisioning_status of the load balancer to either ACTIVE if
successfully updated, or ERROR if the update was not successful.

The driver is expected to validate that the driver supports the request. The method will then return
or raise an exception if the request cannot be accepted.

Abstract class definition

class Driver(object):

def create_vip_port(self, loadbalancer_id, vip_dictionary):
"""Creates a port for a load balancer VIP.

If the driver supports creating VIP ports, the driver will create a
VIP port and return the vip_dictionary populated with the vip_port_id.
If the driver does not support port creation, the driver will raise
a NotImplementedError.

:param: loadbalancer_id (string): ID of loadbalancer.
:param: vip_dictionary (dict): The VIP dictionary.
:returns: VIP dictionary with vip_port_id.

(continues on next page)

4.5. Project Specifications 373

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: The driver does not support creating
VIP ports.

"""
raise NotImplementedError()

def loadbalancer_create(self, loadbalancer):
"""Creates a new load balancer.

:param loadbalancer (object): The load balancer object.
:return: Nothing if the create request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: The driver does not support create.
:raises UnsupportedOptionError: The driver does not
support one of the configuration options.

"""
raise NotImplementedError()

def loadbalancer_delete(self, loadbalancer, cascade=False):
"""Deletes a load balancer.

:param loadbalancer (object): The load balancer object.
:param cascade (bool): If True, deletes all child objects (listeners,
pools, etc.) in addition to the load balancer.

:return: Nothing if the delete request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
"""
raise NotImplementedError()

def loadbalancer_failover(self, loadbalancer_id):
"""Performs a fail over of a load balancer.

:param loadbalancer_id (string): ID of the load balancer to failover.
:return: Nothing if the failover request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises: NotImplementedError if driver does not support request.
"""
raise NotImplementedError()

def loadbalancer_update(self, old_loadbalancer, new_loadbalancer):
"""Updates a load balancer.

:param old_loadbalancer (object): The baseline load balancer object.
:param new_loadbalancer (object): The updated load balancer object.
:return: Nothing if the update request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: The driver does not support request.
:raises UnsupportedOptionError: The driver does not

(continues on next page)

4.5. Project Specifications 374

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

support one of the configuration options.
"""
raise NotImplementedError()

Listener

• create

Creates a listener for a load balancer.

Octavia will pass in the listener object with all requested settings.

The listener will be in the PENDING_CREATE provisioning_status and OFFLINE operating_status
when it is passed to the driver. The driver will be responsible for updating the provisioning status
of the listener to either ACTIVE if successfully created, or ERROR if not created.

The Octavia API will accept and do basic API validation of the create request from the user. The
listener python object representing the request body will be passed to the driver create method as
it was received and validated with the following exceptions:

1. The project_id will be removed, if present, as this field is now deprecated. The listener will
inherit the project_id from the parent load balancer.

2. The default_tls_container_ref will be expanded and provided to the driver in pkcs12 format.

3. The sni_container_refs will be expanded and provided to the driver in pkcs12 format.

Listener object

As of the writing of this specification the create listener object may contain the following:

4.5. Project Specifications 375

Octavia Documentation, Release 15.1.0.dev35

Name Type Description
ad-
min_state_up

bool Admin state: True if up, False if down.

connec-
tion_limit

int The max number of connections permitted for this listener. Default is -1,
which is infinite connections.

de-
fault_pool

ob-
ject

A Pool object.

de-
fault_pool_id

string The ID of the pool used by the listener if no L7 policies match.

de-
fault_tls_container_data

dict A TLS container dict.

de-
fault_tls_container_refs

string The reference to the secrets container.

descrip-
tion

string A human-readable description for the listener.

in-
sert_headers

dict A dictionary of optional headers to insert into the request before it is sent to
the backend member. See Supported HTTP Header Insertions. Keys and
values are specified as strings.

l7policies list A list of L7policy objects.
listener_id string ID of listener to create.
loadbal-
ancer_id

string ID of load balancer.

name string Human-readable name of the listener.
protocol string Protocol type: One of HTTP, HTTPS, TCP, or TERMINATED_HTTPS.
proto-
col_port

int Protocol port number.

sni_container_datalist A list of TLS container dict.
sni_container_refslist A list of references to the SNI secrets containers.
time-
out_client_data

int Frontend client inactivity timeout in milliseconds.

time-
out_member_connect

int Backend member connection timeout in milliseconds.

time-
out_member_data

int Backend member inactivity timeout in milliseconds.

time-
out_tcp_inspect

int Time, in milliseconds, to wait for additional TCP packets for content in-
spection.

As of the writing of this specification the TLS container dictionary contains the following:

Key Type Description
certificate string The PEM encoded certificate.
intermediates List A list of intermediate PEM certificates.
primary_cn string The primary common name of the certificate.
private_key string The PEM encoded private key.

As of the writing of this specification the Supported HTTP Header Insertions are:

4.5. Project Specifications 376

Octavia Documentation, Release 15.1.0.dev35

Key Type Description
X-
Forwarded-
For

bool When True a X-Forwarded-For header is inserted into the request to the backend
member that specifies the client IP address.

X-
Forwarded-
Port

int A X-Forwarded-Port header is inserted into the request to the backend member
that specifies the integer provided. Typically this is used to indicate the port the
client connected to on the load balancer.

Creating a Fully Populated Listener

If the "default_pool" or "l7policies" option is specified, the provider driver will create all of the
child objects in addition to creating the listener instance.

• delete

Deletes an existing listener.

Octavia will pass the listener object as a parameter.

The listener will be in the PENDING_DELETE provisioning_status when it is passed to the driver.
The driver will notify Octavia that the delete was successful by setting the provisioning_status to
DELETED. If the delete failed, the driver will update the provisioning_status to ERROR.

• update

Modifies an existing listener using the values supplied in the listener object.

Octavia will pass in the original listener object which is the baseline for the update, and a listener
object with the fields to be updated.

As of the writing of this specification the update listener object may contain the following:

4.5. Project Specifications 377

Octavia Documentation, Release 15.1.0.dev35

Name Type Description
ad-
min_state_up

bool Admin state: True if up, False if down.

connec-
tion_limit

int The max number of connections permitted for this listener. Default is -1,
which is infinite connections.

de-
fault_pool_id

string The ID of the pool used by the listener if no L7 policies match.

de-
fault_tls_container_data

dict A TLS container dict.

de-
fault_tls_container_refs

string The reference to the secrets container.

descrip-
tion

string A human-readable description for the listener.

in-
sert_headers

dict A dictionary of optional headers to insert into the request before it is sent to
the backend member. See Supported HTTP Header Insertions. Keys and
values are specified as strings.

listener_id string ID of listener to update.
name string Human-readable name of the listener.
sni_container_datalist A list of TLS container dict.
sni_container_refslist A list of references to the SNI secrets containers.
time-
out_client_data

int Frontend client inactivity timeout in milliseconds.

time-
out_member_connect

int Backend member connection timeout in milliseconds.

time-
out_member_data

int Backend member inactivity timeout in milliseconds.

time-
out_tcp_inspect

int Time, in milliseconds, to wait for additional TCP packets for content in-
spection.

The listener will be in the PENDING_UPDATE provisioning_status when it is passed to the driver.
The driver will update the provisioning_status of the listener to either ACTIVE if successfully up-
dated, or ERROR if the update was not successful.

The driver is expected to validate that the driver supports the request. The method will then return
or raise an exception if the request cannot be accepted.

Abstract class definition

class Driver(object):
def listener_create(self, listener):

"""Creates a new listener.

:param listener (object): The listener object.
:return: Nothing if the create request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
:raises UnsupportedOptionError: if driver does not
support one of the configuration options.

"""
raise NotImplementedError()

(continues on next page)

4.5. Project Specifications 378

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

def listener_delete(self, listener):
"""Deletes a listener.

:param listener (object): The listener object.
:return: Nothing if the delete request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
"""
raise NotImplementedError()

def listener_update(self, old_listener, new_listener):
"""Updates a listener.

:param old_listener (object): The baseline listener object.
:param new_listener (object): The updated listener object.
:return: Nothing if the update request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
:raises UnsupportedOptionError: if driver does not
support one of the configuration options.

"""
raise NotImplementedError()

Pool

• create

Creates a pool for a load balancer.

Octavia will pass in the pool object with all requested settings.

The pool will be in the PENDING_CREATE provisioning_status and OFFLINE operating_status when
it is passed to the driver. The driver will be responsible for updating the provisioning status of the
pool to either ACTIVE if successfully created, or ERROR if not created.

The Octavia API will accept and do basic API validation of the create request from the user. The
pool python object representing the request body will be passed to the driver create method as it
was received and validated with the following exceptions:

1. The project_id will be removed, if present, as this field is now deprecated. The listener will
inherit the project_id from the parent load balancer.

Pool object

As of the writing of this specification the create pool object may contain the following:

4.5. Project Specifications 379

Octavia Documentation, Release 15.1.0.dev35

Name Type Description
ad-
min_state_up

bool Admin state: True if up, False if down.

descrip-
tion

string A human-readable description for the pool.

health-
monitor

ob-
ject

A Healthmonitor object.

lb_algorithmstring Load balancing algorithm: One of ROUND_ROBIN,
LEAST_CONNECTIONS, or SOURCE_IP.

loadbal-
ancer_id

string ID of load balancer.

lis-
tener_id

string ID of listener.

members list A list of Member objects.
name string Human-readable name of the pool.
pool_id string ID of pool to create.
protocol string Protocol type: One of HTTP, HTTPS, PROXY, or TCP.
ses-
sion_persistence

dict Defines session persistence as one of {’type’: <’HTTP_COOKIE’
| ’SOURCE_IP’>} OR {’type’: ’APP_COOKIE’, ’cookie_name’:
<cookie_name>}

• delete

Removes an existing pool and all of its members.

Octavia will pass the pool object as a parameter.

The pool will be in the PENDING_DELETE provisioning_status when it is passed to the driver.
The driver will notify Octavia that the delete was successful by setting the provisioning_status
to DELETED. If the delete failed, the driver will update the provisioning_status to ERROR.

• update

Modifies an existing pool using the values supplied in the pool object.

Octavia will pass in the original pool object which is the baseline for the update, and a pool object
with the fields to be updated.

As of the writing of this specification the update pool object may contain the following:

Name Type Description
ad-
min_state_up

bool Admin state: True if up, False if down.

descrip-
tion

string A human-readable description for the pool.

lb_algorithmstring Load balancing algorithm: One of ROUND_ROBIN,
LEAST_CONNECTIONS, or SOURCE_IP.

name string Human-readable name of the pool.
pool_id string ID of pool to update.
ses-
sion_persistence

dict Defines session persistence as one of {’type’: <’HTTP_COOKIE’
| ’SOURCE_IP’>} OR {’type’: ’APP_COOKIE’, ’cookie_name’:
<cookie_name>}

4.5. Project Specifications 380

Octavia Documentation, Release 15.1.0.dev35

The pool will be in the PENDING_UPDATE provisioning_status when it is passed to the driver. The
driver will update the provisioning_status of the pool to either ACTIVE if successfully updated, or
ERROR if the update was not successful.

The driver is expected to validate that the driver supports the request. The method will then return
or raise an exception if the request cannot be accepted.

Abstract class definition

class Driver(object):
def pool_create(self, pool):

"""Creates a new pool.

:param pool (object): The pool object.
:return: Nothing if the create request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
:raises UnsupportedOptionError: if driver does not
support one of the configuration options.

"""
raise NotImplementedError()

def pool_delete(self, pool):
"""Deletes a pool and its members.

:param pool (object): The pool object.
:return: Nothing if the create request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
"""
raise NotImplementedError()

def pool_update(self, old_pool, new_pool):
"""Updates a pool.

:param old_pool (object): The baseline pool object.
:param new_pool (object): The updated pool object.
:return: Nothing if the create request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
:raises UnsupportedOptionError: if driver does not
support one of the configuration options.

"""
raise NotImplementedError()

Member

• create

Creates a member for a pool.

Octavia will pass in the member object with all requested settings.

The member will be in the PENDING_CREATE provisioning_status and OFFLINE operating_status

4.5. Project Specifications 381

Octavia Documentation, Release 15.1.0.dev35

when it is passed to the driver. The driver will be responsible for updating the provisioning status
of the member to either ACTIVE if successfully created, or ERROR if not created.

The Octavia API will accept and do basic API validation of the create request from the user. The
member python object representing the request body will be passed to the driver create method as
it was received and validated with the following exceptions:

1. The project_id will be removed, if present, as this field is now deprecated. The member will
inherit the project_id from the parent load balancer.

Member object

As of the writing of this specification the create member object may contain the following:

NameType Description
ad-
dress

string The IP address of the backend member to receive traffic from the load balancer.

ad-
min_state_up

bool Admin state: True if up, False if down.

backupbool Is the member a backup? Backup members only receive traffic when all non-
backup members are down.

mem-
ber_id

string ID of member to create.

mon-
i-
tor_address

string An alternate IP address used for health monitoring a backend member.

mon-
i-
tor_port

int An alternate protocol port used for health monitoring a backend member.

name string Human-readable name of the member.
pool_idstring ID of pool.
pro-
to-
col_port

int The port on which the backend member listens for traffic.

sub-
net_id

string Subnet ID.

weightint The weight of a member determines the portion of requests or connections it ser-
vices compared to the other members of the pool. For example, a member with a
weight of 10 receives five times as many requests as a member with a weight of 2.
A value of 0 means the member does not receive new connections but continues to
service existing connections. A valid value is from 0 to 256. Default is 1.

• delete

Removes a pool member.

Octavia will pass the member object as a parameter.

The member will be in the PENDING_DELETE provisioning_status when it is passed to the driver.
The driver will notify Octavia that the delete was successful by setting the provisioning_status to
DELETED. If the delete failed, the driver will update the provisioning_status to ERROR.

• update

4.5. Project Specifications 382

Octavia Documentation, Release 15.1.0.dev35

Modifies an existing member using the values supplied in the listener object.

Octavia will pass in the original member object which is the baseline for the update, and a member
object with the fields to be updated.

As of the writing of this specification the update member object may contain the following:

NameType Description
ad-
min_state_up

bool Admin state: True if up, False if down.

backupbool Is the member a backup? Backup members only receive traffic when all non-
backup members are down.

mem-
ber_id

string ID of member to update.

mon-
i-
tor_address

string An alternate IP address used for health monitoring a backend member.

mon-
i-
tor_port

int An alternate protocol port used for health monitoring a backend member.

name string Human-readable name of the member.
weightint The weight of a member determines the portion of requests or connections it ser-

vices compared to the other members of the pool. For example, a member with a
weight of 10 receives five times as many requests as a member with a weight of 2.
A value of 0 means the member does not receive new connections but continues to
service existing connections. A valid value is from 0 to 256. Default is 1.

The member will be in the PENDING_UPDATE provisioning_status when it is passed to the driver.
The driver will update the provisioning_status of the member to either ACTIVE if successfully
updated, or ERROR if the update was not successful.

The driver is expected to validate that the driver supports the request. The method will then return
or raise an exception if the request cannot be accepted.

• batch update

Set the state of members for a pool in one API call. This may include creating new members,
deleting old members, and updating existing members. Existing members are matched based on
address/port combination.

For example, assume a pool currently has two members. These members have the following
address/port combinations: ’192.0.2.15:80’ and ’192.0.2.16:80’. Now assume a PUT request is
made that includes members with address/port combinations: ’192.0.2.16:80’ and ’192.0.2.17:80’.
The member ’192.0.2.15:80’ will be deleted because it was not in the request. The member
’192.0.2.16:80’ will be updated to match the request data for that member, because it was matched.
The member ’192.0.2.17:80’ will be created, because no such member existed.

The members will be in the PENDING_CREATE, PENDING_UPDATE, or PENDING_DELETE provi-
sioning_status when it is passed to the driver. The driver will update the provisioning_status of
the members to either ACTIVE or DELETED if successfully updated, or ERROR if the update was not
successful.

The batch update method will supply a list of Member objects. Existing members not in this list
should be deleted, existing members in the list should be updated, and members in the list that do

4.5. Project Specifications 383

Octavia Documentation, Release 15.1.0.dev35

not already exist should be created.

Abstract class definition

class Driver(object):
def member_create(self, member):

"""Creates a new member for a pool.

:param member (object): The member object.

:return: Nothing if the create request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
:raises UnsupportedOptionError: if driver does not
support one of the configuration options.

"""
raise NotImplementedError()

def member_delete(self, member):

"""Deletes a pool member.

:param member (object): The member object.
:return: Nothing if the create request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
"""
raise NotImplementedError()

def member_update(self, old_member, new_member):

"""Updates a pool member.

:param old_member (object): The baseline member object.
:param new_member (object): The updated member object.
:return: Nothing if the create request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
:raises UnsupportedOptionError: if driver does not
support one of the configuration options.

"""
raise NotImplementedError()

def member_batch_update(self, members):
"""Creates, updates, or deletes a set of pool members.

:param members (list): List of member objects.
:return: Nothing if the create request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
:raises UnsupportedOptionError: if driver does not

(continues on next page)

4.5. Project Specifications 384

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

support one of the configuration options.
"""
raise NotImplementedError()

Health Monitor

• create

Creates a health monitor on a pool.

Octavia will pass in the health monitor object with all requested settings.

The health monitor will be in the PENDING_CREATE provisioning_status and OFFLINE operat-
ing_status when it is passed to the driver. The driver will be responsible for updating the pro-
visioning status of the health monitor to either ACTIVE if successfully created, or ERROR if not
created.

The Octavia API will accept and do basic API validation of the create request from the user.
The healthmonitor python object representing the request body will be passed to the driver cre-
ate method as it was received and validated with the following exceptions:

1. The project_id will be removed, if present, as this field is now deprecated. The listener will
inherit the project_id from the parent load balancer.

Healthmonitor object

Name Type Description
ad-
min_state_up

bool Admin state: True if up, False if down.

delay int The interval, in seconds, between health checks.
ex-
pected_codes

string The expected HTTP status codes to get from a successful health check. This
may be a single value, a list, or a range.

health-
moni-
tor_id

string ID of health monitor to create.

http_methodstring The HTTP method that the health monitor uses for requests. One of CON-
NECT, DELETE, GET, HEAD, OPTIONS, PATCH, POST, PUT, or TRACE.

max_retriesint The number of successful checks before changing the operating status of the
member to ONLINE.

max_retries_downint The number of allowed check failures before changing the operating status
of the member to ERROR. A valid value is from 1 to 10.

name string Human-readable name of the monitor.
pool_id string The pool to monitor.
timeout int The time, in seconds, after which a health check times out. This value must

be less than the delay value.
type string The type of health monitor. One of HTTP, HTTPS, PING, TCP, or TLS-

HELLO.
url_path string The HTTP URL path of the request sent by the monitor to test the health of

a backend member. Must be a string that begins with a forward slash (/).

• delete

4.5. Project Specifications 385

Octavia Documentation, Release 15.1.0.dev35

Deletes an existing health monitor.

Octavia will pass in the health monitor object as a parameter.

The health monitor will be in the PENDING_DELETE provisioning_status when it is passed to the
driver. The driver will notify Octavia that the delete was successful by setting the provision-
ing_status to DELETED. If the delete failed, the driver will update the provisioning_status to ERROR.

• update

Modifies an existing health monitor using the values supplied in the health monitor object.

Octavia will pass in the original health monitor object which is the baseline for the update, and a
health monitor object with the fields to be updated.

As of the writing of this specification the update health monitor object may contain the following:

Name Type Description
ad-
min_state_up

bool Admin state: True if up, False if down.

delay int The interval, in seconds, between health checks.
ex-
pected_codes

string The expected HTTP status codes to get from a successful health check. This
may be a single value, a list, or a range.

health-
moni-
tor_id

string ID of health monitor to create.

http_methodstring The HTTP method that the health monitor uses for requests. One of CON-
NECT, DELETE, GET, HEAD, OPTIONS, PATCH, POST, PUT, or TRACE.

max_retriesint The number of successful checks before changing the operating status of the
member to ONLINE.

max_retries_downint The number of allowed check failures before changing the operating status
of the member to ERROR. A valid value is from 1 to 10.

name string Human-readable name of the monitor.
timeout int The time, in seconds, after which a health check times out. This value must

be less than the delay value.
url_path string The HTTP URL path of the request sent by the monitor to test the health of

a backend member. Must be a string that begins with a forward slash (/).

The health monitor will be in the PENDING_UPDATE provisioning_status when it is passed to the
driver. The driver will update the provisioning_status of the health monitor to either ACTIVE if
successfully updated, or ERROR if the update was not successful.

The driver is expected to validate that the driver supports the request. The method will then return
or raise an exception if the request cannot be accepted.

Abstract class definition

class Driver(object):
def health_monitor_create(self, healthmonitor):

"""Creates a new health monitor.

:param healthmonitor (object): The health monitor object.
:return: Nothing if the create request was accepted.

(continues on next page)

4.5. Project Specifications 386

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
:raises UnsupportedOptionError: if driver does not
support one of the configuration options.

"""
raise NotImplementedError()

def health_monitor_delete(self, healthmonitor):
"""Deletes a healthmonitor_id.

:param healthmonitor (object): The health monitor object.
:return: Nothing if the create request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
"""
raise NotImplementedError()

def health_monitor_update(self, old_healthmonitor, new_healthmonitor):
"""Updates a health monitor.

:param old_healthmonitor (object): The baseline health monitor
object.

:param new_healthmonitor (object): The updated health monitor object.
:return: Nothing if the create request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
:raises UnsupportedOptionError: if driver does not
support one of the configuration options.

"""
raise NotImplementedError()

L7 Policy

• create

Creates an L7 policy.

Octavia will pass in the L7 policy object with all requested settings.

The L7 policy will be in the PENDING_CREATE provisioning_status and OFFLINE operating_status
when it is passed to the driver. The driver will be responsible for updating the provisioning status
of the L7 policy to either ACTIVE if successfully created, or ERROR if not created.

The Octavia API will accept and do basic API validation of the create request from the user. The
l7policy python object representing the request body will be passed to the driver create method as
it was received and validated with the following exceptions:

1. The project_id will be removed, if present, as this field is now deprecated. The l7policy will
inherit the project_id from the parent load balancer.

L7policy object

As of the writing of this specification the create l7policy object may contain the following:

4.5. Project Specifications 387

Octavia Documentation, Release 15.1.0.dev35

Name Type Description
action string The L7 policy action. One of REDIRECT_TO_POOL, REDI-

RECT_TO_URL, or REJECT.
ad-
min_state_up

bool Admin state: True if up, False if down.

descrip-
tion

string A human-readable description for the L7 policy.

l7policy_id string The ID of the L7 policy.
lis-
tener_id

string The ID of the listener.

name string Human-readable name of the L7 policy.
position int The position of this policy on the listener. Positions start at 1.
redi-
rect_pool_id

string Requests matching this policy will be redirected to the pool with this ID.
Only valid if action is REDIRECT_TO_POOL.

redi-
rect_url

string Requests matching this policy will be redirected to this URL. Only valid if
action is REDIRECT_TO_URL.

rules list A list of l7rule objects.

Creating a Fully Populated L7 policy

If the "rules" option is specified, the provider driver will create all of the child objects in addition
to creating the L7 policy instance.

• delete

Deletes an existing L7 policy.

Octavia will pass in the L7 policy object as a parameter.

The l7policy will be in the PENDING_DELETE provisioning_status when it is passed to the driver.
The driver will notify Octavia that the delete was successful by setting the provisioning_status to
DELETED. If the delete failed, the driver will update the provisioning_status to ERROR.

• update

Modifies an existing L7 policy using the values supplied in the l7policy object.

Octavia will pass in the original L7 policy object which is the baseline for the update, and an L7
policy object with the fields to be updated.

As of the writing of this specification the update L7 policy object may contain the following:

4.5. Project Specifications 388

Octavia Documentation, Release 15.1.0.dev35

Name Type Description
action string The L7 policy action. One of REDIRECT_TO_POOL, REDI-

RECT_TO_URL, or REJECT.
ad-
min_state_up

bool Admin state: True if up, False if down.

descrip-
tion

string A human-readable description for the L7 policy.

l7policy_id string The ID of the L7 policy.
name string Human-readable name of the L7 policy.
position int The position of this policy on the listener. Positions start at 1.
redi-
rect_pool_id

string Requests matching this policy will be redirected to the pool with this ID.
Only valid if action is REDIRECT_TO_POOL.

redi-
rect_url

string Requests matching this policy will be redirected to this URL. Only valid if
action is REDIRECT_TO_URL.

The L7 policy will be in the PENDING_UPDATE provisioning_status when it is passed to the driver.
The driver will update the provisioning_status of the L7 policy to either ACTIVE if successfully
updated, or ERROR if the update was not successful.

The driver is expected to validate that the driver supports the request. The method will then return
or raise an exception if the request cannot be accepted.

Abstract class definition

class Driver(object):
def l7policy_create(self, l7policy):

"""Creates a new L7 policy.

:param l7policy (object): The l7policy object.
:return: Nothing if the create request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
:raises UnsupportedOptionError: if driver does not
support one of the configuration options.

"""
raise NotImplementedError()

def l7policy_delete(self, l7policy):
"""Deletes an L7 policy.

:param l7policy (object): The l7policy object.
:return: Nothing if the delete request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
"""
raise NotImplementedError()

def l7policy_update(self, old_l7policy, new_l7policy):
"""Updates an L7 policy.

(continues on next page)

4.5. Project Specifications 389

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

:param old_l7policy (object): The baseline l7policy object.
:param new_l7policy (object): The updated l7policy object.
:return: Nothing if the update request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
:raises UnsupportedOptionError: if driver does not
support one of the configuration options.

"""
raise NotImplementedError()

L7 Rule

• create

Creates a new L7 rule for an existing L7 policy.

Octavia will pass in the L7 rule object with all requested settings.

The L7 rule will be in the PENDING_CREATE provisioning_status and OFFLINE operating_status
when it is passed to the driver. The driver will be responsible for updating the provisioning status
of the L7 rule to either ACTIVE if successfully created, or ERROR if not created.

The Octavia API will accept and do basic API validation of the create request from the user. The
l7rule python object representing the request body will be passed to the driver create method as it
was received and validated with the following exceptions:

1. The project_id will be removed, if present, as this field is now deprecated. The listener will
inherit the project_id from the parent load balancer.

L7rule object

As of the writing of this specification the create l7rule object may contain the following:

Name Type Description
ad-
min_state_up

bool Admin state: True if up, False if down.

com-
pare_type

string The comparison type for the L7 rule. One of CONTAINS, ENDS_WITH,
EQUAL_TO, REGEX, or STARTS_WITH.

invert bool When True the logic of the rule is inverted. For example, with invert True,
equal to would become not equal to.

key string The key to use for the comparison. For example, the name of the cookie to
evaluate.

l7policy_id string The ID of the L7 policy.
l7rule_id string The ID of the L7 rule.
type string The L7 rule type. One of COOKIE, FILE_TYPE, HEADER,

HOST_NAME, or PATH.
value string The value to use for the comparison. For example, the file type to compare.

• delete

Deletes an existing L7 rule.

Octavia will pass in the L7 rule object as a parameter.

4.5. Project Specifications 390

Octavia Documentation, Release 15.1.0.dev35

The L7 rule will be in the PENDING_DELETE provisioning_status when it is passed to the driver.
The driver will notify Octavia that the delete was successful by setting the provisioning_status to
DELETED. If the delete failed, the driver will update the provisioning_status to ERROR.

• update

Modifies an existing L7 rule using the values supplied in the l7rule object.

Octavia will pass in the original L7 rule object which is the baseline for the update, and an L7 rule
object with the fields to be updated.

As of the writing of this specification the update L7 rule object may contain the following:

Name Type Description
ad-
min_state_up

bool Admin state: True if up, False if down.

com-
pare_type

string The comparison type for the L7 rule. One of CONTAINS, ENDS_WITH,
EQUAL_TO, REGEX, or STARTS_WITH.

invert bool When True the logic of the rule is inverted. For example, with invert True,
equal to would become not equal to.

key string The key to use for the comparison. For example, the name of the cookie to
evaluate.

l7rule_id string The ID of the L7 rule.
type string The L7 rule type. One of COOKIE, FILE_TYPE, HEADER,

HOST_NAME, or PATH.
value string The value to use for the comparison. For example, the file type to compare.

The L7 rule will be in the PENDING_UPDATE provisioning_status when it is passed to the driver.
The driver will update the provisioning_status of the L7 rule to either ACTIVE if successfully up-
dated, or ERROR if the update was not successful.

The driver is expected to validate that the driver supports the request. The method will then return
or raise an exception if the request cannot be accepted.

Abstract class definition

class Driver(object):
def l7rule_create(self, l7rule):

"""Creates a new L7 rule.

:param l7rule (object): The L7 rule object.
:return: Nothing if the create request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
:raises UnsupportedOptionError: if driver does not
support one of the configuration options.

"""
raise NotImplementedError()

def l7rule_delete(self, l7rule):

(continues on next page)

4.5. Project Specifications 391

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

"""Deletes an L7 rule.

:param l7rule (object): The L7 rule object.
:return: Nothing if the delete request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
"""
raise NotImplementedError()

def l7rule_update(self, old_l7rule, new_l7rule):

"""Updates an L7 rule.

:param old_l7rule (object): The baseline L7 rule object.
:param new_l7rule (object): The updated L7 rule object.
:return: Nothing if the update request was accepted.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: if driver does not support request.
:raises UnsupportedOptionError: if driver does not
support one of the configuration options.

"""
raise NotImplementedError()

Flavor

Octavia flavors are defined in a separate specification (see References below). Support for flavors will be
provided through two provider driver interfaces, one to query supported flavor metadata keys and another
to validate that a flavor is supported. Both functions are synchronous.

• get_supported_flavor_keys

Retrieves a dictionary of supported flavor keys and their description.

{"topology": "The load balancer topology for the flavor. One of: SINGLE,␣
↪→ACTIVE_STANDBY",
"compute_flavor": "The compute driver flavor to use for the load␣
↪→balancer instances"}

• validate_flavor

Validates that the driver supports the flavor metadata dictionary.

The validate_flavor method will be passed a flavor metadata dictionary that the driver will validate.
This is used when an operator uploads a new flavor that applies to the driver.

The validate_flavor method will either return or raise a UnsupportedOptionError exception.

Following are interface definitions for flavor support:

def get_supported_flavor_metadata():
"""Returns a dictionary of flavor metadata keys supported by this driver.

(continues on next page)

4.5. Project Specifications 392

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

The returned dictionary will include key/value pairs, 'name' and
'description.'

:returns: The flavor metadata dictionary
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: The driver does not support flavors.
"""
raise NotImplementedError()

def validate_flavor(flavor_metadata):
"""Validates if driver can support flavor as defined in flavor_metadata.

:param flavor_metadata (dict): Dictionary with flavor metadata.
:return: Nothing if the flavor is valid and supported.
:raises DriverError: An unexpected error occurred in the driver.
:raises NotImplementedError: The driver does not support flavors.
:raises UnsupportedOptionError: if driver does not

support one of the configuration options.
"""
raise NotImplementedError()

Exception Model

DriverError

This is a catch all exception that drivers can return if there is an unexpected error. An example might be
a delete call for a load balancer the driver does not recognize. This exception includes two strings: The
user fault string and the optional operator fault string. The user fault string, "user_fault_string", will be
provided to the API requester. The operator fault string, "operator_fault_string", will be logged in the
Octavia API log file for the operator to use when debugging.

class DriverError(Exception):
user_fault_string = _("An unknown driver error occurred.")
operator_fault_string = _("An unknown driver error occurred.")

def __init__(self, *args, **kwargs):
self.user_fault_string = kwargs.pop('user_fault_string',

self.user_fault_string)
self.operator_fault_string = kwargs.pop('operator_fault_string',

self.operator_fault_string)

super(DriverError, self).__init__(*args, **kwargs)

NotImplementedError

Driver implementations may not support all operations, and are free to reject a request. If the driver does
not implement an API function, the driver will raise a NotImplementedError exception.

4.5. Project Specifications 393

Octavia Documentation, Release 15.1.0.dev35

class NotImplementedError(Exception):
user_fault_string = _("A feature is not implemented by this driver.")
operator_fault_string = _("A feature is not implemented by this driver.")

def __init__(self, *args, **kwargs):
self.user_fault_string = kwargs.pop('user_fault_string',

self.user_fault_string)
self.operator_fault_string = kwargs.pop('operator_fault_string',

self.operator_fault_string)

super(NotImplementedError, self).__init__(*args, **kwargs)

UnsupportedOptionError

Provider drivers will validate that they can complete the request -- that all options are supported by
the driver. If the request fails validation, drivers will raise an UnsupportedOptionError exception. For
example, if a driver does not support a flavor passed as an option to load balancer create(), the driver
will raise an UnsupportedOptionError and include a message parameter providing an explanation of the
failure.

class UnsupportedOptionError(Exception):
user_fault_string = _("A specified option is not supported by this driver.

↪→")
operator_fault_string = _("A specified option is not supported by this␣

↪→driver.")

def __init__(self, *args, **kwargs):
self.user_fault_string = kwargs.pop('user_fault_string',

self.user_fault_string)
self.operator_fault_string = kwargs.pop('operator_fault_string',

self.operator_fault_string)

super(UnsupportedOptionError, self).__init__(*args, **kwargs)

Driver Support Library

Provider drivers need support for updating provisioning status, operating status, and statistics. Drivers
will not directly use database operations, and instead will callback to Octavia using a new API.

Warning

The methods listed here are the only callable methods for drivers. All other interfaces are not consid-
ered stable or safe for drivers to access.

Update provisioning and operating status API

The update status API defined below can be used by provider drivers to update the provisioning and/or
operating status of Octavia resources (load balancer, listener, pool, member, health monitor, L7 policy,
or L7 rule).

4.5. Project Specifications 394

Octavia Documentation, Release 15.1.0.dev35

For the following status API, valid values for provisioning status and operating status parameters are as
defined by Octavia status codes. If an existing object is not included in the input parameter, the status
remains unchanged.

provisioning_status: status associated with lifecycle of the resource. See Octavia Provisioning Status
Codes.

operating_status: the observed status of the resource. See Octavia Operating Status Codes.

The dictionary takes this form:

{ "loadbalancers": [{"id": "123",
"provisioning_status": "ACTIVE",
"operating_status": "ONLINE"},...],

"healthmonitors": [],
"l7policies": [],
"l7rules": [],
"listeners": [],
"members": [],
"pools": []

}

def update_loadbalancer_status(status):
"""Update load balancer status.

:param status (dict): dictionary defining the provisioning status and
operating status for load balancer objects, including pools,
members, listeners, L7 policies, and L7 rules.

:raises: UpdateStatusError
:returns: None
"""

Update statistics API

Provider drivers can update statistics for listeners using the following API. Similar to the status function
above, a single dictionary with multiple listener statistics is used to update statistics in a single call. If an
existing listener is not included, the statistics for that object will remain unchanged.

The general form of the input dictionary is a list of listener statistics:

{ "listeners": [{"id": "123",
"active_connections": 12,
"bytes_in": 238908,
"bytes_out": 290234,
"request_errors": 0,
"total_connections": 3530},...]

}

def update_listener_statistics(statistics):
"""Update listener statistics.

:param statistics (dict): Statistics for listeners:
(continues on next page)

4.5. Project Specifications 395

https://docs.openstack.org/api-ref/load-balancer/v2/index.html#provisioning-status-codes
https://docs.openstack.org/api-ref/load-balancer/v2/index.html#provisioning-status-codes
https://docs.openstack.org/api-ref/load-balancer/v2/index.html#operating-status-codes

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

id (string): ID of the listener.
active_connections (int): Number of currently active connections.
bytes_in (int): Total bytes received.
bytes_out (int): Total bytes sent.
request_errors (int): Total requests not fulfilled.
total_connections (int): The total connections handled.

:raises: UpdateStatisticsError
:returns: None
"""

Get Resource Support

Provider drivers may need to get information about an Octavia resource. As an example of its use, a
provider driver may need to sync with Octavia, and therefore need to fetch all of the Octavia resources
it is responsible for managing. Provider drivers can use the existing Octavia API to get these resources.
See the Octavia API Reference.

API Exception Model

The driver support API will include two Exceptions, one for each of the two API groups:

• UpdateStatusError

• UpdateStatisticsError

Each exception class will include a message field that describes the error and references to the failed
record if available.

class UpdateStatusError(Exception):
fault_string = _("The status update had an unknown error.")
status_object = None
status_object_id = None
status_record = None

def __init__(self, *args, **kwargs):
self.fault_string = kwargs.pop('fault_string',

self.fault_string)
self.status_object = kwargs.pop('status_object', None)
self.status_object_id = kwargs.pop('status_object_id', None)
self.status_record = kwargs.pop('status_record', None)

super(UnsupportedOptionError, self).__init__(*args, **kwargs)

class UpdateStatisticsError(Exception):
fault_string = _("The statistics update had an unknown error.")
stats_object = None
stats_object_id = None
stats_record = None

def __init__(self, *args, **kwargs):
self.fault_string = kwargs.pop('fault_string',

(continues on next page)

4.5. Project Specifications 396

https://docs.openstack.org/api-ref/load-balancer/v2/index.html

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

self.fault_string)
self.stats_object = kwargs.pop('stats_object', None)
self.stats_object_id = kwargs.pop('stats_object_id', None)
self.stats_record = kwargs.pop('stats_record', None)

super(UnsupportedOptionError, self).__init__(*args, **kwargs)

Alternatives

Driver Support Library

An alternative to this library is a REST interface that drivers use directly. A REST implementation can
still be used within the library, but wrapping it in an API simplifies the programming interface.

Data model impact

None, the required data model changes are already present.

REST API impact

None, the required REST API changes are already present.

Security impact

None.

Notifications impact

None.

Other end user impact

Users will be able to direct requests to specific backends using the provider parameter. Users may want
to understand the availability of provider drivers, and can use Octavia APIs to do so.

Performance Impact

The performance impact on Octavia should be minimal. Driver requests will need to be scheduled,
and Octavia will process driver callbacks through a REST interface. As provider drivers are loaded by
Octavia, calls into drivers are through direct interfaces.

Other deployer impact

Minimal configuration is needed to support provider drivers. The work required is adding a driver name
to Octavia’s configuration file, and installing provider drivers supplied by third parties.

4.5. Project Specifications 397

Octavia Documentation, Release 15.1.0.dev35

Developer impact

The proposal defines interaction between Octavia and backend drivers, so no developer impact is ex-
pected.

Implementation

Assignee(s)

Work Items

• Implement loading drivers defined the Octavia configuration.

• Implement scheduling requests to drivers.

• Implement validating flavors with provider drivers.

• Implement getting and testing flavors with provider drivers.

• Implement a no-op driver for testing.

• Implement driver support library functions:

– Update status functions

– Update statistics functions

• Migrate the existing Octavia reference driver to use this interface.

Dependencies

• Octavia API: https://docs.openstack.org/api-ref/load-balancer/

• Flavors: https://docs.openstack.org/octavia/latest/contributor/specs/version1.0/flavors.html

Testing

Tempest tests should be added for testing:

• Scheduling: test that Octavia effectively schedules to drivers besides the default driver.

• Request validation: test request validation API.

• Flavor profile validation: test flavor validation.

• Flavor queries: test flavor queries.

• Statistics updates

Functional API tests should be updated to test the provider API.

Documentation Impact

A driver developer guide should be created.

4.5. Project Specifications 398

https://docs.openstack.org/api-ref/load-balancer/
https://docs.openstack.org/octavia/latest/contributor/specs/version1.0/flavors.html

Octavia Documentation, Release 15.1.0.dev35

References

Octavia API
https://docs.openstack.org/api-ref/load-balancer/v2/index.html

Octavia Flavors Specification
https://docs.openstack.org/octavia/latest/contributor/specs/version1.0/flavors.html

UDP Support

https://storyboard.openstack.org/#!/story/1657091

Problem description

Currently, the default driver of Octavia (haproxy) only supports TCP, HTTP, HTTPS, and TERMI-
NATED_HTTPS. We need support for load balancing UDP.

For some use-cases, UDP load balancing support is useful. One such case are real-time media streaming
applications which are based on RTSP1.

For the Internet of Things (IoT)2, there are many services or applications that use UDP as their trans-
mission protocol. For example: CoAP3 (Constrained Application Protocol), DDS4 (Data Distribution
Service) for Real-Time systems, and the introduction protocol Thread5.

Applications with high demand for real-time (like video chatting) run on RDUP6 (Reliable User Data-
gram Protocol), RTP7 (RealTime Protocol) and UDT8 (UDP-based Data Transfer Protocol). These pro-
tocols also are based on UDP.

There isn’t any option in the API for these protocols, which Layer 4 UDP would provide. This means that
customers lack a way to support these services which may be running on VM instances in an OpenStack
environment.

Proposed change

This spec extends the LBaaSv2 API to support UDP as a protocol in Listener and Pool resource requests.

It will require a new load balancing engine to support this feature, as the current haproxy engine only
supports TCP based protocols. If users want a load balancer which supports both TCP and UDP, this
need cannot be met by launching haproxy-based amphora instances. It’s the good time to extend octavia
to support more load balancing scenarios. This spec will introduce how LVS9 can work with haproxy
for UDP loadbalancing. The reason for choosing LVS is that we can easily integrate it with the existing
keepalived service. That means we can configure LVS via keepalived, and check member health as
well.

For the current service VM driver implementation, haproxy runs in the amphora-haproxy namespace in
an amphora instance. So we also need to configure keeplived in the same namespace for UDP cases
even in SINGLE topology. For ACTIVE_STANDBY, keepalived will serve two purposes: UDP and

1 https://en.wikipedia.org/wiki/Real_Time_Streaming_Protocol
2 https://en.wikipedia.org/wiki/Internet_of_things
3 https://en.wikipedia.org/wiki/Constrained_Application_Protocol
4 https://en.wikipedia.org/wiki/Data_Distribution_Service
5 https://en.wikipedia.org/wiki/Thread_(network_protocol)
6 https://en.wikipedia.org/wiki/Reliable_User_Datagram_Protocol
7 https://de.wikipedia.org/wiki/Real-Time_Transport_Protocol
8 https://en.wikipedia.org/wiki/UDP-based_Data_Transfer_Protocol
9 http://www.linuxvirtualserver.org/

4.5. Project Specifications 399

https://docs.openstack.org/api-ref/load-balancer/v2/index.html
https://docs.openstack.org/octavia/latest/contributor/specs/version1.0/flavors.html
https://storyboard.openstack.org/#!/story/1657091
https://en.wikipedia.org/wiki/Real_Time_Streaming_Protocol
https://en.wikipedia.org/wiki/Internet_of_things
https://en.wikipedia.org/wiki/Constrained_Application_Protocol
https://en.wikipedia.org/wiki/Data_Distribution_Service
https://en.wikipedia.org/wiki/Thread_(network_protocol
https://en.wikipedia.org/wiki/Reliable_User_Datagram_Protocol
https://de.wikipedia.org/wiki/Real-Time_Transport_Protocol
https://en.wikipedia.org/wiki/UDP-based_Data_Transfer_Protocol
http://www.linuxvirtualserver.org/

Octavia Documentation, Release 15.1.0.dev35

VRRP. So, one instance of keepalived must be bound in the namespace, along with the LVS instance
it configures.

The main idea is to use keepalived to configure and manage LVS10 and its configuration. We also
need to check the members’ statuses with keepalived instead of haproxy, so there must be a different
workflow in Octavia resources and deployment topologies. The simplest implementation is LVS within
NAT mode, so we will only support this mode to start. If possible we will add other modes in the future.

Currently, a single keepalived instance can support multiple virtual server configurations, but for min-
imal impact of reconfiguration to the existing listeners, we’d better not to refresh all the keepalived
configuration files and restart the instances, because that would cause all listeners traffic to be blocked
if the LVS configuration maintained by keepalived is removed. This spec proposes that each listener
will have its own keepalived process, but that process won’t contain a VRRP instance, just the con-
figuration of virtual server and real servers. That means if the Loadbalancer service is running with
ACTIVE-STANDBY topology, each amphora instance will run multiple keepalived instances, the
count being N+1 (where N is the UDP Listener count, and +1 is the VRRP instance for HA). The ex-
isting keepalived will be used, but each "UDP Listener keepalived process" will need to be controlled
by health check of the Main VRRP keepalived process. Then the VIP could be moved to the BACKUP
amphorae instance in ACTIVE/STANDBY topology if there is any issue with these UDP keepalived
processes. The health check will simply reflect whether the keepalived processes are alive.

The workflow for this feature contains:

1. Add a new keepalived jinja template to support LVS configuration.

2. Add netcat into dib-elements for supporting all platforms.

3. Extend the ability of amphora agent to run keepalived with LVS configuration in amphora in-
stances, including the init configuration, such as systemd, sysvinit and upstart.

4. Enhance the session persistence to work with UDP and enable/disable the "One-Packet-
Scheduling" option.

5. Update the database to allow listeners to support both tcp and udp on the same port, add udp as a
valid protocol and ONE_PACKET_SCHEDULING as a valid session_persistence_type in the database.

6. Setup validation code for supported features of UDP load balancing (such as session persistence,
types of health monitors, load balancing algorithms, number of L7 policies allowed, etc).

7. Extend the existing LBaaSv2 API in Octavia to allow udp parameters in the Listener resource.

8. Extend the Loadbalancer/Listener flows to support udp loadbalancer in the particular topologies.

Alternatives

Introduce a new UDP driver based on LVS or other Loadbalancer engines. Then find a way to fix the gap
of the current Octavia data models which have a strong relationship with HTTP which based on TCP.

Provide a new driver provider framework to change the amphorae backend from haproxy to some other
load balancer engines, for example, if we introduce LVS driver, we may just support the simple L7 func-
tions with LVS, as it’s a risk to change provider from existing haproxy-based amphora instances to LVS
ones. If possible, we need to limit the API to not support fields/resources if the backend driver is LVS,
such as "insert_headers" in Listener, L7Policies, L7Rules and etc, a series fields/resources that related to
L7 layer. The all things are to match the real ability of backend. That means all the configuration of L7
resources will be ignored or translate to LVS configuration if the backend is LVS. For other load balancer
engines which support UDP, such as f5/nginx, we may also need to do this.

10 https://github.com/acassen/keepalived/blob/master/doc/keepalived.conf.SYNOPSIS#L559

4.5. Project Specifications 400

https://github.com/acassen/keepalived/blob/master/doc/keepalived.conf.SYNOPSIS#L559

Octavia Documentation, Release 15.1.0.dev35

Combining the 2 load balancer engines for a simple reference implementation, LVS would only support
the L4 layer LB, and haproxy would provide the L7 LB functionality which is more specific and de-
tailed. For other engines like f5/nginx, Octavia can directly pass the UDP parameters to backend. This
is very good for the community environment. Then Octavia may support more powerful and complex
LoadBalancing solutions.

Data model impact

There may not be any data model changes, this spec just allows a user to input the udp protocol to
create/update the Listener and Pool resources. So here, just extend the SUPPORTED_PROTOCOLS to
add the value PROTOCOL_UDP.

SUPPORTED_PROTOCOLS = (PROTOCOL_TCP, PROTOCOL_HTTPS, PROTOCOL_HTTP,
PROTOCOL_TERMINATED_HTTPS, PROTOCOL_PROXY,
PROTOCOL_UDP)

Also add a record into the table protocol for PROTOCOL_UDP.

As LVS only operates in Layer 4, there are some conflicts with current Octavia data models. There are
some limitation below:

1. No L7 policies allowed.

2. For session persistence, this spec will intro persistence_timeout (sec) and
persistence_granularity (subnet mask)11 in the virtual server configuration. The function
will be based on the LVS. With no session persistence specified, LVS will be configured with a
persistence_timeout of 0. There are two valid session persistence options for UDP (if session
persistence is specified), SOURCE_IP and ONE_PACKET_SCHEDULING.

3. Intro a ’UDP_CONNECT’ type for UDP in healthmonitor, for the simple, only check the UDP
port is open by nc command. And for current API of healthmonitor, we need to make clear the
meaning of LVS with the current healthmonitor API like the mapping below

Option
Mapping
Healthmonitor-
>LVS

Healthmonitor Description Keepalived LVS De-
scription

delay -> de-
lay_loop

Set the time in seconds, between sending probes to
members.

Delay timer for ser-
vice polling.

max_retires_down
-> retry

Set the number of allowed check failure before
changing the operating status of the member to ER-
ROR.

Number of retries be-
fore fail.

timeout -> de-
lay_before_retry

Set the maximum time, in seconds, that a monitor
waits to connect before it times out. This value must
be less than the delay value.

delay before retry (de-
fault 1 unless other-
wise specified)

4. For UDP load balancing, we can support the same algorithms at first. Such as SOURCE_IP(sh),
ROUND_ROBIN(rr) and LEAST_CONNECTIONS(lc).

11 http://www.linuxvirtualserver.org/docs/persistence.html

4.5. Project Specifications 401

http://www.linuxvirtualserver.org/docs/persistence.html

Octavia Documentation, Release 15.1.0.dev35

REST API impact

• Allow the protocol fields to accept udp.

• Allow the healthmonitor.type field to accept UDP type values.

• Add some fields to session_persistence that are specific to UDP though SOURCE_IP type and
a new type ONE_PACKET_SCHEDULING.

Create/Update Listener Request:

POST/PUT /v2.0/lbaas/listeners
{

"listener": {
"admin_state_up": true,
"connection_limit": 100,
"description": "listener one",
"loadbalancer_id": "a36c20d0-18e9-42ce-88fd-82a35977ee8c",
"name": "listener1",
"protocol": "UDP",
"protocol_port": "18000"

}
}

Note

It is the same as the current relationships, where one listener will have only one default pool for
UDP. A loadbalancer can have multiple listeners for UDP loadbalancing on different ports.

Create/Update Pool Request

SOURCE_IP type case:

POST/PUT /v2.0/lbaas/pools

{
"pool": {

"admin_state_up": true,
"description": "simple pool",
"lb_algorithm": "ROUND_ROBIN",
"name": "my-pool",
"protocol": "UDP",
"session_persistence": {

"type": "SOURCE_IP",
"persistence_timeout": 60,
"persistence_granularity": "255.255.0.0",

}
"listener_id": "39de4d56-d663-46e5-85a1-5b9d5fa17829",

}
}

ONE_PACKET_SCHEDULING type case:

4.5. Project Specifications 402

Octavia Documentation, Release 15.1.0.dev35

POST/PUT /v2.0/lbaas/pools

{
"pool": {

"admin_state_up": true,
"description": "simple pool",
"lb_algorithm": "ROUND_ROBIN",
"name": "my-pool",
"protocol": "UDP",
"session_persistence": {

"type": "ONE_PACKET_SCHEDULING"
}
"listener_id": "39de4d56-d663-46e5-85a1-5b9d5fa17829",

}
}

Note

The validation part for UDP will just allow to set the specific fields which associated with UDP. For
example, user can not set the protocol with "udp" and insert_headers in the same request.

Create/Update Health Monitor Request:

POST/PUT /v2.0/lbaas/healthmonitors

{
"healthmonitor": {

"name": "Good health monitor"
"admin_state_up": true,
"pool_id": "c5e9e801-0473-463b-a017-90c8e5237bb3",
"delay": 10,
"max_retries": 4,
"max_retries_down": 4,
"timeout": 5,
"type": "UDP_CONNECT"

}
}

Note

We don’t allow to create a healthmonitor with any other L7 parameters, like "http_method",
"url_path" and "expected_code" if the associated pool support UDP. But for the positional option
"max_retries", it’s different from API description in keepalived/LVS, so the default value is the same
as the value of "max_retires_down" if user specified. In general, "max_retires_down" should be over-
ridden by "max_retries".

4.5. Project Specifications 403

Octavia Documentation, Release 15.1.0.dev35

Security impact

The security should be affected by the UDP server, we need to add another neutron security group rule
to the existing security group to support UDP. Security impact is minimal as the keepalived/LVS will be
running in the tenant traffic network namespace.

Notifications impact

No expected change.

Other end user impact

Users will be able to pass "UDP" to create/update Listener/Pool resources for UDP load balancer.

Performance Impact

• If enabled driver is LVS, it will have a good performance for L4 load balancing, but lack the any
functionality in L7.

• As this spec introduces LVS and Haproxy working together, if users update the Listener or Pool
resources in a LoadBalancer instance frequently, the loadbalancer functionality may be delayed
for a while as the refresh of UDP related LVS configuration.

• As we need to add keepalived monitoring process for each UDP listeners, it is necessary to consider
RAM about amphora VM instances.

Other deployer impact

No expected change.

Developer impact

No expected change.

Implementation

Assignee(s)

zhaobo

Work Items

• Add/extend startup script templates for keepalived processes, including configuration.

• Extend the ability of existing amphora agent and driver to generate and control LVS by
keepalived in amphora instances.

• Extend the exist Octavia V2 API to access udp parameter in Listener and pools resources.

• Extend the Loadbalancer/Listener flows to support udp loadbalancer in the particular topologies.

• Extend Octavia V2 API to accept UDP fields.

• Add the specified logic which involved into haproxy agent and the affected resource workflow in
Octavia.

4.5. Project Specifications 404

Octavia Documentation, Release 15.1.0.dev35

• Add API validation code to validate the fields of UDP cases.

• Add Unit Tests to Octavia.

• Add API functional tests.

• Add scenario tests into octavia tempest plugin.

• Update CLI and Octavia-dashboard to support UDP fields input.

• Documentation work.

Dependencies

None

Testing

Unit tests, Functional tests, API tests and Scenario tests are necessary.

Documentation Impact

The description of Octavia API reference will need to be updated. The load balancing cookbook should
be also updated. Make it clear the difference of healthmonitor behaviors in UDP cases.

References

4.5.6 Version 14.0 (caracal)

Support SR-IOV network ports in Octavia

The maximum performance of Octavia Amphora based load balancers is often limited by the Software
Defined Networking (SDN) used in the OpenStack deployment. There are users that want very high
connection rates and high bandwidth through their load balancers.

This specification describes how we can add Single Root I/O Virtualization (SR-IOV) support to Octavia
Amphora load balancers.

Problem description

• Users would like to use SR-IOV VFs for the VIP and member ports on their Amphora based load
balancers for improved maximum performance and reduced latency. Initial testing showed a 9%
increase in bandwidth and a 70% drop in latency through the load balancer when using SR-IOV.

• Users are overflowing tap interfaces with bursty "thundering herd" traffic such that packets are
unable to make it into the Amphora instance.

Proposed change

Since Octavia hot plugs the network interfaces into the Amphora instances, the first work will be docu-
menting how to configure nova to properly place the Amphorae on hosts with the required hardware and
networks. There is some existing documentation for this in the nova guide, but we should summarize it
with a focus on Amphora.

This documentation will include how to configure host aggregates, the compute flavor, and the Octavia
flavor to properly schedule the Amphora instances.

4.5. Project Specifications 405

Octavia Documentation, Release 15.1.0.dev35

In general, the SR-IOV ports will be handled the same as ports are with the AAP driver, including reg-
istering the VIP as an AAP address even though this is technically not required for SR-IOV ports, it will
make sure the address is allocated in neutron. Only the base VRRP ports will allocate an SR-IOV VF as
the AAP port will be "unbound" with a vnic_type of "normal".

The create load balancer flow creation will be enhanced to create the base VRRP port using an SR-
IOV VF if the Octavia flavor has SRIOV_VIP set to true. If placement/nova scheduling fail to find
an appropriate host or the SR-IOV VF port fails to plug into the Amphora, additional logging may be
required, but the normal revert flows should continue to handle the error situation and mark the load
balancer in provisioning status ERROR.

The building of the listener create and update flows will need to be updated to include extra tasks to
configure nftables inside the Amphora to replace the functionality of the neutron security groups lost
when using SR-IOV ports.

The Amphora agent will need to be enhanced for a new "security group" endpoint and to configure the
Amphora nftables. The nftables rules will be added as stateless rules, meaning conntrack will not be
enabled. The load balancing engines are already managing state for the flows, so there is no reason to
also have state management in the firewall.

I am proposing we only support nftables inside the Amphora as most distributions are moving away from
iptables towards nftables.

Alternatives

There are two obvious alternatives:

• Do nothing and continue to rely on SDN performance.

• Use provider networks to remove some of the overhead of the SDN.

It is not clear that SDN performance can improve to a level that would meet the needs of Octavia Amphora
load balancers and provider networks still have some overhead and limitations depending on how they
are implemented (tap interfaces, etc.)

Data model impact

The load balancer and member objects will be expanded to include the vnic type for the ports.

REST API impact

The Octavia API will be expanded to include the vnic type used for the VIP and member ports. The field
with either be "normal" for OVS/OVN ports or "direct" for SR-IOV ports. This field with use the same
terminology as neutron uses.

The Amphora API will need to be expanded to have a security group endpoint. This endpoint will accept
POST calls that contain the: allowed_cidrs, protocol, and port information required to configure the
appropriate nftable rules.

When this endpoint is called, the amphora agent will flush the current tables and build up a fresh table.
There will be chains for the VIP, VRRP, and member ports. This will be implemented using the python
nftables bindings.

4.5. Project Specifications 406

Octavia Documentation, Release 15.1.0.dev35

Security impact

Neutron security groups do not work on SR-IOV ports, so the amphora agent will need to manage nftables
for the SR-IOV ports.

There is no current use case where Octavia would need TRUST mode VFs, so this specification does not
include any discussion of enabling TRUST on VFs used by the Octavia amphora driver. The amphora
will treat TRUST VFs as if they were not TRUST enabled.

Notifications impact

None

Other end user impact

End users will need to select the appropriate Octavia flavor at load balancer creation time. They will
also need to specify the proper network that matches the network(s) defined in the compute and Octavia
flavors.

Performance Impact

This proposal is specifically about improving data plane performance.

I would expect little change to the provisioning time, or possibly a faster provisioning time, when using
SR-IOV ports as it should require fewer API calls to Neutron.

Other deployer impact

If deployers want SR-IOV interface support at deployment time, they will need to configure the required
compute host aggregates, compute flavors, and octavia flavor supporting the SR-IOV enabled hosts and
networks.

We also recommend that the FDB L2 agent be enabled, when needed, so that virtual ports on the same
compute host can communicate with the SR-IOV ports.

The Amphora images will now require the nftables and python3-nftables packages.

Developer impact

There should be minimal developer impact as it is enhancing existing flows.

Implementation

Assignee(s)

Primary assignee:
johnsom

Work Items

1. Document the required host aggregates, compute flavor, and Octavia flavor.

2. Update the load balancer "create" flow creation to use the SR-IOV tasks when creating the VRRP
base ports.

4.5. Project Specifications 407

Octavia Documentation, Release 15.1.0.dev35

3. Update the load balancer data model to store the port vnic type.

4. Expand the load balancer API to include the vnic type used for the VIP.

5. Update the listener create/update flows to add the extra tasks to configure the nftables inside the
Amphora.

6. Add a security group endpoint to the Amphora agent to allow configuring and updating the nftables
inside the Amphora.

7. Add any necessary logging and error handling should nova fail to attach SR-IOV ports.

8. Add the required unit and functional tests for the new code.

9. Add the required tempest tests to cover the usage scenarios (pending igb driver support in the PTI
platforms)

Dependencies

None

Testing

Currently this feature cannot fully be tested in the OpenDev gates as it will require an SR-IOV capable
nic in the test system.

There will be unit and function test coverage.

Recently qemu has added a virtual device, the "igb" device, that is capable of emulating an SR-IOV
device. Versions of qemu and the associated libraries that include this new device are not yet shipping
in any distribution supported by OpenStack.

When the "igb" device becomes available, we should be able to run scenario tests with SR-IOV VIP and
member ports.

Performance testing will be out of scope because the OpenDev testing environment does not contain
SR-IOV capable NICs and is not setup for data plane performance testing.

Documentation Impact

An administrative document will need to be created that describes the process required to setup a compute
and octavia flavor for SR-IOV devices.

References

• https://docs.openstack.org/neutron/latest/admin/config-sriov.html

• https://docs.openstack.org/nova/latest/reference/scheduler-hints-vs-flavor-extra-specs.html

• https://specs.openstack.org/openstack/nova-specs/specs/rocky/implemented/
granular-resource-requests.html

• https://www.qemu.org/docs/master/system/devices/igb.html

4.5. Project Specifications 408

https://docs.openstack.org/neutron/latest/admin/config-sriov.html
https://docs.openstack.org/nova/latest/reference/scheduler-hints-vs-flavor-extra-specs.html
https://specs.openstack.org/openstack/nova-specs/specs/rocky/implemented/granular-resource-requests.html
https://specs.openstack.org/openstack/nova-specs/specs/rocky/implemented/granular-resource-requests.html
https://www.qemu.org/docs/master/system/devices/igb.html

Octavia Documentation, Release 15.1.0.dev35

4.5.7 Version 15.0 (Dalmatian)

Support for Custom Security Groups for VIP Ports

This specification describes how Octavia can allow users to provide their own Neutron Security Groups
for the VIP Port of a load balancer.

Problem description

Many users have requested a method for customizing the security groups of the VIP ports of a load
balancer in Octavia. There are some benefits from using custom security groups:

• Allowing incoming connections only from specific remote group IDs.

• Having a unique API (The networking Security Groups API) to configure the network security for
all the users’ resources.

Note: The specification is not about Security Groups for the member ports, this feature could be the
subject of another spec.

Proposed change

A user will be able to provide a vip_sg_ids parameter when creating a load balancer.

This parameter will be optional and defaulted to None. When set, it contains a list of Neutron Security
Group IDs. When it’s not set, the behavior of the VIP port would not change. In this document, these
security groups are called Custom security groups, as opposed to the existing Octavia-managed security
groups.

If the parameter is set, Octavia would apply these Custom security groups to the VIP and Amphora ports
(known as VRRP ports internally). Then Octavia would create and manage a security group (Octavia-
managed security group) with rules for its internal communication (haproxy peering, VRRP communi-
cation). Thus the VIP port would have more than one Neutron security group.

No rules based on the port or the protocol of the listeners would be managed by Octavia, for each new
listener, the user would have to add their own rules to their Custom security groups.

Alternatives

An alternative method would be to implement an allowed_remote_group_ids parameter when cre-
ating a load balancer. Users would have a feature that covers the first point described in "Problem De-
scription".

Data model impact

This feature requires some changes in the data model, a new table VipSecurityGroup is added, it
contains:

• load_balancer_id: the UUID of the load balancer (which also represents a Vip)

• sg_id: the UUID of a Custom Security Group

A load balancer (identified by its ID) or a VIP are linked to one or more Custom Security Groups.

It also requires an update of the data model in octavia-lib.

4.5. Project Specifications 409

Octavia Documentation, Release 15.1.0.dev35

REST API impact

The POST /v2/lbaas/loadbalancers endpoint is updated to accept an optional vip_sg_ids parameter (a
list of UUIDs that represents Custom Security Groups).

If the parameter is set, Octavia checks that the Custom security groups exist and that the user is allowed
to use them, then Octavia creates new VIPSecurityGroup objects with these new parameters.

The PUT /v2/lbaas/loadbalancers endpoint is also updated, allowing to update the list of Custom Security
Groups.

The vip_sg_ids parameter is also added to the reply of the GET method.

Using vip_sg_ids is incompatible with some existing features in Octavia, like allowed_cidrs in the
listeners. Setting allowed_cidrs in a load balancer with vip_sg_ids should be denied, updating the
vip_sg_ids of a load balancer that includes listeners with allowed_cidrs too.

vip_sg_ids is also incompatible with SR-IOV enabled load balancers and other provider drivers.

Security impact

When this feature is enabled, Octavia no longer handles the security of the VIP port, the users are re-
sponsible of the configuration of the Custom Security Groups.

A RBAC policy is added to Octavia, an administrator can limit the access to this feature to a specific role.

Notifications impact

None.

Other end user impact

The impact for the end user is that they are responsible for allowing the incomming traffic to their load
balancer. The creation of a new listener would request at least 2 API calls, one for creating the listener
in Octavia, one for adding a new security group rule to the Custom security group.

Performance Impact

Performance could be impacted if the user adds too many rules to the Custom security group, but this
issue is outside the scope of Octavia.

Other deployer impact

None.

Developer impact

Impact is minimal, a few changes in the API and in the DB, only a few new conditionals in the al-
lowed_address_pairs module.

It could have a more significant impact if this feature is added to the octavia-dashboard.

4.5. Project Specifications 410

Octavia Documentation, Release 15.1.0.dev35

Implementation

Assignee(s)

Primary assignee:
gthiemonge

Work Items

1. Update the data model of the VIP port in octavia_lib and octavia.

2. Update the API to handle the new vip_sg_id parameter.

3. Update the allowed_address_pairs module to handle this new feature.

4. Update the api-ref and the user guide.

5. Add required unit and functional tests.

6. Add support to python-octaviaclient and openstacksdk

7. Add tempest tests for this feature.

Dependencies

None.

Testing

The feature can easily be tested with tempest tests.

• creation of a load balancer and its Custom security groups, check that it’s reachable

• update the list of Custom security groups, check that the connectivity to the load balancer is im-
pacted.

Documentation Impact

The feature will be included in the cookbook. The api-ref and feature matrix will be also updated.

References

None.

Support for traffic rate limiting in Octavia

Rate limiting is an essential technique for managing the traffic that is handled by a load balancer and for
ensuring fairness and system stability.

Problem description

Without rate limiting malicious clients and bots may be able to attack a server by flooding it with traffic
or requests. Rate limiting can help to limit the amount of resources that single clients can allocate on
server side and therefor can help to mitigate DoS attacks.

4.5. Project Specifications 411

Octavia Documentation, Release 15.1.0.dev35

Octavia already allows to limit the number of concurrent connections by using the connection_limit
option when configuring a listener. This option will continue to exist and will work independently of this
new rate limiting feature.

Proposed change

Both the data model and the REST API need to be extended. The concept of rate limit policies and rate
limit rules allows to manage rules for rate limiting and to apply them to listeners. This document refers
to them as policies and rules for simplicity.

A policy consists of one or more rules. Each policy defines an action that specifies the rate limiting
method that should be used. Rules within a policy will be combined using a logical AND operation. That
means all rules within a policy need to be broken before rate limiting gets applied. Multiple policies on
a single listener logically OR each other.

Rate limiting can be implemented in various ways using different metrics for different protocols. Hence,
this specification tries to be as flexible as possible while keeping the API simple. Drivers may choose
to implement only a subset of the possible configuration variants, or even none of them. The algorithm
used for rate limiting is considered an implementation detail of the driver and out of the scope of this
document.

Alternatives

Rate limiting for all request based protocols (HTTP protocols) could be done by extending the L7 policy
API and by managing rules as L7 rules.

Rate limiting for all TCP based protocols could be supported and configured using the listener API.

Splitting the configuration between two different APIs may confuse users, however. Using a separate
API for rate limiting seems like the cleaner approach.

Data model impact

A new RateLimitPolicy model class contains data about policies. Its attributes are:

• id (string)

• name (string)

• description (string)

• rules (RateLimitRules)

• action (string)

• listener_id (string)

• listener (string)

• enabled (boolean)

• provisioning_status (string)

• operating_status (string)

• project_id (string)

• created_at (DateTime)

• updated_at (DateTime)

4.5. Project Specifications 412

Octavia Documentation, Release 15.1.0.dev35

• tags (string)

The rules attribute forms a one-to-many relationship with a new RateLimitRule model class. action
defines the rate limiting method. Possible values are DENY (respond with HTTP 429), REJECT (close the
connection with no response), SILENT_DROP (like REJECT, but without client notification) QUEUE (queue
new requests, "leaky bucket") using a Python enum. The existing Listener model class gets a new
one-to-may relationship with the RateLimitPolicy model class using a new rate_limit_policies
attribute. That means a listener may have multiple policies, but a policy can be linked to only one listener.

The new RateLimitRule model class defines a specific rate limiting rule. Its attributes are:

• id (string)

• name (string)

• project_id (string)

• metric (string)

• threshold (integer)

• interval (integer, defaults to 30)

• urls (ScalarListType)

• provisioning_status (string)

• operating_status (string)

• tags (string)

Possible values of metric are REQUESTS REQUESTS_PER_URL, KBYTES and PACKETS. interval de-
notes the time interval in seconds in which the metric gets measured for each client. threshold defines
the threshold at which the rate gets limited. The urls field defines the URL paths for the specific rule
and is ignored if metric is not REQUESTS_PER_URL.

REST API impact

If not stated otherwise the attributes in the responses match with the ones in the data model. The rela-
tionships will be shown using IDs of related objects.

Listener

The listener API gets a new rate_limit_policies (Optional) attribute. Valid values are null (the
default) or a list of policy IDs.

Rate Limit Policy

The request of the POST /v2/lbaas/ratelimitpolicies and PUT /v2/lbaas/
ratelimitpolicies/{policy_id} methods of the Rate Limit Policy API takes the attributes
name (Optional), description (Optional), listener_id, action, enabled (Optional), project_id
(Optional), tags (Optional). The response contains all attributes in the data model. The GET /v2/
lbaas/ratelimitpolicies method supports the attributes the project_id (Optional) and fields
(Optional). The response is a list of policies filtered by the optional project_id and containing the
desired fields (or all). The endpoint /v2/lbaas/ratelimitpolicies/{policy_id} supports the
GET and DELETE methods.

4.5. Project Specifications 413

Octavia Documentation, Release 15.1.0.dev35

Rate Limit Rule

The GET /v2/lbaas/ratelimitpolicies/{policy_id}/rules method behaves like the GET
method for the policy, but for rules. The POST /v2/lbaas/ratelimitpolicies/{policy_id}/
rules method accepts the request attributes listener_id, project_id (Optional), metric,
threshold, interval (Optional), urls (Optional) tags (Optional). The GET /v2/lbaas/
ratelimitpolicies/{policy_id}/rules/{rule_id} request accepts an optional fields at-
tribute. The PUT /v2/lbaas/ratelimitpolicies/{policy_id}/rules/{rule_id} method ac-
cepts the request attributes , “project_id‘ (Optional), metric, threshold, interval (Optional), urls
(Optional), tags (Optional). The DELETE /v2/lbaas/ratelimitpolicies/{policy_id}/rules/
{rule_id} method has no response body.

Security impact

None.

Notifications impact

None.

Other end user impact

None.

Performance Impact

Rate limiting is an optional feature and has no performance impact in a default configuration. Depending
on the complexity of the rules and the implementation, some processing overhead may impact perfor-
mance. In the ACTIVE/STANDBY topology some additional network overhead for synchronization of
request statistics (ie. stick tables for Amphorae) is to be expected.

Overall, however, fairness and performance can improve when using rate limiting.

Other deployer impact

Deployers might want to review the RAM setting of the Nova flavor that is used for the load balancers.
Rate limiting will require some additional memory on Amphorae, depending on the number of rules and
the interval setting.

Developer impact

Driver developers are impacted by the extended API and data model that allows them to implement the
new feature in future versions.

Implementation

The reference implementation using the Amphora driver will use HAProxy’s own rate limiting capabili-
ties. In addition to limiting the number of HTTP requests it will also be possible to limit the number of
HTTP requests by URL path3. The sliding window rate limiting algorithm will be used1.

3 https://www.haproxy.com/documentation/haproxy-configuration-tutorials/traffic-policing/
#rate-limit-http-requests-by-url-path

1 https://www.haproxy.com/blog/four-examples-of-haproxy-rate-limiting

4.5. Project Specifications 414

https://www.haproxy.com/documentation/haproxy-configuration-tutorials/traffic-policing/#rate-limit-http-requests-by-url-path
https://www.haproxy.com/documentation/haproxy-configuration-tutorials/traffic-policing/#rate-limit-http-requests-by-url-path
https://www.haproxy.com/blog/four-examples-of-haproxy-rate-limiting

Octavia Documentation, Release 15.1.0.dev35

Rate limiting based on the TCP protocol is not part of the initial implementation, but might be added in
a future version. This could be done using nftables rules2.

Assignee(s)

Primary assignee:
Tom Weininger

Work Items

1. Adjust API documentation

2. Create user documentation

3. Implement HTTP rate limiting in Amphora driver

4. Implement HTTP by URL rate limiting in Amphora driver

5. Implement unit tests

Dependencies

None.

Testing

Testing should focus on API changes, verification and correctness of generated HAProxy configuration.

Documentation Impact

API and user documentation will need to be extended.

References

Load balancer resizing

Link to blueprint: https://blueprints.launchpad.net/octavia/+spec/octavia-resize-loadbalancer

This spec’s goal is to describe the functionality of resizing of load balancers. The main aim of this new
feature is to enable you to change the flavor directly from the API.

Problem description

Today’s users can’t easily change the flavor. They have to recreate their load balancer with the new flavor
and migrate their configurations such as l7 rules, listeners, etc. This can be very tedious for a user who
wants to quickly resize his load balancer. It can be especially complicated to script.

Proposed change

The proposed change would be to add an endpoint to allow load balancer resizing. It would also be easy
to cancel a resize in progress and return to the previous flavor.

2 https://wiki.nftables.org/wiki-nftables/index.php/Meters

4.5. Project Specifications 415

https://blueprints.launchpad.net/octavia/+spec/octavia-resize-loadbalancer
https://wiki.nftables.org/wiki-nftables/index.php/Meters

Octavia Documentation, Release 15.1.0.dev35

To achieve this, the endpoint will launch a workflow to initiate a failover with the new flavor ID. This
will involve patching the get_failover_LB_flow to add the flavorId parameter. At the end of the workflow
the flavor_id will be updated in the loadbalancer table.

A check will be added before the start of the failover to prevent migration to a flavor profile topology
different from the original one. A user cannot migrate from a flavorprofile standalone to active/passive.

If a problem occurs during resizing, the load balancer status will be set to ERROR. The flavor will remain
the same in database, allowing the user to perform a failover or retry the same call.

Alternatives

• Rebuild the vm of the loadbalancer with the new flavor compute.

• Use the "backup" and "restore".

Data model impact

None

REST API impact

Add one endpoint in /v2.0/lbaas/loadbalancers.

To run this endpoint, the user must have the role load-balancer:write".

Start a resize of a load balancer:

PUT /v2.0/lbaas/loadbalancers/{loadbalancer_id}/resize

{
"new_flavor_id": "6d425a5e-429f-4848-b240-ab31c6d211e4"

}

Table 3: Response code

Code Description
202 Accepted Resize starting
400 Bad request Resize object is invalid
401 Unauthorized X-Auth-Token is invalid
403 Forbidden X-Auth-Token is valid, but the associated project does not have the appropriate

role/scope
404 Not Found Load balancer not found

Security impact

None

Notifications impact

Add a notification to announce a loadbalancer resize.

4.5. Project Specifications 416

Octavia Documentation, Release 15.1.0.dev35

Other end user impact

Add one command to launch resize in CLI client.

Start a resize: openstack loadbalancer resize
--flavor <flavor-id|flavor-name> <lb-id|lb-name>

Add functions to resize in the openstacksdk.

Performance Impact

None

Other deployer impact

None

Developer impact

None

Implementation

Assignee(s)

TBD

Work Items

• Create endpoints

• Patch the get_failover_LB_flow to add flavorId parameter.

• Add unit tests

• Add API functional tests

• Add tempest tests

• Update Octavia CLI and OpenstackSDK

• Write Documentation

Dependencies

None

Testing

Tempest tests should be added for testing this new feature:

• Create a loadbalancer

• Try to resize

4.5. Project Specifications 417

Octavia Documentation, Release 15.1.0.dev35

Documentation Impact

• A user guide to explain how that works.

• Add a note on the fact that some flavor changes can cause data plane downtime. Similarly, going
from a newer image tag to an older one may cause failures or features to be disabled.

References

None

4.6 Module Reference

4.6.1 octavia

octavia package

Subpackages

octavia.amphorae package

Subpackages

octavia.amphorae.backends package

Subpackages

octavia.amphorae.backends.agent package

Subpackages

octavia.amphorae.backends.agent.api_server package

Submodules

octavia.amphorae.backends.agent.api_server.amphora_info module

class AmphoraInfo(osutils)
Bases: object

compile_amphora_details(extend_lvs_driver=None)

compile_amphora_info(extend_lvs_driver=None)

get_interface(ip_addr)

octavia.amphorae.backends.agent.api_server.certificate_update module

upload_server_cert()

octavia.amphorae.backends.agent.api_server.haproxy_compatibility module

get_haproxy_versions()

Get major and minor version number from haproxy

4.6. Module Reference 418

Octavia Documentation, Release 15.1.0.dev35

Returns major_version
The major version digit

Returns minor_version
The minor version digit

process_cfg_for_version_compat(haproxy_cfg)

octavia.amphorae.backends.agent.api_server.keepalived module

class Keepalived

Bases: object

manager_keepalived_service(action)

upload_keepalived_config()

octavia.amphorae.backends.agent.api_server.keepalivedlvs module

class KeepalivedLvs

Bases: LvsListenerApiServerBase

delete_lvs_listener(listener_id)
Delete a LVS Listener from a amphora

Parameters
listener_id -- The id of the listener

Returns
HTTP response with status code.

Raises
Exception -- If unsupported initial system of amphora.

get_all_lvs_listeners_status()

Gets the status of all UDP listeners

Gets the status of all UDP listeners on the amphora.

get_lvs_listener_config(listener_id)
Gets the keepalivedlvs config

Parameters
listener_id -- the id of the listener

manage_lvs_listener(listener_id, action)
Gets the LVS Listener configuration details

Parameters

• listener_id -- the id of the LVS Listener

• action -- the operation type.

Returns
HTTP response with status code.

Raises
Exception -- If the listener is failed to find.

4.6. Module Reference 419

Octavia Documentation, Release 15.1.0.dev35

upload_lvs_listener_config(listener_id)
Upload the configuration for LVS.

Parameters
listener_id -- The id of a LVS Listener

Returns
HTTP response with status code.

Raises
Exception -- If any file / directory is not found or fail to create.

octavia.amphorae.backends.agent.api_server.loadbalancer module

class Loadbalancer

Bases: object

delete_certificate(lb_id, filename)

delete_lb(lb_id)

get_all_listeners_status(other_listeners=None)
Gets the status of all listeners

This method will not consult the stats socket so a listener might show as ACTIVE but still be
in ERROR

Currently type==SSL is also not detected

get_certificate_md5(lb_id, filename)

get_haproxy_config(lb_id)
Gets the haproxy config

Parameters
listener_id -- the id of the listener

start_stop_lb(lb_id, action)

upload_certificate(lb_id, filename)

upload_haproxy_config(amphora_id, lb_id)
Upload the haproxy config

Parameters

• amphora_id -- The id of the amphora to update

• lb_id -- The id of the loadbalancer

class Wrapped(stream_)
Bases: object

get_md5()

read(line)

4.6. Module Reference 420

Octavia Documentation, Release 15.1.0.dev35

octavia.amphorae.backends.agent.api_server.lvs_listener_base module

class LvsListenerApiServerBase

Bases: object

Base LVS Listener Server API

abstract delete_lvs_listener(listener_id)
Delete a LVS Listener from a amphora

Parameters
listener_id -- The id of the listener

Returns
HTTP response with status code.

Raises
Exception -- If unsupported initial system of amphora.

abstract get_all_lvs_listeners_status()

Gets the status of all LVS Listeners

This method will not consult the stats socket so a listener might show as ACTIVE but still be
in ERROR

Returns
a list of LVS Listener status

Raises
Exception -- If the listener pid located directory is not exist

abstract get_lvs_listener_config(listener_id)
Gets the LVS Listener configuration details

Parameters
listener_id -- the id of the LVS Listener

Returns
HTTP response with status code.

Raises
Exception -- If the listener is failed to find.

get_subscribed_amp_compile_info()

abstract manage_lvs_listener(listener_id, action)
Gets the LVS Listener configuration details

Parameters

• listener_id -- the id of the LVS Listener

• action -- the operation type.

Returns
HTTP response with status code.

Raises
Exception -- If the listener is failed to find.

4.6. Module Reference 421

Octavia Documentation, Release 15.1.0.dev35

abstract upload_lvs_listener_config(listener_id)
Upload the configuration for LVS.

Parameters
listener_id -- The id of a LVS Listener

Returns
HTTP response with status code.

Raises
Exception -- If any file / directory is not found or fail to create.

octavia.amphorae.backends.agent.api_server.osutils module

class BaseOS(os_name)
Bases: object

classmethod bring_interface_up(interface, name)

classmethod get_os_util()

write_interface_file(interface, ip_address, prefixlen)

write_port_interface_file(interface, fixed_ips, mtu, is_sriov=False)

write_vip_interface_file(interface, vips, mtu, vrrp_info, fixed_ips=None, is_sriov=False)

class CentOS(os_name)
Bases: RH

classmethod is_os_name(os_name)

class RH(os_name)
Bases: BaseOS

cmd_get_version_of_installed_package(package_name)

classmethod is_os_name(os_name)

class Ubuntu(os_name)
Bases: BaseOS

cmd_get_version_of_installed_package(package_name)

classmethod is_os_name(os_name)

octavia.amphorae.backends.agent.api_server.plug module

class Plug(osutils)
Bases: object

build_vrrp_info(vrrp_ip, subnet_cidr, gateway, host_routes)

plug_lo()

plug_network(mac_address, fixed_ips, mtu=None, vip_net_info=None, is_sriov=False)

4.6. Module Reference 422

Octavia Documentation, Release 15.1.0.dev35

plug_vip(vip, subnet_cidr, gateway, mac_address, mtu=None, vrrp_ip=None, host_routes=(),
additional_vips=(), is_sriov=False)

render_vips(vips)

octavia.amphorae.backends.agent.api_server.rules_schema module

octavia.amphorae.backends.agent.api_server.server module

class Server

Bases: object

delete_certificate(lb_id, filename)

delete_lb_object(object_id)

get_all_listeners_status()

get_certificate_md5(lb_id, filename)

get_details()

get_haproxy_config(lb_id)

get_info()

get_interface(ip_addr)

get_lvs_listener_config(listener_id)

manage_service_vrrp(action)

plug_network()

plug_vip(vip)

set_interface_rules(ip_addr)

start_stop_lb_object(object_id, action)

upload_cert()

upload_certificate(lb_id, filename)

upload_config()

upload_haproxy_config(amphora_id, lb_id)

upload_lvs_listener_config(amphora_id, listener_id)

upload_vrrp_config()

version_discovery()

make_json_error(ex)

register_app_error_handler(app)

4.6. Module Reference 423

Octavia Documentation, Release 15.1.0.dev35

octavia.amphorae.backends.agent.api_server.util module

exception ParsingError

Bases: Exception

config_path(lb_id)

get_backend_for_lb_object(object_id)
Returns the backend for a listener.

If the listener is a TCP based listener return ’HAPROXY’. If the listener is a UDP or SCTP based
listener return ’LVS’ If the listener is not identifiable, return None.

Parameters
listener_id -- The ID of the listener to identify.

Returns
HAPROXY_BACKEND, LVS_BACKEND or None

get_haproxy_pid(lb_id)

get_haproxy_vip_addresses(lb_id)
Get the VIP addresses for a load balancer.

Parameters
lb_id -- The load balancer ID to get VIP addresses from.

Returns
List of VIP addresses (IPv4 and IPv6)

get_keepalivedlvs_pid(listener_id)

get_listeners()

Get Listeners

Returns
An array with the ids of all listeners, e.g. [’123’, ’456’, ...] or [] if no listeners exist

get_loadbalancers()

Get Load balancers

Returns
An array with the uuids of all load balancers, e.g. [’123’, ’456’, ...] or [] if no
loadbalancers exist

get_lvs_listeners()

get_lvs_vip_addresses(listener_id: str)→ list[str]
Get the VIP addresses for a LVS load balancer.

Parameters
listener_id -- The listener ID to get VIP addresses from.

Returns
List of VIP addresses (IPv4 and IPv6)

haproxy_check_script_path()

4.6. Module Reference 424

Octavia Documentation, Release 15.1.0.dev35

haproxy_dir(lb_id)

haproxy_sock_path(lb_id)

init_path(lb_id)

install_netns_systemd_service()

is_lb_running(lb_id)

is_lvs_listener_running(listener_id)

keepalived_backend_check_script_dir()

keepalived_backend_check_script_path()

keepalived_cfg_path()

keepalived_check_script_path()

keepalived_check_scripts_dir()

keepalived_dir()

keepalived_init_path()

keepalived_log_path()

keepalived_lvs_cfg_path(listener_id)

keepalived_lvs_dir()

keepalived_lvs_init_path(listener_id)

keepalived_lvs_pids_path(listener_id)

keepalived_pid_path()

parse_haproxy_file(lb_id)

pid_path(lb_id)

run_systemctl_command(command, service, raise_error=True)

send_member_advertisements(fixed_ips: Iterable[Dict[str, str]])
Sends advertisements for each fixed_ip of a list

This method will send either GARP (IPv4) or neighbor advertisements (IPv6) for the addresses of
the subnets of the members.

Parameters
fixed_ips -- a list of dicts that contain ’ip_address’ elements

Returns
None

4.6. Module Reference 425

Octavia Documentation, Release 15.1.0.dev35

send_vip_advertisements(lb_id: str | None = None, listener_id: str | None = None)
Sends address advertisements for each load balancer VIP.

This method will send either GARP (IPv4) or neighbor advertisements (IPv6) for the VIP addresses
on a load balancer.

Parameters
lb_id -- The load balancer ID to send advertisements for.

Returns
None

state_file_path(lb_id)

vrrp_check_script_update(lb_id, action)

Module contents

Submodules

octavia.amphorae.backends.agent.agent_jinja_cfg module

class AgentJinjaTemplater

Bases: object

build_agent_config(amphora_id, topology)

Module contents

octavia.amphorae.backends.health_daemon package

Submodules

octavia.amphorae.backends.health_daemon.health_daemon module

build_stats_message()

Build a stats message based on retrieved listener statistics.

Example version 3 message without UDP (note that values are deltas, not absolutes):

{"id": "<amphora_id>",
"seq": 67,
"listeners": {
"<listener_id>": {

"status": "OPEN",
"stats": {

"tx": 0,
"rx": 0,
"conns": 0,
"totconns": 0,
"ereq": 0

}
}

},
(continues on next page)

4.6. Module Reference 426

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

"pools": {
"<pool_id>:<listener_id>": {

"status": "UP",
"members": {
"<member_id>": "no check"

}
}

},
"ver": 3
}

calculate_stats_deltas(listener_id, row)

get_counters()

get_counters_file()

get_stats(stat_sock_file)

list_sock_stat_files(hadir=None)

persist_counters()

Attempt to persist the latest statistics values

run_sender(cmd_queue)

octavia.amphorae.backends.health_daemon.health_sender module

class UDPStatusSender

Bases: object

dosend(obj)

update(dest, port)

round_robin_addr(addrinfo_list)

octavia.amphorae.backends.health_daemon.status_message module

decode_obj(binary_array)

encode_obj(obj)

get_hmac(payload, key, hex=True)
Get digest for the payload.

The hex param is for backward compatibility, so the package data sent from the existing amphorae
can still be checked in the previous approach.

get_payload(envelope, key, hex=True)

to_hex(byte_array)

4.6. Module Reference 427

Octavia Documentation, Release 15.1.0.dev35

unwrap_envelope(envelope, key)
A backward-compatible way to get data.

We may still receive package from amphorae that are using digest() instead of hexdigest()

wrap_envelope(obj, key, hex=True)

Module contents

octavia.amphorae.backends.utils package

Submodules

octavia.amphorae.backends.utils.haproxy_query module

class HAProxyQuery(stats_socket)
Bases: object

Class used for querying the HAProxy statistics socket.

The CSV output is defined in the HAProxy documentation:

http://cbonte.github.io/haproxy-dconv/configuration-1.4.html#9

get_pool_status()

Get status for each server and the pool as a whole.

Returns
pool data structure {<pool-name>: { ’uuid’: <uuid>, ’status’: ’UP’|’DOWN’,
’members’: [<name>: ’UP’|’DOWN’|’DRAIN’|’no check’] }}

save_state(state_file_path)
Save haproxy connection state to a file.

Parameters
state_file_path -- Absolute path to the state file

Returns
bool (True if success, False otherwise)

show_info()

Get and parse output from ’show info’ command.

show_stat(proxy_iid=-1, object_type=-1, server_id=-1)
Get and parse output from ’show stat’ command.

Parameters

• proxy_iid -- Proxy ID (column 27 in CSV output). -1 for all.

• object_type -- Select the type of dumpable object. Values can be ORed.
-1 - everything 1 - frontends 2 - backends 4 - servers

• server_id -- Server ID (column 28 in CSV output?), or -1 for everything.

Returns
stats (split into an array by newline)

4.6. Module Reference 428

http://cbonte.github.io/haproxy-dconv/configuration-1.4.html#9

Octavia Documentation, Release 15.1.0.dev35

octavia.amphorae.backends.utils.interface module

class InterfaceController

Bases: object

ADD = 'add'

DELETE = 'delete'

FLUSH = 'flush'

SET = 'set'

TENTATIVE_WAIT_INTERVAL = 0.2

TENTATIVE_WAIT_TIMEOUT = 30

down(interface)

interface_file_list()

list()

up(interface)

octavia.amphorae.backends.utils.interface_file module

class InterfaceFile(name, if_type, mtu=None, addresses=None, routes=None, rules=None,
scripts=None, is_sriov=False)

Bases: object

classmethod dump(obj)

classmethod from_file(filename)

classmethod get_directory()

classmethod get_extensions()

classmethod get_host_routes(routes, **kwargs)

classmethod load(fp)

write()

class PortInterfaceFile(name, mtu, fixed_ips, is_sriov=False)
Bases: InterfaceFile

class VIPInterfaceFile(name, mtu, vips, vrrp_info, fixed_ips, topology, is_sriov=False)
Bases: InterfaceFile

octavia.amphorae.backends.utils.ip_advertisement module

4.6. Module Reference 429

Octavia Documentation, Release 15.1.0.dev35

calculate_icmpv6_checksum(packet)
Calculate the ICMPv6 checksum for a packet.

Parameters
packet -- The packet bytes to checksum.

Returns
The checksum integer.

garp(interface, ip_address, net_ns=None)
Sends a gratuitous ARP for ip_address on the interface.

Parameters

• interface -- The interface name to send the GARP on.

• ip_address -- The IP address to advertise in the GARP.

• net_ns -- The network namespace to send the GARP from.

Returns
None

neighbor_advertisement(interface, ip_address, net_ns=None)
Sends a unsolicited neighbor advertisement for an ip on the interface.

Parameters

• interface -- The interface name to send the GARP on.

• ip_address -- The IP address to advertise in the GARP.

• net_ns -- The network namespace to send the GARP from.

Returns
None

send_ip_advertisement(interface, ip_address, net_ns=None)
Send an address advertisement.

This method will send either GARP (IPv4) or neighbor advertisements (IPv6) for the ip address
specified.

Parameters

• interface -- The interface name to send the advertisement on.

• ip_address -- The IP address to advertise.

• net_ns -- The network namespace to send the advertisement from.

Returns
None

octavia.amphorae.backends.utils.keepalivedlvs_query module

get_ipvsadm_info(ns_name, is_stats_cmd=False)

get_listener_realserver_mapping(ns_name, listener_ip_ports, health_monitor_enabled)

get_lvs_listener_pool_status(listener_id)

4.6. Module Reference 430

Octavia Documentation, Release 15.1.0.dev35

get_lvs_listener_resource_ipports_nsname(listener_id)

get_lvs_listeners_stats()

read_kernel_file(ns_name, file_path)

octavia.amphorae.backends.utils.network_namespace module

class NetworkNamespace(netns)
Bases: object

A network namespace context manager.

Runs wrapped code inside the specified network namespace.

Parameters
netns -- The network namespace name to enter.

CLONE_NEWNET = 1073741824

octavia.amphorae.backends.utils.network_utils module

get_interface_name(ip_address, net_ns=None)
Gets the interface name from an IP address.

Parameters

• ip_address -- The IP address to lookup.

• net_ns -- The network namespace to find the interface in.

Returns
The interface name.

Raises

• exceptions.InvalidIPAddress -- Invalid IP address provided.

• octavia.common.exceptions.NotFound -- No interface was found.

octavia.amphorae.backends.utils.nftable_utils module

load_nftables_file()

write_nftable_rules_file(interface_name, rules)

Module contents

Module contents

octavia.amphorae.driver_exceptions package

Submodules

octavia.amphorae.driver_exceptions.exceptions module

4.6. Module Reference 431

Octavia Documentation, Release 15.1.0.dev35

exception AmpConnectionRetry(**kwargs)
Bases: AmphoraDriverError

message = 'Could not connect to amphora, exception caught: %(exception)s'

exception AmpDriverNotImplementedError(**kwargs)
Bases: AmphoraDriverError

message = 'Amphora does not implement this feature.'

exception AmpVersionUnsupported(**kwargs)
Bases: AmphoraDriverError

message = 'Amphora version %(version)s is no longer supported.'

exception AmphoraDriverError(**kwargs)
Bases: Exception

message = 'A super class for all other exceptions and the catch.'

static use_fatal_exceptions()

Return True if use fatal exceptions by raising them.

exception ArchiveException(**kwargs)
Bases: AmphoraDriverError

message = "couldn't archive the logs"

exception DeleteFailed(**kwargs)
Bases: AmphoraDriverError

message = "this load balancer couldn't be deleted"

exception EnableFailed(**kwargs)
Bases: AmphoraDriverError

message = "this load balancer couldn't be enabled"

exception HealthMonitorProvisioningError(**kwargs)
Bases: ProvisioningErrors

message = "couldn't provision HealthMonitor"

exception InfoException(**kwargs)
Bases: AmphoraDriverError

message = 'gathering information about this amphora failed'

exception ListenerProvisioningError(**kwargs)
Bases: ProvisioningErrors

message = "couldn't provision Listener"

exception LoadBalancerProvisoningError(**kwargs)
Bases: ProvisioningErrors

message = "couldn't provision LoadBalancer"

4.6. Module Reference 432

Octavia Documentation, Release 15.1.0.dev35

exception MetricsException(**kwargs)
Bases: AmphoraDriverError

message = 'gathering metrics failed'

exception NodeProvisioningError(**kwargs)
Bases: ProvisioningErrors

message = "couldn't provision Node"

exception NotFoundError(**kwargs)
Bases: AmphoraDriverError

message = "this amphora couldn't be found"

exception ProvisioningErrors(**kwargs)
Bases: AmphoraDriverError

message = 'Super class for provisioning amphora errors'

exception StatisticsException(**kwargs)
Bases: AmphoraDriverError

message = 'gathering statistics failed'

exception SuspendFailed(**kwargs)
Bases: AmphoraDriverError

message = "this load balancer couldn't be suspended"

exception TimeOutException(**kwargs)
Bases: AmphoraDriverError

message = 'contacting the amphora timed out'

exception UnauthorizedException(**kwargs)
Bases: AmphoraDriverError

message = "the driver can't access the amphora"

Module contents

octavia.amphorae.drivers package

Subpackages

octavia.amphorae.drivers.haproxy package

Submodules

octavia.amphorae.drivers.haproxy.data_models module

class CPU(total=None, user=None, system=None, soft_irq=None)
Bases: BaseDataModel

4.6. Module Reference 433

Octavia Documentation, Release 15.1.0.dev35

class Details(hostname=None, uuid=None, version=None, api_version=None, network_tx=None,
network_rx=None, active=None, haproxy_count=None, cpu=None, memory=None,
disk=None, load=None, listeners=None, packages=None)

Bases: BaseDataModel

class Disk(used=None, available=None)
Bases: BaseDataModel

class Info(hostname=None, uuid=None, version=None, api_version=None)
Bases: BaseDataModel

class ListenerStatus(status=None, uuid=None, provisioning_status=None, type=None,
pools=None)

Bases: BaseDataModel

class Memory(total=None, free=None, available=None, buffers=None, cached=None,
swap_used=None, shared=None, slab=None, committed_as=None)

Bases: BaseDataModel

class Pool(uuid=None, status=None, members=None)
Bases: BaseDataModel

class Topology(hostname=None, uuid=None, topology=None, role=None, ip=None, ha_ip=None)
Bases: BaseDataModel

octavia.amphorae.drivers.haproxy.exceptions module

exception APIException(**kwargs)
Bases: HTTPClientError

code = 500

msg = 'Something unknown went wrong'

exception Conflict(**kwargs)
Bases: APIException

code = 409

msg = 'Conflict'

exception Forbidden(**kwargs)
Bases: APIException

code = 403

msg = 'Forbidden'

exception InternalServerError(**kwargs)
Bases: APIException

code = 500

msg = 'Internal Server Error'

4.6. Module Reference 434

Octavia Documentation, Release 15.1.0.dev35

exception InvalidRequest(**kwargs)
Bases: APIException

code = 400

msg = 'Invalid request'

exception NotFound(**kwargs)
Bases: APIException

code = 404

msg = 'Not Found'

exception ServiceUnavailable(**kwargs)
Bases: APIException

code = 503

msg = 'Service Unavailable'

exception Unauthorized(**kwargs)
Bases: APIException

code = 401

msg = 'Unauthorized'

check_exception(response, ignore=(), log_error=True)

octavia.amphorae.drivers.haproxy.rest_api_driver module

class AmphoraAPIClient1_0

Bases: AmphoraAPIClientBase

delete_cert_pem(amp, loadbalancer_id, pem_filename)

delete_listener(amp, object_id)

get_all_listeners(amp)

get_cert_md5sum(amp, loadbalancer_id, pem_filename, ignore=())

get_details(amp)

get_info(amp, raise_retry_exception=False, timeout_dict=None)

get_interface(amp, ip_addr, timeout_dict=None, log_error=True)

get_listener_status(amp, listener_id)

plug_network(amp, port)

plug_vip(amp, vip, net_info)

set_interface_rules(amp, ip_address, rules, timeout_dict=None)

4.6. Module Reference 435

Octavia Documentation, Release 15.1.0.dev35

update_agent_config(amp, agent_config, timeout_dict=None)

update_cert_for_rotation(amp, pem_file)

upload_cert_pem(amp, loadbalancer_id, pem_filename, pem_file)

upload_config(amp, loadbalancer_id, config, timeout_dict=None)

upload_udp_config(amp, listener_id, config, timeout_dict=None)

upload_vrrp_config(amp, config)

class AmphoraAPIClientBase

Bases: object

get_api_version(amp, timeout_dict=None, raise_retry_exception=False)

request(method: str, amp: Amphora, path: str = ’/’, timeout_dict: dict | None = None,
retry_404: bool = True, raise_retry_exception: bool = False, **kwargs)

class CustomHostNameCheckingAdapter(pool_connections=10, pool_maxsize=10,
max_retries=0, pool_block=False)

Bases: HTTPAdapter

cert_verify(conn, url, verify, cert)
Verify a SSL certificate. This method should not be called from user code, and is only exposed
for use when subclassing the HTTPAdapter.

Parameters

• conn -- The urllib3 connection object associated with the cert.

• url -- The requested URL.

• verify -- Either a boolean, in which case it controls whether we verify the
server’s TLS certificate, or a string, in which case it must be a path to a CA
bundle to use

• cert -- The SSL certificate to verify.

init_poolmanager(*pool_args, **pool_kwargs)
Initializes a urllib3 PoolManager.

This method should not be called from user code, and is only exposed for use when subclass-
ing the HTTPAdapter.

Parameters

• connections -- The number of urllib3 connection pools to cache.

• maxsize -- The maximum number of connections to save in the pool.

• block -- Block when no free connections are available.

• pool_kwargs -- Extra keyword arguments used to initialize the Pool Man-
ager.

class HaproxyAmphoraLoadBalancerDriver

Bases: AmphoraLoadBalancerDriver, KeepalivedAmphoraDriverMixin

4.6. Module Reference 436

Octavia Documentation, Release 15.1.0.dev35

check(amphora: Amphora, timeout_dict: dict | None = None)
Check connectivity to the amphora.

delete(listener)
Delete the listener on the vip.

Parameters
listener (octavia.db.models.Listener) -- listener object, need to use
its protocol_port property

Returns
return a value list (listener, vip, status flag--delete)

At this moment, we just build the basic structure for testing, will add more function along
with the development.

finalize_amphora(amphora)
Finalize the amphora before any listeners are configured.

Parameters
amphora (octavia.db.models.Amphora) -- amphora object, need to use its
id property

Returns
None

At this moment, we just build the basic structure for testing, will add more function along
with the development. This is a hook for drivers who need to do additional work before an
amphora becomes ready to accept listeners. Please keep in mind that amphora might be kept
in an offline pool after this call.

get_diagnostics(amphora)
Return ceilometer ready diagnostic data.

Parameters
amphora (octavia.db.models.Amphora) -- amphora object, need to use its
id property

Returns
return a value list (amphora.id, status flag--’ge t_diagnostics’)

At this moment, we just build the basic structure for testing, will add more function along
with the development, eventually, we want it run some expensive self tests to determine if the
amphora and the lbs are healthy the idea is that those tests are triggered more infrequent than
the health gathering.

get_info(amphora, raise_retry_exception=False, timeout_dict=None)
Returns information about the amphora.

Parameters

• amphora (octavia.db.models.Amphora) -- amphora object, need to use
its id property

• raise_retry_exception -- Flag if outside task should be retried

Returns
return a value list (amphora.id, status flag--’info’)

4.6. Module Reference 437

Octavia Documentation, Release 15.1.0.dev35

At this moment, we just build the basic structure for testing, will add more function along
with the development, eventually, we want it to return information as: {"Rest Interface":
"1.0", "Amphorae": "1.0", "packages":{"ha proxy":"1.5"}} some information might come
from querying the amphora

get_interface_from_ip(amphora, ip_address, timeout_dict=None)
Get the interface name for an IP address.

Parameters

• amphora (octavia.db.models.Amphora) -- The amphora to query.

• ip_address (string) -- The IP address to lookup. (IPv4 or IPv6)

• timeout_dict (dict) -- Dictionary of timeout values for calls to
the amphora. May contain: req_conn_timeout, req_read_timeout,
conn_max_retries, conn_retry_interval

Returns
the interface name string if found.

Raises

• octavia.amphorae.drivers.haproxy.exceptions.NotFound -- No
interface found on the amphora

• TimeOutException -- The amphora didn’t reply

post_network_plug(amphora, port, amphora_network_config)
Called after amphora added to network

Parameters

• amphora (octavia.db.models.Amphora) -- amphora object, needs id and
network ip(s)

• port (octavia.network.data_models.Port) -- contains information of
the plugged port

• amphora_network_config (octavia.network.data_models.
AmphoraNetworkConfig) -- A data model containing information
about the subnets and ports that an amphorae owns.

This method is optional to implement. After adding an amphora to a network, there may be
steps necessary on the amphora to allow it to access said network. Ex: creating an interface
on an amphora for a neutron network to utilize.

post_vip_plug(amphora, load_balancer, amphorae_network_config, vrrp_port, vip_subnet,
additional_vip_data=None)

Called after network driver has allocated and plugged the VIP

Parameters

• amphora (octavia.db.models.Amphora)

• load_balancer (octavia.common.data_models.LoadBalancer) -- A
load balancer that just had its vip allocated and plugged in the network driver.

• amphorae_network_config (octavia.network.data_models.
AmphoraNetworkConfig) -- A data model containing information about
the subnets and ports that an amphorae owns.

4.6. Module Reference 438

Octavia Documentation, Release 15.1.0.dev35

• vrrp_port (octavia.network.data_models.Port) -- VRRP port asso-
ciated with the load balancer

• vip_subnet (octavia.network.data_models.Subnet) -- VIP subnet
associated with the load balancer

Returns
None

This is to do any additional work needed on the amphorae to plug the vip, such as bring up
interfaces.

reload(loadbalancer, amphora=None, timeout_dict=None)
Reload the listeners on the amphora.

Parameters

• loadbalancer (octavia.db.models.LoadBalancer) -- loadbalancer
object to reload listeners

• amphora (octavia.db.models.Amphora) -- Amphora to start. If None,
reload on all amphora

• timeout_dict (dict) -- Dictionary of timeout values for calls to
the amphora. May contain: req_conn_timeout, req_read_timeout,
conn_max_retries, conn_retry_interval

Returns
return a value list (listener, vip, status flag--enable)

At this moment, we just build the basic structure for testing, will add more function along
with the development.

set_interface_rules(amphora: Amphora, ip_address, rules, timeout_dict=None)
Sets interface firewall rules in the amphora

Parameters

• amphora -- The amphora to query.

• ip_address -- The IP address assigned to the interface the rules will be
applied on.

• rules -- The l1st of allow rules to apply.

start(loadbalancer, amphora=None, timeout_dict=None)
Start the listeners on the amphora.

Parameters

• loadbalancer (octavia.db.models.LoadBalancer) -- loadbalancer
object to start listeners

• amphora (octavia.db.models.Amphora) -- Amphora to start. If None,
start on all amphora

• timeout_dict (dict) -- Dictionary of timeout values for calls to
the amphora. May contain: req_conn_timeout, req_read_timeout,
conn_max_retries, conn_retry_interval

4.6. Module Reference 439

Octavia Documentation, Release 15.1.0.dev35

Returns
return a value list (listener, vip, status flag--enable)

At this moment, we just build the basic structure for testing, will add more function along
with the development.

update(loadbalancer)
Update the amphora with a new configuration.

Parameters
loadbalancer (octavia.db.models.LoadBalancer) -- loadbalancer ob-
ject, need to use its vip.ip_address property

Returns
None

At this moment, we just build the basic structure for testing, will add more function along
with the development.

update_amphora_agent_config(amphora, agent_config, timeout_dict=None)
Update the amphora agent configuration file.

Parameters

• amphora (object) -- The amphora to update.

• agent_config (string) -- The new amphora agent configuration.

• timeout_dict -- Dictionary of timeout values for calls to the amphora.
May contain: req_conn_timeout, req_read_timeout, conn_max_retries,
conn_retry_interval

Returns
None

Note: This will mutate the amphora agent config and adopt the
new values.

update_amphora_listeners(loadbalancer, amphora, timeout_dict=None)
Update the amphora with a new configuration.

Parameters

• loadbalancer (object) -- The load balancer to update

• amphora (object) -- The amphora to update

• timeout_dict -- Dictionary of timeout values for calls to the amphora.
May contain: req_conn_timeout, req_read_timeout, conn_max_retries,
conn_retry_interval

Returns
None

Updates the configuration of the listeners on a single amphora.

upload_cert_amp(amp, pem)

Upload cert info to the amphora.

Parameters

4.6. Module Reference 440

Octavia Documentation, Release 15.1.0.dev35

• amphora (octavia.db.models.Amphora) -- amphora object, needs id and
network ip(s)

• pem_file (file object) -- a certificate file

Upload cert file to amphora for Controller Communication.

Module contents

octavia.amphorae.drivers.health package

Submodules

octavia.amphorae.drivers.health.heartbeat_udp module

class UDPStatusGetter

Bases: object

This class defines methods that will gather heartbeats

The heartbeats are transmitted via UDP and this class will bind to a port and absorb them

check()

dorecv(*args, **kw)
Waits for a UDP heart beat to be sent.

Returns
Returns the unwrapped payload and addr that sent the heartbeat.

update(key, ip, port)
Update the running config for the udp socket server

Parameters

• key -- The hmac key used to verify the UDP packets. String

• ip -- The ip address the UDP server will read from

• port -- The port the UDP server will read from

Returns
None

class UpdateHealthDb

Bases: object

update_health(health, srcaddr)

update_stats(health_message)
Parses the health message then passes it to the stats driver(s)

Parameters
health_message (dict) -- The health message containing the listener stats

Example V1 message:

4.6. Module Reference 441

Octavia Documentation, Release 15.1.0.dev35

health = {
"id": "<amphora_id>",
"listeners": {

"<listener_id>": {
"status": "OPEN",
"stats": {

"ereq": 0,
"conns": 0,
"totconns": 0,
"rx": 0,
"tx": 0,

},
"pools": {

"<pool_id>": {
"status": "UP",
"members": {"<member_id>": "ONLINE"}

}
}

}
}

}

Example V2 message:

{"id": "<amphora_id>",
"seq": 67,
"listeners": {
"<listener_id>": {

"status": "OPEN",
"stats": {

"tx": 0,
"rx": 0,
"conns": 0,
"totconns": 0,
"ereq": 0

}
}

},
"pools": {

"<pool_id>:<listener_id>": {
"status": "UP",
"members": {
"<member_id>": "no check"

}
}

},
"ver": 2
"recv_time": time.time()
}

Example V3 message:

4.6. Module Reference 442

Octavia Documentation, Release 15.1.0.dev35

Same as V2 message, except values are deltas rather than absolutes.

Module contents

octavia.amphorae.drivers.keepalived package

Subpackages

octavia.amphorae.drivers.keepalived.jinja package

Submodules

octavia.amphorae.drivers.keepalived.jinja.jinja_cfg module

class KeepalivedJinjaTemplater(keepalived_template=None)
Bases: object

build_keepalived_config(loadbalancer, amphora, amp_net_config)
Renders the loadblanacer keepalived configuration for Active/Standby

Parameters

• loadbalancer -- A loadbalancer object

• amphora -- An amphora object

• amp_net_config -- The amphora network config, a dict

get_template(template_file)
Returns the specified Jinja configuration template.

Module contents

Submodules

octavia.amphorae.drivers.keepalived.vrrp_rest_driver module

class KeepalivedAmphoraDriverMixin

Bases: VRRPDriverMixin

reload_vrrp_service(loadbalancer)
Reload the VRRP services of all amphorae of the loadbalancer

Parameters
loadbalancer -- loadbalancer object

start_vrrp_service(amphora, timeout_dict=None)
Start the VRRP services on an amphorae.

Parameters

• amphora -- amphora object

• timeout_dict -- Dictionary of timeout values for calls to the amphora.
May contain: req_conn_timeout, req_read_timeout, conn_max_retries,
conn_retry_interval

4.6. Module Reference 443

Octavia Documentation, Release 15.1.0.dev35

stop_vrrp_service(loadbalancer)
Stop the vrrp services running on the loadbalancer’s amphorae

Parameters
loadbalancer -- loadbalancer object

update_vrrp_conf(loadbalancer, amphorae_network_config, amphora, timeout_dict=None)
Update amphora of the loadbalancer with a new VRRP configuration

Parameters

• loadbalancer -- loadbalancer object

• amphorae_network_config -- amphorae network configurations

• amphora -- The amphora object to update.

• timeout_dict -- Dictionary of timeout values for calls to the amphora.
May contain: req_conn_timeout, req_read_timeout, conn_max_retries,
conn_retry_interval

Module contents

octavia.amphorae.drivers.noop_driver package

Submodules

octavia.amphorae.drivers.noop_driver.driver module

class NoopAmphoraLoadBalancerDriver

Bases: AmphoraLoadBalancerDriver, VRRPDriverMixin

check(amphora, timeout_dict=None)
Check connectivity to the amphora.

Parameters

• amphora -- The amphora to query.

• timeout_dict -- Dictionary of timeout values for calls to the amphora.
May contain: req_conn_timeout, req_read_timeout, conn_max_retries,
conn_retry_interval

Raises
TimeOutException -- The amphora didn’t reply

delete(listener)
Delete the listener on the vip.

Parameters
listener (octavia.db.models.Listener) -- listener object, need to use
its protocol_port property

Returns
return a value list (listener, vip, status flag--delete)

At this moment, we just build the basic structure for testing, will add more function along
with the development.

4.6. Module Reference 444

Octavia Documentation, Release 15.1.0.dev35

finalize_amphora(amphora)
Finalize the amphora before any listeners are configured.

Parameters
amphora (octavia.db.models.Amphora) -- amphora object, need to use its
id property

Returns
None

At this moment, we just build the basic structure for testing, will add more function along
with the development. This is a hook for drivers who need to do additional work before an
amphora becomes ready to accept listeners. Please keep in mind that amphora might be kept
in an offline pool after this call.

get_diagnostics(amphora)
Return ceilometer ready diagnostic data.

Parameters
amphora (octavia.db.models.Amphora) -- amphora object, need to use its
id property

Returns
return a value list (amphora.id, status flag--’ge t_diagnostics’)

At this moment, we just build the basic structure for testing, will add more function along
with the development, eventually, we want it run some expensive self tests to determine if the
amphora and the lbs are healthy the idea is that those tests are triggered more infrequent than
the health gathering.

get_info(amphora, raise_retry_exception=False)
Returns information about the amphora.

Parameters

• amphora (octavia.db.models.Amphora) -- amphora object, need to use
its id property

• raise_retry_exception -- Flag if outside task should be retried

Returns
return a value list (amphora.id, status flag--’info’)

At this moment, we just build the basic structure for testing, will add more function along
with the development, eventually, we want it to return information as: {"Rest Interface":
"1.0", "Amphorae": "1.0", "packages":{"ha proxy":"1.5"}} some information might come
from querying the amphora

get_interface_from_ip(amphora, ip_address, timeout_dict=None)
Get the interface name from an IP address.

Parameters

• amphora (octavia.db.models.Amphora) -- The amphora to query.

• ip_address (string) -- The IP address to lookup. (IPv4 or IPv6)

• timeout_dict (dict) -- Dictionary of timeout values for calls to
the amphora. May contain: req_conn_timeout, req_read_timeout,
conn_max_retries, conn_retry_interval

4.6. Module Reference 445

Octavia Documentation, Release 15.1.0.dev35

post_network_plug(amphora, port, amphora_network_config)
Called after amphora added to network

Parameters

• amphora (octavia.db.models.Amphora) -- amphora object, needs id and
network ip(s)

• port (octavia.network.data_models.Port) -- contains information of
the plugged port

• amphora_network_config (octavia.network.data_models.
AmphoraNetworkConfig) -- A data model containing information
about the subnets and ports that an amphorae owns.

This method is optional to implement. After adding an amphora to a network, there may be
steps necessary on the amphora to allow it to access said network. Ex: creating an interface
on an amphora for a neutron network to utilize.

post_vip_plug(amphora, load_balancer, amphorae_network_config, vrrp_port, vip_subnet,
additional_vip_data=None)

Called after network driver has allocated and plugged the VIP

Parameters

• amphora (octavia.db.models.Amphora)

• load_balancer (octavia.common.data_models.LoadBalancer) -- A
load balancer that just had its vip allocated and plugged in the network driver.

• amphorae_network_config (octavia.network.data_models.
AmphoraNetworkConfig) -- A data model containing information about
the subnets and ports that an amphorae owns.

• vrrp_port (octavia.network.data_models.Port) -- VRRP port asso-
ciated with the load balancer

• vip_subnet (octavia.network.data_models.Subnet) -- VIP subnet
associated with the load balancer

Returns
None

This is to do any additional work needed on the amphorae to plug the vip, such as bring up
interfaces.

reload(loadbalancer, amphora=None, timeout_dict=None)
Reload the listeners on the amphora.

Parameters

• loadbalancer (octavia.db.models.LoadBalancer) -- loadbalancer
object to reload listeners

• amphora (octavia.db.models.Amphora) -- Amphora to start. If None,
reload on all amphora

• timeout_dict (dict) -- Dictionary of timeout values for calls to
the amphora. May contain: req_conn_timeout, req_read_timeout,
conn_max_retries, conn_retry_interval

4.6. Module Reference 446

Octavia Documentation, Release 15.1.0.dev35

Returns
return a value list (listener, vip, status flag--enable)

At this moment, we just build the basic structure for testing, will add more function along
with the development.

reload_vrrp_service(loadbalancer)
Reload the VRRP services of all amphorae of the loadbalancer

Parameters
loadbalancer -- loadbalancer object

set_interface_rules(amphora, ip_address, rules)
Sets interface firewall rules in the amphora

Parameters

• amphora -- The amphora to query.

• ip_address -- The IP address assigned to the interface the rules will be
applied on.

• rules -- The l1st of allow rules to apply.

start(loadbalancer, amphora=None, timeout_dict=None)
Start the listeners on the amphora.

Parameters

• loadbalancer (octavia.db.models.LoadBalancer) -- loadbalancer
object to start listeners

• amphora (octavia.db.models.Amphora) -- Amphora to start. If None,
start on all amphora

• timeout_dict (dict) -- Dictionary of timeout values for calls to
the amphora. May contain: req_conn_timeout, req_read_timeout,
conn_max_retries, conn_retry_interval

Returns
return a value list (listener, vip, status flag--enable)

At this moment, we just build the basic structure for testing, will add more function along
with the development.

start_vrrp_service(amphora, timeout_dict=None)
Start the VRRP services on the amphora

Parameters

• amphora -- The amphora object to start the service on.

• timeout_dict -- Dictionary of timeout values for calls to the amphora.
May contain: req_conn_timeout, req_read_timeout, conn_max_retries,
conn_retry_interval

stop_vrrp_service(loadbalancer)
Stop the vrrp services running on the loadbalancer’s amphorae

Parameters
loadbalancer -- loadbalancer object

4.6. Module Reference 447

Octavia Documentation, Release 15.1.0.dev35

update(loadbalancer)
Update the amphora with a new configuration.

Parameters
loadbalancer (octavia.db.models.LoadBalancer) -- loadbalancer ob-
ject, need to use its vip.ip_address property

Returns
None

At this moment, we just build the basic structure for testing, will add more function along
with the development.

update_amphora_agent_config(amphora, agent_config)
Upload and update the amphora agent configuration.

Parameters

• amphora (octavia.db.models.Amphora) -- amphora object, needs id and
network ip(s)

• agent_config (string) -- The new amphora agent configuration file.

update_amphora_listeners(loadbalancer, amphora, timeout_dict)
Update the amphora with a new configuration.

Parameters

• loadbalancer (list(octavia.db.models.Listener)) -- List of listen-
ers to update.

• amphora (octavia.db.models.Amphora) -- The index of the specific am-
phora to update

• timeout_dict (dict) -- Dictionary of timeout values for calls to
the amphora. May contain: req_conn_timeout, req_read_timeout,
conn_max_retries, conn_retry_interval

Returns
None

Builds a new configuration, pushes it to the amphora, and reloads the listener on one amphora.

update_vrrp_conf(loadbalancer, amphorae_network_config, amphora, timeout_dict=None)
Update amphorae of the loadbalancer with a new VRRP configuration

Parameters

• loadbalancer -- loadbalancer object

• amphorae_network_config -- amphorae network configurations

• amphora -- The amphora object to update.

• timeout_dict -- Dictionary of timeout values for calls to the amphora.
May contain: req_conn_timeout, req_read_timeout, conn_max_retries,
conn_retry_interval

upload_cert_amp(amphora, pem_file)
Upload cert info to the amphora.

4.6. Module Reference 448

Octavia Documentation, Release 15.1.0.dev35

Parameters

• amphora (octavia.db.models.Amphora) -- amphora object, needs id and
network ip(s)

• pem_file (file object) -- a certificate file

Upload cert file to amphora for Controller Communication.

class NoopManager

Bases: object

delete(listener)

finalize_amphora(amphora)

get_diagnostics(amphora)

get_info(amphora, raise_retry_exception=False)

get_interface_from_ip(amphora, ip_address, timeout_dict=None)

post_network_plug(amphora, port, amphora_network_config)

post_vip_plug(amphora, load_balancer, amphorae_network_config, vrrp_port, vip_subnet,
additional_vip_data=None)

reload(loadbalancer, amphora=None, timeout_dict=None)

start(loadbalancer, amphora=None, timeout_dict=None)

update(loadbalancer)

update_amphora_agent_config(amphora, agent_config)

update_amphora_listeners(loadbalancer, amphora, timeout_dict)

upload_cert_amp(amphora, pem_file)

Module contents

Submodules

octavia.amphorae.drivers.driver_base module

class AmphoraLoadBalancerDriver

Bases: object

abstract check(amphora: Amphora, timeout_dict: dict | None = None)
Check connectivity to the amphora.

Parameters

• amphora -- The amphora to query.

• timeout_dict -- Dictionary of timeout values for calls to the amphora.
May contain: req_conn_timeout, req_read_timeout, conn_max_retries,
conn_retry_interval

4.6. Module Reference 449

Octavia Documentation, Release 15.1.0.dev35

Raises
TimeOutException -- The amphora didn’t reply

abstract delete(listener)
Delete the listener on the vip.

Parameters
listener (octavia.db.models.Listener) -- listener object, need to use
its protocol_port property

Returns
return a value list (listener, vip, status flag--delete)

At this moment, we just build the basic structure for testing, will add more function along
with the development.

abstract finalize_amphora(amphora)
Finalize the amphora before any listeners are configured.

Parameters
amphora (octavia.db.models.Amphora) -- amphora object, need to use its
id property

Returns
None

At this moment, we just build the basic structure for testing, will add more function along
with the development. This is a hook for drivers who need to do additional work before an
amphora becomes ready to accept listeners. Please keep in mind that amphora might be kept
in an offline pool after this call.

abstract get_diagnostics(amphora)
Return ceilometer ready diagnostic data.

Parameters
amphora (octavia.db.models.Amphora) -- amphora object, need to use its
id property

Returns
return a value list (amphora.id, status flag--’ge t_diagnostics’)

At this moment, we just build the basic structure for testing, will add more function along
with the development, eventually, we want it run some expensive self tests to determine if the
amphora and the lbs are healthy the idea is that those tests are triggered more infrequent than
the health gathering.

abstract get_info(amphora, raise_retry_exception=False)
Returns information about the amphora.

Parameters

• amphora (octavia.db.models.Amphora) -- amphora object, need to use
its id property

• raise_retry_exception -- Flag if outside task should be retried

Returns
return a value list (amphora.id, status flag--’info’)

4.6. Module Reference 450

Octavia Documentation, Release 15.1.0.dev35

At this moment, we just build the basic structure for testing, will add more function along
with the development, eventually, we want it to return information as: {"Rest Interface":
"1.0", "Amphorae": "1.0", "packages":{"ha proxy":"1.5"}} some information might come
from querying the amphora

abstract get_interface_from_ip(amphora, ip_address, timeout_dict=None)
Get the interface name from an IP address.

Parameters

• amphora (octavia.db.models.Amphora) -- The amphora to query.

• ip_address (string) -- The IP address to lookup. (IPv4 or IPv6)

• timeout_dict (dict) -- Dictionary of timeout values for calls to
the amphora. May contain: req_conn_timeout, req_read_timeout,
conn_max_retries, conn_retry_interval

post_network_plug(amphora, port, amphora_network_config)
Called after amphora added to network

Parameters

• amphora (octavia.db.models.Amphora) -- amphora object, needs id and
network ip(s)

• port (octavia.network.data_models.Port) -- contains information of
the plugged port

• amphora_network_config (octavia.network.data_models.
AmphoraNetworkConfig) -- A data model containing information
about the subnets and ports that an amphorae owns.

This method is optional to implement. After adding an amphora to a network, there may be
steps necessary on the amphora to allow it to access said network. Ex: creating an interface
on an amphora for a neutron network to utilize.

post_vip_plug(amphora, load_balancer, amphorae_network_config, vrrp_port, vip_subnet,
additional_vip_data=None)

Called after network driver has allocated and plugged the VIP

Parameters

• amphora (octavia.db.models.Amphora)

• load_balancer (octavia.common.data_models.LoadBalancer) -- A
load balancer that just had its vip allocated and plugged in the network driver.

• amphorae_network_config (octavia.network.data_models.
AmphoraNetworkConfig) -- A data model containing information about
the subnets and ports that an amphorae owns.

• vrrp_port (octavia.network.data_models.Port) -- VRRP port asso-
ciated with the load balancer

• vip_subnet (octavia.network.data_models.Subnet) -- VIP subnet
associated with the load balancer

Returns
None

4.6. Module Reference 451

Octavia Documentation, Release 15.1.0.dev35

This is to do any additional work needed on the amphorae to plug the vip, such as bring up
interfaces.

abstract reload(loadbalancer, amphora, timeout_dict=None)
Reload the listeners on the amphora.

Parameters

• loadbalancer (octavia.db.models.LoadBalancer) -- loadbalancer
object to reload listeners

• amphora (octavia.db.models.Amphora) -- Amphora to start. If None,
reload on all amphora

• timeout_dict (dict) -- Dictionary of timeout values for calls to
the amphora. May contain: req_conn_timeout, req_read_timeout,
conn_max_retries, conn_retry_interval

Returns
return a value list (listener, vip, status flag--enable)

At this moment, we just build the basic structure for testing, will add more function along
with the development.

abstract set_interface_rules(amphora: Amphora, ip_address, rules)
Sets interface firewall rules in the amphora

Parameters

• amphora -- The amphora to query.

• ip_address -- The IP address assigned to the interface the rules will be
applied on.

• rules -- The l1st of allow rules to apply.

abstract start(loadbalancer, amphora, timeout_dict=None)
Start the listeners on the amphora.

Parameters

• loadbalancer (octavia.db.models.LoadBalancer) -- loadbalancer
object to start listeners

• amphora (octavia.db.models.Amphora) -- Amphora to start. If None,
start on all amphora

• timeout_dict (dict) -- Dictionary of timeout values for calls to
the amphora. May contain: req_conn_timeout, req_read_timeout,
conn_max_retries, conn_retry_interval

Returns
return a value list (listener, vip, status flag--enable)

At this moment, we just build the basic structure for testing, will add more function along
with the development.

abstract update(loadbalancer)
Update the amphora with a new configuration.

4.6. Module Reference 452

Octavia Documentation, Release 15.1.0.dev35

Parameters
loadbalancer (octavia.db.models.LoadBalancer) -- loadbalancer ob-
ject, need to use its vip.ip_address property

Returns
None

At this moment, we just build the basic structure for testing, will add more function along
with the development.

update_amphora_agent_config(amphora, agent_config)
Upload and update the amphora agent configuration.

Parameters

• amphora (octavia.db.models.Amphora) -- amphora object, needs id and
network ip(s)

• agent_config (string) -- The new amphora agent configuration file.

abstract update_amphora_listeners(loadbalancer, amphora, timeout_dict)
Update the amphora with a new configuration.

Parameters

• loadbalancer (list(octavia.db.models.Listener)) -- List of listen-
ers to update.

• amphora (octavia.db.models.Amphora) -- The index of the specific am-
phora to update

• timeout_dict (dict) -- Dictionary of timeout values for calls to
the amphora. May contain: req_conn_timeout, req_read_timeout,
conn_max_retries, conn_retry_interval

Returns
None

Builds a new configuration, pushes it to the amphora, and reloads the listener on one amphora.

upload_cert_amp(amphora, pem_file)
Upload cert info to the amphora.

Parameters

• amphora (octavia.db.models.Amphora) -- amphora object, needs id and
network ip(s)

• pem_file (file object) -- a certificate file

Upload cert file to amphora for Controller Communication.

class VRRPDriverMixin

Bases: object

Abstract mixin class for VRRP support in loadbalancer amphorae

Usage: To plug VRRP support in another service driver XYZ, use: @plug_mixin(XYZ) class
XYZ: ...

4.6. Module Reference 453

Octavia Documentation, Release 15.1.0.dev35

abstract reload_vrrp_service(loadbalancer)
Reload the VRRP services of all amphorae of the loadbalancer

Parameters
loadbalancer -- loadbalancer object

abstract start_vrrp_service(amphora, timeout_dict=None)
Start the VRRP services on the amphora

Parameters

• amphora -- The amphora object to start the service on.

• timeout_dict -- Dictionary of timeout values for calls to the amphora.
May contain: req_conn_timeout, req_read_timeout, conn_max_retries,
conn_retry_interval

abstract stop_vrrp_service(loadbalancer)
Stop the vrrp services running on the loadbalancer’s amphorae

Parameters
loadbalancer -- loadbalancer object

abstract update_vrrp_conf(loadbalancer, amphorae_network_config, amphora,
timeout_dict=None)

Update amphorae of the loadbalancer with a new VRRP configuration

Parameters

• loadbalancer -- loadbalancer object

• amphorae_network_config -- amphorae network configurations

• amphora -- The amphora object to update.

• timeout_dict -- Dictionary of timeout values for calls to the amphora.
May contain: req_conn_timeout, req_read_timeout, conn_max_retries,
conn_retry_interval

Module contents

Module contents

octavia.api package

Subpackages

octavia.api.common package

Submodules

octavia.api.common.hooks module

class ContentTypeHook

Bases: PecanHook

Force the request content type to JSON if that is acceptable.

4.6. Module Reference 454

Octavia Documentation, Release 15.1.0.dev35

on_route(state)
Override this method to create a hook that gets called upon the start of routing.

Parameters
state -- The Pecan state object for the current request.

class ContextHook

Bases: PecanHook

Configures a request context and attaches it to the request.

on_route(state)
Override this method to create a hook that gets called upon the start of routing.

Parameters
state -- The Pecan state object for the current request.

class QueryParametersHook

Bases: PecanHook

before(state)
Override this method to create a hook that gets called after routing, but before the request
gets passed to your controller.

Parameters
state -- The Pecan state object for the current request.

octavia.api.common.pagination module

class PaginationHelper(params, sort_dir=’asc’)
Bases: object

Class helping to interact with pagination functionality

Pass this class to db.repositories to apply it on query

apply(query, model, enforce_valid_params=True)
Returns a query with sorting / pagination criteria added.

Pagination works by requiring a unique sort_key specified by sort_keys. (If sort_keys is not
unique, then we risk looping through values.) We use the last row in the previous page as
the pagination ’marker’. So we must return values that follow the passed marker in the order.
With a single-valued sort_key, this would be easy: sort_key > X. With a compound-values
sort_key, (k1, k2, k3) we must do this to repeat the lexicographical ordering: (k1 > X1) or
(k1 == X1 && k2 > X2) or (k1 == X1 && k2 == X2 && k3 > X3) We also have to cope
with different sort_directions. Typically, the id of the last row is used as the client-facing
pagination marker, then the actual marker object must be fetched from the db and passed in to
us as marker. :param query: the query object to which we should add paging/sorting/filtering
:param model: the ORM model class :param enforce_valid_params: check for invalid entries
in self.params

Return type
sqlalchemy.orm.query.Query

Returns
The query with sorting/pagination/filtering added.

4.6. Module Reference 455

Octavia Documentation, Release 15.1.0.dev35

octavia.api.common.types module

class AlpnProtocolType

Bases: UserType

basetype

alias of str

name = 'alpn_protocol'

static validate(value)
Validates whether value is a valid ALPN protocol ID.

class BaseMeta(name, bases, dct)
Bases: BaseMeta

class BaseType(**kw)
Bases: Base

classmethod from_data_model(data_model, children=False)
Converts data_model to Octavia WSME type.

Parameters

• data_model -- data model to convert from

• children -- convert child data models

to_dict(render_unsets=False)
Converts Octavia WSME type to dictionary.

Parameters
render_unsets -- If True, will convert items that are WSME Unset types to
None. If False, does not add the item

classmethod translate_dict_keys_to_data_model(wsme_dict)
Translate the keys from wsme class type, to data_model.

classmethod translate_key_to_data_model(key)
Translate the keys from wsme class type, to data_model.

class CidrType

Bases: UserType

basetype

alias of str

name = 'cidr'

static validate(value)
Validates whether value is an IPv4 or IPv6 CIDR.

class IPAddressType

Bases: UserType

basetype

alias of str

4.6. Module Reference 456

Octavia Documentation, Release 15.1.0.dev35

name = 'ipaddress'

static validate(value)
Validates whether value is an IPv4 or IPv6 address.

class IdOnlyType(**kw)
Bases: BaseType

id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class NameOnlyType(**kw)
Bases: BaseType

name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class PageType(**kw)
Bases: BaseType

href

Complex type attribute definition.

Example:

4.6. Module Reference 457

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

rel

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class URLPathType

Bases: UserType

basetype

alias of str

name = 'url_path'

static validate(value)

class URLType(require_scheme=True)
Bases: UserType

basetype

alias of str

name = 'url'

validate(value)

4.6. Module Reference 458

Octavia Documentation, Release 15.1.0.dev35

octavia.api.common.utils module

json_error_formatter(body, status, title, environ)
A json_formatter for webob exceptions.

Follows API-WG guidelines at http://specs.openstack.org/openstack/api-wg/guidelines/errors.
html

Module contents

octavia.api.drivers package

Subpackages

octavia.api.drivers.amphora_driver package

Subpackages

octavia.api.drivers.amphora_driver.v2 package

Submodules

octavia.api.drivers.amphora_driver.v2.driver module

class AmphoraProviderDriver

Bases: ProviderDriver

create_vip_port(loadbalancer_id, project_id, vip_dictionary, additional_vip_dicts)
Creates a port for a load balancer VIP.

If the driver supports creating VIP ports, the driver will create a VIP port with the primary
VIP and all additional VIPs added to the port, and return the vip_dictionary populated with
the vip_port_id and a list of vip_dictionaries populated with data from the additional VIPs
(which are guaranteed to be in the same Network). This might look like: {’port_id’: port_id,
’subnet_id’: subnet_id_1, ’ip_address’: ip1}, [{’subnet_id’: subnet_id_2, ’ip_address’:
ip2}, {...}, {...}] If the driver does not support port creation, the driver will raise a NotIm-
plementedError.

Parameters

• loadbalancer_id (string) -- ID of loadbalancer.

• project_id (string) -- The project ID to create the VIP under.

Param
vip_dictionary: The VIP dictionary.

Param
additional_vip_dicts: A list of additional VIP dictionaries, with subnets guar-
anteed to be in the same network as the primary vip_dictionary.

Returns
VIP dictionary with vip_port_id + a list of additional VIP dictionaries (vip_dict,
additional_vip_dicts).

Raises

• DriverError -- An unexpected error occurred in the driver.

4.6. Module Reference 459

http://specs.openstack.org/openstack/api-wg/guidelines/errors.html
http://specs.openstack.org/openstack/api-wg/guidelines/errors.html

Octavia Documentation, Release 15.1.0.dev35

• NotImplementedError -- The driver does not support creating VIP ports.

get_supported_availability_zone_metadata()

Returns the valid availability zone metadata keys and descriptions.

This extracts the valid availability zone metadata keys and descriptions from the JSON vali-
dation schema and returns it as a dictionary.

Returns
Dictionary of availability zone metadata keys and descriptions

Raises
DriverError -- An unexpected error occurred.

get_supported_flavor_metadata()

Returns the valid flavor metadata keys and descriptions.

This extracts the valid flavor metadata keys and descriptions from the JSON validation
schema and returns it as a dictionary.

Returns
Dictionary of flavor metadata keys and descriptions.

Raises
DriverError -- An unexpected error occurred.

health_monitor_create(healthmonitor)
Creates a new health monitor.

Parameters
healthmonitor (object) -- The health monitor object.

Returns
Nothing if the create request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

• UnsupportedOptionError -- if driver does not support one of the config-
uration options.

health_monitor_delete(healthmonitor)
Deletes a healthmonitor_id.

Parameters
healthmonitor (object) -- The monitor to delete.

Returns
Nothing if the create request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

4.6. Module Reference 460

Octavia Documentation, Release 15.1.0.dev35

health_monitor_update(old_healthmonitor, new_healthmonitor)
Updates a health monitor.

Parameters

• old_healthmonitor (object) -- The baseline health monitor object.

• new_healthmonitor (object) -- The updated health monitor object.

Returns
Nothing if the create request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

• UnsupportedOptionError -- if driver does not support one of the config-
uration options.

l7policy_create(l7policy)
Creates a new L7 policy.

Parameters
l7policy (object) -- The L7 policy object.

Returns
Nothing if the create request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

• UnsupportedOptionError -- if driver does not support one of the config-
uration options.

l7policy_delete(l7policy)
Deletes an L7 policy.

Parameters
l7policy (object) -- The L7 policy to delete.

Returns
Nothing if the delete request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

l7policy_update(old_l7policy, new_l7policy)
Updates an L7 policy.

Parameters

• old_l7policy (object) -- The baseline L7 policy object.

• new_l7policy (object) -- The updated L7 policy object.

4.6. Module Reference 461

Octavia Documentation, Release 15.1.0.dev35

Returns
Nothing if the update request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

• UnsupportedOptionError -- if driver does not support one of the config-
uration options.

l7rule_create(l7rule)
Creates a new L7 rule.

Parameters
l7rule (object) -- The L7 rule object.

Returns
Nothing if the create request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

• UnsupportedOptionError -- if driver does not support one of the config-
uration options.

l7rule_delete(l7rule)
Deletes an L7 rule.

Parameters
l7rule (object) -- The L7 rule to delete.

Returns
Nothing if the delete request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

l7rule_update(old_l7rule, new_l7rule)
Updates an L7 rule.

Parameters

• old_l7rule (object) -- The baseline L7 rule object.

• new_l7rule (object) -- The updated L7 rule object.

Returns
Nothing if the update request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

4.6. Module Reference 462

Octavia Documentation, Release 15.1.0.dev35

• UnsupportedOptionError -- if driver does not support one of the config-
uration options.

listener_create(listener)
Creates a new listener.

Parameters
listener (object) -- The listener object.

Returns
Nothing if the create request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

• UnsupportedOptionError -- if driver does not support one of the config-
uration options.

listener_delete(listener)
Deletes a listener.

Parameters
listener (object) -- The listener to delete.

Returns
Nothing if the delete request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

listener_update(old_listener, new_listener)
Updates a listener.

Parameters

• old_listener (object) -- The baseline listener object.

• new_listener (object) -- The updated listener object.

Returns
Nothing if the update request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

• UnsupportedOptionError -- if driver does not support one of the config-
uration options.

loadbalancer_create(loadbalancer)
Creates a new load balancer.

Parameters
loadbalancer (object) -- The load balancer object.

4.6. Module Reference 463

Octavia Documentation, Release 15.1.0.dev35

Returns
Nothing if the create request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- The driver does not support create.

• UnsupportedOptionError -- The driver does not support one of the con-
figuration options.

loadbalancer_delete(loadbalancer, cascade=False)
Deletes a load balancer.

Parameters

• loadbalancer (object) -- The load balancer to delete.

• cascade (bool) -- If True, deletes all child objects (listeners, pools, etc.) in
addition to the load balancer.

Returns
Nothing if the delete request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

loadbalancer_failover(loadbalancer_id)
Performs a fail over of a load balancer.

Parameters
loadbalancer_id (string) -- ID of the load balancer to failover.

Returns
Nothing if the failover request was accepted.

Raises
DriverError -- An unexpected error occurred in the driver.

Raises
NotImplementedError if driver does not support request.

loadbalancer_update(original_load_balancer, new_loadbalancer)
Updates a load balancer.

Parameters

• old_loadbalancer (object) -- The baseline load balancer object.

• new_loadbalancer (object) -- The updated load balancer object.

Returns
Nothing if the update request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- The driver does not support request.

4.6. Module Reference 464

Octavia Documentation, Release 15.1.0.dev35

• UnsupportedOptionError -- The driver does not support one of the con-
figuration options.

member_batch_update(pool_id, members)
Creates, updates, or deletes a set of pool members.

Parameters

• pool_id (string) -- The id of the pool to update.

• members (list) -- List of member objects.

Returns
Nothing if the create request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

• UnsupportedOptionError -- if driver does not support one of the config-
uration options.

member_create(member)
Creates a new member for a pool.

Parameters
member (object) -- The member object.

Returns
Nothing if the create request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

• UnsupportedOptionError -- if driver does not support one of the config-
uration options.

member_delete(member)
Deletes a pool member.

Parameters
member (object) -- The member to delete.

Returns
Nothing if the create request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

member_update(old_member, new_member)
Updates a pool member.

Parameters

• old_member (object) -- The baseline member object.

4.6. Module Reference 465

Octavia Documentation, Release 15.1.0.dev35

• new_member (object) -- The updated member object.

Returns
Nothing if the create request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

• UnsupportedOptionError -- if driver does not support one of the config-
uration options.

pool_create(pool)
Creates a new pool.

Parameters
pool (object) -- The pool object.

Returns
Nothing if the create request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

• UnsupportedOptionError -- if driver does not support one of the config-
uration options.

pool_delete(pool)
Deletes a pool and its members.

Parameters
pool (object) -- The pool to delete.

Returns
Nothing if the create request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

pool_update(old_pool, new_pool)
Updates a pool.

Parameters

• pool (object) -- The baseline pool object.

• pool -- The updated pool object.

Returns
Nothing if the create request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

4.6. Module Reference 466

Octavia Documentation, Release 15.1.0.dev35

• UnsupportedOptionError -- if driver does not support one of the config-
uration options.

validate_availability_zone(availability_zone_dict)
Validates availability zone profile data.

This will validate an availability zone profile dataset against the availability zone settings the
amphora driver supports.

Parameters
availability_zone_dict (dict) -- The availability zone dict to validate.

Returns
None

Raises

• DriverError -- An unexpected error occurred.

• UnsupportedOptionError -- If the driver does not support one of the avail-
ability zone settings.

validate_flavor(flavor_dict)
Validates flavor profile data.

This will validate a flavor profile dataset against the flavor settings the amphora driver sup-
ports.

Parameters
flavor_dict -- The flavor dictionary to validate.

Returns
None

Raises

• DriverError -- An unexpected error occurred.

• UnsupportedOptionError -- If the driver does not support one of the flavor
settings.

Module contents

Submodules

octavia.api.drivers.amphora_driver.availability_zone_schema module

octavia.api.drivers.amphora_driver.flavor_schema module

Module contents

octavia.api.drivers.driver_agent package

Submodules

octavia.api.drivers.driver_agent.driver_get module

process_get(get_data)

4.6. Module Reference 467

Octavia Documentation, Release 15.1.0.dev35

octavia.api.drivers.driver_agent.driver_listener module

class ForkingUDSServer(server_address, RequestHandlerClass, bind_and_activate=True)
Bases: ForkingMixIn, UnixStreamServer

class GetRequestHandler(request, client_address, server)
Bases: BaseRequestHandler

handle()

class StatsRequestHandler(request, client_address, server)
Bases: BaseRequestHandler

handle()

class StatusRequestHandler(request, client_address, server)
Bases: BaseRequestHandler

handle()

get_listener(exit_event)

stats_listener(exit_event)

status_listener(exit_event)

octavia.api.drivers.driver_agent.driver_updater module

class DriverUpdater(**kwargs)
Bases: object

update_listener_statistics(statistics)
Update listener statistics.

Parameters
statistics (dict) -- Statistics for listeners: id (string): ID for listener. ac-
tive_connections (int): Number of currently active connections. bytes_in (int):
Total bytes received. bytes_out (int): Total bytes sent. request_errors (int):
Total requests not fulfilled. total_connections (int): The total connections han-
dled.

Raises
UpdateStatisticsError

Returns
None

update_loadbalancer_status(status)
Update load balancer status.

Parameters
status (dict) -- dictionary defining the provisioning status and operating sta-
tus for load balancer objects, including pools, members, listeners, L7 policies,
and L7 rules. iod (string): ID for the object. provisioning_status (string): Pro-
visioning status for the object. operating_status (string): Operating status for
the object.

4.6. Module Reference 468

Octavia Documentation, Release 15.1.0.dev35

Raises
UpdateStatusError

Returns
None

Module contents

octavia.api.drivers.noop_driver package

Submodules

octavia.api.drivers.noop_driver.agent module

noop_provider_agent(exit_event)

octavia.api.drivers.noop_driver.driver module

class NoopManager

Bases: object

create_vip_port(loadbalancer_id, project_id, vip_dictionary, additional_vip_dicts)

get_supported_availability_zone_metadata()

get_supported_flavor_metadata()

health_monitor_create(healthmonitor)

health_monitor_delete(healthmonitor)

health_monitor_update(old_healthmonitor, new_healthmonitor)

l7policy_create(l7policy)

l7policy_delete(l7policy)

l7policy_update(old_l7policy, new_l7policy)

l7rule_create(l7rule)

l7rule_delete(l7rule)

l7rule_update(old_l7rule, new_l7rule)

listener_create(listener)

listener_delete(listener)

listener_update(old_listener, new_listener)

loadbalancer_create(loadbalancer)

loadbalancer_delete(loadbalancer, cascade=False)

loadbalancer_failover(loadbalancer_id)

4.6. Module Reference 469

Octavia Documentation, Release 15.1.0.dev35

loadbalancer_update(old_loadbalancer, new_loadbalancer)

member_batch_update(pool_id, members)

member_create(member)

member_delete(member)

member_update(old_member, new_member)

pool_create(pool)

pool_delete(pool)

pool_update(old_pool, new_pool)

validate_availability_zone(availability_zone_metadata)

validate_flavor(flavor_metadata)

class NoopProviderDriver

Bases: ProviderDriver

create_vip_port(loadbalancer_id, project_id, vip_dictionary, additional_vip_dicts)
Creates a port for a load balancer VIP.

If the driver supports creating VIP ports, the driver will create a VIP port with the primary
VIP and all additional VIPs added to the port, and return the vip_dictionary populated with
the vip_port_id and a list of vip_dictionaries populated with data from the additional VIPs
(which are guaranteed to be in the same Network). This might look like: {’port_id’: port_id,
’subnet_id’: subnet_id_1, ’ip_address’: ip1}, [{’subnet_id’: subnet_id_2, ’ip_address’:
ip2}, {...}, {...}] If the driver does not support port creation, the driver will raise a NotIm-
plementedError.

Parameters

• loadbalancer_id (string) -- ID of loadbalancer.

• project_id (string) -- The project ID to create the VIP under.

Param
vip_dictionary: The VIP dictionary.

Param
additional_vip_dicts: A list of additional VIP dictionaries, with subnets guar-
anteed to be in the same network as the primary vip_dictionary.

Returns
VIP dictionary with vip_port_id + a list of additional VIP dictionaries (vip_dict,
additional_vip_dicts).

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- The driver does not support creating VIP ports.

4.6. Module Reference 470

Octavia Documentation, Release 15.1.0.dev35

get_supported_availability_zone_metadata()

Returns a dict of supported availability zone metadata keys.

The returned dictionary will include key/value pairs, ’name’ and ’description.’

Returns
The availability zone metadata dictionary

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- The driver does not support AZs.

get_supported_flavor_metadata()

Returns a dict of flavor metadata keys supported by this driver.

The returned dictionary will include key/value pairs, ’name’ and ’description.’

Returns
The flavor metadata dictionary

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- The driver does not support flavors.

health_monitor_create(healthmonitor)
Creates a new health monitor.

Parameters
healthmonitor (object) -- The health monitor object.

Returns
Nothing if the create request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

• UnsupportedOptionError -- if driver does not support one of the config-
uration options.

health_monitor_delete(healthmonitor)
Deletes a healthmonitor_id.

Parameters
healthmonitor (object) -- The monitor to delete.

Returns
Nothing if the create request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

4.6. Module Reference 471

Octavia Documentation, Release 15.1.0.dev35

health_monitor_update(old_healthmonitor, new_healthmonitor)
Updates a health monitor.

Parameters

• old_healthmonitor (object) -- The baseline health monitor object.

• new_healthmonitor (object) -- The updated health monitor object.

Returns
Nothing if the create request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

• UnsupportedOptionError -- if driver does not support one of the config-
uration options.

l7policy_create(l7policy)
Creates a new L7 policy.

Parameters
l7policy (object) -- The L7 policy object.

Returns
Nothing if the create request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

• UnsupportedOptionError -- if driver does not support one of the config-
uration options.

l7policy_delete(l7policy)
Deletes an L7 policy.

Parameters
l7policy (object) -- The L7 policy to delete.

Returns
Nothing if the delete request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

l7policy_update(old_l7policy, new_l7policy)
Updates an L7 policy.

Parameters

• old_l7policy (object) -- The baseline L7 policy object.

• new_l7policy (object) -- The updated L7 policy object.

4.6. Module Reference 472

Octavia Documentation, Release 15.1.0.dev35

Returns
Nothing if the update request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

• UnsupportedOptionError -- if driver does not support one of the config-
uration options.

l7rule_create(l7rule)
Creates a new L7 rule.

Parameters
l7rule (object) -- The L7 rule object.

Returns
Nothing if the create request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

• UnsupportedOptionError -- if driver does not support one of the config-
uration options.

l7rule_delete(l7rule)
Deletes an L7 rule.

Parameters
l7rule (object) -- The L7 rule to delete.

Returns
Nothing if the delete request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

l7rule_update(old_l7rule, new_l7rule)
Updates an L7 rule.

Parameters

• old_l7rule (object) -- The baseline L7 rule object.

• new_l7rule (object) -- The updated L7 rule object.

Returns
Nothing if the update request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

4.6. Module Reference 473

Octavia Documentation, Release 15.1.0.dev35

• UnsupportedOptionError -- if driver does not support one of the config-
uration options.

listener_create(listener)
Creates a new listener.

Parameters
listener (object) -- The listener object.

Returns
Nothing if the create request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

• UnsupportedOptionError -- if driver does not support one of the config-
uration options.

listener_delete(listener)
Deletes a listener.

Parameters
listener (object) -- The listener to delete.

Returns
Nothing if the delete request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

listener_update(old_listener, new_listener)
Updates a listener.

Parameters

• old_listener (object) -- The baseline listener object.

• new_listener (object) -- The updated listener object.

Returns
Nothing if the update request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

• UnsupportedOptionError -- if driver does not support one of the config-
uration options.

loadbalancer_create(loadbalancer)
Creates a new load balancer.

Parameters
loadbalancer (object) -- The load balancer object.

4.6. Module Reference 474

Octavia Documentation, Release 15.1.0.dev35

Returns
Nothing if the create request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- The driver does not support create.

• UnsupportedOptionError -- The driver does not support one of the con-
figuration options.

loadbalancer_delete(loadbalancer, cascade=False)
Deletes a load balancer.

Parameters

• loadbalancer (object) -- The load balancer to delete.

• cascade (bool) -- If True, deletes all child objects (listeners, pools, etc.) in
addition to the load balancer.

Returns
Nothing if the delete request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

loadbalancer_failover(loadbalancer_id)
Performs a fail over of a load balancer.

Parameters
loadbalancer_id (string) -- ID of the load balancer to failover.

Returns
Nothing if the failover request was accepted.

Raises
DriverError -- An unexpected error occurred in the driver.

Raises
NotImplementedError if driver does not support request.

loadbalancer_update(old_loadbalancer, new_loadbalancer)
Updates a load balancer.

Parameters

• old_loadbalancer (object) -- The baseline load balancer object.

• new_loadbalancer (object) -- The updated load balancer object.

Returns
Nothing if the update request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- The driver does not support request.

4.6. Module Reference 475

Octavia Documentation, Release 15.1.0.dev35

• UnsupportedOptionError -- The driver does not support one of the con-
figuration options.

member_batch_update(pool_id, members)
Creates, updates, or deletes a set of pool members.

Parameters

• pool_id (string) -- The id of the pool to update.

• members (list) -- List of member objects.

Returns
Nothing if the create request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

• UnsupportedOptionError -- if driver does not support one of the config-
uration options.

member_create(member)
Creates a new member for a pool.

Parameters
member (object) -- The member object.

Returns
Nothing if the create request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

• UnsupportedOptionError -- if driver does not support one of the config-
uration options.

member_delete(member)
Deletes a pool member.

Parameters
member (object) -- The member to delete.

Returns
Nothing if the create request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

member_update(old_member, new_member)
Updates a pool member.

Parameters

• old_member (object) -- The baseline member object.

4.6. Module Reference 476

Octavia Documentation, Release 15.1.0.dev35

• new_member (object) -- The updated member object.

Returns
Nothing if the create request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

• UnsupportedOptionError -- if driver does not support one of the config-
uration options.

pool_create(pool)
Creates a new pool.

Parameters
pool (object) -- The pool object.

Returns
Nothing if the create request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

• UnsupportedOptionError -- if driver does not support one of the config-
uration options.

pool_delete(pool)
Deletes a pool and its members.

Parameters
pool (object) -- The pool to delete.

Returns
Nothing if the create request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

pool_update(old_pool, new_pool)
Updates a pool.

Parameters

• pool (object) -- The baseline pool object.

• pool -- The updated pool object.

Returns
Nothing if the create request was accepted.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- if driver does not support request.

4.6. Module Reference 477

Octavia Documentation, Release 15.1.0.dev35

• UnsupportedOptionError -- if driver does not support one of the config-
uration options.

validate_availability_zone(availability_zone_metadata)
Validates if driver can support the availability zone.

Parameters
availability_zone_metadata (dict) -- Dictionary with az metadata.

Returns
Nothing if the availability zone is valid and supported.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- The driver does not support availability zones.

• UnsupportedOptionError -- if driver does not support one of the config-
uration options.

validate_flavor(flavor_metadata)
Validates if driver can support the flavor.

Parameters
flavor_metadata (dict) -- Dictionary with flavor metadata.

Returns
Nothing if the flavor is valid and supported.

Raises

• DriverError -- An unexpected error occurred in the driver.

• NotImplementedError -- The driver does not support flavors.

• UnsupportedOptionError -- if driver does not support one of the config-
uration options.

• octavia_lib.api.drivers.exceptions.NotFound -- if the driver can-
not find a resource.

Module contents

Submodules

octavia.api.drivers.driver_factory module

get_driver(provider)

octavia.api.drivers.utils module

additional_vip_dict_to_provider_dict(vip_dict)

call_provider(provider, driver_method, *args, **kwargs)
Wrap calls to the provider driver to handle driver errors.

This allows Octavia to return user friendly errors when a provider driver has an issue.

4.6. Module Reference 478

Octavia Documentation, Release 15.1.0.dev35

Parameters
driver_method -- Method in the driver to call.

Raises

• ProviderDriverError -- Catch all driver error.

• ProviderNotImplementedError -- The driver doesn’t support this action.

• ProviderUnsupportedOptionError -- The driver doesn’t support a pro-
vided option.

db_HM_to_provider_HM(db_hm)

db_additional_vips_to_provider_vips(db_add_vips)

db_l7policies_to_provider_l7policies(db_l7policies)

db_l7policy_to_provider_l7policy(db_l7policy)

db_l7rule_to_provider_l7rule(db_l7rule)

db_l7rules_to_provider_l7rules(db_l7rules)

db_listener_to_provider_listener(db_listener, for_delete=False)

db_listeners_to_provider_dicts_list_of_dicts(db_listeners, for_delete=False)

db_listeners_to_provider_listeners(db_listeners, for_delete=False)

db_loadbalancer_to_provider_loadbalancer(db_loadbalancer, for_delete=False)

db_member_to_provider_member(db_member)

db_members_to_provider_members(db_members)

db_pool_to_provider_pool(db_pool, for_delete=False)

db_pools_to_provider_pools(db_pools, for_delete=False)

hm_dict_to_provider_dict(hm_dict)

l7policy_dict_to_provider_dict(l7policy_dict)

l7rule_dict_to_provider_dict(l7rule_dict)

lb_dict_to_provider_dict(lb_dict, vip=None, add_vips=None, db_pools=None,
db_listeners=None, for_delete=False)

listener_dict_to_provider_dict(listener_dict, for_delete=False)

member_dict_to_provider_dict(member_dict)

pool_dict_to_provider_dict(pool_dict, for_delete=False)

provider_additional_vip_dict_to_additional_vip_obj(vip_dictionary)

provider_vip_dict_to_vip_obj(vip_dictionary)

vip_dict_to_provider_dict(vip_dict)

4.6. Module Reference 479

Octavia Documentation, Release 15.1.0.dev35

Module contents

octavia.api.v2 package

Subpackages

octavia.api.v2.controllers package

Submodules

octavia.api.v2.controllers.amphora module

class AmphoraController(*args, **kwargs)
Bases: BaseController

RBAC_TYPE = 'os_load-balancer_api:amphora:'

delete(id)
Deletes an amphora.

get_all(fields=None)
Gets all amphorae.

get_one(id, fields=None)
Gets a single amphora’s details.

class AmphoraStatsController(*args, **kwargs)
Bases: BaseController

RBAC_TYPE = 'os_load-balancer_api:amphora:'

get()

class AmphoraUpdateController(*args, **kwargs)
Bases: BaseController

RBAC_TYPE = 'os_load-balancer_api:amphora:'

put()

Update amphora agent configuration

class FailoverController(*args, **kwargs)
Bases: BaseController

RBAC_TYPE = 'os_load-balancer_api:amphora:'

put()

Fails over an amphora

octavia.api.v2.controllers.availability_zone_profiles module

class AvailabilityZoneProfileController(*args, **kwargs)
Bases: BaseController

RBAC_TYPE = 'os_load-balancer_api:availability-zone-profile:'

4.6. Module Reference 480

Octavia Documentation, Release 15.1.0.dev35

delete(availability_zone_profile_id)
Deletes an Availability Zone Profile

get_all(fields=None)
Lists all Availability Zone Profiles.

get_one(id, fields=None)
Gets an Availability Zone Profile’s detail.

post(availability_zone_profile_)
Creates an Availability Zone Profile.

put(id, availability_zone_profile_)
Updates an Availability Zone Profile.

octavia.api.v2.controllers.availability_zones module

class AvailabilityZonesController(*args, **kwargs)
Bases: BaseController

RBAC_TYPE = 'os_load-balancer_api:availability-zone:'

delete(availability_zone_name)
Deletes an Availability Zone

get_all(fields=None)
Lists all Availability Zones.

get_one(name, fields=None)
Gets an Availability Zone’s detail.

post(availability_zone_)
Creates an Availability Zone.

put(name, availability_zone_)

octavia.api.v2.controllers.base module

class BaseController(*args, **kwargs)
Bases: RestController

RBAC_TYPE = None

octavia.api.v2.controllers.flavor_profiles module

class FlavorProfileController(*args, **kwargs)
Bases: BaseController

RBAC_TYPE = 'os_load-balancer_api:flavor-profile:'

delete(flavor_profile_id)
Deletes a Flavor Profile

get_all(fields=None)
Lists all flavor profiles.

4.6. Module Reference 481

Octavia Documentation, Release 15.1.0.dev35

get_one(id, fields=None)
Gets a flavor profile’s detail.

post(flavor_profile_)
Creates a flavor Profile.

put(id, flavor_profile_)
Updates a flavor Profile.

octavia.api.v2.controllers.flavors module

class FlavorsController(*args, **kwargs)
Bases: BaseController

RBAC_TYPE = 'os_load-balancer_api:flavor:'

delete(flavor_id)
Deletes a Flavor

get_all(fields=None)
Lists all flavors.

get_one(id, fields=None)
Gets a flavor’s detail.

post(flavor_)
Creates a flavor.

put(id, flavor_)

octavia.api.v2.controllers.health_monitor module

class HealthMonitorController(*args, **kwargs)
Bases: BaseController

RBAC_TYPE = 'os_load-balancer_api:healthmonitor:'

delete(id)
Deletes a health monitor.

get_all(project_id=None, fields=None)
Gets all health monitors.

get_one(id, fields=None)
Gets a single healthmonitor’s details.

post(health_monitor_)
Creates a health monitor on a pool.

put(id, health_monitor_)
Updates a health monitor.

4.6. Module Reference 482

Octavia Documentation, Release 15.1.0.dev35

octavia.api.v2.controllers.l7policy module

class L7PolicyController(*args, **kwargs)
Bases: BaseController

RBAC_TYPE = 'os_load-balancer_api:l7policy:'

delete(id)
Deletes a l7policy.

get(id, fields=None)
Gets a single l7policy’s details.

get_all(project_id=None, fields=None)
Lists all l7policies of a listener.

post(l7policy_)
Creates a l7policy on a listener.

put(id, l7policy_)
Updates a l7policy.

octavia.api.v2.controllers.l7rule module

class L7RuleController(*args, **kwargs)
Bases: BaseController

RBAC_TYPE = 'os_load-balancer_api:l7rule:'

delete(id)
Deletes a l7rule.

get(id, fields=None)
Gets a single l7rule’s details.

get_all(fields=None)
Lists all l7rules of a l7policy.

post(rule_)
Creates a l7rule on an l7policy.

put(id, l7rule_)
Updates a l7rule.

octavia.api.v2.controllers.listener module

class ListenersController(*args, **kwargs)
Bases: BaseController

RBAC_TYPE = 'os_load-balancer_api:listener:'

delete(id)
Deletes a listener from a load balancer.

4.6. Module Reference 483

Octavia Documentation, Release 15.1.0.dev35

get_all(project_id=None, fields=None)
Lists all listeners.

get_one(id, fields=None)
Gets a single listener’s details.

post(listener_)
Creates a listener on a load balancer.

put(id, listener_: ListenerRootPUT)
Updates a listener on a load balancer.

class StatisticsController(*args, **kwargs)
Bases: BaseController, StatsMixin

RBAC_TYPE = 'os_load-balancer_api:listener:'

get()

octavia.api.v2.controllers.load_balancer module

class FailoverController(*args, **kwargs)
Bases: LoadBalancersController

put(**kwargs)
Fails over a loadbalancer

class LoadBalancersController(*args, **kwargs)
Bases: BaseController

RBAC_TYPE = 'os_load-balancer_api:loadbalancer:'

delete(id, cascade=False)
Deletes a load balancer.

get_all(project_id=None, fields=None)
Lists all load balancers.

get_one(id, fields=None)
Gets a single load balancer’s details.

post(load_balancer)
Creates a load balancer.

put(id, load_balancer)
Updates a load balancer.

class StatisticsController(*args, **kwargs)
Bases: BaseController, StatsMixin

RBAC_TYPE = 'os_load-balancer_api:loadbalancer:'

get()

class StatusController(*args, **kwargs)
Bases: BaseController

4.6. Module Reference 484

Octavia Documentation, Release 15.1.0.dev35

RBAC_TYPE = 'os_load-balancer_api:loadbalancer:'

get()

octavia.api.v2.controllers.member module

class MemberController(*args, **kwargs)
Bases: BaseController

RBAC_TYPE = 'os_load-balancer_api:member:'

delete(id)
Deletes a pool member.

get(id, fields=None)
Gets a single pool member’s details.

get_all(fields=None)
Lists all pool members of a pool.

post(member_)
Creates a pool member on a pool.

put(id, member_)
Updates a pool member.

class MembersController(*args, **kwargs)
Bases: MemberController

put(additive_only=False, members_=None)
Updates all members.

octavia.api.v2.controllers.pool module

class PoolsController(*args, **kwargs)
Bases: BaseController

RBAC_TYPE = 'os_load-balancer_api:pool:'

delete(id)
Deletes a pool from a load balancer.

get(id, fields=None)
Gets a pool’s details.

get_all(project_id=None, fields=None)
Lists all pools.

post(pool_)
Creates a pool on a load balancer or listener.

Note that this can optionally take a listener_id with which the pool should be associated as the
listener’s default_pool. If specified, the pool creation will fail if the listener specified already
has a default_pool.

put(id, pool_)
Updates a pool on a load balancer.

4.6. Module Reference 485

Octavia Documentation, Release 15.1.0.dev35

octavia.api.v2.controllers.provider module

class AvailabilityZoneCapabilitiesController(*args, **kwargs)
Bases: BaseController

RBAC_TYPE = 'os_load-balancer_api:provider-availability-zone:'

get_all(fields=None)

class FlavorCapabilitiesController(*args, **kwargs)
Bases: BaseController

RBAC_TYPE = 'os_load-balancer_api:provider-flavor:'

get_all(fields=None)

class ProviderController(*args, **kwargs)
Bases: BaseController

RBAC_TYPE = 'os_load-balancer_api:provider:'

get_all(fields=None)
List enabled provider drivers and their descriptions.

octavia.api.v2.controllers.quotas module

class QuotasController(*args, **kwargs)
Bases: BaseController

RBAC_TYPE = 'os_load-balancer_api:quota:'

delete(project_id)
Reset a project’s quotas to the default values.

get(project_id)
Get a single project’s quota details.

get_all(project_id=None)
List all non-default quotas.

put(project_id, quotas)
Update any or all quotas for a project.

class QuotasDefaultController(*args, **kwargs)
Bases: BaseController

RBAC_TYPE = 'os_load-balancer_api:quota:'

get()

Get a project’s default quota details.

Module contents

class BaseV2Controller(*args, **kwargs)
Bases: BaseController

4.6. Module Reference 486

Octavia Documentation, Release 15.1.0.dev35

get()

healthmonitors = None

l7policies = None

listeners = None

loadbalancers = None

pools = None

quotas = None

class OctaviaV2Controller(*args, **kwargs)
Bases: BaseController

amphorae = None

get()

class V2Controller(*args, **kwargs)
Bases: BaseV2Controller

lbaas = None

octavia.api.v2.types package

Submodules

octavia.api.v2.types.amphora module

class AmphoraResponse(**kw)
Bases: BaseAmphoraType

Defines which attributes are to be shown on any response.

cached_zone

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

4.6. Module Reference 487

Octavia Documentation, Release 15.1.0.dev35

cert_busy

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

cert_expiration

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

compute_flavor

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

compute_id

Complex type attribute definition.

4.6. Module Reference 488

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

created_at

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

classmethod from_data_model(data_model, children=False)
Converts data_model to Octavia WSME type.

Parameters

• data_model -- data model to convert from

• children -- convert child data models

ha_ip

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 489

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

ha_port_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

image_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 490

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

lb_network_ip

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

loadbalancer_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

role

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 491

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

status

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

updated_at

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

vrrp_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 492

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

vrrp_interface

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

vrrp_ip

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

vrrp_port_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 493

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

vrrp_priority

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class AmphoraRootResponse(**kw)
Bases: BaseType

amphora

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class AmphoraStatisticsResponse(**kw)
Bases: BaseAmphoraType

Defines which attributes are to show on stats response.

active_connections

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int

(continues on next page)

4.6. Module Reference 494

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

bytes_in

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

bytes_out

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int

(continues on next page)

4.6. Module Reference 495

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

listener_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

loadbalancer_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

request_errors

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int

(continues on next page)

4.6. Module Reference 496

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

total_connections

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class AmphoraeRootResponse(**kw)
Bases: BaseType

amphorae

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

amphorae_links

Complex type attribute definition.

Example:

4.6. Module Reference 497

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class BaseAmphoraType(**kw)
Bases: BaseType

class StatisticsRootResponse(**kw)
Bases: BaseType

amphora_stats

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

octavia.api.v2.types.availability_zone_profile module

class AvailabilityZoneProfilePOST(**kw)
Bases: BaseAvailabilityZoneProfileType

Defines mandatory and optional attributes of a POST request.

availability_zone_data

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 498

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

provider_name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class AvailabilityZoneProfilePUT(**kw)
Bases: BaseAvailabilityZoneProfileType

Defines the attributes of a PUT request.

availability_zone_data

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

4.6. Module Reference 499

Octavia Documentation, Release 15.1.0.dev35

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

provider_name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class AvailabilityZoneProfileResponse(**kw)
Bases: BaseAvailabilityZoneProfileType

Defines which attributes are to be shown on any response.

availability_zone_data

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int

(continues on next page)

4.6. Module Reference 500

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

classmethod from_data_model(data_model, children=False)
Converts data_model to Octavia WSME type.

Parameters

• data_model -- data model to convert from

• children -- convert child data models

id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

4.6. Module Reference 501

Octavia Documentation, Release 15.1.0.dev35

provider_name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class AvailabilityZoneProfileRootPOST(**kw)
Bases: BaseType

availability_zone_profile

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class AvailabilityZoneProfileRootPUT(**kw)
Bases: BaseType

availability_zone_profile

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 502

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class AvailabilityZoneProfileRootResponse(**kw)
Bases: BaseType

availability_zone_profile

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class AvailabilityZoneProfilesRootResponse(**kw)
Bases: BaseType

availability_zone_profile_links

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

availability_zone_profiles

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

4.6. Module Reference 503

Octavia Documentation, Release 15.1.0.dev35

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class BaseAvailabilityZoneProfileType(**kw)
Bases: BaseType

octavia.api.v2.types.availability_zones module

class AvailabilityZonePOST(**kw)
Bases: BaseAvailabilityZoneType

Defines mandatory and optional attributes of a POST request.

availability_zone_profile_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

description

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

enabled

Complex type attribute definition.

4.6. Module Reference 504

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class AvailabilityZonePUT(**kw)
Bases: BaseAvailabilityZoneType

Defines the attributes of a PUT request.

description

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

4.6. Module Reference 505

Octavia Documentation, Release 15.1.0.dev35

enabled

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class AvailabilityZoneResponse(**kw)
Bases: BaseAvailabilityZoneType

Defines which attributes are to be shown on any response.

availability_zone_profile_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

description

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 506

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

enabled

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

classmethod from_data_model(data_model, children=False)
Converts data_model to Octavia WSME type.

Parameters

• data_model -- data model to convert from

• children -- convert child data models

name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class AvailabilityZoneRootPOST(**kw)
Bases: BaseType

availability_zone

Complex type attribute definition.

Example:

4.6. Module Reference 507

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class AvailabilityZoneRootPUT(**kw)
Bases: BaseType

availability_zone

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class AvailabilityZoneRootResponse(**kw)
Bases: BaseType

availability_zone

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

4.6. Module Reference 508

Octavia Documentation, Release 15.1.0.dev35

class AvailabilityZonesRootResponse(**kw)
Bases: BaseType

availability_zones

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

availability_zones_links

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class BaseAvailabilityZoneType(**kw)
Bases: BaseType

octavia.api.v2.types.flavor_profile module

class BaseFlavorProfileType(**kw)
Bases: BaseType

class FlavorProfilePOST(**kw)
Bases: BaseFlavorProfileType

Defines mandatory and optional attributes of a POST request.

flavor_data

Complex type attribute definition.

Example:

4.6. Module Reference 509

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

provider_name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class FlavorProfilePUT(**kw)
Bases: BaseFlavorProfileType

Defines the attributes of a PUT request.

flavor_data

Complex type attribute definition.

4.6. Module Reference 510

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

provider_name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class FlavorProfileResponse(**kw)
Bases: BaseFlavorProfileType

Defines which attributes are to be shown on any response.

4.6. Module Reference 511

Octavia Documentation, Release 15.1.0.dev35

flavor_data

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

classmethod from_data_model(data_model, children=False)
Converts data_model to Octavia WSME type.

Parameters

• data_model -- data model to convert from

• children -- convert child data models

id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 512

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

provider_name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class FlavorProfileRootPOST(**kw)
Bases: BaseType

flavorprofile

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class FlavorProfileRootPUT(**kw)
Bases: BaseType

flavorprofile

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

4.6. Module Reference 513

Octavia Documentation, Release 15.1.0.dev35

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class FlavorProfileRootResponse(**kw)
Bases: BaseType

flavorprofile

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class FlavorProfilesRootResponse(**kw)
Bases: BaseType

flavorprofile_links

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

flavorprofiles

Complex type attribute definition.

Example:

4.6. Module Reference 514

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

octavia.api.v2.types.flavors module

class BaseFlavorType(**kw)
Bases: BaseType

class FlavorPOST(**kw)
Bases: BaseFlavorType

Defines mandatory and optional attributes of a POST request.

description

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

enabled

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 515

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

flavor_profile_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class FlavorPUT(**kw)
Bases: BaseFlavorType

Defines the attributes of a PUT request.

description

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

4.6. Module Reference 516

Octavia Documentation, Release 15.1.0.dev35

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

enabled

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class FlavorResponse(**kw)
Bases: BaseFlavorType

Defines which attributes are to be shown on any response.

description

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int

(continues on next page)

4.6. Module Reference 517

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

enabled

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

flavor_profile_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

classmethod from_data_model(data_model, children=False)
Converts data_model to Octavia WSME type.

Parameters

• data_model -- data model to convert from

• children -- convert child data models

4.6. Module Reference 518

Octavia Documentation, Release 15.1.0.dev35

id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class FlavorRootPOST(**kw)
Bases: BaseType

flavor

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

4.6. Module Reference 519

Octavia Documentation, Release 15.1.0.dev35

class FlavorRootPUT(**kw)
Bases: BaseType

flavor

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class FlavorRootResponse(**kw)
Bases: BaseType

flavor

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class FlavorsRootResponse(**kw)
Bases: BaseType

flavors

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 520

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

flavors_links

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

octavia.api.v2.types.health_monitor module

class BaseHealthMonitorType(**kw)
Bases: BaseType

class HealthMonitorFullResponse(**kw)
Bases: HealthMonitorResponse

admin_state_up

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

created_at

Complex type attribute definition.

Example:

4.6. Module Reference 521

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

delay

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

domain_name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

expected_codes

Complex type attribute definition.

Example:

4.6. Module Reference 522

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

http_method

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

http_version

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

id

Complex type attribute definition.

Example:

4.6. Module Reference 523

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

max_retries

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

max_retries_down

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

4.6. Module Reference 524

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

operating_status

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

pools

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

project_id

Complex type attribute definition.

Example:

4.6. Module Reference 525

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

provisioning_status

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tags

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

property tenant_id

timeout

Complex type attribute definition.

Example:

4.6. Module Reference 526

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

type

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

updated_at

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

url_path

Complex type attribute definition.

Example:

4.6. Module Reference 527

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class HealthMonitorPOST(**kw)
Bases: BaseHealthMonitorType

Defines mandatory and optional attributes of a POST request.

admin_state_up

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

delay

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

domain_name

Complex type attribute definition.

4.6. Module Reference 528

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

expected_codes

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

http_method

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

http_version

Complex type attribute definition.

Example:

4.6. Module Reference 529

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

max_retries

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

max_retries_down

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

4.6. Module Reference 530

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

pool_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

project_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tags

Complex type attribute definition.

Example:

4.6. Module Reference 531

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

property tenant_id

timeout

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

type

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

url_path

Complex type attribute definition.

Example:

4.6. Module Reference 532

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class HealthMonitorPUT(**kw)
Bases: BaseHealthMonitorType

Defines attributes that are acceptable of a PUT request.

admin_state_up

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

delay

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

domain_name

Complex type attribute definition.

4.6. Module Reference 533

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

expected_codes

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

http_method

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

http_version

Complex type attribute definition.

Example:

4.6. Module Reference 534

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

max_retries

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

max_retries_down

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

4.6. Module Reference 535

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tags

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

timeout

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

url_path

Complex type attribute definition.

Example:

4.6. Module Reference 536

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class HealthMonitorResponse(**kw)
Bases: BaseHealthMonitorType

Defines which attributes are to be shown on any response.

admin_state_up

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

created_at

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

delay

Complex type attribute definition.

4.6. Module Reference 537

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

domain_name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

expected_codes

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

classmethod from_data_model(data_model, children=False)
Converts data_model to Octavia WSME type.

Parameters

• data_model -- data model to convert from

4.6. Module Reference 538

Octavia Documentation, Release 15.1.0.dev35

• children -- convert child data models

http_method

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

http_version

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

4.6. Module Reference 539

Octavia Documentation, Release 15.1.0.dev35

max_retries

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

max_retries_down

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

operating_status

Complex type attribute definition.

4.6. Module Reference 540

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

pools

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

project_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

provisioning_status

Complex type attribute definition.

Example:

4.6. Module Reference 541

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tags

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

property tenant_id

timeout

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

type

Complex type attribute definition.

Example:

4.6. Module Reference 542

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

updated_at

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

url_path

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class HealthMonitorRootPOST(**kw)
Bases: BaseType

healthmonitor

Complex type attribute definition.

Example:

4.6. Module Reference 543

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class HealthMonitorRootPUT(**kw)
Bases: BaseType

healthmonitor

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class HealthMonitorRootResponse(**kw)
Bases: BaseType

healthmonitor

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

4.6. Module Reference 544

Octavia Documentation, Release 15.1.0.dev35

class HealthMonitorSingleCreate(**kw)
Bases: BaseHealthMonitorType

Defines mandatory and optional attributes of a POST request.

admin_state_up

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

delay

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

domain_name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 545

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

expected_codes

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

http_method

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

http_version

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 546

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

max_retries

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

max_retries_down

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 547

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tags

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

timeout

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

type

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 548

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

url_path

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class HealthMonitorStatusResponse(**kw)
Bases: BaseHealthMonitorType

Defines which attributes are to be shown on status response.

id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

4.6. Module Reference 549

Octavia Documentation, Release 15.1.0.dev35

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

operating_status

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

provisioning_status

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

type

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 550

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class HealthMonitorsRootResponse(**kw)
Bases: BaseType

healthmonitors

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

healthmonitors_links

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

octavia.api.v2.types.l7policy module

class BaseL7PolicyType(**kw)
Bases: BaseType

class L7PoliciesRootResponse(**kw)
Bases: BaseType

l7policies

Complex type attribute definition.

Example:

4.6. Module Reference 551

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

l7policies_links

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class L7PolicyFullResponse(**kw)
Bases: L7PolicyResponse

action

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

admin_state_up

Complex type attribute definition.

Example:

4.6. Module Reference 552

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

created_at

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

description

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

id

Complex type attribute definition.

Example:

4.6. Module Reference 553

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

listener_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

operating_status

Complex type attribute definition.

Example:

4.6. Module Reference 554

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

position

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

project_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

provisioning_status

Complex type attribute definition.

Example:

4.6. Module Reference 555

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

redirect_http_code

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

redirect_pool_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

redirect_prefix

Complex type attribute definition.

Example:

4.6. Module Reference 556

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

redirect_url

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

rules

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tags

Complex type attribute definition.

Example:

4.6. Module Reference 557

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

property tenant_id

updated_at

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class L7PolicyPOST(**kw)
Bases: BaseL7PolicyType

Defines mandatory and optional attributes of a POST request.

action

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

4.6. Module Reference 558

Octavia Documentation, Release 15.1.0.dev35

admin_state_up

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

description

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

listener_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

4.6. Module Reference 559

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

position

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

project_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

redirect_http_code

Complex type attribute definition.

Example:

4.6. Module Reference 560

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

redirect_pool_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

redirect_prefix

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

redirect_url

Complex type attribute definition.

Example:

4.6. Module Reference 561

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

rules

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tags

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

property tenant_id

class L7PolicyPUT(**kw)
Bases: BaseL7PolicyType

Defines attributes that are acceptable of a PUT request.

4.6. Module Reference 562

Octavia Documentation, Release 15.1.0.dev35

action

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

admin_state_up

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

description

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

4.6. Module Reference 563

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

position

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

redirect_http_code

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

redirect_pool_id

Complex type attribute definition.

Example:

4.6. Module Reference 564

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

redirect_prefix

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

redirect_url

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tags

Complex type attribute definition.

Example:

4.6. Module Reference 565

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class L7PolicyResponse(**kw)
Bases: BaseL7PolicyType

Defines which attributes are to be shown on any response.

action

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

admin_state_up

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

created_at

Complex type attribute definition.

4.6. Module Reference 566

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

description

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

classmethod from_data_model(data_model, children=False)
Converts data_model to Octavia WSME type.

Parameters

• data_model -- data model to convert from

• children -- convert child data models

id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 567

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

listener_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

operating_status

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 568

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

position

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

project_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

provisioning_status

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 569

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

redirect_http_code

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

redirect_pool_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

redirect_prefix

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 570

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

redirect_url

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

rules

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tags

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 571

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

property tenant_id

updated_at

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class L7PolicyRootPOST(**kw)
Bases: BaseType

l7policy

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class L7PolicyRootPUT(**kw)
Bases: BaseType

l7policy

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int

(continues on next page)

4.6. Module Reference 572

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class L7PolicyRootResponse(**kw)
Bases: BaseType

l7policy

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class L7PolicySingleCreate(**kw)
Bases: BaseL7PolicyType

Defines mandatory and optional attributes of a POST request.

action

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

4.6. Module Reference 573

Octavia Documentation, Release 15.1.0.dev35

admin_state_up

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

description

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

position

Complex type attribute definition.

4.6. Module Reference 574

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

redirect_http_code

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

redirect_pool

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

redirect_prefix

Complex type attribute definition.

Example:

4.6. Module Reference 575

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

redirect_url

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

rules

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tags

Complex type attribute definition.

Example:

4.6. Module Reference 576

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

octavia.api.v2.types.l7rule module

class BaseL7Type(**kw)
Bases: BaseType

class L7RuleFullResponse(**kw)
Bases: L7RuleResponse

admin_state_up

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

compare_type

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

4.6. Module Reference 577

Octavia Documentation, Release 15.1.0.dev35

created_at

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

invert

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

key

Complex type attribute definition.

4.6. Module Reference 578

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

operating_status

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

project_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

provisioning_status

Complex type attribute definition.

Example:

4.6. Module Reference 579

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tags

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

property tenant_id

type

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

updated_at

Complex type attribute definition.

Example:

4.6. Module Reference 580

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

value

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class L7RulePOST(**kw)
Bases: BaseL7Type

Defines mandatory and optional attributes of a POST request.

admin_state_up

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

compare_type

Complex type attribute definition.

4.6. Module Reference 581

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

invert

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

key

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

project_id

Complex type attribute definition.

Example:

4.6. Module Reference 582

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tags

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

property tenant_id

type

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

value

Complex type attribute definition.

Example:

4.6. Module Reference 583

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class L7RulePUT(**kw)
Bases: BaseL7Type

Defines attributes that are acceptable of a PUT request.

admin_state_up

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

compare_type

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

invert

Complex type attribute definition.

4.6. Module Reference 584

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

key

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tags

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

type

Complex type attribute definition.

Example:

4.6. Module Reference 585

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

value

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class L7RuleResponse(**kw)
Bases: BaseL7Type

Defines which attributes are to be shown on any response.

admin_state_up

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

compare_type

Complex type attribute definition.

4.6. Module Reference 586

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

created_at

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

classmethod from_data_model(data_model, children=False)
Converts data_model to Octavia WSME type.

Parameters

• data_model -- data model to convert from

• children -- convert child data models

id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 587

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

invert

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

key

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

operating_status

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 588

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

project_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

provisioning_status

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tags

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 589

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

property tenant_id

type

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

updated_at

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

value

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 590

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class L7RuleRootPOST(**kw)
Bases: BaseType

rule

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class L7RuleRootPUT(**kw)
Bases: BaseType

rule

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class L7RuleRootResponse(**kw)
Bases: BaseType

rule

Complex type attribute definition.

Example:

4.6. Module Reference 591

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class L7RuleSingleCreate(**kw)
Bases: BaseL7Type

Defines mandatory and optional attributes of a POST request.

admin_state_up

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

compare_type

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

invert

Complex type attribute definition.

4.6. Module Reference 592

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

key

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tags

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

type

Complex type attribute definition.

Example:

4.6. Module Reference 593

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

value

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class L7RulesRootResponse(**kw)
Bases: BaseType

rules

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

rules_links

Complex type attribute definition.

Example:

4.6. Module Reference 594

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

octavia.api.v2.types.listener module

class BaseListenerType(**kw)
Bases: BaseType

class ListenerFullResponse(**kw)
Bases: ListenerResponse

admin_state_up

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

allowed_cidrs

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

4.6. Module Reference 595

Octavia Documentation, Release 15.1.0.dev35

alpn_protocols

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

client_authentication

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

client_ca_tls_container_ref

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

client_crl_container_ref

Complex type attribute definition.

4.6. Module Reference 596

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

connection_limit

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

created_at

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

default_pool_id

Complex type attribute definition.

Example:

4.6. Module Reference 597

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

default_tls_container_ref

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

description

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

hsts_include_subdomains

Complex type attribute definition.

Example:

4.6. Module Reference 598

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

hsts_max_age

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

hsts_preload

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

id

Complex type attribute definition.

Example:

4.6. Module Reference 599

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

insert_headers

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

l7policies

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

loadbalancers

Complex type attribute definition.

Example:

4.6. Module Reference 600

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

operating_status

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

project_id

Complex type attribute definition.

Example:

4.6. Module Reference 601

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

protocol

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

protocol_port

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

provisioning_status

Complex type attribute definition.

Example:

4.6. Module Reference 602

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

sni_container_refs

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tags

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

property tenant_id

timeout_client_data

Complex type attribute definition.

Example:

4.6. Module Reference 603

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

timeout_member_connect

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

timeout_member_data

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

timeout_tcp_inspect

Complex type attribute definition.

Example:

4.6. Module Reference 604

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tls_ciphers

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tls_versions

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

updated_at

Complex type attribute definition.

Example:

4.6. Module Reference 605

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class ListenerPOST(**kw)
Bases: BaseListenerType

Defines mandatory and optional attributes of a POST request.

admin_state_up

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

allowed_cidrs

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

alpn_protocols

Complex type attribute definition.

4.6. Module Reference 606

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

client_authentication

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

client_ca_tls_container_ref

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

client_crl_container_ref

Complex type attribute definition.

Example:

4.6. Module Reference 607

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

connection_limit

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

default_pool

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

default_pool_id

Complex type attribute definition.

Example:

4.6. Module Reference 608

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

default_tls_container_ref

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

description

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

hsts_include_subdomains

Complex type attribute definition.

Example:

4.6. Module Reference 609

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

hsts_max_age

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

hsts_preload

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

insert_headers

Complex type attribute definition.

Example:

4.6. Module Reference 610

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

l7policies

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

loadbalancer_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

4.6. Module Reference 611

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

project_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

protocol

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

protocol_port

Complex type attribute definition.

Example:

4.6. Module Reference 612

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

sni_container_refs

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tags

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

property tenant_id

timeout_client_data

Complex type attribute definition.

Example:

4.6. Module Reference 613

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

timeout_member_connect

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

timeout_member_data

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

timeout_tcp_inspect

Complex type attribute definition.

Example:

4.6. Module Reference 614

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tls_ciphers

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tls_versions

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class ListenerPUT(**kw)
Bases: BaseListenerType

Defines attributes that are acceptable of a PUT request.

admin_state_up

Complex type attribute definition.

4.6. Module Reference 615

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

allowed_cidrs

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

alpn_protocols

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

client_authentication

Complex type attribute definition.

Example:

4.6. Module Reference 616

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

client_ca_tls_container_ref

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

client_crl_container_ref

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

connection_limit

Complex type attribute definition.

Example:

4.6. Module Reference 617

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

default_pool_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

default_tls_container_ref

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

description

Complex type attribute definition.

Example:

4.6. Module Reference 618

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

hsts_include_subdomains

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

hsts_max_age

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

hsts_preload

Complex type attribute definition.

Example:

4.6. Module Reference 619

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

insert_headers

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

sni_container_refs

Complex type attribute definition.

Example:

4.6. Module Reference 620

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tags

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

timeout_client_data

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

timeout_member_connect

Complex type attribute definition.

Example:

4.6. Module Reference 621

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

timeout_member_data

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

timeout_tcp_inspect

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tls_ciphers

Complex type attribute definition.

Example:

4.6. Module Reference 622

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tls_versions

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class ListenerResponse(**kw)
Bases: BaseListenerType

Defines which attributes are to be shown on any response.

admin_state_up

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

allowed_cidrs

Complex type attribute definition.

4.6. Module Reference 623

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

alpn_protocols

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

client_authentication

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

client_ca_tls_container_ref

Complex type attribute definition.

Example:

4.6. Module Reference 624

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

client_crl_container_ref

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

connection_limit

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

created_at

Complex type attribute definition.

Example:

4.6. Module Reference 625

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

default_pool_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

default_tls_container_ref

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

description

Complex type attribute definition.

Example:

4.6. Module Reference 626

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

classmethod from_data_model(data_model, children=False)
Converts data_model to Octavia WSME type.

Parameters

• data_model -- data model to convert from

• children -- convert child data models

hsts_include_subdomains

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

hsts_max_age

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

4.6. Module Reference 627

Octavia Documentation, Release 15.1.0.dev35

hsts_preload

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

insert_headers

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

l7policies

Complex type attribute definition.

4.6. Module Reference 628

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

loadbalancers

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

operating_status

Complex type attribute definition.

Example:

4.6. Module Reference 629

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

project_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

protocol

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

protocol_port

Complex type attribute definition.

Example:

4.6. Module Reference 630

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

provisioning_status

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

sni_container_refs

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tags

Complex type attribute definition.

Example:

4.6. Module Reference 631

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

property tenant_id

timeout_client_data

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

timeout_member_connect

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

timeout_member_data

Complex type attribute definition.

Example:

4.6. Module Reference 632

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

timeout_tcp_inspect

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tls_ciphers

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tls_versions

Complex type attribute definition.

Example:

4.6. Module Reference 633

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

updated_at

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class ListenerRootPOST(**kw)
Bases: BaseType

listener

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class ListenerRootPUT(**kw)
Bases: BaseType

4.6. Module Reference 634

Octavia Documentation, Release 15.1.0.dev35

listener

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class ListenerRootResponse(**kw)
Bases: BaseType

listener

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class ListenerSingleCreate(**kw)
Bases: BaseListenerType

Defines mandatory and optional attributes of a POST request.

admin_state_up

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 635

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

allowed_cidrs

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

alpn_protocols

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

client_authentication

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 636

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

client_ca_tls_container_ref

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

client_crl_container_ref

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

connection_limit

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 637

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

default_pool

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

default_pool_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

default_tls_container_ref

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 638

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

description

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

hsts_include_subdomains

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

hsts_max_age

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 639

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

hsts_preload

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

insert_headers

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

l7policies

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 640

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

protocol

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

protocol_port

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 641

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

sni_container_refs

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tags

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

timeout_client_data

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 642

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

timeout_member_connect

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

timeout_member_data

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

timeout_tcp_inspect

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 643

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tls_ciphers

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tls_versions

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class ListenerStatisticsResponse(**kw)
Bases: BaseListenerType

Defines which attributes are to show on stats response.

active_connections

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

4.6. Module Reference 644

Octavia Documentation, Release 15.1.0.dev35

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

bytes_in

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

bytes_out

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

classmethod from_data_model(data_model, children=False)
Converts data_model to Octavia WSME type.

Parameters

• data_model -- data model to convert from

• children -- convert child data models

request_errors

Complex type attribute definition.

Example:

4.6. Module Reference 645

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

total_connections

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class ListenerStatusResponse(**kw)
Bases: BaseListenerType

Defines which attributes are to be shown on status response.

classmethod from_data_model(data_model, children=False)
Converts data_model to Octavia WSME type.

Parameters

• data_model -- data model to convert from

• children -- convert child data models

id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 646

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

operating_status

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

pools

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 647

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

provisioning_status

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class ListenersRootResponse(**kw)
Bases: BaseType

listeners

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

listeners_links

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 648

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class StatisticsRootResponse(**kw)
Bases: BaseType

stats

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

octavia.api.v2.types.load_balancer module

class AdditionalVipsType(**kw)
Bases: BaseType

Type for additional vips

ip_address

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

subnet_id

Complex type attribute definition.

Example:

4.6. Module Reference 649

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class BaseLoadBalancerType(**kw)
Bases: BaseType

class LoadBalancerFullResponse(**kw)
Bases: LoadBalancerResponse

additional_vips

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

admin_state_up

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

4.6. Module Reference 650

Octavia Documentation, Release 15.1.0.dev35

availability_zone

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

created_at

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

description

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

flavor_id

Complex type attribute definition.

4.6. Module Reference 651

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

listeners

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

4.6. Module Reference 652

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

operating_status

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

pools

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

project_id

Complex type attribute definition.

Example:

4.6. Module Reference 653

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

provider

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

provisioning_status

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tags

Complex type attribute definition.

Example:

4.6. Module Reference 654

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

property tenant_id

updated_at

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

vip_address

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

vip_network_id

Complex type attribute definition.

Example:

4.6. Module Reference 655

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

vip_port_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

vip_qos_policy_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

vip_subnet_id

Complex type attribute definition.

Example:

4.6. Module Reference 656

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

vip_vnic_type

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class LoadBalancerFullRootResponse(**kw)
Bases: LoadBalancerRootResponse

loadbalancer

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class LoadBalancerPOST(**kw)
Bases: BaseLoadBalancerType

Defines mandatory and optional attributes of a POST request.

4.6. Module Reference 657

Octavia Documentation, Release 15.1.0.dev35

additional_vips

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

admin_state_up

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

availability_zone

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

description

Complex type attribute definition.

4.6. Module Reference 658

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

flavor_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

listeners

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

4.6. Module Reference 659

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

pools

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

project_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

provider

Complex type attribute definition.

Example:

4.6. Module Reference 660

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tags

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

property tenant_id

vip_address

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

vip_network_id

Complex type attribute definition.

Example:

4.6. Module Reference 661

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

vip_port_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

vip_qos_policy_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

vip_subnet_id

Complex type attribute definition.

Example:

4.6. Module Reference 662

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class LoadBalancerPUT(**kw)
Bases: BaseLoadBalancerType

Defines attributes that are acceptable of a PUT request.

admin_state_up

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

description

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

4.6. Module Reference 663

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tags

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

vip_qos_policy_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class LoadBalancerResponse(**kw)
Bases: BaseLoadBalancerType

Defines which attributes are to be shown on any response.

4.6. Module Reference 664

Octavia Documentation, Release 15.1.0.dev35

additional_vips

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

admin_state_up

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

availability_zone

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

created_at

Complex type attribute definition.

4.6. Module Reference 665

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

description

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

flavor_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

classmethod from_data_model(data_model, children=False)
Converts data_model to Octavia WSME type.

Parameters

• data_model -- data model to convert from

4.6. Module Reference 666

Octavia Documentation, Release 15.1.0.dev35

• children -- convert child data models

id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

listeners

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

4.6. Module Reference 667

Octavia Documentation, Release 15.1.0.dev35

operating_status

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

pools

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

project_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

provider

Complex type attribute definition.

4.6. Module Reference 668

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

provisioning_status

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tags

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

property tenant_id

updated_at

Complex type attribute definition.

Example:

4.6. Module Reference 669

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

vip_address

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

vip_network_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

vip_port_id

Complex type attribute definition.

Example:

4.6. Module Reference 670

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

vip_qos_policy_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

vip_subnet_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

vip_vnic_type

Complex type attribute definition.

Example:

4.6. Module Reference 671

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class LoadBalancerRootPOST(**kw)
Bases: BaseType

loadbalancer

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class LoadBalancerRootPUT(**kw)
Bases: BaseType

loadbalancer

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

4.6. Module Reference 672

Octavia Documentation, Release 15.1.0.dev35

class LoadBalancerRootResponse(**kw)
Bases: BaseType

loadbalancer

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class LoadBalancerStatisticsResponse(**kw)
Bases: BaseLoadBalancerType

Defines which attributes are to show on stats response.

active_connections

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

bytes_in

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 673

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

bytes_out

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

classmethod from_data_model(data_model, children=False)
Converts data_model to Octavia WSME type.

Parameters

• data_model -- data model to convert from

• children -- convert child data models

request_errors

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

total_connections

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int

(continues on next page)

4.6. Module Reference 674

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class LoadBalancerStatusResponse(**kw)
Bases: BaseLoadBalancerType

Defines which attributes are to be shown on status response.

classmethod from_data_model(data_model, children=False)
Converts data_model to Octavia WSME type.

Parameters

• data_model -- data model to convert from

• children -- convert child data models

id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

listeners

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 675

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

operating_status

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

provisioning_status

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 676

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class LoadBalancersRootResponse(**kw)
Bases: BaseType

loadbalancers

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

loadbalancers_links

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class StatisticsRootResponse(**kw)
Bases: BaseType

stats

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

4.6. Module Reference 677

Octavia Documentation, Release 15.1.0.dev35

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class StatusResponse(**kw)
Bases: Base

loadbalancer

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class StatusRootResponse(**kw)
Bases: BaseType

statuses

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

octavia.api.v2.types.member module

class BaseMemberType(**kw)
Bases: BaseType

4.6. Module Reference 678

Octavia Documentation, Release 15.1.0.dev35

class MemberFullResponse(**kw)
Bases: MemberResponse

address

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

admin_state_up

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

backup

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

4.6. Module Reference 679

Octavia Documentation, Release 15.1.0.dev35

created_at

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

monitor_address

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

monitor_port

Complex type attribute definition.

4.6. Module Reference 680

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

operating_status

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

project_id

Complex type attribute definition.

Example:

4.6. Module Reference 681

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

protocol_port

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

provisioning_status

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

subnet_id

Complex type attribute definition.

Example:

4.6. Module Reference 682

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tags

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

property tenant_id

updated_at

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

weight

Complex type attribute definition.

Example:

4.6. Module Reference 683

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class MemberPOST(**kw)
Bases: BaseMemberType

Defines mandatory and optional attributes of a POST request.

address

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

admin_state_up

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

backup

Complex type attribute definition.

4.6. Module Reference 684

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

monitor_address

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

monitor_port

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

4.6. Module Reference 685

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

project_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

protocol_port

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

subnet_id

Complex type attribute definition.

Example:

4.6. Module Reference 686

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tags

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

property tenant_id

weight

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class MemberPUT(**kw)
Bases: BaseMemberType

Defines attributes that are acceptable of a PUT request.

4.6. Module Reference 687

Octavia Documentation, Release 15.1.0.dev35

admin_state_up

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

backup

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

monitor_address

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

monitor_port

Complex type attribute definition.

4.6. Module Reference 688

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tags

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

weight

Complex type attribute definition.

Example:

4.6. Module Reference 689

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class MemberResponse(**kw)
Bases: BaseMemberType

Defines which attributes are to be shown on any response.

address

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

admin_state_up

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

backup

Complex type attribute definition.

4.6. Module Reference 690

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

created_at

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

classmethod from_data_model(data_model, children=False)
Converts data_model to Octavia WSME type.

Parameters

• data_model -- data model to convert from

• children -- convert child data models

id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 691

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

monitor_address

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

monitor_port

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 692

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

operating_status

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

project_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

protocol_port

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 693

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

provisioning_status

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

subnet_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tags

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 694

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

property tenant_id

updated_at

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

weight

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class MemberRootPOST(**kw)
Bases: BaseType

member

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

4.6. Module Reference 695

Octavia Documentation, Release 15.1.0.dev35

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class MemberRootPUT(**kw)
Bases: BaseType

member

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class MemberRootResponse(**kw)
Bases: BaseType

member

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class MemberSingleCreate(**kw)
Bases: BaseMemberType

Defines mandatory and optional attributes of a POST request.

address

Complex type attribute definition.

4.6. Module Reference 696

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

admin_state_up

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

backup

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

monitor_address

Complex type attribute definition.

Example:

4.6. Module Reference 697

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

monitor_port

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

protocol_port

Complex type attribute definition.

Example:

4.6. Module Reference 698

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

subnet_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tags

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

weight

Complex type attribute definition.

Example:

4.6. Module Reference 699

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class MemberStatusResponse(**kw)
Bases: BaseMemberType

Defines which attributes are to be shown on status response.

address

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

classmethod from_data_model(data_model, children=False)
Converts data_model to Octavia WSME type.

Parameters

• data_model -- data model to convert from

• children -- convert child data models

id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 700

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

operating_status

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

protocol_port

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 701

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

provisioning_status

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class MembersRootPUT(**kw)
Bases: BaseType

members

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class MembersRootResponse(**kw)
Bases: BaseType

members

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

4.6. Module Reference 702

Octavia Documentation, Release 15.1.0.dev35

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

members_links

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

octavia.api.v2.types.pool module

class BasePoolType(**kw)
Bases: BaseType

class PoolFullResponse(**kw)
Bases: PoolResponse

admin_state_up

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

alpn_protocols

Complex type attribute definition.

Example:

4.6. Module Reference 703

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

ca_tls_container_ref

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

created_at

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

crl_container_ref

Complex type attribute definition.

Example:

4.6. Module Reference 704

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

description

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

healthmonitor

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

healthmonitor_id

Complex type attribute definition.

Example:

4.6. Module Reference 705

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

lb_algorithm

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

listeners

Complex type attribute definition.

Example:

4.6. Module Reference 706

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

loadbalancers

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

members

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

4.6. Module Reference 707

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

operating_status

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

project_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

protocol

Complex type attribute definition.

Example:

4.6. Module Reference 708

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

provisioning_status

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

session_persistence

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tags

Complex type attribute definition.

Example:

4.6. Module Reference 709

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

property tenant_id

tls_ciphers

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tls_container_ref

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tls_enabled

Complex type attribute definition.

Example:

4.6. Module Reference 710

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tls_versions

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

updated_at

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class PoolPOST(**kw)
Bases: BasePoolType

Defines mandatory and optional attributes of a POST request.

admin_state_up

Complex type attribute definition.

4.6. Module Reference 711

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

alpn_protocols

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

ca_tls_container_ref

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

crl_container_ref

Complex type attribute definition.

Example:

4.6. Module Reference 712

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

description

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

healthmonitor

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

lb_algorithm

Complex type attribute definition.

Example:

4.6. Module Reference 713

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

listener_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

loadbalancer_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

members

Complex type attribute definition.

Example:

4.6. Module Reference 714

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

project_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

protocol

Complex type attribute definition.

Example:

4.6. Module Reference 715

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

session_persistence

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tags

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

property tenant_id

tls_ciphers

Complex type attribute definition.

Example:

4.6. Module Reference 716

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tls_container_ref

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tls_enabled

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tls_versions

Complex type attribute definition.

Example:

4.6. Module Reference 717

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class PoolPUT(**kw)
Bases: BasePoolType

Defines attributes that are acceptable of a PUT request.

admin_state_up

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

alpn_protocols

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

ca_tls_container_ref

Complex type attribute definition.

4.6. Module Reference 718

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

crl_container_ref

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

description

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

lb_algorithm

Complex type attribute definition.

Example:

4.6. Module Reference 719

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

session_persistence

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tags

Complex type attribute definition.

Example:

4.6. Module Reference 720

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tls_ciphers

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tls_container_ref

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tls_enabled

Complex type attribute definition.

Example:

4.6. Module Reference 721

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tls_versions

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class PoolResponse(**kw)
Bases: BasePoolType

Defines which attributes are to be shown on any response.

admin_state_up

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

alpn_protocols

Complex type attribute definition.

4.6. Module Reference 722

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

ca_tls_container_ref

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

created_at

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

crl_container_ref

Complex type attribute definition.

Example:

4.6. Module Reference 723

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

description

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

classmethod from_data_model(data_model, children=False)
Converts data_model to Octavia WSME type.

Parameters

• data_model -- data model to convert from

• children -- convert child data models

healthmonitor_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

4.6. Module Reference 724

Octavia Documentation, Release 15.1.0.dev35

id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

lb_algorithm

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

listeners

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

loadbalancers

Complex type attribute definition.

4.6. Module Reference 725

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

members

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

operating_status

Complex type attribute definition.

Example:

4.6. Module Reference 726

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

project_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

protocol

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

provisioning_status

Complex type attribute definition.

Example:

4.6. Module Reference 727

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

session_persistence

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tags

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

property tenant_id

tls_ciphers

Complex type attribute definition.

Example:

4.6. Module Reference 728

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tls_container_ref

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tls_enabled

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tls_versions

Complex type attribute definition.

Example:

4.6. Module Reference 729

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

updated_at

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class PoolRootPOST(**kw)
Bases: BaseType

pool

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class PoolRootPut(**kw)
Bases: BaseType

4.6. Module Reference 730

Octavia Documentation, Release 15.1.0.dev35

pool

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class PoolRootResponse(**kw)
Bases: BaseType

pool

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class PoolSingleCreate(**kw)
Bases: BasePoolType

Defines mandatory and optional attributes of a POST request.

admin_state_up

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 731

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

alpn_protocols

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

ca_tls_container_ref

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

crl_container_ref

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 732

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

description

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

healthmonitor

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

lb_algorithm

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 733

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

members

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

protocol

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 734

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

session_persistence

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tags

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tls_ciphers

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 735

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tls_container_ref

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tls_enabled

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

tls_versions

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 736

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class PoolStatusResponse(**kw)
Bases: BasePoolType

Defines which attributes are to be shown on status response.

classmethod from_data_model(data_model, children=False)
Converts data_model to Octavia WSME type.

Parameters

• data_model -- data model to convert from

• children -- convert child data models

health_monitor

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

members

Complex type attribute definition.

4.6. Module Reference 737

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

operating_status

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

provisioning_status

Complex type attribute definition.

Example:

4.6. Module Reference 738

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class PoolsRootResponse(**kw)
Bases: BaseType

pools

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

pools_links

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class SessionPersistencePOST(**kw)
Bases: BaseType

Defines mandatory and optional attributes of a POST request.

4.6. Module Reference 739

Octavia Documentation, Release 15.1.0.dev35

cookie_name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

persistence_granularity

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

persistence_timeout

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

type

Complex type attribute definition.

4.6. Module Reference 740

Octavia Documentation, Release 15.1.0.dev35

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class SessionPersistencePUT(**kw)
Bases: BaseType

Defines attributes that are acceptable of a PUT request.

cookie_name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

persistence_granularity

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

4.6. Module Reference 741

Octavia Documentation, Release 15.1.0.dev35

persistence_timeout

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

type

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class SessionPersistenceResponse(**kw)
Bases: BaseType

Defines which attributes are to be shown on any response.

cookie_name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 742

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

persistence_granularity

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

persistence_timeout

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

type

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 743

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

octavia.api.v2.types.provider module

class AvailabilityZoneCapabilitiesResponse(**kw)
Bases: BaseType

availability_zone_capabilities

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class FlavorCapabilitiesResponse(**kw)
Bases: BaseType

flavor_capabilities

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class ProviderResponse(**kw)
Bases: BaseType

description

Complex type attribute definition.

Example:

4.6. Module Reference 744

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

name

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class ProvidersRootResponse(**kw)
Bases: BaseType

providers

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

4.6. Module Reference 745

Octavia Documentation, Release 15.1.0.dev35

octavia.api.v2.types.quotas module

class QuotaAllBase(**kw)
Bases: BaseType

Wrapper object for get all quotas responses.

classmethod from_data_model(data_model, children=False)
Converts data_model to Octavia WSME type.

Parameters

• data_model -- data model to convert from

• children -- convert child data models

health_monitor

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

healthmonitor

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

l7policy

Complex type attribute definition.

Example:

4.6. Module Reference 746

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

l7rule

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

listener

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

load_balancer

Complex type attribute definition.

Example:

4.6. Module Reference 747

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

loadbalancer

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

member

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

pool

Complex type attribute definition.

Example:

4.6. Module Reference 748

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

project_id

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

property tenant_id

class QuotaAllResponse(**kw)
Bases: BaseType

classmethod from_data_model(data_model, children=False)
Converts data_model to Octavia WSME type.

Parameters

• data_model -- data model to convert from

• children -- convert child data models

quotas

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 749

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

quotas_links

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class QuotaBase(**kw)
Bases: BaseType

Individual quota definitions.

health_monitor

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

healthmonitor

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

4.6. Module Reference 750

Octavia Documentation, Release 15.1.0.dev35

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

l7policy

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

l7rule

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

listener

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 751

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

load_balancer

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

loadbalancer

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

member

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

4.6. Module Reference 752

Octavia Documentation, Release 15.1.0.dev35

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

pool

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

to_dict(render_unsets=False)
Converts Octavia WSME type to dictionary.

Parameters
render_unsets -- If True, will convert items that are WSME Unset types to
None. If False, does not add the item

class QuotaPUT(**kw)
Bases: BaseType

Overall object for quota PUT request.

quota

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

class QuotaResponse(**kw)
Bases: BaseType

Wrapper object for quotas responses.

4.6. Module Reference 753

Octavia Documentation, Release 15.1.0.dev35

classmethod from_data_model(data_model, children=False)
Converts data_model to Octavia WSME type.

Parameters

• data_model -- data model to convert from

• children -- convert child data models

quota

Complex type attribute definition.

Example:

class MyComplexType(wsme.types.Base):
optionalvalue = int
mandatoryvalue = wsattr(int, mandatory=True)
named_value = wsattr(int, name='named.value')

After inspection, the non-wsattr attributes will be replaced, and the above class will be equiv-
alent to:

class MyComplexType(wsme.types.Base):
optionalvalue = wsattr(int)
mandatoryvalue = wsattr(int, mandatory=True)

Module contents

Module contents

Submodules

octavia.api.app module

get_pecan_config()

Returns the pecan config.

setup_app(pecan_config=None, debug=False, argv=None)
Creates and returns a pecan wsgi app.

octavia.api.config module

octavia.api.root_controller module

class RootController

Bases: object

The controller with which the pecan wsgi app should be created.

healthcheck()

index()

4.6. Module Reference 754

Octavia Documentation, Release 15.1.0.dev35

Module contents

octavia.certificates package

Subpackages

octavia.certificates.common package

Subpackages

octavia.certificates.common.auth package

Submodules

octavia.certificates.common.auth.barbican_acl module

Barbican ACL auth class for Barbican certificate handling

class BarbicanACLAuth

Bases: BarbicanAuth

classmethod ensure_secret_access(context, ref)
Do whatever steps are necessary to ensure future access to a secret.

Parameters

• context -- pecan context object

• ref -- Reference to a Barbican object

classmethod get_barbican_client(project_id=None)
Creates a Barbican client object.

Parameters
project_id -- Project ID that the request will be used for

Returns
a Barbican Client object

Raises
Exception -- if the client cannot be created

classmethod get_barbican_client_user_auth(context)

classmethod revoke_secret_access(context, ref)
Revoke access of Octavia keystone user to a secret.

Parameters

• context -- pecan context object

• ref -- Reference to a Barbican object

Module contents

Submodules

octavia.certificates.common.barbican module

Common classes for Barbican certificate handling

4.6. Module Reference 755

Octavia Documentation, Release 15.1.0.dev35

class BarbicanAuth

Bases: object

abstract ensure_secret_access(context, ref)
Do whatever steps are necessary to ensure future access to a secret.

Parameters

• context -- pecan context object

• ref -- Reference to a Barbican object

abstract get_barbican_client(project_id)
Creates a Barbican client object.

Parameters
project_id -- Project ID that the request will be used for

Returns
a Barbican Client object

Raises
Exception -- if the client cannot be created

abstract revoke_secret_access(context, ref)
Revoke access of Octavia keystone user to a secret.

Parameters

• context -- pecan context object

• ref -- Reference to a Barbican object

class BarbicanCert(cert_container)
Bases: Cert

Representation of a Cert based on the Barbican CertificateContainer.

get_certificate()

Returns the certificate.

get_intermediates()

Returns the intermediate certificates as a list.

get_private_key()

Returns the private key for the certificate.

get_private_key_passphrase()

Returns the passphrase for the private key.

octavia.certificates.common.cert module

class Cert

Bases: object

Base class to represent all certificates.

abstract get_certificate()

Returns the certificate.

4.6. Module Reference 756

Octavia Documentation, Release 15.1.0.dev35

abstract get_intermediates()

Returns the intermediate certificates as a list.

abstract get_private_key()

Returns the private key for the certificate.

abstract get_private_key_passphrase()

Returns the passphrase for the private key.

octavia.certificates.common.local module

Common classes for local filesystem certificate handling

class LocalCert(certificate, private_key, intermediates=None, private_key_passphrase=None)
Bases: Cert

Representation of a Cert for local storage.

get_certificate()

Returns the certificate.

get_intermediates()

Returns the intermediate certificates as a list.

get_private_key()

Returns the private key for the certificate.

get_private_key_passphrase()

Returns the passphrase for the private key.

octavia.certificates.common.pkcs12 module

Common classes for pkcs12 based certificate handling

class PKCS12Cert(certbag)
Bases: Cert

Representation of a Cert for local storage.

get_certificate()

Returns the certificate.

get_intermediates()

Returns the intermediate certificates as a list.

get_private_key()

Returns the private key for the certificate.

get_private_key_passphrase()

Returns the passphrase for the private key.

Module contents

octavia.certificates.generator package

Submodules

4.6. Module Reference 757

Octavia Documentation, Release 15.1.0.dev35

octavia.certificates.generator.cert_gen module

Certificate Generator API

class CertGenerator

Bases: object

Base Cert Generator Interface

A Certificate Generator is responsible for generating private keys, generating CSRs, and signing
TLS certificates.

abstract generate_cert_key_pair(cn, validity, bit_length, passphrase)
Generates a private key and certificate pair

Parameters

• cn -- Common name to use for the Certificate

• validity -- Validity period for the Certificate

• bit_length -- Private key bit length

• passphrase -- Passphrase to use for encrypting the private key

Returns
octavia.certificates.common.Cert representation of the certificate data

Raises
Exception -- If generation fails

abstract sign_cert(csr, validity)
Generates a signed certificate from the provided CSR

This call is designed to block until a signed certificate can be returned.

Parameters

• csr -- A Certificate Signing Request

• validity -- Valid for <validity> seconds from the current time

Returns
PEM Encoded Signed certificate

Raises
Exception -- If certificate signing fails

octavia.certificates.generator.local module

class LocalCertGenerator

Bases: CertGenerator

Cert Generator Interface that signs certs locally.

classmethod generate_cert_key_pair(cn, validity, bit_length=2048, passphrase=None,
**kwargs)

Generates a private key and certificate pair

Parameters

4.6. Module Reference 758

Octavia Documentation, Release 15.1.0.dev35

• cn -- Common name to use for the Certificate

• validity -- Validity period for the Certificate

• bit_length -- Private key bit length

• passphrase -- Passphrase to use for encrypting the private key

Returns
octavia.certificates.common.Cert representation of the certificate data

Raises
Exception -- If generation fails

classmethod sign_cert(csr, validity, ca_cert=None, ca_key=None, ca_key_pass=None,
ca_digest=None)

Signs a certificate using our private CA based on the specified CSR

The signed certificate will be valid from now until <validity> seconds from now.

Parameters

• csr -- A Certificate Signing Request

• validity -- Valid for <validity> seconds from the current time

• ca_cert -- Signing Certificate (default: config)

• ca_key -- Signing Certificate Key (default: config)

• ca_key_pass -- Signing Certificate Key Pass (default: config)

• ca_digest -- Digest method to use for signing (default: config)

Returns
Signed certificate

Raises
Exception -- if certificate signing fails

Module contents

octavia.certificates.manager package

Submodules

octavia.certificates.manager.barbican module

Cert manager implementation for Barbican using a single PKCS12 secret

class BarbicanCertManager

Bases: CertManager

Certificate Manager that wraps the Barbican client API.

delete_cert(context, cert_ref , resource_ref , service_name=None)
Deregister as a consumer for the specified cert.

Parameters

• context -- Oslo context of the request

4.6. Module Reference 759

Octavia Documentation, Release 15.1.0.dev35

• cert_ref -- the UUID of the cert to retrieve

• resource_ref -- Full HATEOAS reference to the consuming resource

• service_name -- Friendly name for the consuming service

Raises
Exception -- if deregistration fails

get_cert(context, cert_ref , resource_ref=None, check_only=False, service_name=None)
Retrieves the specified cert and registers as a consumer.

Parameters

• context -- Oslo context of the request

• cert_ref -- the UUID of the cert to retrieve

• resource_ref -- Full HATEOAS reference to the consuming resource

• check_only -- Read Certificate data without registering

• service_name -- Friendly name for the consuming service

Returns
octavia.certificates.common.Cert representation of the certificate data

Raises
Exception -- if certificate retrieval fails

get_secret(context, secret_ref)
Retrieves a secret payload by reference.

Parameters

• context -- Oslo context of the request

• secret_ref -- The secret reference ID

Returns
The secret payload

Raises
CertificateStorageException -- if retrieval fails

set_acls(context, cert_ref)
Adds ACLs so Octavia can access the cert objects.

If the specified cert does not exist or the addition of ACLs fails for any reason, a Certifi-
cateStorageException should be raised.

store_cert(context, certificate, private_key, intermediates=None,
private_key_passphrase=None, expiration=None, name=’PKCS12 Certificate
Bundle’)

Stores a certificate in the certificate manager.

Parameters

• context -- Oslo context of the request

• certificate -- PEM encoded TLS certificate

• private_key -- private key for the supplied certificate

4.6. Module Reference 760

Octavia Documentation, Release 15.1.0.dev35

• intermediates -- ordered and concatenated intermediate certs

• private_key_passphrase -- optional passphrase for the supplied key

• expiration -- the expiration time of the cert in ISO 8601 format

• name -- a friendly name for the cert

Returns
the container_ref of the stored cert

Raises
Exception -- if certificate storage fails

unset_acls(context, cert_ref)
Remove ACLs so Octavia can access the cert objects.

If the specified cert does not exist or the removal of ACLs fails for any reason, a Certifi-
cateStorageException should be raised.

octavia.certificates.manager.barbican_legacy module

Legacy cert manager implementation for Barbican (container+secrets)

class BarbicanCertManager(auth=None)
Bases: CertManager

Certificate Manager that wraps the Barbican client API.

delete_cert(context, cert_ref , resource_ref , service_name=None)
Deregister as a consumer for the specified cert.

Parameters

• context -- Oslo context of the request

• cert_ref -- the UUID of the cert to retrieve

• resource_ref -- Full HATEOAS reference to the consuming resource

• service_name -- Friendly name for the consuming service

Raises
Exception -- if deregistration fails

get_cert(context, cert_ref , resource_ref=None, check_only=False, service_name=None)
Retrieves the specified cert and registers as a consumer.

Parameters

• context -- Oslo context of the request

• cert_ref -- the UUID of the cert to retrieve

• resource_ref -- Full HATEOAS reference to the consuming resource

• check_only -- Read Certificate data without registering

• service_name -- Friendly name for the consuming service

Returns
octavia.certificates.common.Cert representation of the certificate data

4.6. Module Reference 761

Octavia Documentation, Release 15.1.0.dev35

Raises
Exception -- if certificate retrieval fails

get_secret(context, secret_ref)
Retrieves a secret payload by reference.

If the specified secret does not exist, a CertificateStorageException should be raised.

set_acls(context, cert_ref)
Adds ACLs so Octavia can access the cert objects.

If the specified cert does not exist or the addition of ACLs fails for any reason, a Certifi-
cateStorageException should be raised.

store_cert(context, certificate, private_key, intermediates=None,
private_key_passphrase=None, expiration=None, name=None)

Stores a certificate in the certificate manager.

Parameters

• context -- Oslo context of the request

• certificate -- PEM encoded TLS certificate

• private_key -- private key for the supplied certificate

• intermediates -- ordered and concatenated intermediate certs

• private_key_passphrase -- optional passphrase for the supplied key

• expiration -- the expiration time of the cert in ISO 8601 format

• name -- a friendly name for the cert

Returns
the container_ref of the stored cert

Raises
Exception -- if certificate storage fails

unset_acls(context, cert_ref)
Remove ACLs so Octavia can access the cert objects.

If the specified cert does not exist or the removal of ACLs fails for any reason, a Certifi-
cateStorageException should be raised.

octavia.certificates.manager.castellan_mgr module

Cert manager implementation for Castellan

class CastellanCertManager

Bases: CertManager

Certificate Manager for the Castellan library.

delete_cert(context, cert_ref , resource_ref , service_name=None)
Deletes the specified cert.

If the specified cert does not exist, a CertificateStorageException should be raised.

4.6. Module Reference 762

Octavia Documentation, Release 15.1.0.dev35

get_cert(context, cert_ref , resource_ref=None, check_only=False, service_name=None)
Retrieves the specified cert.

If check_only is True, don’t perform any sort of registration. If the specified cert does not
exist, a CertificateStorageException should be raised.

get_secret(context, secret_ref)
Retrieves a secret payload by reference.

If the specified secret does not exist, a CertificateStorageException should be raised.

set_acls(context, cert_ref)
Adds ACLs so Octavia can access the cert objects.

If the specified cert does not exist or the addition of ACLs fails for any reason, a Certifi-
cateStorageException should be raised.

store_cert(context, certificate, private_key, intermediates=None,
private_key_passphrase=None, expiration=None, name=’PKCS12 Certificate
Bundle’)

Stores (i.e., registers) a cert with the cert manager.

This method stores the specified cert and returns its UUID that identifies it within the cert
manager. If storage of the certificate data fails, a CertificateStorageException should be
raised.

unset_acls(context, cert_ref)
Remove ACLs so Octavia can access the cert objects.

If the specified cert does not exist or the removal of ACLs fails for any reason, a Certifi-
cateStorageException should be raised.

octavia.certificates.manager.cert_mgr module

Certificate manager API

class CertManager

Bases: object

Base Cert Manager Interface

A Cert Manager is responsible for managing certificates for TLS.

abstract delete_cert(context, cert_ref , resource_ref , service_name=None)
Deletes the specified cert.

If the specified cert does not exist, a CertificateStorageException should be raised.

abstract get_cert(context, cert_ref , resource_ref=None, check_only=False,
service_name=None)

Retrieves the specified cert.

If check_only is True, don’t perform any sort of registration. If the specified cert does not
exist, a CertificateStorageException should be raised.

abstract get_secret(context, secret_ref)
Retrieves a secret payload by reference.

If the specified secret does not exist, a CertificateStorageException should be raised.

4.6. Module Reference 763

Octavia Documentation, Release 15.1.0.dev35

abstract set_acls(context, cert_ref)
Adds ACLs so Octavia can access the cert objects.

If the specified cert does not exist or the addition of ACLs fails for any reason, a Certifi-
cateStorageException should be raised.

abstract store_cert(context, certificate, private_key, intermediates=None,
private_key_passphrase=None, expiration=None, name=None)

Stores (i.e., registers) a cert with the cert manager.

This method stores the specified cert and returns its UUID that identifies it within the cert
manager. If storage of the certificate data fails, a CertificateStorageException should be
raised.

abstract unset_acls(context, cert_ref)
Remove ACLs so Octavia can access the cert objects.

If the specified cert does not exist or the removal of ACLs fails for any reason, a Certifi-
cateStorageException should be raised.

octavia.certificates.manager.local module

class LocalCertManager

Bases: CertManager

Cert Manager Interface that stores data locally.

static delete_cert(context, cert_ref , **kwargs)
Deletes the specified cert.

Parameters

• context -- Ignored in this implementation

• cert_ref -- the UUID of the cert to delete

Raises
CertificateStorageException -- if certificate deletion fails

static get_cert(context, cert_ref , **kwargs)
Retrieves the specified cert.

Parameters

• context -- Ignored in this implementation

• cert_ref -- the UUID of the cert to retrieve

Returns
octavia.certificates.common.Cert representation of the certificate data

Raises
CertificateStorageException -- if certificate retrieval fails

static get_secret(context, secret_ref)
Retrieves a secret payload by reference.

Parameters

• context -- Ignored in this implementation

4.6. Module Reference 764

Octavia Documentation, Release 15.1.0.dev35

• secret_ref -- The secret reference ID

Returns
The secret payload

Raises
CertificateStorageException -- if secret retrieval fails

set_acls(context, cert_ref)
Adds ACLs so Octavia can access the cert objects.

If the specified cert does not exist or the addition of ACLs fails for any reason, a Certifi-
cateStorageException should be raised.

static store_cert(context, certificate, private_key, intermediates=None,
private_key_passphrase=None, **kwargs)

Stores (i.e., registers) a cert with the cert manager.

This method stores the specified cert to the filesystem and returns a UUID that can be used
to retrieve it.

Parameters

• context -- Ignored in this implementation

• certificate -- PEM encoded TLS certificate

• private_key -- private key for the supplied certificate

• intermediates -- ordered and concatenated intermediate certs

• private_key_passphrase -- optional passphrase for the supplied key

Returns
the UUID of the stored cert

Raises
CertificateStorageException -- if certificate storage fails

unset_acls(context, cert_ref)
Remove ACLs so Octavia can access the cert objects.

If the specified cert does not exist or the removal of ACLs fails for any reason, a Certifi-
cateStorageException should be raised.

octavia.certificates.manager.noop module

class NoopCertManager

Bases: CertManager

Cert manager implementation for no-op operations

delete_cert(context, cert_ref , resource_ref , service_name=None)
Deletes the specified cert.

If the specified cert does not exist, a CertificateStorageException should be raised.

4.6. Module Reference 765

Octavia Documentation, Release 15.1.0.dev35

get_cert(context, cert_ref , check_only=True, **kwargs)→ Cert
Retrieves the specified cert.

If check_only is True, don’t perform any sort of registration. If the specified cert does not
exist, a CertificateStorageException should be raised.

get_secret(context, secret_ref)→ Cert
Retrieves a secret payload by reference.

If the specified secret does not exist, a CertificateStorageException should be raised.

property local_cert

set_acls(context, cert_ref)
Adds ACLs so Octavia can access the cert objects.

If the specified cert does not exist or the addition of ACLs fails for any reason, a Certifi-
cateStorageException should be raised.

store_cert(context, certificate, private_key, intermediates=None,
private_key_passphrase=None, **kwargs)→ Cert

Stores (i.e., registers) a cert with the cert manager.

This method stores the specified cert to the filesystem and returns a UUID that can be used
to retrieve it.

Parameters

• context -- Ignored in this implementation

• certificate -- PEM encoded TLS certificate

• private_key -- private key for the supplied certificate

• intermediates -- ordered and concatenated intermediate certs

• private_key_passphrase -- optional passphrase for the supplied key

Returns
the UUID of the stored cert

Raises
CertificateStorageException -- if certificate storage fails

unset_acls(context, cert_ref)
Remove ACLs so Octavia can access the cert objects.

If the specified cert does not exist or the removal of ACLs fails for any reason, a Certifi-
cateStorageException should be raised.

Module contents

Module contents

octavia.cmd package

Submodules

octavia.cmd.agent module

4.6. Module Reference 766

Octavia Documentation, Release 15.1.0.dev35

class AmphoraAgent(app, options=None)
Bases: BaseApplication

load()

load_config()

This method is used to load the configuration from one or several input(s). Custom Command
line, configuration file. You have to override this method in your class.

main()

octavia.cmd.api module

main()

octavia.cmd.driver_agent module

main()

octavia.cmd.haproxy_vrrp_check module

get_status(sock_address)
Query haproxy stat socket

Only VRRP fail over if the stats socket is not responding.

Parameters
sock_address -- unix socket file

Returns
0 if haproxy responded

health_check(sock_addresses)
Invoke queries for all defined listeners

Parameters
sock_addresses

Returns

main()

octavia.cmd.health_checker module

crc32c(data)

main()

sctp_health_check(ip_address, port, timeout=2)

octavia.cmd.health_manager module

hm_health_check(exit_event)

hm_listener(exit_event)

4.6. Module Reference 767

Octavia Documentation, Release 15.1.0.dev35

main()

octavia.cmd.house_keeping module

cert_rotation()

Perform certificate rotation.

db_cleanup()

Perform db cleanup for old resources.

main()

octavia.cmd.interface module

exception InterfaceException(*args, **kwargs)
Bases: OctaviaException

message = 'Could not configure interface: %(msg)s'

interface_cmd(interface_name, action)

interfaces_find(interface_controller, name)

interfaces_update(interfaces, action_fn, action_str)

main()

octavia.cmd.octavia_worker module

main()

octavia.cmd.prometheus_proxy module

class PrometheusProxy(*args, directory=None, **kwargs)
Bases: SimpleHTTPRequestHandler

do_GET()

Serve a GET request.

log_request(*args, **kwargs)
Log an accepted request.

This is called by send_response().

protocol_version = 'HTTP/1.1'

class SignalHandler

Bases: object

shutdown(*args)

main()

shutdown_thread(http)

4.6. Module Reference 768

Octavia Documentation, Release 15.1.0.dev35

octavia.cmd.status module

class Checks

Bases: UpgradeCommands

Contains upgrade checks

Various upgrade checks should be added as separate methods in this class and added to _up-
grade_checks tuple.

main()

Module contents

octavia.common package

Subpackages

octavia.common.jinja package

Subpackages

octavia.common.jinja.haproxy package

Subpackages

octavia.common.jinja.haproxy.combined_listeners package

Submodules

octavia.common.jinja.haproxy.combined_listeners.jinja_cfg module

class JinjaTemplater(base_amp_path=None, base_crt_dir=None, haproxy_template=None,
log_http=None, log_server=None, connection_logging=True)

Bases: object

build_config(host_amphora, listeners, tls_certs, haproxy_versions, amp_details,
socket_path=None)

Convert a logical configuration to the HAProxy version

Parameters

• host_amphora -- The Amphora this configuration is hosted on

• listener -- The listener configuration

• amp_details -- Detail information from the amphora

• socket_path -- The socket path for Haproxy process

Returns
Rendered configuration

render_loadbalancer_obj(host_amphora, listeners, tls_certs=None, socket_path=None,
feature_compatibility=None, amp_details: dict | None = None)

Renders a templated configuration from a load balancer object

Parameters

4.6. Module Reference 769

Octavia Documentation, Release 15.1.0.dev35

• host_amphora -- The Amphora this configuration is hosted on

• listener -- The listener configuration

• tls_certs -- Dict of the TLS certificates for the listener

• socket_path -- The socket path for Haproxy process

• amp_details -- Detail information from the amphora

Returns
Rendered configuration

Module contents

Module contents

octavia.common.jinja.logging package

Submodules

octavia.common.jinja.logging.logging_jinja_cfg module

class LoggingJinjaTemplater(logging_templates=None)
Bases: object

build_logging_config()

Module contents

octavia.common.jinja.lvs package

Submodules

octavia.common.jinja.lvs.jinja_cfg module

class LvsJinjaTemplater(base_amp_path=None, keepalivedlvs_template=None)
Bases: object

build_config(listener: Listener, **kwargs)
Convert a logical configuration to the Keepalived LVS version

Parameters
listener -- The listener configuration

Returns
Rendered configuration

render_loadbalancer_obj(listener, **kwargs)
Renders a templated configuration from a load balancer object

Parameters

• host_amphora -- The Amphora this configuration is hosted on

• listener -- The listener configuration

Returns
Rendered configuration

4.6. Module Reference 770

Octavia Documentation, Release 15.1.0.dev35

Module contents

Submodules

octavia.common.jinja.user_data_jinja_cfg module

class UserDataJinjaCfg

Bases: object

build_user_data_config(user_data)

Module contents

octavia.common.tls_utils package

Submodules

octavia.common.tls_utils.cert_parser module

build_pem(tls_container)
Concatenate TLS container fields to create a PEM

encoded certificate file

Parameters
tls_container -- Object container TLS certificates

Returns
Pem encoded certificate file

get_cert_expiration(certificate_pem)

Extract the expiration date from the Pem encoded X509 certificate

Parameters
certificate_pem -- Certificate in PEM format

Returns
Expiration date of certificate_pem

get_host_names(certificate)
Extract the host names from the Pem encoded X509 certificate

Parameters
certificate -- A PEM encoded certificate

Returns
A dictionary containing the following keys: [’cn’, ’dns_names’] where ’cn’ is the
CN from the SubjectName of the certificate, and ’dns_names’ is a list of dNSNames
(possibly empty) from the SubjectAltNames of the certificate.

get_intermediates_pems(intermediates=None)
Split the input string into individual x509 text blocks

Parameters
intermediates -- PEM or PKCS7 encoded intermediate certificates

4.6. Module Reference 771

Octavia Documentation, Release 15.1.0.dev35

Returns
A list of strings where each string represents an X509 pem block surrounded by
BEGIN CERTIFICATE, END CERTIFICATE block tags

get_primary_cn(tls_cert)
Returns primary CN for Certificate.

load_certificates_data(cert_mngr, obj, context=None)
Load TLS certificate data from the listener/pool.

return TLS_CERT and SNI_CERTS

prepare_private_key(private_key, passphrase=None)
Prepares an unencrypted PEM-encoded private key for printing

Parameters
private_key -- The private key in PEM format (encrypted or not)

Returns
The unencrypted private key in PEM format

validate_cert(certificate, private_key=None, private_key_passphrase=None, intermediates=None)
Validate that the certificate is a valid PEM encoded X509 object

Optionally verify that the private key matches the certificate. Optionally verify that the intermedi-
ates are valid X509 objects.

Parameters

• certificate -- A PEM encoded certificate

• private_key -- The private key for the certificate

• private_key_passphrase -- Passphrase for accessing the private key

• intermediates -- PEM or PKCS7 encoded intermediate certificates

Returns
boolean

Module contents

Submodules

octavia.common.base_taskflow module

class BaseTaskFlowEngine

Bases: object

This is the task flow engine

Use this engine to start/load flows in the code

taskflow_load(flow, **kwargs)

class DynamicLoggingConductor(name, jobboard, persistence=None, engine=None,
engine_options=None, wait_timeout=None, log=None,
max_simultaneous_jobs=1)

Bases: BlockingConductor

4.6. Module Reference 772

Octavia Documentation, Release 15.1.0.dev35

class ExtendExpiryDynamicLoggingConductor(name, jobboard, persistence=None,
engine=None, engine_options=None,
wait_timeout=None, log=None,
max_simultaneous_jobs=1)

Bases: DynamicLoggingConductor

class ExtendExpiryListener(engine, job)
Bases: Listener

class FilteredJob(board, name, uuid=None, details=None, backend=None, book=None,
book_data=None)

Bases: Job

class JobDetailsFilter(name=”)
Bases: Filter

filter(record)
Determine if the specified record is to be logged.

Returns True if the record should be logged, or False otherwise. If deemed appropriate, the
record may be modified in-place.

class TaskFlowServiceController(driver)
Bases: object

run_conductor(name)

run_poster(flow_factory, *args, **kwargs)

retryMaskFilter(record)

octavia.common.clients module

class CinderAuth

Bases: object

cinder_client = None

classmethod get_cinder_client(region, service_name=None, endpoint=None,
endpoint_type=’publicURL’, insecure=False,
cacert=None)

Create cinder client object.

Parameters

• region -- The region of the service

• service_name -- The name of the cinder service in the catalog

• endpoint -- The endpoint of the service

• endpoint_type -- The endpoint type of the service

• insecure -- Turn off certificate validation

• cacert -- CA Cert file path

4.6. Module Reference 773

Octavia Documentation, Release 15.1.0.dev35

Returns
a Cinder Client object

Raises
Exception -- if the client cannot be created

class GlanceAuth

Bases: object

classmethod get_glance_client(region, service_name=None, endpoint=None,
endpoint_type=’publicURL’, insecure=False,
cacert=None)

Create glance client object.

Parameters

• region -- The region of the service

• service_name -- The name of the glance service in the catalog

• endpoint -- The endpoint of the service

• endpoint_type -- The endpoint_type of the service

• insecure -- Turn off certificate validation

• cacert -- CA Cert file path

Returns
a Glance Client object.

Raises
Exception -- if the client cannot be created

glance_client = <glanceclient.v2.client.Client object>

class NeutronAuth

Bases: object

classmethod get_neutron_client()

Create neutron client object.

classmethod get_user_neutron_client(context)
Get neutron client for request user.

It’s possible that the token in the context is a trust scoped which can’t be used to initialize a
keystone session. We directly use the token and endpoint_url to initialize neutron client.

neutron_client = None

class NovaAuth

Bases: object

classmethod get_nova_client(region, service_name=None, endpoint=None,
endpoint_type=’publicURL’, insecure=False,
cacert=None)

Create nova client object.

Parameters

4.6. Module Reference 774

Octavia Documentation, Release 15.1.0.dev35

• region -- The region of the service

• service_name -- The name of the nova service in the catalog

• endpoint -- The endpoint of the service

• endpoint_type -- The type of the endpoint

• insecure -- Turn off certificate validation

• cacert -- CA Cert file path

Returns
a Nova Client object.

Raises
Exception -- if the client cannot be created

nova_client = <novaclient.v2.client.Client object>

octavia.common.config module

Routines for configuring Octavia

handle_neutron_deprecations()

init(args, **kwargs)

register_cli_opts()

register_ks_options(group)

set_lib_defaults()

Update default value for configuration options from other namespace.

Example, oslo lib config options. This is needed for config generator tool to pick these de-
fault value changes. https://docs.openstack.org/oslo.config/latest/cli/ generator.html#modifying-
defaults-from-other-namespaces

setup_logging(conf)
Sets up the logging options for a log with supplied name.

Parameters
conf -- a cfg.ConfOpts object

setup_remote_debugger()

Required setup for remote debugging.

octavia.common.constants module

octavia.common.context module

class RequestContext(user_id=None, **kwargs)
Bases: RequestContext

property session

4.6. Module Reference 775

https://docs.openstack.org/oslo.config/latest/cli/

Octavia Documentation, Release 15.1.0.dev35

octavia.common.data_models module

class AdditionalVip(load_balancer_id=None, ip_address=None, subnet_id=None,
network_id=None, port_id=None, load_balancer=None)

Bases: BaseDataModel

class Amphora(id=None, load_balancer_id=None, compute_id=None, status=None,
lb_network_ip=None, vrrp_ip=None, ha_ip=None, vrrp_port_id=None,
ha_port_id=None, load_balancer=None, role=None, cert_expiration=None,
cert_busy=False, vrrp_interface=None, vrrp_id=None, vrrp_priority=None,
cached_zone=None, created_at=None, updated_at=None, image_id=None,
compute_flavor=None)

Bases: BaseDataModel

delete()

class AmphoraHealth(amphora_id=None, last_update=None, busy=False)
Bases: BaseDataModel

class AvailabilityZone(name=None, description=None, enabled=None,
availability_zone_profile_id=None)

Bases: BaseDataModel

class AvailabilityZoneProfile(id=None, name=None, provider_name=None,
availability_zone_data=None)

Bases: BaseDataModel

class BaseDataModel

Bases: object

classmethod from_dict(dict)

to_dict(calling_classes=None, recurse=False, **kwargs)
Converts a data model to a dictionary.

update(update_dict)
Generic update method which works for simple,

non-relational attributes.

class Flavor(id=None, name=None, description=None, enabled=None, flavor_profile_id=None)
Bases: BaseDataModel

class FlavorProfile(id=None, name=None, provider_name=None, flavor_data=None)
Bases: BaseDataModel

class HealthMonitor(id=None, project_id=None, pool_id=None, type=None, delay=None,
timeout=None, fall_threshold=None, rise_threshold=None,
http_method=None, url_path=None, expected_codes=None, enabled=None,
pool=None, name=None, provisioning_status=None,
operating_status=None, created_at=None, updated_at=None, tags=None,
http_version=None, domain_name=None)

Bases: BaseDataModel

delete()

4.6. Module Reference 776

Octavia Documentation, Release 15.1.0.dev35

class L7Policy(id=None, name=None, description=None, listener_id=None, action=None,
redirect_pool_id=None, redirect_url=None, position=None, listener=None,
redirect_pool=None, enabled=None, l7rules=None, provisioning_status=None,
operating_status=None, project_id=None, created_at=None, updated_at=None,
redirect_prefix=None, tags=None, redirect_http_code=None)

Bases: BaseDataModel

delete()

update(update_dict)
Generic update method which works for simple,

non-relational attributes.

class L7Rule(id=None, l7policy_id=None, type=None, enabled=None, compare_type=None,
key=None, value=None, l7policy=None, invert=False, provisioning_status=None,
operating_status=None, project_id=None, created_at=None, updated_at=None,
tags=None)

Bases: BaseDataModel

delete()

class Listener(id=None, project_id=None, name=None, description=None,
default_pool_id=None, load_balancer_id=None, protocol=None,
protocol_port=None, connection_limit=None, enabled=None,
provisioning_status=None, operating_status=None, tls_certificate_id=None,
stats=None, default_pool=None, load_balancer=None, sni_containers=None,
peer_port=None, l7policies=None, pools=None, insert_headers=None,
created_at=None, updated_at=None, timeout_client_data=None,
timeout_member_connect=None, timeout_member_data=None,
timeout_tcp_inspect=None, tags=None, client_ca_tls_certificate_id=None,
client_authentication=None, client_crl_container_id=None, allowed_cidrs=None,
tls_ciphers=None, tls_versions=None, alpn_protocols=None, hsts_max_age=None,
hsts_include_subdomains=None, hsts_preload=None)

Bases: BaseDataModel

delete()

update(update_dict)
Generic update method which works for simple,

non-relational attributes.

class ListenerCidr(listener_id=None, cidr=None)
Bases: BaseDataModel

to_dict(**kwargs)
Converts a data model to a dictionary.

class ListenerStatistics(listener_id=None, amphora_id=None, bytes_in=0, bytes_out=0,
active_connections=0, total_connections=0, request_errors=0,
received_time=0.0)

Bases: BaseDataModel

4.6. Module Reference 777

Octavia Documentation, Release 15.1.0.dev35

db_fields()

get_stats()

class LoadBalancer(id=None, project_id=None, name=None, description=None,
provisioning_status=None, operating_status=None, enabled=None,
topology=None, vip=None, listeners=None, amphorae=None, pools=None,
vrrp_group=None, server_group_id=None, created_at=None,
updated_at=None, provider=None, tags=None, flavor_id=None,
availability_zone=None, additional_vips=None)

Bases: BaseDataModel

update(update_dict)
Generic update method which works for simple,

non-relational attributes.

class LoadBalancerStatistics(bytes_in=0, bytes_out=0, active_connections=0,
total_connections=0, request_errors=0, listeners=None)

Bases: BaseDataModel

get_stats()

class Member(id=None, project_id=None, pool_id=None, ip_address=None, protocol_port=None,
weight=None, backup=None, enabled=None, subnet_id=None,
operating_status=None, pool=None, created_at=None, updated_at=None,
provisioning_status=None, name=None, monitor_address=None,
monitor_port=None, tags=None)

Bases: BaseDataModel

delete()

class Pool(id=None, project_id=None, name=None, description=None, protocol=None,
lb_algorithm=None, enabled=None, operating_status=None, members=None,
health_monitor=None, session_persistence=None, load_balancer_id=None,
load_balancer=None, listeners=None, l7policies=None, created_at=None,
updated_at=None, provisioning_status=None, tags=None, tls_certificate_id=None,
ca_tls_certificate_id=None, crl_container_id=None, tls_enabled=None,
tls_ciphers=None, tls_versions=None, alpn_protocols=None)

Bases: BaseDataModel

delete()

update(update_dict)
Generic update method which works for simple,

non-relational attributes.

class Quotas(project_id=None, load_balancer=None, listener=None, pool=None,
health_monitor=None, member=None, l7policy=None, l7rule=None,
in_use_health_monitor=None, in_use_listener=None, in_use_load_balancer=None,
in_use_member=None, in_use_pool=None, in_use_l7policy=None,
in_use_l7rule=None)

Bases: BaseDataModel

4.6. Module Reference 778

Octavia Documentation, Release 15.1.0.dev35

class SNI(listener_id=None, position=None, listener=None, tls_container_id=None)
Bases: BaseDataModel

to_dict(**kwargs)
Converts a data model to a dictionary.

class SessionPersistence(pool_id=None, type=None, cookie_name=None, pool=None,
persistence_timeout=None, persistence_granularity=None)

Bases: BaseDataModel

delete()

class TLSContainer(id=None, primary_cn=None, certificate=None, private_key=None,
passphrase=None, intermediates=None)

Bases: BaseDataModel

class VRRPGroup(load_balancer_id=None, vrrp_group_name=None, vrrp_auth_type=None,
vrrp_auth_pass=None, advert_int=None, smtp_server=None,
smtp_connect_timeout=None, load_balancer=None)

Bases: BaseDataModel

class Vip(load_balancer_id=None, ip_address=None, subnet_id=None, network_id=None,
port_id=None, load_balancer=None, qos_policy_id=None, octavia_owned=None,
vnic_type=None)

Bases: BaseDataModel

octavia.common.decorators module

Decorators to provide backwards compatibility for V1 API.

rename_kwargs(**renamed_kwargs)
Renames a class’s variables and maintains backwards compatibility.

Parameters
renamed_kwargs -- mapping of old kwargs to new kwargs. For example, to say
a class has renamed variable foo to bar the decorator would be used like: re-
name_kwargs(foo=’bar’)

octavia.common.exceptions module

Octavia base exception handling.

exception APIException(**kwargs)
Bases: HTTPClientError

code = 500

msg = 'Something unknown went wrong'

exception AmphoraNetworkConfigException(*args, **kwargs)
Bases: OctaviaException

message = 'Cannot configure network resource in the amphora: %(detail)s'

4.6. Module Reference 779

Octavia Documentation, Release 15.1.0.dev35

exception CertificateGenerationException(*args, **kwargs)
Bases: OctaviaException

message = 'Could not sign the certificate request: %(msg)s'

exception CertificateRetrievalException(**kwargs)
Bases: APIException

code = 400

msg = 'Could not retrieve certificate: %(ref)s'

exception CertificateStorageException(*args, **kwargs)
Bases: OctaviaException

message = 'Could not store certificate: %(msg)s'

exception ComputeBuildException(*args, **kwargs)
Bases: OctaviaException

message = 'Failed to build compute instance due to: %(fault)s'

exception ComputeBuildQueueTimeoutException(*args, **kwargs)
Bases: OctaviaException

message = 'Failed to get an amphora build slot.'

exception ComputeDeleteException(*args, **kwargs)
Bases: OctaviaException

message = 'Failed to delete compute instance. The compute service reports:
%(compute_msg)s'

exception ComputeGetException(*args, **kwargs)
Bases: OctaviaException

message = 'Failed to retrieve compute instance.'

exception ComputeGetInterfaceException(*args, **kwargs)
Bases: OctaviaException

message = 'Failed to retrieve compute virtual interfaces.'

exception ComputeNoResourcesException(*args, **kwargs)
Bases: OctaviaException

message = 'The compute service does not have the resources available to
fulfill the request'

exception ComputePortInUseException(*args, **kwargs)
Bases: OctaviaException

message = 'Compute driver reports port %(port)s is already in use.'

exception ComputeStatusException(*args, **kwargs)
Bases: OctaviaException

4.6. Module Reference 780

Octavia Documentation, Release 15.1.0.dev35

message = 'Failed to retrieve compute instance status.'

exception ComputeUnknownException(*args, **kwargs)
Bases: OctaviaException

message = 'Unknown exception from the compute driver: %(exc)s.'

exception ComputeWaitTimeoutException(*args, **kwargs)
Bases: OctaviaException

message = 'Waiting for compute id %(id)s to go active timeout.'

exception DisabledOption(**kwargs)
Bases: APIException

code = 400

msg = 'The selected %(option)s is not allowed in this deployment:
%(value)s'

exception DuplicateHealthMonitor(**kwargs)
Bases: APIException

code = 409

msg = 'This pool already has a health monitor'

exception DuplicateListenerEntry(**kwargs)
Bases: APIException

code = 409

msg = 'Another Listener on this Load Balancer is already using protocol
%(protocol)s and protocol_port %(port)d'

exception DuplicateMemberEntry(**kwargs)
Bases: APIException

code = 409

msg = 'Another member on this pool is already using ip %(ip_address)s on
protocol_port %(port)d'

exception DuplicatePoolEntry(**kwargs)
Bases: APIException

code = 409

msg = 'This listener already has a default pool'

exception IDAlreadyExists(**kwargs)
Bases: APIException

code = 409

msg = 'Already an entity with that specified id.'

4.6. Module Reference 781

Octavia Documentation, Release 15.1.0.dev35

exception ImageGetException(*args, **kwargs)
Bases: OctaviaException

message = 'Failed to retrieve image with %(tag)s tag.'

exception ImmutableObject(**kwargs)
Bases: APIException

code = 409

msg = '%(resource)s %(id)s is immutable and cannot be updated.'

exception InputFileError(*args, **kwargs)
Bases: OctaviaException

message = 'Error with file %(file_name)s. Reason: %(reason)s'

exception InvalidAmphoraOperatingSystem(*args, **kwargs)
Bases: OctaviaException

message = 'Invalid amphora operating system: %(os_name)s'

exception InvalidFilterArgument(**kwargs)
Bases: APIException

code = 400

msg = 'One or more arguments are either duplicate or invalid'

exception InvalidHMACException(*args, **kwargs)
Bases: OctaviaException

message = "HMAC hashes didn't match"

exception InvalidIPAddress(**kwargs)
Bases: APIException

code = 400

msg = 'The IP Address %(ip_addr)s is invalid.'

exception InvalidL7PolicyAction(**kwargs)
Bases: APIException

code = 400

msg = 'Invalid L7 Policy action specified: %(action)s'

exception InvalidL7PolicyArgs(**kwargs)
Bases: APIException

code = 400

msg = 'Invalid L7 Policy arguments: %(msg)s'

exception InvalidL7Rule(*args, **kwargs)
Bases: OctaviaException

4.6. Module Reference 782

Octavia Documentation, Release 15.1.0.dev35

message = 'Invalid L7 Rule: %(msg)s'

exception InvalidLimit(**kwargs)
Bases: APIException

code = 400

msg = "Supplied pagination limit '%(key)s' is not valid."

exception InvalidMarker(**kwargs)
Bases: APIException

code = 400

msg = "Supplied pagination marker '%(key)s' is not valid."

exception InvalidOption(**kwargs)
Bases: APIException

code = 400

msg = '%(value)s is not a valid option for %(option)s'

exception InvalidRegex(*args, **kwargs)
Bases: OctaviaException

message = 'Unable to parse regular expression: %(e)s'

exception InvalidSortDirection(**kwargs)
Bases: APIException

code = 400

msg = "Supplied sort direction '%(key)s' is not valid."

exception InvalidSortKey(**kwargs)
Bases: APIException

code = 400

msg = "Supplied sort key '%(key)s' is not valid."

exception InvalidString(*args, **kwargs)
Bases: OctaviaException

message = 'Invalid characters in %(what)s'

exception InvalidSubresource(**kwargs)
Bases: APIException

code = 400

msg = '%(resource)s %(id)s not found.'

exception InvalidTopology(*args, **kwargs)
Bases: OctaviaException

4.6. Module Reference 783

Octavia Documentation, Release 15.1.0.dev35

message = 'Invalid topology specified: %(topology)s'

exception InvalidURL(*args, **kwargs)
Bases: OctaviaException

message = 'Not a valid URL: %(url)s'

exception InvalidURLPath(**kwargs)
Bases: APIException

code = 400

msg = 'Not a valid URLPath: %(url_path)s'

exception L7RuleValidation(**kwargs)
Bases: APIException

code = 400

msg = 'Error parsing L7Rule: %(error)s'

exception LBPendingStateError(**kwargs)
Bases: APIException

code = 409

msg = 'Invalid state %(state)s of loadbalancer resource %(id)s'

exception ListenerNoChildren(**kwargs)
Bases: APIException

code = 400

msg = 'Protocol %(protocol)s listeners cannot have child objects.'

exception MisMatchedKey(*args, **kwargs)
Bases: OctaviaException

message = 'Key and x509 certificate do not match'

exception MissingAPIProjectID(**kwargs)
Bases: APIException

code = 400

message = 'Missing project ID in request where one is required.'

exception MissingArguments(*args, **kwargs)
Bases: OctaviaException

message = 'Missing arguments.'

exception MissingCertSubject(**kwargs)
Bases: APIException

code = 400

4.6. Module Reference 784

Octavia Documentation, Release 15.1.0.dev35

msg = 'No CN or DNSName(s) found in certificate. The certificate is
invalid.'

exception MissingProjectID(*args, **kwargs)
Bases: OctaviaException

message = 'Missing project ID in request where one is required.'

exception MissingVIPSecurityGroup(*args, **kwargs)
Bases: OctaviaException

message = 'VIP security group is missing for load balancer: %(lb_id)s'

exception NeedsPassphrase(*args, **kwargs)
Bases: OctaviaException

message = 'Passphrase needed to decrypt key but client did not provide
one.'

exception NetworkConfig(*args, **kwargs)
Bases: OctaviaException

message = 'Unable to allocate network resource from config'

exception NetworkServiceError(*args, **kwargs)
Bases: OctaviaException

message = 'The networking service had a failure: %(net_error)s'

exception NoReadyAmphoraeException(*args, **kwargs)
Bases: OctaviaException

message = 'There are not any READY amphora available.'

exception NotFound(**kwargs)
Bases: APIException

code = 404

msg = '%(resource)s %(id)s not found.'

exception ObjectInUse(**kwargs)
Bases: APIException

code = 409

msg = '%(object)s %(id)s is in use and cannot be modified.'

exception OctaviaException(*args, **kwargs)
Bases: Exception

Base Octavia Exception.

To correctly use this class, inherit from it and define a ’message’ property. That message will get
printf’d with the keyword arguments provided to the constructor.

message = 'An unknown exception occurred.'

4.6. Module Reference 785

Octavia Documentation, Release 15.1.0.dev35

orig_code = None

orig_msg = None

static use_fatal_exceptions()

exception PolicyForbidden(**kwargs)
Bases: APIException

code = 403

msg = 'Policy does not allow this request to be performed.'

exception PoolInUseByL7Policy(**kwargs)
Bases: APIException

code = 409

msg = 'Pool %(id)s is in use by L7 policy %(l7policy_id)s'

exception ProjectBusyException(**kwargs)
Bases: APIException

code = 503

msg = 'Project busy. Unable to lock the project. Please try again.'

exception ProviderDriverError(**kwargs)
Bases: APIException

code = 500

msg = "Provider '%(prov)s' reports error: %(user_msg)s"

exception ProviderFlavorMismatchError(**kwargs)
Bases: APIException

code = 400

msg = "Flavor '%(flav)s' is not compatible with provider '%(prov)s'"

exception ProviderNotEnabled(**kwargs)
Bases: APIException

code = 400

msg = "Provider '%(prov)s' is not enabled."

exception ProviderNotFound(**kwargs)
Bases: APIException

code = 501

msg = "Provider '%(prov)s' was not found."

exception ProviderNotImplementedError(**kwargs)
Bases: APIException

4.6. Module Reference 786

Octavia Documentation, Release 15.1.0.dev35

code = 501

msg = "Provider '%(prov)s' does not support a requested action:
%(user_msg)s"

exception ProviderUnsupportedOptionError(**kwargs)
Bases: APIException

code = 501

msg = "Provider '%(prov)s' does not support a requested option:
%(user_msg)s"

exception QuotaException(**kwargs)
Bases: APIException

code = 403

msg = 'Quota has been met for resources: %(resource)s'

exception RecordAlreadyExists(**kwargs)
Bases: APIException

code = 409

msg = 'A %(field)s of %(name)s already exists.'

exception ServerGroupObjectCreateException(*args, **kwargs)
Bases: OctaviaException

message = 'Failed to create server group object.'

exception ServerGroupObjectDeleteException(*args, **kwargs)
Bases: OctaviaException

message = 'Failed to delete server group object.'

exception SingleCreateDetailsMissing(**kwargs)
Bases: APIException

code = 400

msg = 'Missing details for %(type)s object: %(name)s'

exception TooManyL7RulesOnL7Policy(**kwargs)
Bases: APIException

code = 409

msg = 'Too many rules on L7 policy %(id)s'

exception UnreadableCert(*args, **kwargs)
Bases: OctaviaException

message = 'Could not read X509 from PEM'

4.6. Module Reference 787

Octavia Documentation, Release 15.1.0.dev35

exception UnreadablePKCS12(**kwargs)
Bases: APIException

code = 400

msg = 'The PKCS12 bundle is unreadable. Please check the PKCS12 bundle
validity. In addition, make sure it does not require a pass phrase. Error:
%(error)s'

exception VIPValidationException(**kwargs)
Bases: APIException

code = 400

msg = 'Validation failure: VIP must contain one of: %(objects)s.'

exception ValidationException(**kwargs)
Bases: APIException

code = 400

msg = 'Validation failure: %(detail)s'

exception VolumeDeleteException(*args, **kwargs)
Bases: OctaviaException

message = 'Failed to delete volume instance.'

exception VolumeGetException(*args, **kwargs)
Bases: OctaviaException

message = 'Failed to retrieve volume instance.'

octavia.common.keystone module

class KeystoneSession(section=’service_auth’)
Bases: object

get_auth()

get_service_user_id()

get_session(auth=None)
Initializes a Keystone session.

Returns
a Keystone Session object

class SkippingAuthProtocol(app, conf)
Bases: AuthProtocol

SkippingAuthProtocol to reach special endpoints

Bypasses keystone authentication for special request paths, such as the api version discovery path.

4.6. Module Reference 788

Octavia Documentation, Release 15.1.0.dev35

Note:
SkippingAuthProtocol is lean customization of keystonemiddleware.auth_token.
AuthProtocol that disables keystone communication if the request path is in the
_NOAUTH_PATHS list.

process_request(request)
Process request.

Evaluate the headers in a request and attempt to authenticate the request. If authenticated
then additional headers are added to the request for use by applications. If not authenticated
the request will be rejected or marked unauthenticated depending on configuration.

octavia.common.policy module

Policy Engine For Octavia.

class IsAdminCheck(kind, match)
Bases: Check

An explicit check for is_admin.

class Policy(conf=<oslo_config.cfg.ConfigOpts object>, policy_file=None, rules=None,
default_rule=None, use_conf=True, overwrite=True)

Bases: Enforcer

authorize(action, target, context, do_raise=True, exc=None)
Verifies that the action is valid on the target in this context.

Parameters

• context -- The oslo context for this request.

• action -- string representing the action to be checked this should
be colon separated for clarity. i.e. compute:create_instance,
compute:attach_volume, volume:attach_volume

• target -- dictionary representing the object of the action for object cre-
ation this should be a dictionary representing the location of the object e.g.
{'project_id': context.project_id}

• do_raise -- if True (the default), raises PolicyForbidden; if False, returns
False

• exc -- Class of the exceptions to raise if the check fails. Any remaining
arguments passed to enforce() (both positional and keyword arguments)
will be passed to the exceptions class. If not specified, PolicyForbidden
will be used.

Raises
PolicyForbidden -- if verification fails and do_raise is True. Or if ’exc’ is
specified it will raise an exceptions of that type.

Returns
returns a non-False value (not necessarily "True") if authorized, and the exact
value False if not authorized and do_raise is False.

4.6. Module Reference 789

Octavia Documentation, Release 15.1.0.dev35

check_is_admin(context)
Does roles contains ’admin’ role according to policy setting.

get_rules()

get_enforcer()

get_no_context_enforcer()

reset()

octavia.common.rpc module

cleanup()

create_transport(url)

get_client(target, version_cap=None, serializer=None, call_monitor_timeout=None)

get_notifier(service=None, host=None, publisher_id=None)

get_server(target, endpoints, executor=’threading’, access_policy=<class
’oslo_messaging.rpc.dispatcher.DefaultRPCAccessPolicy’>, serializer=None)

get_transport_url(url_str=None)

init()

octavia.common.service module

prepare_service(argv=None)
Sets global config from config file and sets up logging.

octavia.common.stats module

class StatsMixin

Bases: object

get_listener_stats(session, listener_id)
Gets the listener statistics data_models object.

get_loadbalancer_stats(session, loadbalancer_id)

octavia.common.utils module

Utilities and helper functions.

b(s)

base64_sha1_string(string_to_hash)
Get a b64-encoded sha1 hash of a string. Not intended to be secure!

4.6. Module Reference 790

Octavia Documentation, Release 15.1.0.dev35

class exception_logger(logger=None)
Bases: object

Wrap a function and log raised exception

Parameters
logger -- the logger to log the exception default is LOG.exception

Returns
origin value if no exception raised; re-raise the exception if any occurred

expand_expected_codes(codes)
Expand the expected code string in set of codes.

200-204 -> 200, 201, 202, 204 200, 203 -> 200, 203

get_amphora_driver()

get_compatible_server_certs_key_passphrase()

get_compatible_value(value)

get_hostname()

get_network_driver()

get_vip_security_group_name(loadbalancer_id)

ip_netmask_to_cidr(ip, netmask)

ip_port_str(ip_address, port)
Return IP port as string representation depending on address family.

ip_version(ip_address)

is_cidr_ipv6(cidr)
Check if CIDR is IPv6 address with subnet prefix.

is_ipv4(ip_address)
Check if ip address is IPv4 address.

is_ipv6(ip_address)
Check if ip address is IPv6 address.

is_ipv6_lla(ip_address)
Check if ip address is IPv6 link local address.

map_protocol_to_nftable_protocol(rule_dict)

netmask_to_prefix(netmask)

subnet_ip_availability(nw_ip_avail, subnet_id, req_num_ips)

octavia.common.validate module

Several handy validation functions that go beyond simple type checking. Defined here so these can also
be used at deeper levels than the API.

4.6. Module Reference 791

Octavia Documentation, Release 15.1.0.dev35

check_alpn_protocols(protocols)

check_cipher_prohibit_list(cipherstring)

check_default_ciphers_prohibit_list_conflict()

check_default_tls_versions_min_conflict()

check_hsts_options(listener: dict)

check_hsts_options_put(listener: octavia.api.v2.types.listener.ListenerPUT, db_listener:
Listener)

check_port_in_use(port)
Raise an exception when a port is used.

check_session_persistence(SP_dict)

check_tls_version_list(versions)

check_tls_version_min(versions, message=None)
Checks a TLS version string against the configured minimum.

cookie_value_string(value, what=None)
Raises an error if the value string contains invalid characters.

header_name(header, what=None)
Raises an error if header does not look like an HTML header name.

header_value_string(value, what=None)
Raises an error if the value string contains invalid characters.

ip_not_reserved(ip_address)

is_ip_member_of_cidr(address, cidr)

l7rule_data(l7rule)
Raises an error if the l7rule given is invalid in some way.

network_allowed_by_config(network_id, valid_networks=None)

network_exists_optionally_contains_subnet(network_id, subnet_id=None, context=None)
Raises an exception when a network does not exist.

If a subnet is provided, also validate the network contains that subnet.

port_exists(port_id, context=None)
Raises an exception when a port does not exist.

qos_extension_enabled(network_driver)

qos_policy_exists(qos_policy_id)

regex(regex)
Raises an error if the string given is not a valid regex.

4.6. Module Reference 792

Octavia Documentation, Release 15.1.0.dev35

sanitize_l7policy_api_args(l7policy, create=False)
Validate and make consistent L7Policy API arguments.

This method is mainly meant to sanitize L7 Policy create and update API dictionaries, so that we
strip ’None’ values that don’t apply for our particular update. This method does not verify that any
redirect_pool_id exists in the database, but will raise an error if a redirect_url doesn’t look like a
URL.

Parameters
l7policy -- The L7 Policy dictionary we are sanitizing / validating

subnet_exists(subnet_id, context=None)
Raises an exception when a subnet does not exist.

url(url, require_scheme=True)
Raises an error if the url doesn’t look like a URL.

url_path(url_path)
Raises an error if the url_path doesn’t look like a URL Path.

validate_l7rule_ssl_types(l7rule)

Module contents

octavia.compute package

Subpackages

octavia.compute.drivers package

Subpackages

octavia.compute.drivers.noop_driver package

Submodules

octavia.compute.drivers.noop_driver.driver module

class NoopComputeDriver

Bases: ComputeBase

attach_network_or_port(compute_id, network_id=None, ip_address=None, port_id=None)
Connects an existing amphora to an existing network.

Parameters

• compute_id -- id of an amphora in the compute service

• network_id -- id of a network

• ip_address -- ip address to attempt to be assigned to interface

• port_id -- id of the neutron port

Returns
nova interface

Raises
Exception

4.6. Module Reference 793

Octavia Documentation, Release 15.1.0.dev35

build(name=’amphora_name’, amphora_flavor=None, image_tag=None, image_owner=None,
key_name=None, sec_groups=None, network_ids=None, config_drive_files=None,
user_data=None, port_ids=None, server_group_id=None, availability_zone=None)

Build a new amphora.

Parameters

• name -- Optional name for Amphora

• amphora_flavor -- Optionally specify a flavor

• image_tag -- tag of the base image for the amphora instance

• key_name -- Optionally specify a keypair

• sec_groups -- Optionally specify list of security groups

• network_ids -- A list of network IDs to attach to the amphora

• config_drive_files -- An optional dict of files to overwrite on the server
upon boot. Keys are file names (i.e. /etc/passwd) and values are the file
contents (either as a string or as a file-like object). A maximum of five entries
is allowed, and each file must be 10k or less.

• user_data -- Optional user data to pass to be exposed by the metadata server
this can be a file type object as well or a string

• server_group_id -- Optional server group id(uuid) which is used for
anti_affinity feature

• availability_zone -- Name of the compute availability zone.

Raises
ComputeBuildException -- if compute failed to build amphora

Returns
UUID of amphora

create_server_group(name, policy)
Create a server group object

Parameters

• name -- the name of the server group

• policy -- the policy of the server group

Returns
the server group object

delete(compute_id)
Delete the specified amphora

Parameters
compute_id -- The id of the amphora to delete

delete_server_group(server_group_id)
Delete a server group object

Parameters
server_group_id -- the uuid of a server group

4.6. Module Reference 794

Octavia Documentation, Release 15.1.0.dev35

detach_port(compute_id, port_id)
Disconnects an existing amphora from an existing port.

Parameters

• compute_id -- id of an amphora in the compute service

• port_id -- id of the port

Returns
None

Raises
Exception

get_amphora(compute_id, management_network_id=None)
Retrieve an amphora object

Parameters

• compute_id -- the compute id of the desired amphora

• management_network_id -- ID of the management network

Returns
the amphora object

Returns
fault message or None

status(compute_id)
Check whether the specified amphora is up

Parameters
compute_id -- the ID of the desired amphora

Returns
The compute "status" response ("ONLINE" or "OFFLINE")

validate_availability_zone(availability_zone)
Validates that a compute availability zone exists.

Parameters
availability_zone -- Name of the compute availability zone.

Returns
None

Raises
NotFound

Raises
NotImplementedError

validate_flavor(flavor_id)
Validates that a compute flavor exists.

Parameters
flavor_id -- ID of the compute flavor.

4.6. Module Reference 795

Octavia Documentation, Release 15.1.0.dev35

Returns
None

Raises
NotFound

Raises
NotImplementedError

class NoopManager

Bases: object

attach_network_or_port(compute_id, network_id=None, ip_address=None, port_id=None)

build(name=’amphora_name’, amphora_flavor=None, image_tag=None, image_owner=None,
key_name=None, sec_groups=None, network_ids=None, config_drive_files=None,
user_data=None, port_ids=None, server_group_id=None, availability_zone=None)

create_server_group(name, policy)

delete(compute_id)

delete_server_group(server_group_id)

detach_port(compute_id, port_id)

get_amphora(compute_id, management_network_id=None)

status(compute_id)

validate_availability_zone(availability_zone)

validate_flavor(flavor_id)

NoopServerGroup

alias of ServerGroup

Module contents

Submodules

octavia.compute.drivers.nova_driver module

class VirtualMachineManager

Bases: ComputeBase

Compute implementation of virtual machines via nova.

attach_network_or_port(compute_id, network_id=None, ip_address=None, port_id=None)
Attaching a port or a network to an existing amphora

Parameters

• compute_id -- id of an amphora in the compute service

• network_id -- id of a network

• ip_address -- ip address to attempt to be assigned to interface

4.6. Module Reference 796

Octavia Documentation, Release 15.1.0.dev35

• port_id -- id of the neutron port

Returns
nova interface instance

Raises

• ComputePortInUseException -- The port is in use somewhere else

• ComputeUnknownException -- Unknown nova error

build(name=’amphora_name’, amphora_flavor=None, image_tag=None, image_owner=None,
key_name=None, sec_groups=None, network_ids=None, port_ids=None,
config_drive_files=None, user_data=None, server_group_id=None,
availability_zone=None)

Create a new virtual machine.

Parameters

• name -- optional name for amphora

• amphora_flavor -- image flavor for virtual machine

• image_tag -- image tag for virtual machine

• key_name -- keypair to add to the virtual machine

• sec_groups -- Security group IDs for virtual machine

• network_ids -- Network IDs to include on virtual machine

• port_ids -- Port IDs to include on virtual machine

• config_drive_files -- An optional dict of files to overwrite on the server
upon boot. Keys are file names (i.e. /etc/passwd) and values are the file
contents (either as a string or as a file-like object). A maximum of five entries
is allowed, and each file must be 10k or less.

• user_data -- Optional user data to pass to be exposed by the metadata server
this can be a file type object as well or a string

• server_group_id -- Optional server group id(uuid) which is used for
anti_affinity feature

• availability_zone -- Name of the compute availability zone.

Raises
ComputeBuildException -- if nova failed to build virtual machine

Returns
UUID of amphora

create_server_group(name, policy)
Create a server group object

Parameters

• name -- the name of the server group

• policy -- the policy of the server group

Raises
Generic exception if the server group is not created

4.6. Module Reference 797

Octavia Documentation, Release 15.1.0.dev35

Returns
the server group object

delete(compute_id)
Delete a virtual machine.

Parameters
compute_id -- virtual machine UUID

delete_server_group(server_group_id)
Delete a server group object

Raises
Generic exception if the server group is not deleted

Parameters
server_group_id -- the uuid of a server group

detach_port(compute_id, port_id)
Detaches a port from an existing amphora.

Parameters

• compute_id -- id of an amphora in the compute service

• port_id -- id of the port

Returns
None

get_amphora(compute_id, management_network_id=None)
Retrieve the information in nova of a virtual machine.

Parameters

• compute_id -- virtual machine UUID

• management_network_id -- ID of the management network

Returns
an amphora object

Returns
fault message or None

status(compute_id)
Retrieve the status of a virtual machine.

Parameters
compute_id -- virtual machine UUID

Returns
constant of amphora status

validate_availability_zone(availability_zone)
Validates that an availability zone exists in nova.

Parameters
availability_zone -- Name of the availability zone to lookup.

4.6. Module Reference 798

Octavia Documentation, Release 15.1.0.dev35

Raises
NotFound

Returns
None

validate_flavor(flavor_id)
Validates that a flavor exists in nova.

Parameters
flavor_id -- ID of the flavor to lookup in nova.

Raises
NotFound

Returns
None

Module contents

Submodules

octavia.compute.compute_base module

class ComputeBase

Bases: object

abstract attach_network_or_port(compute_id, network_id=None, ip_address=None,
port_id=None)

Connects an existing amphora to an existing network.

Parameters

• compute_id -- id of an amphora in the compute service

• network_id -- id of a network

• ip_address -- ip address to attempt to be assigned to interface

• port_id -- id of the neutron port

Returns
nova interface

Raises
Exception

abstract build(name=’amphora_name’, amphora_flavor=None, image_tag=None,
image_owner=None, key_name=None, sec_groups=None,
network_ids=None, config_drive_files=None, user_data=None,
server_group_id=None, availability_zone=None)

Build a new amphora.

Parameters

• name -- Optional name for Amphora

• amphora_flavor -- Optionally specify a flavor

• image_tag -- tag of the base image for the amphora instance

4.6. Module Reference 799

Octavia Documentation, Release 15.1.0.dev35

• key_name -- Optionally specify a keypair

• sec_groups -- Optionally specify list of security groups

• network_ids -- A list of network IDs to attach to the amphora

• config_drive_files -- An optional dict of files to overwrite on the server
upon boot. Keys are file names (i.e. /etc/passwd) and values are the file
contents (either as a string or as a file-like object). A maximum of five entries
is allowed, and each file must be 10k or less.

• user_data -- Optional user data to pass to be exposed by the metadata server
this can be a file type object as well or a string

• server_group_id -- Optional server group id(uuid) which is used for
anti_affinity feature

• availability_zone -- Name of the compute availability zone.

Raises
ComputeBuildException -- if compute failed to build amphora

Returns
UUID of amphora

abstract create_server_group(name, policy)
Create a server group object

Parameters

• name -- the name of the server group

• policy -- the policy of the server group

Returns
the server group object

abstract delete(compute_id)
Delete the specified amphora

Parameters
compute_id -- The id of the amphora to delete

abstract delete_server_group(server_group_id)
Delete a server group object

Parameters
server_group_id -- the uuid of a server group

abstract detach_port(compute_id, port_id)
Disconnects an existing amphora from an existing port.

Parameters

• compute_id -- id of an amphora in the compute service

• port_id -- id of the port

Returns
None

4.6. Module Reference 800

Octavia Documentation, Release 15.1.0.dev35

Raises
Exception

abstract get_amphora(compute_id, management_network_id=None)
Retrieve an amphora object

Parameters

• compute_id -- the compute id of the desired amphora

• management_network_id -- ID of the management network

Returns
the amphora object

Returns
fault message or None

abstract status(compute_id)
Check whether the specified amphora is up

Parameters
compute_id -- the ID of the desired amphora

Returns
The compute "status" response ("ONLINE" or "OFFLINE")

abstract validate_availability_zone(availability_zone)
Validates that a compute availability zone exists.

Parameters
availability_zone -- Name of the compute availability zone.

Returns
None

Raises
NotFound

Raises
NotImplementedError

abstract validate_flavor(flavor_id)
Validates that a compute flavor exists.

Parameters
flavor_id -- ID of the compute flavor.

Returns
None

Raises
NotFound

Raises
NotImplementedError

4.6. Module Reference 801

Octavia Documentation, Release 15.1.0.dev35

Module contents

octavia.controller package

Subpackages

octavia.controller.healthmanager package

Submodules

octavia.controller.healthmanager.health_manager module

class HealthManager(exit_event)
Bases: object

health_check()

Check for stale amphorae and process them

... until either no more stale amphora were found or all executor threads are busy.

update_stats_on_done(stats, fut)

wait_done_or_dead(futs, dead, check_timeout=1)

Module contents

octavia.controller.housekeeping package

Submodules

octavia.controller.housekeeping.house_keeping module

class CertRotation

Bases: object

rotate()

Check the amphora db table for expiring auth certs.

class DatabaseCleanup

Bases: object

cleanup_load_balancers()

Checks the DB for old load balancers and triggers their removal.

delete_old_amphorae()

Checks the DB for old amphora and deletes them based on its age.

Module contents

octavia.controller.queue package

Subpackages

octavia.controller.queue.v2 package

Submodules

4.6. Module Reference 802

Octavia Documentation, Release 15.1.0.dev35

octavia.controller.queue.v2.consumer module

class ConsumerService(worker_id, conf)
Bases: Service

run()

Method representing the service activity

If not implemented the process will just wait to receive an ending signal.

This method is ran into the thread and can block or return as needed

Any exceptions raised by this method will be logged and the worker will exit with status 1.

terminate()

Gracefully shutdown the service

This method will be executed when the Service has to shutdown cleanly.

If not implemented the process will just end with status 0.

To customize the exit code, the SystemExit exception can be used.

Any exceptions raised by this method will be logged and the worker will exit with status 1.

octavia.controller.queue.v2.endpoints module

class Endpoints

Bases: object

batch_update_members(context, old_members, new_members, updated_members)

create_health_monitor(context, health_monitor)

create_l7policy(context, l7policy)

create_l7rule(context, l7rule)

create_listener(context, listener)

create_load_balancer(context, loadbalancer, flavor=None, availability_zone=None)

create_member(context, member)

create_pool(context, pool)

delete_amphora(context, amphora_id)

delete_health_monitor(context, health_monitor)

delete_l7policy(context, l7policy)

delete_l7rule(context, l7rule)

delete_listener(context, listener)

delete_load_balancer(context, loadbalancer, cascade=False)

delete_member(context, member)

4.6. Module Reference 803

Octavia Documentation, Release 15.1.0.dev35

delete_pool(context, pool)

failover_amphora(context, amphora_id)

failover_load_balancer(context, load_balancer_id)

target = <Target namespace=controller, version=2.0>

update_amphora_agent_config(context, amphora_id)

update_health_monitor(context, original_health_monitor, health_monitor_updates)

update_l7policy(context, original_l7policy, l7policy_updates)

update_l7rule(context, original_l7rule, l7rule_updates)

update_listener(context, original_listener, listener_updates)

update_load_balancer(context, original_load_balancer, load_balancer_updates)

update_member(context, original_member, member_updates)

update_pool(context, original_pool, pool_updates)

Module contents

Module contents

octavia.controller.worker package

Subpackages

octavia.controller.worker.v2 package

Subpackages

octavia.controller.worker.v2.flows package

Submodules

octavia.controller.worker.v2.flows.amphora_flows module

class AmphoraFlows

Bases: object

cert_rotate_amphora_flow()

Implement rotation for amphora’s cert.

1. Create a new certificate

2. Upload the cert to amphora

3. update the newly created certificate info to amphora

4. update the cert_busy flag to be false after rotation

Returns
The flow for updating an amphora

4.6. Module Reference 804

Octavia Documentation, Release 15.1.0.dev35

get_amphora_for_lb_failover_subflow(prefix, role=’STANDALONE’,
failed_amp_vrrp_port_id=None,
is_vrrp_ipv6=False, flavor_dict=None,
timeout_dict=None)

Creates a new amphora that will be used in a failover flow.

Requires
loadbalancer_id, flavor, vip, vip_sg_id, loadbalancer

Provides
amphora_id, amphora

Parameters

• prefix -- The flow name prefix to use on the flow and tasks.

• role -- The role this amphora will have in the topology.

• failed_amp_vrrp_port_id -- The base port ID of the failed amp.

• is_vrrp_ipv6 -- True if the base port IP is IPv6.

Returns
A Taskflow sub-flow that will create the amphora.

get_amphora_for_lb_subflow(prefix, role)
Create a new amphora for lb.

get_create_amphora_flow()

Creates a flow to create an amphora.

Returns
The flow for creating the amphora

get_delete_amphora_flow(amphora, retry_attempts=5, retry_interval=5)
Creates a subflow to delete an amphora and it’s port.

This flow is idempotent and safe to retry.

Parameters

• amphora -- An amphora dict object.

• retry_attempts -- The number of times the flow is retried.

• retry_interval -- The time to wait, in seconds, between retries.

Returns
The subflow for deleting the amphora.

Raises
AmphoraNotFound -- The referenced Amphora was not found.

get_failover_amphora_flow(failed_amphora, lb_amp_count, flavor_dict=None)
Get a Taskflow flow to failover an amphora.

1. Build a replacement amphora.

2. Delete the old amphora.

3. Update the amphorae listener configurations.

4.6. Module Reference 805

Octavia Documentation, Release 15.1.0.dev35

4. Update the VRRP configurations if needed.

Parameters

• failed_amphora -- The amphora dict to failover.

• lb_amp_count -- The number of amphora on this load balancer.

• flavor_dict -- The load balancer flavor dictionary.

Returns
The flow that will provide the failover.

get_vrrp_subflow(prefix, timeout_dict=None, create_vrrp_group=True,
get_amphorae_status=True, flavor_dict=None)

update_amphora_config_flow()

Creates a flow to update the amphora agent configuration.

Returns
The flow for updating an amphora

octavia.controller.worker.v2.flows.flow_utils module

cert_rotate_amphora_flow()

get_batch_update_members_flow(old_members, new_members, updated_members)

get_cascade_delete_load_balancer_flow(lb, listeners=(), pools=())

get_create_all_listeners_flow(flavor_dict=None)

get_create_amphora_flow()

get_create_health_monitor_flow()

get_create_l7policy_flow()

get_create_l7rule_flow()

get_create_listener_flow(flavor_dict=None)

get_create_load_balancer_flow(topology, listeners=None, flavor_dict=None)

get_create_member_flow()

get_create_pool_flow()

get_delete_amphora_flow(amphora, retry_attempts=None, retry_interval=None)

get_delete_health_monitor_flow()

get_delete_l7policy_flow()

get_delete_l7rule_flow()

get_delete_listener_flow(flavor_dict=None)

4.6. Module Reference 806

Octavia Documentation, Release 15.1.0.dev35

get_delete_load_balancer_flow(lb)

get_delete_member_flow()

get_delete_pool_flow()

get_failover_LB_flow(amps, lb)

get_failover_amphora_flow(amphora_dict, lb_amp_count, flavor_dict=None)

get_listeners_on_lb(db_lb, for_delete=False)
Get a list of the listeners on a load balancer.

Parameters

• db_lb -- A load balancer database model object.

• for_delete -- Skip errors on tls certs loading.

Returns
A list of provider dict format listeners.

get_pools_on_lb(db_lb, for_delete=False)
Get a list of the pools on a load balancer.

Parameters

• db_lb -- A load balancer database model object.

• for_delete -- Skip errors on tls certs loading.

Returns
A list of provider dict format pools.

get_update_health_monitor_flow()

get_update_l7policy_flow()

get_update_l7rule_flow()

get_update_listener_flow(flavor_dict=None)

get_update_load_balancer_flow()

get_update_member_flow()

get_update_pool_flow()

update_amphora_config_flow()

octavia.controller.worker.v2.flows.health_monitor_flows module

class HealthMonitorFlows

Bases: object

get_create_health_monitor_flow()

Create a flow to create a health monitor

Returns
The flow for creating a health monitor

4.6. Module Reference 807

Octavia Documentation, Release 15.1.0.dev35

get_delete_health_monitor_flow()

Create a flow to delete a health monitor

Returns
The flow for deleting a health monitor

get_update_health_monitor_flow()

Create a flow to update a health monitor

Returns
The flow for updating a health monitor

octavia.controller.worker.v2.flows.l7policy_flows module

class L7PolicyFlows

Bases: object

get_create_l7policy_flow()

Create a flow to create an L7 policy

Returns
The flow for creating an L7 policy

get_delete_l7policy_flow()

Create a flow to delete an L7 policy

Returns
The flow for deleting an L7 policy

get_update_l7policy_flow()

Create a flow to update an L7 policy

Returns
The flow for updating an L7 policy

octavia.controller.worker.v2.flows.l7rule_flows module

class L7RuleFlows

Bases: object

get_create_l7rule_flow()

Create a flow to create an L7 rule

Returns
The flow for creating an L7 rule

get_delete_l7rule_flow()

Create a flow to delete an L7 rule

Returns
The flow for deleting an L7 rule

get_update_l7rule_flow()

Create a flow to update an L7 rule

Returns
The flow for updating an L7 rule

4.6. Module Reference 808

Octavia Documentation, Release 15.1.0.dev35

octavia.controller.worker.v2.flows.listener_flows module

class ListenerFlows

Bases: object

get_create_all_listeners_flow(flavor_dict=None)
Create a flow to create all listeners

Returns
The flow for creating all listeners

get_create_listener_flow(flavor_dict=None)
Create a flow to create a listener

Returns
The flow for creating a listener

get_delete_listener_flow(flavor_dict=None)
Create a flow to delete a listener

Returns
The flow for deleting a listener

get_delete_listener_internal_flow(listener, flavor_dict=None)
Create a flow to delete a listener and l7policies internally

(will skip deletion on the amp and marking LB active)

Returns
The flow for deleting a listener

get_update_listener_flow(flavor_dict=None)
Create a flow to update a listener

Returns
The flow for updating a listener

octavia.controller.worker.v2.flows.load_balancer_flows module

class LoadBalancerFlows

Bases: object

get_cascade_delete_load_balancer_flow(lb, listeners, pools)
Creates a flow to delete a load balancer.

Returns
The flow for deleting a load balancer

get_create_load_balancer_flow(topology, listeners=None, flavor_dict=None)
Creates a conditional graph flow that allocates a loadbalancer.

Raises
InvalidTopology -- Invalid topology specified

Returns
The graph flow for creating a loadbalancer.

4.6. Module Reference 809

Octavia Documentation, Release 15.1.0.dev35

get_delete_load_balancer_flow(lb)
Creates a flow to delete a load balancer.

Returns
The flow for deleting a load balancer

get_failover_LB_flow(amps, lb)
Failover a load balancer.

1. Validate the VIP port is correct and present.

2. Build a replacement amphora.

3. Delete the failed amphora.

4. Configure the replacement amphora listeners.

5. Configure VRRP for the listeners.

6. Build the second replacement amphora.

7. Delete the second failed amphora.

8. Delete any extraneous amphora.

9. Configure the listeners on the new amphorae.

10. Configure the VRRP on the new amphorae.

11. Reload the listener configurations to pick up VRRP changes.

12. Mark the load balancer back to ACTIVE.

Returns
The flow that will provide the failover.

get_post_lb_amp_association_flow(prefix, topology, flavor_dict=None)
Reload the loadbalancer and create networking subflows for

created/allocated amphorae. :return: Post amphorae association subflow

get_update_load_balancer_flow()

Creates a flow to update a load balancer.

Returns
The flow for update a load balancer

octavia.controller.worker.v2.flows.member_flows module

class MemberFlows

Bases: object

get_batch_update_members_flow(old_members, new_members, updated_members)
Create a flow to batch update members

Returns
The flow for batch updating members

4.6. Module Reference 810

Octavia Documentation, Release 15.1.0.dev35

get_create_member_flow()

Create a flow to create a member

Returns
The flow for creating a member

get_delete_member_flow()

Create a flow to delete a member

Returns
The flow for deleting a member

get_update_member_flow()

Create a flow to update a member

Returns
The flow for updating a member

octavia.controller.worker.v2.flows.pool_flows module

class PoolFlows

Bases: object

get_create_pool_flow()

Create a flow to create a pool

Returns
The flow for creating a pool

get_delete_pool_flow()

Create a flow to delete a pool

Returns
The flow for deleting a pool

get_delete_pool_flow_internal(pool_id)
Create a flow to delete a pool, etc.

Returns
The flow for deleting a pool

get_update_pool_flow()

Create a flow to update a pool

Returns
The flow for updating a pool

Module contents

octavia.controller.worker.v2.tasks package

Submodules

octavia.controller.worker.v2.tasks.amphora_driver_tasks module

4.6. Module Reference 811

Octavia Documentation, Release 15.1.0.dev35

class AmpListenersUpdate(**kwargs)
Bases: BaseAmphoraTask

Task to update the listeners on one amphora.

execute(loadbalancer, amphora, timeout_dict=None)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

class AmpRetry(attempts=1, name=None, provides=None, requires=None, auto_extract=True,
rebind=None, revert_all=False)

Bases: Times

on_failure(history, *args, **kwargs)
Makes a decision about the future.

This method will typically use information about prior failures (if this historical failure in-
formation is not available or was not persisted the provided history will be empty).

Returns a retry constant (one of):

• RETRY: when the controlling flow must be reverted and restarted again (for example with
new parameters).

• REVERT: when this controlling flow must be completely reverted and the parent flow (if
any) should make a decision about further flow execution.

• REVERT_ALL: when this controlling flow and the parent flow (if any) must be reverted
and marked as a FAILURE.

class AmphoraCertUpload(**kwargs)
Bases: BaseAmphoraTask

Upload a certificate to the amphora.

execute(amphora, server_pem)

Execute cert_update_amphora routine.

class AmphoraComputeConnectivityWait(**kwargs)
Bases: BaseAmphoraTask

Task to wait for the compute instance to be up.

4.6. Module Reference 812

Octavia Documentation, Release 15.1.0.dev35

execute(amphora, raise_retry_exception=False)
Execute get_info routine for an amphora until it responds.

class AmphoraConfigUpdate(**kwargs)
Bases: BaseAmphoraTask

Task to push a new amphora agent configuration to the amphora.

execute(amphora, flavor)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

class AmphoraFinalize(**kwargs)
Bases: BaseAmphoraTask

Task to finalize the amphora before any listeners are configured.

execute(amphora)
Execute finalize_amphora routine.

revert(result, amphora, *args, **kwargs)
Handle a failed amphora finalize.

class AmphoraGetDiagnostics(**kwargs)
Bases: BaseAmphoraTask

Task to get diagnostics on the amphora and the loadbalancers.

execute(amphora)
Execute get_diagnostic routine for an amphora.

class AmphoraGetInfo(**kwargs)
Bases: BaseAmphoraTask

Task to get information on an amphora.

execute(amphora)
Execute get_info routine for an amphora.

class AmphoraIndexListenerUpdate(**kwargs)
Bases: BaseAmphoraTask

Task to update the listeners on one amphora.

4.6. Module Reference 813

Octavia Documentation, Release 15.1.0.dev35

execute(loadbalancer, amphora_index, amphorae, amphorae_status: dict, new_amphora_id:
str, timeout_dict=())

Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

class AmphoraIndexListenersReload(**kwargs)
Bases: BaseAmphoraTask

Task to reload all listeners on an amphora.

execute(loadbalancer, amphora_index, amphorae, amphorae_status: dict, new_amphora_id:
str, timeout_dict=None)

Execute listener reload routines for listeners on an amphora.

class AmphoraIndexUpdateVRRPInterface(**kwargs)
Bases: BaseAmphoraTask

Task to get and update the VRRP interface device name from amphora.

execute(amphora_index, amphorae, amphorae_status: dict, new_amphora_id: str,
timeout_dict=None)

Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

class AmphoraIndexVRRPStart(**kwargs)
Bases: BaseAmphoraTask

Task to start keepalived on an amphora.

This will reload keepalived if it is already running.

4.6. Module Reference 814

Octavia Documentation, Release 15.1.0.dev35

execute(amphora_index, amphorae, amphorae_status: dict, new_amphora_id: str,
timeout_dict=None)

Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

class AmphoraIndexVRRPUpdate(**kwargs)
Bases: BaseAmphoraTask

Task to update the VRRP configuration of an amphora.

execute(loadbalancer_id, amphorae_network_config, amphora_index, amphorae,
amphorae_status: dict, amp_vrrp_int: str | None, new_amphora_id: str,
timeout_dict=None)

Execute update_vrrp_conf.

class AmphoraPostNetworkPlug(**kwargs)
Bases: BaseAmphoraTask

Task to notify the amphora post network plug.

execute(amphora, ports, amphora_network_config)
Execute post_network_plug routine.

revert(result, amphora, *args, **kwargs)
Handle a failed post network plug.

class AmphoraPostVIPPlug(**kwargs)
Bases: BaseAmphoraTask

Task to notify the amphora post VIP plug.

execute(amphora, loadbalancer, amphorae_network_config)
Execute post_vip_routine.

revert(result, amphora, loadbalancer, *args, **kwargs)
Handle a failed amphora vip plug notification.

class AmphoraUpdateVRRPInterface(**kwargs)
Bases: BaseAmphoraTask

Task to get and update the VRRP interface device name from amphora.

4.6. Module Reference 815

Octavia Documentation, Release 15.1.0.dev35

execute(amphora, timeout_dict=None)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

class AmphoraVRRPStart(**kwargs)
Bases: BaseAmphoraTask

Task to start keepalived on an amphora.

This will reload keepalived if it is already running.

execute(amphora, timeout_dict=None)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

class AmphoraVRRPUpdate(**kwargs)
Bases: BaseAmphoraTask

Task to update the VRRP configuration of an amphora.

execute(loadbalancer_id, amphorae_network_config, amphora, amp_vrrp_int,
timeout_dict=None)

Execute update_vrrp_conf.

class AmphoraeGetConnectivityStatus(**kwargs)
Bases: BaseAmphoraTask

Task that checks amphorae connectivity status.

Check and return the connectivity status of both amphorae in ACTIVE STANDBY load balancers

4.6. Module Reference 816

Octavia Documentation, Release 15.1.0.dev35

execute(amphorae: List[dict], new_amphora_id: str, timeout_dict=None)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

class AmphoraePostNetworkPlug(**kwargs)
Bases: BaseAmphoraTask

Task to notify the amphorae post network plug.

execute(loadbalancer, updated_ports, amphorae_network_config)
Execute post_network_plug routine.

revert(result, loadbalancer, updated_ports, *args, **kwargs)
Handle a failed post network plug.

class AmphoraePostVIPPlug(**kwargs)
Bases: BaseAmphoraTask

Task to notify the amphorae post VIP plug.

execute(loadbalancer, amphorae_network_config)
Execute post_vip_plug across the amphorae.

class BaseAmphoraTask(**kwargs)
Bases: Task

Base task to load drivers common to the tasks.

class ListenerDelete(**kwargs)
Bases: BaseAmphoraTask

Task to delete the listener on the vip.

execute(listener)
Execute listener delete routines for an amphora.

revert(listener, *args, **kwargs)
Handle a failed listener delete.

class ListenersStart(**kwargs)
Bases: BaseAmphoraTask

Task to start all listeners on the vip.

4.6. Module Reference 817

Octavia Documentation, Release 15.1.0.dev35

execute(loadbalancer, amphora=None)
Execute listener start routines for listeners on an amphora.

revert(loadbalancer, *args, **kwargs)
Handle failed listeners starts.

class ListenersUpdate(**kwargs)
Bases: BaseAmphoraTask

Task to update amphora with all specified listeners’ configurations.

execute(loadbalancer_id)
Execute updates per listener for an amphora.

revert(loadbalancer_id, *args, **kwargs)
Handle failed listeners updates.

class SetAmphoraFirewallRules(**kwargs)
Bases: BaseAmphoraTask

Task to push updated firewall ruls to an amphora.

execute(amphorae: List[dict], amphora_index: int, amphora_firewall_rules: List[dict],
amphorae_status: dict, timeout_dict=None)

Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

octavia.controller.worker.v2.tasks.cert_task module

class BaseCertTask(**kwargs)
Bases: Task

Base task to load drivers common to the tasks.

class GenerateServerPEMTask(**kwargs)
Bases: BaseCertTask

Create the server certs for the agent comm

Use the amphora_id for the CN

4.6. Module Reference 818

Octavia Documentation, Release 15.1.0.dev35

execute(amphora_id)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

octavia.controller.worker.v2.tasks.compute_tasks module

class AttachPort(**kwargs)
Bases: BaseComputeTask

execute(amphora, port)
Attach a port to an amphora instance.

Parameters

• amphora -- The amphora to attach the port to.

• port -- The port to attach to the amphora.

Returns
None

revert(amphora, port, *args, **kwargs)
Revert our port attach.

Parameters

• amphora -- The amphora to detach the port from.

• port -- The port to attach to the amphora.

class BaseComputeTask(**kwargs)
Bases: Task

Base task to load drivers common to the tasks.

class CertComputeCreate(**kwargs)
Bases: ComputeCreate

execute(amphora_id, server_pem, server_group_id, build_type_priority=40, ports=None,
flavor=None, availability_zone=None)

Create an amphora

Parameters
availability_zone -- availability zone metadata dictionary

4.6. Module Reference 819

Octavia Documentation, Release 15.1.0.dev35

Returns
an amphora

class ComputeCreate(**kwargs)
Bases: BaseComputeTask

Create the compute instance for a new amphora.

execute(amphora_id, server_group_id, config_drive_files=None, build_type_priority=40,
ports=None, flavor=None, availability_zone=None)

Create an amphora

Parameters
availability_zone -- availability zone metadata dictionary

Returns
an amphora

revert(result, amphora_id, *args, **kwargs)
This method will revert the creation of the

amphora. So it will just delete it in this flow

class ComputeDelete(**kwargs)
Bases: BaseComputeTask

execute(amphora, passive_failure=False)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

class ComputeRetry(attempts=1, name=None, provides=None, requires=None, auto_extract=True,
rebind=None, revert_all=False)

Bases: Times

on_failure(history, *args, **kwargs)
Makes a decision about the future.

This method will typically use information about prior failures (if this historical failure in-
formation is not available or was not persisted the provided history will be empty).

Returns a retry constant (one of):

• RETRY: when the controlling flow must be reverted and restarted again (for example with
new parameters).

4.6. Module Reference 820

Octavia Documentation, Release 15.1.0.dev35

• REVERT: when this controlling flow must be completely reverted and the parent flow (if
any) should make a decision about further flow execution.

• REVERT_ALL: when this controlling flow and the parent flow (if any) must be reverted
and marked as a FAILURE.

class ComputeWait(**kwargs)
Bases: BaseComputeTask

Wait for the compute driver to mark the amphora active.

execute(compute_id, amphora_id, availability_zone)
Wait for the compute driver to mark the amphora active

Parameters

• compute_id -- virtual machine UUID

• amphora_id -- id of the amphora object

• availability_zone -- availability zone metadata dictionary

Raises
Generic exception if the amphora is not active

Returns
An amphora object

class DeleteAmphoraeOnLoadBalancer(**kwargs)
Bases: BaseComputeTask

Delete the amphorae on a load balancer.

Iterate through amphorae, deleting them

execute(loadbalancer)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

class NovaServerGroupCreate(**kwargs)
Bases: BaseComputeTask

execute(loadbalancer_id)
Create a server group by nova client api

Parameters

4.6. Module Reference 821

Octavia Documentation, Release 15.1.0.dev35

• loadbalancer_id -- will be used for server group’s name

• policy -- will used for server group’s policy

Raises
Generic exception if the server group is not created

Returns
server group’s id

revert(result, *args, **kwargs)
This method will revert the creation of the

Parameters
result -- here it refers to server group id

class NovaServerGroupDelete(**kwargs)
Bases: BaseComputeTask

execute(server_group_id)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

octavia.controller.worker.v2.tasks.database_tasks module

class AssociateFailoverAmphoraWithLBID(**kwargs)
Bases: BaseDatabaseTask

Associate failover amphora with loadbalancer in the database.

execute(amphora_id, loadbalancer_id)
Associate failover amphora with loadbalancer in the database.

Parameters

• amphora_id -- Id of an amphora to update

• loadbalancer_id -- Id of a load balancer to be associated with a given
amphora.

Returns
None

4.6. Module Reference 822

Octavia Documentation, Release 15.1.0.dev35

revert(amphora_id, *args, **kwargs)
Remove amphora-load balancer association.

Parameters
amphora_id -- Id of an amphora that couldn’t be associated with a load bal-
ancer.

Returns
None

class BaseDatabaseTask(**kwargs)
Bases: Task

Base task to load drivers common to the tasks.

class CountPoolChildrenForQuota(**kwargs)
Bases: BaseDatabaseTask

Counts the pool child resources for quota management.

Since the children of pools are cleaned up by the sqlalchemy cascade delete settings, we need to
collect the quota counts for the child objects early.

execute(pool_id)
Count the pool child resources for quota management

Parameters
pool_id -- pool_id of pool object to count children on

Returns
None

class CreateAmphoraInDB(**kwargs)
Bases: BaseDatabaseTask

Task to create an initial amphora in the Database.

execute(*args, loadbalancer_id=None, **kwargs)
Creates an pending create amphora record in the database.

Returns
The created amphora object

revert(result, *args, **kwargs)
Revert by storing the amphora in error state in the DB

In a future version we might change the status to DELETED if deleting the amphora was
successful

Parameters
result -- Id of created amphora.

Returns
None

class CreateVRRPGroupForLB(**kwargs)
Bases: BaseDatabaseTask

Create a VRRP group for a load balancer.

4.6. Module Reference 823

Octavia Documentation, Release 15.1.0.dev35

execute(loadbalancer_id)
Create a VRRP group for a load balancer.

Parameters
loadbalancer_id -- Load balancer ID for which a VRRP group should be
created

class DecrementHealthMonitorQuota(**kwargs)
Bases: BaseDatabaseTask

Decrements the health monitor quota for a project.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(project_id)
Decrements the health monitor quota.

Parameters
project_id -- The project_id to decrement the quota on.

Returns
None

revert(project_id, result, *args, **kwargs)
Re-apply the quota

Parameters
project_id -- The project_id to decrement the quota on.

Returns
None

class DecrementL7policyQuota(**kwargs)
Bases: BaseDatabaseTask

Decrements the l7policy quota for a project.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(l7policy)
Decrements the l7policy quota.

Parameters
l7policy -- The l7policy to decrement the quota on.

Returns
None

revert(l7policy, result, *args, **kwargs)
Re-apply the quota

Parameters
l7policy -- The l7policy to decrement the quota on.

Returns
None

4.6. Module Reference 824

Octavia Documentation, Release 15.1.0.dev35

class DecrementL7ruleQuota(**kwargs)
Bases: BaseDatabaseTask

Decrements the l7rule quota for a project.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(l7rule)
Decrements the l7rule quota.

Parameters
l7rule -- The l7rule to decrement the quota on.

Returns
None

revert(l7rule, result, *args, **kwargs)
Re-apply the quota

Parameters
l7rule -- The l7rule to decrement the quota on.

Returns
None

class DecrementListenerQuota(**kwargs)
Bases: BaseDatabaseTask

Decrements the listener quota for a project.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(project_id)
Decrements the listener quota.

Parameters
project_id -- The project_id to decrement the quota on.

Returns
None

revert(project_id, result, *args, **kwargs)
Re-apply the quota

Parameters
project_id -- The project_id to decrement the quota on.

Returns
None

class DecrementLoadBalancerQuota(**kwargs)
Bases: BaseDatabaseTask

Decrements the load balancer quota for a project.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(project_id)
Decrements the load balancer quota.

4.6. Module Reference 825

Octavia Documentation, Release 15.1.0.dev35

Parameters
project_id -- Project id where quota should be reduced

Returns
None

revert(project_id, result, *args, **kwargs)
Re-apply the quota

Parameters
project_id -- The project id to decrement the quota on.

Returns
None

class DecrementMemberQuota(**kwargs)
Bases: BaseDatabaseTask

Decrements the member quota for a project.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(project_id)
Decrements the member quota.

Parameters
member -- The member to decrement the quota on.

Returns
None

revert(project_id, result, *args, **kwargs)
Re-apply the quota

Parameters
member -- The member to decrement the quota on.

Returns
None

class DecrementPoolQuota(**kwargs)
Bases: BaseDatabaseTask

Decrements the pool quota for a project.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(project_id, pool_child_count)
Decrements the pool quota.

Parameters
project_id -- project_id where the pool to decrement the quota on

Returns
None

revert(project_id, pool_child_count, result, *args, **kwargs)
Re-apply the quota

4.6. Module Reference 826

Octavia Documentation, Release 15.1.0.dev35

Parameters
project_id -- The id of project to decrement the quota on

Returns
None

class DeleteHealthMonitorInDB(**kwargs)
Bases: BaseDatabaseTask

Delete the health monitor in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(health_mon)
Delete the health monitor in DB

Parameters
health_mon -- The health monitor which should be deleted

Returns
None

revert(health_mon, *args, **kwargs)
Mark the health monitor ERROR since the mark active couldn’t happen

Parameters
health_mon -- The health monitor which couldn’t be deleted

Returns
None

class DeleteHealthMonitorInDBByPool(**kwargs)
Bases: DeleteHealthMonitorInDB

Delete the health monitor in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(pool_id)
Delete the health monitor in the DB.

Parameters
pool_id -- ID of pool which health monitor should be deleted.

Returns
None

revert(pool_id, *args, **kwargs)
Mark the health monitor ERROR since the mark active couldn’t happen

Parameters
pool_id -- ID of pool which health monitor couldn’t be deleted

Returns
None

class DeleteL7PolicyInDB(**kwargs)
Bases: BaseDatabaseTask

Delete the L7 policy in the DB.

4.6. Module Reference 827

Octavia Documentation, Release 15.1.0.dev35

Since sqlalchemy will likely retry by itself always revert if it fails

execute(l7policy)
Delete the l7policy in DB

Parameters
l7policy -- The l7policy to be deleted

Returns
None

revert(l7policy, *args, **kwargs)
Mark the l7policy ERROR since the delete couldn’t happen

Parameters
l7policy -- L7 policy that failed to get deleted

Returns
None

class DeleteL7RuleInDB(**kwargs)
Bases: BaseDatabaseTask

Delete the L7 rule in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(l7rule)
Delete the l7rule in DB

Parameters
l7rule -- The l7rule to be deleted

Returns
None

revert(l7rule, *args, **kwargs)
Mark the l7rule ERROR since the delete couldn’t happen

Parameters
l7rule -- L7 rule that failed to get deleted

Returns
None

class DeleteListenerInDB(**kwargs)
Bases: BaseDatabaseTask

Delete the listener in the DB.

execute(listener)
Delete the listener in DB

Parameters
listener -- The listener to delete

Returns
None

4.6. Module Reference 828

Octavia Documentation, Release 15.1.0.dev35

revert(listener, *args, **kwargs)
Mark the listener ERROR since the listener didn’t delete

Parameters
listener -- Listener that failed to get deleted

Returns
None

class DeleteMemberInDB(**kwargs)
Bases: BaseDatabaseTask

Delete the member in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(member)
Delete the member in the DB

Parameters
member -- The member to be deleted

Returns
None

revert(member, *args, **kwargs)
Mark the member ERROR since the delete couldn’t happen

Parameters
member -- Member that failed to get deleted

Returns
None

class DeletePoolInDB(**kwargs)
Bases: BaseDatabaseTask

Delete the pool in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(pool_id)
Delete the pool in DB

Parameters
pool_id -- The pool_id to be deleted

Returns
None

revert(pool_id, *args, **kwargs)
Mark the pool ERROR since the delete couldn’t happen

Parameters
pool_id -- pool_id that failed to get deleted

Returns
None

4.6. Module Reference 829

Octavia Documentation, Release 15.1.0.dev35

class DisableAmphoraHealthMonitoring(**kwargs)
Bases: BaseDatabaseTask

Disable amphora health monitoring.

This disables amphora health monitoring by removing it from the amphora_health table.

execute(amphora)
Disable health monitoring for an amphora

Parameters
amphora -- The amphora to disable health monitoring for

Returns
None

class DisableLBAmphoraeHealthMonitoring(**kwargs)
Bases: BaseDatabaseTask

Disable health monitoring on the LB amphorae.

This disables amphora health monitoring by removing it from the amphora_health table for each
amphora on a load balancer.

execute(loadbalancer)
Disable health monitoring for amphora on a load balancer

Parameters
loadbalancer -- The load balancer to disable health monitoring on

Returns
None

class GetAmphoraDetails(**kwargs)
Bases: BaseDatabaseTask

Task to retrieve amphora network details.

execute(amphora)
Retrieve amphora network details.

Parameters
amphora -- Amphora which network details are required

Returns
Amphora data dict

class GetAmphoraFirewallRules(**kwargs)
Bases: BaseDatabaseTask

Task to build firewall rules for the amphora.

execute(amphorae, amphora_index, amphorae_network_config)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

4.6. Module Reference 830

Octavia Documentation, Release 15.1.0.dev35

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

class GetAmphoraeFromLoadbalancer(**kwargs)
Bases: BaseDatabaseTask

Task to pull the amphorae from a loadbalancer.

execute(loadbalancer_id)
Pull the amphorae from a loadbalancer.

Parameters
loadbalancer_id -- Load balancer ID to get amphorae from

Returns
A list of Listener objects

class GetListenersFromLoadbalancer(**kwargs)
Bases: BaseDatabaseTask

Task to pull the listeners from a loadbalancer.

execute(loadbalancer)
Pull the listeners from a loadbalancer.

Parameters
loadbalancer -- Load balancer which listeners are required

Returns
A list of Listener objects

class GetLoadBalancer(**kwargs)
Bases: BaseDatabaseTask

Get an load balancer object from the database.

execute(loadbalancer_id, *args, **kwargs)
Get an load balancer object from the database.

Parameters
loadbalancer_id -- The load balancer ID to lookup

Returns
The load balancer object

class GetVipFromLoadbalancer(**kwargs)
Bases: BaseDatabaseTask

Task to pull the vip from a loadbalancer.

4.6. Module Reference 831

Octavia Documentation, Release 15.1.0.dev35

execute(loadbalancer)
Pull the vip from a loadbalancer.

Parameters
loadbalancer -- Load balancer which VIP is required

Returns
VIP associated with a given load balancer

class MarkAmphoraAllocatedInDB(**kwargs)
Bases: BaseDatabaseTask

Will mark an amphora as allocated to a load balancer in the database.

Assume sqlalchemy made sure the DB got retried sufficiently - so just abort

execute(amphora, loadbalancer_id)
Mark amphora as allocated to a load balancer in DB.

Parameters

• amphora -- Amphora to be updated.

• loadbalancer_id -- Id of a load balancer to which an amphora should be
allocated.

Returns
None

revert(result, amphora, loadbalancer_id, *args, **kwargs)
Mark the amphora as broken and ready to be cleaned up.

Parameters

• result -- Execute task result

• amphora -- Amphora that was updated.

• loadbalancer_id -- Id of a load balancer to which an amphora failed to be
allocated.

Returns
None

class MarkAmphoraBackupInDB(**kwargs)
Bases: _MarkAmphoraRoleAndPriorityInDB

Alter the amphora role to: Backup.

execute(amphora)
Mark amphora as BACKUP in db.

Parameters
amphora -- Amphora to update role.

Returns
None

revert(result, amphora, *args, **kwargs)
Removes amphora role association.

4.6. Module Reference 832

Octavia Documentation, Release 15.1.0.dev35

Parameters
amphora -- Amphora to update role.

Returns
None

class MarkAmphoraBootingInDB(**kwargs)
Bases: BaseDatabaseTask

Mark the amphora as booting in the database.

execute(amphora_id, compute_id)
Mark amphora booting in DB.

Parameters

• amphora_id -- Id of the amphora to update

• compute_id -- Id of a compute on which an amphora resides

Returns
None

revert(result, amphora_id, compute_id, *args, **kwargs)
Mark the amphora as broken and ready to be cleaned up.

Parameters

• result -- Execute task result

• amphora_id -- Id of the amphora that failed to update

• compute_id -- Id of a compute on which an amphora resides

Returns
None

class MarkAmphoraDeletedInDB(**kwargs)
Bases: BaseDatabaseTask

Mark the amphora deleted in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(amphora)
Mark the amphora as deleted in DB.

Parameters
amphora -- Amphora to be updated.

Returns
None

revert(amphora, *args, **kwargs)
Mark the amphora as broken and ready to be cleaned up.

Parameters
amphora -- Amphora that was updated.

Returns
None

4.6. Module Reference 833

Octavia Documentation, Release 15.1.0.dev35

class MarkAmphoraHealthBusy(**kwargs)
Bases: BaseDatabaseTask

Mark amphora health monitoring busy.

This prevents amphora failover by marking the amphora busy in the amphora_health table.

execute(amphora)
Mark amphora health monitoring busy

Parameters
amphora -- The amphora to mark amphora health busy

Returns
None

class MarkAmphoraMasterInDB(**kwargs)
Bases: _MarkAmphoraRoleAndPriorityInDB

Alter the amphora role to: MASTER.

execute(amphora)
Mark amphora as MASTER in db.

Parameters
amphora -- Amphora to update role.

Returns
None

revert(result, amphora, *args, **kwargs)
Removes amphora role association.

Parameters
amphora -- Amphora to update role.

Returns
None

class MarkAmphoraPendingDeleteInDB(**kwargs)
Bases: BaseDatabaseTask

Mark the amphora pending delete in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(amphora)
Mark the amphora as pending delete in DB.

Parameters
amphora -- Amphora to be updated.

Returns
None

revert(amphora, *args, **kwargs)
Mark the amphora as broken and ready to be cleaned up.

Parameters
amphora -- Amphora that was updated.

4.6. Module Reference 834

Octavia Documentation, Release 15.1.0.dev35

Returns
None

class MarkAmphoraPendingUpdateInDB(**kwargs)
Bases: BaseDatabaseTask

Mark the amphora pending update in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(amphora)
Mark the amphora as pending update in DB.

Parameters
amphora -- Amphora to be updated.

Returns
None

revert(amphora, *args, **kwargs)
Mark the amphora as broken and ready to be cleaned up.

Parameters
amphora -- Amphora that was updated.

Returns
None

class MarkAmphoraReadyInDB(**kwargs)
Bases: BaseDatabaseTask

This task will mark an amphora as ready in the database.

Assume sqlalchemy made sure the DB got retried sufficiently - so just abort

execute(amphora)
Mark amphora as ready in DB.

Parameters
amphora -- Amphora to be updated.

Returns
None

revert(amphora, *args, **kwargs)
Mark the amphora as broken and ready to be cleaned up.

Parameters
amphora -- Amphora that was updated.

Returns
None

class MarkAmphoraStandAloneInDB(**kwargs)
Bases: _MarkAmphoraRoleAndPriorityInDB

Alter the amphora role to: Standalone.

4.6. Module Reference 835

Octavia Documentation, Release 15.1.0.dev35

execute(amphora)
Mark amphora as STANDALONE in db.

Parameters
amphora -- Amphora to update role.

Returns
None

revert(result, amphora, *args, **kwargs)
Removes amphora role association.

Parameters
amphora -- Amphora to update role.

Returns
None

class MarkHealthMonitorActiveInDB(**kwargs)
Bases: BaseDatabaseTask

Mark the health monitor ACTIVE in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(health_mon)
Mark the health monitor ACTIVE in DB.

Parameters
health_mon -- Health Monitor object to be updated

Returns
None

revert(health_mon, *args, **kwargs)
Mark the health monitor as broken

Parameters
health_mon -- Health Monitor object that failed to update

Returns
None

class MarkHealthMonitorPendingCreateInDB(**kwargs)
Bases: BaseDatabaseTask

Mark the health monitor pending create in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(health_mon)
Mark the health monitor as pending create in DB.

Parameters
health_mon -- Health Monitor object to be updated

Returns
None

4.6. Module Reference 836

Octavia Documentation, Release 15.1.0.dev35

revert(health_mon, *args, **kwargs)
Mark the health monitor as broken

Parameters
health_mon -- Health Monitor object that failed to update

Returns
None

class MarkHealthMonitorPendingDeleteInDB(**kwargs)
Bases: BaseDatabaseTask

Mark the health monitor pending delete in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(health_mon)
Mark the health monitor as pending delete in DB.

Parameters
health_mon -- Health Monitor object to be updated

Returns
None

revert(health_mon, *args, **kwargs)
Mark the health monitor as broken

Parameters
health_mon -- Health Monitor object that failed to update

Returns
None

class MarkHealthMonitorPendingUpdateInDB(**kwargs)
Bases: BaseDatabaseTask

Mark the health monitor pending update in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(health_mon)
Mark the health monitor as pending update in DB.

Parameters
health_mon -- Health Monitor object to be updated

Returns
None

revert(health_mon, *args, **kwargs)
Mark the health monitor as broken

Parameters
health_mon -- Health Monitor object that failed to update

Returns
None

4.6. Module Reference 837

Octavia Documentation, Release 15.1.0.dev35

class MarkHealthMonitorsOnlineInDB(**kwargs)
Bases: BaseDatabaseTask

execute(loadbalancer: dict)
Mark all enabled health monitors Online

Parameters
loadbalancer -- Dictionary of a Load Balancer that has associated health
monitors

Returns
None

class MarkL7PolicyActiveInDB(**kwargs)
Bases: BaseDatabaseTask

Mark the l7policy ACTIVE in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(l7policy)
Mark the l7policy ACTIVE in DB.

Parameters
l7policy -- L7Policy object to be updated

Returns
None

revert(l7policy, *args, **kwargs)
Mark the l7policy as broken

Parameters
l7policy -- L7Policy object that failed to update

Returns
None

class MarkL7PolicyPendingCreateInDB(**kwargs)
Bases: BaseDatabaseTask

Mark the l7policy pending create in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(l7policy)
Mark the l7policy as pending create in DB.

Parameters
l7policy -- L7Policy object to be updated

Returns
None

revert(l7policy, *args, **kwargs)
Mark the l7policy as broken

Parameters
l7policy -- L7Policy object that failed to update

4.6. Module Reference 838

Octavia Documentation, Release 15.1.0.dev35

Returns
None

class MarkL7PolicyPendingDeleteInDB(**kwargs)
Bases: BaseDatabaseTask

Mark the l7policy pending delete in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(l7policy)
Mark the l7policy as pending delete in DB.

Parameters
l7policy -- L7Policy object to be updated

Returns
None

revert(l7policy, *args, **kwargs)
Mark the l7policy as broken

Parameters
l7policy -- L7Policy object that failed to update

Returns
None

class MarkL7PolicyPendingUpdateInDB(**kwargs)
Bases: BaseDatabaseTask

Mark the l7policy pending update in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(l7policy)
Mark the l7policy as pending update in DB.

Parameters
l7policy -- L7Policy object to be updated

Returns
None

revert(l7policy, *args, **kwargs)
Mark the l7policy as broken

Parameters
l7policy -- L7Policy object that failed to update

Returns
None

class MarkL7RuleActiveInDB(**kwargs)
Bases: BaseDatabaseTask

Mark the l7rule ACTIVE in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

4.6. Module Reference 839

Octavia Documentation, Release 15.1.0.dev35

execute(l7rule)
Mark the l7rule ACTIVE in DB.

Parameters
l7rule -- L7Rule object to be updated

Returns
None

revert(l7rule, *args, **kwargs)
Mark the l7rule as broken

Parameters
l7rule -- L7Rule object that failed to update

Returns
None

class MarkL7RulePendingCreateInDB(**kwargs)
Bases: BaseDatabaseTask

Mark the l7rule pending create in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(l7rule)
Mark the l7rule as pending create in DB.

Parameters
l7rule -- L7Rule object to be updated

Returns
None

revert(l7rule, *args, **kwargs)
Mark the l7rule as broken

Parameters
l7rule -- L7Rule object that failed to update

Returns
None

class MarkL7RulePendingDeleteInDB(**kwargs)
Bases: BaseDatabaseTask

Mark the l7rule pending delete in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(l7rule)
Mark the l7rule as pending delete in DB.

Parameters
l7rule -- L7Rule object to be updated

Returns
None

4.6. Module Reference 840

Octavia Documentation, Release 15.1.0.dev35

revert(l7rule, *args, **kwargs)
Mark the l7rule as broken

Parameters
l7rule -- L7Rule object that failed to update

Returns
None

class MarkL7RulePendingUpdateInDB(**kwargs)
Bases: BaseDatabaseTask

Mark the l7rule pending update in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(l7rule)
Mark the l7rule as pending update in DB.

Parameters
l7rule -- L7Rule object to be updated

Returns
None

revert(l7rule, *args, **kwargs)
Mark the l7rule as broken

Parameters
l7rule -- L7Rule object that failed to update

Returns
None

class MarkLBActiveInDB(mark_subobjects=False, **kwargs)
Bases: BaseDatabaseTask

Mark the load balancer active in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(loadbalancer)
Mark the load balancer as active in DB.

This also marks ACTIVE all sub-objects of the load balancer if self.mark_subobjects is True.

Parameters
loadbalancer -- Load balancer object to be updated

Returns
None

revert(loadbalancer, *args, **kwargs)
Mark the load balancer as broken and ready to be cleaned up.

This also puts all sub-objects of the load balancer to ERROR state if self.mark_subobjects is
True

Parameters
loadbalancer -- Load balancer object that failed to update

4.6. Module Reference 841

Octavia Documentation, Release 15.1.0.dev35

Returns
None

class MarkLBActiveInDBByListener(**kwargs)
Bases: BaseDatabaseTask

Mark the load balancer active in the DB using a listener dict.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(listener)
Mark the load balancer as active in DB.

Parameters
listener -- Listener dictionary

Returns
None

class MarkLBAmphoraeDeletedInDB(**kwargs)
Bases: BaseDatabaseTask

Task to mark a list of amphora deleted in the Database.

execute(loadbalancer)
Update load balancer’s amphorae statuses to DELETED in the database.

Parameters
loadbalancer -- The load balancer which amphorae should be marked
DELETED.

Returns
None

class MarkLBAmphoraeHealthBusy(**kwargs)
Bases: BaseDatabaseTask

Mark amphorae health monitoring busy for the LB.

This prevents amphorae failover by marking each amphora of a given load balancer busy in the
amphora_health table.

execute(loadbalancer)
Marks amphorae health busy for each amphora on a load balancer

Parameters
loadbalancer -- The load balancer to mark amphorae health busy

Returns
None

class MarkLBAndListenersActiveInDB(**kwargs)
Bases: BaseDatabaseTask

Mark the load balancer and specified listeners active in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

4.6. Module Reference 842

Octavia Documentation, Release 15.1.0.dev35

execute(loadbalancer_id, listeners)
Mark the load balancer and listeners as active in DB.

Parameters

• loadbalancer_id -- The load balancer ID to be updated

• listeners -- Listener objects to be updated

Returns
None

revert(loadbalancer_id, listeners, *args, **kwargs)
Mark the load balancer and listeners as broken.

Parameters

• loadbalancer_id -- The load balancer ID to be updated

• listeners -- Listener objects that failed to update

Returns
None

class MarkLBDeletedInDB(**kwargs)
Bases: BaseDatabaseTask

Mark the load balancer deleted in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(loadbalancer)
Mark the load balancer as deleted in DB.

Parameters
loadbalancer -- Load balancer object to be updated

Returns
None

class MarkLBPendingDeleteInDB(**kwargs)
Bases: BaseDatabaseTask

Mark the load balancer pending delete in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(loadbalancer)
Mark the load balancer as pending delete in DB.

Parameters
loadbalancer -- Load balancer object to be updated

Returns
None

class MarkListenerDeletedInDB(**kwargs)
Bases: BaseDatabaseTask

Mark the listener deleted in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

4.6. Module Reference 843

Octavia Documentation, Release 15.1.0.dev35

execute(listener)
Mark the listener as deleted in DB

Parameters
listener -- The listener to be marked deleted

Returns
None

revert(listener, *args, **kwargs)
Mark the listener ERROR since the delete couldn’t happen

Parameters
listener -- The listener that couldn’t be updated

Returns
None

class MarkListenerPendingDeleteInDB(**kwargs)
Bases: BaseDatabaseTask

Mark the listener pending delete in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(listener)
Mark the listener as pending delete in DB.

Parameters
listener -- The listener to be updated

Returns
None

revert(listener, *args, **kwargs)
Mark the listener as broken and ready to be cleaned up.

Parameters
listener -- The listener that couldn’t be updated

Returns
None

class MarkMemberActiveInDB(**kwargs)
Bases: BaseDatabaseTask

Mark the member ACTIVE in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(member)
Mark the member ACTIVE in DB.

Parameters
member -- Member object to be updated

Returns
None

4.6. Module Reference 844

Octavia Documentation, Release 15.1.0.dev35

revert(member, *args, **kwargs)
Mark the member as broken

Parameters
member -- Member object that failed to update

Returns
None

class MarkMemberPendingCreateInDB(**kwargs)
Bases: BaseDatabaseTask

Mark the member pending create in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(member)
Mark the member as pending create in DB.

Parameters
member -- Member object to be updated

Returns
None

revert(member, *args, **kwargs)
Mark the member as broken

Parameters
member -- Member object that failed to update

Returns
None

class MarkMemberPendingDeleteInDB(**kwargs)
Bases: BaseDatabaseTask

Mark the member pending delete in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(member)
Mark the member as pending delete in DB.

Parameters
member -- Member object to be updated

Returns
None

revert(member, *args, **kwargs)
Mark the member as broken

Parameters
member -- Member object that failed to update

Returns
None

4.6. Module Reference 845

Octavia Documentation, Release 15.1.0.dev35

class MarkMemberPendingUpdateInDB(**kwargs)
Bases: BaseDatabaseTask

Mark the member pending update in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(member)
Mark the member as pending update in DB.

Parameters
member -- Member object to be updated

Returns
None

revert(member, *args, **kwargs)
Mark the member as broken

Parameters
member -- Member object that failed to update

Returns
None

class MarkPoolActiveInDB(**kwargs)
Bases: BaseDatabaseTask

Mark the pool ACTIVE in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(pool_id)
Mark the pool ACTIVE in DB.

Parameters
pool_id -- pool_id to be updated

Returns
None

revert(pool_id, *args, **kwargs)
Mark the pool as broken

Parameters
pool_id -- pool_id that failed to update

Returns
None

class MarkPoolPendingCreateInDB(**kwargs)
Bases: BaseDatabaseTask

Mark the pool pending create in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(pool_id)
Mark the pool as pending create in DB.

4.6. Module Reference 846

Octavia Documentation, Release 15.1.0.dev35

Parameters
pool_id -- pool_id of pool object to be updated

Returns
None

revert(pool_id, *args, **kwargs)
Mark the pool as broken

Parameters
pool_id -- pool_id of pool object that failed to update

Returns
None

class MarkPoolPendingDeleteInDB(**kwargs)
Bases: BaseDatabaseTask

Mark the pool pending delete in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(pool_id)
Mark the pool as pending delete in DB.

Parameters
pool_id -- pool_id of pool object to be updated

Returns
None

revert(pool_id, *args, **kwargs)
Mark the pool as broken

Parameters
pool_id -- pool_id of pool object that failed to update

Returns
None

class MarkPoolPendingUpdateInDB(**kwargs)
Bases: BaseDatabaseTask

Mark the pool pending update in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(pool_id)
Mark the pool as pending update in DB.

Parameters
pool_id -- pool_id of pool object to be updated

Returns
None

revert(pool_id, *args, **kwargs)
Mark the pool as broken

4.6. Module Reference 847

Octavia Documentation, Release 15.1.0.dev35

Parameters
pool_id -- pool_id of pool object that failed to update

Returns
None

class ReloadAmphora(**kwargs)
Bases: BaseDatabaseTask

Get an amphora object from the database.

execute(amphora)
Get an amphora object from the database.

Parameters
amphora_id -- The amphora ID to lookup

Returns
The amphora object

class ReloadLoadBalancer(**kwargs)
Bases: BaseDatabaseTask

Get an load balancer object from the database.

execute(loadbalancer_id, *args, **kwargs)
Get an load balancer object from the database.

Parameters
loadbalancer_id -- The load balancer ID to lookup

Returns
The load balancer object

class UpdateAdditionalVIPsAfterAllocation(**kwargs)
Bases: BaseDatabaseTask

Update a VIP associated with a given load balancer.

execute(loadbalancer_id, additional_vips)
Update additional VIPs associated with a given load balancer.

Parameters

• loadbalancer_id -- Id of a load balancer which VIP should be updated.

• additional_vips -- data_models.AdditionalVip object with update data.

Returns
The load balancer object.

class UpdateAmpFailoverDetails(**kwargs)
Bases: BaseDatabaseTask

Update amphora failover details in the database.

execute(amphora, vip, base_port)
Update amphora failover details in the database.

Parameters

4.6. Module Reference 848

Octavia Documentation, Release 15.1.0.dev35

• amphora -- The amphora to update

• vip -- The VIP object associated with this amphora.

• base_port -- The base port object associated with the amphora.

Returns
None

class UpdateAmphoraCertBusyToFalse(**kwargs)
Bases: BaseDatabaseTask

Update the amphora cert_busy flag to be false.

execute(amphora_id)
Update the amphora cert_busy flag to be false.

Parameters
amphora -- Amphora to be updated.

Returns
None

class UpdateAmphoraComputeId(**kwargs)
Bases: BaseDatabaseTask

Associate amphora with a compute in DB.

execute(amphora_id, compute_id)
Associate amphora with a compute in DB.

Parameters

• amphora_id -- Id of the amphora to update

• compute_id -- Id of a compute on which an amphora resides

Returns
None

class UpdateAmphoraDBCertExpiration(**kwargs)
Bases: BaseDatabaseTask

Update the amphora expiration date with new cert file date.

execute(amphora_id, server_pem)

Update the amphora expiration date with new cert file date.

Parameters

• amphora_id -- Id of the amphora to update

• server_pem -- Certificate in PEM format

Returns
None

class UpdateAmphoraInfo(**kwargs)
Bases: BaseDatabaseTask

Update amphora with compute instance details.

4.6. Module Reference 849

Octavia Documentation, Release 15.1.0.dev35

execute(amphora_id, compute_obj)
Update amphora with compute instance details.

Parameters

• amphora_id -- Id of the amphora to update

• compute_obj -- Compute on which an amphora resides

Returns
Updated amphora object

class UpdateAmphoraVIPData(**kwargs)
Bases: BaseDatabaseTask

Update amphorae VIP data.

execute(amp_data)
Update amphorae VIP data.

Parameters
amps_data -- Amphorae update dicts.

Returns
None

class UpdateAmphoraeVIPData(**kwargs)
Bases: BaseDatabaseTask

Update amphorae VIP data.

execute(amps_data)
Update amphorae VIP data.

Parameters
amps_data -- Amphorae update dicts.

Returns
None

class UpdateHealthMonInDB(**kwargs)
Bases: BaseDatabaseTask

Update the health monitor in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(health_mon, update_dict)
Update the health monitor in the DB

Parameters

• health_mon -- The health monitor to be updated

• update_dict -- The dictionary of updates to apply

Returns
None

4.6. Module Reference 850

Octavia Documentation, Release 15.1.0.dev35

revert(health_mon, *args, **kwargs)
Mark the health monitor ERROR since the update couldn’t happen

Parameters
health_mon -- The health monitor that couldn’t be updated

Returns
None

class UpdateL7PolicyInDB(**kwargs)
Bases: BaseDatabaseTask

Update the L7 policy in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(l7policy, update_dict)
Update the L7 policy in the DB

Parameters

• l7policy -- The L7 policy to be updated

• update_dict -- The dictionary of updates to apply

Returns
None

revert(l7policy, *args, **kwargs)
Mark the l7policy ERROR since the update couldn’t happen

Parameters
l7policy -- L7 policy that couldn’t be updated

Returns
None

class UpdateL7RuleInDB(**kwargs)
Bases: BaseDatabaseTask

Update the L7 rule in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(l7rule, update_dict)
Update the L7 rule in the DB

Parameters

• l7rule -- The L7 rule to be updated

• update_dict -- The dictionary of updates to apply

Returns
None

revert(l7rule, *args, **kwargs)
Mark the L7 rule ERROR since the update couldn’t happen

Parameters
l7rule -- L7 rule that couldn’t be updated

4.6. Module Reference 851

Octavia Documentation, Release 15.1.0.dev35

Returns
None

class UpdateLBServerGroupInDB(**kwargs)
Bases: BaseDatabaseTask

Update the server group id info for load balancer in DB.

execute(loadbalancer_id, server_group_id)
Update the server group id info for load balancer in DB.

Parameters

• loadbalancer_id -- Id of a load balancer to update

• server_group_id -- Id of a server group to associate with the load balancer

Returns
None

revert(loadbalancer_id, server_group_id, *args, **kwargs)
Remove server group information from a load balancer in DB.

Parameters

• loadbalancer_id -- Id of a load balancer that failed to update

• server_group_id -- Id of a server group that couldn’t be associated with
the load balancer

Returns
None

class UpdateListenerInDB(**kwargs)
Bases: BaseDatabaseTask

Update the listener in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(listener, update_dict)
Update the listener in the DB

Parameters

• listener -- The listener to be updated

• update_dict -- The dictionary of updates to apply

Returns
None

revert(listener, *args, **kwargs)
Mark the listener ERROR since the update couldn’t happen

Parameters
listener -- The listener that couldn’t be updated

Returns
None

4.6. Module Reference 852

Octavia Documentation, Release 15.1.0.dev35

class UpdateLoadbalancerInDB(**kwargs)
Bases: BaseDatabaseTask

Update the loadbalancer in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(loadbalancer, update_dict)
Update the loadbalancer in the DB

Parameters

• loadbalancer -- The load balancer to be updated

• update_dict -- The dictionary of updates to apply

Returns
None

class UpdateMemberInDB(**kwargs)
Bases: BaseDatabaseTask

Update the member in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(member, update_dict)
Update the member in the DB

Parameters

• member -- The member to be updated

• update_dict -- The dictionary of updates to apply

Returns
None

revert(member, *args, **kwargs)
Mark the member ERROR since the update couldn’t happen

Parameters
member -- The member that couldn’t be updated

Returns
None

class UpdatePoolInDB(**kwargs)
Bases: BaseDatabaseTask

Update the pool in the DB.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(pool_id, update_dict)
Update the pool in the DB

Parameters

• pool_id -- The pool_id to be updated

• update_dict -- The dictionary of updates to apply

4.6. Module Reference 853

Octavia Documentation, Release 15.1.0.dev35

Returns
None

revert(pool_id, *args, **kwargs)
Mark the pool ERROR since the update couldn’t happen

Parameters
pool_id -- The pool_id that couldn’t be updated

Returns
None

class UpdatePoolMembersOperatingStatusInDB(**kwargs)
Bases: BaseDatabaseTask

Updates the members of a pool operating status.

Since sqlalchemy will likely retry by itself always revert if it fails

execute(pool_id, operating_status)
Update the members of a pool operating status in DB.

Parameters

• pool_id -- pool_id of pool object to be updated

• operating_status -- Operating status to set

Returns
None

class UpdateVIPAfterAllocation(**kwargs)
Bases: BaseDatabaseTask

Update a VIP associated with a given load balancer.

execute(loadbalancer_id, vip)
Update a VIP associated with a given load balancer.

Parameters

• loadbalancer_id -- Id of a load balancer which VIP should be updated.

• vip -- data_models.Vip object with update data.

Returns
The load balancer object.

octavia.controller.worker.v2.tasks.lifecycle_tasks module

class AmphoraIDToErrorOnRevertTask(**kwargs)
Bases: BaseLifecycleTask

Task to checkpoint Amphora lifecycle milestones.

execute(amphora_id)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may

4.6. Module Reference 854

Octavia Documentation, Release 15.1.0.dev35

provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

revert(amphora_id, *args, **kwargs)
Revert this atom.

This method should undo any side-effects caused by previous execution of the atom using the
result of the execute() method and information on the failure which triggered reversion of
the flow the atom is contained in (if applicable).

Parameters

• args -- positional arguments that the atom required to execute.

• kwargs -- any keyword arguments that the atom required to execute; the
special key 'result' will contain the execute() result (if any) and the
**kwargs key 'flow_failures' will contain any failure information.

class AmphoraToErrorOnRevertTask(**kwargs)
Bases: AmphoraIDToErrorOnRevertTask

Task to checkpoint Amphora lifecycle milestones.

execute(amphora)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

revert(amphora, *args, **kwargs)
Revert this atom.

This method should undo any side-effects caused by previous execution of the atom using the
result of the execute() method and information on the failure which triggered reversion of
the flow the atom is contained in (if applicable).

4.6. Module Reference 855

Octavia Documentation, Release 15.1.0.dev35

Parameters

• args -- positional arguments that the atom required to execute.

• kwargs -- any keyword arguments that the atom required to execute; the
special key 'result' will contain the execute() result (if any) and the
**kwargs key 'flow_failures' will contain any failure information.

class BaseLifecycleTask(**kwargs)
Bases: Task

Base task to instantiate common classes.

class HealthMonitorToErrorOnRevertTask(**kwargs)
Bases: BaseLifecycleTask

Task to set a member to ERROR on revert.

execute(health_mon, listeners, loadbalancer)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

revert(health_mon, listeners, loadbalancer, *args, **kwargs)
Revert this atom.

This method should undo any side-effects caused by previous execution of the atom using the
result of the execute() method and information on the failure which triggered reversion of
the flow the atom is contained in (if applicable).

Parameters

• args -- positional arguments that the atom required to execute.

• kwargs -- any keyword arguments that the atom required to execute; the
special key 'result' will contain the execute() result (if any) and the
**kwargs key 'flow_failures' will contain any failure information.

class L7PolicyToErrorOnRevertTask(**kwargs)
Bases: BaseLifecycleTask

Task to set a l7policy to ERROR on revert.

execute(l7policy, listeners, loadbalancer_id)
Activate a given atom which will perform some operation and return.

4.6. Module Reference 856

Octavia Documentation, Release 15.1.0.dev35

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

revert(l7policy, listeners, loadbalancer_id, *args, **kwargs)
Revert this atom.

This method should undo any side-effects caused by previous execution of the atom using the
result of the execute() method and information on the failure which triggered reversion of
the flow the atom is contained in (if applicable).

Parameters

• args -- positional arguments that the atom required to execute.

• kwargs -- any keyword arguments that the atom required to execute; the
special key 'result' will contain the execute() result (if any) and the
**kwargs key 'flow_failures' will contain any failure information.

class L7RuleToErrorOnRevertTask(**kwargs)
Bases: BaseLifecycleTask

Task to set a l7rule to ERROR on revert.

execute(l7rule, l7policy_id, listeners, loadbalancer_id)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

revert(l7rule, l7policy_id, listeners, loadbalancer_id, *args, **kwargs)
Revert this atom.

4.6. Module Reference 857

Octavia Documentation, Release 15.1.0.dev35

This method should undo any side-effects caused by previous execution of the atom using the
result of the execute() method and information on the failure which triggered reversion of
the flow the atom is contained in (if applicable).

Parameters

• args -- positional arguments that the atom required to execute.

• kwargs -- any keyword arguments that the atom required to execute; the
special key 'result' will contain the execute() result (if any) and the
**kwargs key 'flow_failures' will contain any failure information.

class ListenerToErrorOnRevertTask(**kwargs)
Bases: BaseLifecycleTask

Task to set a listener to ERROR on revert.

execute(listener)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

revert(listener, *args, **kwargs)
Revert this atom.

This method should undo any side-effects caused by previous execution of the atom using the
result of the execute() method and information on the failure which triggered reversion of
the flow the atom is contained in (if applicable).

Parameters

• args -- positional arguments that the atom required to execute.

• kwargs -- any keyword arguments that the atom required to execute; the
special key 'result' will contain the execute() result (if any) and the
**kwargs key 'flow_failures' will contain any failure information.

class ListenersToErrorOnRevertTask(**kwargs)
Bases: BaseLifecycleTask

Task to set a listener to ERROR on revert.

execute(listeners)
Activate a given atom which will perform some operation and return.

4.6. Module Reference 858

Octavia Documentation, Release 15.1.0.dev35

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

revert(listeners, *args, **kwargs)
Revert this atom.

This method should undo any side-effects caused by previous execution of the atom using the
result of the execute() method and information on the failure which triggered reversion of
the flow the atom is contained in (if applicable).

Parameters

• args -- positional arguments that the atom required to execute.

• kwargs -- any keyword arguments that the atom required to execute; the
special key 'result' will contain the execute() result (if any) and the
**kwargs key 'flow_failures' will contain any failure information.

class LoadBalancerIDToErrorOnRevertTask(**kwargs)
Bases: BaseLifecycleTask

Task to set the load balancer to ERROR on revert.

execute(loadbalancer_id)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

revert(loadbalancer_id, *args, **kwargs)
Revert this atom.

4.6. Module Reference 859

Octavia Documentation, Release 15.1.0.dev35

This method should undo any side-effects caused by previous execution of the atom using the
result of the execute() method and information on the failure which triggered reversion of
the flow the atom is contained in (if applicable).

Parameters

• args -- positional arguments that the atom required to execute.

• kwargs -- any keyword arguments that the atom required to execute; the
special key 'result' will contain the execute() result (if any) and the
**kwargs key 'flow_failures' will contain any failure information.

class LoadBalancerToErrorOnRevertTask(**kwargs)
Bases: LoadBalancerIDToErrorOnRevertTask

Task to set the load balancer to ERROR on revert.

execute(loadbalancer)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

revert(loadbalancer, *args, **kwargs)
Revert this atom.

This method should undo any side-effects caused by previous execution of the atom using the
result of the execute() method and information on the failure which triggered reversion of
the flow the atom is contained in (if applicable).

Parameters

• args -- positional arguments that the atom required to execute.

• kwargs -- any keyword arguments that the atom required to execute; the
special key 'result' will contain the execute() result (if any) and the
**kwargs key 'flow_failures' will contain any failure information.

class MemberToErrorOnRevertTask(**kwargs)
Bases: BaseLifecycleTask

Task to set a member to ERROR on revert.

execute(member, listeners, loadbalancer, pool_id)
Activate a given atom which will perform some operation and return.

4.6. Module Reference 860

Octavia Documentation, Release 15.1.0.dev35

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

revert(member, listeners, loadbalancer, pool_id, *args, **kwargs)
Revert this atom.

This method should undo any side-effects caused by previous execution of the atom using the
result of the execute() method and information on the failure which triggered reversion of
the flow the atom is contained in (if applicable).

Parameters

• args -- positional arguments that the atom required to execute.

• kwargs -- any keyword arguments that the atom required to execute; the
special key 'result' will contain the execute() result (if any) and the
**kwargs key 'flow_failures' will contain any failure information.

class MembersToErrorOnRevertTask(**kwargs)
Bases: BaseLifecycleTask

Task to set members to ERROR on revert.

execute(members, listeners, loadbalancer, pool_id)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

revert(members, listeners, loadbalancer, pool_id, *args, **kwargs)
Revert this atom.

4.6. Module Reference 861

Octavia Documentation, Release 15.1.0.dev35

This method should undo any side-effects caused by previous execution of the atom using the
result of the execute() method and information on the failure which triggered reversion of
the flow the atom is contained in (if applicable).

Parameters

• args -- positional arguments that the atom required to execute.

• kwargs -- any keyword arguments that the atom required to execute; the
special key 'result' will contain the execute() result (if any) and the
**kwargs key 'flow_failures' will contain any failure information.

class PoolToErrorOnRevertTask(**kwargs)
Bases: BaseLifecycleTask

Task to set a pool to ERROR on revert.

execute(pool_id, listeners, loadbalancer)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

revert(pool_id, listeners, loadbalancer, *args, **kwargs)
Revert this atom.

This method should undo any side-effects caused by previous execution of the atom using the
result of the execute() method and information on the failure which triggered reversion of
the flow the atom is contained in (if applicable).

Parameters

• args -- positional arguments that the atom required to execute.

• kwargs -- any keyword arguments that the atom required to execute; the
special key 'result' will contain the execute() result (if any) and the
**kwargs key 'flow_failures' will contain any failure information.

octavia.controller.worker.v2.tasks.network_tasks module

class AdminDownPort(**kwargs)
Bases: BaseNetworkTask

execute(port_id)
Activate a given atom which will perform some operation and return.

4.6. Module Reference 862

Octavia Documentation, Release 15.1.0.dev35

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

revert(result, port_id, *args, **kwargs)
Revert this atom.

This method should undo any side-effects caused by previous execution of the atom using the
result of the execute() method and information on the failure which triggered reversion of
the flow the atom is contained in (if applicable).

Parameters

• args -- positional arguments that the atom required to execute.

• kwargs -- any keyword arguments that the atom required to execute; the
special key 'result' will contain the execute() result (if any) and the
**kwargs key 'flow_failures' will contain any failure information.

class AllocateVIP(**kwargs)
Bases: BaseNetworkTask

Task to allocate a VIP.

execute(loadbalancer)
Allocate a vip to the loadbalancer.

revert(result, loadbalancer, *args, **kwargs)
Handle a failure to allocate vip.

class AllocateVIPforFailover(**kwargs)
Bases: AllocateVIP

Task to allocate/validate the VIP for a failover flow.

revert(result, loadbalancer, *args, **kwargs)
Handle a failure to allocate vip.

class ApplyQos(**kwargs)
Bases: BaseNetworkTask

Apply Quality of Services to the VIP

execute(loadbalancer, amps_data=None, update_dict=None)
Apply qos policy on the vrrp ports which are related with vip.

4.6. Module Reference 863

Octavia Documentation, Release 15.1.0.dev35

revert(result, loadbalancer, amps_data=None, update_dict=None, *args, **kwargs)
Handle a failure to apply QoS to VIP

class ApplyQosAmphora(**kwargs)
Bases: BaseNetworkTask

Apply Quality of Services to the VIP

execute(loadbalancer, amp_data=None, update_dict=None)
Apply qos policy on the vrrp ports which are related with vip.

revert(result, loadbalancer, amp_data=None, update_dict=None, *args, **kwargs)
Handle a failure to apply QoS to VIP

class BaseNetworkTask(**kwargs)
Bases: Task

Base task to load drivers common to the tasks.

property network_driver

class BuildAMPData(**kwargs)
Bases: BaseNetworkTask

Glue task to store the AMP_DATA dict from netork port information.

execute(loadbalancer, amphora, port_data)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

class CalculateAmphoraDelta(**kwargs)
Bases: BaseNetworkTask

default_provides = 'delta'

execute(loadbalancer, amphora, availability_zone)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

4.6. Module Reference 864

Octavia Documentation, Release 15.1.0.dev35

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

class CalculateDelta(**kwargs)
Bases: BaseNetworkTask

Task to calculate the delta between

the nics on the amphora and the ones we need. Returns a list for plumbing them.

default_provides = 'deltas'

execute(loadbalancer, availability_zone)
Compute which NICs need to be plugged

for the amphora to become operational.

Parameters

• loadbalancer -- the loadbalancer to calculate deltas for all amphorae

• availability_zone -- availability zone metadata dict

Returns
dict of octavia.network.data_models.Delta keyed off amphora id

class CreateSRIOVBasePort(**kwargs)
Bases: BaseNetworkTask

Task to create a SRIOV base port for an amphora.

execute(loadbalancer, amphora, subnet)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

4.6. Module Reference 865

Octavia Documentation, Release 15.1.0.dev35

revert(result, loadbalancer, amphora, subnet, *args, **kwargs)
Revert this atom.

This method should undo any side-effects caused by previous execution of the atom using the
result of the execute() method and information on the failure which triggered reversion of
the flow the atom is contained in (if applicable).

Parameters

• args -- positional arguments that the atom required to execute.

• kwargs -- any keyword arguments that the atom required to execute; the
special key 'result' will contain the execute() result (if any) and the
**kwargs key 'flow_failures' will contain any failure information.

class CreateVIPBasePort(**kwargs)
Bases: BaseNetworkTask

Task to create the VIP base port for an amphora.

execute(vip, vip_sg_id, amphora_id, additional_vips)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

revert(result, vip, vip_sg_id, amphora_id, additional_vips, *args, **kwargs)
Revert this atom.

This method should undo any side-effects caused by previous execution of the atom using the
result of the execute() method and information on the failure which triggered reversion of
the flow the atom is contained in (if applicable).

Parameters

• args -- positional arguments that the atom required to execute.

• kwargs -- any keyword arguments that the atom required to execute; the
special key 'result' will contain the execute() result (if any) and the
**kwargs key 'flow_failures' will contain any failure information.

class DeallocateVIP(**kwargs)
Bases: BaseNetworkTask

Task to deallocate a VIP.

4.6. Module Reference 866

Octavia Documentation, Release 15.1.0.dev35

execute(loadbalancer)
Deallocate a VIP.

class DeletePort(**kwargs)
Bases: BaseNetworkTask

Task to delete a network port.

execute(port_id, passive_failure=False)
Delete the network port.

class GetAmphoraNetworkConfigs(**kwargs)
Bases: BaseNetworkTask

Task to retrieve amphora network details.

execute(loadbalancer, amphora=None)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

class GetAmphoraNetworkConfigsByID(**kwargs)
Bases: BaseNetworkTask

Task to retrieve amphora network details.

execute(loadbalancer_id, amphora_id=None)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

4.6. Module Reference 867

Octavia Documentation, Release 15.1.0.dev35

class GetAmphoraeNetworkConfigs(**kwargs)
Bases: BaseNetworkTask

Task to retrieve amphorae network details.

execute(loadbalancer_id)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

class GetMemberPorts(**kwargs)
Bases: BaseNetworkTask

execute(loadbalancer, amphora)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

class GetPlumbedNetworks(**kwargs)
Bases: BaseNetworkTask

Task to figure out the NICS on an amphora.

This will likely move into the amphora driver :returns: Array of networks

default_provides = 'nics'

execute(amphora)
Get plumbed networks for the amphora.

4.6. Module Reference 868

Octavia Documentation, Release 15.1.0.dev35

class GetSubnetFromVIP(**kwargs)
Bases: BaseNetworkTask

Task to plumb a VIP.

execute(loadbalancer)
Plumb a vip to an amphora.

class GetVIPSecurityGroupID(**kwargs)
Bases: BaseNetworkTask

execute(loadbalancer_id)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

class HandleNetworkDelta(**kwargs)
Bases: BaseNetworkTask

Task to plug and unplug networks

Plug or unplug networks based on delta

execute(amphora, delta)
Handle network plugging based off deltas.

revert(result, amphora, delta, *args, **kwargs)
Handle a network plug or unplug failures.

class HandleNetworkDeltas(**kwargs)
Bases: BaseNetworkTask

Task to plug and unplug networks

Loop through the deltas and plug or unplug networks based on delta

execute(deltas, loadbalancer)
Handle network plugging based off deltas.

revert(result, deltas, *args, **kwargs)
Handle a network plug or unplug failures.

4.6. Module Reference 869

Octavia Documentation, Release 15.1.0.dev35

class PlugNetworks(**kwargs)
Bases: BaseNetworkTask

Task to plug the networks.

This uses the delta to add all missing networks/nics

execute(amphora, delta)
Update the amphora networks for the delta.

revert(amphora, delta, *args, **kwargs)
Handle a failed network plug by removing all nics added.

class PlugPorts(**kwargs)
Bases: BaseNetworkTask

Task to plug neutron ports into a compute instance.

execute(amphora, ports)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

class PlugVIPAmphora(**kwargs)
Bases: BaseNetworkTask

Task to plumb a VIP.

execute(loadbalancer, amphora, subnet)
Plumb a vip to an amphora.

revert(result, loadbalancer, amphora, subnet, *args, **kwargs)
Handle a failure to plumb a vip.

class RetrievePortIDsOnAmphoraExceptLBNetwork(**kwargs)
Bases: BaseNetworkTask

Task retrieving all the port ids on an amphora, except lb network.

execute(amphora)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may

4.6. Module Reference 870

Octavia Documentation, Release 15.1.0.dev35

provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

class UnPlugNetworks(**kwargs)
Bases: BaseNetworkTask

Task to unplug the networks

Loop over all nics and unplug them based on delta

execute(amphora, delta)
Unplug the networks.

class UnplugVIP(**kwargs)
Bases: BaseNetworkTask

Task to unplug the vip.

execute(loadbalancer)
Unplug the vip.

class UpdateVIP(**kwargs)
Bases: BaseNetworkTask

Task to update a VIP.

execute(listeners)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

class UpdateVIPForDelete(**kwargs)
Bases: BaseNetworkTask

Task to update a VIP for listener delete flows.

4.6. Module Reference 871

Octavia Documentation, Release 15.1.0.dev35

execute(loadbalancer_id)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

class UpdateVIPSecurityGroup(**kwargs)
Bases: BaseNetworkTask

Task to setup SG for LB.

execute(loadbalancer_id)
Task to setup SG for LB.

octavia.controller.worker.v2.tasks.notification_tasks module

class BaseNotificationTask(**kwargs)
Bases: Task

event_type = None

execute(loadbalancer)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

class SendCreateNotification(**kwargs)
Bases: BaseNotificationTask

event_type = 'octavia.loadbalancer.create.end'

4.6. Module Reference 872

Octavia Documentation, Release 15.1.0.dev35

class SendDeleteNotification(**kwargs)
Bases: BaseNotificationTask

event_type = 'octavia.loadbalancer.delete.end'

class SendUpdateNotification(**kwargs)
Bases: BaseNotificationTask

event_type = 'octavia.loadbalancer.update.end'

octavia.controller.worker.v2.tasks.retry_tasks module

class SleepingRetryTimesController(attempts=1, name=None, provides=None,
requires=None, auto_extract=True, rebind=None,
revert_all=False, interval=1)

Bases: Times

A retry controller to attempt subflow retries a number of times.

This retry controller overrides the Times on_failure to inject a sleep interval between retries. It
also adds a log message when all of the retries are exhausted.

Parameters

• attempts (int) -- number of attempts to retry the associated subflow before
giving up

• name -- Meaningful name for this atom, should be something that is dis-
tinguishable and understandable for notification, debugging, storing and any
other similar purposes.

• provides -- A set, string or list of items that this will be providing (or could
provide) to others, used to correlate and associate the thing/s this atom pro-
duces, if it produces anything at all.

• requires -- A set or list of required inputs for this atom’s execute method.

• rebind -- A dict of key/value pairs used to define argument name conversions
for inputs to this atom’s execute method.

• revert_all (bool) -- when provided this will cause the full flow to revert
when the number of attempts that have been tried has been reached (when
false, it will only locally revert the associated subflow)

• interval (int) -- Interval, in seconds, between retry attempts.

on_failure(history, *args, **kwargs)
Makes a decision about the future.

This method will typically use information about prior failures (if this historical failure in-
formation is not available or was not persisted the provided history will be empty).

Returns a retry constant (one of):

• RETRY: when the controlling flow must be reverted and restarted again (for example with
new parameters).

• REVERT: when this controlling flow must be completely reverted and the parent flow (if
any) should make a decision about further flow execution.

4.6. Module Reference 873

Octavia Documentation, Release 15.1.0.dev35

• REVERT_ALL: when this controlling flow and the parent flow (if any) must be reverted
and marked as a FAILURE.

revert(history, *args, **kwargs)
Reverts this retry.

On revert call all results that had been provided by previous tries and all errors caused during
reversion are provided. This method will be called only if a subflow must be reverted without
the retry (that is to say that the controller has ran out of resolution options and has either
given up resolution or has failed to handle a execution failure).

Parameters

• args -- positional arguments that the retry required to execute.

• kwargs -- any keyword arguments that the retry required to execute.

octavia.controller.worker.v2.tasks.shim_tasks module

class AmphoraToAmphoraeWithVRRPIP(name=None, provides=None, requires=None,
auto_extract=True, rebind=None, inject=None,
ignore_list=None, revert_rebind=None,
revert_requires=None)

Bases: Task

A shim class to convert a single Amphora instance to a list.

execute(amphora: dict, base_port: dict)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

• kwargs -- any keyword arguments that atom requires to execute.

Module contents

Submodules

octavia.controller.worker.v2.controller_worker module

class ControllerWorker

Bases: object

amphora_cert_rotation(amphora_id)
Perform cert rotation for an amphora.

4.6. Module Reference 874

Octavia Documentation, Release 15.1.0.dev35

Parameters
amphora_id -- ID for amphora to rotate

Returns
None

Raises
AmphoraNotFound -- The referenced amphora was not found

batch_update_members(old_members, new_members, updated_members)

create_health_monitor(health_monitor)
Creates a health monitor.

Parameters
health_monitor -- Provider health monitor dict

Returns
None

Raises
NoResultFound -- Unable to find the object

create_l7policy(l7policy)
Creates an L7 Policy.

Parameters
l7policy -- Provider dict of the l7policy to create

Returns
None

Raises
NoResultFound -- Unable to find the object

create_l7rule(l7rule)
Creates an L7 Rule.

Parameters
l7rule -- Provider dict l7rule

Returns
None

Raises
NoResultFound -- Unable to find the object

create_listener(listener)
Creates a listener.

Parameters
listener -- A listener provider dictionary.

Returns
None

Raises
NoResultFound -- Unable to find the object

4.6. Module Reference 875

Octavia Documentation, Release 15.1.0.dev35

create_load_balancer(loadbalancer, flavor=None, availability_zone=None)
Creates a load balancer by allocating Amphorae.

First tries to allocate an existing Amphora in READY state. If none are available it will
attempt to build one specifically for this load balancer.

Parameters
loadbalancer -- The dict of load balancer to create

Returns
None

Raises
NoResultFound -- Unable to find the object

create_member(member)
Creates a pool member.

Parameters
member -- A member provider dictionary to create

Returns
None

Raises
NoSuitablePool -- Unable to find the node pool

create_pool(pool)
Creates a node pool.

Parameters
pool -- Provider pool dict to create

Returns
None

Raises
NoResultFound -- Unable to find the object

delete_amphora(amphora_id)
Deletes an existing Amphora.

Parameters
amphora_id -- ID of the amphora to delete

Returns
None

Raises
AmphoraNotFound -- The referenced Amphora was not found

delete_health_monitor(health_monitor)
Deletes a health monitor.

Parameters
health_monitor -- Provider health monitor dict

Returns
None

4.6. Module Reference 876

Octavia Documentation, Release 15.1.0.dev35

Raises
HMNotFound -- The referenced health monitor was not found

delete_l7policy(l7policy)
Deletes an L7 policy.

Parameters
l7policy -- Provider dict of the l7policy to delete

Returns
None

Raises
L7PolicyNotFound -- The referenced l7policy was not found

delete_l7rule(l7rule)
Deletes an L7 rule.

Parameters
l7rule -- Provider dict of the l7rule to delete

Returns
None

Raises
L7RuleNotFound -- The referenced l7rule was not found

delete_listener(listener)
Deletes a listener.

Parameters
listener -- A listener provider dictionary to delete

Returns
None

Raises
ListenerNotFound -- The referenced listener was not found

delete_load_balancer(load_balancer, cascade=False)
Deletes a load balancer by de-allocating Amphorae.

Parameters
load_balancer -- Dict of the load balancer to delete

Returns
None

Raises
LBNotFound -- The referenced load balancer was not found

delete_member(member)
Deletes a pool member.

Parameters
member -- A member provider dictionary to delete

Returns
None

4.6. Module Reference 877

Octavia Documentation, Release 15.1.0.dev35

Raises
MemberNotFound -- The referenced member was not found

delete_pool(pool)
Deletes a node pool.

Parameters
pool -- Provider pool dict to delete

Returns
None

Raises
PoolNotFound -- The referenced pool was not found

failover_amphora(amphora_id, reraise=False)
Perform failover operations for an amphora.

Note: This expects the load balancer to already be in provision-
ing_status=PENDING_UPDATE state.

Parameters

• amphora_id -- ID for amphora to failover

• reraise -- If enabled reraise any caught exception

Returns
None

Raises
octavia.common.exceptions.NotFound -- The referenced amphora was
not found

failover_loadbalancer(load_balancer_id)
Perform failover operations for a load balancer.

Note: This expects the load balancer to already be in provision-
ing_status=PENDING_UPDATE state.

Parameters
load_balancer_id -- ID for load balancer to failover

Returns
None

Raises
octavia.common.exceptions.NotFound -- The load balancer was not
found.

run_flow(func, *args, **kwargs)

property services_controller

update_amphora_agent_config(amphora_id)
Update the amphora agent configuration.

Note: This will update the amphora agent configuration file and
update the running configuration for mutatable configuration items.

4.6. Module Reference 878

Octavia Documentation, Release 15.1.0.dev35

Parameters
amphora_id -- ID of the amphora to update.

Returns
None

update_health_monitor(original_health_monitor, health_monitor_updates)
Updates a health monitor.

Parameters

• original_health_monitor -- Provider health monitor dict

• health_monitor_updates -- Dict containing updated health monitor

Returns
None

Raises
HMNotFound -- The referenced health monitor was not found

update_l7policy(original_l7policy, l7policy_updates)
Updates an L7 policy.

Parameters

• l7policy -- Provider dict of the l7policy to update

• l7policy_updates -- Dict containing updated l7policy attributes

Returns
None

Raises
L7PolicyNotFound -- The referenced l7policy was not found

update_l7rule(original_l7rule, l7rule_updates)
Updates an L7 rule.

Parameters

• l7rule -- Origin dict of the l7rule to update

• l7rule_updates -- Dict containing updated l7rule attributes

Returns
None

Raises
L7RuleNotFound -- The referenced l7rule was not found

update_listener(listener, listener_updates)
Updates a listener.

Parameters

• listener -- A listener provider dictionary to update

• listener_updates -- Dict containing updated listener attributes

Returns
None

4.6. Module Reference 879

Octavia Documentation, Release 15.1.0.dev35

Raises
ListenerNotFound -- The referenced listener was not found

update_load_balancer(original_load_balancer, load_balancer_updates)
Updates a load balancer.

Parameters

• original_load_balancer -- Dict of the load balancer to update

• load_balancer_updates -- Dict containing updated load balancer

Returns
None

Raises
LBNotFound -- The referenced load balancer was not found

update_member(member, member_updates)
Updates a pool member.

Parameters

• member_id -- A member provider dictionary to update

• member_updates -- Dict containing updated member attributes

Returns
None

Raises
MemberNotFound -- The referenced member was not found

update_pool(origin_pool, pool_updates)
Updates a node pool.

Parameters

• origin_pool -- Provider pool dict to update

• pool_updates -- Dict containing updated pool attributes

Returns
None

Raises
PoolNotFound -- The referenced pool was not found

retryMaskFilter(record)

octavia.controller.worker.v2.taskflow_jobboard_driver module

class EtcdTaskFlowDriver(persistence_driver)
Bases: JobboardTaskFlowDriver

job_board(persistence)
Setting up jobboard backend based on configuration setting.

Parameters
persistence -- taskflow persistence backend instance

4.6. Module Reference 880

Octavia Documentation, Release 15.1.0.dev35

Returns
taskflow jobboard backend instance

class JobboardTaskFlowDriver

Bases: object

abstract job_board(persistence)
Setting up jobboard backend based on configuration setting.

Parameters
persistence -- taskflow persistence backend instance

Returns
taskflow jobboard backend instance

class MysqlPersistenceDriver

Bases: object

get_persistence()

initialize()

class RedisTaskFlowDriver(persistence_driver)
Bases: JobboardTaskFlowDriver

job_board(persistence)
Setting up jobboard backend based on configuration setting.

Parameters
persistence -- taskflow persistence backend instance

Returns
taskflow jobboard backend instance

class ZookeeperTaskFlowDriver(persistence_driver)
Bases: JobboardTaskFlowDriver

job_board(persistence)
Setting up jobboard backend based on configuration setting.

Parameters
persistence -- taskflow persistence backend instance

Returns
taskflow jobboard backend instance

Module contents

Submodules

octavia.controller.worker.amphora_rate_limit module

class AmphoraBuildRateLimit

Bases: object

add_to_build_request_queue(amphora_id, build_priority)

4.6. Module Reference 881

Octavia Documentation, Release 15.1.0.dev35

has_build_slot()

has_highest_priority(amphora_id)

remove_all_from_build_req_queue()

remove_from_build_req_queue(amphora_id)

update_build_status_and_available_build_slots(amphora_id)

wait_for_build_slot(amphora_id)

octavia.controller.worker.task_utils module

Methods common to the controller work tasks.

class TaskUtils(**kwargs)
Bases: object

Class of helper/utility methods used by tasks.

get_current_loadbalancer_from_db(loadbalancer_id)
Gets a Loadbalancer from db.

Param
loadbalancer_id: Load balancer ID which to get from db

mark_amphora_status_error(amphora_id)
Sets an amphora status to ERROR.

NOTE: This should only be called from revert methods.

Parameters
amphora_id -- Amphora ID to set the status to ERROR

mark_health_mon_prov_status_error(health_mon_id)
Sets a health monitor provisioning status to ERROR.

NOTE: This should only be called from revert methods.

Parameters
health_mon_id -- Health Monitor ID to set prov status to ERROR

mark_l7policy_prov_status_active(l7policy_id)
Sets a L7 policy provisioning status to ACTIVE.

NOTE: This should only be called from revert methods.

Parameters
l7policy_id -- L7 Policy ID to set provisioning status to ACTIVE

mark_l7policy_prov_status_error(l7policy_id)
Sets a L7 policy provisioning status to ERROR.

NOTE: This should only be called from revert methods.

Parameters
l7policy_id -- L7 Policy ID to set provisioning status to ERROR

4.6. Module Reference 882

Octavia Documentation, Release 15.1.0.dev35

mark_l7rule_prov_status_error(l7rule_id)
Sets a L7 rule provisioning status to ERROR.

NOTE: This should only be called from revert methods.

Parameters
l7rule_id -- L7 Rule ID to set provisioning status to ERROR

mark_listener_prov_status_active(listener_id)
Sets a listener provisioning status to ACTIVE.

NOTE: This should only be called from revert methods.

Parameters
listener_id -- Listener ID to set provisioning status to ACTIVE

mark_listener_prov_status_error(listener_id)
Sets a listener provisioning status to ERROR.

NOTE: This should only be called from revert methods.

Parameters
listener_id -- Listener ID to set provisioning status to ERROR

mark_loadbalancer_prov_status_active(loadbalancer_id)
Sets a load balancer provisioning status to ACTIVE.

NOTE: This should only be called from revert methods.

Parameters
loadbalancer_id -- Load balancer ID to set provisioning status to ACTIVE

mark_loadbalancer_prov_status_error(loadbalancer_id)
Sets a load balancer provisioning status to ERROR.

NOTE: This should only be called from revert methods.

Parameters
loadbalancer_id -- Load balancer ID to set provisioning status to ERROR

mark_member_prov_status_error(member_id)
Sets a member provisioning status to ERROR.

NOTE: This should only be called from revert methods.

Parameters
member_id -- Member ID to set provisioning status to ERROR

mark_pool_prov_status_active(pool_id)
Sets a pool provisioning status to ACTIVE.

NOTE: This should only be called from revert methods.

Parameters
pool_id -- Pool ID to set provisioning status to ACTIVE

mark_pool_prov_status_error(pool_id)
Sets a pool provisioning status to ERROR.

NOTE: This should only be called from revert methods.

4.6. Module Reference 883

Octavia Documentation, Release 15.1.0.dev35

Parameters
pool_id -- Pool ID to set provisioning status to ERROR

status_update_retry()→ WrappedFn

unmark_amphora_health_busy(amphora_id)
Unmark the amphora_health record busy for an amphora.

NOTE: This should only be called from revert methods.

Parameters
amphora_id -- The amphora id to unmark busy

Module contents

Module contents

octavia.db package

Submodules

octavia.db.api module

get_engine()

get_session()

Helper method to grab session.

session()

wait_for_connection(exit_event)
Helper method to wait for DB connection

octavia.db.base_models module

class IdMixin

Bases: object

Id mixin, add to subclasses that have an id.

id = Column(None, String(length=36), table=None, primary_key=True,
nullable=False, default=CallableColumnDefault(<function generate_uuid>))

class LookupTableMixin

Bases: object

Mixin to add to classes that are lookup tables.

description = Column(None, String(length=255), table=None)

name = Column(None, String(length=255), table=None, primary_key=True,
nullable=False)

class NameMixin

Bases: object

Name mixin to add to classes which need a name.

4.6. Module Reference 884

Octavia Documentation, Release 15.1.0.dev35

name = Column(None, String(length=255), table=None)

class OctaviaBase

Bases: ModelBase

static apply_filter(query, model, filters)

to_data_model(_graph_nodes=None, recursion_depth: int | None = None)
Converts to a data model graph.

In order to make the resulting data model graph usable no matter how many internal refer-
ences are followed, we generate a complete graph of OctaviaBase nodes connected to the
object passed to this method.

Parameters

• _graph_nodes -- Used only for internal recursion of this method. Should
not be called from the outside. Contains a dictionary of all OctaviaBase type
objects in the generated graph

• recursion_depth -- Used only for configuring recursion. This option al-
lows to limit recursion depth. It could be used when we need only main node
and its first level relationships. It allows to save time on recursion calls for
huge graphs, when only main object is necessary.

class ProjectMixin

Bases: object

Tenant mixin, add to subclasses that have a project.

project_id = Column(None, String(length=36), table=None)

class TagMixin

Bases: object

Tags mixin to add to classes which need tags.

The class must realize the specified db relationship as well.

property tags

class Tags(**kwargs)
Bases: Base

resource_id

tag

octavia.db.healthcheck module

check_database_connection(session)
This is a simple database connection check function.

It will do a simple no-op query (low overhead) against the sqlalchemy session passed in.

Parameters
session -- A Sql Alchemy database session.

4.6. Module Reference 885

Octavia Documentation, Release 15.1.0.dev35

Returns
True if the connection check is successful, False if not.

octavia.db.models module

class AdditionalVip(**kwargs)
Bases: Base

ip_address

load_balancer

load_balancer_id

network_id

port_id

subnet_id

class Algorithm(**kwargs)
Bases: Base, LookupTableMixin

description

name

class Amphora(**kwargs)
Bases: Base, IdMixin, TimestampMixin

cached_zone

cert_busy

cert_expiration

compute_flavor

compute_id

created_at

ha_ip

ha_port_id

id

image_id

lb_network_ip

load_balancer

load_balancer_id

role

4.6. Module Reference 886

Octavia Documentation, Release 15.1.0.dev35

status

updated_at

vrrp_id

vrrp_interface

vrrp_ip

vrrp_port_id

vrrp_priority

class AmphoraBuildRequest(**kwargs)
Bases: Base

amphora_id

created_time

priority

status

class AmphoraBuildSlots(**kwargs)
Bases: Base

id

slots_used

class AmphoraHealth(**kwargs)
Bases: Base

amphora_id

busy

last_update

class AmphoraRoles(**kwargs)
Bases: Base, LookupTableMixin

description

name

class AvailabilityZone(**kwargs)
Bases: Base, NameMixin

availability_zone_profile: Mapped[AvailabilityZoneProfile]

availability_zone_profile_id

description

enabled

4.6. Module Reference 887

Octavia Documentation, Release 15.1.0.dev35

name

class AvailabilityZoneProfile(**kwargs)
Bases: Base, IdMixin, NameMixin

availability_zone_data

id

name

provider_name

class ClientAuthenticationMode(**kwargs)
Bases: Base

name

class Flavor(**kwargs)
Bases: Base, IdMixin, NameMixin

description

enabled

flavor_profile: Mapped[FlavorProfile]

flavor_profile_id

id

name

class FlavorProfile(**kwargs)
Bases: Base, IdMixin, NameMixin

flavor_data

id

name

provider_name

class HealthMonitor(**kwargs)
Bases: Base, IdMixin, ProjectMixin, TimestampMixin, NameMixin, TagMixin

created_at

delay

domain_name

enabled

expected_codes

fall_threshold

4.6. Module Reference 888

Octavia Documentation, Release 15.1.0.dev35

http_method

http_version

id

name

operating_status

pool

pool_id

project_id

provisioning_status

rise_threshold

timeout

type

updated_at

url_path

class HealthMonitorType(**kwargs)
Bases: Base, LookupTableMixin

description

name

class L7Policy(**kwargs)
Bases: Base, IdMixin, ProjectMixin, TimestampMixin, NameMixin, TagMixin

action

created_at

description

enabled

id

l7rules

listener

listener_id

name

operating_status

position

4.6. Module Reference 889

Octavia Documentation, Release 15.1.0.dev35

project_id

provisioning_status

redirect_http_code

redirect_pool

redirect_pool_id

redirect_prefix

redirect_url

updated_at

class L7PolicyAction(**kwargs)
Bases: Base, LookupTableMixin

description

name

class L7Rule(**kwargs)
Bases: Base, IdMixin, ProjectMixin, TimestampMixin, TagMixin

compare_type

created_at

enabled

id

invert

key

l7policy

l7policy_id

operating_status

project_id

provisioning_status

type

updated_at

value

class L7RuleCompareType(**kwargs)
Bases: Base, LookupTableMixin

description

4.6. Module Reference 890

Octavia Documentation, Release 15.1.0.dev35

name

class L7RuleType(**kwargs)
Bases: Base, LookupTableMixin

description

name

class LBTopology(**kwargs)
Bases: Base, LookupTableMixin

description

name

class Listener(**kwargs)
Bases: Base, IdMixin, ProjectMixin, TimestampMixin, NameMixin, TagMixin

allowed_cidrs

alpn_protocols

client_authentication

client_ca_tls_certificate_id

client_crl_container_id

connection_limit

created_at

default_pool

default_pool_id

description

enabled

hsts_include_subdomains

hsts_max_age

hsts_preload

id

insert_headers

l7policies

load_balancer

load_balancer_id

name

4.6. Module Reference 891

Octavia Documentation, Release 15.1.0.dev35

operating_status

peer_port

property pools

project_id

protocol

protocol_port

provisioning_status

sni_containers

timeout_client_data

timeout_member_connect

timeout_member_data

timeout_tcp_inspect

tls_certificate_id

tls_ciphers

tls_versions

updated_at

class ListenerCidr(**kwargs)
Bases: Base

cidr

listener

listener_id

class ListenerStatistics(**kwargs)
Bases: Base

active_connections

amphora_id

bytes_in

bytes_out

listener_id

request_errors

total_connections

validate_non_negative_int(key, value)

4.6. Module Reference 892

Octavia Documentation, Release 15.1.0.dev35

class LoadBalancer(**kwargs)
Bases: Base, IdMixin, ProjectMixin, TimestampMixin, NameMixin, TagMixin

additional_vips

amphorae

availability_zone

created_at

description

enabled

flavor: Mapped[Flavor]

flavor_id

id

listeners

name

operating_status

pools

project_id

provider

provisioning_status

server_group_id

topology

updated_at

vip

vrrp_group

class Member(**kwargs)
Bases: Base, IdMixin, ProjectMixin, TimestampMixin, NameMixin, TagMixin

backup

created_at

enabled

id

ip_address

monitor_address

4.6. Module Reference 893

Octavia Documentation, Release 15.1.0.dev35

monitor_port

name

operating_status

pool

pool_id

project_id

protocol_port

provisioning_status

subnet_id

updated_at

weight

class OperatingStatus(**kwargs)
Bases: Base, LookupTableMixin

description

name

class Pool(**kwargs)
Bases: Base, IdMixin, ProjectMixin, TimestampMixin, NameMixin, TagMixin

alpn_protocols

ca_tls_certificate_id

created_at

crl_container_id

description

enabled

health_monitor

id

l7policies

lb_algorithm

property listeners

load_balancer

load_balancer_id

members

4.6. Module Reference 894

Octavia Documentation, Release 15.1.0.dev35

name

operating_status

project_id

protocol

provisioning_status

session_persistence

tls_certificate_id

tls_ciphers

tls_enabled

tls_versions

updated_at

class Protocol(**kwargs)
Bases: Base, LookupTableMixin

description

name

class ProvisioningStatus(**kwargs)
Bases: Base, LookupTableMixin

description

name

class Quotas(**kwargs)
Bases: Base

health_monitor

in_use_health_monitor

in_use_l7policy

in_use_l7rule

in_use_listener

in_use_load_balancer

in_use_member

in_use_pool

l7policy

l7rule

4.6. Module Reference 895

Octavia Documentation, Release 15.1.0.dev35

listener

load_balancer

member

pool

project_id

class SNI(**kwargs)
Bases: Base

listener

listener_id

position

tls_container_id

class SessionPersistence(**kwargs)
Bases: Base

cookie_name

persistence_granularity

persistence_timeout

pool

pool_id

type

class SessionPersistenceType(**kwargs)
Bases: Base, LookupTableMixin

description

name

class VRRPAuthMethod(**kwargs)
Bases: Base, LookupTableMixin

description

name

class VRRPGroup(**kwargs)
Bases: Base

advert_int

load_balancer

load_balancer_id

4.6. Module Reference 896

Octavia Documentation, Release 15.1.0.dev35

vrrp_auth_pass

vrrp_auth_type

vrrp_group_name

class Vip(**kwargs)
Bases: Base

ip_address

load_balancer

load_balancer_id

network_id

octavia_owned

port_id

qos_policy_id

subnet_id

vnic_type

octavia.db.prepare module

create_health_monitor(hm_dict, pool_id=None)

create_l7policy(l7policy_dict, lb_id, listener_id)

create_l7rule(l7rule_dict, l7policy_id)

create_listener(listener_dict, lb_id)

create_load_balancer(lb_dict)

create_member(member_dict, pool_id, has_health_monitor=False)

create_pool(pool_dict, lb_id=None)

octavia.db.repositories module

Defines interface for DB access that Resource or Octavia Controllers may reference

class AdditionalVipRepository

Bases: BaseRepository

model_class

alias of AdditionalVip

update(session, load_balancer_id, subnet_id, **model_kwargs)
Updates an additional vip entity in the database.

Uses load_balancer_id + subnet_id.

4.6. Module Reference 897

Octavia Documentation, Release 15.1.0.dev35

class AmphoraBuildReqRepository

Bases: BaseRepository

add_to_build_queue(session, amphora_id=None, priority=None)
Adds the build request to the table.

delete_all(session)
Deletes all the build requests.

get_highest_priority_build_req(session)
Fetches build request with highest priority and least created_time.

priority 20 = failover (highest) priority 40 = create_loadbalancer (lowest) :param session: A
Sql Alchemy database session. :returns amphora_id corresponding to highest priority and
least created time in ’WAITING’ status.

model_class

alias of AmphoraBuildRequest

update_req_status(session, amphora_id=None)
Updates the request status.

class AmphoraBuildSlotsRepository

Bases: BaseRepository

get_used_build_slots_count(session)
Gets the number of build slots in use.

Returns
Number of current build slots.

model_class

alias of AmphoraBuildSlots

update_count(session, action=’increment’)
Increments/Decrements/Resets the number of build_slots used.

class AmphoraHealthRepository

Bases: BaseRepository

check_amphora_health_expired(session, amphora_id, exp_age=None)
check if a specific amphora is expired in the amphora_health table

Parameters

• session -- A Sql Alchemy database session.

• amphora_id -- id of an amphora object

• exp_age -- A standard datetime delta which is used to see for how long
can an amphora live without updates before it is considered expired (default:
CONF.house_keeping.amphora_expiry_age)

Returns
boolean

4.6. Module Reference 898

Octavia Documentation, Release 15.1.0.dev35

get_stale_amphora(lock_session: Session)→ Amphora | None
Retrieves a stale amphora from the health manager database.

Parameters
lock_session -- A Sql Alchemy database autocommit session.

Returns
[octavia.common.data_model]

model_class

alias of AmphoraHealth

replace(session, amphora_id, **model_kwargs)
replace or insert amphora into database.

update(session, amphora_id, **model_kwargs)
Updates a healthmanager entity in the database by amphora_id.

update_failover_stopped(lock_session: ~sqlalchemy.orm.session.Session, expired_time:
<module ’datetime’ from ’/usr/lib/python3.10/datetime.py’>)→
None

Updates the status of amps that are FAILOVER_STOPPED.

class AmphoraRepository

Bases: BaseRepository

allocate_and_associate(session, load_balancer_id, availability_zone=None)
Allocate an amphora for a load balancer.

For v0.5 this is simple, find a free amp and associate the lb. In the future this needs to be
enhanced.

Parameters

• session -- A Sql Alchemy database session.

• load_balancer_id -- The load balancer id to associate

Returns
The amphora ID for the load balancer or None

associate(session, load_balancer_id, amphora_id)
Associates an amphora with a load balancer.

Parameters

• session -- A Sql Alchemy database session.

• load_balancer_id -- The load balancer id to associate

• amphora_id -- The amphora id to associate

get_all_API_list(session, pagination_helper=None, **filters)
Get a list of amphorae for the API list call.

This get_all returns a data set that is only one level deep in the data graph. This is an optimized
query for the API amphora list method.

Parameters

4.6. Module Reference 899

Octavia Documentation, Release 15.1.0.dev35

• session -- A Sql Alchemy database session.

• pagination_helper -- Helper to apply pagination and sorting.

• filters -- Filters to decide which entities should be retrieved.

Returns
[octavia.common.data_model]

get_cert_expiring_amphora(session)
Retrieves an amphora whose cert is close to expiring..

Parameters
session -- A Sql Alchemy database session.

Returns
one amphora with expiring certificate

static get_lb_for_amphora(session, amphora_id)
Get all of the load balancers on an amphora.

Parameters

• session -- A Sql Alchemy database session.

• amphora_id -- The amphora id to list the load balancers from

Returns
[octavia.common.data_model]

get_lb_for_health_update(session, amphora_id)
This method is for the health manager status update process.

This is a time sensitive query that occurs often. It is an explicit query as the ORM produces
a poorly optimized query.

Use extreme caution making any changes to this query as it can impact the scalability of the
health manager. All changes should be analyzed using SQL "EXPLAIN" to make sure only
indexes are being used. Changes should also be evaluated using the stressHM tool.

Note: The returned object is flat and not a graph representation
of the load balancer as it is not needed. This is on purpose to optimize the processing
time. This is not in the normal data model objects.

Parameters

• session -- A Sql Alchemy database session.

• amphora_id -- The amphora ID to lookup the load balancer for.

Returns
A dictionary containing the required load balancer details.

model_class

alias of Amphora

test_and_set_status_for_delete(lock_session, id)
Tests and sets an amphora status.

4.6. Module Reference 900

Octavia Documentation, Release 15.1.0.dev35

Puts a lock on the amphora table to check the status of the amphora. The status must be either
AMPHORA_READY or ERROR to successfully update the amphora status.

Parameters

• lock_session -- A Sql Alchemy database session.

• id -- id of Load Balancer

Raises

• ImmutableObject -- The amphora is not in a state that can be deleted.

• NoResultFound -- The amphora was not found or already deleted.

Returns
None

class AvailabilityZoneProfileRepository

Bases: _GetALLExceptDELETEDIdMixin, BaseRepository

model_class

alias of AvailabilityZoneProfile

class AvailabilityZoneRepository

Bases: _GetALLExceptDELETEDIdMixin, BaseRepository

delete(serial_session, **filters)
Special delete method for availability_zone.

Sets DELETED LBs availability_zone to NIL_UUID, then removes the availability_zone.

Parameters

• serial_session -- A Sql Alchemy database transaction session.

• filters -- Filters to decide which entity should be deleted.

Returns
None

Raises
odb_exceptions.DBReferenceError

Raises
sqlalchemy.orm.exc.NoResultFound

get_availability_zone_metadata_dict(session, availability_zone_name)

get_availability_zone_provider(session, availability_zone_name)

model_class

alias of AvailabilityZone

update(session, name, **model_kwargs)
Updates an entity in the database.

Parameters

• session -- A Sql Alchemy database session.

• model_kwargs -- Entity attributes that should be updates.

4.6. Module Reference 901

Octavia Documentation, Release 15.1.0.dev35

Returns
octavia.common.data_model

class BaseRepository

Bases: object

count(session, **filters)
Retrieves a count of entities from the database.

Parameters

• session -- A Sql Alchemy database session.

• filters -- Filters to decide which entities should be retrieved.

Returns
int

create(session, **model_kwargs)
Base create method for a database entity.

Parameters

• session -- A Sql Alchemy database session.

• model_kwargs -- Attributes of the model to insert.

Returns
octavia.common.data_model

delete(session, **filters)
Deletes an entity from the database.

Parameters

• session -- A Sql Alchemy database session.

• filters -- Filters to decide which entity should be deleted.

Returns
None

Raises
sqlalchemy.orm.exc.NoResultFound

delete_batch(session, ids=None)
Batch deletes by entity ids.

exists(session, id)
Determines whether an entity exists in the database by its id.

Parameters

• session -- A Sql Alchemy database session.

• id -- id of entity to check for existence.

Returns
octavia.common.data_model

4.6. Module Reference 902

Octavia Documentation, Release 15.1.0.dev35

get(session, limited_graph=False, **filters)
Retrieves an entity from the database.

Parameters

• session -- A Sql Alchemy database session.

• limited_graph -- Option controls number of processed nodes in the graph.
Default (with False) behaviour is recursion iteration through all nodes in the
graph via to_data_model. With True value recursion will stop at the first
child node. It means, that only limited number of nodes be converted. This
logic could be used for specific cases, where information about full graph is
unnecessary.

• filters -- Filters to decide which entity should be retrieved.

Returns
octavia.common.data_model

get_all(session, pagination_helper=None, query_options=None, limited_graph=False,
**filters)

Retrieves a list of entities from the database.

Parameters

• session -- A Sql Alchemy database session.

• pagination_helper -- Helper to apply pagination and sorting.

• query_options -- Optional query options to apply.

• limited_graph -- Option controls number of processed nodes in the graph.
Default (with False) behaviour is recursion iteration through all nodes in the
graph via to_data_model. With True value recursion will stop at the first
child node. It means, that only limited number of nodes be converted. This
logic could be used for specific cases, where information about full graph is
unnecessary.

• filters -- Filters to decide which entities should be retrieved.

Returns
[octavia.common.data_model]

get_all_deleted_expiring(session, exp_age)
Get all previously deleted resources that are now expiring.

Parameters

• session -- A Sql Alchemy database session.

• exp_age -- A standard datetime delta which is used to see for how long can
a resource live without updates before it is considered expired

Returns
A list of resource IDs

model_class = None

4.6. Module Reference 903

Octavia Documentation, Release 15.1.0.dev35

update(session, id, **model_kwargs)
Updates an entity in the database.

Parameters

• session -- A Sql Alchemy database session.

• model_kwargs -- Entity attributes that should be updates.

Returns
octavia.common.data_model

class FlavorProfileRepository

Bases: _GetALLExceptDELETEDIdMixin, BaseRepository

model_class

alias of FlavorProfile

class FlavorRepository

Bases: _GetALLExceptDELETEDIdMixin, BaseRepository

delete(serial_session, **filters)
Sets DELETED LBs flavor_id to NIL_UUID, then removes the flavor

Parameters

• serial_session -- A Sql Alchemy database transaction session.

• filters -- Filters to decide which entity should be deleted.

Returns
None

Raises
odb_exceptions.DBReferenceError

Raises
sqlalchemy.orm.exc.NoResultFound

get_flavor_metadata_dict(session, flavor_id)

get_flavor_provider(session, flavor_id)

model_class

alias of Flavor

class HealthMonitorRepository

Bases: BaseRepository

get_all_API_list(session, pagination_helper=None, **filters)
Get a list of health monitors for the API list call.

This get_all returns a data set that is only one level deep in the data graph. This is an optimized
query for the API health monitor list method.

Parameters

• session -- A Sql Alchemy database session.

• pagination_helper -- Helper to apply pagination and sorting.

4.6. Module Reference 904

Octavia Documentation, Release 15.1.0.dev35

• filters -- Filters to decide which entities should be retrieved.

Returns
[octavia.common.data_model]

model_class

alias of HealthMonitor

class L7PolicyRepository

Bases: BaseRepository

create(session, **model_kwargs)
Base create method for a database entity.

Parameters

• session -- A Sql Alchemy database session.

• model_kwargs -- Attributes of the model to insert.

Returns
octavia.common.data_model

delete(session, id, **filters)
Deletes an entity from the database.

Parameters

• session -- A Sql Alchemy database session.

• filters -- Filters to decide which entity should be deleted.

Returns
None

Raises
sqlalchemy.orm.exc.NoResultFound

get_all(session, pagination_helper=None, **filters)
Retrieves a list of entities from the database.

Parameters

• session -- A Sql Alchemy database session.

• pagination_helper -- Helper to apply pagination and sorting.

• query_options -- Optional query options to apply.

• limited_graph -- Option controls number of processed nodes in the graph.
Default (with False) behaviour is recursion iteration through all nodes in the
graph via to_data_model. With True value recursion will stop at the first
child node. It means, that only limited number of nodes be converted. This
logic could be used for specific cases, where information about full graph is
unnecessary.

• filters -- Filters to decide which entities should be retrieved.

Returns
[octavia.common.data_model]

4.6. Module Reference 905

Octavia Documentation, Release 15.1.0.dev35

get_all_API_list(session, pagination_helper=None, **filters)

model_class

alias of L7Policy

update(session, id, **model_kwargs)
Updates an entity in the database.

Parameters

• session -- A Sql Alchemy database session.

• model_kwargs -- Entity attributes that should be updates.

Returns
octavia.common.data_model

class L7RuleRepository

Bases: BaseRepository

create(session, **model_kwargs)
Base create method for a database entity.

Parameters

• session -- A Sql Alchemy database session.

• model_kwargs -- Attributes of the model to insert.

Returns
octavia.common.data_model

get_all_API_list(session, pagination_helper=None, **filters)
Get a list of L7 Rules for the API list call.

This get_all returns a data set that is only one level deep in the data graph. This is an optimized
query for the API L7 Rule list method.

Parameters

• session -- A Sql Alchemy database session.

• pagination_helper -- Helper to apply pagination and sorting.

• filters -- Filters to decide which entities should be retrieved.

Returns
[octavia.common.data_model]

model_class

alias of L7Rule

update(session, id, **model_kwargs)
Updates an entity in the database.

Parameters

• session -- A Sql Alchemy database session.

• model_kwargs -- Entity attributes that should be updates.

4.6. Module Reference 906

Octavia Documentation, Release 15.1.0.dev35

Returns
octavia.common.data_model

class ListenerCidrRepository

Bases: BaseRepository

create(session, listener_id, allowed_cidrs)
Base create method for a database entity.

Parameters

• session -- A Sql Alchemy database session.

• model_kwargs -- Attributes of the model to insert.

Returns
octavia.common.data_model

model_class

alias of ListenerCidr

update(session, listener_id, allowed_cidrs)
Updates allowed CIDRs in the database by listener_id.

class ListenerRepository

Bases: BaseRepository

create(session, **model_kwargs)
Creates a new Listener with some validation.

get_all_API_list(session, pagination_helper=None, **filters)
Get a list of listeners for the API list call.

This get_all returns a data set that is only one level deep in the data graph. This is an optimized
query for the API listener list method.

Parameters

• session -- A Sql Alchemy database session.

• pagination_helper -- Helper to apply pagination and sorting.

• filters -- Filters to decide which entities should be retrieved.

Returns
[octavia.common.data_model]

get_port_protocol_cidr_for_lb(session, loadbalancer_id)

has_default_pool(session, id)
Checks if a listener has a default pool.

model_class

alias of Listener

prov_status_active_if_not_error(session, listener_id)
Update provisioning_status to ACTIVE if not already in ERROR.

4.6. Module Reference 907

Octavia Documentation, Release 15.1.0.dev35

update(session, id, **model_kwargs)
Updates an entity in the database.

Parameters

• session -- A Sql Alchemy database session.

• model_kwargs -- Entity attributes that should be updates.

Returns
octavia.common.data_model

class ListenerStatisticsRepository

Bases: BaseRepository

increment(session, delta_stats)
Updates a listener’s statistics, incrementing by the passed deltas.

Parameters

• session -- A Sql Alchemy database session

• delta_stats (octavia.common.data_models.
ListenerStatistics) -- Listener statistics deltas to add

model_class

alias of ListenerStatistics

replace(session, stats_obj)
Create or override a listener’s statistics (insert/update)

Parameters

• session -- A Sql Alchemy database session

• stats_obj (octavia.common.data_models.ListenerStatistics) --
Listener statistics object to store

update(session, listener_id, **model_kwargs)
Updates a listener’s statistics, overriding with the passed values.

Parameters

• session -- A Sql Alchemy database session

• listener_id (str) -- The UUID of the listener to update

• model_kwargs -- Entity attributes that should be updated

class LoadBalancerRepository

Bases: BaseRepository

get_all_API_list(session, pagination_helper=None, **filters)
Get a list of load balancers for the API list call.

This get_all returns a data set that is only one level deep in the data graph. This is an optimized
query for the API load balancer list method.

Parameters

• session -- A Sql Alchemy database session.

4.6. Module Reference 908

Octavia Documentation, Release 15.1.0.dev35

• pagination_helper -- Helper to apply pagination and sorting.

• filters -- Filters to decide which entities should be retrieved.

Returns
[octavia.common.data_model]

model_class

alias of LoadBalancer

set_status_for_failover(session, id, status, raise_exception=False)
Tests and sets a load balancer provisioning status.

Puts a lock on the load balancer table to check the status of a load balancer. If the status is
ACTIVE or ERROR then the status of the load balancer is updated and the method returns
True. If the status is not ACTIVE, then nothing is done and False is returned.

Parameters

• session -- A Sql Alchemy database session.

• id -- id of Load Balancer

• status -- Status to set Load Balancer if check passes.

• raise_exception -- If True, raise ImmutableObject on failure

Returns
bool

test_and_set_provisioning_status(session, id, status, raise_exception=False)
Tests and sets a load balancer and provisioning status.

Puts a lock on the load balancer table to check the status of a load balancer. If the status is
ACTIVE then the status of the load balancer is updated and the method returns True. If the
status is not ACTIVE, then nothing is done and False is returned.

Parameters

• session -- A Sql Alchemy database session.

• id -- id of Load Balancer

• status -- Status to set Load Balancer if check passes.

• raise_exception -- If True, raise ImmutableObject on failure

Returns
bool

class MemberRepository

Bases: BaseRepository

delete_members(session, member_ids)
Batch deletes members from a pool.

get_all_API_list(session, pagination_helper=None, limited_graph=False, **filters)
Get a list of members for the API list call.

This get_all returns a data set that is only one level deep in the data graph. This is an optimized
query for the API member list method.

4.6. Module Reference 909

Octavia Documentation, Release 15.1.0.dev35

Parameters

• session -- A Sql Alchemy database session.

• pagination_helper -- Helper to apply pagination and sorting.

• limited_graph -- Option to avoid recursion iteration through all nodes in
the graph via to_data_model

• filters -- Filters to decide which entities should be retrieved.

Returns
[octavia.common.data_model]

model_class

alias of Member

update_pool_members(session, pool_id, **model_kwargs)
Updates all of the members of a pool.

Parameters

• session -- A Sql Alchemy database session.

• pool_id -- ID of the pool to update members on.

• model_kwargs -- Entity attributes that should be updates.

Returns
octavia.common.data_model

class PoolRepository

Bases: BaseRepository

get_all_API_list(session, pagination_helper=None, **filters)
Get a list of pools for the API list call.

This get_all returns a data set that is only one level deep in the data graph. This is an optimized
query for the API pool list method.

Parameters

• session -- A Sql Alchemy database session.

• pagination_helper -- Helper to apply pagination and sorting.

• filters -- Filters to decide which entities should be retrieved.

Returns
[octavia.common.data_model]

get_children_count(session, pool_id)

model_class

alias of Pool

class QuotasRepository

Bases: BaseRepository

4.6. Module Reference 910

Octavia Documentation, Release 15.1.0.dev35

delete(session, project_id)
Deletes an entity from the database.

Parameters

• session -- A Sql Alchemy database session.

• filters -- Filters to decide which entity should be deleted.

Returns
None

Raises
sqlalchemy.orm.exc.NoResultFound

ensure_project_exists(project_id)

model_class

alias of Quotas

update(session, project_id, **model_kwargs)
Updates an entity in the database.

Parameters

• session -- A Sql Alchemy database session.

• model_kwargs -- Entity attributes that should be updates.

Returns
octavia.common.data_model

class Repositories

Bases: object

check_quota_met(session: Session, _class, project_id, count=1)
Checks and updates object quotas.

This method makes sure the project has available quota for the resource and updates the quota
to reflect the new ussage.

Parameters

• session -- Context database session

• _class -- Data model object requesting quota

• project_id -- Project ID requesting quota

• count -- Number of objects we’re going to create (default=1)

Returns
True if quota is met, False if quota was available

create_load_balancer_and_vip(session, lb_dict, vip_dict, additional_vip_dicts=None)
Inserts load balancer and vip entities into the database.

Inserts load balancer and vip entities into the database in one transaction and returns the data
model of the load balancer.

Parameters

4.6. Module Reference 911

Octavia Documentation, Release 15.1.0.dev35

• session -- A Sql Alchemy database session.

• lb_dict -- Dictionary representation of a load balancer

• vip_dict -- Dictionary representation of a vip

• additional_vip_dicts -- Dict representations of additional vips

Returns
octavia.common.data_models.LoadBalancer

create_pool_on_load_balancer(session, pool_dict, listener_id=None)
Inserts a pool and session persistence entity into the database.

Parameters

• session -- A Sql Alchemy database session.

• pool_dict -- Dictionary representation of a pool

• listener_id -- Optional listener id that will reference this pool as its de-
fault_pool_id

Returns
octavia.common.data_models.Pool

decrement_quota(lock_session, _class, project_id, quantity=1)
Decrements the object quota for a project

Parameters

• lock_session -- Locking database session (autocommit=False)

• _class -- Data model object to decrement quota

• project_id -- Project ID to decrement quota on

• quantity -- Quantity of quota to decrement

Returns
None

get_amphora_stats(session, amp_id)
Gets the statistics for all listeners on an amphora.

Parameters

• session -- A Sql Alchemy database session.

• amp_id -- The amphora ID to query.

Returns
An amphora stats dictionary

test_and_set_lb_and_listeners_prov_status(session, lb_id, lb_prov_status,
listener_prov_status, listener_ids=None,
pool_id=None, l7policy_id=None)

Tests and sets a load balancer and listener provisioning status.

Puts a lock on the load balancer table to check the status of a load balancer. If the status is
ACTIVE then the status of the load balancer and listener is updated and the method returns
True. If the status is not ACTIVE, then nothing is done and False is returned.

4.6. Module Reference 912

Octavia Documentation, Release 15.1.0.dev35

Parameters

• session -- A Sql Alchemy database session.

• lb_id -- ID of the Load Balancer to check and lock

• lb_prov_status -- Status to set Load Balancer and Listener if check passes.

• listener_prov_status -- Status to set Listeners if check passes

• listener_ids -- List of IDs of listeners to check and lock (only use this
when relevant to the operation)

• pool_id -- ID of the Pool to check and lock (only use this when relevant to
the operation)

• l7policy_id -- ID of the L7Policy to check and lock (only use this when
relevant to the operation)

Returns
bool

update_pool_and_sp(session, pool_id, pool_dict)
Updates a pool and session persistence entity in the database.

Parameters

• session -- A Sql Alchemy database session.

• pool_dict -- Dictionary representation of a pool

Returns
octavia.common.data_models.Pool

class SNIRepository

Bases: BaseRepository

model_class

alias of SNI

update(session, listener_id=None, tls_container_id=None, **model_kwargs)
Updates an SNI entity in the database.

class SessionPersistenceRepository

Bases: BaseRepository

exists(session, pool_id)
Checks if session persistence exists on a pool.

model_class

alias of SessionPersistence

update(session, pool_id, **model_kwargs)
Updates a session persistence entity in the database by pool_id.

class VRRPGroupRepository

Bases: BaseRepository

model_class

alias of VRRPGroup

4.6. Module Reference 913

Octavia Documentation, Release 15.1.0.dev35

update(session, load_balancer_id, **model_kwargs)
Updates a VRRPGroup entry for by load_balancer_id.

class VipRepository

Bases: BaseRepository

model_class

alias of Vip

update(session, load_balancer_id, **model_kwargs)
Updates a vip entity in the database by load_balancer_id.

Module contents

octavia.distributor package

Subpackages

octavia.distributor.drivers package

Subpackages

octavia.distributor.drivers.noop_driver package

Submodules

octavia.distributor.drivers.noop_driver.driver module

class NoopDistributorDriver

Bases: DistributorDriver

get_add_vip_subflow()

Get a subflow that adds a VIP to a distributor

Requires
distributor_id (string) - The ID of the distributor to create the VIP on.

Requires
vip (object) - The VIP object to create on the distributor.

Requires
vip_alg (string) - The optional algorithm to use for this VIP.

Requires
vip_persistence (string) - The persistence type for this VIP.

Returns
A TaskFlow Flow that will add a VIP to the distributor

This method will return a TaskFlow Flow that adds a VIP to the distributor by performing
the necessary steps to plug the VIP and configure the distributor to start receiving requests
on this VIP.

get_create_distributor_subflow()

Get a subflow to create a distributor

Requires
load_balancer (object) - Load balancer object associated with this distributor

4.6. Module Reference 914

Octavia Documentation, Release 15.1.0.dev35

Provides
distributor_id (string) - The created distributor ID

Returns
A TaskFlow Flow that will create the distributor

This method will setup the TaskFlow Flow required to setup the database fields and create
a distributor should the driver need to instantiate one. The flow must store the generated
distibutor ID in the flow.

get_delete_distributor_subflow()

Get a subflow that deletes a distributor

Requires
distributor_id (string) - The ID of the distributor to delete

Returns
A TaskFlow Flow that will delete the distributor

This method will return a TaskFlow Flow that deletes the distributor (if applicable for the
driver) and cleans up any associated database records.

get_drain_amphorae_subflow()

Get a subflow that drains connections from amphorae

Requires
distributor_id (string) - The ID of the distributor to drain amphorae from

Requires
amphorae (tuple) - Tuple of amphora objects to drain from distributor.

Returns
A TaskFlow Flow that will drain the listed amphorae on the distributor

This method will return a TaskFlow Flow that configures the distributor to stop sending new
connections to the amphorae in the list. Existing connections will continue to pass traffic to
the amphorae in this list.

get_register_amphorae_subflow()

Get a subflow that Registers amphorae with the distributor

Requires
distributor_id (string) - The ID of the distributor to register the amphora on

Requires
amphorae (tuple) - Tuple of amphora objects to register with the distributor.

Returns
A TaskFlow Flow that will register amphorae with the distributor

This method will return a TaskFlow Flow that registers amphorae with the distributor so it can
begin to receive requests from the distributor. Amphora should be ready to receive requests
prior to this call being made.

get_remove_vip_subflow()

Get a subflow that removes a VIP from a distributor

Requires
distributor_id (string) - The ID of the distributor to remove the VIP from.

4.6. Module Reference 915

Octavia Documentation, Release 15.1.0.dev35

Requires
vip (object) - The VIP object to remove from the distributor.

Returns
A TaskFlow Flow that will remove a VIP from the distributor

This method will return a TaskFlow Flow that removes the VIP from the distributor by re-
configuring the distributor and unplugging the associated port.

get_unregister_amphorae_subflow()

Get a subflow that unregisters amphorae from a distributor

Requires
distributor_id (string) - The ID of the distributor to unregister amphorae from

Requires
amphorae (tuple) - Tuple of amphora objects to unregister from distributor.

Returns
A TaskFlow Flow that will unregister amphorae from the distributor

This method will return a TaskFlow Flow that unregisters amphorae from the distributor.
Amphorae in this list will immediately stop receiving traffic.

class NoopManager

Bases: object

get_add_vip_subflow()

get_create_distributor_subflow()

get_delete_distributor_subflow()

get_drain_amphorae_subflow()

get_register_amphorae_subflow()

get_remove_vip_subflow()

get_unregister_amphorae_subflow()

class NoopProvidesRequiresTask(name, provides_dicts=None, requires=None)
Bases: Task

execute(*args, **kwargs)
Activate a given atom which will perform some operation and return.

This method can be used to perform an action on a given set of input requirements (passed
in via *args and **kwargs) to accomplish some type of operation. This operation may
provide some named outputs/results as a result of it executing for later reverting (or for other
atoms to depend on).

NOTE(harlowja): the result (if any) that is returned should be persistable so that it can be
passed back into this atom if reverting is triggered (especially in the case where reverting
happens in a different python process or on a remote machine) and so that the result can be
transmitted to other atoms (which may be local or remote).

Parameters

• args -- positional arguments that atom requires to execute.

4.6. Module Reference 916

Octavia Documentation, Release 15.1.0.dev35

• kwargs -- any keyword arguments that atom requires to execute.

Module contents

Submodules

octavia.distributor.drivers.driver_base module

class DistributorDriver

Bases: object

abstract get_add_vip_subflow()

Get a subflow that adds a VIP to a distributor

Requires
distributor_id (string) - The ID of the distributor to create the VIP on.

Requires
vip (object) - The VIP object to create on the distributor.

Requires
vip_alg (string) - The optional algorithm to use for this VIP.

Requires
vip_persistence (string) - The persistence type for this VIP.

Returns
A TaskFlow Flow that will add a VIP to the distributor

This method will return a TaskFlow Flow that adds a VIP to the distributor by performing
the necessary steps to plug the VIP and configure the distributor to start receiving requests
on this VIP.

abstract get_create_distributor_subflow()

Get a subflow to create a distributor

Requires
load_balancer (object) - Load balancer object associated with this distributor

Provides
distributor_id (string) - The created distributor ID

Returns
A TaskFlow Flow that will create the distributor

This method will setup the TaskFlow Flow required to setup the database fields and create
a distributor should the driver need to instantiate one. The flow must store the generated
distibutor ID in the flow.

abstract get_delete_distributor_subflow()

Get a subflow that deletes a distributor

Requires
distributor_id (string) - The ID of the distributor to delete

Returns
A TaskFlow Flow that will delete the distributor

4.6. Module Reference 917

Octavia Documentation, Release 15.1.0.dev35

This method will return a TaskFlow Flow that deletes the distributor (if applicable for the
driver) and cleans up any associated database records.

abstract get_drain_amphorae_subflow()

Get a subflow that drains connections from amphorae

Requires
distributor_id (string) - The ID of the distributor to drain amphorae from

Requires
amphorae (tuple) - Tuple of amphora objects to drain from distributor.

Returns
A TaskFlow Flow that will drain the listed amphorae on the distributor

This method will return a TaskFlow Flow that configures the distributor to stop sending new
connections to the amphorae in the list. Existing connections will continue to pass traffic to
the amphorae in this list.

abstract get_register_amphorae_subflow()

Get a subflow that Registers amphorae with the distributor

Requires
distributor_id (string) - The ID of the distributor to register the amphora on

Requires
amphorae (tuple) - Tuple of amphora objects to register with the distributor.

Returns
A TaskFlow Flow that will register amphorae with the distributor

This method will return a TaskFlow Flow that registers amphorae with the distributor so it can
begin to receive requests from the distributor. Amphora should be ready to receive requests
prior to this call being made.

abstract get_remove_vip_subflow()

Get a subflow that removes a VIP from a distributor

Requires
distributor_id (string) - The ID of the distributor to remove the VIP from.

Requires
vip (object) - The VIP object to remove from the distributor.

Returns
A TaskFlow Flow that will remove a VIP from the distributor

This method will return a TaskFlow Flow that removes the VIP from the distributor by re-
configuring the distributor and unplugging the associated port.

abstract get_unregister_amphorae_subflow()

Get a subflow that unregisters amphorae from a distributor

Requires
distributor_id (string) - The ID of the distributor to unregister amphorae from

Requires
amphorae (tuple) - Tuple of amphora objects to unregister from distributor.

4.6. Module Reference 918

Octavia Documentation, Release 15.1.0.dev35

Returns
A TaskFlow Flow that will unregister amphorae from the distributor

This method will return a TaskFlow Flow that unregisters amphorae from the distributor.
Amphorae in this list will immediately stop receiving traffic.

Module contents

Module contents

octavia.hacking package

Submodules

octavia.hacking.checks module

Guidelines for writing new hacking checks

• Use only for Octavia specific tests. OpenStack general tests should be submitted to the common
’hacking’ module.

• Pick numbers in the range O3xx. Find the current test with the highest allocated number and then
pick the next value.

• Keep the test method code in the source file ordered based on the O3xx value.

• List the new rule in the top level HACKING.rst file

• Add test cases for each new rule to octavia/tests/unit/test_hacking.py

assert_equal_in(logical_line)
Check for assertEqual(A in B, True), assertEqual(True, A in B),

assertEqual(A in B, False) or assertEqual(False, A in B) sentences

O338

assert_equal_or_not_none(logical_line)
Check for assertEqual(A, None) or assertEqual(None, A) sentences,

assertNotEqual(A, None) or assertNotEqual(None, A) sentences

O318

assert_equal_true_or_false(logical_line)
Check for assertEqual(True, A) or assertEqual(False, A) sentences

O323

assert_true_instance(logical_line)
Check for assertTrue(isinstance(a, b)) sentences

O316

check_line_continuation_no_backslash(logical_line, tokens)
O346 - Don’t use backslashes for line continuation.

Parameters

• logical_line -- The logical line to check. Not actually used.

4.6. Module Reference 919

Octavia Documentation, Release 15.1.0.dev35

• tokens -- List of tokens to check.

Returns
None if the tokens don’t contain any issues, otherwise a tuple is yielded that con-
tains the offending index in the logical line and a message describe the check vali-
dation failure.

check_no_eventlet_imports(logical_line)
O345 - Usage of Python eventlet module not allowed.

Parameters
logical_line -- The logical line to check.

Returns
None if the logical line passes the check, otherwise a tuple is yielded that contains
the offending index in logical line and a message describe the check validation
failure.

check_no_logging_imports(logical_line)
O348 - Usage of Python logging module not allowed.

Parameters
logical_line -- The logical line to check.

Returns
None if the logical line passes the check, otherwise a tuple is yielded that contains
the offending index in logical line and a message describe the check validation
failure.

check_raised_localized_exceptions(logical_line, filename)
O342 - Untranslated exception message.

Parameters

• logical_line -- The logical line to check.

• filename -- The file name where the logical line exists.

Returns
None if the logical line passes the check, otherwise a tuple is yielded that contains
the offending index in logical line and a message describe the check validation
failure.

no_log_warn(logical_line)
Disallow ’LOG.warn(’

O339

no_mutable_default_args(logical_line)

no_translate_logs(logical_line, filename)
O341 - Don’t translate logs.

Check for ’LOG.*(_(’ and ’LOG.*(_Lx(’

Translators don’t provide translations for log messages, and operators asked not to translate them.

• This check assumes that ’LOG’ is a logger.

Parameters

4.6. Module Reference 920

Octavia Documentation, Release 15.1.0.dev35

• logical_line -- The logical line to check.

• filename -- The file name where the logical line exists.

Returns
None if the logical line passes the check, otherwise a tuple is yielded that contains
the offending index in logical line and a message describe the check validation
failure.

revert_must_have_kwargs(logical_line)
O347 - Taskflow revert methods must have **kwargs.

Parameters
logical_line -- The logical line to check.

Returns
None if the logical line passes the check, otherwise a tuple is yielded that contains
the offending index in logical line and a message describe the check validation
failure.

Module contents

octavia.image package

Subpackages

octavia.image.drivers package

Subpackages

octavia.image.drivers.noop_driver package

Submodules

octavia.image.drivers.noop_driver.driver module

class NoopImageDriver

Bases: ImageBase

get_image_id_by_tag(image_tag, image_owner=None)
Get image ID by image tag and owner.

Parameters

• image_tag -- image tag

• image_owner -- optional image owner

Raises
ImageGetException if no images found with given tag

Returns
image id

class NoopManager

Bases: object

get_image_id_by_tag(image_tag, image_owner=None)

4.6. Module Reference 921

Octavia Documentation, Release 15.1.0.dev35

Module contents

Submodules

octavia.image.drivers.glance_driver module

class ImageManager

Bases: ImageBase

Image implementation of virtual machines via Glance.

get_image_id_by_tag(image_tag, image_owner=None)
Get image ID by image tag and owner

Parameters

• image_tag -- image tag

• image_owner -- optional image owner

Raises
ImageGetException if no images found with given tag

Returns
image id

Module contents

Submodules

octavia.image.image_base module

class ImageBase

Bases: object

abstract get_image_id_by_tag(image_tag, image_owner=None)
Get image ID by image tag and owner.

Parameters

• image_tag -- image tag

• image_owner -- optional image owner

Raises
ImageGetException if no images found with given tag

Returns
image id

Module contents

octavia.network package

Subpackages

octavia.network.drivers package

4.6. Module Reference 922

Octavia Documentation, Release 15.1.0.dev35

Subpackages

octavia.network.drivers.neutron package

Submodules

octavia.network.drivers.neutron.allowed_address_pairs module

class AllowedAddressPairsDriver

Bases: BaseNeutronDriver

allocate_vip(load_balancer)
Allocates a virtual ip.

Reserves the IP for later use as the frontend connection of a load balancer.

Parameters
load_balancer -- octavia.common.data_models.LoadBalancer instance

Returns
octavia.common.data_models.Vip, list(octavia.common.data_models.AdditionalVip)

Raises

• AllocateVIPException -- generic error allocating the VIP

• PortNotFound -- port was not found

• SubnetNotFound -- subnet was not found

create_port(network_id, name=None, fixed_ips=(), secondary_ips=(),
security_group_ids=(), admin_state_up=True, qos_policy_id=None,
vnic_type=’normal’)

Creates a network port.

fixed_ips = [{’subnet_id’: <id>, (’ip_addrss’: <IP>’)},] ip_address is optional in the
fixed_ips dictionary.

Parameters

• network_id -- The network the port should be created on.

• name -- The name to apply to the port.

• fixed_ips -- A list of fixed IP dicts.

• secondary_ips -- A list of secondary IPs to add to the port.

• security_group_ids -- A list of security group IDs for the port.

• qos_policy_id -- The QoS policy ID to apply to the port.

• vnic_type -- The vNIC type this port should attach to.

Returns port
A port data model object.

deallocate_vip(vip)
Delete the vrrp_port (instance port) in case nova didn’t

This can happen if a failover has occurred.

4.6. Module Reference 923

Octavia Documentation, Release 15.1.0.dev35

delete_port(port_id)
delete a neutron port.

Parameters
port_id -- The port ID to delete.

Returns
None

failover_preparation(amphora)
Prepare an amphora for failover.

Parameters
amphora -- amphora object to failover

Returns
None

Raises
PortNotFound

get_network_configs(loadbalancer, amphora=None)
Retrieve network configurations

This method assumes that a dictionary of AmphoraNetworkConfigs keyed off of the related
amphora id are returned. The configs contain data pertaining to each amphora that is later
used for finalization of the entire load balancer configuration. The data provided to these
configs is left up to the driver, this means the driver is responsible for providing data that is
appropriate for the amphora network configurations.

Example return: {<amphora.id>: <AmphoraNetworkConfig>}

Parameters

• load_balancer -- The load_balancer configuration

• amphora -- Optional amphora to only query.

Returns
dict of octavia.network.data_models.AmphoraNetworkConfig keyed off of the
amphora id the config is associated with.

Raises
NotFound, NetworkNotFound, SubnetNotFound, PortNotFound

get_security_group(sg_name)
Retrieves the security group by it’s name.

Parameters
sg_name -- The security group name.

Returns
octavia.network.data_models.SecurityGroup, None if not enabled

Raises
NetworkException, SecurityGroupNotFound

plug_aap_port(load_balancer, vip, amphora, subnet)
Plugs the AAP port to the amp

4.6. Module Reference 924

Octavia Documentation, Release 15.1.0.dev35

Parameters

• load_balancer -- Load Balancer to prepare the VIP for

• vip -- The VIP to plug

• amphora -- The amphora to plug the VIP into

• subnet -- The subnet to plug the aap into

plug_network(compute_id, network_id)
Connects an existing amphora to an existing network.

Parameters

• compute_id -- id of an amphora in the compute service

• network_id -- id of a network

Returns
octavia.network.data_models.Interface instance

Raises
PlugNetworkException, AmphoraNotFound, NetworkNotFound

plug_port(amphora, port)
Plug a neutron port in to a compute instance

Parameters

• amphora -- amphora object to plug the port into

• port -- port to plug into the compute instance

Returns
None

Raises
PlugNetworkException, AmphoraNotFound, NetworkNotFound

set_port_admin_state_up(port_id, state)
Set the admin state of a port. True is up, False is down.

Parameters

• port_id -- The port ID to update.

• state -- True for up, False for down.

Returns
None

unplug_aap_port(vip, amphora, subnet)
Unplugs the AAP port to the amp

Parameters

• vip -- The VIP to plug

• amphora -- The amphora to plug the VIP into

• subnet -- The subnet to plug the aap into

4.6. Module Reference 925

Octavia Documentation, Release 15.1.0.dev35

unplug_network(compute_id, network_id)
Disconnects an existing amphora from an existing network.

If ip_address is not specified, all the interfaces plugged on network_id should be unplugged.

Parameters

• compute_id -- id of an amphora in the compute service

• network_id -- id of a network

Returns
None

Raises
UnplugNetworkException, AmphoraNotFound, NetworkNotFound, Net-
workException

unplug_vip(load_balancer, vip)
Unplugs a virtual ip as the frontend connection of a load balancer.

Removes the routing of traffic from the vip to the load balancer and its amphorae.

Parameters

• load_balancer -- octavia.common.data_models.LoadBalancer instance

• vip -- octavia.common.data_models.VIP instance

Returns
octavia.common.data_models.VIP instance

Raises
UnplugVIPException, PluggedVIPNotFound

update_vip(load_balancer, for_delete=False)
Hook for the driver to update the VIP information.

This method will be called upon the change of a load_balancer configuration. It is an optional
method to be implemented by drivers. It allows the driver to update any VIP information
based on the state of the passed in load_balancer.

Parameters

• load_balancer -- octavia.common.data_models.LoadBalancer instance

• for_delete -- Boolean indicating if this update is for a delete

Raises
MissingVIPSecurityGroup

Returns
None

update_vip_sg(load_balancer, vip)
Updates the security group for a VIP

Parameters

• load_balancer -- Load Balancer to rpepare the VIP for

• vip -- The VIP to plug

4.6. Module Reference 926

Octavia Documentation, Release 15.1.0.dev35

octavia.network.drivers.neutron.base module

class BaseNeutronDriver

Bases: AbstractNetworkDriver

apply_qos_on_port(qos_id, port_id)

get_network(network_id, context=None)
Retrieves network from network id.

Parameters

• network_id -- id of an network to retrieve

• context -- A request context

Returns
octavia.network.data_models.Network

Raises
NetworkException, NetworkNotFound

get_network_by_name(network_name)
Retrieves network from network name.

Parameters
network_name -- name of a network to retrieve

Returns
octavia.network.data_models.Network

Raises
NetworkException, NetworkNotFound

get_network_ip_availability(network)
Retrieves network IP availability.

Parameters
network -- octavia.network.data_models.Network

Returns
octavia.network.data_models.Network_IP_Availability

Raises
NetworkException, NetworkNotFound

get_plugged_networks(compute_id)
Retrieves the current plugged networking configuration.

Parameters
compute_id -- id of an amphora in the compute service

Returns
[octavia.network.data_models.Instance]

get_port(port_id, context=None)
Retrieves port from port id.

Parameters

• port_id -- id of a port to retrieve

4.6. Module Reference 927

Octavia Documentation, Release 15.1.0.dev35

• context -- A request context

Returns
octavia.network.data_models.Port

Raises
NetworkException, PortNotFound

get_port_by_name(port_name)
Retrieves port from port name.

Parameters
port_name -- name of a port to retrieve

Returns
octavia.network.data_models.Port

Raises
NetworkException, PortNotFound

get_port_by_net_id_device_id(network_id, device_id)
Retrieves port from network id and device id.

Parameters

• network_id -- id of a network to filter by

• device_id -- id of a network device to filter by

Returns
octavia.network.data_models.Port

Raises
NetworkException, PortNotFound

get_qos_policy(qos_policy_id)

get_subnet(subnet_id, context=None)
Retrieves subnet from subnet id.

Parameters

• subnet_id -- id of a subnet to retrieve

• context -- A request context

Returns
octavia.network.data_models.Subnet

Raises
NetworkException, SubnetNotFound

get_subnet_by_name(subnet_name)
Retrieves subnet from subnet name.

Parameters
subnet_name -- name of a subnet to retrieve

Returns
octavia.network.data_models.Subnet

4.6. Module Reference 928

Octavia Documentation, Release 15.1.0.dev35

Raises
NetworkException, SubnetNotFound

property os_connection: Connection

plug_fixed_ip(port_id, subnet_id, ip_address=None)
Plug a fixed ip to an existing port.

If ip_address is not specified, one will be auto-assigned.

Parameters

• port_id -- id of a port to add a fixed ip

• subnet_id -- id of a subnet

• ip_address -- specific ip_address to add

Returns
octavia.network.data_models.Port

Raises
NetworkException, PortNotFound

qos_enabled()

Whether QoS is enabled

Returns
Boolean

unplug_fixed_ip(port_id, subnet_id)
Unplug a fixed ip from an existing port.

Parameters

• port_id -- id of a port to remove the fixed ip from

• subnet_id -- id of a subnet

Returns
octavia.network.data_models.Port

Raises
NetworkException, PortNotFound

octavia.network.drivers.neutron.utils module

convert_fixed_ip_dict_to_model(fixed_ip: dict)

convert_network_ip_availability_to_model(nw_ip_avail: NetworkIPAvailability)

convert_network_to_model(nw)

convert_port_to_model(port)

convert_qos_policy_to_model(qos_policy)

convert_security_group_to_model(security_group)

convert_subnet_to_model(subnet)

4.6. Module Reference 929

Octavia Documentation, Release 15.1.0.dev35

Module contents

octavia.network.drivers.noop_driver package

Submodules

octavia.network.drivers.noop_driver.driver module

class NoopManager

Bases: object

allocate_vip(loadbalancer)

apply_qos_on_port(qos_id, port_id)

create_port(network_id, name=None, fixed_ips=(), secondary_ips=(),
security_group_ids=(), admin_state_up=True, qos_policy_id=None,
vnic_type=’normal’)

deallocate_vip(vip)

delete_port(port_id)

failover_preparation(amphora)

get_network(network_id)

get_network_by_name(network_name)

get_network_configs(loadbalancer, amphora=None)

get_network_ip_availability(network)

get_plugged_networks(compute_id)

get_port(port_id)

get_port_by_name(port_name)

get_port_by_net_id_device_id(network_id, device_id)

get_qos_policy(qos_policy_id)

get_security_group(sg_name)

get_subnet(subnet_id)

get_subnet_by_name(subnet_name)

plug_aap_port(load_balancer, vip, amphora, subnet)

plug_fixed_ip(port_id, subnet_id, ip_address=None)

plug_network(compute_id, network_id)

plug_port(amphora, port)

qos_enabled()

4.6. Module Reference 930

Octavia Documentation, Release 15.1.0.dev35

set_port_admin_state_up(port_id, state)

unplug_aap_port(vip, amphora, subnet)

unplug_fixed_ip(port_id, subnet_id)

unplug_network(compute_id, network_id)

unplug_vip(loadbalancer, vip)

update_vip(loadbalancer, for_delete=False)

update_vip_sg(load_balancer, vip)

class NoopNetworkDriver

Bases: AbstractNetworkDriver

allocate_vip(loadbalancer)
Allocates a virtual ip.

Reserves it for later use as the frontend connection of a load balancer.

Parameters
load_balancer -- octavia.common.data_models.LoadBalancer instance

Returns
octavia.common.data_models.Vip, list(octavia.common.data_models.AdditionalVip)

Raises
AllocateVIPException, PortNotFound, SubnetNotFound

apply_qos_on_port(qos_id, port_id)

create_port(network_id, name=None, fixed_ips=(), secondary_ips=(),
security_group_ids=(), admin_state_up=True, qos_policy_id=None,
vnic_type=’normal’)

Creates a network port.

fixed_ips = [{’subnet_id’: <id>, (’ip_address’: <IP>’)},] ip_address is optional in the
fixed_ips dictionary.

Parameters

• network_id -- The network the port should be created on.

• name -- The name to apply to the port.

• fixed_ips -- A list of fixed IP dicts.

• secondary_ips -- A list of secondary IPs to add to the port.

• security_group_ids -- A list of security group IDs for the port.

• qos_policy_id -- The QoS policy ID to apply to the port.

Returns port
A port data model object.

4.6. Module Reference 931

Octavia Documentation, Release 15.1.0.dev35

deallocate_vip(vip)
Removes any resources that reserved this virtual ip.

Parameters
vip -- octavia.common.data_models.VIP instance

Returns
None

Raises
DeallocateVIPException, VIPInUseException, VIPConfiigurationNotFound

delete_port(port_id)
Delete a network port.

Parameters
port_id -- The port ID to delete.

Returns
None

failover_preparation(amphora)
Prepare an amphora for failover.

Parameters
amphora -- amphora object to failover

Returns
None

Raises
PortNotFound

get_network(network_id, context=None)
Retrieves network from network id.

Parameters

• network_id -- id of an network to retrieve

• context -- A request context

Returns
octavia.network.data_models.Network

Raises
NetworkException, NetworkNotFound

get_network_by_name(network_name)
Retrieves network from network name.

Parameters
network_name -- name of a network to retrieve

Returns
octavia.network.data_models.Network

Raises
NetworkException, NetworkNotFound

4.6. Module Reference 932

Octavia Documentation, Release 15.1.0.dev35

get_network_configs(loadbalancer, amphora=None)
Retrieve network configurations

This method assumes that a dictionary of AmphoraNetworkConfigs keyed off of the related
amphora id are returned. The configs contain data pertaining to each amphora that is later
used for finalization of the entire load balancer configuration. The data provided to these
configs is left up to the driver, this means the driver is responsible for providing data that is
appropriate for the amphora network configurations.

Example return: {<amphora.id>: <AmphoraNetworkConfig>}

Parameters

• load_balancer -- The load_balancer configuration

• amphora -- Optional amphora to only query.

Returns
dict of octavia.network.data_models.AmphoraNetworkConfig keyed off of the
amphora id the config is associated with.

Raises
NotFound, NetworkNotFound, SubnetNotFound, PortNotFound

get_network_ip_availability(network)
Retrieves network IP availability.

Parameters
network -- octavia.network.data_models.Network

Returns
octavia.network.data_models.Network_IP_Availability

Raises
NetworkException, NetworkNotFound

get_plugged_networks(compute_id)
Retrieves the current plugged networking configuration.

Parameters
compute_id -- id of an amphora in the compute service

Returns
[octavia.network.data_models.Instance]

get_port(port_id, context=None)
Retrieves port from port id.

Parameters

• port_id -- id of a port to retrieve

• context -- A request context

Returns
octavia.network.data_models.Port

Raises
NetworkException, PortNotFound

4.6. Module Reference 933

Octavia Documentation, Release 15.1.0.dev35

get_port_by_name(port_name)
Retrieves port from port name.

Parameters
port_name -- name of a port to retrieve

Returns
octavia.network.data_models.Port

Raises
NetworkException, PortNotFound

get_port_by_net_id_device_id(network_id, device_id)
Retrieves port from network id and device id.

Parameters

• network_id -- id of a network to filter by

• device_id -- id of a network device to filter by

Returns
octavia.network.data_models.Port

Raises
NetworkException, PortNotFound

get_qos_policy(qos_policy_id)

get_security_group(sg_name)
Retrieves the security group by it’s name.

Parameters
sg_name -- The security group name.

Returns
octavia.network.data_models.SecurityGroup, None if not enabled

Raises
NetworkException, SecurityGroupNotFound

get_subnet(subnet_id, context=None)
Retrieves subnet from subnet id.

Parameters

• subnet_id -- id of a subnet to retrieve

• context -- A request context

Returns
octavia.network.data_models.Subnet

Raises
NetworkException, SubnetNotFound

get_subnet_by_name(subnet_name)
Retrieves subnet from subnet name.

Parameters
subnet_name -- name of a subnet to retrieve

4.6. Module Reference 934

Octavia Documentation, Release 15.1.0.dev35

Returns
octavia.network.data_models.Subnet

Raises
NetworkException, SubnetNotFound

plug_aap_port(load_balancer, vip, amphora, subnet)
Plugs the AAP port to the amp

Parameters

• load_balancer -- Load Balancer to prepare the VIP for

• vip -- The VIP to plug

• amphora -- The amphora to plug the VIP into

• subnet -- The subnet to plug the aap into

plug_fixed_ip(port_id, subnet_id, ip_address=None)
Plug a fixed ip to an existing port.

If ip_address is not specified, one will be auto-assigned.

Parameters

• port_id -- id of a port to add a fixed ip

• subnet_id -- id of a subnet

• ip_address -- specific ip_address to add

Returns
octavia.network.data_models.Port

Raises
NetworkException, PortNotFound

plug_network(compute_id, network_id)
Connects an existing amphora to an existing network.

Parameters

• compute_id -- id of an amphora in the compute service

• network_id -- id of a network

Returns
octavia.network.data_models.Interface instance

Raises
PlugNetworkException, AmphoraNotFound, NetworkNotFound

plug_port(amphora, port)
Plug a neutron port in to a compute instance

Parameters

• amphora -- amphora object to plug the port into

• port -- port to plug into the compute instance

4.6. Module Reference 935

Octavia Documentation, Release 15.1.0.dev35

Returns
None

Raises
PlugNetworkException, AmphoraNotFound, NetworkNotFound

qos_enabled()

Whether QoS is enabled

Returns
Boolean

set_port_admin_state_up(port_id, state)
Set the admin state of a port. True is up, False is down.

Parameters

• port_id -- The port ID to update.

• state -- True for up, False for down.

Returns
None

unplug_aap_port(vip, amphora, subnet)
Unplugs the AAP port to the amp

Parameters

• vip -- The VIP to plug

• amphora -- The amphora to plug the VIP into

• subnet -- The subnet to plug the aap into

unplug_fixed_ip(port_id, subnet_id)
Unplug a fixed ip from an existing port.

Parameters

• port_id -- id of a port to remove the fixed ip from

• subnet_id -- id of a subnet

Returns
octavia.network.data_models.Port

Raises
NetworkException, PortNotFound

unplug_network(compute_id, network_id)
Disconnects an existing amphora from an existing network.

If ip_address is not specified, all the interfaces plugged on network_id should be unplugged.

Parameters

• compute_id -- id of an amphora in the compute service

• network_id -- id of a network

Returns
None

4.6. Module Reference 936

Octavia Documentation, Release 15.1.0.dev35

Raises
UnplugNetworkException, AmphoraNotFound, NetworkNotFound, Net-
workException

unplug_vip(loadbalancer, vip)
Unplugs a virtual ip as the frontend connection of a load balancer.

Removes the routing of traffic from the vip to the load balancer and its amphorae.

Parameters

• load_balancer -- octavia.common.data_models.LoadBalancer instance

• vip -- octavia.common.data_models.VIP instance

Returns
octavia.common.data_models.VIP instance

Raises
UnplugVIPException, PluggedVIPNotFound

update_vip(loadbalancer, for_delete=False)
Hook for the driver to update the VIP information.

This method will be called upon the change of a load_balancer configuration. It is an optional
method to be implemented by drivers. It allows the driver to update any VIP information
based on the state of the passed in load_balancer.

Parameters

• load_balancer -- octavia.common.data_models.LoadBalancer instance

• for_delete -- Boolean indicating if this update is for a delete

Raises
MissingVIPSecurityGroup

Returns
None

update_vip_sg(load_balancer, vip)
Updates the security group for a VIP

Parameters

• load_balancer -- Load Balancer to rpepare the VIP for

• vip -- The VIP to plug

Module contents

Module contents

Submodules

octavia.network.base module

class AbstractNetworkDriver

Bases: object

This class defines the methods for a fully functional network driver.

4.6. Module Reference 937

Octavia Documentation, Release 15.1.0.dev35

Implementations of this interface can expect a rollback to occur if any of the non-nullipotent meth-
ods raise an exception.

abstract allocate_vip(load_balancer)
Allocates a virtual ip.

Reserves it for later use as the frontend connection of a load balancer.

Parameters
load_balancer -- octavia.common.data_models.LoadBalancer instance

Returns
octavia.common.data_models.Vip, list(octavia.common.data_models.AdditionalVip)

Raises
AllocateVIPException, PortNotFound, SubnetNotFound

abstract create_port(network_id, name=None, fixed_ips=(), secondary_ips=(),
security_group_ids=(), admin_state_up=True, qos_policy_id=None,
vnic_type=’normal’)

Creates a network port.

fixed_ips = [{’subnet_id’: <id>, (’ip_address’: <IP>’)},] ip_address is optional in the
fixed_ips dictionary.

Parameters

• network_id -- The network the port should be created on.

• name -- The name to apply to the port.

• fixed_ips -- A list of fixed IP dicts.

• secondary_ips -- A list of secondary IPs to add to the port.

• security_group_ids -- A list of security group IDs for the port.

• qos_policy_id -- The QoS policy ID to apply to the port.

Returns port
A port data model object.

abstract deallocate_vip(vip)
Removes any resources that reserved this virtual ip.

Parameters
vip -- octavia.common.data_models.VIP instance

Returns
None

Raises
DeallocateVIPException, VIPInUseException, VIPConfiigurationNotFound

abstract delete_port(port_id)
Delete a network port.

Parameters
port_id -- The port ID to delete.

4.6. Module Reference 938

Octavia Documentation, Release 15.1.0.dev35

Returns
None

abstract failover_preparation(amphora)
Prepare an amphora for failover.

Parameters
amphora -- amphora object to failover

Returns
None

Raises
PortNotFound

abstract get_network(network_id, context=None)
Retrieves network from network id.

Parameters

• network_id -- id of an network to retrieve

• context -- A request context

Returns
octavia.network.data_models.Network

Raises
NetworkException, NetworkNotFound

abstract get_network_by_name(network_name)
Retrieves network from network name.

Parameters
network_name -- name of a network to retrieve

Returns
octavia.network.data_models.Network

Raises
NetworkException, NetworkNotFound

abstract get_network_configs(load_balancer, amphora=None)
Retrieve network configurations

This method assumes that a dictionary of AmphoraNetworkConfigs keyed off of the related
amphora id are returned. The configs contain data pertaining to each amphora that is later
used for finalization of the entire load balancer configuration. The data provided to these
configs is left up to the driver, this means the driver is responsible for providing data that is
appropriate for the amphora network configurations.

Example return: {<amphora.id>: <AmphoraNetworkConfig>}

Parameters

• load_balancer -- The load_balancer configuration

• amphora -- Optional amphora to only query.

4.6. Module Reference 939

Octavia Documentation, Release 15.1.0.dev35

Returns
dict of octavia.network.data_models.AmphoraNetworkConfig keyed off of the
amphora id the config is associated with.

Raises
NotFound, NetworkNotFound, SubnetNotFound, PortNotFound

abstract get_network_ip_availability(network)
Retrieves network IP availability.

Parameters
network -- octavia.network.data_models.Network

Returns
octavia.network.data_models.Network_IP_Availability

Raises
NetworkException, NetworkNotFound

abstract get_plugged_networks(compute_id)
Retrieves the current plugged networking configuration.

Parameters
compute_id -- id of an amphora in the compute service

Returns
[octavia.network.data_models.Instance]

abstract get_port(port_id, context=None)
Retrieves port from port id.

Parameters

• port_id -- id of a port to retrieve

• context -- A request context

Returns
octavia.network.data_models.Port

Raises
NetworkException, PortNotFound

abstract get_port_by_name(port_name)
Retrieves port from port name.

Parameters
port_name -- name of a port to retrieve

Returns
octavia.network.data_models.Port

Raises
NetworkException, PortNotFound

abstract get_port_by_net_id_device_id(network_id, device_id)
Retrieves port from network id and device id.

Parameters

• network_id -- id of a network to filter by

4.6. Module Reference 940

Octavia Documentation, Release 15.1.0.dev35

• device_id -- id of a network device to filter by

Returns
octavia.network.data_models.Port

Raises
NetworkException, PortNotFound

abstract get_security_group(sg_name)
Retrieves the security group by it’s name.

Parameters
sg_name -- The security group name.

Returns
octavia.network.data_models.SecurityGroup, None if not enabled

Raises
NetworkException, SecurityGroupNotFound

abstract get_subnet(subnet_id, context=None)
Retrieves subnet from subnet id.

Parameters

• subnet_id -- id of a subnet to retrieve

• context -- A request context

Returns
octavia.network.data_models.Subnet

Raises
NetworkException, SubnetNotFound

abstract get_subnet_by_name(subnet_name)
Retrieves subnet from subnet name.

Parameters
subnet_name -- name of a subnet to retrieve

Returns
octavia.network.data_models.Subnet

Raises
NetworkException, SubnetNotFound

abstract plug_aap_port(load_balancer, vip, amphora, subnet)
Plugs the AAP port to the amp

Parameters

• load_balancer -- Load Balancer to prepare the VIP for

• vip -- The VIP to plug

• amphora -- The amphora to plug the VIP into

• subnet -- The subnet to plug the aap into

4.6. Module Reference 941

Octavia Documentation, Release 15.1.0.dev35

abstract plug_fixed_ip(port_id, subnet_id, ip_address=None)
Plug a fixed ip to an existing port.

If ip_address is not specified, one will be auto-assigned.

Parameters

• port_id -- id of a port to add a fixed ip

• subnet_id -- id of a subnet

• ip_address -- specific ip_address to add

Returns
octavia.network.data_models.Port

Raises
NetworkException, PortNotFound

abstract plug_network(compute_id, network_id)
Connects an existing amphora to an existing network.

Parameters

• compute_id -- id of an amphora in the compute service

• network_id -- id of a network

Returns
octavia.network.data_models.Interface instance

Raises
PlugNetworkException, AmphoraNotFound, NetworkNotFound

abstract plug_port(amphora, port)
Plug a neutron port in to a compute instance

Parameters

• amphora -- amphora object to plug the port into

• port -- port to plug into the compute instance

Returns
None

Raises
PlugNetworkException, AmphoraNotFound, NetworkNotFound

abstract qos_enabled()

Whether QoS is enabled

Returns
Boolean

abstract set_port_admin_state_up(port_id, state)
Set the admin state of a port. True is up, False is down.

Parameters

• port_id -- The port ID to update.

• state -- True for up, False for down.

4.6. Module Reference 942

Octavia Documentation, Release 15.1.0.dev35

Returns
None

abstract unplug_aap_port(vip, amphora, subnet)
Unplugs the AAP port to the amp

Parameters

• vip -- The VIP to plug

• amphora -- The amphora to plug the VIP into

• subnet -- The subnet to plug the aap into

abstract unplug_fixed_ip(port_id, subnet_id)
Unplug a fixed ip from an existing port.

Parameters

• port_id -- id of a port to remove the fixed ip from

• subnet_id -- id of a subnet

Returns
octavia.network.data_models.Port

Raises
NetworkException, PortNotFound

abstract unplug_network(compute_id, network_id)
Disconnects an existing amphora from an existing network.

If ip_address is not specified, all the interfaces plugged on network_id should be unplugged.

Parameters

• compute_id -- id of an amphora in the compute service

• network_id -- id of a network

Returns
None

Raises
UnplugNetworkException, AmphoraNotFound, NetworkNotFound, Net-
workException

abstract unplug_vip(load_balancer, vip)
Unplugs a virtual ip as the frontend connection of a load balancer.

Removes the routing of traffic from the vip to the load balancer and its amphorae.

Parameters

• load_balancer -- octavia.common.data_models.LoadBalancer instance

• vip -- octavia.common.data_models.VIP instance

Returns
octavia.common.data_models.VIP instance

Raises
UnplugVIPException, PluggedVIPNotFound

4.6. Module Reference 943

Octavia Documentation, Release 15.1.0.dev35

update_vip(load_balancer, for_delete)
Hook for the driver to update the VIP information.

This method will be called upon the change of a load_balancer configuration. It is an optional
method to be implemented by drivers. It allows the driver to update any VIP information
based on the state of the passed in load_balancer.

Parameters

• load_balancer -- octavia.common.data_models.LoadBalancer instance

• for_delete -- Boolean indicating if this update is for a delete

Raises
MissingVIPSecurityGroup

Returns
None

abstract update_vip_sg(load_balancer, vip)
Updates the security group for a VIP

Parameters

• load_balancer -- Load Balancer to rpepare the VIP for

• vip -- The VIP to plug

exception AllocateVIPException(*args, **kwargs)
Bases: NetworkException

exception AmphoraNotFound(*args, **kwargs)
Bases: NetworkException

exception CreatePortException(*args, **kwargs)
Bases: NetworkException

exception DeallocateVIPException(*args, **kwargs)
Bases: NetworkException

exception NetworkException(*args, **kwargs)
Bases: OctaviaException

exception NetworkNotFound(*args, **kwargs)
Bases: NetworkException

exception PlugNetworkException(*args, **kwargs)
Bases: NetworkException

exception PlugVIPException(*args, **kwargs)
Bases: NetworkException

exception PluggedVIPNotFound(*args, **kwargs)
Bases: NetworkException

exception PortNotFound(*args, **kwargs)
Bases: NetworkException

4.6. Module Reference 944

Octavia Documentation, Release 15.1.0.dev35

exception QosPolicyNotFound(*args, **kwargs)
Bases: NetworkException

exception SecurityGroupNotFound(*args, **kwargs)
Bases: NetworkException

exception SubnetNotFound(*args, **kwargs)
Bases: NetworkException

exception TimeoutException(*args, **kwargs)
Bases: NetworkException

exception UnplugNetworkException(*args, **kwargs)
Bases: NetworkException

exception UnplugVIPException(*args, **kwargs)
Bases: NetworkException

exception VIPInUseException(*args, **kwargs)
Bases: NetworkException

octavia.network.data_models module

class AdditionalVipData(ip_address=None, subnet=None)
Bases: BaseDataModel

class AmphoraNetworkConfig(amphora=None, vip_subnet=None, vip_port=None,
vrrp_subnet=None, vrrp_port=None, ha_subnet=None,
ha_port=None, additional_vip_data=None)

Bases: BaseDataModel

class Delta(amphora_id=None, compute_id=None, add_nics=None, delete_nics=None,
add_subnets=None, delete_subnets=None)

Bases: BaseDataModel

class FixedIP(subnet_id=None, ip_address=None, subnet=None)
Bases: BaseDataModel

class FloatingIP(id=None, description=None, project_id=None, status=None, router_id=None,
port_id=None, floating_network_id=None, floating_ip_address=None,
fixed_ip_address=None, fixed_port_id=None)

Bases: BaseDataModel

class HostRoute(nexthop=None, destination=None)
Bases: BaseDataModel

class Interface(id=None, compute_id=None, network_id=None, fixed_ips=None, port_id=None)
Bases: BaseDataModel

class Network(id=None, name=None, subnets=None, project_id=None, admin_state_up=None,
mtu=None, provider_network_type=None, provider_physical_network=None,
provider_segmentation_id=None, router_external=None,
port_security_enabled=None)

Bases: BaseDataModel

4.6. Module Reference 945

Octavia Documentation, Release 15.1.0.dev35

class Network_IP_Availability(network_id=None, tenant_id=None, project_id=None,
network_name=None, total_ips=None, used_ips=None,
subnet_ip_availability=None)

Bases: BaseDataModel

class Port(id=None, name=None, device_id=None, device_owner=None, mac_address=None,
network_id=None, status=None, project_id=None, admin_state_up=None,
fixed_ips=None, network=None, qos_policy_id=None, security_group_ids=None,
vnic_type=’normal’)

Bases: BaseDataModel

get_subnet_id(fixed_ip_address)

class QosPolicy(id)
Bases: BaseDataModel

class SecurityGroup(id=None, project_id=None, name=None, description=None,
security_group_rule_ids=None, tags=None, stateful=None)

Bases: BaseDataModel

class Subnet(id=None, name=None, network_id=None, project_id=None, gateway_ip=None,
cidr=None, ip_version=None, host_routes=None)

Bases: BaseDataModel

Module contents

octavia.policies package

Submodules

octavia.policies.amphora module

list_rules()

octavia.policies.availability_zone module

list_rules()

octavia.policies.availability_zone_profile module

list_rules()

octavia.policies.base module

list_rules()

octavia.policies.flavor module

list_rules()

4.6. Module Reference 946

Octavia Documentation, Release 15.1.0.dev35

octavia.policies.flavor_profile module

list_rules()

octavia.policies.healthmonitor module

list_rules()

octavia.policies.l7policy module

list_rules()

octavia.policies.l7rule module

list_rules()

octavia.policies.listener module

list_rules()

octavia.policies.loadbalancer module

list_rules()

octavia.policies.member module

list_rules()

octavia.policies.pool module

list_rules()

octavia.policies.provider module

list_rules()

octavia.policies.provider_availability_zone module

list_rules()

octavia.policies.provider_flavor module

list_rules()

octavia.policies.quota module

list_rules()

4.6. Module Reference 947

Octavia Documentation, Release 15.1.0.dev35

Module contents

list_rules()

octavia.statistics package

Subpackages

octavia.statistics.drivers package

Submodules

octavia.statistics.drivers.logger module

class StatsLogger

Bases: StatsDriverMixin

update_stats(listener_stats, deltas=False)
Return a stats object formatted for a generic backend

Parameters

• listener_stats (list) -- A list of data_model.ListenerStatistics objects

• deltas (bool) -- Indicates whether the stats are deltas (false==absolute)

octavia.statistics.drivers.update_db module

class StatsUpdateDb

Bases: StatsDriverMixin

update_stats(listener_stats, deltas=False)
This function is to update the db with listener stats

Module contents

Submodules

octavia.statistics.stats_base module

class StatsDriverMixin

Bases: object

abstract update_stats(listener_stats, deltas=False)
Return a stats object formatted for a generic backend

Parameters

• listener_stats (list) -- A list of data_model.ListenerStatistics objects

• deltas (bool) -- Indicates whether the stats are deltas (false==absolute)

update_stats_via_driver(listener_stats, deltas=False)
Send listener stats to the enabled stats driver(s)

Parameters

4.6. Module Reference 948

Octavia Documentation, Release 15.1.0.dev35

• listener_stats (list) -- A list of ListenerStatistics objects

• deltas (bool) -- Indicates whether the stats are deltas (false==absolute)

Module contents

octavia.volume package

Subpackages

octavia.volume.drivers package

Subpackages

octavia.volume.drivers.noop_driver package

Submodules

octavia.volume.drivers.noop_driver.driver module

class NoopManager

Bases: object

create_volume_from_image(image_id)

delete_volume(volume_id)

get_image_from_volume(volume_id)

class NoopVolumeDriver

Bases: VolumeBase

create_volume_from_image(image_id)
Create volume for instance

Parameters
image_id -- ID of amphora image

:return volume id

delete_volume(volume_id)
Delete volume

Parameters
volume_id -- ID of amphora volume

get_image_from_volume(volume_id)
Get cinder volume

Parameters
volume_id -- ID of amphora volume

:return image id

4.6. Module Reference 949

Octavia Documentation, Release 15.1.0.dev35

Module contents

Submodules

octavia.volume.drivers.cinder_driver module

class VolumeManager

Bases: VolumeBase

Volume implementation of virtual machines via cinder.

create_volume_from_image(image_id)
Create cinder volume

Parameters
image_id -- ID of amphora image

:return volume id

delete_volume(volume_id)
Get glance image from volume

Parameters
volume_id -- ID of amphora boot volume

:return image id

get_image_from_volume(volume_id)
Get glance image from volume

Parameters
volume_id -- ID of amphora boot volume

:return image id

Module contents

Submodules

octavia.volume.volume_base module

class VolumeBase

Bases: object

abstract create_volume_from_image(image_id)
Create volume for instance

Parameters
image_id -- ID of amphora image

:return volume id

abstract delete_volume(volume_id)
Delete volume

Parameters
volume_id -- ID of amphora volume

4.6. Module Reference 950

Octavia Documentation, Release 15.1.0.dev35

abstract get_image_from_volume(volume_id)
Get cinder volume

Parameters
volume_id -- ID of amphora volume

:return image id

Module contents

Submodules

octavia.i18n module

octavia.opts module

add_auth_opts()

list_opts()

octavia.version module

product_string()

vendor_string()

version_string_with_package()

Module contents

4.6. Module Reference 951

CHAPTER

FIVE

OCTAVIA INSTALLATION

5.1 Install and configure
This section describes how to install and configure the Load-balancer service, code-named Octavia, on
the controller node.

This section assumes that you already have a working OpenStack environment with at least the follow-
ing components installed: Identity Service, Image Service, Placement Service, Compute Service, and
Networking Service.

Note that installation and configuration vary by distribution.

5.1.1 Install and configure for Ubuntu
This section describes how to install and configure the Load-balancer service for Ubuntu 18.04 (LTS).

Prerequisites

Before you install and configure the service, you must create a database, service credentials, and API
endpoints.

1. Create the database, complete these steps:

• Use the database access client to connect to the database server as the root user:

mysql

• Create the octavia database:

CREATE DATABASE octavia;

• Grant proper access to the octavia database:

GRANT ALL PRIVILEGES ON octavia.* TO 'octavia'@'localhost' \
IDENTIFIED BY 'OCTAVIA_DBPASS';
GRANT ALL PRIVILEGES ON octavia.* TO 'octavia'@'%' \
IDENTIFIED BY 'OCTAVIA_DBPASS';

Replace OCTAVIA_DBPASS with a suitable password.

• Exit the database access client.

exit;

952

Octavia Documentation, Release 15.1.0.dev35

2. Source the admin credentials to gain access to admin-only CLI commands:

$. admin-openrc

3. To create the Octavia service credentials, complete these steps:

• Create the octavia user:

$ openstack user create --domain default --password-prompt octavia
User Password:
Repeat User Password:
+---------------------+----------------------------------+
| Field | Value |
+---------------------+----------------------------------+
domain_id	default
enabled	True
id	b18ee38e06034b748141beda8fc8bfad
name	octavia
options	{}
password_expires_at	None
+---------------------+----------------------------------+

• Add the admin role to the octavia user:

$ openstack role add --project service --user octavia admin

Note

This command produces no output.

Note

The Octavia service does not require the full admin role. Details of how to run Octavia
without the admin role will come in a future version of this document.

• Create the octavia service entities:

$ openstack service create --name octavia --description "OpenStack␣
↪→Octavia" load-balancer
+-------------+----------------------------------+
| Field | Value |
+-------------+----------------------------------+
description	OpenStack Octavia
enabled	True
id	d854f6fff0a64f77bda8003c8dedfada
name	octavia
type	load-balancer
+-------------+----------------------------------+

4. Create the Load-balancer service API endpoints:

5.1. Install and configure 953

Octavia Documentation, Release 15.1.0.dev35

$ openstack endpoint create --region RegionOne \
load-balancer public http://controller:9876
+--------------+----------------------------------+
| Field | Value |
+--------------+----------------------------------+
enabled	True
id	47cf883de46242c39f147c52f2958ebf
interface	public
region	RegionOne
region_id	RegionOne
service_id	d854f6fff0a64f77bda8003c8dedfada
service_name	octavia
service_type	load-balancer
url	http://controller:9876
+--------------+----------------------------------+

$ openstack endpoint create --region RegionOne \
load-balancer internal http://controller:9876
+--------------+----------------------------------+
| Field | Value |
+--------------+----------------------------------+
enabled	True
id	225aef8465ef4df48a341aaaf2b0a390
interface	internal
region	RegionOne
region_id	RegionOne
service_id	d854f6fff0a64f77bda8003c8dedfada
service_name	octavia
service_type	load-balancer
url	http://controller:9876
+--------------+----------------------------------+

$ openstack endpoint create --region RegionOne \
load-balancer admin http://controller:9876
+--------------+----------------------------------+
| Field | Value |
+--------------+----------------------------------+
enabled	True
id	375eb5057fb546edbdf3ee4866179672
interface	admin
region	RegionOne
region_id	RegionOne
service_id	d854f6fff0a64f77bda8003c8dedfada
service_name	octavia
service_type	load-balancer
url	http://controller:9876
+--------------+----------------------------------+

5. Create octavia-openrc file

5.1. Install and configure 954

Octavia Documentation, Release 15.1.0.dev35

cat << EOF >> $HOME/octavia-openrc
export OS_PROJECT_DOMAIN_NAME=Default
export OS_USER_DOMAIN_NAME=Default
export OS_PROJECT_NAME=service
export OS_USERNAME=octavia
export OS_PASSWORD=OCTAVIA_PASS
export OS_AUTH_URL=http://controller:5000
export OS_IDENTITY_API_VERSION=3
export OS_IMAGE_API_VERSION=2
export OS_VOLUME_API_VERSION=3
EOF

Replace OCTAVIA_PASS with the password you chose for the octavia user in the Identity service.

6. Source the octavia credentials to gain access to octavia CLI commands:

$. $HOME/octavia-openrc

7. Create the amphora image

For creating amphora image, please refer to the Building Octavia Amphora Images.

8. Upload the amphora image

$ openstack image create --disk-format qcow2 --container-format bare \
--private --tag amphora \
--file <path to the amphora image> amphora-x64-haproxy

9. Create a flavor for the amphora image

$ openstack flavor create --id 200 --vcpus 1 --ram 1024 \
--disk 2 "amphora" --private

Install and configure components

1. Install the packages:

apt install octavia-api octavia-health-manager octavia-housekeeping \
octavia-worker python3-octavia python3-octaviaclient

If octavia-common and octavia-api packages ask you to configure, choose No.

2. Create the certificates

$ git clone https://opendev.org/openstack/octavia.git
$ cd octavia/bin/
$ source create_dual_intermediate_CA.sh
$ sudo mkdir -p /etc/octavia/certs/private
$ sudo chmod 755 /etc/octavia -R
$ sudo cp -p etc/octavia/certs/server_ca.cert.pem /etc/octavia/certs
$ sudo cp -p etc/octavia/certs/server_ca-chain.cert.pem /etc/octavia/certs
$ sudo cp -p etc/octavia/certs/server_ca.key.pem /etc/octavia/certs/
↪→private

(continues on next page)

5.1. Install and configure 955

https://docs.openstack.org/octavia/latest/admin/amphora-image-build.html

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

$ sudo cp -p etc/octavia/certs/client_ca.cert.pem /etc/octavia/certs
$ sudo cp -p etc/octavia/certs/client.cert-and-key.pem /etc/octavia/certs/
↪→private

For the production environment, Please refer to the Octavia Certificate Configuration Guide.

3. Source the octavia credentials to gain access to octavia CLI commands:

$. octavia-openrc

4. Create security groups and their rules

$ openstack security group create lb-mgmt-sec-grp
$ openstack security group rule create --protocol icmp lb-mgmt-sec-grp
$ openstack security group rule create --protocol tcp --dst-port 22 lb-
↪→mgmt-sec-grp
$ openstack security group rule create --protocol tcp --dst-port 9443 lb-
↪→mgmt-sec-grp
$ openstack security group create lb-health-mgr-sec-grp
$ openstack security group rule create --protocol udp --dst-port 5555 lb-
↪→health-mgr-sec-grp

5. Create a key pair for logging in to the amphora instance

$ openstack keypair create --public-key ~/.ssh/id_rsa.pub mykey

Note

Check whether " ~/.ssh/id_rsa.pub" file exists or not in advance. If the file does not exist, run
the ssh-keygen command to create it.

6. Create dhclient.conf file for dhclient

$ cd $HOME
$ sudo mkdir -m755 -p /etc/dhcp/octavia
$ sudo cp octavia/etc/dhcp/dhclient.conf /etc/dhcp/octavia

7. Create a network

Note

During the execution of the below command, please save the of BRNAME and
MGMT_PORT_MAC in a notepad for further reference.

$ OCTAVIA_MGMT_SUBNET=172.16.0.0/12
$ OCTAVIA_MGMT_SUBNET_START=172.16.0.100
$ OCTAVIA_MGMT_SUBNET_END=172.16.31.254
$ OCTAVIA_MGMT_PORT_IP=172.16.0.2

(continues on next page)

5.1. Install and configure 956

https://docs.openstack.org/octavia/latest/admin/guides/certificates.html

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

$ openstack network create lb-mgmt-net
$ openstack subnet create --subnet-range $OCTAVIA_MGMT_SUBNET --
↪→allocation-pool \
start=$OCTAVIA_MGMT_SUBNET_START,end=$OCTAVIA_MGMT_SUBNET_END \
--network lb-mgmt-net lb-mgmt-subnet

$ SUBNET_ID=$(openstack subnet show lb-mgmt-subnet -f value -c id)
$ PORT_FIXED_IP="--fixed-ip subnet=$SUBNET_ID,ip-address=$OCTAVIA_MGMT_
↪→PORT_IP"

$ MGMT_PORT_ID=$(openstack port create --security-group \
lb-health-mgr-sec-grp --device-owner Octavia:health-mgr \
--host=$(hostname) -c id -f value --network lb-mgmt-net \
$PORT_FIXED_IP octavia-health-manager-listen-port)

$ MGMT_PORT_MAC=$(openstack port show -c mac_address -f value \
$MGMT_PORT_ID)

$ sudo ip link add o-hm0 type veth peer name o-bhm0
$ NETID=$(openstack network show lb-mgmt-net -c id -f value)
$ BRNAME=brq$(echo $NETID|cut -c 1-11)
$ sudo brctl addif $BRNAME o-bhm0
$ sudo ip link set o-bhm0 up

$ sudo ip link set dev o-hm0 address $MGMT_PORT_MAC
$ sudo iptables -I INPUT -i o-hm0 -p udp --dport 5555 -j ACCEPT
$ sudo dhclient -v o-hm0 -cf /etc/dhcp/octavia

8. Below settings are required to create veth pair after the host reboot

Edit the /etc/systemd/network/o-hm0.network file

[Match]
Name=o-hm0

[Network]
DHCP=yes

Edit the /etc/systemd/system/octavia-interface.service file

[Unit]
Description=Octavia Interface Creator
Requires=neutron-linuxbridge-agent.service
After=neutron-linuxbridge-agent.service

[Service]
Type=oneshot
RemainAfterExit=true
ExecStart=/opt/octavia-interface.sh start
ExecStop=/opt/octavia-interface.sh stop

(continues on next page)

5.1. Install and configure 957

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

[Install]
WantedBy=multi-user.target

Edit the /opt/octavia-interface.sh file

#!/bin/bash

set -ex

MAC=$MGMT_PORT_MAC
BRNAME=$BRNAME

if ["$1" == "start"]; then
ip link add o-hm0 type veth peer name o-bhm0
brctl addif $BRNAME o-bhm0
ip link set o-bhm0 up
ip link set dev o-hm0 address $MAC
ip link set o-hm0 up
iptables -I INPUT -i o-hm0 -p udp --dport 5555 -j ACCEPT

elif ["$1" == "stop"]; then
ip link del o-hm0

else
brctl show $BRNAME
ip a s dev o-hm0

fi

You need to substitute $MGMT_PORT_MAC and $BRNAME for the values in your environment.

9. Edit the /etc/octavia/octavia.conf file

• In the [database] section, configure database access:

[database]
connection = mysql+pymysql://octavia:OCTAVIA_DBPASS@controller/
↪→octavia

Replace OCTAVIA_DBPASS with the password you chose for the Octavia databases.

• In the [DEFAULT] section, configure the transport url for RabbitMQ message broker.

[DEFAULT]
transport_url = rabbit://openstack:RABBIT_PASS@controller

Replace RABBIT_PASS with the password you chose for the openstack account in Rab-
bitMQ.

• In the [oslo_messaging] section, configure the transport url for RabbitMQ message broker
and topic name.

[oslo_messaging]
...
topic = octavia_prov

5.1. Install and configure 958

Octavia Documentation, Release 15.1.0.dev35

Replace RABBIT_PASS with the password you chose for the openstack account in Rab-
bitMQ.

• In the [api_settings] section, configure the host IP and port to bind to.

[api_settings]
bind_host = 0.0.0.0
bind_port = 9876

• In the [keystone_authtoken] section, configure Identity service access.

[keystone_authtoken]
www_authenticate_uri = http://controller:5000
auth_url = http://controller:5000
memcached_servers = controller:11211
auth_type = password
project_domain_name = Default
user_domain_name = Default
project_name = service
username = octavia
password = OCTAVIA_PASS

Replace OCTAVIA_PASS with the password you chose for the octavia user in the Identity
service.

• In the [service_auth] section, configure credentials for using other openstack services

[service_auth]
auth_url = http://controller:5000
memcached_servers = controller:11211
auth_type = password
project_domain_name = Default
user_domain_name = Default
project_name = service
username = octavia
password = OCTAVIA_PASS

Replace OCTAVIA_PASS with the password you chose for the octavia user in the Identity
service.

• In the [certificates] section, configure the absolute path to the CA Certificate, the Private
Key for signing, and passphrases.

[certificates]
...
server_certs_key_passphrase = insecure-key-do-not-use-this-key
ca_private_key_passphrase = not-secure-passphrase
ca_private_key = /etc/octavia/certs/private/server_ca.key.pem
ca_certificate = /etc/octavia/certs/server_ca.cert.pem

Note

The values of ca_private_key_passphrase and server_certs_key_passphrase are default

5.1. Install and configure 959

Octavia Documentation, Release 15.1.0.dev35

and should not be used in production. The server_certs_key_passphrase must be a base64
compatible and 32 characters long string.

• In the [haproxy_amphora] section, configure the client certificate and the CA.

[haproxy_amphora]
...
server_ca = /etc/octavia/certs/server_ca-chain.cert.pem
client_cert = /etc/octavia/certs/private/client.cert-and-key.pem

• In the [health_manager] section, configure the IP and port number for heartbeat.

[health_manager]
...
bind_port = 5555
bind_ip = 172.16.0.2
controller_ip_port_list = 172.16.0.2:5555

• In the [controller_worker] section, configure worker settings.

[controller_worker]
...
amp_image_owner_id = <id of service project>
amp_image_tag = amphora
amp_ssh_key_name = mykey
amp_secgroup_list = <lb-mgmt-sec-grp_id>
amp_boot_network_list = <lb-mgmt-net_id>
amp_flavor_id = 200
network_driver = allowed_address_pairs_driver
compute_driver = compute_nova_driver
amphora_driver = amphora_haproxy_rest_driver
client_ca = /etc/octavia/certs/client_ca.cert.pem

10. Populate the octavia database:

octavia-db-manage --config-file /etc/octavia/octavia.conf upgrade␣
↪→head

Finalize installation

Restart the services:

systemctl restart octavia-api octavia-health-manager octavia-
↪→housekeeping octavia-worker

5.1.2 Additional configuration steps to configure amphorav2 provider
The amphorav2 provider driver improves control plane resiliency. Should a control plane host go down
during a load balancer provisioning operation, an alternate controller can resume the in-process provi-
sioning and complete the request. This solves the issue with resources stuck in PENDING_* states by
writing info about task states in persistent backend and monitoring job claims via jobboard.

5.1. Install and configure 960

Octavia Documentation, Release 15.1.0.dev35

If you would like to use amphorav2 provider with jobboard-based controller for load-balancer service the
following additional steps are required.

This provider driver can also run without jobboard and its dependencies (extra database, Re-
dis/Zookeeper). This is the default setting while jobboard remains an experimental feature.

Prerequisites

Amphorav2 provider requires creation of additional database octavia_persistence to store info about
state of tasks and progress of its execution. Also to monitor progress on taskflow jobs amphorav2 provider
uses jobboard. As jobboard backend could be used Redis or Zookeeper key-value storages. Operator
should chose the one that is more preferable for specific cloud. The default is Redis. Key-values storage
clients should be install with extras [zookeeper] or [redis] during installation of octavia packages.

1. Create the database, complete these steps:

• Use the database access client to connect to the database server as the root user:

mysql

• Create the octavia_persistence database:

CREATE DATABASE octavia_persistence;

• Grant proper access to the octavia_persistence database:

GRANT ALL PRIVILEGES ON octavia_persistence.* TO 'octavia'@'localhost
↪→' \
IDENTIFIED BY 'OCTAVIA_DBPASS';
GRANT ALL PRIVILEGES ON octavia_persistence.* TO 'octavia'@'%' \
IDENTIFIED BY 'OCTAVIA_DBPASS';

Replace OCTAVIA_DBPASS with a suitable password.

2. Install desired key-value backend (Redis or Zookeper).

Additional configuration to octavia components

1. Edit the /etc/octavia/octavia.conf file [task_flow] section

• Configure database access for persistence backend:

[task_flow]
persistence_connection = mysql+pymysql://octavia:OCTAVIA_

↪→DBPASS@controller/octavia_persistence

Replace OCTAVIA_DBPASS with the password you chose for the␣
↪→Octavia databases.

• Set desired jobboard backend and its configuration:

[task_flow]
jobboard_enabled = True
jobboard_backend_driver = 'redis_taskflow_driver'
jobboard_backend_hosts = KEYVALUE_HOST_IPS

(continues on next page)

5.1. Install and configure 961

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

jobboard_backend_port = KEYVALUE_PORT
jobboard_backend_password = OCTAVIA_JOBBOARDPASS
jobboard_backend_namespace = 'octavia_jobboard'

Replace OCTAVIA_JOBBOARDPASS with the password you chose for the Octavia
key-value storage. Replace KEYVALUE_HOST_IPS and KEYVALUE_PORT with ip
and port which chosen key-value storage is using.

2. Populate the octavia database:

octavia-db-manage --config-file /etc/octavia/octavia.conf upgrade_
↪→persistence

5.1. Install and configure 962

CHAPTER

SIX

OCTAVIA REFERENCE

963

CHAPTER

SEVEN

OCTAVIA USER

7.1 Cookbooks

7.1.1 Basic Load Balancing Cookbook

Introduction

This document contains several examples of using basic load balancing services as a tenant or "regular"
cloud user.

For the purposes of this guide we assume that the neutron and barbican command-line interfaces, via
the OpenStack client, are going to be used to configure all features of Octavia. In order to keep these
examples short, we also assume that tasks not directly associated with deploying load balancing services
have already been accomplished. This might include such things as deploying and configuring web
servers, setting up Neutron networks, obtaining TLS certificates from a trusted provider, and so on. A
description of the starting conditions is given in each example below.

Please also note that this guide assumes you are familiar with the specific load balancer terminology
defined in the Octavia Glossary. For a description of load balancing itself and the Octavia project,
please see: Introducing Octavia.

Examples

Deploy a basic HTTP load balancer

While this is technically the simplest complete load balancing solution that can be deployed, we recom-
mend deploying HTTP load balancers with a health monitor to ensure back-end member availability. See
Deploy a basic HTTP load balancer with a health monitor below.

Scenario description:

• Back-end servers 192.0.2.10 and 192.0.2.11 on subnet private-subnet have been configured with
an HTTP application on TCP port 80.

• Subnet public-subnet is a shared external subnet created by the cloud operator which is reachable
from the internet.

• We want to configure a basic load balancer that is accessible from the internet, which distributes
web requests to the back-end servers.

Solution:

1. Create load balancer lb1 on subnet public-subnet.

2. Create listener listener1.

964

Octavia Documentation, Release 15.1.0.dev35

3. Create pool pool1 as listener1’s default pool.

4. Add members 192.0.2.10 and 192.0.2.11 on private-subnet to pool1.

CLI commands:

openstack loadbalancer create --name lb1 --vip-subnet-id public-subnet --wait
openstack loadbalancer listener create --name listener1 --protocol HTTP --
↪→protocol-port 80 --wait lb1
openstack loadbalancer pool create --name pool1 --lb-algorithm ROUND_ROBIN --
↪→listener listener1 --protocol HTTP --wait
openstack loadbalancer member create --subnet-id private-subnet --address 192.
↪→0.2.10 --protocol-port 80 --wait pool1
openstack loadbalancer member create --subnet-id private-subnet --address 192.
↪→0.2.11 --protocol-port 80 --wait pool1

Deploy a basic HTTP load balancer with a health monitor

This is the simplest recommended load balancing solution for HTTP applications. This solution is appro-
priate for operators with provider networks that are not compatible with Neutron floating-ip functionality
(such as IPv6 networks). However, if you need to retain control of the external IP through which a load
balancer is accessible, even if the load balancer needs to be destroyed or recreated, it may be more ap-
propriate to deploy your basic load balancer using a floating IP. See Deploy a basic HTTP load balancer
using a floating IP below.

Scenario description:

• Back-end servers 192.0.2.10 and 192.0.2.11 on subnet private-subnet have been configured with
an HTTP application on TCP port 80.

• These back-end servers have been configured with a health check at the URL path "/healthcheck".
See Configuration arguments for HTTP health monitors below.

• Subnet public-subnet is a shared external subnet created by the cloud operator which is reachable
from the internet.

• We want to configure a basic load balancer that is accessible from the internet, which distributes
web requests to the back-end servers, and which checks the "/healthcheck" path to ensure back-end
member health.

Solution:

1. Create load balancer lb1 on subnet public-subnet.

2. Create listener listener1.

3. Create pool pool1 as listener1’s default pool.

4. Create a health monitor on pool1 which tests the "/healthcheck" path.

5. Add members 192.0.2.10 and 192.0.2.11 on private-subnet to pool1.

CLI commands:

openstack loadbalancer create --name lb1 --vip-subnet-id public-subnet --wait
openstack loadbalancer listener create --name listener1 --protocol HTTP --
↪→protocol-port 80 --wait lb1
openstack loadbalancer pool create --name pool1 --lb-algorithm ROUND_ROBIN --

(continues on next page)

7.1. Cookbooks 965

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

↪→listener listener1 --protocol HTTP --wait
openstack loadbalancer healthmonitor create --delay 5 --max-retries 4 --
↪→timeout 10 --type HTTP --url-path /healthcheck --wait pool1
openstack loadbalancer member create --subnet-id private-subnet --address 192.
↪→0.2.10 --protocol-port 80 --wait pool1
openstack loadbalancer member create --subnet-id private-subnet --address 192.
↪→0.2.11 --protocol-port 80 --wait pool1

Deploy a basic HTTP load balancer using a floating IP

It can be beneficial to use a floating IP when setting up a load balancer’s VIP in order to ensure you retain
control of the IP that gets assigned as the floating IP in case the load balancer needs to be destroyed,
moved, or recreated.

Note that this is not possible to do with IPv6 load balancers as floating IPs do not work with IPv6.

Scenario description:

• Back-end servers 192.0.2.10 and 192.0.2.11 on subnet private-subnet have been configured with
an HTTP application on TCP port 80.

• These back-end servers have been configured with a health check at the URL path "/healthcheck".
See Configuration arguments for HTTP health monitors below.

• Neutron network public is a shared external network created by the cloud operator which is reach-
able from the internet.

• We want to configure a basic load balancer that is accessible from the internet, which distributes
web requests to the back-end servers, and which checks the "/healthcheck" path to ensure back-end
member health. Further, we want to do this using a floating IP.

Solution:

1. Create load balancer lb1 on subnet private-subnet.

2. Create listener listener1.

3. Create pool pool1 as listener1’s default pool.

4. Create a health monitor on pool1 which tests the "/healthcheck" path.

5. Add members 192.0.2.10 and 192.0.2.11 on private-subnet to pool1.

6. Create a floating IP address on public-subnet.

7. Associate this floating IP with the lb1’s VIP port.

CLI commands:

openstack loadbalancer create --name lb1 --vip-subnet-id private-subnet --wait
openstack loadbalancer listener create --name listener1 --protocol HTTP --
↪→protocol-port 80 --wait lb1
openstack loadbalancer pool create --name pool1 --lb-algorithm ROUND_ROBIN --
↪→listener listener1 --protocol HTTP --wait
openstack loadbalancer healthmonitor create --delay 5 --max-retries 4 --
↪→timeout 10 --type HTTP --url-path /healthcheck --wait pool1
openstack loadbalancer member create --subnet-id private-subnet --address 192.

(continues on next page)

7.1. Cookbooks 966

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

↪→0.2.10 --protocol-port 80 --wait pool1
openstack loadbalancer member create --subnet-id private-subnet --address 192.
↪→0.2.11 --protocol-port 80 --wait pool1
openstack floating ip create public
The following IDs should be visible in the output of previous commands
openstack floating ip set --port <load_balancer_vip_port_id> <floating_ip_id>

Deploy a basic HTTP load balancer with session persistence

Scenario description:

• Back-end servers 192.0.2.10 and 192.0.2.11 on subnet private-subnet have been configured with
an HTTP application on TCP port 80.

• The application is written such that web clients should always be directed to the same back-end
server throughout their web session, based on an application cookie inserted by the web application
named ’PHPSESSIONID’.

• These back-end servers have been configured with a health check at the URL path "/healthcheck".
See Configuration arguments for HTTP health monitors below.

• Subnet public-subnet is a shared external subnet created by the cloud operator which is reachable
from the internet.

• We want to configure a basic load balancer that is accessible from the internet, which distributes
web requests to the back-end servers, persists sessions using the PHPSESSIONID as a key, and
which checks the "/healthcheck" path to ensure back-end member health.

Solution:

1. Create load balancer lb1 on subnet public-subnet.

2. Create listener listener1.

3. Create pool pool1 as listener1’s default pool which defines session persistence on the ’PHPSES-
SIONID’ cookie.

4. Create a health monitor on pool1 which tests the "/healthcheck" path.

5. Add members 192.0.2.10 and 192.0.2.11 on private-subnet to pool1.

CLI commands:

openstack loadbalancer create --name lb1 --vip-subnet-id public-subnet --wait
openstack loadbalancer listener create --name listener1 --protocol HTTP --
↪→protocol-port 80 --wait lb1
openstack loadbalancer pool create --name pool1 --lb-algorithm ROUND_ROBIN --
↪→listener listener1 --protocol HTTP --session-persistence type=APP_COOKIE,
↪→cookie_name=PHPSESSIONID --wait
openstack loadbalancer healthmonitor create --delay 5 --max-retries 4 --
↪→timeout 10 --type HTTP --url-path /healthcheck --wait pool1
openstack loadbalancer member create --subnet-id private-subnet --address 192.
↪→0.2.10 --protocol-port 80 --wait pool1
openstack loadbalancer member create --subnet-id private-subnet --address 192.
↪→0.2.11 --protocol-port 80 --wait pool1

7.1. Cookbooks 967

Octavia Documentation, Release 15.1.0.dev35

Deploy a TCP load balancer

This is generally suitable when load balancing a non-HTTP TCP-based service.

Scenario description:

• Back-end servers 192.0.2.10 and 192.0.2.11 on subnet private-subnet have been configured with
an custom application on TCP port 23456

• Subnet public-subnet is a shared external subnet created by the cloud operator which is reachable
from the internet.

• We want to configure a basic load balancer that is accessible from the internet, which distributes
requests to the back-end servers.

• We want to employ a TCP health check to ensure that the back-end servers are available.

Solution:

1. Create load balancer lb1 on subnet public-subnet.

2. Create listener listener1.

3. Create pool pool1 as listener1’s default pool.

4. Create a health monitor on pool1 which probes pool1’s members’ TCP service port.

5. Add members 192.0.2.10 and 192.0.2.11 on private-subnet to pool1.

CLI commands:

openstack loadbalancer create --name lb1 --vip-subnet-id public-subnet --wait
openstack loadbalancer listener create --name listener1 --protocol TCP --
↪→protocol-port 23456 --wait lb1
openstack loadbalancer pool create --name pool1 --lb-algorithm ROUND_ROBIN --
↪→listener listener1 --protocol TCP --wait
openstack loadbalancer healthmonitor create --delay 5 --max-retries 4 --
↪→timeout 10 --type TCP --wait pool1
openstack loadbalancer member create --subnet-id private-subnet --address 192.
↪→0.2.10 --protocol-port 80 --wait pool1
openstack loadbalancer member create --subnet-id private-subnet --address 192.
↪→0.2.11 --protocol-port 80 --wait pool1

Deploy a QoS ruled load balancer

This solution limits the bandwidth available through the Load Balancer’s VIP by applying a Neutron
Quality of Service(QoS) policy to the VIP, so Load Balancer can accept the QoS Policy from Neutron;
Then limits the vip of Load Balancer incoming or outgoing traffic.

Note

Before using this feature, please make sure the Neutron QoS extension(qos) is enabled on running
OpenStack environment by command

openstack extension list

Scenario description:

7.1. Cookbooks 968

Octavia Documentation, Release 15.1.0.dev35

• QoS-policy created from Neutron with bandwidth-limit-rules by us.

• Back-end servers 192.0.2.10 and 192.0.2.11 on subnet private-subnet have been configured with
an HTTP application on TCP port 80.

• Subnet public-subnet is a shared external subnet created by the cloud operator which is reachable
from the internet.

• We want to configure a basic load balancer and want to limit the traffic bandwidth when web traffic
reaches the vip.

Solution:

1. Create QoS policy qos-policy-bandwidth with bandwidth_limit in Neutron.

2. Create load balancer lb1 on subnet public-subnet with the id of qos-policy-bandwidth.

3. Create listener listener1.

4. Create pool pool1 as listener1’s default pool.

5. Add members 192.0.2.10 and 192.0.2.11 on private-subnet to pool1.

CLI commands:

openstack network qos policy create qos-policy-bandwidth
openstack network qos rule create --type bandwidth_limit --max-kbps 1024 --
↪→max-burst-kbits 1024 qos-policy-bandwidth
openstack loadbalancer create --name lb1 --vip-subnet-id public-subnet --vip-
↪→qos-policy-id qos-policy-bandwidth --wait
openstack loadbalancer listener create --name listener1 lb1 --protocol HTTP --
↪→protocol-port 80 --wait
openstack loadbalancer pool create --name pool1 --lb-algorithm ROUND_ROBIN --
↪→listener listener1 --protocol HTTP --wait
openstack loadbalancer member create --subnet-id <private_subnet_id> --
↪→address 192.0.2.10 --protocol-port 80 --wait pool1
openstack loadbalancer member create --subnet-id <private_subnet_id> --
↪→address 192.0.2.11 --protocol-port 80 --wait pool1

Deploy a load balancer with access control list

This solution limits incoming traffic to a listener to a set of allowed source IP addresses. Any other
incoming traffic will be rejected.

Scenario description:

• Back-end servers 192.0.2.10 and 192.0.2.11 on subnet private-subnet have been configured with
an custom application on TCP port 23456

• Subnet public-subnet is a shared external subnet created by the cloud operator which is reachable
from the internet.

• We want to configure a basic load balancer that is accessible from the internet, which distributes
requests to the back-end servers.

• The application on TCP port 23456 is accessible to a limited source IP addresses (192.0.2.0/24
and 198.51.100/24).

Solution:

7.1. Cookbooks 969

Octavia Documentation, Release 15.1.0.dev35

1. Create load balancer lb1 on subnet public-subnet.

2. Create listener listener1 with allowed CIDRs.

3. Create pool pool1 as listener1’s default pool.

4. Add members 192.0.2.10 and 192.0.2.11 on private-subnet to pool1.

CLI commands:

openstack loadbalancer create --name lb1 --vip-subnet-id public-subnet --wait
openstack loadbalancer listener create --name listener1 --protocol TCP --
↪→protocol-port 23456 --allowed-cidr 192.0.2.0/24 --allowed-cidr 198.51.100/
↪→24 --wait lb1
openstack loadbalancer pool create --name pool1 --lb-algorithm ROUND_ROBIN --
↪→listener listener1 --protocol TCP --wait
openstack loadbalancer member create --subnet-id private-subnet --address 192.
↪→0.2.10 --protocol-port 80 --wait pool1
openstack loadbalancer member create --subnet-id private-subnet --address 192.
↪→0.2.11 --protocol-port 80 --wait pool1

Deploy a non-terminated HTTPS load balancer

A non-terminated HTTPS load balancer acts effectively like a generic TCP load balancer: The load
balancer will forward the raw TCP traffic from the web client to the back-end servers without decrypting it.
This means that the back-end servers themselves must be configured to terminate the HTTPS connection
with the web clients, and in turn, the load balancer cannot insert headers into the HTTP session indicating
the client IP address. (That is, to the back-end server, all web requests will appear to originate from the
load balancer.) Also, advanced load balancer features (like Layer 7 functionality) cannot be used with
non-terminated HTTPS.

Scenario description:

• Back-end servers 192.0.2.10 and 192.0.2.11 on subnet private-subnet have been configured with a
TLS-encrypted web application on TCP port 443.

• Subnet public-subnet is a shared external subnet created by the cloud operator which is reachable
from the internet.

• We want to configure a basic load balancer that is accessible from the internet, which distributes
requests to the back-end servers.

• We want to employ a TCP health check to ensure that the back-end servers are available.

Solution:

1. Create load balancer lb1 on subnet public-subnet.

2. Create listener listener1.

3. Create pool pool1 as listener1’s default pool.

4. Create a health monitor on pool1 which probes pool1’s members’ TCP service port.

5. Add members 192.0.2.10 and 192.0.2.11 on private-subnet to pool1.

CLI commands:

7.1. Cookbooks 970

Octavia Documentation, Release 15.1.0.dev35

openstack loadbalancer create --name lb1 --vip-subnet-id public-subnet --wait
openstack loadbalancer listener create --name listener1 --protocol HTTPS --
↪→protocol-port 443 --wait lb1
openstack loadbalancer pool create --name pool1 --lb-algorithm ROUND_ROBIN --
↪→listener listener1 --protocol HTTPS --wait
openstack loadbalancer healthmonitor create --delay 5 --max-retries 4 --
↪→timeout 10 --type HTTPS --url-path /healthcheck --wait pool1
openstack loadbalancer member create --subnet-id private-subnet --address 192.
↪→0.2.10 --protocol-port 443 --wait pool1
openstack loadbalancer member create --subnet-id private-subnet --address 192.
↪→0.2.11 --protocol-port 443 --wait pool1

Deploy a TLS-terminated HTTPS load balancer

With a TLS-terminated HTTPS load balancer, web clients communicate with the load balancer over TLS
protocols. The load balancer terminates the TLS session and forwards the decrypted requests to the
back-end servers. By terminating the TLS session on the load balancer, we offload the CPU-intensive
encryption work to the load balancer, and enable the possibility of using advanced load balancer features,
like Layer 7 features and header manipulation.

Scenario description:

• Back-end servers 192.0.2.10 and 192.0.2.11 on subnet private-subnet have been configured with
regular HTTP application on TCP port 80.

• Subnet public-subnet is a shared external subnet created by the cloud operator which is reachable
from the internet.

• A TLS certificate, key, and intermediate certificate chain for www.example.com have been obtained
from an external certificate authority. These now exist in the files server.crt, server.key, and ca-
chain.crt in the current directory. The key and certificate are PEM-encoded, and the intermediate
certificate chain is multiple PEM-encoded certs concatenated together. The key is not encrypted
with a passphrase.

• We want to configure a TLS-terminated HTTPS load balancer that is accessible from the internet
using the key and certificate mentioned above, which distributes requests to the back-end servers
over the non-encrypted HTTP protocol.

• Octavia is configured to use barbican for key management.

Solution:

1. Combine the individual cert/key/intermediates to a single PKCS12 file.

2. Create a barbican secret resource for the PKCS12 file. We will call this tls_secret1.

3. Create load balancer lb1 on subnet public-subnet.

4. Create listener listener1 as a TERMINATED_HTTPS listener referencing tls_secret1 as its default
TLS container.

5. Create pool pool1 as listener1’s default pool.

6. Add members 192.0.2.10 and 192.0.2.11 on private-subnet to pool1.

CLI commands:

7.1. Cookbooks 971

Octavia Documentation, Release 15.1.0.dev35

openssl pkcs12 -export -inkey server.key -in server.crt -certfile ca-chain.
↪→crt -passout pass: -out server.p12
openstack secret store --name='tls_secret1' -t 'application/octet-stream' -e
↪→'base64' --payload="$(base64 < server.p12)"
openstack loadbalancer create --name lb1 --vip-subnet-id public-subnet --wait
openstack loadbalancer listener create --protocol-port 443 --protocol␣
↪→TERMINATED_HTTPS --name listener1 --default-tls-container=$(openstack␣
↪→secret list | awk '/ tls_secret1 / {print $2}') --wait lb1
openstack loadbalancer pool create --name pool1 --lb-algorithm ROUND_ROBIN --
↪→listener listener1 --protocol HTTP --wait
openstack loadbalancer member create --subnet-id private-subnet --address 192.
↪→0.2.10 --protocol-port 80 --wait pool1
openstack loadbalancer member create --subnet-id private-subnet --address 192.
↪→0.2.11 --protocol-port 80 --wait pool1

Note

A good security practise for production servers is to enable HTTP Strict Transport Security (HSTS),
which can be configured during listener creation using the --hsts-max-age option and optionally
--hsts-include-subdomains --hsts-prefetch.

Deploy a TLS-terminated HTTPS load balancer with SNI

This example is exactly like Deploy a TLS-terminated HTTPS load balancer, except that we have multiple
TLS certificates that we would like to use on the same listener using Server Name Indication (SNI)
technology.

Scenario description:

• Back-end servers 192.0.2.10 and 192.0.2.11 on subnet private-subnet have been configured with
regular HTTP application on TCP port 80.

• Subnet public-subnet is a shared external subnet created by the cloud operator which is reachable
from the internet.

• TLS certificates, keys, and intermediate certificate chains for www.example.com and
www2.example.com have been obtained from an external certificate authority. These now exist
in the files server.crt, server.key, ca-chain.crt, server2.crt, server2.key, and ca-chain2.crt in the
current directory. The keys and certificates are PEM-encoded, and the intermediate certificate
chains are multiple certs PEM-encoded and concatenated together. Neither key is encrypted with
a passphrase.

• We want to configure a TLS-terminated HTTPS load balancer that is accessible from the internet
using the keys and certificates mentioned above, which distributes requests to the back-end servers
over the non-encrypted HTTP protocol.

• If a web client connects that is not SNI capable, we want the load balancer to respond with the
certificate for www.example.com.

Solution:

1. Combine the individual cert/key/intermediates to single PKCS12 files.

7.1. Cookbooks 972

Octavia Documentation, Release 15.1.0.dev35

2. Create barbican secret resources for the PKCS12 files. We will call them tls_secret1 and
tls_secret2.

3. Create load balancer lb1 on subnet public-subnet.

4. Create listener listener1 as a TERMINATED_HTTPS listener referencing tls_secret1 as its default
TLS container, and referencing both tls_secret1 and tls_secret2 using SNI.

5. Create pool pool1 as listener1’s default pool.

6. Add members 192.0.2.10 and 192.0.2.11 on private-subnet to pool1.

CLI commands:

openssl pkcs12 -export -inkey server.key -in server.crt -certfile ca-chain.
↪→crt -passout pass: -out server.p12
openssl pkcs12 -export -inkey server2.key -in server2.crt -certfile ca-chain2.
↪→crt -passout pass: -out server2.p12
openstack secret store --name='tls_secret1' -t 'application/octet-stream' -e
↪→'base64' --payload="$(base64 < server.p12)"
openstack secret store --name='tls_secret2' -t 'application/octet-stream' -e
↪→'base64' --payload="$(base64 < server2.p12)"
openstack loadbalancer create --name lb1 --vip-subnet-id public-subnet --wait
openstack loadbalancer listener create --protocol-port 443 --protocol␣
↪→TERMINATED_HTTPS --name listener1 --default-tls-container=$(openstack␣
↪→secret list | awk '/ tls_secret1 / {print $2}') --sni-container-refs
↪→$(openstack secret list | awk '/ tls_secret1 / {print $2}') $(openstack␣
↪→secret list | awk '/ tls_secret2 / {print $2}') --wait -- lb1
openstack loadbalancer pool create --name pool1 --lb-algorithm ROUND_ROBIN --
↪→listener listener1 --protocol HTTP --wait
openstack loadbalancer member create --subnet-id private-subnet --address 192.
↪→0.2.10 --protocol-port 80 --wait pool1
openstack loadbalancer member create --subnet-id private-subnet --address 192.
↪→0.2.11 --protocol-port 80 --wait pool1

Deploy a TLS-terminated HTTPS load balancer with client authentication

With a TLS-terminated HTTPS load balancer, web clients communicate with the load balancer over TLS
protocols. The load balancer terminates the TLS session and forwards the decrypted requests to the
back-end servers. By terminating the TLS session on the load balancer, we offload the CPU-intensive
encryption work to the load balancer, and enable the possibility of using advanced load balancer features,
like Layer 7 features and header manipulation. Adding client authentication allows users to authenticate
connections to the VIP using certificates. This is also known as two-way TLS authentication.

Scenario description:

• Back-end servers 192.0.2.10 and 192.0.2.11 on subnet private-subnet have been configured with a
regular HTTP application on TCP port 80.

• Subnet public-subnet is a shared external subnet created by the cloud operator which is reachable
from the internet.

• A TLS certificate, key, and intermediate certificate chain for www.example.com have been ob-
tained from an external certificate authority. These now exist in the files server.crt, server.key, and
ca-chain.crt in the current directory. The key and certificate are PEM-encoded, and the interme-

7.1. Cookbooks 973

Octavia Documentation, Release 15.1.0.dev35

diate certificate chain is multiple PEM-encoded certificates concatenated together. The key is not
encrypted with a passphrase.

• A Certificate Authority (CA) certificate chain and optional Certificate Revocation List (CRL) have
been obtained from an external certificate authority to authenticate client certificates against.

• We want to configure a TLS-terminated HTTPS load balancer that is accessible from the internet
using the key and certificate mentioned above, which distributes requests to the back-end servers
over the non-encrypted HTTP protocol.

• Octavia is configured to use barbican for key management.

Solution:

1. Combine the individual cert/key/intermediates to a single PKCS12 file.

2. Create a barbican secret resource for the PKCS12 file. We will call this tls_secret1.

3. Create a barbican secret resource for the client CA certificate. We will call this client_ca_cert.

4. Optionally create a barbican secret for the CRL file. We will call this client_ca_crl.

5. Create load balancer lb1 on subnet public-subnet.

6. Create listener listener1 as a TERMINATED_HTTPS listener referencing tls_secret1 as its de-
fault TLS container, client authentication enabled, client_ca_cert as the client CA tls container
reference, and client_ca_crl as the client CRL container reference.

7. Create pool pool1 as listener1’s default pool.

8. Add members 192.0.2.10 and 192.0.2.11 on private-subnet to pool1.

CLI commands:

openssl pkcs12 -export -inkey server.key -in server.crt -certfile ca-chain.
↪→crt -passout pass: -out server.p12
openstack secret store --name='tls_secret1' -t 'application/octet-stream' -e
↪→'base64' --payload="$(base64 < server.p12)"
openstack secret store --name='client_ca_cert' -t 'application/octet-stream' -
↪→e 'base64' --payload="$(base64 < client_ca.pem)"
openstack secret store --name='client_ca_crl' -t 'application/octet-stream' -
↪→e 'base64' --payload="$(base64 < client_ca.crl)"
openstack loadbalancer create --name lb1 --vip-subnet-id public-subnet --wait
openstack loadbalancer listener create --protocol-port 443 --protocol␣
↪→TERMINATED_HTTPS --name listener1 --default-tls-container=$(openstack␣
↪→secret list | awk '/ tls_secret1 / {print $2}') --client-
↪→authentication=MANDATORY --client-ca-tls-container-ref=$(openstack secret␣
↪→list | awk '/ client_ca_cert / {print $2}') --client-crl-container=
↪→$(openstack secret list | awk '/ client_ca_crl / {print $2}') --wait lb1
openstack loadbalancer pool create --name pool1 --lb-algorithm ROUND_ROBIN --
↪→listener listener1 --protocol HTTP --wait
openstack loadbalancer member create --subnet-id private-subnet --address 192.
↪→0.2.10 --protocol-port 80 --wait pool1
openstack loadbalancer member create --subnet-id private-subnet --address 192.
↪→0.2.11 --protocol-port 80 --wait pool1

7.1. Cookbooks 974

Octavia Documentation, Release 15.1.0.dev35

Deploy a secure HTTP/2 load balancer with ALPN TLS extension

This example is exactly like Deploy a TLS-terminated HTTPS load balancer, except that we would like
to enable HTTP/2 load balancing. The load balancer negotiates HTTP/2 with clients as part of the TLS
handshake via the Application-Layer Protocol Negotiation (ALPN) TLS extension.

Scenario description:

• Back-end servers 192.0.2.10 and 192.0.2.11 on subnet private-subnet have been configured with
regular HTTP application on TCP port 80.

• Subnet public-subnet is a shared external subnet created by the cloud operator which is reachable
from the internet.

• A TLS certificate, key, and intermediate certificate chain for www.example.com have been obtained
from an external certificate authority. These now exist in the files server.crt, server.key, and ca-
chain.crt in the current directory. The key and certificate are PEM-encoded, and the intermediate
certificate chain is multiple PEM-encoded certs concatenated together. The key is not encrypted
with a passphrase.

• We want to configure a TLS-terminated HTTP/2 load balancer that is accessible from the internet
using the key and certificate mentioned above, which distributes requests to the back-end servers
over the non-encrypted HTTP protocol.

• Octavia is configured to use barbican for key management.

Solution:

1. Combine the individual cert/key/intermediates to a single PKCS12 file.

2. Create a barbican secret resource for the PKCS12 file. We will call this tls_secret1.

3. Create load balancer lb1 on subnet public-subnet.

4. Create listener listener1 as a TERMINATED_HTTPS listener referencing tls_secret1 as its default
TLS container, and h2 ALPN protocol ID and http/1.1 as fall-back protocol should the client not
support HTTP/2.

5. Create pool pool1 as listener1’s default pool.

6. Add members 192.0.2.10 and 192.0.2.11 on private-subnet to pool1.

CLI commands:

openssl pkcs12 -export -inkey server.key -in server.crt -certfile ca-chain.
↪→crt -passout pass: -out server.p12
openstack secret store --name='tls_secret1' -t 'application/octet-stream' -e
↪→'base64' --payload="$(base64 < server.p12)"
openstack loadbalancer create --name lb1 --vip-subnet-id public-subnet --wait
openstack loadbalancer listener create --protocol-port 443 --protocol␣
↪→TERMINATED_HTTPS --alpn-protocol h2 --alpn-protocol http/1.1 --name␣
↪→listener1 --default-tls-container=$(openstack secret list | awk '/ tls_
↪→secret1 / {print $2}') --wait lb1
openstack loadbalancer pool create --name pool1 --lb-algorithm ROUND_ROBIN --
↪→listener listener1 --protocol HTTP --wait
openstack loadbalancer member create --subnet-id private-subnet --address 192.
↪→0.2.10 --protocol-port 80 --wait pool1

(continues on next page)

7.1. Cookbooks 975

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

openstack loadbalancer member create --subnet-id private-subnet --address 192.
↪→0.2.11 --protocol-port 80 --wait pool1

Deploy HTTP and TLS-terminated HTTPS load balancing on the same IP and backend

This example is exactly like Deploy a TLS-terminated HTTPS load balancer, except that we would like to
have both an HTTP and TERMINATED_HTTPS listener that use the same back-end pool (and therefore,
probably respond with the exact same content regardless of whether the web client uses the HTTP or
HTTPS protocol to connect).

Please note that if you wish all HTTP requests to be redirected to HTTPS (so that requests are only served
via HTTPS, and attempts to access content over HTTP just get redirected to the HTTPS listener), then
please see the example in the Layer 7 Cookbook.

Scenario description:

• Back-end servers 192.0.2.10 and 192.0.2.11 on subnet private-subnet have been configured with
regular HTTP application on TCP port 80.

• Subnet public-subnet is a shared external subnet created by the cloud operator which is reachable
from the internet.

• A TLS certificate, key, and intermediate certificate chain for www.example.com have been obtained
from an external certificate authority. These now exist in the files server.crt, server.key, and ca-
chain.crt in the current directory. The key and certificate are PEM-encoded, and the intermediate
certificate chain is multiple PEM-encoded certs concatenated together. The key is not encrypted
with a passphrase.

• We want to configure a TLS-terminated HTTPS load balancer that is accessible from the internet
using the key and certificate mentioned above, which distributes requests to the back-end servers
over the non-encrypted HTTP protocol.

• We also want to configure a HTTP load balancer on the same IP address as the above which serves
the exact same content (ie. forwards to the same back-end pool) as the TERMINATED_HTTPS
listener.

Solution:

1. Combine the individual cert/key/intermediates to a single PKCS12 file.

2. Create a barbican secret resource for the PKCS12 file. We will call this tls_secret1.

3. Create load balancer lb1 on subnet public-subnet.

4. Create listener listener1 as a TERMINATED_HTTPS listener referencing tls_secret1 as its default
TLS container.

5. Create pool pool1 as listener1’s default pool.

6. Add members 192.0.2.10 and 192.0.2.11 on private-subnet to pool1.

7. Create listener listener2 as an HTTP listener with pool1 as its default pool.

CLI commands:

openssl pkcs12 -export -inkey server.key -in server.crt -certfile ca-chain.
↪→crt -passout pass: -out server.p12

(continues on next page)

7.1. Cookbooks 976

l7-cookbook.html#redirect-http-to-https

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

openstack secret store --name='tls_secret1' -t 'application/octet-stream' -e
↪→'base64' --payload="$(base64 < server.p12)"
openstack loadbalancer create --name lb1 --vip-subnet-id public-subnet --wait
openstack loadbalancer listener create --protocol-port 443 --protocol␣
↪→TERMINATED_HTTPS --name listener1 --default-tls-container=$(openstack␣
↪→secret list | awk '/ tls_secret1 / {print $2}') --wait lb1
openstack loadbalancer pool create --name pool1 --lb-algorithm ROUND_ROBIN --
↪→listener listener1 --protocol HTTP --wait
openstack loadbalancer member create --subnet-id private-subnet --address 192.
↪→0.2.10 --protocol-port 80 --wait pool1
openstack loadbalancer member create --subnet-id private-subnet --address 192.
↪→0.2.11 --protocol-port 80 --wait pool1
openstack loadbalancer listener create --protocol-port 80 --protocol HTTP --
↪→name listener2 --default-pool pool1 --wait lb1

Deploy a load balancer with backend re-encryption

This example will demonstrate how to enable TLS encryption from the load balancer to the backend
member servers. Typically this is used with TLS termination enabled on the listener, but, to simplify
the example, we are going to use an unencrypted HTTP listener. For information on setting up a TLS
terminated listener, see the above section Deploy a TLS-terminated HTTPS load balancer.

Scenario description:

• Back-end servers 192.0.2.10 and 192.0.2.11 on subnet private-subnet have been configured with
an HTTPS application on TCP port 443.

• A Certificate Authority (CA) certificate chain and optional Certificate Revocation List (CRL) have
been obtained from an external certificate authority to authenticate member server certificates
against.

• Subnet public-subnet is a shared external subnet created by the cloud operator which is reachable
from the internet.

• We want to configure a basic load balancer that is accessible from the internet, which distributes
web requests to the back-end servers.

Solution:

1. Create a barbican secret resource for the member CA certificate. We will call this member_ca_cert.

2. Optionally create a barbican secret for the CRL file. We will call this member_ca_crl.

3. Create load balancer lb1 on subnet public-subnet.

4. Create listener listener1.

5. Create pool pool1 as listener1’s default pool, that is TLS enabled, with a Certificate Authority
(CA) certificate chain member_ca_cert to validate the member server certificate, and a Certificate
Revocation List (CRL) member_ca_crl to check the member server certificate against.

6. Add members 192.0.2.10 and 192.0.2.11 on private-subnet to pool1.

CLI commands:

7.1. Cookbooks 977

Octavia Documentation, Release 15.1.0.dev35

openstack secret store --name='member_ca_cert' -t 'application/octet-stream' -
↪→e 'base64' --payload="$(base64 < member_ca.pem)"
openstack secret store --name='member_ca_crl' -t 'application/octet-stream' -
↪→e 'base64' --payload="$(base64 < member_ca.crl)"
openstack loadbalancer create --name lb1 --vip-subnet-id public-subnet --wait
openstack loadbalancer listener create --name listener1 --protocol HTTP --
↪→protocol-port 80 --wait lb1
openstack loadbalancer pool create --name pool1 --lb-algorithm ROUND_ROBIN --
↪→listener listener1 --protocol HTTP --enable-tls --ca-tls-container-ref
↪→$(openstack secret list | awk '/ member_ca_cert / {print $2}') --crl-
↪→container-ref $(openstack secret list | awk '/ member_ca_crl / {print $2}')␣
↪→--wait
openstack loadbalancer member create --subnet-id private-subnet --address 192.
↪→0.2.10 --protocol-port 443 --wait pool1
openstack loadbalancer member create --subnet-id private-subnet --address 192.
↪→0.2.11 --protocol-port 443 --wait pool1

Deploy a load balancer with backend re-encryption and client authentication

This example will demonstrate how to enable TLS encryption from the load balancer to the backend
member servers with the load balancer being authenticated using TLS client authentication. Typically
this is used with TLS termination enabled on the listener, but, to simplify the example, we are going to
use an unencrypted HTTP listener. For information on setting up a TLS terminated listener, see the above
section Deploy a TLS-terminated HTTPS load balancer.

Scenario description:

• Back-end servers 192.0.2.10 and 192.0.2.11 on subnet private-subnet have been configured with
an HTTPS application on TCP port 443.

• A Certificate Authority (CA) certificate chain and optional Certificate Revocation List (CRL) have
been obtained from an external certificate authority to authenticate member server certificates
against.

• A TLS certificate and key have been obtained from an external Certificate Authority (CA). The
now exist in the files member.crt and member.key. The key and certificate are PEM-encoded and
the key is not encrypted with a passphrase (for this example).

• Subnet public-subnet is a shared external subnet created by the cloud operator which is reachable
from the internet.

• We want to configure a basic load balancer that is accessible from the internet, which distributes
web requests to the back-end servers.

Solution:

1. Combine the member client authentication certificate and key to a single PKCS12 file.

2. Create a barbican secret resource for the PKCS12 file. We will call this member_secret1.

3. Create a barbican secret resource for the member CA certificate. We will call this member_ca_cert.

4. Optionally create a barbican secret for the CRL file. We will call this member_ca_crl.

5. Create load balancer lb1 on subnet public-subnet.

6. Create listener listener1.

7.1. Cookbooks 978

Octavia Documentation, Release 15.1.0.dev35

7. Create pool pool1 as listener1’s default pool, that is TLS enabled, with a TLS container reference
for the member client authentication key and certificate pkcs12, also with a Certificate Authority
(CA) certificate chain member_ca_cert to validate the member server certificate, and a Certificate
Revocation List (CRL) member_ca_crl to check the member server certificate against.

8. Add members 192.0.2.10 and 192.0.2.11 on private-subnet to pool1.

CLI commands:

openssl pkcs12 -export -inkey member.key -in member.crt -passout pass: -out␣
↪→member.p12
openstack secret store --name='member_secret1' -t 'application/octet-stream' -
↪→e 'base64' --payload="$(base64 < member.p12)"
openstack secret store --name='member_ca_cert' -t 'application/octet-stream' -
↪→e 'base64' --payload="$(base64 < member_ca.pem)"
openstack secret store --name='member_ca_crl' -t 'application/octet-stream' -
↪→e 'base64' --payload="$(base64 < member_ca.crl)"
openstack loadbalancer create --name lb1 --vip-subnet-id public-subnet --wait
openstack loadbalancer listener create --name listener1 --protocol HTTP --
↪→protocol-port 80 --wait lb1
openstack loadbalancer pool create --name pool1 --lb-algorithm ROUND_ROBIN --
↪→listener listener1 --protocol HTTP --enable-tls --ca-tls-container-ref
↪→$(openstack secret list | awk '/ member_ca_cert / {print $2}') --crl-
↪→container-ref $(openstack secret list | awk '/ member_ca_crl / {print $2}')␣
↪→--tls-container-ref $(openstack secret list | awk '/ member_secret1 /
↪→{print $2}') --wait
openstack loadbalancer member create --subnet-id private-subnet --address 192.
↪→0.2.10 --protocol-port 443 --wait pool1
openstack loadbalancer member create --subnet-id private-subnet --address 192.
↪→0.2.11 --protocol-port 443 --wait pool1

Deploy a HTTP/2 load balancer with ALPN TLS extension and backend re-encryption

This example will demonstrate how to enable HTTP/2 load balancing. We deploy the same h2 alpn pro-
tocol and TLS terminated listener that we use in Deploy a secure HTTP/2 load balancer with ALPN TLS
extension and we deploy the same pool and members with backend re-encryption and h2 alpn protocols
that we use in Deploy a load balancer with backend re-encryption.

Scenario description:

• Back-end servers 192.0.2.10 and 192.0.2.11 on subnet private-subnet have been configured with
an HTTPS application on TCP port 443.

• Subnet public-subnet is a shared external subnet created by the cloud operator which is reachable
from the internet.

• A TLS certificate, key, and intermediate certificate chain for www.example.com have been obtained
from an external certificate authority. These now exist in the files server.crt, server.key, and ca-
chain.crt in the current directory. The key and certificate are PEM-encoded, and the intermediate
certificate chain is multiple PEM-encoded certs concatenated together. The key is not encrypted
with a passphrase.

• We want to configure a TLS-terminated HTTP/2 load balancer that is accessible from the internet
using the key and certificate mentioned above, which distributes requests to back-end servers.

7.1. Cookbooks 979

Octavia Documentation, Release 15.1.0.dev35

• Octavia is configured to use barbican for key management.

Solution:

1. Combine the individual cert/key/intermediates to a single PKCS12 file.

2. Create a barbican secret resource for the PKCS12 file. We will call this tls_secret1.

3. Create load balancer lb1 on subnet public-subnet.

4. Create listener listener1 as a TERMINATED_HTTPS listener referencing tls_secret1 as its default
TLS container, and h2 ALPN protocol ID and http/1.1 as fall-back protocol should the client not
support HTTP/2.

5. Create pool pool1 as listener1’s default pool, that is TLS enabled, and h2 ALPN protocol ID and
http/1.1 as fall-back protocol should the client not support HTTP/2.

6. Add members 192.0.2.10 and 192.0.2.11 on private-subnet to pool1.

CLI commands:

openssl pkcs12 -export -inkey server.key -in server.crt -certfile ca-chain.
↪→crt -passout pass: -out server.p12
openstack secret store --name='tls_secret1' -t 'application/octet-stream' -e
↪→'base64' --payload="$(base64 < server.p12)"
openstack loadbalancer create --name lb1 --vip-subnet-id public-subnet --wait
openstack loadbalancer listener create --protocol-port 443 --protocol␣
↪→TERMINATED_HTTPS --alpn-protocol h2 --alpn-protocol http/1.1 --name␣
↪→listener1 --default-tls-container=$(openstack secret list | awk '/ tls_
↪→secret1 / {print $2}') --wait lb1
openstack loadbalancer pool create --name pool1 --lb-algorithm ROUND_ROBIN --
↪→listener listener1 --protocol HTTP --enable-tls --alpn-protocol h2 --alpn-
↪→protocol http/1.1 --wait
openstack loadbalancer member create --subnet-id private-subnet --address 192.
↪→0.2.10 --protocol-port 443 --wait pool1
openstack loadbalancer member create --subnet-id private-subnet --address 192.
↪→0.2.11 --protocol-port 443 --wait pool1

Deploy a UDP load balancer with a health monitor

This is a load balancer solution suitable for UDP-based services.

Scenario description:

• Back-end servers 192.0.2.10 and 192.0.2.11 on subnet private-subnet have been configured with
an application on UDP port 1234.

• Subnet public-subnet is a shared external subnet created by the cloud operator which is reachable
from the internet.

• We want to configure a basic load balancer that is accessible from the internet, which distributes
requests to the back-end servers.

• We want to employ a UDP health check to ensure that the back-end servers are available. UDP
health checks may not work correctly if ICMP Destination Unreachable (ICMP type 3) messages
are blocked by a security rule (see Other health monitors).

Solution:

7.1. Cookbooks 980

Octavia Documentation, Release 15.1.0.dev35

1. Create load balancer lb1 on subnet private-subnet.

2. Create listener listener1.

3. Create pool pool1 as listener1’s default pool.

4. Create a health monitor on pool1 which connects to the back-end servers.

5. Add members 192.0.2.10 and 192.0.2.11 on private-subnet to pool1.

CLI commands:

openstack loadbalancer create --name lb1 --vip-subnet-id public-subnet --wait
openstack loadbalancer listener create --name listener1 --protocol UDP --
↪→protocol-port 1234 --wait lb1
openstack loadbalancer pool create --name pool1 --lb-algorithm ROUND_ROBIN --
↪→listener listener1 --protocol UDP --wait
openstack loadbalancer healthmonitor create --delay 3 --max-retries 2 --
↪→timeout 2 --type UDP-CONNECT --wait pool1
openstack loadbalancer member create --subnet-id private-subnet --address 192.
↪→0.2.10 --protocol-port 1234 --wait pool1
openstack loadbalancer member create --subnet-id private-subnet --address 192.
↪→0.2.11 --protocol-port 1234 --wait pool1

Health Monitor Best Practices

An Octavia health monitor is a process that does periodic health checks on each back-end member to
pre-emptively detect failed members and temporarily pull them out of the pool.

If the health monitor detects a failed member, it removes it from the pool and marks the member in
ERROR. After you have corrected the member and it is functional again, the health monitor automatically
changes the status of the member from ERROR to ONLINE, and resumes passing traffic to it.

Always use health monitors in production load balancers. If you do not have a health monitor, failed
members are not removed from the pool. This can lead to service disruption for web clients.

See also the command, loadbalancer healthmonitor create.

Configuration arguments for all health monitors

All health monitor types for Octavia require the following configurable arguments:

• delay: Number of seconds to wait between health checks.

• timeout: Number of seconds to wait for any given health check to complete. timeout should
always be smaller than delay.

• max-retries: Number of subsequent health checks a given back-end server must fail before it is
considered down, or that a failed back-end server must pass to be considered up again.

Configuration arguments for HTTP health monitors

In addition to the arguments listed earlier in Configuration arguments for all health monitors, HTTP
health monitor types also require the following arguments, which are set by default:

• url-path: Path part of the URL that should be retrieved from the back-end server. By default this
is "/".

7.1. Cookbooks 981

https://docs.openstack.org/python-octaviaclient/latest/cli/index.html#loadbalancer-healthmonitor-create

Octavia Documentation, Release 15.1.0.dev35

• http-method: HTTP method that should be used to retrieve the url-path. By default this is
"GET".

• expected-codes: List of HTTP status codes that indicate an OK health check. By default this is
just "200".

For a complete list of configuration arguments for Octavia health monitors, see the command, loadbal-
ancer healthmonitor create.

Please keep the following best practices in mind when writing the code that generates the health check
in your web application:

• The health monitor url-path should not require authentication to load.

• By default the health monitor url-path should return a HTTP 200 OK status code to indicate a
healthy server unless you specify alternate expected-codes.

• The health check should do enough internal checks to ensure the application is healthy and no more.
This may mean ensuring database or other external storage connections are up and running, server
load is acceptable, the site is not in maintenance mode, and other tests specific to your application.

• The page generated by the health check should be very light weight:

– It should return in a sub-second interval.

– It should not induce significant load on the application server.

• The page generated by the health check should never be cached, though the code running the health
check may reference cached data. For example, you may find it useful to run a more extensive
health check via cron and store the results of this to disk. The code generating the page at the
health monitor url-path would incorporate the results of this cron job in the tests it performs.

• Since Octavia only cares about the HTTP status code returned, and since health checks are run so
frequently, it may make sense to use the "HEAD" or "OPTIONS" HTTP methods to cut down on
unnecessary processing of a whole page.

Other health monitors

Other health monitor types include PING, TCP, HTTPS, SCTP, TLS-HELLO, and UDP-CONNECT.

PING health monitors send periodic ICMP PING requests to the back-end servers. Obviously, your back-
end servers must be configured to allow PINGs in order for these health checks to pass.

Warning

Health monitors of type PING only check if the member is reachable and responds to ICMP echo
requests. It will not detect if your application running on that instance is healthy or not. Most pools
should use one of the other health monitor options. PING should only be used in specific cases where
an ICMP echo request is a valid health check.

TCP health monitors open a TCP connection to the back-end server’s protocol port. Your custom TCP
application should be written to respond OK to the load balancer connecting, opening a TCP connection,
and closing it again after the TCP handshake without sending any data.

HTTPS health monitors operate exactly like HTTP health monitors, but with ssl back-end servers. Un-
fortunately, this causes problems if the servers are performing client certificate validation, as HAProxy
won’t have a valid cert. In this case, using TLS-HELLO type monitoring is an alternative.

7.1. Cookbooks 982

https://docs.openstack.org/python-octaviaclient/latest/cli/index.html#loadbalancer-healthmonitor-create
https://docs.openstack.org/python-octaviaclient/latest/cli/index.html#loadbalancer-healthmonitor-create

Octavia Documentation, Release 15.1.0.dev35

SCTP health monitors send an INIT packet to the back-end server’s port. If an application is listening on
this port, the Operating System should reply with an INIT ACK packet, but if the port is closed, it replies
with an ABORT packet. If the health monitor receives an INIT ACK packet, it immediately closes the
connection with an ABORT packet, and considers that the server is ONLINE.

TLS-HELLO health monitors simply ensure the back-end server responds to SSLv3 client hello messages.
It will not check any other health metrics, like status code or body contents.

UDP-CONNECT health monitors do a basic UDP port connect. Health monitors of this type may not work
correctly if Destination Unreachable (ICMP type 3) is not enabled on the member server or is blocked by
a security rule. A member server may be marked as operating status ONLINE when it is actually down.

Intermediate certificate chains

Some TLS certificates require you to install an intermediate certificate chain in order for web client
browsers to trust the certificate. This chain can take several forms, and is a file provided by the organiza-
tion from whom you obtained your TLS certificate.

PEM-encoded chains

The simplest form of the intermediate chain is a PEM-encoded text file that either contains a sequence
of individually-encoded PEM certificates, or a PEM encoded PKCS7 block(s). If this is the type of
intermediate chain you have been provided, the file will contain either -----BEGIN PKCS7----- or
-----BEGIN CERTIFICATE----- near the top of the file, and one or more blocks of 64-character lines
of ASCII text (that will look like gobbedlygook to a human). These files are also typically named with a
.crt or .pem extension.

DER-encoded chains

If the intermediates chain provided to you is a file that contains what appears to be random binary data, it
is likely that it is a PKCS7 chain in DER format. These files also may be named with a .p7b extension.

You may use the binary DER file as-is when building your PKCS12 bundle:

openssl pkcs12 -export -inkey server.key -in server.crt -certfile ca-chain.
↪→p7b -passout pass: -out server.p12

... or you can convert it to a series of PEM-encoded certificates:

openssl pkcs7 -in intermediates-chain.p7b -inform DER -print_certs -out␣
↪→intermediates-chain.crt

... or you can convert it to a PEM-encoded PKCS7 bundle:

openssl pkcs7 -in intermediates-chain.p7b -inform DER -outform PEM -out␣
↪→intermediates-chain.crt

If the file is not a PKCS7 DER bundle, either of the two openssl pkcs7 commands will fail.

Further reading

For examples of using Layer 7 features for more advanced load balancing, please see: Layer 7 Cookbook

7.1. Cookbooks 983

Octavia Documentation, Release 15.1.0.dev35

7.1.2 Layer 7 Cookbook

Introduction

This document gives several examples of common L7 load balancer usage. For a description of L7 load
balancing see: Layer 7 Load Balancing

For the purposes of this guide we assume that the OpenStack Client command-line interface is going
to be used to configure all features of Octavia with the Octavia driver back-end. Also, in order to keep
these examples short, we assume that many non-L7 configuration tasks (such as deploying loadbalancers,
listeners, pools, members, healthmonitors, etc.) have already been accomplished. A description of the
starting conditions is given in each example below.

Examples

Redirect http://www.example.com/ to https://www.example.com/

Scenario description:

• Load balancer lb1 has been set up with TERMINATED_HTTPS listener tls_listener on TCP port 443.

• tls_listener has been populated with a default pool, members, etc.

• tls_listener is available under the DNS name https://www.example.com/

• We want any regular HTTP requests to TCP port 80 on lb1 to be redirected to tls_listener on TCP
port 443.

Solution:

1. Create listener http_listener as an HTTP listener on lb1 port 80.

2. Set up an L7 Policy policy1 on http_listener with action REDIRECT_TO_URL pointed at the URL
https://www.example.com/

3. Add an L7 Rule to policy1 which matches all requests.

CLI commands:

openstack loadbalancer listener create --name http_listener --protocol HTTP --
↪→protocol-port 80 lb1
openstack loadbalancer l7policy create --action REDIRECT_PREFIX --redirect-
↪→prefix https://www.example.com/ --name policy1 http_listener
openstack loadbalancer l7rule create --compare-type STARTS_WITH --type PATH --
↪→value / policy1

Send requests starting with /js or /images to static_pool

Scenario description:

• Listener listener1 on load balancer lb1 is set up to send all requests to its default_pool pool1.

• We are introducing static content servers 10.0.0.10 and 10.0.0.11 on subnet private-subnet, and
want any HTTP requests with a URL that starts with either "/js" or "/images" to be sent to those
two servers instead of pool1.

Solution:

1. Create pool static_pool on lb1.

7.1. Cookbooks 984

Octavia Documentation, Release 15.1.0.dev35

2. Populate static_pool with the new back-end members.

3. Create L7 Policy policy1 with action REDIRECT_TO_POOL pointed at static_pool.

4. Create an L7 Rule on policy1 which looks for "/js" at the start of the request path.

5. Create L7 Policy policy2 with action REDIRECT_TO_POOL pointed at static_pool.

6. Create an L7 Rule on policy2 which looks for "/images" at the start of the request path.

CLI commands:

openstack loadbalancer pool create --lb-algorithm ROUND_ROBIN --loadbalancer␣
↪→lb1 --name static_pool --protocol HTTP
openstack loadbalancer member create --address 10.0.0.10 --protocol-port 80 --
↪→subnet-id private-subnet static_pool
openstack loadbalancer member create --address 10.0.0.11 --protocol-port 80 --
↪→subnet-id private-subnet static_pool
openstack loadbalancer l7policy create --action REDIRECT_TO_POOL --redirect-
↪→pool static_pool --name policy1 listener1
openstack loadbalancer l7rule create --compare-type STARTS_WITH --type PATH --
↪→value /js policy1
openstack loadbalancer l7policy create --action REDIRECT_TO_POOL --redirect-
↪→pool static_pool --name policy2 listener1
openstack loadbalancer l7rule create --compare-type STARTS_WITH --type PATH --
↪→value /images policy2

Alternate solution (using regular expressions):

1. Create pool static_pool on lb1.

2. Populate static_pool with the new back-end members.

3. Create L7 Policy policy1 with action REDIRECT_TO_POOL pointed at static_pool.

4. Create an L7 Rule on policy1 which uses a regular expression to match either "/js" or "/images" at
the start of the request path.

CLI commands:

openstack loadbalancer pool create --lb-algorithm ROUND_ROBIN --loadbalancer␣
↪→lb1 --name static_pool --protocol HTTP
openstack loadbalancer member create --address 10.0.0.10 --protocol-port 80 --
↪→subnet-id private-subnet static_pool
openstack loadbalancer member create --address 10.0.0.11 --protocol-port 80 --
↪→subnet-id private-subnet static_pool
openstack loadbalancer l7policy create --action REDIRECT_TO_POOL --redirect-
↪→pool static_pool --name policy1 listener1
openstack loadbalancer l7rule create --compare-type REGEX --type PATH --value
↪→'^/(js|images)' policy1

Send requests for http://www2.example.com/ to pool2

Scenario description:

• Listener listener1 on load balancer lb1 is set up to send all requests to its default_pool pool1.

7.1. Cookbooks 985

Octavia Documentation, Release 15.1.0.dev35

• We have set up a new pool pool2 on lb1 and want any requests using the HTTP/1.1 hostname
www2.example.com to be sent to pool2 instead.

Solution:

1. Create L7 Policy policy1 with action REDIRECT_TO_POOL pointed at pool2.

2. Create an L7 Rule on policy1 which matches the hostname www2.example.com.

CLI commands:

openstack loadbalancer l7policy create --action REDIRECT_TO_POOL --redirect-
↪→pool pool2 --name policy1 listener1
openstack loadbalancer l7rule create --compare-type EQUAL_TO --type HOST_NAME␣
↪→--value www2.example.com policy1

Send requests for *.example.com to pool2

Scenario description:

• Listener listener1 on load balancer lb1 is set up to send all requests to its default_pool pool1.

• We have set up a new pool pool2 on lb1 and want any requests using any HTTP/1.1 hostname like
*.example.com to be sent to pool2 instead.

Solution:

1. Create L7 Policy policy1 with action REDIRECT_TO_POOL pointed at pool2.

2. Create an L7 Rule on policy1 which matches any hostname that ends with example.com.

CLI commands:

openstack loadbalancer l7policy create --action REDIRECT_TO_POOL --redirect-
↪→pool pool2 --name policy1 listener1
openstack loadbalancer l7rule create --compare-type ENDS_WITH --type HOST_
↪→NAME --value example.com policy1

Send unauthenticated users to login_pool (scenario 1)

Scenario description:

• TERMINATED_HTTPS listener listener1 on load balancer lb1 is set up to send all requests to its
default_pool pool1.

• The site behind listener1 requires all web users to authenticate, after which a browser cookie
auth_token will be set.

• When web users log out, or if the auth_token is invalid, the application servers in pool1 clear the
auth_token.

• We want to introduce new secure authentication server 10.0.1.10 on Neutron subnet secure_subnet
(a different Neutron subnet from the default application servers) which handles authenticating web
users and sets the auth_token.

Note: Obviously, to have a more secure authentication system that is less vulnerable to attacks like XSS,
the new secure authentication server will need to set session variables to which the default_pool servers
will have access outside the data path with the web client. There may be other security concerns as well.

7.1. Cookbooks 986

Octavia Documentation, Release 15.1.0.dev35

This example is not meant to address how these are to be accomplished--it’s mainly meant to show how
L7 application routing can be done based on a browser cookie.

Solution:

1. Create pool login_pool on lb1.

2. Add member 10.0.1.10 on secure_subnet to login_pool.

3. Create L7 Policy policy1 with action REDIRECT_TO_POOL pointed at login_pool.

4. Create an L7 Rule on policy1 which looks for browser cookie auth_token (with any value) and
matches if it is NOT present.

CLI commands:

openstack loadbalancer pool create --lb-algorithm ROUND_ROBIN --loadbalancer␣
↪→lb1 --name login_pool --protocol HTTP
openstack loadbalancer member create --address 10.0.1.10 --protocol-port 80 --
↪→subnet-id secure_subnet login_pool
openstack loadbalancer l7policy create --action REDIRECT_TO_POOL --redirect-
↪→pool login_pool --name policy1 listener1
openstack loadbalancer l7rule create --compare-type REGEX --key auth_token --
↪→type COOKIE --value '.*' --invert policy1

Send unauthenticated users to login_pool (scenario 2)

Scenario description:

• TERMINATED_HTTPS listener listener1 on load balancer lb1 is set up to send all requests to its
default_pool pool1.

• The site behind listener1 requires all web users to authenticate, after which a browser cookie
auth_token will be set.

• When web users log out, or if the auth_token is invalid, the application servers in pool1 set
auth_token to the literal string "INVALID".

• We want to introduce new secure authentication server 10.0.1.10 on Neutron subnet secure_subnet
(a different Neutron subnet from the default application servers) which handles authenticating web
users and sets the auth_token.

Note: Obviously, to have a more secure authentication system that is less vulnerable to attacks like XSS,
the new secure authentication server will need to set session variables to which the default_pool servers
will have access outside the data path with the web client. There may be other security concerns as well.
This example is not meant to address how these are to be accomplished-- it’s mainly meant to show how
L7 application routing can be done based on a browser cookie.

Solution:

1. Create pool login_pool on lb1.

2. Add member 10.0.1.10 on secure_subnet to login_pool.

3. Create L7 Policy policy1 with action REDIRECT_TO_POOL pointed at login_pool.

4. Create an L7 Rule on policy1 which looks for browser cookie auth_token (with any value) and
matches if it is NOT present.

5. Create L7 Policy policy2 with action REDIRECT_TO_POOL pointed at login_pool.

7.1. Cookbooks 987

Octavia Documentation, Release 15.1.0.dev35

6. Create an L7 Rule on policy2 which looks for browser cookie auth_token and matches if it is equal
to the literal string "INVALID".

CLI commands:

openstack loadbalancer pool create --lb-algorithm ROUND_ROBIN --loadbalancer␣
↪→lb1 --name login_pool --protocol HTTP
openstack loadbalancer member create --address 10.0.1.10 --protocol-port 80 --
↪→subnet-id secure_subnet login_pool
openstack loadbalancer l7policy create --action REDIRECT_TO_POOL --redirect-
↪→pool login_pool --name policy1 listener1
openstack loadbalancer l7rule create --compare-type REGEX --key auth_token --
↪→type COOKIE --value '.*' --invert policy1
openstack loadbalancer l7policy create --action REDIRECT_TO_POOL --redirect-
↪→pool login_pool --name policy2 listener1
openstack loadbalancer l7rule create --compare-type EQUAL_TO --key auth_token␣
↪→--type COOKIE --value INVALID policy2

Send requests for http://api.example.com/api to api_pool

Scenario description:

• Listener listener1 on load balancer lb1 is set up to send all requests to its default_pool pool1.

• We have created pool api_pool on lb1, however, for legacy business logic reasons, we only want
requests sent to this pool if they match the hostname api.example.com AND the request path starts
with /api.

Solution:

1. Create L7 Policy policy1 with action REDIRECT_TO_POOL pointed at api_pool.

2. Create an L7 Rule on policy1 which matches the hostname api.example.com.

3. Create an L7 Rule on policy1 which matches /api at the start of the request path. (This rule will
be logically ANDed with the previous rule.)

CLI commands:

openstack loadbalancer l7policy create --action REDIRECT_TO_POOL --redirect-
↪→pool api_pool --name policy1 listener1
openstack loadbalancer l7rule create --compare-type EQUAL_TO --type HOST_NAME␣
↪→--value api.example.com policy1
openstack loadbalancer l7rule create --compare-type STARTS_WITH --type PATH --
↪→value /api policy1

Set up A/B testing on an existing production site using a cookie

Scenario description:

• Listener listener1 on load balancer lb1 is a production site set up as described under Send requests
starting with /js or /images to static_pool (alternate solution) above. Specifically:

– HTTP requests with a URL that starts with either "/js" or "/images" are sent to pool
static_pool.

7.1. Cookbooks 988

Octavia Documentation, Release 15.1.0.dev35

– All other requests are sent to listener1’s default_pool pool1.

• We are introducing a "B" version of the production site, complete with its own default_pool and
static_pool. We will call these pool_B and static_pool_B respectively.

• The pool_B members should be 10.0.0.50 and 10.0.0.51, and the static_pool_B members should
be 10.0.0.100 and 10.0.0.101 on subnet private-subnet.

• Web clients which should be routed to the "B" version of the site get a cookie set by the member
servers in pool1. This cookie is called "site_version" and should have the value "B".

Solution:

1. Create pool pool_B on lb1.

2. Populate pool_B with its new back-end members.

3. Create pool static_pool_B on lb1.

4. Populate static_pool_B with its new back-end members.

5. Create L7 Policy policy2 with action REDIRECT_TO_POOL pointed at static_pool_B. This should
be inserted at position 1.

6. Create an L7 Rule on policy2 which uses a regular expression to match either "/js" or "/images" at
the start of the request path.

7. Create an L7 Rule on policy2 which matches the cookie "site_version" to the exact string "B".

8. Create L7 Policy policy3 with action REDIRECT_TO_POOL pointed at pool_B. This should be in-
serted at position 2.

9. Create an L7 Rule on policy3 which matches the cookie "site_version" to the exact string "B".

A word about L7 Policy position: Since L7 Policies are evaluated in order according to their position
parameter, and since the first L7 Policy whose L7 Rules all evaluate to True is the one whose action is
followed, it is important that L7 Policies with the most specific rules get evaluated first.

For example, in this solution, if policy3 were to appear in the listener’s L7 Policy list before policy2
(that is, if policy3 were to have a lower position number than policy2), then if a web client were to
request the URL http://www.example.com/images/a.jpg with the cookie "site_version:B", then policy3
would match, and the load balancer would send the request to pool_B. From the scenario description,
this request clearly was meant to be sent to static_pool_B, which is why policy2 needs to be evaluated
before policy3.

CLI commands:

openstack loadbalancer pool create --lb-algorithm ROUND_ROBIN --loadbalancer␣
↪→lb1 --name pool_B --protocol HTTP
openstack loadbalancer member create --address 10.0.0.50 --protocol-port 80 --
↪→subnet-id private-subnet pool_B
openstack loadbalancer member create --address 10.0.0.51 --protocol-port 80 --
↪→subnet-id private-subnet pool_B
openstack loadbalancer pool create --lb-algorithm ROUND_ROBIN --loadbalancer␣
↪→lb1 --name static_pool_B --protocol HTTP
openstack loadbalancer member create --address 10.0.0.100 --protocol-port 80 -
↪→-subnet-id private-subnet static_pool_B
openstack loadbalancer member create --address 10.0.0.101 --protocol-port 80 -
↪→-subnet-id private-subnet static_pool_B

(continues on next page)

7.1. Cookbooks 989

http://www.example.com/images/a.jpg

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

openstack loadbalancer l7policy create --action REDIRECT_TO_POOL --redirect-
↪→pool static_pool_B --name policy2 --position 1 listener1
openstack loadbalancer l7rule create --compare-type REGEX --type PATH --value
↪→'^/(js|images)' policy2
openstack loadbalancer l7rule create --compare-type EQUAL_TO --key site_
↪→version --type COOKIE --value B policy2
openstack loadbalancer l7policy create --action REDIRECT_TO_POOL --redirect-
↪→pool pool_B --name policy3 --position 2 listener1
openstack loadbalancer l7rule create --compare-type EQUAL_TO --key site_
↪→version --type COOKIE --value B policy3

Redirect requests with an invalid TLS client authentication certificate

Scenario description:

• Listener listener1 on load balancer lb1 is configured for OPTIONAL client_authentication.

• Web clients that do not present a TLS client authentication certificate should be redirected to a
signup page at http://www.example.com/signup.

Solution:

1. Create the load balancer lb1.

2. Create a listener listner1 of type TERMINATED_TLS with a client_ca_tls_container_ref and
client_authentication OPTIONAL.

3. Create a L7 Policy policy1 on listener1 with action REDIRECT_TO_URL pointed at the URL
http://www.example.com/signup.

4. Add an L7 Rule to policy1 that does not match SSL_CONN_HAS_CERT.

CLI commands:

openstack loadbalancer create --name lb1 --vip-subnet-id public-subnet
openstack loadbalancer listener create --name listener1 --protocol TERMINATED_
↪→HTTPS --client-authentication OPTIONAL --protocol-port 443 --default-tls-
↪→container-ref http://192.0.2.15:9311/v1/secrets/697c2a6d-ffbe-40b8-be5e-
↪→7629fd636bca --client-ca-tls-container-ref http://192.0.2.15:9311/v1/
↪→secrets/dba60b77-8dad-4171-8a96-f21e1ca5fb46 lb1
openstack loadbalancer l7policy create --action REDIRECT_TO_URL --redirect-
↪→url http://www.example.com/signup --name policy1 listener1
openstack loadbalancer l7rule create --type SSL_CONN_HAS_CERT --invert --
↪→compare-type EQUAL_TO --value True policy1

Send users from the finance department to pool2

Scenario description:

• Users from the finance department have client certificates with the OU field of the distinguished
name set to finance.

• Only users with valid finance department client certificates should be able to access pool2. Others
will be rejected.

7.1. Cookbooks 990

Octavia Documentation, Release 15.1.0.dev35

Solution:

1. Create the load balancer lb1.

2. Create a listener listner1 of type TERMINATED_TLS with a client_ca_tls_container_ref and
client_authentication MANDATORY.

3. Create a pool pool2 on load balancer lb1.

4. Create a L7 Policy policy1 on listener1 with action REDIRECT_TO_POOL pointed at pool2.

5. Add an L7 Rule to policy1 that matches SSL_CONN_HAS_CERT.

6. Add an L7 Rule to policy1 that matches SSL_VERIFY_RESULT with a value of 0.

7. Add an L7 Rule to policy1 of type SSL_DN_FIELD that looks for "finance" in the "OU" field of the
client authentication distinguished name.

CLI commands:

openstack loadbalancer create --name lb1 --vip-subnet-id public-subnet
openstack loadbalancer listener create --name listener1 --protocol TERMINATED_
↪→HTTPS --client-authentication MANDATORY --protocol-port 443 --default-tls-
↪→container-ref http://192.0.2.15:9311/v1/secrets/697c2a6d-ffbe-40b8-be5e-
↪→7629fd636bca --client-ca-tls-container-ref http://192.0.2.15:9311/v1/
↪→secrets/dba60b77-8dad-4171-8a96-f21e1ca5fb46 lb1
openstack loadbalancer pool create --lb-algorithm ROUND_ROBIN --loadbalancer␣
↪→lb1 --name pool2 --protocol HTTP
openstack loadbalancer l7policy create --action REDIRECT_TO_POOL --redirect-
↪→pool pool2 --name policy1 listener1
openstack loadbalancer l7rule create --type SSL_CONN_HAS_CERT --compare-type␣
↪→EQUAL_TO --value True policy1
openstack loadbalancer l7rule create --type SSL_VERIFY_RESULT --compare-type␣
↪→EQUAL_TO --value 0 policy1
openstack loadbalancer l7rule create --type SSL_DN_FIELD --compare-type EQUAL_
↪→TO --key OU --value finance policy1

7.2 Guides

7.2.1 Layer 7 Load Balancing

What is L7 load balancing?

Layer 7 load balancing takes its name from the OSI model, indicating that the load balancer distributes
requests to back-end pools based on layer 7 (application) data. Layer 7 load balancing is also known as
"request switching," "application load balancing," "content based routing," "content based switching,"
and "content based balancing."

A layer 7 load balancer consists of a listener that accepts requests on behalf of a number of back-end pools
and distributes those requests based on policies that use application data to determine which pools should
service any given request. This allows for the application infrastructure to be specifically tuned/optimized
to serve specific types of content. For example, one group of back-end servers (pool) can be tuned to serve
only images, another for execution of server-side scripting languages like PHP and ASP, and another for
static content such as HTML, CSS, and JavaScript.

Unlike lower-level load balancing, layer 7 load balancing does not require that all pools behind the load

7.2. Guides 991

Octavia Documentation, Release 15.1.0.dev35

balancing service have the same content. In fact, it is generally expected that a layer 7 load balancer
expects the back-end servers from different pools will have different content. Layer 7 load balancers
are capable of directing requests based on URI, host, HTTP headers, and other data in the application
message.

L7 load balancing in Octavia

The layer 7 load balancing capabilities described in this document were added to Neutron LBaaS and
Octavia in the Mitaka release cycle (Octavia 0.8).

While layer 7 load balancing in general can theoretically be done for any well-defined layer 7 application
interface, for the purposes of Octavia, L7 functionality refers only to the HTTP protocol and its semantics.

How does it work?

Neutron LBaaS and Octavia accomplish the logic of layer 7 load balancing through the use of L7 Rules
and L7 Policies. An L7 Rule is a single, simple logical test which evaluates to true or false. An L7 Policy
is a collection of L7 rules, as well as a defined action that should be taken if all the rules associated with
the policy match.

These concepts and their specific details are expanded upon below.

L7 Rules

An L7 Rule is a single, simple logical test which returns either true or false. It consists of a rule type,
a comparison type, a value, and an optional key that gets used depending on the rule type. An L7 rule
must always be associated with an L7 policy.

See also: Octavia API Reference

Rule types

L7 rules have the following types:

• HOST_NAME: The rule does a comparison between the HTTP/1.1 hostname in the request against
the value parameter in the rule.

• PATH: The rule compares the path portion of the HTTP URI against the value parameter in the rule.

• FILE_TYPE: The rule compares the last portion of the URI against the value parameter in the rule.
(eg. "txt", "jpg", etc.)

• HEADER: The rule looks for a header defined in the key parameter and compares it against the value
parameter in the rule.

• COOKIE: The rule looks for a cookie named by the key parameter and compares it against the value
parameter in the rule.

• SSL_CONN_HAS_CERT: The rule will match if the client has presented a certificate for TLS client
authentication. This does not imply the certificate is valid.

• SSL_VERIFY_RESULT: This rule will match the TLS client authentication certificate validation
result. A value of ’0’ means the certificate was successfully validated. A value greater than ’0’
means the certificate failed validation. This value follows the openssl-verify result codes.

• SSL_DN_FIELD: The rule looks for a Distinguished Name field defined in the key parameter and
compares it against the value parameter in the rule.

7.2. Guides 992

https://docs.openstack.org/api-ref/load-balancer/
https://github.com/openssl/openssl/blob/master/include/openssl/x509_vfy.h#L99

Octavia Documentation, Release 15.1.0.dev35

Comparison types

L7 rules of a given type always do comparisons. The types of comparisons we support are listed below.
Note that not all rule types support all comparison types:

• REGEX: Perl type regular expression matching

• STARTS_WITH: String starts with

• ENDS_WITH: String ends with

• CONTAINS: String contains

• EQUAL_TO: String is equal to

Invert

In order to more fully express the logic required by some policies, rules may have their result inverted.
That is to say, if the invert parameter of a given rule is true, the result of its comparison will be inverted.
(For example, an inverted "equal to" rule effectively becomes a "not equal to", and an inverted "regex"
rule returns true only if the given regex does not match.)

L7 Policies

An L7 Policy is a collection of L7 rules associated with a Listener, and which may also have an association
to a back-end pool. Policies describe actions that should be taken by the load balancing software if all of
the rules in the policy return true.

See also: Octavia API Reference

Policy Logic

Policy logic is very simple: All the rules associated with a given policy are logically ANDed together. A
request must match all the policy’s rules to match the policy.

If you need to express a logical OR operation between rules, then do this by creating multiple policies
with the same action (or, possibly, by making a more elaborate regular expression).

Policy Actions

If an L7 policy matches a given request, then that policy’s action is executed. The following are the
actions an L7 Policy may take:

• REJECT: The request is denied with an appropriate response code, and not forwarded on to any
back-end pool.

• REDIRECT_TO_URL: The request is sent an HTTP redirect to the URL defined in the
redirect_url parameter.

• REDIRECT_TO_POOL: The request is forwarded to the back-end pool associated with the L7 policy.

Policy Position

When multiple L7 Policies are associated with a listener, then the policies’ position parameter be-
comes important. The position parameter is used when determining the order in which L7 policies are
evaluated. Here are a few notes about how policy position affects listener behavior:

7.2. Guides 993

https://docs.openstack.org/api-ref/load-balancer/

Octavia Documentation, Release 15.1.0.dev35

• In the reference implementation (haproxy amphorae) of Octavia, haproxy enforces the following
ordering regarding policy actions:

– REJECT policies take precedence over all other policies.

– REDIRECT_TO_URL policies take precedence over REDIRECT_TO_POOL policies.

– REDIRECT_TO_POOL policies are only evaluated after all of the above, and in the order spec-
ified by the position of the policy.

• L7 Policies are evaluated in a specific order (as defined by the position attribute), and the first
policy that matches a given request will be the one whose action is followed.

• If no policy matches a given request, then the request is routed to the listener’s default pool ,if it
exists. If the listener has no default pool, then an error 503 is returned.

• Policy position numbering starts with 1.

• If a new policy is created with a position that matches that of an existing policy, then the new policy
is inserted at the given position.

• If a new policy is created without specifying a position, or specifying a position that is greater than
the number of policies already in the list, the new policy will just be appended to the list.

• When policies are inserted, deleted, or appended to the list, the policy position values are re-ordered
from 1 without skipping numbers. For example, if policy A, B, and C have position values of 1, 2
and 3 respectively, if you delete policy B from the list, policy C’s position becomes 2.

L7 usage examples

For a cookbook of common L7 usage examples, please see the Layer 7 Cookbook

Useful links

• Octavia API Reference

• LBaaS Layer 7 rules

• Using ACLs and fetching samples

• OpenSSL openssl-verify command

7.2.2 Octavia Provider Feature Matrix

Load Balancer Features

Provider feature support matrix for an Octavia load balancer.

Load Balancer API Features

These features are documented in the Octavia API reference Create a Load Balancer section. Summary

7.2. Guides 994

https://docs.openstack.org/api-ref/load-balancer/
https://github.com/openstack/neutron-specs/blob/master/specs/mitaka/lbaas-l7-rules.rst
http://cbonte.github.io/haproxy-dconv/1.6/configuration.html#7
https://www.openssl.org/docs/manmaster/man1/openssl-verify.html
https://docs.openstack.org/api-ref/load-balancer/v2/index.html?expanded=create-a-load-balancer-detail#create-a-load-balancer

Octavia Documentation, Release 15.1.0.dev35

Feature Status Amphora Provider OVN Provider
additional_vips optional ✓✓✓ ✓✓✓
admin_state_up mandatory ✓✓✓ ✓✓✓
availability_zone optional ✓✓✓ ×××
description optional ✓✓✓ ✓✓✓
flavor optional ✓✓✓ ×××
name optional ✓✓✓ ✓✓✓
Load Balancer statistics mandatory ✓✓✓ ×××
Load Balancer status tree mandatory ✓✓✓ ✓✓✓
tags optional ✓✓✓ ✓✓✓
vip_address optional ✓✓✓ ✓✓✓
vip_network_id optional ✓✓✓ ✓✓✓
vip_port_id optional ✓✓✓ ✓✓✓
vip_qos_policy_id optional ✓✓✓ ✓✓✓
vip_subnet_id optional ✓✓✓ ✓✓✓

Details

• additional_vips Status: optional.

CLI commands:

– openstack loadbalancer create [--additional-vip <additional_vip>]
<load_balancer>

Notes: Additional VIPs to the primary one. Every additional VIP shall include the “subnet_id“ as
mandatory and the “ip_address“ as optional. Additional VIP subnets must all belong to the same
network as the primary VIP.

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

• admin_state_up Status: mandatory.

CLI commands:

– openstack loadbalancer create [--enable | --disable] <load_balancer>

Notes: Enables and disables the load balancer.

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

• availability_zone Status: optional.

CLI commands:

– openstack loadbalancer create [--availability-zone
<availability_zone>] <load_balancer>

Notes: The availability zone to deploy the load balancer into.

Driver Support:

7.2. Guides 995

https://docs.openstack.org/api-ref/load-balancer/v2/index.html
https://docs.openstack.org/ovn-octavia-provider/latest/admin/driver.html

Octavia Documentation, Release 15.1.0.dev35

– Amphora Provider: complete

– OVN Provider: missing

• description Status: optional.

CLI commands:

– openstack loadbalancer create [--description <description>]
<load_balancer>

Notes: The description of the load balancer. Provided by the Octavia API service.

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

• flavor Status: optional.

CLI commands:

– openstack loadbalancer create [--flavor <flavor>] <load_balancer>

Notes: The flavor of the load balancer.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• name Status: optional.

CLI commands:

– openstack loadbalancer create [--name <name>] <load_balancer>

Notes: The name of the load balancer. Provided by the Octavia API service.

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

• Load Balancer statistics Status: mandatory.

CLI commands:

– openstack loadbalancer stats show <load_balancer>

Notes: The ability to show statistics for a load balancer.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• Load Balancer status tree Status: mandatory.

CLI commands:

– openstack loadbalancer status show <load_balancer>

7.2. Guides 996

Octavia Documentation, Release 15.1.0.dev35

Notes: The ability to show a status tree for the load balancer.

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

• tags Status: optional.

CLI commands:

– openstack loadbalancer create [--tag <tag>] <load_balancer>

Notes: The tags for the load balancer. Provided by the Octavia API service.

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

• vip_address Status: optional.

CLI commands:

– openstack loadbalancer create [--vip-address <vip_address>]
<load_balancer>

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

• vip_network_id Status: optional.

CLI commands:

– openstack loadbalancer create [--vip-network-id <vip_network_id>]
<load_balancer>

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

• vip_port_id Status: optional.

CLI commands:

– openstack loadbalancer create [--vip-port-id <vip_port_id>]
<load_balancer>

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

• vip_qos_policy_id Status: optional.

CLI commands:

– openstack loadbalancer create [--vip-qos-policy-id
<vip_qos_policy_id>] <load_balancer>

7.2. Guides 997

Octavia Documentation, Release 15.1.0.dev35

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

• vip_subnet_id Status: optional.

CLI commands:

– openstack loadbalancer create [--vip-subnet-id <vip_subnet_id>]
<load_balancer>

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

Notes:

• This document is a continuous work in progress

Listener Features

Provider feature support matrix for an Octavia load balancer listener.

Listener API Features

These features are documented in the Octavia API reference Create a Listener section. Summary

Feature Status Amphora Provider OVN Provider
admin_state_up mandatory ✓✓✓ ✓✓✓
allowed_cidr optional ✓✓✓ ×××
alpn_protocol optional ✓✓✓ ×××
client_authentication optional ✓✓✓ ×××
client_ca_tls_container_ref optional ✓✓✓ ×××
client_crl_container_ref optional ✓✓✓ ×××
connection_limit optional ✓✓✓ ×××
default_tls_container_ref optional ✓✓✓ ×××
description optional ✓✓✓ ✓✓✓
insert_headers - X-Forwarded-For optional ✓✓✓ ×××
insert_headers - X-Forwarded-Port optional ✓✓✓ ×××
insert_headers - X-Forwarded-Proto optional ✓✓✓ ×××
insert_headers - X-SSL-Client-Verify optional ✓✓✓ ×××
insert_headers - X-SSL-Client-Has-Cert optional ✓✓✓ ×××
insert_headers - X-SSL-Client-DN optional ✓✓✓ ×××
insert_headers - X-SSL-Client-CN optional ✓✓✓ ×××
insert_headers - X-SSL-Issuer optional ✓✓✓ ×××
insert_headers - X-SSL-Client-SHA1 optional ✓✓✓ ×××
insert_headers - X-SSL-Client-Not-Before optional ✓✓✓ ×××
insert_headers - X-SSL-Client-Not-After optional ✓✓✓ ×××
name optional ✓✓✓ ✓✓✓
protocol - HTTP optional ✓✓✓ ×××
protocol - HTTPS optional ✓✓✓ ×××

continues on next page

7.2. Guides 998

https://docs.openstack.org/api-ref/load-balancer/v2/index.html?expanded=create-listener-detail#create-listener
https://docs.openstack.org/api-ref/load-balancer/v2/index.html
https://docs.openstack.org/ovn-octavia-provider/latest/admin/driver.html

Octavia Documentation, Release 15.1.0.dev35

Table 1 – continued from previous page
Feature Status Amphora Provider OVN Provider
protocol - TCP optional ✓✓✓ ✓✓✓
protocol - TERMINATED_HTTPS optional ✓✓✓ ×××
protocol - UDP optional ✓✓✓ ✓✓✓
protocol - SCTP optional ✓✓✓ ×××
protocol - PROMETHEUS optional ✓✓✓ ×××
protocol_port mandatory ✓✓✓ ✓✓✓
sni_container_refs optional ✓✓✓ ×××
Listener statistics mandatory ✓✓✓ ×××
tags optional ✓✓✓ ✓✓✓
timeout_client_data optional ✓✓✓ ×××
timeout_member_connect optional ✓✓✓ ×××
timeout-member-data optional ✓✓✓ ×××
timeout-tcp-inspect optional ✓✓✓ ×××
tls_ciphers optional ✓✓✓ ×××
tls_versions optional ✓✓✓ ×××

Details

• admin_state_up Status: mandatory.

CLI commands:

– openstack loadbalancer listener create [--enable | --disable]
<loadbalancer>

Notes: Enables and disables the listener.

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

• allowed_cidr Status: optional.

CLI commands:

– openstack loadbalancer listener create [--allowed-cidr
<allowed_cidr>] <loadbalancer>

Notes: CIDR to allow access to the listener (can be set multiple times).

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• alpn_protocol Status: optional.

CLI commands:

– openstack loadbalancer listener create [--alpn-protocol <protocol>]
<loadbalancer>

Notes: List of accepted ALPN protocols (can be set multiple times).

Driver Support:

7.2. Guides 999

https://docs.openstack.org/api-ref/load-balancer/v2/index.html
https://docs.openstack.org/ovn-octavia-provider/latest/admin/driver.html

Octavia Documentation, Release 15.1.0.dev35

– Amphora Provider: complete

– OVN Provider: missing

• client_authentication Status: optional.

CLI commands:

– openstack loadbalancer listener create [--client-authentication
{NONE,OPTIONAL,MANDATORY}] <listener>

Notes: The TLS client authentication mode.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• client_ca_tls_container_ref Status: optional.

CLI commands:

– openstack loadbalancer listener create [--client-ca-tls-container-ref
<container_ref>] <listener>

Notes: The ref of the key manager service secret containing a PEM format client CA certificate
bundle for TERMINATED_TLS listeners.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• client_crl_container_ref Status: optional.

CLI commands:

– openstack loadbalancer listener create [--client-crl-container-ref
<client_crl_container_ref>] <listener>

Notes: The URI of the key manager service secret containing a PEM format CA revocation list
file for TERMINATED_TLS listeners.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• connection_limit Status: optional.

CLI commands:

– openstack loadbalancer listener create [--connection-limit <limit>]
<listener>

Notes: The maximum number of connections permitted for this listener.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

7.2. Guides 1000

Octavia Documentation, Release 15.1.0.dev35

• default_tls_container_ref Status: optional.

CLI commands:

– openstack loadbalancer listener create [--default-tls-container-ref
<container_ref>] <listener>

Notes: The URI of the key manager service secret containing a PKCS12 format certificate/key
bundle for TERMINATED_TLS listeners.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• description Status: optional.

CLI commands:

– openstack loadbalancer listener create [--description <description>]
<loadbalancer>

Notes: The description of the listener. Provided by the Octavia API service.

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

• insert_headers - X-Forwarded-For Status: optional.

CLI commands:

– openstack loadbalancer listener create [--insert-headers
X-Forwarded-For=true] <loadbalancer>

Notes: When true a X-Forwarded-For header is inserted into the request to the backend member
that specifies the client IP address.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• insert_headers - X-Forwarded-Port Status: optional.

CLI commands:

– openstack loadbalancer listener create [--insert-headers
X-Forwarded-Port=true] <loadbalancer>

Notes: When true a X-Forwarded-Port header is inserted into the request to the backend member
that specifies the listener port.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• insert_headers - X-Forwarded-Proto Status: optional.

CLI commands:

7.2. Guides 1001

Octavia Documentation, Release 15.1.0.dev35

– openstack loadbalancer listener create [--insert-headers
X-Forwarded-Proto=true] <loadbalancer>

Notes: When true a X-Forwarded-Proto header is inserted into the request to the backend member.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• insert_headers - X-SSL-Client-Verify Status: optional.

CLI commands:

– openstack loadbalancer listener create [--insert-headers
X-SSL-Client-Verify=true] <loadbalancer>

Notes: When true a X-SSL-Client-Verify header is inserted into the request to the backend member
that contains 0 if the client authentication was successful, or an result error number greater than 0
that align to the openssl verify error codes.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• insert_headers - X-SSL-Client-Has-Cert Status: optional.

CLI commands:

– openstack loadbalancer listener create [--insert-headers
X-SSL-Client-Has-Cert=true] <loadbalancer>

Notes: When true a X-SSL-Client-Has-Cert header is inserted into the request to the backend
member that is true if a client authentication certificate was presented, and false if not. Does not
indicate validity.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• insert_headers - X-SSL-Client-DN Status: optional.

CLI commands:

– openstack loadbalancer listener create [--insert-headers
X-SSL-Client-DN=true] <loadbalancer>

Notes: When true a X-SSL-Client-DN header is inserted into the request to the backend member
that contains the full Distinguished Name of the certificate presented by the client.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• insert_headers - X-SSL-Client-CN Status: optional.

CLI commands:

7.2. Guides 1002

Octavia Documentation, Release 15.1.0.dev35

– openstack loadbalancer listener create [--insert-headers
X-SSL-Client-CN=true] <loadbalancer>

Notes: When true a X-SSL-Client-CN header is inserted into the request to the backend member
that contains the Common Name from the full Distinguished Name of the certificate presented by
the client.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• insert_headers - X-SSL-Issuer Status: optional.

CLI commands:

– openstack loadbalancer listener create [--insert-headers
X-SSL-Issuer=true] <loadbalancer>

Notes: When true a X-SSL-Issuer header is inserted into the request to the backend member that
contains the full Distinguished Name of the client certificate issuer.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• insert_headers - X-SSL-Client-SHA1 Status: optional.

CLI commands:

– openstack loadbalancer listener create [--insert-headers
X-SSL-Client-SHA1=true] <loadbalancer>

Notes: When true a X-SSL-Client-SHA1 header is inserted into the request to the backend member
that contains the SHA-1 fingerprint of the certificate presented by the client in hex string format.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• insert_headers - X-SSL-Client-Not-Before Status: optional.

CLI commands:

– openstack loadbalancer listener create [--insert-headers
X-SSL-Client-Not-Before=true] <loadbalancer>

Notes: When true a X-SSL-Client-Not-Before header is inserted into the request to the backend
member that contains the start date presented by the client as a formatted string YYMMDDhh-
mmss[Z].

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• insert_headers - X-SSL-Client-Not-After Status: optional.

CLI commands:

7.2. Guides 1003

Octavia Documentation, Release 15.1.0.dev35

– openstack loadbalancer listener create [--insert-headers
X-SSL-Client-Not-Aftr=true] <loadbalancer>

Notes: When true a X-SSL-Client-Not-After header is inserted into the request to the backend
member that contains the end date presented by the client as a formatted string YYMMDDhh-
mmss[Z].

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• name Status: optional.

CLI commands:

– openstack loadbalancer listener create [--name <name>] <loadbalancer>

Notes: The name of the load balancer listener. Provided by the Octavia API service.

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

• protocol - HTTP Status: optional.

CLI commands:

– openstack loadbalancer listener create --protocol HTTP <loadbalancer>

Notes: HTTP protocol support for the listener.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• protocol - HTTPS Status: optional.

CLI commands:

– openstack loadbalancer listener create --protocol HTTPS
<loadbalancer>

Notes: HTTPS protocol support for the listener.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• protocol - TCP Status: optional.

CLI commands:

– openstack loadbalancer listener create --protocol TCP <loadbalancer>

Notes: TCP protocol support for the listener.

Driver Support:

– Amphora Provider: complete

7.2. Guides 1004

Octavia Documentation, Release 15.1.0.dev35

– OVN Provider: complete

• protocol - TERMINATED_HTTPS Status: optional.

CLI commands:

– openstack loadbalancer listener create --protocol TERMINATED_HTTPS
<loadbalancer>

Notes: Terminated HTTPS protocol support for the listener.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• protocol - UDP Status: optional.

CLI commands:

– openstack loadbalancer listener create --protocol UDP <loadbalancer>

Notes: UDP protocol support for the listener.

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

• protocol - SCTP Status: optional.

CLI commands:

– openstack loadbalancer listener create --protocol SCTP <loadbalancer>

Notes: SCTP protocol support for the listener.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• protocol - PROMETHEUS Status: optional.

CLI commands:

– openstack loadbalancer listener create --protocol PROMETHEUS
<loadbalancer>

Notes: Prometheus exporter support for the listener.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• protocol_port Status: mandatory.

CLI commands:

– openstack loadbalancer listener create --protocol-port <port>
<loadbalancer>

7.2. Guides 1005

Octavia Documentation, Release 15.1.0.dev35

Notes: The protocol port number for the listener.

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

• sni_container_refs Status: optional.

CLI commands:

– openstack loadbalancer listener create [--sni-container-refs
[<container_ref> [<container_ref> ...]]] <loadbalancer>

Notes: A list of URIs to the key manager service secrets containing PKCS12 format certificate/key
bundles for TERMINATED_TLS listeners.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• Listener statistics Status: mandatory.

CLI commands:

– openstack loadbalancer listener stats show <listener>

Notes: The ability to show statistics for a listener.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• tags Status: optional.

CLI commands:

– openstack loadbalancer listener create [--tags <tag>] <loadbalancer>

Notes: The tags for the load balancer listener. Provided by the Octavia API service.

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

• timeout_client_data Status: optional.

CLI commands:

– openstack loadbalancer listener create [--timeout-client-data
<timeout>] <loadbalancer>

Notes: Frontend client inactivity timeout in milliseconds.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

7.2. Guides 1006

Octavia Documentation, Release 15.1.0.dev35

• timeout_member_connect Status: optional.

CLI commands:

– openstack loadbalancer listener create [--timeout-member-connect
<timeout>] <loadbalancer>

Notes: Backend member connection timeout in milliseconds.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• timeout-member-data Status: optional.

CLI commands:

– openstack loadbalancer listener create [--timeout-member-data
<timeout>] <loadbalancer>

Notes: Backend member inactivity timeout in milliseconds.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• timeout-tcp-inspect Status: optional.

CLI commands:

– openstack loadbalancer listener create [--timeout-tcp-inspect
<timeout>] <loadbalancer>

Notes: Time, in milliseconds, to wait for additional TCP packets for content inspection.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• tls_ciphers Status: optional.

CLI commands:

– openstack loadbalancer listener create [--tls-ciphers <ciphers>]
<loadbalancer>

Notes: List of accepted TLS ciphers.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• tls_versions Status: optional.

CLI commands:

– openstack loadbalancer listener create [--tls-versions <versions>]
<loadbalancer>

7.2. Guides 1007

Octavia Documentation, Release 15.1.0.dev35

Notes: List of accepted TLS protocol versions.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

Notes:

• This document is a continuous work in progress

Pool Features

Provider feature support matrix for an Octavia load balancer pool.

Pool API Features

These features are documented in the Octavia API reference Create a Pool section. Summary

Feature Status Amphora
Provider

OVN
Provider

admin_state_up manda-
tory

✓✓✓ ✓✓✓

alpn_protocol optional ✓✓✓ ×××
ca_tls_container_ref optional ✓✓✓ ×××
crl_container_ref optional ✓✓✓ ×××
lb_algorithm - LEAST_CONNECTIONS optional ✓✓✓ ×××
lb_algorithm - ROUND_ROBIN optional ✓✓✓ ×××
lb_algorithm - SOURCE_IP optional ✓✓✓ ×××
lb_algorithm - SOURCE_IP_PORT optional ××× ✓✓✓
description optional ✓✓✓ ✓✓✓
name optional ✓✓✓ ✓✓✓
protocol - HTTP optional ✓✓✓ ×××
protocol - HTTPS optional ✓✓✓ ×××
protocol - PROXY optional ✓✓✓ ×××
protocol - PROXYV2 optional ✓✓✓ ×××
protocol - TCP optional ✓✓✓ ✓✓✓
protocol - UDP optional ✓✓✓ ✓✓✓
protocol - SCTP optional ✓✓✓ ×××
session_persistence - APP_COOKIE optional ✓✓✓ ×××
session_persistence - cookie_name optional ✓✓✓ ×××
session_persistence - HTTP_COOKIE optional ✓✓✓ ×××
session_persistence - persistence_timeout optional ✓✓✓ ×××
session_persistence - persis-
tence_granularity

optional ✓✓✓ ×××

session_persistence - SOURCE_IP optional ✓✓✓ ×××
tags optional ✓✓✓ ✓✓✓
tls_ciphers optional ✓✓✓ ×××
tls_container_ref optional ✓✓✓ ×××
tls_enabled optional ✓✓✓ ×××
tls_versions optional ✓✓✓ ×××

7.2. Guides 1008

https://docs.openstack.org/api-ref/load-balancer/v2/index.html?expanded=create-pool-detail#create-pool
https://docs.openstack.org/api-ref/load-balancer/v2/index.html
https://docs.openstack.org/api-ref/load-balancer/v2/index.html
https://docs.openstack.org/ovn-octavia-provider/latest/admin/driver.html
https://docs.openstack.org/ovn-octavia-provider/latest/admin/driver.html

Octavia Documentation, Release 15.1.0.dev35

Details

• admin_state_up Status: mandatory.

CLI commands:

– openstack loadbalancer pool create [--enable | --disable] --listener
<listener>

Notes: Enables and disables the pool.

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

• alpn_protocol Status: optional.

CLI commands:

– openstack loadbalancer pool create [--alpn-protocol <protocol>]
--listener <listener>

Notes: List of accepted ALPN protocols (can be set multiple times).

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• ca_tls_container_ref Status: optional.

CLI commands:

– openstack loadbalancer pool create [--ca-tls-container-ref
<ca_tls_container_ref>] --listener <listener>

Notes: The reference of the key manager service secret containing a PEM format CA certificate
bundle for tls_enabled pools.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• crl_container_ref Status: optional.

CLI commands:

– openstack loadbalancer pool create [--crl-container-ref
<crl_container_ref>] --listener <listener>

Notes: The reference of the key manager service secret containing a PEM format CA revocation
list file for tls_enabled pools.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

7.2. Guides 1009

Octavia Documentation, Release 15.1.0.dev35

• lb_algorithm - LEAST_CONNECTIONS Status: optional.

CLI commands:

– openstack loadbalancer pool create --lb-algorithm LEAST_CONNECTIONS
--listener <listener>

Notes: The pool will direct connections to the member server with the least connections in use.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• lb_algorithm - ROUND_ROBIN Status: optional.

CLI commands:

– openstack loadbalancer pool create --lb-algorithm ROUND_ROBIN
--listener <listener>

Notes: The pool will direct connections to the next member server, one after the other, rotating
through the available member servers.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• lb_algorithm - SOURCE_IP Status: optional.

CLI commands:

– openstack loadbalancer pool create --lb-algorithm SOURCE_IP
--listener <listener>

Notes: The pool will direct connections to the member server based on a hash of the source IP.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• lb_algorithm - SOURCE_IP_PORT Status: optional.

CLI commands:

– openstack loadbalancer pool create --lb-algorithm SOURCE_IP_PORT
--listener <listener>

Notes: The pool will direct connections to the member server based on a hash of the source IP and
Port.

Driver Support:

– Amphora Provider: missing

– OVN Provider: complete

• description Status: optional.

CLI commands:

7.2. Guides 1010

Octavia Documentation, Release 15.1.0.dev35

– openstack loadbalancer pool create [--description <description>]
--listener <listener>

Notes: The description of the pool. Provided by the Octavia API service.

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

• name Status: optional.

CLI commands:

– openstack loadbalancer pool create [--name <name>] --listener
<listener>

Notes: The name of the pool. Provided by the Octavia API service.

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

• protocol - HTTP Status: optional.

CLI commands:

– openstack loadbalancer pool create --protocol HTTP --listener
<listener>

Notes: HTTP protocol support for the pool.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• protocol - HTTPS Status: optional.

CLI commands:

– openstack loadbalancer pool create --protocol HTTP --listener
<listener>

Notes: HTTPS protocol support for the pool.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• protocol - PROXY Status: optional.

CLI commands:

– openstack loadbalancer pool create --protocol PROXY --listener
<listener>

Notes: PROXY protocol support for the pool.

Driver Support:

7.2. Guides 1011

Octavia Documentation, Release 15.1.0.dev35

– Amphora Provider: complete

– OVN Provider: missing

• protocol - PROXYV2 Status: optional.

CLI commands:

– openstack loadbalancer pool create --protocol PROXYV2 --listener
<listener>

Notes: PROXY protocol version 2 support for the pool.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• protocol - TCP Status: optional.

CLI commands:

– openstack loadbalancer pool create --protocol TCP --listener
<listener>

Notes: TCP protocol support for the pool.

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

• protocol - UDP Status: optional.

CLI commands:

– openstack loadbalancer pool create --protocol UDP --listener
<listener>

Notes: UDP protocol support for the pool.

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

• protocol - SCTP Status: optional.

CLI commands:

– openstack loadbalancer pool create --protocol SCTP --listener
<listener>

Notes: SCTP protocol support for the pool.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• session_persistence - APP_COOKIE Status: optional.

CLI commands:

7.2. Guides 1012

Octavia Documentation, Release 15.1.0.dev35

– openstack loadbalancer pool create --session-persistence
type=APP_COOKIE --listener <listener>

Notes: Session persistence using an application supplied cookie.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• session_persistence - cookie_name Status: optional.

CLI commands:

– openstack loadbalancer pool create --session-persistence
cookie_name=chocolate --listener <listener>

Notes: The name of the application cookie to use for session persistence.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• session_persistence - HTTP_COOKIE Status: optional.

CLI commands:

– openstack loadbalancer pool create --session-persistence
type=HTTP_COOKIE --listener <listener>

Notes: Session persistence using a cookie created by the load balancer.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• session_persistence - persistence_timeout Status: optional.

CLI commands:

– openstack loadbalancer pool create --session-persistence
persistence_timeout=360 --listener <listener>

Notes: The timeout, in seconds, after which a SCTP or UDP flow may be rescheduled to a different
member.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• session_persistence - persistence_granularity Status: optional.

CLI commands:

– openstack loadbalancer pool create --session-persistence
persistence_granularity=255.255.255.255 --listener <listener>

7.2. Guides 1013

Octavia Documentation, Release 15.1.0.dev35

Notes: The netmask used to determine SCTP or UDP SOURCE_IP session persistence.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• session_persistence - SOURCE_IP Status: optional.

CLI commands:

– openstack loadbalancer pool create --session-persistence
type=SOURCE_IP --listener <listener>

Notes: Session persistence using the source IP address.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• tags Status: optional.

CLI commands:

– openstack loadbalancer pool create [--tag <tag>] --listener
<listener>

Notes: The tags for the pool. Provided by the Octavia API service.

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

• tls_ciphers Status: optional.

CLI commands:

– openstack loadbalancer pool create [--tls-ciphers <ciphers>]
--listener <listener>

Notes: List of TLS ciphers available for member connections.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• tls_container_ref Status: optional.

CLI commands:

– openstack loadbalancer pool create [--tls-container-ref
<container-ref>] --listener <listener>

Notes: The reference to the key manager service secret containing a PKCS12 format certificate/key
bundle for tls_enabled pools for TLS client authentication to the member servers.

Driver Support:

– Amphora Provider: complete

7.2. Guides 1014

Octavia Documentation, Release 15.1.0.dev35

– OVN Provider: missing

• tls_enabled Status: optional.

CLI commands:

– openstack loadbalancer pool create [--enable-tls] --listener
<listener>

Notes: When true connections to backend member servers will use TLS encryption.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• tls_versions Status: optional.

CLI commands:

– openstack loadbalancer pool create [--tls-versions <versions>]
--listener <listener>

Notes: List of TLS protocol versions available for member connections.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

Notes:

• This document is a continuous work in progress

Member Features

Provider feature support matrix for an Octavia load balancer member.

Member API Features

These features are documented in the Octavia API reference Create a Member section. Summary

Feature Status Amphora Provider OVN Provider
admin_state_up mandatory ✓✓✓ ✓✓✓
address mandatory ✓✓✓ ✓✓✓
backup optional ✓✓✓ ×××
Batch update members mandatory ✓✓✓ ✓✓✓
monitor_address optional ✓✓✓ ×××
monitor_port optional ✓✓✓ ×××
name optional ✓✓✓ ✓✓✓
protocol_port mandatory ✓✓✓ ✓✓✓
subnet_id optional ✓✓✓ ✓✓✓
tags optional ✓✓✓ ✓✓✓
weight optional ✓✓✓ ×××

Details

7.2. Guides 1015

https://docs.openstack.org/api-ref/load-balancer/v2/index.html?expanded=create-member-detail#create-member
https://docs.openstack.org/api-ref/load-balancer/v2/index.html
https://docs.openstack.org/ovn-octavia-provider/latest/admin/driver.html

Octavia Documentation, Release 15.1.0.dev35

• admin_state_up Status: mandatory.

CLI commands:

– openstack loadbalancer member create [--enable | --disable] <pool>

Notes: Enables and disables the member.

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

• address Status: mandatory.

CLI commands:

– openstack loadbalancer member create --address <ip_address> <pool>

Notes: The IP address for the member.

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

• backup Status: optional.

CLI commands:

– openstack loadbalancer member create [--enable-backup] <pool>

Notes: True if the member is a backup member server.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• Batch update members Status: mandatory.

Notes: Ability to update the members of a pool in one API call.

Driver Support:

– Amphora Provider: complete

– OVN Provider: partial Notes: The OVN provider does not support all of the member
features.

• monitor_address Status: optional.

CLI commands:

– openstack loadbalancer member create [--monitor-address
<monitor_address>] <pool>

Notes: An alternate IP address used for health monitoring a backend member.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

7.2. Guides 1016

Octavia Documentation, Release 15.1.0.dev35

• monitor_port Status: optional.

CLI commands:

– openstack loadbalancer member create [--monitor-port <monitor_port>]
<pool>

Notes: An alternate protocol port used for health monitoring a backend member.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• name Status: optional.

CLI commands:

– openstack loadbalancer member create [--name <name>] <pool>

Notes: The name for the member. Provided by the Octavia API service.

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

• protocol_port Status: mandatory.

CLI commands:

– openstack loadbalancer member create --protocol_port <protocol_port>
<pool>

Notes: The protocol port number to connect with on the member server.

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

• subnet_id Status: optional.

CLI commands:

– openstack loadbalancer member create [--subnet-id <subnet_id>] <pool>

Notes: The subnet ID the member service is accessible from.

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

• tags Status: optional.

CLI commands:

– openstack loadbalancer member create [--tag <tag>] <pool>

Notes: The tags for the member. Provided by the Octavia API service.

Driver Support:

7.2. Guides 1017

Octavia Documentation, Release 15.1.0.dev35

– Amphora Provider: complete

– OVN Provider: complete

• weight Status: optional.

CLI commands:

– openstack loadbalancer member create [--weight <weight>] <pool>

Notes: The weight of a member determines the portion of requests or connections it services
compared to the other members of the pool.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

Notes:

• This document is a continuous work in progress

Health Monitor Features

Provider feature support matrix for an Octavia load balancer health monitor.

Health Monitor API Features

These features are documented in the Octavia API reference Create a Health Monitor section. Summary

Feature Status Amphora Provider OVN Provider
admin_state_up mandatory ✓✓✓ ✓✓✓
delay mandatory ✓✓✓ ✓✓✓
domain_name optional ✓✓✓ ×××
expected_codes optional ✓✓✓ ×××
http_method optional ✓✓✓ ×××
http_version optional ✓✓✓ ×××
name optional ✓✓✓ ✓✓✓
max_retries mandatory ✓✓✓ ✓✓✓
max_retries_down optional ✓✓✓ ✓✓✓
tags optional ✓✓✓ ✓✓✓
timeout mandatory ✓✓✓ ✓✓✓
type - HTTP optional ✓✓✓ ×××
type - HTTPS optional ✓✓✓ ×××
type - PING optional ✓✓✓ ×××
type - TCP optional ✓✓✓ ✓✓✓
type - TLS-HELLO optional ✓✓✓ ×××
type - UDP-CONNECT optional ✓✓✓ ✓✓✓
type - SCTP optional ✓✓✓ ×××
url_path optional ✓✓✓ ×××

Details

• admin_state_up Status: mandatory.

CLI commands:

7.2. Guides 1018

https://docs.openstack.org/api-ref/load-balancer/v2/index.html?expanded=create-health-monitor-detail#create-health-monitor
https://docs.openstack.org/api-ref/load-balancer/v2/index.html
https://docs.openstack.org/ovn-octavia-provider/latest/admin/driver.html

Octavia Documentation, Release 15.1.0.dev35

– openstack loadbalancer healthmonitor create [--enable | --disable]
<pool>

Notes: Enables and disables the health monitor.

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

• delay Status: mandatory.

CLI commands:

– openstack loadbalancer healthmonitor create --delay <delay> <pool>

Notes: The time, in seconds, between sending probes to members.

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

• domain_name Status: optional.

CLI commands:

– openstack loadbalancer healthmonitor create [--domain-name
<domain_name>] <pool>

Notes: The domain name, which be injected into the HTTP Host Header to the backend server for
HTTP health check.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• expected_codes Status: optional.

CLI commands:

– openstack loadbalancer healthmonitor create [--expected-codes
<codes>] <pool>

Notes: The list of HTTP status codes expected in response from the member to declare it healthy.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• http_method Status: optional.

CLI commands:

– openstack loadbalancer healthmonitor create [--http-method
<HTTP_METHOD>] <pool>

Notes: The HTTP method that the health monitor uses for requests.

Driver Support:

7.2. Guides 1019

Octavia Documentation, Release 15.1.0.dev35

– Amphora Provider: complete

– OVN Provider: missing

• http_version Status: optional.

CLI commands:

– openstack loadbalancer healthmonitor create [[--http-version
<http_version>]] <pool>

Notes: The HTTP version to use for health checks.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• name Status: optional.

CLI commands:

– openstack loadbalancer healthmonitor create [--name <name>] <pool>

Notes: The name of the health monitor. Provided by the Octavia API service.

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

• max_retries Status: mandatory.

CLI commands:

– openstack loadbalancer healthmonitor create --max-retries
<max_retries> <pool>

Notes: The number of successful checks before changing the operating status of the member to
ONLINE.

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

• max_retries_down Status: optional.

CLI commands:

– openstack loadbalancer healthmonitor create [--max-retries-down
<max_retries_down>] <pool>

Notes: The number of allowed check failures before changing the operating status of the member
to ERROR.

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

7.2. Guides 1020

Octavia Documentation, Release 15.1.0.dev35

• tags Status: optional.

CLI commands:

– openstack loadbalancer healthmonitor create [--tag <tag>] <pool>

Notes: The tags for the health monitor. Provided by the Octavia API service.

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

• timeout Status: mandatory.

CLI commands:

– openstack loadbalancer healthmonitor create --timeout <timeout>
<pool>

Notes: The maximum time, in seconds, that a monitor waits to connect before it times out.

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

• type - HTTP Status: optional.

CLI commands:

– openstack loadbalancer healthmonitor create --type HTTP <pool>

Notes: Use HTTP for the health monitor.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• type - HTTPS Status: optional.

CLI commands:

– openstack loadbalancer healthmonitor create --type HTTPS <pool>

Notes: Use HTTPS for the health monitor.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• type - PING Status: optional.

CLI commands:

– openstack loadbalancer healthmonitor create --type PING <pool>

Notes: Use PING for the health monitor.

Driver Support:

7.2. Guides 1021

Octavia Documentation, Release 15.1.0.dev35

– Amphora Provider: partial Notes: CentOS 7 based amphora do not support PING health
monitors.

– OVN Provider: missing

• type - TCP Status: optional.

CLI commands:

– openstack loadbalancer healthmonitor create --type TCP <pool>

Notes: Use TCP for the health monitor.

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

• type - TLS-HELLO Status: optional.

CLI commands:

– openstack loadbalancer healthmonitor create --type TLS-HELLO <pool>

Notes: Use TLS-HELLO handshake for the health monitor.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• type - UDP-CONNECT Status: optional.

CLI commands:

– openstack loadbalancer healthmonitor create --type UDP-CONNECT <pool>

Notes: Use UDP-CONNECT for the health monitor.

Driver Support:

– Amphora Provider: complete

– OVN Provider: complete

• type - SCTP Status: optional.

CLI commands:

– openstack loadbalancer healthmonitor create --type SCTP <pool>

Notes: Use SCTP for the health monitor.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• url_path Status: optional.

CLI commands:

– openstack loadbalancer healthmonitor create [--url-path <url_path>]
<pool>

7.2. Guides 1022

Octavia Documentation, Release 15.1.0.dev35

Notes: The HTTP URL path of the request sent by the monitor to test the health of a backend
member.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

Notes:

• This document is a continuous work in progress

L7 Policy Features

Provider feature support matrix for an Octavia load balancer L7 Policies.

L7 Policy API Features

These features are documented in the Octavia API reference Create an L7 Policy section. Summary

Feature Status Amphora Provider OVN Provider
action - REDIRECT_TO_POOL optional ✓✓✓ ×××
action - REDIRECT_TO_PREFIX optional ✓✓✓ ×××
action - REDIRECT_TO_URL optional ✓✓✓ ×××
action - REJECT optional ✓✓✓ ×××
admin_state_up mandatory ✓✓✓ ×××
description optional ✓✓✓ ×××
name optional ✓✓✓ ×××
position optional ✓✓✓ ×××
redirect_http_code optional ✓✓✓ ×××
redirect_pool_id optional ✓✓✓ ×××
redirect_prefix optional ✓✓✓ ×××
redirect_url optional ✓✓✓ ×××
tags optional ✓✓✓ ×××

Details

• action - REDIRECT_TO_POOL Status: optional.

CLI commands:

– openstack loadbalancer l7policy create --action REDIRECT_TO_POOL
<listener>

Notes: The L7 policy action REDIRECT_TO_POOL.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• action - REDIRECT_TO_PREFIX Status: optional.

CLI commands:

7.2. Guides 1023

https://docs.openstack.org/api-ref/load-balancer/v2/index.html?expanded=create-l7-policy-detail#create-an-l7-policy
https://docs.openstack.org/api-ref/load-balancer/v2/index.html
https://docs.openstack.org/ovn-octavia-provider/latest/admin/driver.html

Octavia Documentation, Release 15.1.0.dev35

– openstack loadbalancer l7policy create --action REDIRECT_TO_PREFIX
<listener>

Notes: The L7 policy action REDIRECT_TO_PREFIX.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• action - REDIRECT_TO_URL Status: optional.

CLI commands:

– openstack loadbalancer l7policy create --action REDIRECT_TO_URL
<listener>

Notes: The L7 policy action REDIRECT_TO_URL.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• action - REJECT Status: optional.

CLI commands:

– openstack loadbalancer l7policy create --action REJECT <listener>

Notes: The L7 policy action REJECT.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• admin_state_up Status: mandatory.

CLI commands:

– openstack loadbalancer l7policy create [--enable | --disable]
<listener>

Notes: Enables and disables the L7 policy.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• description Status: optional.

CLI commands:

– openstack loadbalancer l7policy create [--description <description>]
<listener>

Notes: The description of the L7 policy. Provided by the Octavia API service.

Driver Support:

– Amphora Provider: complete

7.2. Guides 1024

Octavia Documentation, Release 15.1.0.dev35

– OVN Provider: missing

• name Status: optional.

CLI commands:

– openstack loadbalancer l7policy create [--name <name>] <listener>

Notes: The name of the L7 policy. Provided by the Octavia API service.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• position Status: optional.

CLI commands:

– openstack loadbalancer l7policy create [--position <position>]
<listener>

Notes: The position of this policy on the listener.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• redirect_http_code Status: optional.

CLI commands:

– openstack loadbalancer l7policy create [--redirect-http-code
<redirect_http_code>] <listener>

Notes: Requests matching this policy will be redirected to the specified URL or Prefix URL with
the HTTP response code.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• redirect_pool_id Status: optional.

CLI commands:

– openstack loadbalancer l7policy create [--redirect-pool <pool>]
<listener>

Notes: Requests matching this policy will be redirected to the pool with this ID.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• redirect_prefix Status: optional.

CLI commands:

7.2. Guides 1025

Octavia Documentation, Release 15.1.0.dev35

– openstack loadbalancer l7policy create [--redirect-prefix <url>]
<listener>

Notes: Requests matching this policy will be redirected to this Prefix URL.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• redirect_url Status: optional.

CLI commands:

– openstack loadbalancer l7policy create [--redirect-url <url>]
<listener>

Notes: Requests matching this policy will be redirected to this URL.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• tags Status: optional.

CLI commands:

– openstack loadbalancer l7policy create [--tag <tag>] <listener>

Notes: The tags for the L7 policy. Provided by the Octavia API service.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

Notes:

• This document is a continuous work in progress

L7 Rule Features

Provider feature support matrix for an Octavia load balancer L7 Rules.

L7 Rule API Features

These features are documented in the Octavia API reference Create an L7 Rule section. Summary

7.2. Guides 1026

https://docs.openstack.org/api-ref/load-balancer/v2/index.html?expanded=create-l7-rule-detail#create-an-l7-rule

Octavia Documentation, Release 15.1.0.dev35

Feature Status Amphora Provider OVN Provider
admin_state_up mandatory ✓✓✓ ×××
compare_type - CONTAINS mandatory ✓✓✓ ×××
compare_type - ENDS_WITH mandatory ✓✓✓ ×××
compare_type - EQUAL_TO mandatory ✓✓✓ ×××
compare_type - REGEX mandatory ✓✓✓ ×××
compare_type - STARTS_WITH mandatory ✓✓✓ ×××
invert optional ✓✓✓ ×××
key optional ✓✓✓ ×××
tags optional ✓✓✓ ×××
type - COOKIE optional ✓✓✓ ×××
type - FILE_TYPE optional ✓✓✓ ×××
type - HEADER optional ✓✓✓ ×××
type - HOST_NAME optional ✓✓✓ ×××
type - PATH optional ✓✓✓ ×××
type - SSL_CONN_HAS_CERT optional ✓✓✓ ×××
type - SSL_VERIFY_RESULT optional ✓✓✓ ×××
type - SSL_DN_FIELD optional ✓✓✓ ×××
value mandatory ✓✓✓ ×××

Details

• admin_state_up Status: mandatory.

CLI commands:

– openstack loadbalancer l7rule create [--enable | --disable]
<l7policy>

Notes: Enables and disables the L7 rule.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• compare_type - CONTAINS Status: mandatory.

CLI commands:

– openstack loadbalancer l7rule create --compare-type CONTAINS
<l7policy>

Notes: The CONTAINS comparison type for the L7 rule.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• compare_type - ENDS_WITH Status: mandatory.

CLI commands:

– openstack loadbalancer l7rule create --compare-type ENDS_WITH
<l7policy>

7.2. Guides 1027

https://docs.openstack.org/api-ref/load-balancer/v2/index.html
https://docs.openstack.org/ovn-octavia-provider/latest/admin/driver.html

Octavia Documentation, Release 15.1.0.dev35

Notes: The ENDS_WITH comparison type for the L7 rule.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• compare_type - EQUAL_TO Status: mandatory.

CLI commands:

– openstack loadbalancer l7rule create --compare-type EQUAL_TO
<l7policy>

Notes: The EQUAL_TO comparison type for the L7 rule.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• compare_type - REGEX Status: mandatory.

CLI commands:

– openstack loadbalancer l7rule create --compare-type REGEX <l7policy>

Notes: The REGEX comparison type for the L7 rule.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• compare_type - STARTS_WITH Status: mandatory.

CLI commands:

– openstack loadbalancer l7rule create --compare-type STARTS_WITH
<l7policy>

Notes: The STARTS_WITH comparison type for the L7 rule.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• invert Status: optional.

CLI commands:

– openstack loadbalancer l7rule create [--invert] <l7policy>

Notes: When true the logic of the rule is inverted.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

7.2. Guides 1028

Octavia Documentation, Release 15.1.0.dev35

• key Status: optional.

CLI commands:

– openstack loadbalancer l7rule create [--key <key>] <l7policy>

Notes: The key to use for the comparison.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• tags Status: optional.

CLI commands:

– openstack loadbalancer l7rule create [--tag <tag>] <l7policy>

Notes: The tags for the L7 rule. Provided by the Octavia API service.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• type - COOKIE Status: optional.

CLI commands:

– openstack loadbalancer l7rule create --type COOKIE <l7policy>

Notes: The COOKIE L7 rule type.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• type - FILE_TYPE Status: optional.

CLI commands:

– openstack loadbalancer l7rule create --type FILE_TYPE <l7policy>

Notes: The FILE_TYPE L7 rule type.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• type - HEADER Status: optional.

CLI commands:

– openstack loadbalancer l7rule create --type HEADER <l7policy>

Notes: The HEADER L7 rule type.

Driver Support:

– Amphora Provider: complete

7.2. Guides 1029

Octavia Documentation, Release 15.1.0.dev35

– OVN Provider: missing

• type - HOST_NAME Status: optional.

CLI commands:

– openstack loadbalancer l7rule create --type HOST_NAME <l7policy>

Notes: The HOST_NAME L7 rule type.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• type - PATH Status: optional.

CLI commands:

– openstack loadbalancer l7rule create --type PATH <l7policy>

Notes: The PATH L7 rule type.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• type - SSL_CONN_HAS_CERT Status: optional.

CLI commands:

– openstack loadbalancer l7rule create --type SSL_CONN_HAS_CERT
<l7policy>

Notes: The SSL_CONN_HAS_CERT L7 rule type.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• type - SSL_VERIFY_RESULT Status: optional.

CLI commands:

– openstack loadbalancer l7rule create --type SSL_VERIFY_RESULT
<l7policy>

Notes: The SSL_VERIFY_RESULT L7 rule type.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• type - SSL_DN_FIELD Status: optional.

CLI commands:

– openstack loadbalancer l7rule create --type SSL_DN_FIELD <l7policy>

7.2. Guides 1030

Octavia Documentation, Release 15.1.0.dev35

Notes: The SSL_DN_FIELD L7 rule type.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

• value Status: mandatory.

CLI commands:

– openstack loadbalancer l7rule create --value <value> <l7policy>

Notes: The value to use for the comparison.

Driver Support:

– Amphora Provider: complete

– OVN Provider: missing

Notes:

• This document is a continuous work in progress

7.2.3 Monitoring Load Balancers

Introduction

Octavia provides multiple ways to monitor your load balancers. You can query statistics via the Octavia
API or directly from your load balancer.

This guide will discuss the various options available to monitor your Octavia load balancer.

Monitoring Using the Octavia API

Octavia collects key metrics from all load balancers, including load balancers built with third party
provider drivers that support collecting statistics. Octavia aggregates these statistics and makes them
available via the Octavia API. Load balancer statistics are available at the load balancer or listener level.

Load balancer statistics can be queried using the OpenStack Client.

$ openstack loadbalancer stats show <lb id>

+--------------------+-----------+
| Field | Value |
+--------------------+-----------+
active_connections	0
bytes_in	2236722
bytes_out	100973832
request_errors	0
total_connections	3606
+--------------------+-----------+

Individual listener statistics can also be queried using the OpenStack Client.

7.2. Guides 1031

https://docs.openstack.org/python-openstackclient/latest/
https://docs.openstack.org/python-openstackclient/latest/

Octavia Documentation, Release 15.1.0.dev35

$ openstack loadbalancer listener stats show <listener id>

+--------------------+-------+
| Field | Value |
+--------------------+-------+
active_connections	0
bytes_in	89
bytes_out	237
request_errors	0
total_connections	1
+--------------------+-------+

Load balancer statistics queried via the Octavia API include metrics for all listener protocols.

Monitoring with Prometheus

Some provider drivers, such as the Octavia amphora driver, provide a prometheus endpoint. This allows
you to configure your Prometheus infrastructure to collect metrics from Octavia load balancers.

To add a Prometheus endpoint on an Octavia load balancer, create a listener with a special protocol
PROMETHEUS. This will enable the endpoint as /metrics on the listener. The listener supports all of the
features of an Octavia load balancer, such as allowed_cidrs, but does not support attaching pools or L7
policies. All metrics will be identified by the Octavia object ID (UUID) of the resources.

Note

Currectly UDP and SCTP metrics are not reported via Prometheus endpoints when using the amphora
provider.

To create a Prometheus endpoint on port 8088 for load balancer lb1, you would run the following com-
mand.

$ openstack loadbalancer listener create --name stats-listener --protocol␣
↪→PROMETHEUS --protocol-port 8088 lb1
+-----------------------------+--------------------------------------+
| Field | Value |
+-----------------------------+--------------------------------------+
admin_state_up	True
connection_limit	-1
created_at	2021-10-03T01:44:25
default_pool_id	None
default_tls_container_ref	None
description	
id	fb57d764-470a-4b6b-8820-627452f55b96
insert_headers	None
l7policies	
loadbalancers	b081ed89-f6f8-48cb-a498-5e12705e2cf9
name	stats-listener
operating_status	OFFLINE
project_id	4c1caeee063747f8878f007d1a323b2f

(continues on next page)

7.2. Guides 1032

Octavia Documentation, Release 15.1.0.dev35

(continued from previous page)

protocol	PROMETHEUS
protocol_port	8088
provisioning_status	PENDING_CREATE
sni_container_refs	[]
timeout_client_data	50000
timeout_member_connect	5000
timeout_member_data	50000
timeout_tcp_inspect	0
updated_at	None
client_ca_tls_container_ref	None
client_authentication	NONE
client_crl_container_ref	None
allowed_cidrs	None
tls_ciphers	None
tls_versions	None
alpn_protocols	None
tags	
+-----------------------------+--------------------------------------+

Once the PROMETHEUS listener is ACTIVE, you can configure Prometheus to collect metrics from the load
balancer by updating the prometheus.yml file.

[scrape_configs]
- job_name: 'Octavia LB1'
static_configs:
- targets: ['192.0.2.10:8088']

For more information on setting up Prometheus, see the Prometheus project web site.

Note

The metrics exposed via the /metrics endpoint will use a custom Octavia namespace.

You can connect Grafana to the Prometheus instance to provide additional graphing and dashboard ca-
pabilities. A Grafana dashboard for Octavia load balancers is included in the etc/grafana directory of the
Octavia code.

7.3 References

7.3.1 Octavia Software Development Kits (SDK)

Introduction

This is a list of known SDKs and language bindings that support OpenStack load balancing via the Octavia
API. This list is a "best effort" to keep updated, so please check with your favorite SDK project to see if
they support OpenStack load balancing. If not, open a bug for them!

Note

7.3. References 1033

https://prometheus.io/
https://grafana.com
https://prometheus.io

Octavia Documentation, Release 15.1.0.dev35

The projects listed here may not be maintained by the OpenStack LBaaS team. Please submit bugs
for these projects through their respective bug tracking systems.

Go

Gophercloud

Java

OpenStack4j

Python

OpenStack SDK

7.4 Videos

7.4. Videos 1034

https://github.com/gophercloud/gophercloud
http://www.openstack4j.com/
https://docs.openstack.org/openstacksdk/latest/

	Octavia Administration
	Getting Started
	Introducing Octavia
	Where Octavia fits into the OpenStack ecosystem
	Octavia terminology
	A 10,000-foot overview of Octavia components

	Octavia Glossary
	Developer / Operator Quick Start Guide
	Running Octavia in devstack
	tl;dr
	System requirements
	Deployment

	Running Octavia in production
	Notes
	Disclaimers
	Environment Assumptions

	Production Deployment Walkthrough
	Create Octavia User
	Load Balancer Network Configuration
	Create Amphora Image
	Install Octavia Controller Software
	Create Octavia Keys and Certificates
	Configuring Octavia
	Initialize Octavia Database
	Launching the Octavia Controller
	Install Octavia extension in Horizon
	Test deployment

	Troubleshooting Tips
	SSH into Amphorae

	Installation and Configuration Guides
	Building Octavia Amphora Images
	Prerequisites
	Test Prerequisites

	Usage
	Building Images for Alternate Branches
	Advanced Git Branch/Reference Based Images
	Building From a Local Octavia Repository
	Building With a Specific Git Reference
	Amphora Agent Upper Constraints

	Environment Variables
	Using distribution packages for amphora agent
	RHEL specific variables
	Building in a virtualenv with tox

	Container Support
	References
	Copyright

	Octavia Certificate Configuration Guide
	Two-way TLS Authentication in Octavia
	Phase One
	Phase Two
	Certificate Lifecycles

	Creating the Certificate Authorities
	Configuring Octavia

	Octavia Configuration Options
	DEFAULT
	amphora_agent
	api_settings
	audit
	certificates
	cinder
	compute
	controller_worker
	database
	driver_agent
	glance
	haproxy_amphora
	health_manager
	house_keeping
	keepalived_vrrp
	keystone_authtoken
	networking
	neutron
	nova
	oslo_messaging
	oslo_messaging_kafka
	oslo_messaging_notifications
	oslo_messaging_rabbit
	oslo_middleware
	quotas
	service_auth
	task_flow

	Octavia Policies
	Octavia Advanced Role Based Access Control (RBAC)
	Legacy Admin or Owner Policy Override File
	OpenStack Default Roles Policy Override File
	Managing Octavia User Roles
	Keystone Group Roles

	Upgrade Considerations
	[oslo_policy] enforce_scope
	[oslo_policy] enforce_new_defaults

	Sample File Generation
	Merged File Generation
	List Redundant Configurations
	Default Octavia Policies - API Effective Rules
	Default Octavia Policies - Generated From The Octavia Code

	Optional Installation and Configuration Guides
	Available Provider Drivers
	A10 Networks OpenStack Octavia Driver
	Amphora
	F5 Networks Provider Driver for OpenStack Octavia by SAP SE
	OVN Octavia Provider Driver
	Radware Provider Driver for OpenStack Octavia
	VMware NSX

	Octavia Amphora Log Offloading
	Administrative Logs
	Enabling Administrative Log Offloading
	Forwarding All Administrative Logs

	Tenant Flow Logs
	Enabling Tenant Flow Log Offloading
	Tenant Flow Log Format
	Custom Tenant Flow Log Format

	Failover Considerations
	Disabling Logging
	Disable Local Log Storage
	Disable Tenant Flow Logging

	Octavia API Auditing
	Configuring Octavia API Auditing
	Sampe Audit Events
	Request
	Response

	Octavia API Health Monitoring
	Oslo Healthcheck Queries
	Example Responses
	Example Detailed Responses

	Oslo Healthcheck Plugins
	Enabling Octavia API Health Monitoring
	Using Octavia API Health Monitoring
	Octavia Plugins
	octavia_db_check

	Octavia Flavors
	Provider Capabilities
	Flavor Profiles
	Flavors

	Running Octavia in Apache
	Octavia Amphora Failover Circuit Breaker
	Configuration
	Error Recovery
	Automatic Error Recovery
	Manual Error Recovery

	Using SR-IOV Ports with Octavia
	Enabling SR-IOV on Your Compute Hosts
	Configuring Host Aggregates, Compute and Octavia Flavors
	Host Aggregates
	Compute Flavors
	Octavia Flavors
	Building the Amphora Image

	Maintenance and Operations
	Operator Maintenance Guide
	Monitoring
	Monitoring Load Balancer Amphora
	Monitoring Pool Members
	Monitoring Load Balancers
	Monitoring load balancer functionality
	Monitoring Octavia Control Plane

	Rotating the Amphora Images
	Preparing a New Amphora Image
	Generating a List of Load Balancers to Rotate
	Rotating a Load Balancer
	Best Practices/Optimizations

	Rotating Cryptographic Certificates
	Rotating Amphora Certificates
	Rotating the Certificate Authority Certificates
	Rotating Client Certificates
	Changing The Heartbeat Encryption Key
	Handling a VM Node Failure
	Evacuating a Specific Amphora from a Host

	octavia-status
	CLI interface for Octavia status commands
	Synopsis
	Description
	Options
	Upgrade

	Load Balancing Service Upgrade Guide
	Plan the upgrade
	Cold upgrade
	Amphorae upgrade
	Upgrade testing

	Operator Reference
	Octavia HAProxy Amphora API
	Introduction
	Versioning
	Response codes
	A note about storing state

	API
	Get amphora info
	Get amphora details
	Get interface
	Get all listeners' statuses
	Start or Stop a load balancer
	Delete a listener
	Upload SSL certificate PEM file
	Get SSL certificate md5sum
	Delete SSL certificate PEM file
	Upload load balancer haproxy configuration
	Get loadbalancer haproxy configuration
	Plug VIP
	Plug Network
	Upload SSL server certificate PEM file for Controller Communication
	Upload keepalived configuration
	Start, Stop, or Reload keepalived
	Update the amphora agent configuration

	Octavia Event Notifications
	Configuring oslo messaging for event notifications
	Event Types
	Example Notification
	Disabling Event Notifications

	Octavia Command Line Interface
	Octavia Configuration
	Octavia Contributor
	Contributor Guidelines
	So You Want to Contribute...
	Communication
	Contacting the Core Team
	New Feature Planning
	Task Tracking
	Reporting a Bug
	Getting Your Patch Merged
	Project Team Lead Duties

	Octavia Constitution
	Octavia is an OpenStack project
	Octavia is as open as OpenStack
	Octavia is "free"
	Octavia is a load balancer for large operators
	Octavia follows the best coding and design conventions

	Octavia Style Commandments
	Octavia Specific Commandments
	Creating Unit Tests
	Everything is python
	Idempotency
	Centralize intelligence, de-centralize workload
	All APIs are versioned
	Scalability and resilience are as important as functionality
	Avoid premature optimization
	Don't repeat yourself
	Security is not an afterthought
	Octavia should follow industry standards
	Use of pre-commit checks

	Contributor Reference
	Provider Driver Development Guide
	How Provider Drivers Integrate
	Driver Entry Points

	Stable Provider Driver Interface
	Octavia Provider Driver API
	Load balancer
	Create
	Delete
	Failover
	Update

	Listener
	Create
	Delete
	Update

	Pool
	Create
	Delete
	Update

	Member
	Create
	Delete
	Update
	Batch Update

	Health Monitor
	Create
	Delete
	Update

	L7 Policy
	Create
	Delete
	Update

	L7 Rule
	Create
	Delete
	Update

	Flavor
	get_supported_flavor_metadata
	validate_flavor

	Availability Zone
	get_supported_availability_zone_metadata
	validate_availability_zone

	Exception Model
	DriverError
	NotImplementedError
	UnsupportedOptionError

	Driver Support Library
	Update Provisioning and Operating Status API
	Update Statistics API
	Get Resource Support
	API Exception Model

	Provider Agents
	Declaring Your Provider Agent
	Provider Agent Method Invocation
	Example Provider Agent Method

	Documenting the Driver
	Available Provider Drivers
	Octavia Provider Feature Matrix

	Debugging Octavia code
	Prerequisites
	Setup
	PyCharm
	Using a remote interpreter
	Using a Python debug server

	Visual Studio Code
	Using the remote development extension pack
	Using ptvsd

	Troubleshooting
	Remote process does not connect with local PyCharm debug server

	Octavia Entity Relationship Diagram
	Octavia Controller Flows
	Amphora Flows
	cert_rotate_amphora_flow
	get_create_amphora_flow
	get_failover_amphora_flow

	Health Monitor Flows
	get_create_health_monitor_flow
	get_delete_health_monitor_flow
	get_update_health_monitor_flow

	Layer 7 Policy Flows
	get_create_l7policy_flow
	get_delete_l7policy_flow
	get_update_l7policy_flow

	Layer 7 Rule Flows
	get_create_l7rule_flow
	get_delete_l7rule_flow
	get_update_l7rule_flow

	Listener Flows
	get_create_all_listeners_flow
	get_create_listener_flow
	get_delete_listener_flow
	get_update_listener_flow

	Load Balancer Flows
	get_cascade_delete_load_balancer_flow
	get_create_load_balancer_flow
	get_delete_load_balancer_flow
	get_failover_LB_flow
	get_update_load_balancer_flow

	Member Flows
	get_batch_update_members_flow
	get_create_member_flow
	get_delete_member_flow
	get_update_member_flow

	Pool Flows
	get_create_pool_flow
	get_delete_pool_flow
	get_update_pool_flow

	Guru Meditation Reports
	Generating a GMR
	Structure of a GMR
	Adding Support for GMRs to New Executables
	Extending the GMR

	Internal APIs
	Design Documentation
	Version 0.5 (liberty)
	Octavia v0.5 Component Design
	LBaaS Components
	USER API HANDLER

	LBaaS / Octavia Crossover
	DRIVER
	NETWORK DRIVER

	Octavia Components
	OPERATOR API HANDLER
	CONTROLLER
	AMPHORA LOAD BALANCER (LB) DRIVER
	LB NETWORK
	AMPHORAE
	INTERNAL HEALTH MONITORS

	Some notes on Controller <-> Amphorae communications
	Supported Amphora Virtual Appliance Topologies
	Option 1: "Single active node + spares pool"
	Option 2: "True Active / Standby"

	Supported Network Topologies
	LB Network
	Front-end topologies
	Back-end topologies

	Project Specifications
	Version 0.5 (liberty)
	Amphora Driver Interface
	Problem description
	Proposed change
	Exception Model
	Health and Stat Mixin
	Things a good driver should do:
	Alternatives
	Data model impact
	REST API impact
	Security impact
	Notifications impact
	Other end user impact
	Performance Impact
	Other deployer impact
	Developer impact

	Implementation
	Assignee(s)
	Work Items

	Dependencies
	Testing
	Documentation Impact
	References

	Compute Driver Interface
	Problem description
	Proposed change
	Exception Model
	Things a good driver should do:
	Alternatives
	Data model impact
	REST API impact
	Security impact
	Notifications impact
	Other end user impact
	Performance Impact
	Other deployer impact
	Developer impact

	Implementation
	Assignee(s)
	Work Items

	Dependencies
	Testing
	Documentation Impact
	References

	Octavia Base Image
	Problem description
	Proposed change
	Alternatives
	Data model impact
	REST API impact
	Security impact
	Notifications impact
	Other end user impact
	Performance Impact
	Other deployer impact
	Developer impact

	Implementation
	Assignee(s)
	Work Items

	Dependencies
	Testing
	Documentation Impact
	References

	Octavia v0.5 master component design document
	Problem description
	Proposed change
	Alternatives
	Data model impact
	REST API impact
	Security impact
	Notifications impact
	Other end user impact
	Performance Impact
	Other deployer impact
	Developer impact

	Implementation
	Assignee(s)
	Work Items

	Dependencies
	Testing
	Documentation Impact
	References

	Octavia Controller
	Problem description
	Proposed change
	Alternatives
	Data model impact
	REST API impact
	Security impact
	Notifications impact
	Other end user impact
	Performance Impact
	Other deployer impact
	Developer impact

	Implementation
	Assignee(s)
	Work Items

	Dependencies
	Testing
	Documentation Impact
	References

	Controller Worker (deploy-worker)
	Problem description
	Proposed change
	Alternatives
	Data model impact
	REST API impact
	Security impact
	Notifications impact
	Other end user impact
	Performance Impact
	Other deployer impact
	Developer impact

	Implementation
	Assignee(s)
	Work Items

	Dependencies
	Testing
	Documentation Impact
	References

	HAProxy Amphora API
	Problem description
	Proposed change
	Alternatives
	Data model impact
	REST API impact
	Security impact
	Notifications impact
	Other end user impact
	Performance Impact
	Other deployer impact
	Developer impact

	Implementation
	Assignee(s)
	Work Items

	Dependencies
	Testing
	Documentation Impact
	References

	Housekeeping Manager Specification
	Problem description
	Proposed change
	Exception Model
	Alternatives
	Data model impact
	REST API impact
	Security impact
	Notifications impact
	Other deployer impact
	Other end user impact
	Performance Impact
	Developer impact

	Implementation
	Assignee(s)
	Work Items

	Dependencies
	Testing
	Documentation Impact
	References

	Network Driver Interface
	Problem description
	Proposed change
	Alternatives
	Data model impact
	REST API impact
	Security impact
	Notifications impact
	Other end user impact
	Performance Impact
	Other deployer impact
	Developer impact

	Implementation
	Assignee(s)
	Work Items

	Dependencies
	Testing
	Documentation Impact
	References

	Nova Compute Driver
	Problem description
	Proposed change
	Alternatives
	Data model impact
	REST API impact
	Security impact
	Notifications impact
	Other end user impact
	Performance Impact
	Other deployer impact
	Developer impact

	Implementation
	Assignee(s)
	Work Items

	Dependencies
	Testing
	Documentation Impact
	References

	Octavia Operator API Foundation
	Problem description
	Proposed change
	Alternatives
	Data model impact
	REST API impact
	Security impact
	Notifications impact
	Other end user impact
	Performance Impact
	Other deployer impact
	Developer impact

	Implementation
	Assignee(s)
	Work Items

	Dependencies
	Testing
	Documentation Impact
	References

	Queue Consumer
	Problem description
	Proposed change
	Alternatives
	Data model impact
	REST API impact
	Security impact
	Notifications impact
	Other end user impact
	Performance Impact
	Other deployer impact
	Developer impact

	Implementation
	Assignee(s)
	Work Items

	Dependencies
	Testing
	Documentation Impact
	References

	TLS Data Security and Barbican
	Problem description
	Proposed change
	Alternatives
	Data model impact
	REST API impact
	Security impact
	Notifications impact
	Other end user impact
	Performance Impact
	Other deployer impact
	Developer impact

	Implementation
	Assignee(s)
	Work Items

	Dependencies
	Testing
	Documentation Impact
	References

	Version 0.8 (mitaka)
	Active-Standby Amphora Setup using VRRP
	Problem description
	Proposed change
	Alternatives
	Data model impact
	REST API impact
	Security impact
	Notifications impact
	Other end user impact
	Performance Impact
	Other deployer impact
	Developer impact

	Implementation
	Assignee(s)
	Work Items

	Dependencies
	Testing
	Documentation Impact
	References

	Allow to use Glance image tag to refer to desired Amphora image
	Problem description
	Proposed change
	Alternatives
	Data model impact
	REST API impact
	Security impact
	Notifications impact
	Other end user impact
	Performance Impact
	Other deployer impact
	Developer impact

	Implementation
	Assignee(s)
	Work Items

	Dependencies
	Testing
	Documentation Impact
	References

	Version 0.9 (newton)
	Distributor for Active-Active, N+1 Amphorae Setup
	Problem description
	Proposed change
	Architecture
	High-level Topology Description
	Affinity of Flows to Amphorae
	Forwarding with OVS and OpenFlow Rules
	Specific proposed changes
	Alternatives
	Data model impact
	REST API impact
	Security impact
	Notifications impact
	Other end user impact
	Performance Impact
	Other deployer impact
	Developer impact
	Further Discussion
	[P2] Handling changes in Cluster size (manual or auto-scaled)
	Forwarding Data-path Implementation Alternatives
	2-legged Router
	LVS
	DNS
	Pure SDN
	Distributor Sharing
	Distributor High-Availability

	Implementation
	Assignee(s)
	Work Items

	Dependencies
	Testing
	Documentation Impact
	References

	Active-Active, N+1 Amphorae Setup
	Problem description
	Proposed change
	High-level Topology Description
	Single Tenant
	Multi-tenant Support
	Problem Details
	Required changes
	Amphora related changes
	Amphora Cluster Manager driver for the active-active topology (new)
	Network driver changes
	Amphora health-monitoring support
	Distributor support
	Packaging
	Alternatives
	Data model impact
	REST API impact
	Security impact
	Notifications impact
	Other end user impact
	Performance Impact
	Other deployer impact
	Developer impact

	Implementation
	Assignee(s)
	Work Items

	Dependencies
	Testing
	Documentation Impact
	References

	Add statistics gathering API for loadbalancer
	Problem description
	Proposed change
	Alternatives
	Data model impact
	REST API impact
	Add 'request_errors' in the response of list listener statistics:
	Add a new API to list loadbalancer statistics
	Security impact
	Notifications impact
	Other end user impact
	Performance Impact
	Other deployer impact
	Developer impact

	Implementation
	Assignee(s)
	Work Items

	Dependencies
	Testing
	Documentation Impact
	References

	Version 1.0 (pike)
	Provider Flavor Framework
	Problem description
	Proposed change
	Alternatives
	Data model impact
	REST API impact
	Security impact
	Notifications impact
	Other end user impact
	Performance Impact
	IPv6 impact
	Other deployer impact
	Developer impact
	Community impact
	Provider driver impact

	Implementation
	Assignee(s)
	Work Items

	Dependencies
	Testing
	Documentation Impact
	References

	LBaaS Alternative Monitoring IP/Port
	Problem description
	Proposed change
	Alternatives
	Data model impact
	REST API impact
	Security impact
	Notifications impact
	Other end user impact
	Performance Impact
	Other deployer impact
	Developer impact

	Implementation
	Assignee(s)
	Work Items

	Dependencies
	Testing
	Documentation Impact
	References

	Align octavia API With Neutron LBaaS API
	Problem description
	Proposed change
	Alternatives
	Data model impact
	REST API impact
	Security impact
	Notifications impact
	Other end user impact
	Performance Impact
	Other deployer impact
	Developer impact

	Implementation
	Assignee(s)
	Work Items

	Dependencies
	Testing
	Documentation Impact
	References

	Vip QoS Policy Application
	Problem description
	Proposed change
	Alternatives
	Data model impact
	REST API impact
	Security impact
	Notifications impact
	Other end user impact
	Performance Impact
	Other deployer impact
	Developer impact

	Implementation
	Assignee(s)
	Work Items

	Dependencies
	Testing
	Documentation Impact
	References

	Version 1.1 (queens)
	Distributor for L3 Active-Active, N+1 Amphora Setup
	Problem description
	Proposed change
	Architecture
	High-level Topology Description
	Distributor (BGP Speaker) Lifecycle
	Alternatives
	Data model impact
	REST API impact
	Security impact
	Notifications impact
	Other end user impact
	Performance Impact
	Other deployer impact
	Developer impact

	Implementation
	Assignee(s)
	Work Items

	Dependencies
	Testing
	Documentation Impact
	References

	Enable Provider Driver Support
	Problem description
	Proposed change
	Driver Entry Points
	Octavia Provider Driver API
	Load balancer
	Listener
	Pool
	Member
	Health Monitor
	L7 Policy
	L7 Rule
	Flavor
	Exception Model
	DriverError
	NotImplementedError
	UnsupportedOptionError
	Driver Support Library
	Update provisioning and operating status API
	Update statistics API
	Get Resource Support
	API Exception Model
	Alternatives
	Data model impact
	REST API impact
	Security impact
	Notifications impact
	Other end user impact
	Performance Impact
	Other deployer impact
	Developer impact

	Implementation
	Assignee(s)
	Work Items

	Dependencies
	Testing
	Documentation Impact
	References

	UDP Support
	Problem description
	Proposed change
	Alternatives
	Data model impact
	REST API impact
	Security impact
	Notifications impact
	Other end user impact
	Performance Impact
	Other deployer impact
	Developer impact

	Implementation
	Assignee(s)
	Work Items

	Dependencies
	Testing
	Documentation Impact
	References

	Version 14.0 (caracal)
	Support SR-IOV network ports in Octavia
	Problem description
	Proposed change
	Alternatives
	Data model impact
	REST API impact
	Security impact
	Notifications impact
	Other end user impact
	Performance Impact
	Other deployer impact
	Developer impact

	Implementation
	Assignee(s)
	Work Items

	Dependencies
	Testing
	Documentation Impact
	References

	Version 15.0 (Dalmatian)
	Support for Custom Security Groups for VIP Ports
	Problem description
	Proposed change
	Alternatives
	Data model impact
	REST API impact
	Security impact
	Notifications impact
	Other end user impact
	Performance Impact
	Other deployer impact
	Developer impact

	Implementation
	Assignee(s)
	Work Items

	Dependencies
	Testing
	Documentation Impact
	References

	Support for traffic rate limiting in Octavia
	Problem description
	Proposed change
	Alternatives
	Data model impact
	REST API impact
	Listener
	Rate Limit Policy
	Rate Limit Rule
	Security impact
	Notifications impact
	Other end user impact
	Performance Impact
	Other deployer impact
	Developer impact

	Implementation
	Assignee(s)
	Work Items

	Dependencies
	Testing
	Documentation Impact
	References

	Load balancer resizing
	Problem description
	Proposed change
	Alternatives
	Data model impact
	REST API impact
	Security impact
	Notifications impact
	Other end user impact
	Performance Impact
	Other deployer impact
	Developer impact

	Implementation
	Assignee(s)
	Work Items

	Dependencies
	Testing
	Documentation Impact
	References

	Module Reference
	octavia
	octavia package
	Subpackages
	octavia.amphorae package
	Subpackages
	octavia.amphorae.backends package
	Subpackages
	octavia.amphorae.backends.agent package
	Subpackages
	octavia.amphorae.backends.agent.api_server package
	Submodules
	octavia.amphorae.backends.agent.api_server.amphora_info module
	octavia.amphorae.backends.agent.api_server.certificate_update module
	octavia.amphorae.backends.agent.api_server.haproxy_compatibility module
	octavia.amphorae.backends.agent.api_server.keepalived module
	octavia.amphorae.backends.agent.api_server.keepalivedlvs module
	octavia.amphorae.backends.agent.api_server.loadbalancer module
	octavia.amphorae.backends.agent.api_server.lvs_listener_base module
	octavia.amphorae.backends.agent.api_server.osutils module
	octavia.amphorae.backends.agent.api_server.plug module
	octavia.amphorae.backends.agent.api_server.rules_schema module
	octavia.amphorae.backends.agent.api_server.server module
	octavia.amphorae.backends.agent.api_server.util module
	Module contents
	Submodules
	octavia.amphorae.backends.agent.agent_jinja_cfg module
	Module contents
	octavia.amphorae.backends.health_daemon package
	Submodules
	octavia.amphorae.backends.health_daemon.health_daemon module
	octavia.amphorae.backends.health_daemon.health_sender module
	octavia.amphorae.backends.health_daemon.status_message module
	Module contents
	octavia.amphorae.backends.utils package
	Submodules
	octavia.amphorae.backends.utils.haproxy_query module
	octavia.amphorae.backends.utils.interface module
	octavia.amphorae.backends.utils.interface_file module
	octavia.amphorae.backends.utils.ip_advertisement module
	octavia.amphorae.backends.utils.keepalivedlvs_query module
	octavia.amphorae.backends.utils.network_namespace module
	octavia.amphorae.backends.utils.network_utils module
	octavia.amphorae.backends.utils.nftable_utils module
	Module contents
	Module contents
	octavia.amphorae.driver_exceptions package
	Submodules
	octavia.amphorae.driver_exceptions.exceptions module
	Module contents
	octavia.amphorae.drivers package
	Subpackages
	octavia.amphorae.drivers.haproxy package
	Submodules
	octavia.amphorae.drivers.haproxy.data_models module
	octavia.amphorae.drivers.haproxy.exceptions module
	octavia.amphorae.drivers.haproxy.rest_api_driver module
	Module contents
	octavia.amphorae.drivers.health package
	Submodules
	octavia.amphorae.drivers.health.heartbeat_udp module
	Module contents
	octavia.amphorae.drivers.keepalived package
	Subpackages
	octavia.amphorae.drivers.keepalived.jinja package
	Submodules
	octavia.amphorae.drivers.keepalived.jinja.jinja_cfg module
	Module contents
	Submodules
	octavia.amphorae.drivers.keepalived.vrrp_rest_driver module
	Module contents
	octavia.amphorae.drivers.noop_driver package
	Submodules
	octavia.amphorae.drivers.noop_driver.driver module
	Module contents
	Submodules
	octavia.amphorae.drivers.driver_base module
	Module contents
	Module contents
	octavia.api package
	Subpackages
	octavia.api.common package
	Submodules
	octavia.api.common.hooks module
	octavia.api.common.pagination module
	octavia.api.common.types module
	octavia.api.common.utils module
	Module contents
	octavia.api.drivers package
	Subpackages
	octavia.api.drivers.amphora_driver package
	Subpackages
	octavia.api.drivers.amphora_driver.v2 package
	Submodules
	octavia.api.drivers.amphora_driver.v2.driver module
	Module contents
	Submodules
	octavia.api.drivers.amphora_driver.availability_zone_schema module
	octavia.api.drivers.amphora_driver.flavor_schema module
	Module contents
	octavia.api.drivers.driver_agent package
	Submodules
	octavia.api.drivers.driver_agent.driver_get module
	octavia.api.drivers.driver_agent.driver_listener module
	octavia.api.drivers.driver_agent.driver_updater module
	Module contents
	octavia.api.drivers.noop_driver package
	Submodules
	octavia.api.drivers.noop_driver.agent module
	octavia.api.drivers.noop_driver.driver module
	Module contents
	Submodules
	octavia.api.drivers.driver_factory module
	octavia.api.drivers.utils module
	Module contents
	octavia.api.v2 package
	Subpackages
	octavia.api.v2.controllers package
	Submodules
	octavia.api.v2.controllers.amphora module
	octavia.api.v2.controllers.availability_zone_profiles module
	octavia.api.v2.controllers.availability_zones module
	octavia.api.v2.controllers.base module
	octavia.api.v2.controllers.flavor_profiles module
	octavia.api.v2.controllers.flavors module
	octavia.api.v2.controllers.health_monitor module
	octavia.api.v2.controllers.l7policy module
	octavia.api.v2.controllers.l7rule module
	octavia.api.v2.controllers.listener module
	octavia.api.v2.controllers.load_balancer module
	octavia.api.v2.controllers.member module
	octavia.api.v2.controllers.pool module
	octavia.api.v2.controllers.provider module
	octavia.api.v2.controllers.quotas module
	Module contents
	octavia.api.v2.types package
	Submodules
	octavia.api.v2.types.amphora module
	octavia.api.v2.types.availability_zone_profile module
	octavia.api.v2.types.availability_zones module
	octavia.api.v2.types.flavor_profile module
	octavia.api.v2.types.flavors module
	octavia.api.v2.types.health_monitor module
	octavia.api.v2.types.l7policy module
	octavia.api.v2.types.l7rule module
	octavia.api.v2.types.listener module
	octavia.api.v2.types.load_balancer module
	octavia.api.v2.types.member module
	octavia.api.v2.types.pool module
	octavia.api.v2.types.provider module
	octavia.api.v2.types.quotas module
	Module contents
	Module contents
	Submodules
	octavia.api.app module
	octavia.api.config module
	octavia.api.root_controller module
	Module contents
	octavia.certificates package
	Subpackages
	octavia.certificates.common package
	Subpackages
	octavia.certificates.common.auth package
	Submodules
	octavia.certificates.common.auth.barbican_acl module
	Module contents
	Submodules
	octavia.certificates.common.barbican module
	octavia.certificates.common.cert module
	octavia.certificates.common.local module
	octavia.certificates.common.pkcs12 module
	Module contents
	octavia.certificates.generator package
	Submodules
	octavia.certificates.generator.cert_gen module
	octavia.certificates.generator.local module
	Module contents
	octavia.certificates.manager package
	Submodules
	octavia.certificates.manager.barbican module
	octavia.certificates.manager.barbican_legacy module
	octavia.certificates.manager.castellan_mgr module
	octavia.certificates.manager.cert_mgr module
	octavia.certificates.manager.local module
	octavia.certificates.manager.noop module
	Module contents
	Module contents
	octavia.cmd package
	Submodules
	octavia.cmd.agent module
	octavia.cmd.api module
	octavia.cmd.driver_agent module
	octavia.cmd.haproxy_vrrp_check module
	octavia.cmd.health_checker module
	octavia.cmd.health_manager module
	octavia.cmd.house_keeping module
	octavia.cmd.interface module
	octavia.cmd.octavia_worker module
	octavia.cmd.prometheus_proxy module
	octavia.cmd.status module
	Module contents
	octavia.common package
	Subpackages
	octavia.common.jinja package
	Subpackages
	octavia.common.jinja.haproxy package
	Subpackages
	octavia.common.jinja.haproxy.combined_listeners package
	Submodules
	octavia.common.jinja.haproxy.combined_listeners.jinja_cfg module
	Module contents
	Module contents
	octavia.common.jinja.logging package
	Submodules
	octavia.common.jinja.logging.logging_jinja_cfg module
	Module contents
	octavia.common.jinja.lvs package
	Submodules
	octavia.common.jinja.lvs.jinja_cfg module
	Module contents
	Submodules
	octavia.common.jinja.user_data_jinja_cfg module
	Module contents
	octavia.common.tls_utils package
	Submodules
	octavia.common.tls_utils.cert_parser module
	Module contents
	Submodules
	octavia.common.base_taskflow module
	octavia.common.clients module
	octavia.common.config module
	octavia.common.constants module
	octavia.common.context module
	octavia.common.data_models module
	octavia.common.decorators module
	octavia.common.exceptions module
	octavia.common.keystone module
	octavia.common.policy module
	octavia.common.rpc module
	octavia.common.service module
	octavia.common.stats module
	octavia.common.utils module
	octavia.common.validate module
	Module contents
	octavia.compute package
	Subpackages
	octavia.compute.drivers package
	Subpackages
	octavia.compute.drivers.noop_driver package
	Submodules
	octavia.compute.drivers.noop_driver.driver module
	Module contents
	Submodules
	octavia.compute.drivers.nova_driver module
	Module contents
	Submodules
	octavia.compute.compute_base module
	Module contents
	octavia.controller package
	Subpackages
	octavia.controller.healthmanager package
	Submodules
	octavia.controller.healthmanager.health_manager module
	Module contents
	octavia.controller.housekeeping package
	Submodules
	octavia.controller.housekeeping.house_keeping module
	Module contents
	octavia.controller.queue package
	Subpackages
	octavia.controller.queue.v2 package
	Submodules
	octavia.controller.queue.v2.consumer module
	octavia.controller.queue.v2.endpoints module
	Module contents
	Module contents
	octavia.controller.worker package
	Subpackages
	octavia.controller.worker.v2 package
	Subpackages
	octavia.controller.worker.v2.flows package
	Submodules
	octavia.controller.worker.v2.flows.amphora_flows module
	octavia.controller.worker.v2.flows.flow_utils module
	octavia.controller.worker.v2.flows.health_monitor_flows module
	octavia.controller.worker.v2.flows.l7policy_flows module
	octavia.controller.worker.v2.flows.l7rule_flows module
	octavia.controller.worker.v2.flows.listener_flows module
	octavia.controller.worker.v2.flows.load_balancer_flows module
	octavia.controller.worker.v2.flows.member_flows module
	octavia.controller.worker.v2.flows.pool_flows module
	Module contents
	octavia.controller.worker.v2.tasks package
	Submodules
	octavia.controller.worker.v2.tasks.amphora_driver_tasks module
	octavia.controller.worker.v2.tasks.cert_task module
	octavia.controller.worker.v2.tasks.compute_tasks module
	octavia.controller.worker.v2.tasks.database_tasks module
	octavia.controller.worker.v2.tasks.lifecycle_tasks module
	octavia.controller.worker.v2.tasks.network_tasks module
	octavia.controller.worker.v2.tasks.notification_tasks module
	octavia.controller.worker.v2.tasks.retry_tasks module
	octavia.controller.worker.v2.tasks.shim_tasks module
	Module contents
	Submodules
	octavia.controller.worker.v2.controller_worker module
	octavia.controller.worker.v2.taskflow_jobboard_driver module
	Module contents
	Submodules
	octavia.controller.worker.amphora_rate_limit module
	octavia.controller.worker.task_utils module
	Module contents
	Module contents
	octavia.db package
	Submodules
	octavia.db.api module
	octavia.db.base_models module
	octavia.db.healthcheck module
	octavia.db.models module
	octavia.db.prepare module
	octavia.db.repositories module
	Module contents
	octavia.distributor package
	Subpackages
	octavia.distributor.drivers package
	Subpackages
	octavia.distributor.drivers.noop_driver package
	Submodules
	octavia.distributor.drivers.noop_driver.driver module
	Module contents
	Submodules
	octavia.distributor.drivers.driver_base module
	Module contents
	Module contents
	octavia.hacking package
	Submodules
	octavia.hacking.checks module
	Module contents
	octavia.image package
	Subpackages
	octavia.image.drivers package
	Subpackages
	octavia.image.drivers.noop_driver package
	Submodules
	octavia.image.drivers.noop_driver.driver module
	Module contents
	Submodules
	octavia.image.drivers.glance_driver module
	Module contents
	Submodules
	octavia.image.image_base module
	Module contents
	octavia.network package
	Subpackages
	octavia.network.drivers package
	Subpackages
	octavia.network.drivers.neutron package
	Submodules
	octavia.network.drivers.neutron.allowed_address_pairs module
	octavia.network.drivers.neutron.base module
	octavia.network.drivers.neutron.utils module
	Module contents
	octavia.network.drivers.noop_driver package
	Submodules
	octavia.network.drivers.noop_driver.driver module
	Module contents
	Module contents
	Submodules
	octavia.network.base module
	octavia.network.data_models module
	Module contents
	octavia.policies package
	Submodules
	octavia.policies.amphora module
	octavia.policies.availability_zone module
	octavia.policies.availability_zone_profile module
	octavia.policies.base module
	octavia.policies.flavor module
	octavia.policies.flavor_profile module
	octavia.policies.healthmonitor module
	octavia.policies.l7policy module
	octavia.policies.l7rule module
	octavia.policies.listener module
	octavia.policies.loadbalancer module
	octavia.policies.member module
	octavia.policies.pool module
	octavia.policies.provider module
	octavia.policies.provider_availability_zone module
	octavia.policies.provider_flavor module
	octavia.policies.quota module
	Module contents
	octavia.statistics package
	Subpackages
	octavia.statistics.drivers package
	Submodules
	octavia.statistics.drivers.logger module
	octavia.statistics.drivers.update_db module
	Module contents
	Submodules
	octavia.statistics.stats_base module
	Module contents
	octavia.volume package
	Subpackages
	octavia.volume.drivers package
	Subpackages
	octavia.volume.drivers.noop_driver package
	Submodules
	octavia.volume.drivers.noop_driver.driver module
	Module contents
	Submodules
	octavia.volume.drivers.cinder_driver module
	Module contents
	Submodules
	octavia.volume.volume_base module
	Module contents

	Submodules
	octavia.i18n module
	octavia.opts module
	octavia.version module
	Module contents

	Octavia Installation
	Install and configure
	Install and configure for Ubuntu
	Prerequisites
	Install and configure components
	Finalize installation

	Additional configuration steps to configure amphorav2 provider
	Prerequisites
	Additional configuration to octavia components

	Octavia Reference
	Octavia User
	Cookbooks
	Basic Load Balancing Cookbook
	Introduction
	Examples
	Deploy a basic HTTP load balancer
	Deploy a basic HTTP load balancer with a health monitor
	Deploy a basic HTTP load balancer using a floating IP
	Deploy a basic HTTP load balancer with session persistence
	Deploy a TCP load balancer
	Deploy a QoS ruled load balancer
	Deploy a load balancer with access control list
	Deploy a non-terminated HTTPS load balancer
	Deploy a TLS-terminated HTTPS load balancer
	Deploy a TLS-terminated HTTPS load balancer with SNI
	Deploy a TLS-terminated HTTPS load balancer with client authentication
	Deploy a secure HTTP/2 load balancer with ALPN TLS extension
	Deploy HTTP and TLS-terminated HTTPS load balancing on the same IP and backend
	Deploy a load balancer with backend re-encryption
	Deploy a load balancer with backend re-encryption and client authentication
	Deploy a HTTP/2 load balancer with ALPN TLS extension and backend re-encryption
	Deploy a UDP load balancer with a health monitor

	Health Monitor Best Practices
	Configuration arguments for all health monitors
	Configuration arguments for HTTP health monitors
	Other health monitors

	Intermediate certificate chains
	PEM-encoded chains
	DER-encoded chains

	Further reading

	Layer 7 Cookbook
	Introduction
	Examples
	Redirect http://www.example.com/ to https://www.example.com/
	Send requests starting with /js or /images to static_pool
	Send requests for http://www2.example.com/ to pool2
	Send requests for *.example.com to pool2
	Send unauthenticated users to login_pool (scenario 1)
	Send unauthenticated users to login_pool (scenario 2)
	Send requests for http://api.example.com/api to api_pool
	Set up A/B testing on an existing production site using a cookie
	Redirect requests with an invalid TLS client authentication certificate
	Send users from the finance department to pool2

	Guides
	Layer 7 Load Balancing
	What is L7 load balancing?
	L7 load balancing in Octavia

	How does it work?
	L7 Rules
	Rule types
	Comparison types
	Invert

	L7 Policies
	Policy Logic
	Policy Actions
	Policy Position

	L7 usage examples
	Useful links

	Octavia Provider Feature Matrix
	Load Balancer Features
	Load Balancer API Features

	Listener Features
	Listener API Features

	Pool Features
	Pool API Features

	Member Features
	Member API Features

	Health Monitor Features
	Health Monitor API Features

	L7 Policy Features
	L7 Policy API Features

	L7 Rule Features
	L7 Rule API Features

	Monitoring Load Balancers
	Introduction
	Monitoring Using the Octavia API
	Monitoring with Prometheus

	References
	Octavia Software Development Kits (SDK)
	Introduction
	Go
	Java
	Python

	Videos

