Neutron Documentation
Release 25.1.1.dev7

Neutron development team

Jan 10, 2025

CONTENTS

Overview 3
1.1 Example architecture e 3
1.1.1 Controller e 4

1.1.2 Compute e e e e e e 5

1.1.3 BlockStorage e 5

1.1.4 ObjectStorage o v i i e e 5

1.2 Networking 0 e e e 5
1.2.1 Networking Option 1: Provider networks 5

1.2.2 Networking Option 2: Self-service networks 6
Networking service overview 9
Networking (neutron) concepts 11
Install and configure for openSUSE and SUSE Linux Enterprise 13
4.1 Hostnetworking 13
4.1.1 Controllernode L 15
Configure network interfaces 0oL 15

Configure name resolution 15

412 Computenode i e e e 16
Configure network interfaces oL oL, 16

Configure name resolution 17

4.1.3 Block storage node (Optional) 17
Configure network interfaces 17

Configure name resolution L oo 18

4.1.4 Verify connectivity e 18

4.2 Install and configure controllernode L., 20
4.2.1 PrerequiSites e e e e e e e e 20

4.2.2 Configure networking options L Lo 22
Networking Option 1: Provider networks 23

Networking Option 2: Self-service networks 27

4.2.3 Configure the metadataagent 32

424 Configure the Compute service to use the Networking service 32

4.2.5 Finalizeinstallation o 33

4.3 Install and configure compute node 33
4.3.1 Installthe components 33

4.3.2 Configure the common component v v ... 34

4.3.3 Configure networking options oL oL 34
Networking Option 1: Provider networks 34

Networking Option 2: Self-service networks 35

4.3.4 Configure the Compute service to use the Networking service 37

4.3.5 Finalizeinstallation oL 37

4.4 Verify operation L e e e e e 37
4.4.1 Networking Option 1: Provider networks 41

4.4.2 Networking Option 2: Self-servicenetworks 42
Install and configure for Red Hat Enterprise Linux and CentOS 43
5.1 Hostnetworking e 43
5.1.1 Controllernode e 45
Configure network interfaces 45

Configure name resolutiono oL oo 46

5.1.2 Computenode. i e e 46
Configure network interfaces o oo 46

Configure name resolution oL 47

5.1.3 Verifyconnectivity 48

5.2 Install and configure controllernode oL, 49
5.2.1 Prerequisites e e e e e e e 49

5.2.2 Configure networking options oL oL 52
Networking Option 1: Provider networks 52

Networking Option 2: Self-service networks 56

5.2.3 Configure the metadataagent, 61

5.2.4 Configure the Compute service to use the Networking service 62

5.2.5 Finalizeinstallation L 62

5.3 Install and configure computenode L. 63
5.3.1 Install the components i 63

5.3.2 Configure the common componento v ... 63

5.3.3 Configure networking options oL oL 64
Networking Option 1: Provider networks 64

Networking Option 2: Self-service networks 65

5.3.4 Configure the Compute service to use the Networking service 66

5.3.5 Finalizeinstallation L L o 67
Install and configure for Ubuntu 69
6.1 Hostnetworking e 69
6.1.1 Controllernode 71
Configure network interfaces L oL oL L. 71

Configure name resolution 71

6.1.2 Computenode e e 72
Configure network interfaces 72

Configure name resolution L oL oL 73

6.1.3 Verify connectivity 73

6.2 Install and configure controllernode L. 75
6.2.1 Prerequisites e e e e 75

6.2.2 Configure networking options 77
Networking Option 1: Provider networks 78

Networking Option 2: Self-service networks 82

6.2.3 Configure the metadataagent 87

6.2.4 Configure the Compute service to use the Networking service 87

6.2.5 Finalizeinstallation L 88

6.3 Install and configure computenode 88

6.3.1 Install the components 88

7.1

7.2

8.1

6.3.2 Configure the common component
6.3.3 Configure networking options L.
Networking Option 1: Provider networks
Networking Option 2: Self-service networks
6.3.4 Configure the Compute service to use the Networking service
6.3.5 Finalizeinstallation Lo
7 OVN Install Documentation
Manual install & Configuration
7.1.1 Packaging
7.1.2 Controllernodes
7.1.3 Networknodes
7.1.4 Compute nodes vt e e e e e e e e e e
7.1.5 Verifyoperation e e e e e
7.1.6 References.
TripleO/RDO based deployments i,
7.2.1 Deployment steps oL e e e e
7.2.2 Description of the environment oL
Network architecture of the environment
Connecting toone of thenodes viassh.
7.2.3 Initial resource creation L. oL
8 OpenStack Networking Guide
Introduction e
8.1.1 Basicnetworking e
Ethernet e
VLANS . . o
Subnetsand ARP L
DHCP . . . o e
P e
TCP/UDP/ICMP e e
8.1.2 Network components L
Switches o
Routers e
Firewalls e
Load balancers e
8.1.3 Overlay (tunnel) protocols
Generic routing encapsulation (GRE)
Virtual extensible local area network (VXLAN)
Generic Network Virtualization Encapsulation (GENEVE)
8.1.4 Network namespaces
Linux network namespaces v v vt e e e e e e
Virtual routing and forwarding (VRF)
8.1.5 Network address translation
SNAT . . . e
DNAT . .
One-to-one NAT
8.1.6 OpenStack Networking
Concepts v e e e e e e e e e e
Service and component hierarchy 0oL o L.
8.1.7 Neutron API policies and supportedroles
Roles supported by the default Neutron API policies

93
93
93
94
97
97
98
98
98
99
100
101
101
102

107
107
108
108
109
110
111
112
113
115
115
115
115
115
115
116
116
116
116
116
117
117
117
118
118
118
119
123
125
125

8.2

Default API policies defined in Neutron 125

Default API policies o i 125
References L 125
8.1.8 Firewall-as-a-Service (FWaaS) 125
FWaaS v2 e 126
FWaaS vl oo 126
FWaaS Feature Matrix 126
Configuration L e e 126
8.2.1 Active-active L3 Gateway with Multihoming 126
Why . . e 126
Prerequisites 127
How . . . o e 128
USECASES « v v v v o v e e e e e e e e e e e e e e e e e e 129
Example e 130
8.2.2 Address SCOpes i e e 137
Accessing address SCOPES Lt e e e e e e e e 137
Backwards compatibility oo oL 137
Create shared address scopes as an administrativeuser 138
Routing with address scopes for non-privilegedusers 141
8.2.3 Automatic allocation of network topologies 147
Enabling the deployment for auto-allocation 147
GetMe ANetwork 149
Validating the requirements for auto-allocation 150
Project resources created by auto-allocation 150
Compatibility notes 151
8.2.4 Availability Zones 151
USECASE « o v v v e e e e e e e e e e e e e e e 151
Required extensions L L 151
Network scheduler L L 156
Router scheduler 156
L3 high availability 157
DHCP high availability L. 157
8.2.5 BGPDynamicRouting 157
Example configuration Lo 158
Prefix advertisement L L 172
Operation with Distributed Virtual Routers (DVR) 174
IPVO . o e 176
High availability 176
8.2.6 BGP Floating IPs over L2 Segmented Networks 177
Configuring the Neutron APIside 178
The BGPagent 178
Setting-up BGP peering with the switches 178
Setting-up physical networknames oL 179
Setting-up the provider network 180
Setting-up the 2nd segment Lo 180
Setting-up the provider subnets for the BGP next HOP routing 181
Adding a subnet for VM floating IPs and router gateways 182
Setting-up BGP advertizing oo oL 182
Per project operation e 182
Cumulus switch configuration L oL, 184
Verification 185

8.2.7

8.2.8

8.2.9

8.2.10

8.2.11

8.2.12

8.2.13

8.2.14

8.2.15

8.2.16

8.2.17

Agentsand Services L. Lo 185
Configuration optionso e e 185
L2agents e e e e e e 186
Metadataagent e e 186
DHCPagent e e e e e e e 186
L3agent e 186
External processes runby agentsot 186

DHCP High-availability 187
Demosetup e e e e e e 189
Configuration L e 190
Prerequisites for demonstration oL oo oL 191
Managing agents in neutron deployment L. 192
Managing assignment of networks to DHCPagent 194
HA of DHCPagents ittt 195
No HA for metadata service on isolated networks 197
Disabling and removing anagent. L oL 197
Enabling DHCP high availability by default 198

DNS Integration. e e e e 198
The Networking service internal DNS resolution 199

DNS Integration with an External Service 205
Configuring OpenStack Networking for integration with an external DNS service 205
Use case 1: Floating IPs are published with associated port DNS attributes . . . 207
Use case 2: Floating IPs are published in the external DNS service 213
Use case 3: Ports are published directly in the external DNS service 220
Performance considerations Lo L oL 234
Configuration of the externally accessible network for use cases 3b and 3c 234
The ports dns_assignment attribute withusecase3 235

DNS Resolution for Instances L. 239
Case 1: Each virtual network uses unique DNS resolver(s) 239
Case 2: DHCP agents forward DNS queries from instances 240

Distributed Virtual Routing with VRRP 241
Configurationexampleo 242
Known limitations L 244

Experimental Features Framework 244

Floating IP Port Forwarding 245
Configuring floating IP port forwarding 245

IPAM Configuration 246
Thebasics. o o L e 246
Known limitations L 246

IPVO . o e 246
Neutron subnets and the IPv6 APl attributes 247
Project network considerations Lo 249
Routersupport L 252
Advanced Services 253
Security considerations L Lo 254
OpenStack control & management network considerations 255
Prefix delegation 255

Macvtap Mechanism Driver 259
Prerequisites e 260
Architecture e 260
Example configuration 262

Network traffic flow 265

8.2.18 Metadata Service Caching, 265
8.2.19 Metadata Service Query Rate-limiting 266
8220 ML2Plug-in e 267
Architecture e e e 267
Configuration 268
Reference implementations, 273
8.2.21 MTU Considerations oot v vttt 275
Jumboframes 275
Instance network interfaces (VIFs) 277
Networks with enabled vlan transparency 277
8.2.22 NDPProxy e 278
Configuration of NDP proxy it .. 278
Userworkflow 279
Known limitations e 286
8.2.23 Network SegmentRanges oL, 286
Why youneedit 286
Howitworks e 287
Default network segmentranges L. 287
Example configuration 287
Workflow o e 288
Known limitations 293
8.2.24 Open vSwitch with DPDK Datapath 293
Thebasics. o . o o e 293
Using vhost-user interfaces L L o 294
Using vhost-user multiqueue L ... 294
Known limitations 295
8.2.25 Open vSwitch Hardware Offloading 295
Thebasics. o o o o e 295
Using Open vSwitch hardware offloading 296
8.2.26 Open vSwitch Native Firewall Driver. 302
Configuring heterogeneous firewall drivers 303
Prerequisites 303
Enable the native OVS firewall driver 303
Using GRE tunnels inside VMs with OVS firewall driver 303
Differences between OVS and iptables firewall drivers 304
Open Flow rules processing considerations 304
Permitted ethertypes 306
References L 306
8.2.27 Packet Logging Framework L 0oL 306
ML2/OVN Driver o oo e e e e e e e 306
ML2/OVS Driver oo 309
8.2.28 Quality of Service (QoS) L 315
Supported QoS rule types 316
L3QoSsupport. e e e e e e e 318
Configuration e e e 318
Userworkflow 321
8.2.29 Quality of Service (QoS): Guaranteed Minimum Bandwidth 331
Limitations e 332
Placement pre-requisites L 333

Nova pre-requisites o i e e e e e e 333

Neutron pre-requisites o v v v i e e e e e e e e e e 333

Propagation of resource information oL oL 337
Sample usage e e e e e e e e e e e 338
On Healing of Allocations 339
Debugging e 340
Links e 342
8.2.30 Quality of Service (QoS): Guaranteed Minimum Packet Rate 343
Limitations L e e 344
Placement pre-requisites e 345
Novapre-requisites Lo 345
Neutron pre-requiSites v v v it e e e e e e e e e 345
Propagation of resource information o000 348
Sample usage e e 348
On Healing of Allocations 349
Debugging e 349
Links L 351
8.2.31 Role-Based Access Control (RBAC) 352
Supported objects for sharing with specific projects 352
Sharing an object with specific projects L 0oL 352
Sharing a network with specific projects 352
Sharing a QoS policy with specific projects oL, 354
Sharing a security group with specific projects 355
Sharing an address scope with specific projects, 357
Sharing a subnet pool with specific projects 358
Sharing an address group with specific projects 359
How the shared flag relates to these entries 360
Allowing a network to be used as an external network 362
Preventing regular users from sharing objects with each other 365
Improve database RBAC query operations 365
8.2.32 Routed providernetworks oL o 365
Prerequisites 366
Example configuration oL oo 368
Create arouted providernetwork 368
Migrating non-routed networks torouted L 374
Routed provider networks as external networks for tenant routed networks 376
Multiple routed provider segments perhost 377
8.2.33 Router flavors with the L3 OVN service plugin 378
8.2.34 SR-IOV . . . e 386
Thebasics. e 386
Using SR-IOVinterfaces 388
SR-IOV with ConnectX-3/ConnectX-3 Pro Dual Port Ethernet 395
SR-IOV with InfiniBand L oL 397
Known limitations L 397
8.2.35 Service Function Chaining 398
Architecture L L e 398
Resources L 399
Operations i i e e e e e e e e e e e e e 401
8.2.36 Service Subnets 404
Operation o e e e e e e e e e e 404
USAge . . v ot o e e e e 405
8.2.37 SubnetOnboarding 411

vii

8.3

8.4

8.5

8.6

How itworks e e e 412

8.2.38 SubnetPools 415
Why youneedthem, 415
Howthey work 416
QUOLAS e e e e e e 416
Default subnetpools 416

8.2.39 Trunking e e e 420
Operation L e 420
Example configuration 420
Using trunks and subports inside an instance 426
Trunk states 426
Limitations and issues L L e 427

8.2.40 WSGI Usage with the Neutron APL. 427
WSGI Application e e e 427
Neutron API behinduwsgi 427
Neutron APl behind mod_wsgi 428
Start Neutron RPC server. 429
Neutron Worker Processes L oo o 429

Deployment examples L e 429

8.3.1 Prerequisites e e 430
Nodes o e e e 430
Networks and network interfaces oL, 431

8.3.2 Mechanismdrivers L 432
Linux bridge mechanismdriver 432
Open vSwitch mechanismdriver 482

Operations it e e e e e e e e e 555

8.4.1 IPavailabilitymetrics 555

842 Resourcetags e e e 556
USECASES '« o v v v v e e e e e e e e e e e e e e e e e 557
Filtering withtags o 557
Userworkflow L 558
Limitations e e e 565
Future support 565

843 Resource purgeo i e e e e e e 565
USAE . . o v e e e e e e e 565

8.4.4 Manage Networking service quotas v . v v v v v v vt e 566
Basic quota configurationo L. 566
Configure per-project quotas v v v it e e e e e e e e 567

Migration L e e e e e e e e e 571

8.5.1 Database 571
Database management command-linetool 572

8.5.2 Legacy nova-network to OpenStack Networking (neutron) 574
Impact and limitations oL 574
Migration process OVeIrview v v v v it e e e e e 575

8.5.3 Add VRRPtoanexistingrouter 576
Migration L. e e e e e e e 576
L3HAtoLegacy o e e e 577

Miscellaneous L e e e e e e 579

8.6.1 Firewall-as-a-Service (FWaaS) v2 scenario 579
Installationof FWaaSv2 579
Enable FWaaS v2 579

viii

8.7

Configure Firewall-as-a-Service v2 oL 580

8.6.2 Disable libvirt networking 581
libvirt network implementation 0., 582
How to disable libvirtnetworks 583
8.6.3 neutron-linuxbridge-cleanup utility, 583
Description 583
USagE . . o ot i e e e e e e e e e e e e e 583
8.6.4 Virtual Private Network-as-a-Service (VPNaaS) scenario 584
Enabling VPNaaS 584
Using VPNaaS with endpoint group (recommended) 585
Configure VPNaaS without endpoint group (the legacy way) 590
OVN Driver Administration Guide 593
8.7.1 OVNinformation 593
8.7.2 " Features e e e e 595
873 Routing 596
North/South 596
East/West e e 602
8.7.4 IP Multicast: IGMP snooping configuration guide for OVN 604
Howtoenableit 604
OVN Database information 605
Extrainformation L. 605
8.7.5 OpenStack and OVN Tutorial 606
8.7.6 Reference architecture oL Lo 606
Layout e e 606
Networking service with OVN integration 608
Accessing OVN database content 610
Addingacomputenode 611
Security Groups/Rules L oL 611
Networks o e 613
Routers e 635
Instances 651
877 DPDK SupportinOVN 683
Configuration Settings 683
Configuration Settings in compute hosts L. 683
8.7.8 Troubleshooting 683
Launching VMsfailure 683
Multi-Node setup not working oL, 684
Duplicated or deleted OVN agents 684
879 SR-IOV guidefor OVN 685
External ports 686
Environment setup for OVNSR-IOV 686
Known limitations L 686
8.7.10 Availability Zones guide for OVN 686
How toconfigureit 686
Router Availability Zones L 688
Network Availability Zones 690
8.7.11 Routed Provider Networks for OVN 692
8.7.12 Off-path SmartNIC DPUs withOVN 693
OVEIVIEW . . . o o it e e e e e e 694
Prerequisites 695
Novaconfiguration i i it e e 695

8.8

Auto-Discovery 696

Launch an instance with remote managedport. 696
8.7.13 Baremetal provisioning guide for OVN 697
Howtoconfigureit 697
8.7.14 OVNExternal Ports 698
Whatisit 698
Scheduling and database information 698
High availability L 700
8.7.15 RPCmessagesin OVN 701
8.7.16 OVNL3scheduler, 701
Introduction 701
Typesofschedulers L 702
Re-schedule Logical_Router_Port if a Chassisisremoved. 702
Availability Zones (AZ) distribution o 0 0oL, 703
Soft Anti-Affinity for Logical_Router with multiple Logical_Router_Port . 703
References 703
Archived Contents e e 703
8.8.1 Introductionto Networking 703
Networking APT 704
Configure SSL support for networking API 705
Firewall-as-a-Service (FWaaS) overview 705
Allowed-address-pairs e 705
Virtual-Private-Network-as-a-Service (VPNaaS) 706
8.8.2 Networking architecture 706
OVEIVIEW . . . o o it e e e e 706
VMware NSX integration e 707
8.8.3 Plug-in configurations e 707
Configure Big Switch (Floodlight REST Proxy) plug-in. 710
Configure Brocade plug-in 710
Configure NSX-mh plug-in. 711
Configure PLUMgrid plug-in L 712
8.8.4 Configure neutron agents ot el 713
Configure data-forwardingnodes 713
Configure DHCPagent, 714
Configure L3 agent e 715
Configure metering agent e e e e 718
Configure Hyper-V L2agent 718
Basic operationsonagents L. 719
8.8.5 Configure Identity service for Networking 720
Compute e e e e e e e e e e e e 721
Networking API and credential configuration 722
Configure security groups v v v v v e e e e e e e e e 723
Configure metadata 723
Example nova.conf (for nova-compute and nova-api) 724
8.8.6 Advanced configuration options oL L. 724
L3 metering agent e e e e e e 725
8.8.7 Scalable and highly available DHCP agents 725
8.8.8 UseNetworking e 725
Core Networking APl features 726
Use Compute with Networking 728

8.8.9 Advanced features through APl extensions 730

Provider networks e 730

L3routingand NAT 733
Security Sroups o .o e e e e e e e e e e e e e 735
Plug-in specific extensions L o oL 736
L3metering o e e e e 738

8.8.10 Advanced operational features L. Lo 741
Logging settings e e e 741
Notifications e e e e e e 741

8.8.11 Authentication and authorization 743
9 Configuration Guide 747
9.1 Configuration Reference o oL 747
9.1.1 neutron.conf. e 747
DEFAULT e 747

AZENL . L o i e e e e e e e e e e e 772

cache e e e 774

COTS & v v e e i e e e e e e e e e e e e e e e e 782
database e e e 783
designate 787
experimental 793
healthcheck e 793

fronic e 795
keystone_authtoken L e 800

1) 806
OSIO_CONCUITENCY v o o e e e e e e e e e e e e e e e 811
oslo_messaging_ amqp o 812
oslo_messaging_kafka 820
oslo_messaging_notifications L oL oL L. 824
oslo_messaging_rabbit L L 825
oslo_middleware e e 833
oslo_policy e 834
OSlO_TePOTtS . . . v o v v e e e e 836
oslo_versionedobjects 837
placement L L e e e e e e e 837
PIiVSED . & o ot o e e e e e e e e e e 842
profiler L e e e e 843
profiler_jaeger 846
profiler_otlp e 847

QUOTAS © v v v o e e e e e e e e e e e e e e e e e 847

SSL . e e e 849

9.1.2 ml2 confini. e 850
DEFAULT e 850

ml2 .o e 857
ml2_type_flat 859
MI2_type_ZeNeVe oo e e e e e e e e e e e e 859
MI2_tYPe_GIe . . . v v v o o e e e e e e e e e e e e e 860
ml2_type_vlan e e e 860
ml2_type_vxlan 860

0] 1 L 861
ovn_nb_global 867

OVS vt e e e e e e e e e e e e e e e e e 868

Xi

ovs_driver L e e 869

SECUMTLYZIOUP & v v v v v v v e e e e e e e e e e e e e e e e e e 869

SHOV_AIIVET o o o e e e e e e e e e e, 870

9.1.3 linuxbridge_agent.ini 870

DEFAULT e 870

AZENL . . . L e e e e e e e e e e 877

linux_bridge e 878

network_log L. 879

SECUMILYZIOUD & v v v v v v v e e e e e e e e e e e e e e e e e e 880

vxlan ..o e 880

9.1.4 macvtap_agentini 883

DEFAULT e 883

AZENL . . o i e e e e e e e e e e e e e e 890

MACVEAD . .« .« v o et e 891

SECUMTLYZIOUP . v v v v v v e e e e e e e e e e e e e e e e e e e 891

9.1.5 openvswitch_agent.ini e 892

DEFAULT e 892

AZENL . L v e e e e e e e e e e e e e e e e e e e 899

dhep . . . e 901

metadata 902

network_log L 903

OVS o v e e e e e e e e e e e e e e e e 904

SECUTILYZIOUD . .« . v v v et et et e e e e e e e e e e e 909

90.1.6 sriov_agent.inio e 910

DEFAULT e 910

AZENE . L o L e e e e e e e e e e e e e e 917

STIOV_NIC . v v v v o o e e e e e e e e e e e e s 917

9.1.7 dhep_agentini. Lo 919

DEFAULT 919

AZENL . . . L L 929

metadata_rate_limiting 930

OVS o v vt e e e e e e e e e e e e e e e e e 931

9.1.8 13_agentini 933

DEFAULT e 933

AZENL . . o i e e e e e e e e e e e e e e 939

metadata_rate_limiting L L e 940

network_log L 941

OVS o v et e e e e e e e e e e e e e e e e e 941

9.1.9 metadata_agent.ini L. oL L 943

DEFAULT 943

AZENL L 953

cache L 954

9.1.10 Neutron Metering system o 962

Non-granular traffic messages 962

Granular trafficmessages L o L 963

Sample of metering_agent.ini 964

9.2 PolicyReference e 974

0.2.1 MEULrON e e e e e e e e 975

10 Command-Line Interface Reference 1051
10.1 neutron-sanity-check L 1051

xii

10.1.1 neutron-sanity-check usage L oL 1051

10.1.2 neutron-sanity-check optional arguments 1052
10.2 neutron-statis o i i e e e e e e e e e e e 1055
10.2.1 neutron-status USAZE v v ¢ v v v v e e e e e e e e e e e e e e 1055
Commanddetails 1055
11 OVN Driver 1057
11.1 Migration Strate@y vt e e e e e e e 1057
IT.1.1 OVerview o o it s e e s e e e e e 1057
11.1.2 Steps for migration 1058
Perform the following steps in the overcloud/undercloud 1058
Perform the following steps in the undercloud 1058
11.2 Gaps from ML2/OVS e e 1063
11.2.1 References. e 1064
11.3 OVNsupported DHCPoptions 1064
11.3.1 IPversion4 o e e 1065
1132 IPversion6 oo e e e 1066
11.3.3 OVN Database information 1066
11.4 ml2ovn-trace o L e e e e e e e 1067
11.4.1 Usage o o o e e e e e e e e e e e e e 1067
11.42 Examples e e 1068
11.5 Frequently Asked Questions e 1069
11.6 OVINagent i i it e e e e e e e e s e 1070
11.6.1 OVN and OVS database connectivity 1070
11.6.2 Plugable extensions 0 i i e e e e e e 1071
11.6.3 Event-drivenservice 1071
12 API Reference 1073
13 Neutron Feature Classification 1075
13.1 Introduction e e 1075
13.1.1 Goals o e 1075
13.1.2 COoNnCeptS . . v v v v et e e e e e e e e e e e e e 1075
13.1.3 Feature status oL e e e e e 1075
Immature 1076
Mature e e e e 1076
Required e 1076
Deprecated e e 1076
Deployment rating of features oL 1076
13.2 General Feature Support 0 e e e e e e e e 1077
13.3 Provider Network Support 1081
14 Contributor Guide 1083
14.1 Basic Informationo 1083
14.1.1 So You Want to Contribute L . 1083
Communication e e 1083
Contacting the Core Team 1084
New Feature Planning 1084
Task Tracking o o e e e 1084
ReportingaBug 1084
Getting Your PatchMerged, 1084
Project Team Lead Duties 1084

14.2

14.3

14.4

14.5

Neutron Policies e e 1085

14.2.1 Neutron Policies 1085
Blueprintsand Specs 1085
Bugs . .o e 1090
Code Reviews o . o 1104
Contributor Onboarding 1106
Gate Failure Triage 1107
Pre-release check list L 1111
Team Structure oL 1114
Third-party CI oo e 1119
Gerrit Rechecks L 1121
14.3.1 Recheck Failed Cl jobsin Neutron 1121
Neutron Stadium L. e 1122
14.4.1 Neutron Stadiumo e 1122
Stadium Governanceo e e e e 1122
Sub-Project Guidelines 1126
Developer Guide e 1130
14.5.1 Effective Neutron: 100 specific ways to improve your Neutron contributions . . 1130
Developing better software oL, 1130
Landing patches morerapidly 1135
14.5.2 Setting Up a Development Environment 1138
Gettingthecode 1138
Aboutignorefiles oL 1139
Testing Neutron v v v v i e e e e e e e e e e 1139
14.5.3 Deploying an OVN Development Environment with vagrant 1139
Vagrant prerequisites ool e e e 1139
Sparse architecture L e e e e e 1140
14.5.4 Contributing new extensions to Neutron 1141
Introduction 1141
Contribution Process L 1142
Designand Development 1143
Testing and Continuous Integration 1143
Defect Management i e 1144
Backport Management Strategies Lo 1145
DevStack Integration Strategies 0. 1145
Documentation Lo e 1145
Project Initial Setup L L 1145
Internationalization support L e 1146
Integrating with the Neutron system 1147
14.5.5 Neutronpublic API 1150
Breakages L. e 1151
14.5.6 Client command extension support 1152
14577 Alembic Migrations L e 1152
Introduction 1152
The Migration Wrapper o i e 1152
Migration Branches 1154
Developers e e e e e 1154
1458 Upgradechecks e 1161
Introduction 1161
3rd party pluginschecks L oL 1161
14.5.9 Testing 0 0 i e e e e e e e 1161

xiv

Testing Neutron o o it e e e e 1161

Full Stack Testing e 1171

ML2 OVS with DevStack oL 1177
Neutron Jobs Running in Zuul CI 1179

OVN with DevStack 1186
Tempest Testing L e 1199
Template for ModelMigrationSync for external repos 1203

Test Coverage o v v i i e e 1206
Transient DB Failure Injection 1207

14.6 NeutronInternals e 1207
14.6.1 NeutronlInternals L 1207
Address Scopes and SubnetPoolso 0 oL, 1207

Agent EXtensionso e 1211
APLEXtensions o . . e 1213

API Layer for Neutron WSGI/HTTP 1215
Callingthe ML2 Plugin i 1215

Code Profiling 1216
Database Layer e 1223
Database Models Relocation 1228

DNS Nameserver Order Consistency v v v v v v v v v v .. 1229
External DNS Service Integration 1231

i18n for the Neutron Stadium 1236

L2 Agent Extensions Lo 1237

L2 Agent Networking 1237

L3 Agent Extensions e e 1248

Layer 3 Networking via Layer 3 & OpenVSwitch Agents 1249
Live-migration e 1256

Local IP o o e 1261
Metadata Service Architectural Overview 1264

ML2 Extension Manager e 1268
Network IP Availability Extension 1268
Objects o e e 1271

Open vSwitch Firewall Driver 1283

OVN DesignNotes ittt 1294
Neutron Open vSwitch vhost-user Support 1328
Neutron Plugin Architecture, 1328
Policy Enforcement and Authorization 1335
Provisioning Blocks in relation to Composite Object Status 1341
Quality of Service L 1343

Quota Management and Enforcement 1351
Retrying Operations o 1357
RPCAPI Layer s 1360

RPC Messaging Callback System 1363
Segments Extension e 1368
Service Extensionso 1369
Servicesand Agents e e e 1370

Tags in Neutron Resources 1371
Upgrade Strateg@y v v v v e e e e e e e e 1374

14.6.2 Module Reference L 1378
147 OVNDriver e e 1378
147.1 OVNbackend e 1378

XV

OVN Tools e e e 1378

14.8 Dashboards e e e e e 1380
14.8.1 CIStatus Dashboards 1380
Gerrit Dashboards e 1380

Grafana Dashboards e 1381

XVi

Neutron Documentation, Release 25.1.1.dev7

Neutron is an OpenStack project to provide network connectivity as a service between interface devices
(e.g., vNICs) managed by other OpenStack services (e.g., nova). It implements the OpenStack Network-
ing APL.

This documentation is generated by the Sphinx toolkit and lives in the source tree. Additional docu-
mentation on Neutron and other components of OpenStack can be found on the OpenStack wiki and the
Neutron section of the wiki. The Neutron Development wiki is also a good resource for new contributors.

Enjoy!

CONTENTS 1

https://docs.openstack.org/api-ref/network/
https://docs.openstack.org/api-ref/network/
https://wiki.openstack.org
https://wiki.openstack.org/NeutronDevelopment

Neutron Documentation, Release 25.1.1.dev7

2 CONTENTS

CHAPTER
ONE

OVERVIEW

The OpenStack project is an open source cloud computing platform that supports all types of cloud
environments. The project aims for simple implementation, massive scalability, and a rich set of features.
Cloud computing experts from around the world contribute to the project.

OpenStack provides an Infrastructure-as-a-Service (IaaS) solution through a variety of complementary
services. Each service offers an Application Programming Interface (API) that facilitates this integration.

This guide covers step-by-step deployment of the major OpenStack services using a functional example
architecture suitable for new users of OpenStack with sufficient Linux experience. This guide is not
intended to be used for production system installations, but to create a minimum proof-of-concept for the
purpose of learning about OpenStack.

After becoming familiar with basic installation, configuration, operation, and troubleshooting of these
OpenStack services, you should consider the following steps toward deployment using a production ar-
chitecture:

* Determine and implement the necessary core and optional services to meet performance and re-
dundancy requirements.

* Increase security using methods such as firewalls, encryption, and service policies.

* Implement a deployment tool such as Ansible, Chef, Puppet, or Salt to automate deployment and
management of the production environment.

1.1 Example architecture

The example architecture requires at least two nodes (hosts) to launch a basic virtual machine (VM) or
instance. Optional services such as Block Storage and Object Storage require additional nodes.

Important

The example architecture used in this guide is a minimum configuration, and is not intended for
production system installations. It is designed to provide a minimum proof-of-concept for the purpose
of learning about OpenStack. For information on creating architectures for specific use cases, or how
to determine which architecture is required, see the Architecture Design Guide.

This example architecture differs from a minimal production architecture as follows:

» Networking agents reside on the controller node instead of one or more dedicated network nodes.

https://docs.openstack.org/arch-design/

Neutron Documentation, Release 25.1.1.dev7

* Overlay (tunnel) traffic for self-service networks traverses the management network instead of a
dedicated network.

For more information on production architectures, see the Architecture Design Guide, OpenStack Oper-
ations Guide, and OpenStack Networking Guide.

Hardware Requirements

-~ ~ - o —— -

Controller Node Compute Node 1
1-2 4GB
[CPU] [RAM J

1-2 8 GB 2-4+ 8+ GB

CPU RAM CPU RAM

100 GE 2 100+ GB 2 1
Storage MNIC Storage MNIC NIC

M SN S

100+ GB
Storage

Object Storage Node 2
15 4+ GB
CPU RAM
100+ GB 1
[Storage [MNIC J

fdevisdb

fdev/sdc

100+ GB
Storage

(2) (s 1}
)

o
e L e,

| R —

Fig. 1: Hardware requirements

1.1.1 Controller

The controller node runs the Identity service, Image service, management portions of Compute, manage-
ment portion of Networking, various Networking agents, and the Dashboard. It also includes supporting
services such as an SQL database, message queue, and Network Time Protocol (NTP).

Optionally, the controller node runs portions of the Block Storage, Object Storage, Orchestration, and
Telemetry services.

The controller node requires a minimum of two network interfaces.

4 Chapter 1. Overview

https://docs.openstack.org/arch-design/
https://wiki.openstack.org/wiki/OpsGuide
https://wiki.openstack.org/wiki/OpsGuide

Neutron Documentation, Release 25.1.1.dev7

1.1.2 Compute

The compute node runs the hypervisor portion of Compute that operates instances. By default, Compute
uses the kernel-based VM (KVM) hypervisor. The compute node also runs a Networking service agent
that connects instances to virtual networks and provides firewalling services to instances via security
groups.

You can deploy more than one compute node. Each node requires a minimum of two network interfaces.

1.1.3 Block Storage
The optional Block Storage node contains the disks that the Block Storage and Shared File System ser-
vices provision for instances.

For simplicity, service traffic between compute nodes and this node uses the management network. Pro-
duction environments should implement a separate storage network to increase performance and security.

You can deploy more than one block storage node. Each node requires a minimum of one network
interface.

1.1.4 Object Storage
The optional Object Storage node contain the disks that the Object Storage service uses for storing ac-
counts, containers, and objects.

For simplicity, service traffic between compute nodes and this node uses the management network. Pro-
duction environments should implement a separate storage network to increase performance and security.

This service requires two nodes. Each node requires a minimum of one network interface. You can
deploy more than two object storage nodes.

1.2 Networking

Choose one of the following virtual networking options.

1.2.1 Networking Option 1: Provider networks

The provider networks option deploys the OpenStack Networking service in the simplest way possible
with primarily layer-2 (bridging/switching) services and VLAN segmentation of networks. Essentially,
it bridges virtual networks to physical networks and relies on physical network infrastructure for layer-3
(routing) services. Additionally, a DHCP<Dynamic Host Configuration Protocol (DHCP) service pro-
vides IP address information to instances.

The OpenStack user requires more information about the underlying network infrastructure to create a
virtual network to exactly match the infrastructure.

Warning

1.2. Networking 5

Neutron Documentation, Release 25.1.1.dev7

This option lacks support for self-service (private) networks, layer-3 (routing) services, and advanced
services such as FireWall-as-a-Service (FWaaS). Consider the self-service networks option below if
you desire these features.

Networking Option 1: Provider Networks
Service Layout

——

Controller Node Compute Block Storage
SQL Database Networking I Block Storage | Nodes Nodes
Service Management y Management _} iSCSI Target

KVM Hypervisor

i i i |
i MNoSQL De_itabase Networkmg i Orchestration |
Service ML2 Plug-in .

Service

1
]
1
1
]
1
]
1
1
]
Compute :
]
1
]
1
1
]
1
]
1

g S

| :J
|
\ 4 \ Block Storage
m———————=- - Volume Service
Linux Network I Object Storage |
Message Queue Utiliti I P Fod | i ~
tilities \ Uabdf il Linux Network Shared File System |
b= e ~ Utilities Service)
[Network Time J[Networking J: Shared File System | g
Service Linux Bridge Agent J{ Management W, Networking Telemetry |
- - Linux Bridge Agent Agem; !
) Networking f Database | “
Identi I | b ~| TTTTTTTT o=
[ty J [DHCP Agent J y\ Management v, Telemetry I
A ~ Agent H T
: Networking Telemetry ! \ w :
[Image Service J(Metadata Agent]'\ Management _‘: Dbject
b Storage Nodes

Object Storage

\. Account Service

Object Storage
Container Service

Compute f Telemetry |
1 |
Management \ Agent(s)
el
Cj Core component
Object Storage
Object Service

, Optional component \ N /

il

1.2.2 Networking Option 2: Self-service networks

The self-service networks option augments the provider networks option with layer-3 (routing) services
that enable self-service networks using overlay segmentation methods such as Virtual Extensible LAN
(VXLAN). Essentially, it routes virtual networks to physical networks using Network Address Translation
(NAT). Additionally, this option provides the foundation for advanced services such as FWaaS.

The OpenStack user can create virtual networks without the knowledge of underlying infrastructure on
the data network. This can also include VLAN networks if the layer-2 plug-in is configured accordingly.

6 Chapter 1. Overview

Neutron Documentation, Release 25.1.1.dev7

Networking Option 2: Self-Service Networks

Service Layout

' ™ ™ FTTTTTTTETETETT \
1
Controller Node Compute i Block Storage !
1
w T T T T T T T l 1
[SQL Database] [Networking : Block Storage _J § Nodes . : Nodes :
Service Management Management 1 ;
AN v | iSCSI Target 1
A——— ~ P ~ KVM Hypervisor 1 (Service :
I Sk D.’_atabase Networkmg | Orchestration - w., : |
o Service | ML2 Plug-in I Compute | Block Storage 1
N e mm = e L P) 1 Volume Service :
[T N [Linux Metworlk I Object Storage : — T
y Utilities)\ ProxyService Linux Network 1| Shared File System 1 |
~ —_————————= -~ Utilities 1 Service ! I
Network Time Networking ! Shared File System M | e 2
.) — -
Service y Linux Bridge Agent Iy Management Networking I Telemetry 1 :
. e e - Linux Bridge Agent : Agent b
[Identity [Networking : Database ‘m{ e ————— i
y L3 Agent o Management Telemetry 1
~ N 7 ~, If--;l- ----- ~ Agent T T Tt \
) etworkin elemet w :
[Image Service) [DHCP Agengt I Managemrgnt _J . Object i
1 1
» D ——— < | Storage Nodes |
Compute Networking : Telemetry Y oL
Management J| Metadata Agent |, Agent(s) 1| ObjectStorage !
\. Y, : Account Service .
L ——— |
1 Object Storage :
I : '
D Core component ;A Container Service J
| —
.
: Object Storage :
=== . \ Object Service 1
1 1 H N\ H r
N g Optional component N -

1.2. Networking

Neutron Documentation, Release 25.1.1.dev7

8 Chapter 1. Overview

CHAPTER
TWO

NETWORKING SERVICE OVERVIEW

OpenStack Networking (neutron) allows you to create and attach interface devices managed by other
OpenStack services to networks. Plug-ins can be implemented to accommodate different networking
equipment and software, providing flexibility to OpenStack architecture and deployment.

It includes the following components:

neutron-server
Accepts and routes API requests to the appropriate OpenStack Networking plug-in for action.

OpenStack Networking plug-ins and agents
Plug and unplug ports, create networks or subnets, and provide IP addressing. These plug-ins
and agents differ depending on the vendor and technologies used in the particular cloud. Open-
Stack Networking ships with plug-ins and agents for Open vSwitch, Linux bridging, Open Virtual
Network (OVN), SR-IOV and Macvtap.

The common agents are L3 (layer 3), DHCP (dynamic host IP addressing), and a plug-in agent.

Messaging queue
Used by most OpenStack Networking installations to route information between the neutron-server
and various agents. Also acts as a database to store networking state for particular plug-ins.

OpenStack Networking mainly interacts with OpenStack Compute to provide networks and connectivity
for its instances.

Neutron Documentation, Release 25.1.1.dev7

10 Chapter 2. Networking service overview

CHAPTER
THREE

NETWORKING (NEUTRON) CONCEPTS

OpenStack Networking (neutron) manages all networking facets for the Virtual Networking Infrastructure
(VNI) and the access layer aspects of the Physical Networking Infrastructure (PNI) in your OpenStack
environment. OpenStack Networking enables projects to create advanced virtual network topologies
which may include services such as a firewall, and a virtual private network (VPN).

Networking provides networks, subnets, and routers as object abstractions. Each abstraction has func-
tionality that mimics its physical counterpart: networks contain subnets, and routers route traffic between
different subnets and networks.

Any given Networking set up has at least one external network. Unlike the other networks, the external
network is not merely a virtually defined network. Instead, it represents a view into a slice of the physical,
external network accessible outside the OpenStack installation. TP addresses on the external network are
accessible by anybody physically on the outside network.

In addition to external networks, any Networking set up has one or more internal networks. These
software-defined networks connect directly to the VMs. Only the VMs on any given internal network,
or those on subnets connected through interfaces to a similar router, can access VMs connected to that
network directly.

For the outside network to access VMSs, and vice versa, routers between the networks are needed. Each
router has one gateway that is connected to an external network and one or more interfaces connected to
internal networks. Like a physical router, subnets can access machines on other subnets that are connected
to the same router, and machines can access the outside network through the gateway for the router.

Additionally, you can allocate IP addresses on external networks to ports on the internal network. When-
ever something is connected to a subnet, that connection is called a port. You can associate external
network IP addresses with ports to VMs. This way, entities on the outside network can access VMs.

Networking also supports security groups. Security groups enable administrators to define firewall rules
in groups. A VM can belong to one or more security groups, and Networking applies the rules in those
security groups to block or unblock ports, port ranges, or traffic types for that VM.

Each plug-in that Networking uses has its own concepts. While not vital to operating the VNI and
OpenStack environment, understanding these concepts can help you set up Networking. All Networking
installations use a core plug-in and a security group plug-in (or just the No-Op security group plug-in).
Additionally, Firewall-as-a-Service (FWaaS) is available.

11

Neutron Documentation, Release 25.1.1.dev7

12 Chapter 3. Networking (neutron) concepts

CHAPTER
FOUR

INSTALL AND CONFIGURE FOR OPENSUSE AND SUSE LINUX
ENTERPRISE

4.1 Host networking

After installing the operating system on each node for the architecture that you choose to deploy, you must
configure the network interfaces. We recommend that you disable any automated network management
tools and manually edit the appropriate configuration files for your distribution. For more information
on how to configure networking on your distribution, see the SLES 12 or openSUSE documentation.

All nodes require Internet access for administrative purposes such as package installation, security up-
dates, Domain Name System (DNS), and Network Time Protocol (NTP). In most cases, nodes should
obtain Internet access through the management network interface. To highlight the importance of net-
work separation, the example architectures use private address space for the management network and
assume that the physical network infrastructure provides Internet access via Network Address Transla-
tion (NAT) or other methods. The example architectures use routable IP address space for the provider
(external) network and assume that the physical network infrastructure provides direct Internet access.

In the provider networks architecture, all instances attach directly to the provider network. In the self-
service (private) networks architecture, instances can attach to a self-service or provider network. Self-
service networks can reside entirely within OpenStack or provide some level of external network access
using Network Address Translation (NAT) through the provider network.

The example architectures assume use of the following networks:
* Management on 10.0.0.0/24 with gateway 10.0.0.1

This network requires a gateway to provide Internet access to all nodes for administrative purposes
such as package installation, security updates, Domain Name System (DNS), and Network Time
Protocol (NTP).

* Provider on 203.0.113.0/24 with gateway 203.0.113.1

This network requires a gateway to provide Internet access to instances in your OpenStack envi-
ronment.

You can modify these ranges and gateways to work with your particular network infrastructure.

Network interface names vary by distribution. Traditionally, interfaces use eth followed by a sequential
number. To cover all variations, this guide refers to the first interface as the interface with the lowest
number and the second interface as the interface with the highest number.

Unless you intend to use the exact configuration provided in this example architecture, you must modify
the networks in this procedure to match your environment. Each node must resolve the other nodes by

13

https://www.suse.com/documentation/sles-12/book_sle_admin/data/sec_basicnet_manconf.html
https://doc.opensuse.org/documentation/leap/reference/html/book-reference/cha-network.html
https://tools.ietf.org/html/rfc1918

Neutron Documentation, Release 25.1.1.dev7

Network Layout

' ™ - ~
Controller Node 1

Interface 2
{unnumbered)

-

Interface 2
{unnumbered)

Internet

. Management network Provider network
10.0.0.0/24 203.0.113.0/24

- .
C] Core component) , Optional component
S e — -

14 Chapter 4. Install and configure for openSUSE and SUSE Linux Enterprise

Neutron Documentation, Release 25.1.1.dev7

name in addition to IP address. For example, the controller name must resolve to 10.0.0. 11, the IP
address of the management interface on the controller node.

Warning

Reconfiguring network interfaces will interrupt network connectivity. We recommend using a local
terminal session for these procedures.

Note

Your distribution enables a restrictive firewall by default. During the installation process, certain
steps will fail unless you alter or disable the firewall. For more information about securing your
environment, refer to the OpenStack Security Guide.

4.1.1 Controller node
Configure network interfaces

1. Configure the first interface as the management interface:
IP address: 10.0.0.11
Network mask: 255.255.255.0 (or /24)
Default gateway: 10.0.0.1

2. The provider interface uses a special configuration without an IP address assigned to it. Configure
the second interface as the provider interface:

Replace INTERFACE_NAME with the actual interface name. For example, ethl or ens224.
» Edit the /etc/sysconfig/network/ifcfg-INTERFACE_NAME file to contain the following:

1. Reboot the system to activate the changes.

Configure name resolution

1. Set the hostname of the node to controller.

2. Edit the /etc/hosts file to contain the following:

(# controller
10.0.0.11 controller

computel
10.0.0.31 computel

blockl

(continues on next page)

4.1. Host networking 15

https://docs.openstack.org/security-guide/

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

10.0.0.41 blockl

objectl

10.0.0.51 objectl

object2

10.0.0.52 object2
Warning

Some distributions add an extraneous entry in the /etc/hosts file that resolves the actual host-
name to another loopback IP address such as 127.0.1.1. You must comment out or remove
this entry to prevent name resolution problems. Do not remove the 127.0.0.1 entry.

Note

This guide includes host entries for optional services in order to reduce complexity should you
choose to deploy them.

4.1.2 Compute node

Configure network interfaces

1. Configure the first interface as the management interface:
IP address: 10.0.0.31
Network mask: 255.255.255.0 (or /24)
Default gateway: 10.0.0.1

Note
Additional compute nodes should use 10.0.0.32, 10.0.0.33, and so on.

2. The provider interface uses a special configuration without an IP address assigned to it. Configure
the second interface as the provider interface:

Replace INTERFACE_NAME with the actual interface name. For example, ethl or ens224.

* Edit the /etc/sysconfig/network/ifcfg-INTERFACE_NAME file to contain the following:

1. Reboot the system to activate the changes.

16 Chapter 4. Install and configure for openSUSE and SUSE Linux Enterprise

Neutron Documentation, Release 25.1.1.dev7

Configure name resolution

1. Set the hostname of the node to computel.

2. Edit the /etc/hosts file to contain the following:

(# controller

10.0.0.11 controller

computel

10.0.0.31 computel

blockl

10.0.0.41 blockl

objectl

10.0.0.51 objectl

object2

10.0.0.52 object2
Warning

Some distributions add an extraneous entry in the /etc/hosts file that resolves the actual host-
name to another loopback IP address such as 127.0.1.1. You must comment out or remove
this entry to prevent name resolution problems. Do not remove the 127.0.0.1 entry.

Note

This guide includes host entries for optional services in order to reduce complexity should you
choose to deploy them.

4.1.3 Block storage node (Optional)

If you want to deploy the Block Storage service, configure one additional storage node.

Configure network interfaces

* Configure the management interface:
— IP address: 10.0.0.41
— Network mask: 255.255.255.0 (or /24)
— Default gateway: 10.0.0.1

4.1. Host networking 17

Neutron Documentation, Release 25.1.1.dev7

Configure name resolution

1. Set the hostname of the node to block1.

2. Edit the /etc/hosts file to contain the following:

controller

10.0.0.11 controller

computel

10.0.0.31 computel

blockl

10.0.0.41 blockl

objectl

10.0.0.51 objectl

object2

10.0.0.52 object2
Warning

Some distributions add an extraneous entry in the /etc/hosts file that resolves the actual host-
name to another loopback IP address such as 127.0.1.1. You must comment out or remove
this entry to prevent name resolution problems. Do not remove the 127.0.0.1 entry.

Note

This guide includes host entries for optional services in order to reduce complexity should you
choose to deploy them.

3. Reboot the system to activate the changes.

4.1.4 Verify connectivity

We recommend that you verify network connectivity to the Internet and among the nodes before pro-
ceeding further.

1. From the controller node, test access to the Internet:

ping -c 4 openstack.org

(continues on next page)

18 Chapter 4. Install and configure for openSUSE and SUSE Linux Enterprise

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

2. From the controller node, test access to the management interface on the compute node:

e

ping -c computel

3. From the compute node, test access to the Internet:

ping -c 4 openstack.org

4. From the compute node, test access to the management interface on the controller node:

ping -c 4 controller

Note

Your distribution enables a restrictive firewall by default. During the installation process, certain
steps will fail unless you alter or disable the firewall. For more information about securing your

4.1. Host networking 19

Neutron Documentation, Release 25.1.1.dev7

environment, refer to the OpenStack Security Guide.

4.2 Install and configure controller node

4.2.1 Prerequisites
Before you configure the OpenStack Networking (neutron) service, you must create a database, service
credentials, and API endpoints.

1. To create the database, complete these steps:

¢ Use the database access client to connect to the database server as the root user:

[mysql -u root -p }

¢ Create the neutron database:

{)

» Grant proper access to the neutron database, replacing NEUTRON_DBPASS with a suitable
password:

¢ Exit the database access client.

2. Source the admin credentials to gain access to admin-only CLI commands:

{ . admin-openrc }

3. To create the service credentials, complete these steps:

e Create the neutron user:

e N

openstack user create --domain default --password-prompt neutron

(continues on next page)

20 Chapter 4. Install and configure for openSUSE and SUSE Linux Enterprise

https://docs.openstack.org/security-guide/

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

¢ Add the admin role to the neutron user:

openstack role add --project service --user neutron admin

Note

This command provides no output.

* Create the neutron service entity:

-

openstack service create --name neutron
--description network

4. Create the Networking service API endpoints:

openstack endpoint create --region RegionOne
network public http://controller:9696

openstack endpoint create --region RegionOne
network internal http://controller:9696

(continues on next page)

4.2. Install and configure controller node 21

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

openstack endpoint create --region RegionOne
network admin http://controller:9696

4.2.2 Configure networking options

You can deploy the Networking service using one of two architectures represented by options 1 and 2.

Option 1 deploys the simplest possible architecture that only supports attaching instances to provider
(external) networks. No self-service (private) networks, routers, or floating IP addresses. Only the admin
or other privileged user can manage provider networks.

Option 2 augments option 1 with layer-3 services that support attaching instances to self-service networks.
The demo or other unprivileged user can manage self-service networks including routers that provide
connectivity between self-service and provider networks. Additionally, floating IP addresses provide
connectivity to instances using self-service networks from external networks such as the Internet.

Self-service networks typically use overlay networks. Overlay network protocols such as VXLAN in-
clude additional headers that increase overhead and decrease space available for the payload or user data.
Without knowledge of the virtual network infrastructure, instances attempt to send packets using the de-
fault Ethernet maximum transmission unit (MTU) of 1500 bytes. The Networking service automatically
provides the correct MTU value to instances via DHCP. However, some cloud images do not use DHCP
or ignore the DHCP MTU option and require configuration using metadata or a script.

22 Chapter 4. Install and configure for openSUSE and SUSE Linux Enterprise

Neutron Documentation, Release 25.1.1.dev7

Note

Option 2 also supports attaching instances to provider networks.

Choose one of the following networking options to configure services specific to it. Afterwards, return
here and proceed to Configure the metadata agent.

Networking Option 1: Provider networks

Install and configure the Networking components on the controller node.

Install the components

zypper install --no-recommends openstack-neutron
openstack-neutron-server openstack-neutron-openvswitch-agent
openstack-neutron-dhcp-agent openstack-neutron-metadata-agent
bridge-utils

Configure the server component

The Networking server component configuration includes the database, authentication mechanism, mes-
sage queue, topology change notifications, and plug-in.

Note

Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (. . .) in the configuration snip-
pets indicates potential default configuration options that you should retain.

* Edit the /etc/neutron/neutron.conf file and complete the following actions:

— In the [database] section, configure database access:

Replace NEUTRON_DBPASS with the password you chose for the database.

Note

Comment out or remove any other connection options in the [database] section.

— In the [DEFAULT] section, enable the Modular Layer 2 (ML2) plug-in and disable additional
plug-ins:

4.2. Install and configure controller node 23

Neutron Documentation, Release 25.1.1.dev7

— In the [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in Rab-
bitMQ.

— Inthe [DEFAULT] and [keystone_authtoken] sections, configure Identity service access:

Replace NEUTRON_PASS with the password you chose for the neutron user in the Identity
service.

Note

Comment out or remove any other options in the [keystone_authtoken] section.

— Inthe [DEFAULT] and [nova] sections, configure Networking to notify Compute of network
topology changes:

(continues on next page)

24 Chapter 4. Install and configure for openSUSE and SUSE Linux Enterprise

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

Replace NOVA_PASS with the password you chose for the nova user in the Identity service.

* In the [oslo_concurrency] section, configure the lock path:

Configure the Modular Layer 2 (ML2) plug-in

The ML2 plug-in uses the Linux bridge mechanism to build layer-2 (bridging and switching) virtual
networking infrastructure for instances.

* Edit the /etc/neutron/plugins/ml2/ml2_conf.ini file and complete the following actions:

— In the [ml12] section, enable flat and VLAN networks:

— In the [m12] section, disable self-service networks:

— In the [m12] section, enable the Linux bridge mechanism:

Warning

After you configure the ML2 plug-in, removing values in the type_drivers option can
lead to database inconsistency.

— Inthe [m12] section, enable the port security extension driver:

4.2. Install and configure controller node 25

Neutron Documentation, Release 25.1.1.dev7

L

— Inthe [ml2_type_flat] section, configure the provider virtual network as a flat network:

Configure the Open vSwitch agent

The Linux bridge agent builds layer-2 (bridging and switching) virtual networking infrastructure for
instances and handles security groups.

* Editthe /etc/neutron/plugins/ml2/openvswitch_agent.ini file and complete the follow-
ing actions:

— In the [ovs] section, map the provider virtual network to the provider physical bridge:

Replace PROVIDER_BRIDGE_NAME with the name of the bridge connected to the underlying
provider physical network. See Host networking and Open vSwitch: Provider networks for
more information.

— Ensure PROVIDER_BRIDGE_NAME external bridge is created and
PROVIDER_INTERFACE_NAME is added to that bridge

— In the [securitygroup] section, enable security groups and configure the Open vSwitch
native or the hybrid iptables firewall driver:

— In the case of using the hybrid iptables firewall driver, ensure your Linux operating system
kernel supports network bridge filters by verifying all the following sysctl values are set to
1:

To enable networking bridge support, typically the br_netfilter kernel module needs to
be loaded. Check your operating systems documentation for additional details on enabling
this module.

26 Chapter 4. Install and configure for openSUSE and SUSE Linux Enterprise

Neutron Documentation, Release 25.1.1.dev7

Configure the DHCP agent

The DHCP agent provides DHCP services for virtual networks.
* Edit the /etc/neutron/dhcp_agent.ini file and complete the following actions:

— In the [DEFAULT] section, configure the Linux bridge interface driver, Dnsmasq DHCP
driver, and enable isolated metadata so instances on provider networks can access metadata
over the network:

Create the provider network

Follow this provider network document from the General Installation Guide.

Return to Networking controller node configuration.

Networking Option 2: Self-service networks

Install and configure the Networking components on the controller node.

Install the components

zypper install --no-recommends openstack-neutron
openstack-neutron-server openstack-neutron-openvswitch-agent
openstack-neutron-13-agent openstack-neutron-dhcp-agent
openstack-neutron-metadata-agent bridge-utils dnsmasq

Configure the server component

* Edit the /etc/neutron/neutron.conf file and complete the following actions:

— In the [database] section, configure database access:

Replace NEUTRON_DBPASS with the password you chose for the database.

4.2. Install and configure controller node 27

https://docs.openstack.org/install-guide/launch-instance-networks-provider.html

Neutron Documentation, Release 25.1.1.dev7

Note

Comment out or remove any other connection options in the [database] section.

— In the [DEFAULT] section, enable the Modular Layer 2 (ML2) plug-in and router service:

— In the [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in Rab-
bitMQ.

— Inthe [DEFAULT] and [keystone_authtoken] sections, configure Identity service access:

e N

L J

Replace NEUTRON_PASS with the password you chose for the neutron user in the Identity
service.

Note

Comment out or remove any other options in the [keystone_authtoken] section.

— Inthe [DEFAULT] and [nova] sections, configure Networking to notify Compute of network
topology changes:

(continues on next page)

28 Chapter 4. Install and configure for openSUSE and SUSE Linux Enterprise

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

Replace NOVA_PASS with the password you chose for the nova user in the Identity service.

* In the [oslo_concurrency] section, configure the lock path:

Configure the Modular Layer 2 (ML2) plug-in

The ML2 plug-in uses the Linux bridge mechanism to build layer-2 (bridging and switching) virtual
networking infrastructure for instances.

* Edit the /etc/neutron/plugins/ml2/ml2_conf.ini file and complete the following actions:

— In the [ml12] section, enable flat, VLAN, and VXLAN networks:

— In the [m12] section, enable VXLAN self-service networks:

— Inthe [m12] section, enable the Linux bridge and layer-2 population mechanisms:

Warning

4.2. Install and configure controller node 29

Neutron Documentation, Release 25.1.1.dev7

After you configure the ML2 plug-in, removing values in the type_drivers option can
lead to database inconsistency.

— Inthe [m12] section, enable the port security extension driver:

,

In the [m12_type_£flat] section, configure the provider virtual network as a flat network:

-

— Inthe [m12_type_vxlan] section, configure the VXLAN network identifier range for self-

service networks:

Configure the Open vSwitch agent

The Linux bridge agent builds layer-2 (bridging and switching) virtual networking infrastructure for
instances and handles security groups.

* Editthe /etc/neutron/plugins/ml2/openvswitch_agent.ini file and complete the follow-
ing actions:

— In the [ovs] section, map the provider virtual network to the provider physical bridge and

configure the IP address of the physical network interface that handles overlay networks:

Replace PROVIDER_BRIDGE_NAME with the name of the bridge connected to the underlying
provider physical network. See Host networking and Open vSwitch: Provider networks for
more information.

Also replace OVERLAY_INTERFACE_IP_ADDRESS with the IP address of the underly-
ing physical network interface that handles overlay networks. The example architecture
uses the management interface to tunnel traffic to the other nodes. Therefore, replace
OVERLAY_INTERFACE_IP_ADDRESS with the management IP address of the controller node.
See Host networking for more information.

Ensure PROVIDER_BRIDGE_NAME external bridge is created and
PROVIDER_INTERFACE_NAME is added to that bridge

30

Chapter 4. Install and configure for openSUSE and SUSE Linux Enterprise

Neutron Documentation, Release 25.1.1.dev7

— In the [agent] section, enable VXLAN overlay networks and enable layer-2 population:

— In the [securitygroup] section, enable security groups and configure the Open vSwitch
native or the hybrid iptables firewall driver:

— In the case of using the hybrid iptables firewall driver, ensure your Linux operating system
kernel supports network bridge filters by verifying all the following sysctl values are set to
1

To enable networking bridge support, typically the br_netfilter kernel module needs to
be loaded. Check your operating systems documentation for additional details on enabling
this module.

Configure the layer-3 agent

The Layer-3 (L3) agent provides routing and NAT services for self-service virtual networks.
» Edit the /etc/neutron/13_agent.ini file and complete the following actions:

— In the [DEFAULT] section, configure the Open vSwitch interface driver:

Configure the DHCP agent

The DHCP agent provides DHCP services for virtual networks.
* Edit the /etc/neutron/dhcp_agent.ini file and complete the following actions:

— In the [DEFAULT] section, configure the Open vSwitch interface driver, Dnsmasq DHCP
driver, and enable isolated metadata so instances on provider networks can access metadata
over the network:

(continues on next page)

4.2. Install and configure controller node 31

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

Return to Networking controller node configuration.

4.2.3 Configure the metadata agent

The metadata agent provides configuration information such as credentials to instances.
* Edit the /etc/neutron/metadata_agent.ini file and complete the following actions:

— In the [DEFAULT] section, configure the metadata host and shared secret:

Replace METADATA_SECRET with a suitable secret for the metadata proxy.

4.2.4 Configure the Compute service to use the Networking service

Note

The Nova compute service must be installed to complete this step. For more details see the compute
install guide found under the Installation Guides section of the docs website.

» Edit the /etc/nova/nova. conf file and perform the following actions:

— In the [neutron] section, configure access parameters, enable the metadata proxy, and con-
figure the secret:

L J

Replace NEUTRON_PASS with the password you chose for the neutron user in the Identity
service.

Replace METADATA_SECRET with the secret you chose for the metadata proxy.

32 Chapter 4. Install and configure for openSUSE and SUSE Linux Enterprise

https://docs.openstack.org

Neutron Documentation, Release 25.1.1.dev7

See the compute service configuration guide for the full set of options including overriding

the service catalog endpoint URL if necessary.

4.2.5 Finalize installation

Note

SLES enables apparmor by default and restricts dnsmasq. You need to either completely disable

apparmor or disable only the dnsmasq profile:

In -s /etc/apparmor.d/usr.sbin.dnsmasq /etc/apparmor.d/disable/

‘ systemctl restart apparmor

1. Restart the Compute API service:

{ systemctl restart openstack-nova-api.service

2. Start the Networking services and configure them to start when the system boots.

For both networking options:

-

systemctl openstack-neutron.service
openstack-neutron-openvswitch-agent.service
openstack-neutron-dhcp-agent.service
openstack-neutron-metadata-agent.service
systemctl start openstack-neutron.service
openstack-neutron-openvswitch-agent.service
openstack-neutron-dhcp-agent.service
openstack-neutron-metadata-agent.service

.

For networking option 2, also enable and start the layer-3 service:

systemctl openstack-neutron-13-agent.service
systemctl start openstack-neutron-13-agent.service

4.3 Install and configure compute node

The compute node handles connectivity and security groups for instances.

4.3.1 Install the components

zypper install --no-recommends
openstack-neutron-openvswitch-agent bridge-utils

4.3. Install and configure compute node

33

https://docs.openstack.org/nova/2024.2/configuration/config.html#neutron

Neutron Documentation, Release 25.1.1.dev7

4.3.2 Configure the common component

The Networking common component configuration includes the authentication mechanism, message
queue, and plug-in.

Note

Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (. . .) in the configuration snip-
pets indicates potential default configuration options that you should retain.

* Edit the /etc/neutron/neutron.conf file and complete the following actions:

— In the [database] section, comment out any connection options because compute nodes
do not directly access the database.

— In the [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in Rab-
bitMQ.

* In the [oslo_concurrency] section, configure the lock path:

4.3.3 Configure networking options

Choose the same networking option that you chose for the controller node to configure services specific to
it. Afterwards, return here and proceed to Configure the Compute service to use the Networking service.

Networking Option 1: Provider networks

Configure the Networking components on a compute node.

Configure the Open vSwitch agent

The Open vSwitch agent builds layer-2 (bridging and switching) virtual networking infrastructure for
instances and handles security groups.

» Editthe /etc/neutron/plugins/ml2/openvswitch_agent.ini file and complete the follow-
ing actions:

— In the [ovs] section, map the provider virtual network to the provider physical bridge:

34 Chapter 4. Install and configure for openSUSE and SUSE Linux Enterprise

Neutron Documentation, Release 25.1.1.dev7

| |

Replace PROVIDER_BRIDGE_NAME with the name of the bridge connected to the underlying
provider physical network. See Host networking and Open vSwitch: Provider networks for
more information.

— Ensure PROVIDER_BRIDGE_NAME external bridge is created and
PROVIDER_INTERFACE_NAME is added to that bridge

| |

— In the [securitygroup] section, enable security groups and configure the Open vSwitch
native or the hybrid iptables firewall driver:

— In the case of using the hybrid iptables firewall driver, ensure your Linux operating system
kernel supports network bridge filters by verifying all the following sysctl values are set to
1:

To enable networking bridge support, typically the br_netfilter kernel module needs to
be loaded. Check your operating systems documentation for additional details on enabling
this module.

Return to Networking compute node configuration

Networking Option 2: Self-service networks

Configure the Networking components on a compute node.

Configure the Open vSwitch agent

The Open vSwitch agent builds layer-2 (bridging and switching) virtual networking infrastructure for
instances and handles security groups.

* Editthe /etc/neutron/plugins/ml2/openvswitch_agent.ini file and complete the follow-
ing actions:

— In the [ovs] section, map the provider virtual network to the provider physical bridge and
configure the IP address of the physical network interface that handles overlay networks:

4.3. Install and configure compute node 35

Neutron Documentation, Release 25.1.1.dev7

Replace PROVIDER_BRIDGE_NAME with the name of the bridge connected to the underlying
provider physical network. See Host networking and Open vSwitch: Provider networks for
more information.

Also replace OVERLAY_INTERFACE_TIP_ADDRESS with the IP address of the underly-
ing physical network interface that handles overlay networks. The example architecture
uses the management interface to tunnel traffic to the other nodes. Therefore, replace
OVERLAY_INTERFACE_IP_ADDRESS with the management IP address of the compute node.
See Host networking for more information.

— Ensure PROVIDER_BRIDGE_NAME external bridge is created and
PROVIDER_INTERFACE_NAME is added to that bridge

— In the [agent] section, enable VXLAN overlay networks and enable layer-2 population:

— In the [securitygroup] section, enable security groups and configure the Open vSwitch
native or the hybrid iptables firewall driver:

— In the case of using the hybrid iptables firewall driver, ensure your Linux operating system
kernel supports network bridge filters by verifying all the following sysctl values are set to
1:

To enable networking bridge support, typically the br_netfilter kernel module needs to
be loaded. Check your operating systems documentation for additional details on enabling
this module.

Return to Networking compute node configuration.

36 Chapter 4. Install and configure for openSUSE and SUSE Linux Enterprise

Neutron Documentation, Release 25.1.1.dev7

4.3.4 Configure the Compute service to use the Networking service

» Edit the /etc/nova/nova.conf file and complete the following actions:

— In the [neutron] section, configure access parameters:

e

Replace NEUTRON_PASS with the password you chose for the neutron user in the Identity

service.

See the compute service configuration guide for the full set of options including overriding

the service catalog endpoint URL if necessary.

4.3.5 Finalize installation

1. The Networking service initialization scripts expect the variable NEUTRON_PLUGIN_CONF in the
/etc/sysconfig/neutron file to reference the ML2 plug-in configuration file. Ensure that the

/etc/sysconfig/neutron file contains the following:

|

2. Restart the Compute service:

[systemctl restart openstack-nova-compute.service

3. Start the Open vSwitch agent and configure it to start when the system boots:

systemctl openstack-neutron-openvswitch-agent.service
systemctl start openstack-neutron-openvswitch-agent.service

4.4 Verify operation

Note

Perform these commands on the controller node.

1. Source the admin credentials to gain access to admin-only CLI commands:

. admin-openrc

4.4. Verify operation

37

https://docs.openstack.org/nova/2024.2/configuration/config.html#neutron

Neutron Documentation, Release 25.1.1.dev7

2. List loaded extensions to verify successful launch of the neutron-server process:

openstack extension list --network

|_|

(continues on next page)

38 Chapter 4. Install and configure for openSUSE and SUSE Linux Enterprise

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

(continues on next page)

4.4. Verify operation 39

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

[}

[}

(continues on next page)

40 Chapter 4. Install and configure for openSUSE and SUSE Linux Enterprise

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

Note

Actual output may differ slightly from this example.

You can perform further testing of your networking using the neutron-sanity-check command line client.

Use the verification section for the networking option that you chose to deploy.

4.4.1 Networking Option 1: Provider networks

* List agents to verify successful launch of the neutron agents:

openstack network agent list

(continues on next page)

4.4. Verify operation

41

https://docs.openstack.org/cli-reference/neutron-sanity-check.html

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

—

—
. J

The output should indicate three agents on the controller node and one agent on each compute
node.

4.4.2 Networking Option 2: Self-service networks

* List agents to verify successful launch of the neutron agents:

openstack network agent list

The output should indicate four agents on the controller node and one agent on each compute node.

42 Chapter 4. Install and configure for openSUSE and SUSE Linux Enterprise

CHAPTER
FIVE

INSTALL AND CONFIGURE FOR RED HAT ENTERPRISE LINUX
AND CENTOS

5.1 Host networking

After installing the operating system on each node for the architecture that you choose to deploy, you must
configure the network interfaces. We recommend that you disable any automated network management
tools and manually edit the appropriate configuration files for your distribution. For more information
on how to configure networking on your distribution, see the documentation .

All nodes require Internet access for administrative purposes such as package installation, security up-
dates, Domain Name System (DNS), and Network Time Protocol (NTP). In most cases, nodes should
obtain Internet access through the management network interface. To highlight the importance of net-
work separation, the example architectures use private address space for the management network and
assume that the physical network infrastructure provides Internet access via Network Address Transla-
tion (NAT) or other methods. The example architectures use routable IP address space for the provider
(external) network and assume that the physical network infrastructure provides direct Internet access.

In the provider networks architecture, all instances attach directly to the provider network. In the self-
service (private) networks architecture, instances can attach to a self-service or provider network. Self-
service networks can reside entirely within OpenStack or provide some level of external network access
using Network Address Translation (NAT) through the provider network.

The example architectures assume use of the following networks:
* Management on 10.0.0.0/24 with gateway 10.0.0.1

This network requires a gateway to provide Internet access to all nodes for administrative purposes
such as package installation, security updates, Domain Name System (DNS), and Network Time
Protocol (NTP).

* Provider on 203.0.113.0/24 with gateway 203.0.113.1

This network requires a gateway to provide Internet access to instances in your OpenStack envi-
ronment.

You can modify these ranges and gateways to work with your particular network infrastructure.

Network interface names vary by distribution. Traditionally, interfaces use eth followed by a sequential
number. To cover all variations, this guide refers to the first interface as the interface with the lowest
number and the second interface as the interface with the highest number.

Unless you intend to use the exact configuration provided in this example architecture, you must modify
the networks in this procedure to match your environment. Each node must resolve the other nodes by

43

https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/networking_guide/sec-network_config_using_cli
https://tools.ietf.org/html/rfc1918

Neutron Documentation, Release 25.1.1.dev7

Network Layout

' ™ - ~
Controller Node 1

Interface 2
{unnumbered)

-

Interface 2
{unnumbered)

Internet

. Management network Provider network
10.0.0.0/24 203.0.113.0/24

- .
C] Core component) , Optional component
S e — -

44 Chapter 5. Install and configure for Red Hat Enterprise Linux and CentOS

Neutron Documentation, Release 25.1.1.dev7

name in addition to IP address. For example, the controller name must resolve to 10.0.0. 11, the IP
address of the management interface on the controller node.

Warning

Reconfiguring network interfaces will interrupt network connectivity. We recommend using a local
terminal session for these procedures.

Note

Your distribution enables a restrictive firewall by default. During the installation process, certain
steps will fail unless you alter or disable the firewall. For more information about securing your
environment, refer to the OpenStack Security Guide.

5.1.1 Controller node
Configure network interfaces

1. Configure the first interface as the management interface:
IP address: 10.0.0.11
Network mask: 255.255.255.0 (or /24)
Default gateway: 10.0.0.1

2. The provider interface uses a special configuration without an IP address assigned to it. Configure
the second interface as the provider interface:

Replace INTERFACE_NAME with the actual interface name. For example, ethl or ens224.

e Edit the /etc/sysconfig/network-scripts/ifcfg-INTERFACE_NAME file to contain the fol-
lowing:

Do not change the HWADDR and UUID keys.

1. Reboot the system to activate the changes.

5.1. Host networking 45

https://docs.openstack.org/security-guide/

Neutron Documentation, Release 25.1.1.dev7

Configure name resolution

1. Set the hostname of the node to controller.

2. Edit the /etc/hosts file to contain the following:

(# controller

10.0.0.11 controller

computel

10.0.0.31 computel

blockl

10.0.0.41 blockl

objectl

10.0.0.51 objectl

object2

10.0.0.52 object2
Warning

Some distributions add an extraneous entry in the /etc/hosts file that resolves the actual host-
name to another loopback IP address such as 127.0.1.1. You must comment out or remove
this entry to prevent name resolution problems. Do not remove the 127.0.0.1 entry.

Note

This guide includes host entries for optional services in order to reduce complexity should you
choose to deploy them.

5.1.2 Compute node

Configure network interfaces

1. Configure the first interface as the management interface:
IP address: 10.0.0.31
Network mask: 255.255.255.0 (or /24)
Default gateway: 10.0.0.1

Note
Additional compute nodes should use 10.0.0.32, 10.0.0.33, and so on.

46

Chapter 5. Install and configure for Red Hat Enterprise Linux and CentOS

Neutron Documentation, Release 25.1.1.dev7

2. The provider interface uses a special configuration without an IP address assigned to it. Configure
the second interface as the provider interface:

Replace INTERFACE_NAME with the actual interface name. For example, ethl or ens224.

e Edit the /etc/sysconfig/network-scripts/ifcfg-INTERFACE_NAME file to contain the fol-

lowing:

Do not change the HVADDR and UUID keys.

INTERFACE_NAME

Ethernet

1. Reboot the system to activate the changes.

Configure name resolution

1. Set the hostname of the node to computel.

2. Edit the /etc/hosts file to contain the following:

controller

10.0.0.11 controller

computel

10.0.0.31 computel

blockl

10.0.0.41 blockl

objectl

10.0.0.51 objectl

object2

10.0.0.52 object2
Warning

Some distributions add an extraneous entry in the /etc/hosts file that resolves the actual host-
name to another loopback IP address such as 127.0.1.1. You must comment out or remove
this entry to prevent name resolution problems. Do not remove the 127.0.0.1 entry.

Note

This guide includes host entries for optional services in order to reduce complexity should you
choose to deploy them.

5.1. Host networking

47

Neutron Documentation, Release 25.1.1.dev7

5.1.3 Verify connectivity

We recommend that you verify network connectivity to the Internet and among the nodes before pro-
ceeding further.

1. From the controller node, test access to the Internet:

ping -c 4 openstack.org

2. From the controller node, test access to the management interface on the compute node:

ping -c computel

3. From the compute node, test access to the Internet:

(

ping -c 4 openstack.org

4. From the compute node, test access to the management interface on the controller node:

ping -c controller

(continues on next page)

48 Chapter 5. Install and configure for Red Hat Enterprise Linux and CentOS

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

Note

Your distribution enables a restrictive firewall by default. During the installation process, certain
steps will fail unless you alter or disable the firewall. For more information about securing your
environment, refer to the OpenStack Security Guide.

5.2 Install and configure controller node

5.2.1 Prerequisites
Before you configure the OpenStack Networking (neutron) service, you must create a database, service
credentials, and API endpoints.

1. To create the database, complete these steps:

¢ Use the database access client to connect to the database server as the root user:

{ mysgl -u root -p }

¢ Create the neutron database:

E J

* Grant proper access to the neutron database, replacing NEUTRON_DBPASS with a suitable
password:

e N

L J

» EXxit the database access client.

2. Source the admin credentials to gain access to admin-only CLI commands:

[. admin-openrc J

3. To create the service credentials, complete these steps:

5.2. Install and configure controller node 49

https://docs.openstack.org/security-guide/

Neutron Documentation, Release 25.1.1.dev7

¢ Create the neutron user:

-

openstack user create --domain default --password-prompt neutron

¢ Add the admin role to the neutron user:

openstack role add --project service --user neutron admin

Note

This command provides no output.

* Create the neutron service entity:

openstack service create --name neutron
--description network

4. Create the Networking service API endpoints:

openstack endpoint create --region RegionOne
network public http://controller:9696

(continues on next page)

50 Chapter 5. Install and configure for Red Hat Enterprise Linux and CentOS

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

openstack endpoint create --region RegionOne
network internal http://controller:9696

openstack endpoint create --region RegionOne
network admin http://controller:9696

5.2. Install and configure controller node 51

Neutron Documentation, Release 25.1.1.dev7

5.2.2 Configure networking options

You can deploy the Networking service using one of two architectures represented by options 1 and 2.

Option 1 deploys the simplest possible architecture that only supports attaching instances to provider
(external) networks. No self-service (private) networks, routers, or floating IP addresses. Only the admin
or other privileged user can manage provider networks.

Option 2 augments option 1 with layer-3 services that support attaching instances to self-service networks.
The demo or other unprivileged user can manage self-service networks including routers that provide
connectivity between self-service and provider networks. Additionally, floating IP addresses provide
connectivity to instances using self-service networks from external networks such as the Internet.

Self-service networks typically use overlay networks. Overlay network protocols such as VXLAN in-
clude additional headers that increase overhead and decrease space available for the payload or user data.
Without knowledge of the virtual network infrastructure, instances attempt to send packets using the de-
fault Ethernet maximum transmission unit (MTU) of 1500 bytes. The Networking service automatically
provides the correct MTU value to instances via DHCP. However, some cloud images do not use DHCP
or ignore the DHCP MTU option and require configuration using metadata or a script.

Note

Option 2 also supports attaching instances to provider networks.

Choose one of the following networking options to configure services specific to it. Afterwards, return
here and proceed to Configure the metadata agent.

Networking Option 1: Provider networks

Install and configure the Networking components on the controller node.

Install the components

yum install openstack-neutron openstack-neutron-ml2
openstack-neutron-openvswitch

Configure the server component

The Networking server component configuration includes the database, authentication mechanism, mes-
sage queue, topology change notifications, and plug-in.

Note

Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (. . .) in the configuration snip-
pets indicates potential default configuration options that you should retain.

* Edit the /etc/neutron/neutron.conf file and complete the following actions:

52 Chapter 5. Install and configure for Red Hat Enterprise Linux and CentOS

Neutron Documentation, Release 25.1.1.dev7

— In the [database] section, configure database access:

Replace NEUTRON_DBPASS with the password you chose for the database.

Note

Comment out or remove any other connection options in the [database] section.

— In the [DEFAULT] section, enable the Modular Layer 2 (ML2) plug-in and disable additional
plug-ins:

— In the [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in Rab-
bitMQ.

— Inthe [DEFAULT] and [keystone_authtoken] sections, configure Identity service access:

L

Replace NEUTRON_PASS with the password you chose for the neutron user in the Identity
service.

5.2. Install and configure controller node 53

Neutron Documentation, Release 25.1.1.dev7

Note

Comment out or remove any other options in the [keystone_authtoken] section.

— Inthe [DEFAULT] and [nova] sections, configure Networking to notify Compute of network
topology changes:

Replace NOVA_PASS with the password you chose for the nova user in the Identity service.

* In the [oslo_concurrency] section, configure the lock path:

Configure the Modular Layer 2 (ML2) plug-in

The ML2 plug-in uses the Linux bridge mechanism to build layer-2 (bridging and switching) virtual
networking infrastructure for instances.

* Edit the /etc/neutron/plugins/ml2/ml2_conf.ini file and complete the following actions:

— In the [ml12] section, enable flat and VLAN networks:

— In the [m12] section, disable self-service networks:

— In the [m12] section, enable the Linux bridge mechanism:

54 Chapter 5. Install and configure for Red Hat Enterprise Linux and CentOS

Neutron Documentation, Release 25.1.1.dev7

Warning

After you configure the ML2 plug-in, removing values in the type_drivers option can
lead to database inconsistency.

— Inthe [m12] section, enable the port security extension driver:

— Inthe [ml2_type_flat] section, configure the provider virtual network as a flat network:

Configure the Open vSwitch agent

The Linux bridge agent builds layer-2 (bridging and switching) virtual networking infrastructure for
instances and handles security groups.

* Editthe /etc/neutron/plugins/ml2/openvswitch_agent.ini file and complete the follow-
ing actions:

— In the [ovs] section, map the provider virtual network to the provider physical bridge:

| |

Replace PROVIDER_BRIDGE_NAME with the name of the bridge connected to the underlying
provider physical network. See Host networking and Open vSwitch: Provider networks for
more information.

— Ensure PROVIDER_BRIDGE_NAME external bridge is created and
PROVIDER_INTERFACE_NAME is added to that bridge

| |

— In the [securitygroup] section, enable security groups and configure the Open vSwitch
native or the hybrid iptables firewall driver:

(continues on next page)

5.2. Install and configure controller node 55

Neutron Documentation, Release 25.1.1.dev7

|

— In the case of using the hybrid iptables firewall driver, ensure your Linux operating system
kernel supports network bridge filters by verifying all the following sysctl values are set to
1:

| |

To enable networking bridge support, typically the br_netfilter kernel module needs to
be loaded. Check your operating systems documentation for additional details on enabling
this module.

(continued from previous page)

Configure the DHCP agent

The DHCP agent provides DHCP services for virtual networks.
* Edit the /etc/neutron/dhcp_agent.ini file and complete the following actions:

— In the [DEFAULT] section, configure the Linux bridge interface driver, Dnsmasq DHCP
driver, and enable isolated metadata so instances on provider networks can access metadata
over the network:

Create the provider network

Follow this provider network document from the General Installation Guide.

Return to Networking controller node configuration.

Networking Option 2: Self-service networks

Install and configure the Networking components on the controller node.

56 Chapter 5. Install and configure for Red Hat Enterprise Linux and CentOS

https://docs.openstack.org/install-guide/launch-instance-networks-provider.html

Neutron Documentation, Release 25.1.1.dev7

Install the components

yum install openstack-neutron openstack-neutron-ml2
openstack-neutron-openvswitch ebtables

Configure the server component

* Edit the /etc/neutron/neutron.conf file and complete the following actions:

— In the [database] section, configure database access:

Replace NEUTRON_DBPASS with the password you chose for the database.

Note

Comment out or remove any other connection options in the [database] section.

— In the [DEFAULT] section, enable the Modular Layer 2 (ML2) plug-in and router service:

— In the [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in Rab-
bitMQ.

— Inthe [DEFAULT] and [keystone_authtoken] sections, configure Identity service access:

N

(continues on next page)

5.2. Install and configure controller node 57

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

Replace NEUTRON_PASS with the password you chose for the neutron user in the Identity
service.

Note

Comment out or remove any other options in the [keystone_authtoken] section.

— Inthe [DEFAULT] and [nova] sections, configure Networking to notify Compute of network
topology changes:

Replace NOVA_PASS with the password you chose for the nova user in the Identity service.

* In the [oslo_concurrency] section, configure the lock path:

58 Chapter 5. Install and configure for Red Hat Enterprise Linux and CentOS

Neutron Documentation, Release 25.1.1.dev7

Configure the Modular Layer 2 (ML2) plug-in

The ML2 plug-in uses the Linux bridge mechanism to build layer-2 (bridging and switching) virtual
networking infrastructure for instances.

* Edit the /etc/neutron/plugins/ml2/ml2_conf.ini file and complete the following actions:

— In the [m12] section, enable flat, VLAN, and VXLAN networks:

— In the [m12] section, enable VXLAN self-service networks:

— Inthe [m12] section, enable the Linux bridge and layer-2 population mechanisms:

Warning

After you configure the ML2 plug-in, removing values in the type_drivers option can
lead to database inconsistency.

Note

The Linux bridge agent only supports VXLAN overlay networks.

— Inthe [m12] section, enable the port security extension driver:

— Inthe [m12_type_flat] section, configure the provider virtual network as a flat network:

— Inthe [m12_type_vxlan] section, configure the VXLAN network identifier range for self-
service networks:

5.2. Install and configure controller node 59

Neutron Documentation, Release 25.1.1.dev7

Configure the Open vSwitch agent

The Linux bridge agent builds layer-2 (bridging and switching) virtual networking infrastructure for
instances and handles security groups.

» Editthe /etc/neutron/plugins/ml2/openvswitch_agent.ini file and complete the follow-
ing actions:

— In the [ovs] section, map the provider virtual network to the provider physical bridge and
configure the IP address of the physical network interface that handles overlay networks:

Replace PROVIDER_BRIDGE_NAME with the name of the bridge connected to the underlying
provider physical network. See Host networking and Open vSwitch: Provider networks for
more information.

Also replace OVERLAY_INTERFACE_IP_ADDRESS with the IP address of the underly-
ing physical network interface that handles overlay networks. The example architecture
uses the management interface to tunnel traffic to the other nodes. Therefore, replace
OVERLAY_INTERFACE_IP_ADDRESS with the management IP address of the controller node.
See Host networking for more information.

— Ensure PROVIDER_BRIDGE_NAME external bridge is created and
PROVIDER_INTERFACE_NAME is added to that bridge

— In the [agent] section, enable VXLAN overlay networks and enable layer-2 population:

L J

— In the [securitygroup] section, enable security groups and configure the Open vSwitch
native or the hybrid iptables firewall driver:

— In the case of using the hybrid iptables firewall driver, ensure your Linux operating system
kernel supports network bridge filters by verifying all the following sysctl values are set to

60 Chapter 5. Install and configure for Red Hat Enterprise Linux and CentOS

Neutron Documentation, Release 25.1.1.dev7

To enable networking bridge support, typically the br_netfilter kernel module needs to
be loaded. Check your operating systems documentation for additional details on enabling
this module.

Configure the layer-3 agent

The Layer-3 (L.3) agent provides routing and NAT services for self-service virtual networks.
* Edit the /etc/neutron/13_agent. ini file and complete the following actions:

— In the [DEFAULT] section, configure the Open vSwitch interface driver:

Configure the DHCP agent

The DHCP agent provides DHCP services for virtual networks.
* Edit the /etc/neutron/dhcp_agent.ini file and complete the following actions:

— In the [DEFAULT] section, configure the Open vSwitch interface driver, Dnsmasq DHCP
driver, and enable isolated metadata so instances on provider networks can access metadata
over the network:

Return to Networking controller node configuration.

5.2.3 Configure the metadata agent

The metadata agent provides configuration information such as credentials to instances.
* Edit the /etc/neutron/metadata_agent.ini file and complete the following actions:

— In the [DEFAULT] section, configure the metadata host and shared secret:

5.2. Install and configure controller node 61

Neutron Documentation, Release 25.1.1.dev7

Replace METADATA_SECRET with a suitable secret for the metadata proxy.

5.2.4 Configure the Compute service to use the Networking service

Note

The Nova compute service must be installed to complete this step. For more details see the compute
install guide found under the Installation Guides section of the docs website.

* Edit the /etc/nova/nova. conf file and perform the following actions:

— In the [neutron] section, configure access parameters, enable the metadata proxy, and con-
figure the secret:

Replace NEUTRON_PASS with the password you chose for the neutron user in the Identity
service.

Replace METADATA_SECRET with the secret you chose for the metadata proxy.

See the compute service configuration guide for the full set of options including overriding
the service catalog endpoint URL if necessary.

5.2.5 Finalize installation

1. The Networking service initialization scripts expect a symbolic link /etc/neutron/plugin.ini
pointing to the ML2 plug-in configuration file, /etc/neutron/plugins/ml2/ml2_conf.ini.
If this symbolic link does not exist, create it using the following command:

{ In -s /etc/neutron/plugins/ml2/ml2_conf.ini /etc/neutron/plugin.ini }

2. Populate the database:

su -s /bin/sh -c

—

—heutron

62 Chapter 5. Install and configure for Red Hat Enterprise Linux and CentOS

https://docs.openstack.org
https://docs.openstack.org/nova/2024.2/configuration/config.html#neutron

Neutron Documentation, Release 25.1.1.dev7

Note

Database population occurs later for Networking because the script requires complete server
and plug-in configuration files.

3. Restart the Compute API service:

[systemctl restart openstack-nova-api.service }

4. Start the Networking services and configure them to start when the system boots.

For both networking options:

systemctl neutron-server.service
neutron-openvswitch-agent.service neutron-dhcp-agent.service
neutron-metadata-agent.service

systemctl start neutron-server.service
neutron-openvswitch-agent.service neutron-dhcp-agent.service
neutron-metadata-agent.service

For networking option 2, also enable and start the layer-3 service:

systemctl neutron-13-agent.service
systemctl start neutron-13-agent.service

5.3 Install and configure compute node

The compute node handles connectivity and security groups for instances.

5.3.1 Install the components

yum install openstack-neutron-openvswitch

5.3.2 Configure the common component

The Networking common component configuration includes the authentication mechanism, message
queue, and plug-in.

Note

Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (. . .) in the configuration snip-
pets indicates potential default configuration options that you should retain.

* Edit the /etc/neutron/neutron.conf file and complete the following actions:

— In the [database] section, comment out any connection options because compute nodes
do not directly access the database.

5.3. Install and configure compute node 63

Neutron Documentation, Release 25.1.1.dev7

— In the [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in Rab-
bitMQ.

* In the [oslo_concurrency] section, configure the lock path:

5.3.3 Configure networking options

Choose the same networking option that you chose for the controller node to configure services specific to
it. Afterwards, return here and proceed to Configure the Compute service to use the Networking service.

Networking Option 1: Provider networks

Configure the Networking components on a compute node.

Configure the Open vSwitch agent

The Open vSwitch agent builds layer-2 (bridging and switching) virtual networking infrastructure for
instances and handles security groups.

* Editthe /etc/neutron/plugins/ml2/openvswitch_agent.ini file and complete the follow-
ing actions:

— In the [ovs] section, map the provider virtual network to the provider physical bridge:

|

Replace PROVIDER_BRIDGE_NAME with the name of the bridge connected to the underlying
provider physical network. See Host networking and Open vSwitch: Provider networks for
more information.

— Ensure PROVIDER_BRIDGE_NAME external bridge is created and

PROVIDER_INTERFACE_NAME is added to that bridge

— In the [securitygroup] section, enable security groups and configure the Open vSwitch
native or the hybrid iptables firewall driver:

64 Chapter 5. Install and configure for Red Hat Enterprise Linux and CentOS

Neutron Documentation, Release 25.1.1.dev7

— In the case of using the hybrid iptables firewall driver, ensure your Linux operating system
kernel supports network bridge filters by verifying all the following sysctl values are set to
1:

To enable networking bridge support, typically the br_netfilter kernel module needs to
be loaded. Check your operating systems documentation for additional details on enabling
this module.

Return to Networking compute node configuration

Networking Option 2: Self-service networks

Configure the Networking components on a compute node.

Configure the Open vSwitch agent

The Open vSwitch agent builds layer-2 (bridging and switching) virtual networking infrastructure for
instances and handles security groups.

* Editthe /etc/neutron/plugins/ml2/openvswitch_agent.ini file and complete the follow-
ing actions:

— In the [ovs] section, map the provider virtual network to the provider physical bridge and
configure the IP address of the physical network interface that handles overlay networks:

Replace PROVIDER_BRIDGE_NAME with the name of the bridge connected to the underlying
provider physical network. See Host networking and Open vSwitch: Provider networks for
more information.

Also replace OVERLAY_INTERFACE_IP_ADDRESS with the IP address of the underly-
ing physical network interface that handles overlay networks. The example architecture
uses the management interface to tunnel traffic to the other nodes. Therefore, replace
OVERLAY_INTERFACE_IP_ADDRESS with the management IP address of the compute node.
See Host networking for more information.

— Ensure PROVIDER_BRIDGE_NAME external bridge is created and
PROVIDER_INTERFACE_NAME is added to that bridge

5.3. Install and configure compute node 65

Neutron Documentation, Release 25.1.1.dev7

— In the [agent] section, enable VXLAN overlay networks and enable layer-2 population:

— In the [securitygroup] section, enable security groups and configure the Open vSwitch
native or the hybrid iptables firewall driver:

— In the case of using the hybrid iptables firewall driver, ensure your Linux operating system
kernel supports network bridge filters by verifying all the following sysctl values are set to
1:

To enable networking bridge support, typically the br_netfilter kernel module needs to
be loaded. Check your operating systems documentation for additional details on enabling
this module.

Return to Networking compute node configuration.
5.3.4 Configure the Compute service to use the Networking service

* Edit the /etc/nova/nova.conf file and complete the following actions:

— In the [neutron] section, configure access parameters:

Replace NEUTRON_PASS with the password you chose for the neutron user in the Identity
service.

See the compute service configuration guide for the full set of options including overriding
the service catalog endpoint URL if necessary.

66 Chapter 5. Install and configure for Red Hat Enterprise Linux and CentOS

https://docs.openstack.org/nova/2024.2/configuration/config.html#neutron

Neutron Documentation, Release 25.1.1.dev7

5.3.5 Finalize installation

1. Restart the Compute service:

[systemctl restart openstack-nova-compute.service

2. Start the Linux bridge agent and configure it to start when the system boots:

systemctl neutron-openvswitch-agent.service
systemctl start neutron-openvswitch-agent.service

5.3. Install and configure compute node 67

Neutron Documentation, Release 25.1.1.dev7

68 Chapter 5. Install and configure for Red Hat Enterprise Linux and CentOS

CHAPTER
SIX

INSTALL AND CONFIGURE FOR UBUNTU

6.1 Host networking

After installing the operating system on each node for the architecture that you choose to deploy, you must
configure the network interfaces. We recommend that you disable any automated network management
tools and manually edit the appropriate configuration files for your distribution. For more information
on how to configure networking on your distribution, see the documentation.

All nodes require Internet access for administrative purposes such as package installation, security up-
dates, Domain Name System (DNS), and Network Time Protocol (NTP). In most cases, nodes should
obtain Internet access through the management network interface. To highlight the importance of net-
work separation, the example architectures use private address space for the management network and
assume that the physical network infrastructure provides Internet access via Network Address Transla-
tion (NAT) or other methods. The example architectures use routable IP address space for the provider
(external) network and assume that the physical network infrastructure provides direct Internet access.

In the provider networks architecture, all instances attach directly to the provider network. In the self-
service (private) networks architecture, instances can attach to a self-service or provider network. Self-
service networks can reside entirely within OpenStack or provide some level of external network access
using Network Address Translation (NAT) through the provider network.

The example architectures assume use of the following networks:
* Management on 10.0.0.0/24 with gateway 10.0.0.1

This network requires a gateway to provide Internet access to all nodes for administrative purposes
such as package installation, security updates, Domain Name System (DNS), and Network Time
Protocol (NTP).

* Provider on 203.0.113.0/24 with gateway 203.0.113.1

This network requires a gateway to provide Internet access to instances in your OpenStack envi-
ronment.

You can modify these ranges and gateways to work with your particular network infrastructure.

Network interface names vary by distribution. Traditionally, interfaces use eth followed by a sequential
number. To cover all variations, this guide refers to the first interface as the interface with the lowest
number and the second interface as the interface with the highest number.

Unless you intend to use the exact configuration provided in this example architecture, you must modify
the networks in this procedure to match your environment. Each node must resolve the other nodes by
name in addition to IP address. For example, the controller name must resolve to 10.0.0. 11, the IP
address of the management interface on the controller node.

69

https://help.ubuntu.com/lts/serverguide/network-configuration.html
https://tools.ietf.org/html/rfc1918

Neutron Documentation, Release 25.1.1.dev7

Network Layout

' ™ - ~
Controller Node 1

Interface 2
{unnumbered)

-

Interface 2
junnumb

Internet

. Management network Provider network
10.0.0.0/24 203.0.113.0/24

- .
C] Core component) , Optional component
S e — -

70 Chapter 6. Install and configure for Ubuntu

Neutron Documentation, Release 25.1.1.dev7

Warning

Reconfiguring network interfaces will interrupt network connectivity. We recommend using a local
terminal session for these procedures.

Note

Your distribution does not enable a restrictive firewall by default. For more information about securing
your environment, refer to the OpenStack Security Guide.

6.1.1 Controller node
Configure network interfaces

1. Configure the first interface as the management interface:
IP address: 10.0.0.11
Network mask: 255.255.255.0 (or /24)
Default gateway: 10.0.0.1

2. The provider interface uses a special configuration without an IP address assigned to it. Configure
the second interface as the provider interface:

Replace INTERFACE_NAME with the actual interface name. For example, eth! or ens224.

* Edit the /etc/network/interfaces file to contain the following:

auto INTERFACE_NAME

iface INTERFACE_NAME inet manual
up ip link dev up
down ip link dev down

1. Reboot the system to activate the changes.

Configure name resolution

1. Set the hostname of the node to controller.

2. Edit the /etc/hosts file to contain the following:

controller
10.0.0.11 controller

computel

10.0.0.31 computel
blockl
10.0.0.41 blockl

(continues on next page)

6.1. Host networking 71

https://docs.openstack.org/security-guide/

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

objectl

10.0.0.51 objectl

object2

10.0.0.52 object2
Warning

Some distributions add an extraneous entry in the /etc/hosts file that resolves the actual host-
name to another loopback IP address such as 127.0.1.1. You must comment out or remove
this entry to prevent name resolution problems. Do not remove the 127.0.0.1 entry.

Note

This guide includes host entries for optional services in order to reduce complexity should you
choose to deploy them.

6.1.2 Compute node
Configure network interfaces

1. Configure the first interface as the management interface:
IP address: 10.0.0.31
Network mask: 255.255.255.0 (or /24)
Default gateway: 10.0.0.1

Note
Additional compute nodes should use 10.0.0.32, 10.0.0.33, and so on.

2. The provider interface uses a special configuration without an IP address assigned to it. Configure
the second interface as the provider interface:

Replace INTERFACE_NAME with the actual interface name. For example, ethl or ens224.

* Edit the /etc/network/interfaces file to contain the following:

auto INTERFACE_NAME

iface INTERFACE_NAME inet manual
up ip link dev up
down ip link dev down

1. Reboot the system to activate the changes.

72 Chapter 6. Install and configure for Ubuntu

Neutron Documentation, Release 25.1.1.dev7

Configure name resolution

1. Set the hostname of the node to computel.

2. Edit the /etc/hosts file to contain the following:

(# controller

10.0.0.11 controller

computel

10.0.0.31 computel

blockl

10.0.0.41 blockl

objectl

10.0.0.51 objectl

object2

10.0.0.52 object2
Warning

Some distributions add an extraneous entry in the /etc/hosts file that resolves the actual host-
name to another loopback IP address such as 127.0.1.1. You must comment out or remove
this entry to prevent name resolution problems. Do not remove the 127.0.0.1 entry.

Note

This guide includes host entries for optional services in order to reduce complexity should you
choose to deploy them.

6.1.3 Verify connectivity

We recommend that you verify network connectivity to the Internet and among the nodes before pro-
ceeding further.

1. From the controller node, test access to the Internet:

e N

ping -c 4 openstack.org

(continues on next page)

6.1. Host networking 73

Neutron Documentation, Release 25.1.1.dev7

Note

(continued from previous page)

2. From the controller node, test access to the management interface on the compute node:

-

ping -c

computel

3. From the compute node, test access to the Internet:

e

L

ping -c

openstack.org

4. From the compute node, test access to the management interface on the controller node:

ping -c

controller

Your distribution does not enable a restrictive firewall by default. For more information about securing
your environment, refer to the OpenStack Security Guide.

74

Chapter 6. Install and configure for Ubuntu

https://docs.openstack.org/security-guide/

Neutron Documentation, Release 25.1.1.dev7

6.2 Install and configure controller node

6.2.1 Prerequisites
Before you configure the OpenStack Networking (neutron) service, you must create a database, service
credentials, and API endpoints.

1. To create the database, complete these steps:

¢ Use the database access client to connect to the database server as the root user:

[mysql -u root -p J

¢ Create the neutron database:

{)

* Grant proper access to the neutron database, replacing NEUTRON_DBPASS with a suitable
password:

» Exit the database access client.

2. Source the admin credentials to gain access to admin-only CLI commands:

. admin-openrc

3. To create the service credentials, complete these steps:

¢ Create the neutron user:

openstack user create --domain default --password-prompt neutron

¢ Add the admin role to the neutron user:

6.2. Install and configure controller node 75

Neutron Documentation, Release 25.1.1.dev7

[openstack role add --project service --user neutron admin

Note

This command provides no output.

* Create the neutron service entity:

openstack service create --name neutron
--description network

L

4. Create the Networking service API endpoints:

openstack endpoint create --region RegionOne
network public http://controller:9696

openstack endpoint create --region RegionOne
network internal http://controller:9696

(continues on next page)

76

Chapter 6. Install and configure for Ubuntu

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

openstack endpoint create --region RegionOne
network admin http://controller:9696

6.2.2 Configure networking options

You can deploy the Networking service using one of two architectures represented by options 1 and 2.

Option 1 deploys the simplest possible architecture that only supports attaching instances to provider
(external) networks. No self-service (private) networks, routers, or floating IP addresses. Only the admin
or other privileged user can manage provider networks.

Option 2 augments option 1 with layer-3 services that support attaching instances to self-service networks.
The demo or other unprivileged user can manage self-service networks including routers that provide
connectivity between self-service and provider networks. Additionally, floating IP addresses provide
connectivity to instances using self-service networks from external networks such as the Internet.

Self-service networks typically use overlay networks. Overlay network protocols such as VXLAN in-
clude additional headers that increase overhead and decrease space available for the payload or user data.
Without knowledge of the virtual network infrastructure, instances attempt to send packets using the de-
fault Ethernet maximum transmission unit (MTU) of 1500 bytes. The Networking service automatically
provides the correct MTU value to instances via DHCP. However, some cloud images do not use DHCP
or ignore the DHCP MTU option and require configuration using metadata or a script.

Note

Option 2 also supports attaching instances to provider networks.

Choose one of the following networking options to configure services specific to it. Afterwards, return

6.2. Install and configure controller node 77

Neutron Documentation, Release 25.1.1.dev7

here and proceed to Configure the metadata agent.

Networking Option 1: Provider networks

Install and configure the Networking components on the controller node.

Install the components

apt install neutron-server neutron-plugin-ml2
neutron-openvswitch-agent neutron-dhcp-agent
neutron-metadata-agent

Configure the server component

The Networking server component configuration includes the database, authentication mechanism, mes-
sage queue, topology change notifications, and plug-in.

Note

Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (. . .) in the configuration snip-
pets indicates potential default configuration options that you should retain.

* Edit the /etc/neutron/neutron.conf file and complete the following actions:

— In the [database] section, configure database access:

Replace NEUTRON_DBPASS with the password you chose for the database.

Note

Comment out or remove any other connection options in the [database] section.

— In the [DEFAULT] section, enable the Modular Layer 2 (ML2) plug-in and disable additional
plug-ins:

— In the [DEFAULT] section, configure RabbitMQ message queue access:

78 Chapter 6. Install and configure for Ubuntu

Neutron Documentation, Release 25.1.1.dev7

Replace RABBIT_PASS with the password you chose for the openstack account in Rab-
bitMQ.

— Inthe [DEFAULT] and [keystone_authtoken] sections, configure Identity service access:

Replace NEUTRON_PASS with the password you chose for the neutron user in the Identity
service.

Note

Comment out or remove any other options in the [keystone_authtoken] section.

— Inthe [DEFAULT] and [nova] sections, configure Networking to notify Compute of network
topology changes:

6.2. Install and configure controller node 79

Neutron Documentation, Release 25.1.1.dev7

Replace NOVA_PASS with the password you chose for the nova user in the Identity service.

* In the [oslo_concurrency] section, configure the lock path:

Configure the Modular Layer 2 (ML2) plug-in

The ML2 plug-in uses the Linux bridge mechanism to build layer-2 (bridging and switching) virtual
networking infrastructure for instances.

* Edit the /etc/neutron/plugins/ml2/ml2_conf.ini file and complete the following actions:

— In the [m12] section, enable flat and VLAN networks:

L

In the [m12] section, disable self-service networks:

— Inthe [m12] section, enable the Linux bridge mechanism:

Warning

After you configure the ML2 plug-in, removing values in the type_drivers option can
lead to database inconsistency.

— Inthe [m12] section, enable the port security extension driver:

— Inthe [m12_type_flat] section, configure the provider virtual network as a flat network:

80 Chapter 6. Install and configure for Ubuntu

Neutron Documentation, Release 25.1.1.dev7

Configure the Open vSwitch agent

The Linux bridge agent builds layer-2 (bridging and switching) virtual networking infrastructure for
instances and handles security groups.

* Editthe /etc/neutron/plugins/ml2/openvswitch_agent.ini file and complete the follow-
ing actions:

— In the [ovs] section, map the provider virtual network to the provider physical bridge:

| |

Replace PROVIDER_BRIDGE_NAME with the name of the bridge connected to the underlying
provider physical network. See Host networking and Open vSwitch: Provider networks for
more information.

— Ensure PROVIDER_BRIDGE_NAME external bridge is created and
PROVIDER_INTERFACE_NAME is added to that bridge

| |

— In the [securitygroup] section, enable security groups and configure the Open vSwitch
native or the hybrid iptables firewall driver:

— In the case of using the hybrid iptables firewall driver, ensure your Linux operating system
kernel supports network bridge filters by verifying all the following sysctl values are set to
1:

To enable networking bridge support, typically the br_netfilter kernel module needs to
be loaded. Check your operating systems documentation for additional details on enabling
this module.

Configure the DHCP agent

The DHCP agent provides DHCP services for virtual networks.
* Edit the /etc/neutron/dhcp_agent.ini file and complete the following actions:

— In the [DEFAULT] section, configure the Linux bridge interface driver, Dnsmasq DHCP
driver, and enable isolated metadata so instances on provider networks can access metadata
over the network:

6.2. Install and configure controller node 81

Neutron Documentation, Release 25.1.1.dev7

Create the provider network

Follow this provider network document from the General Installation Guide.

Return to Networking controller node configuration.

Networking Option 2: Self-service networks

Install and configure the Networking components on the controller node.

Install the components

apt install neutron-server neutron-plugin-ml2
neutron-openvswitch-agent neutron-13-agent neutron-dhcp-agent
neutron-metadata-agent

Configure the server component

* Edit the /etc/neutron/neutron.conf file and complete the following actions:

— In the [database] section, configure database access:

Replace NEUTRON_DBPASS with the password you chose for the database.

Note

Comment out or remove any other connection options in the [database] section.

— In the [DEFAULT] section, enable the Modular Layer 2 (ML2) plug-in and router service:

— In the [DEFAULT] section, configure RabbitMQ message queue access:

82 Chapter 6. Install and configure for Ubuntu

https://docs.openstack.org/install-guide/launch-instance-networks-provider.html

Neutron Documentation, Release 25.1.1.dev7

Replace RABBIT_PASS with the password you chose for the openstack account in Rab-
bitMQ.

— Inthe [DEFAULT] and [keystone_authtoken] sections, configure Identity service access:

Replace NEUTRON_PASS with the password you chose for the neutron user in the Identity
service.

Note

Comment out or remove any other options in the [keystone_authtoken] section.

— Inthe [DEFAULT] and [nova] sections, configure Networking to notify Compute of network
topology changes:

6.2. Install and configure controller node 83

Neutron Documentation, Release 25.1.1.dev7

Replace NOVA_PASS with the password you chose for the nova user in the Identity service.

* In the [oslo_concurrency] section, configure the lock path:

Configure the Modular Layer 2 (ML2) plug-in

The ML2 plug-in uses the Linux bridge mechanism to build layer-2 (bridging and switching) virtual
networking infrastructure for instances.

* Edit the /etc/neutron/plugins/ml2/ml2_conf.ini file and complete the following actions:

— In the [ml12] section, enable flat, VLAN, and VXLAN networks:

L

In the [m12] section, enable VXLAN self-service networks:

— Inthe [m12] section, enable the Linux bridge and layer-2 population mechanisms:

Warning

After you configure the ML2 plug-in, removing values in the type_drivers option can
lead to database inconsistency.

Note

The Linux bridge agent only supports VXLAN overlay networks.

— In the [m12] section, enable the port security extension driver:

— Inthe [ml2_type_flat] section, configure the provider virtual network as a flat network:

84 Chapter 6. Install and configure for Ubuntu

Neutron Documentation, Release 25.1.1.dev7

— Inthe [m12_type_vxlan] section, configure the VXLAN network identifier range for self-
service networks:

Configure the Open vSwitch agent

The Linux bridge agent builds layer-2 (bridging and switching) virtual networking infrastructure for
instances and handles security groups.

* Editthe /etc/neutron/plugins/ml2/openvswitch_agent.ini file and complete the follow-
ing actions:

— In the [ovs] section, map the provider virtual network to the provider physical bridge and
configure the IP address of the physical network interface that handles overlay networks:

Replace PROVIDER_BRIDGE_NAME with the name of the bridge connected to the underlying
provider physical network. See Host networking and Open vSwitch: Provider networks for
more information.

Also replace OVERLAY_INTERFACE_IP_ADDRESS with the IP address of the underly-
ing physical network interface that handles overlay networks. The example architecture
uses the management interface to tunnel traffic to the other nodes. Therefore, replace
OVERLAY_INTERFACE_IP_ADDRESS with the management IP address of the controller node.
See Host networking for more information.

— Ensure PROVIDER_BRIDGE_NAME external bridge is created and
PROVIDER_INTERFACE_NAME is added to that bridge

— In the [agent] section, enable VXLAN overlay networks and enable layer-2 population:

— In the [securitygroup] section, enable security groups and configure the Open vSwitch
native or the hybrid iptables firewall driver:

6.2. Install and configure controller node 85

Neutron Documentation, Release 25.1.1.dev7

— In the case of using the hybrid iptables firewall driver, ensure your Linux operating system
kernel supports network bridge filters by verifying all the following sysctl values are set to
1:

To enable networking bridge support, typically the br_netfilter kernel module needs to
be loaded. Check your operating systems documentation for additional details on enabling
this module.

Configure the layer-3 agent

The Layer-3 (L3) agent provides routing and NAT services for self-service virtual networks.
* Edit the /etc/neutron/13_agent. ini file and complete the following actions:

— In the [DEFAULT] section, configure the Open vSwitch interface driver:

Configure the DHCP agent

The DHCP agent provides DHCP services for virtual networks.
* Edit the /etc/neutron/dhcp_agent.ini file and complete the following actions:

— In the [DEFAULT] section, configure the Open vSwitch interface driver, Dnsmasq DHCP
driver, and enable isolated metadata so instances on provider networks can access metadata
over the network:

Return to Networking controller node configuration.

86 Chapter 6. Install and configure for Ubuntu

Neutron Documentation, Release 25.1.1.dev7

6.2.3 Configure the metadata agent

The metadata agent provides configuration information such as credentials to instances.
* Edit the /etc/neutron/metadata_agent.ini file and complete the following actions:

— In the [DEFAULT] section, configure the metadata host and shared secret:

Replace METADATA_SECRET with a suitable secret for the metadata proxy.

6.2.4 Configure the Compute service to use the Networking service

Note

The Nova compute service must be installed to complete this step. For more details see the compute
install guide found under the Installation Guides section of the docs website.

* Edit the /etc/nova/nova. conf file and perform the following actions:

— Inthe [neutron] section, configure access parameters, enable the metadata proxy, and con-
figure the secret:

Replace NEUTRON_PASS with the password you chose for the neutron user in the Identity
service.

Replace METADATA_SECRET with the secret you chose for the metadata proxy.

See the compute service configuration guide for the full set of options including overriding
the service catalog endpoint URL if necessary.

6.2. Install and configure controller node 87

https://docs.openstack.org
https://docs.openstack.org/nova/2024.2/configuration/config.html#neutron

Neutron Documentation, Release 25.1.1.dev7

6.2.5 Finalize installation

1. Populate the database:

su -s /bin/sh -c

—

—heutron

Note

Database population occurs later for Networking because the script requires complete server
and plug-in configuration files.

2. Restart the Compute API service:

[service nova-api restart

3. Restart the Networking services.

For both networking options:

service neutron-server restart

service neutron-openvswitch-agent restart
service neutron-dhcp-agent restart
service neutron-metadata-agent restart

For networking option 2, also restart the layer-3 service:

service neutron-13-agent restart

6.3 Install and configure compute node

The compute node handles connectivity and security groups for instances.

6.3.1 Install the components

[apt install neutron-openvswitch-agent

88 Chapter 6. Install and configure for Ubuntu

Neutron Documentation, Release 25.1.1.dev7

6.3.2 Configure the common component

The Networking common component configuration includes the authentication mechanism, message
queue, and plug-in.

Note

Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (. . .) in the configuration snip-
pets indicates potential default configuration options that you should retain.

* Edit the /etc/neutron/neutron.conf file and complete the following actions:

— In the [database] section, comment out any connection options because compute nodes
do not directly access the database.

— In the [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in Rab-
bitMQ.

* In the [oslo_concurrency] section, configure the lock path:

6.3.3 Configure networking options

Choose the same networking option that you chose for the controller node to configure services specific to
it. Afterwards, return here and proceed to Configure the Compute service to use the Networking service.

Networking Option 1: Provider networks

Configure the Networking components on a compute node.

Configure the Open vSwitch agent

The Open vSwitch agent builds layer-2 (bridging and switching) virtual networking infrastructure for
instances and handles security groups.

» Editthe /etc/neutron/plugins/ml2/openvswitch_agent.ini file and complete the follow-
ing actions:

— In the [ovs] section, map the provider virtual network to the provider physical bridge:

6.3. Install and configure compute node 89

Neutron Documentation, Release 25.1.1.dev7

| |

Replace PROVIDER_BRIDGE_NAME with the name of the bridge connected to the underlying
provider physical network. See Host networking and Open vSwitch: Provider networks for
more information.

— Ensure PROVIDER_BRIDGE_NAME external bridge is created and
PROVIDER_INTERFACE_NAME is added to that bridge

| |

— In the [securitygroup] section, enable security groups and configure the Open vSwitch
native or the hybrid iptables firewall driver:

— In the case of using the hybrid iptables firewall driver, ensure your Linux operating system
kernel supports network bridge filters by verifying all the following sysctl values are set to
1:

To enable networking bridge support, typically the br_netfilter kernel module needs to
be loaded. Check your operating systems documentation for additional details on enabling
this module.

Return to Networking compute node configuration

Networking Option 2: Self-service networks

Configure the Networking components on a compute node.

Configure the Open vSwitch agent

The Open vSwitch agent builds layer-2 (bridging and switching) virtual networking infrastructure for
instances and handles security groups.

* Editthe /etc/neutron/plugins/ml2/openvswitch_agent.ini file and complete the follow-
ing actions:

— In the [ovs] section, map the provider virtual network to the provider physical bridge and
configure the IP address of the physical network interface that handles overlay networks:

20 Chapter 6. Install and configure for Ubuntu

Neutron Documentation, Release 25.1.1.dev7

Replace PROVIDER_BRIDGE_NAME with the name of the bridge connected to the underlying
provider physical network. See Host networking and Open vSwitch: Provider networks for
more information.

Also replace OVERLAY_INTERFACE_TIP_ADDRESS with the IP address of the underly-
ing physical network interface that handles overlay networks. The example architecture
uses the management interface to tunnel traffic to the other nodes. Therefore, replace
OVERLAY_INTERFACE_IP_ADDRESS with the management IP address of the compute node.
See Host networking for more information.

— Ensure PROVIDER_BRIDGE_NAME external bridge is created and
PROVIDER_INTERFACE_NAME is added to that bridge

— In the [agent] section, enable VXLAN overlay networks and enable layer-2 population:

— In the [securitygroup] section, enable security groups and configure the Open vSwitch
native or the hybrid iptables firewall driver:

— In the case of using the hybrid iptables firewall driver, ensure your Linux operating system
kernel supports network bridge filters by verifying all the following sysctl values are set to
1:

To enable networking bridge support, typically the br_netfilter kernel module needs to
be loaded. Check your operating systems documentation for additional details on enabling
this module.

Return to Networking compute node configuration.

6.3. Install and configure compute node 91

Neutron Documentation, Release 25.1.1.dev7

6.3.4 Configure the Compute service to use the Networking service

» Edit the /etc/nova/nova.conf file and complete the following actions:

— In the [neutron] section, configure access parameters:

e

Replace NEUTRON_PASS with the password you chose for the neutron user in the Identity
service.

See the compute service configuration guide for the full set of options including overriding
the service catalog endpoint URL if necessary.

6.3.5 Finalize installation

1. Restart the Compute service:

{ service nova-compute restart }

2. Restart the Linux bridge agent:

[service neutron-openvswitch-agent restart }

92 Chapter 6. Install and configure for Ubuntu

https://docs.openstack.org/nova/2024.2/configuration/config.html#neutron

CHAPTER
SEVEN

OVN INSTALL DOCUMENTATION

7.1 Manual install & Configuration

Note

These instructions are intended for advanced users only, and could be incomplete. Please
consult your distro-specific documentation for more details.

It is also assumed you have already installed neutron components, see the latest Install
Tutorials and Guides for more information.

This document discusses what is required for manual installation or integration into a production Open-
Stack deployment tool of conventional architectures that include the following types of nodes:

* Controller - Runs OpenStack control plane services such as REST APIs and databases.

* Network - Runs the layer-2, layer-3 (routing), DHCP, and metadata agents for the Networking ser-
vice. Some agents optional. Usually provides connectivity between provider (public) and project
(private) networks via NAT and floating IP addresses.

Note

Some tools deploy these services on controller nodes.
* Compute - Runs the hypervisor and layer-2 agent for the Networking service.

7.1.1 Packaging

The Networking service integration for OVN is now one of the in-tree Neutron drivers, so should be
delivered with the neutron package, beginning with the Ussuri release.

For deployment tools using distribution packages, the names of them are different depending on the
distribution.

1. RHEL/Fedora and compatible distributions include the ovn-central and ovn-host packages,
which automatically install openvswitch as a dependency.

2. Ubuntu/Debian distributions include the ovn-central, ovn-host, ovn-common and
ovn-docker packages, which automatically install the appropriate Open vSwitch dependencies
as needed.

93

../index.html
../index.html

Neutron Documentation, Release 25.1.1.dev7

7.1.2 Controller nodes

Each controller node runs the Open vSwitch (OVS) service (including dependent services such as
ovsdb-server) and ovn-northd. Only a single instance of the ovsdb-server and ovn-northd
services can operate in a deployment. However, deployment tools can implement active/passive high-
availability using a management tool that monitors service health and automatically starts these services
on another node after failure of the primary node. See the Frequently Asked Questions for more infor-
mation.

1. Install the ovn-central and openvswitch packages (RHEL/Fedora).
2. Install the ovn-central and openvswitch-common packages (Ubuntu/Debian).

3. Start the OVS service. The central OVS service starts the ovsdb-server service that manages
OVN databases.

Using the systemd unit:

systemctl start openvswitch RHEL/Fedora
systemctl start openvswitch-switch Ubuntu/Debian

4. Configure the ovsdb-server component. By default, the ovsdb-server service only permits
local access to databases via Unix socket. However, OVN services on compute nodes require
access to these databases.

¢ Permit remote database access.

s N

ovn-nbctl set-connection ptcp:6641:0.0.0.0 --
connection .
ovn-sbctl set-connection ptcp:6642:0.0.0.0 --
connection .
using the VTEP functionality:
ovs-appctl -t ovsdb-server ovsdb-server/add-remote ptcp:6640:0.0.
0.0

Replace 0.0.0.0 with the IP address of the management network interface on the controller
node to avoid listening on all interfaces.

Note

Permit remote access to TCP ports: 6640 (OVS) to VTEPS (if you use vteps), 6642
(SBDB) to hosts running neutron-server, gateway nodes that run ovn-controller, and com-
pute node services like ovn-controller and ovn-metadata-agent. 6641 (NBDB) to hosts
running neutron-server.

5. Start the ovn-northd service.

Using the systemd unit:

{ systemctl start ovn-northd }

6. Configure the Networking server component. The Networking service implements OVN as an
ML2 driver. Edit the /etc/neutron/neutron.conf file:

* Enable the ML2 core plug-in.

94 Chapter 7. OVN Install Documentation

Neutron Documentation, Release 25.1.1.dev7

L

Enable the OVN layer-3 service.

7. Configure the ML2 plug-in. Edit the /etc/neutron/plugins/ml2/ml2_conf.ini file:

* Configure the OVN mechanism driver, network type drivers, self-service (tenant) network
types, and enable the port security extension.

-

Note

To enable VLAN self-service networks, make sure that OVN version 2.11 (or higher) is
used, then add vlan to the tenant_network_types option. The first network type in
the list becomes the default self-service network type.

To use IPv6 for all overlay (tunnel) network endpoints, set the overlay_ip_version
option to 6.

* Configure the Geneve ID range and maximum header size. The IP version overhead (20 bytes
for IPv4 (default) or 40 bytes for IPv6) is added to the maximum header size based on the
ML2 overlay_ip_version option.

Note

The Networking service uses the vni_ranges option to allocate network
segments. However, OVN ignores the actual values. Thus, the ID range only
determines the quantity of Geneve networks in the environment. For exam-
ple, arange of 5001: 6000 defines a maximum of 1000 Geneve networks. On
the other hand, these values are still relevant in Neutron context so 1:1000
and 5001: 6000 are nor simply interchangeable.

7.1. Manual install & Configuration 95

Neutron Documentation, Release 25.1.1.dev7

Warning

The default for max_header_size, 30, is too low for OVN. OVN requires at least 38.

* Optionally, enable support for VXLAN type networks. Because of limited space in VXLAN
VNI to pass over the needed information that requires OVN to identify a packet, the header
size to contain the segmentation ID is reduced to 12 bits, that allows a maximum number
of 4096 networks. The same limitation applies to the number of ports in each network, that
are also identified with a 12 bits header chunk, limiting their number to 4096 ports. Please
check' for more information.

* Optionally, enable support for VLAN provider and self-service networks on one or more
physical networks. If you specify only the physical network, only administrative (privileged)
users can manage VLAN networks. Additionally specifying a VLAN ID range for a physical
network enables regular (non-privileged) users to manage VLAN networks. The Networking
service allocates the VLAN ID for each self-service network using the VLAN ID range for
the physical network.

Replace PHYSTCAL_NETWORK with the physical network name and optionally define the min-
imum and maximum VLAN IDs. Use a comma to separate each physical network.

For example, to enable support for administrative VLAN networks on the physnet1 network
and self-service VLAN networks on the physnet2 network using VLAN IDs 1001 to 2000:

{ 1

* Enable security groups.

Note

The firewall_driver option under [securitygroup] is ignored since the OVN ML?2
driver itself handles security groups.

! https://mail.openvswitch.org/pipermail/ovs-dev/2020-September/375189.html

96 Chapter 7. OVN Install Documentation

https://mail.openvswitch.org/pipermail/ovs-dev/2020-September/375189.html

Neutron Documentation, Release 25.1.1.dev7

* Configure OVS database access and L3 scheduler

Note

Replace IP_ADDRESS with the IP address of the controller node that runs the
ovsdb-server service. Replace OVN_L3_SCHEDULER with leastloaded if you want
the scheduler to select a compute node with the least number of gateway ports or chance
if you want the scheduler to randomly select a compute node from the available list of
compute nodes.

* Set ovn-cms-options with enable-chassis-as-gw in Open_vSwitch tables external_ids col-
umn. Then if this chassis has proper bridge mappings, it will be selected for scheduling
gateway routers.

ovs-vsctl open . external-ids:ovn-cms-options enable-chassis-
—.as-gw

8. Start, or restart, the neutron-server service.

Using the systemd unit:

[systemctl start neutron-server }

7.1.3 Network nodes

Deployments using OVN native layer-3 and DHCP services do not require conventional network nodes
because connectivity to external networks (including VTEP gateways) and routing occurs on compute
nodes.

7.1.4 Compute nodes
Each compute node runs the OVS and ovn-controller services. The ovn-controller service re-
places the conventional OVS layer-2 agent.

1. Install the ovn-host, openvswitch and neutron-ovn-metadata-agent packages
(RHEL/Fedora).

2. Install the ovn-host, openvswitch-switch and neutron-ovn-metadata-agent packages
(Ubuntu/Debian).

3. Start the OVS service.

Using the systemd unit:

7.1. Manual install & Configuration 97

Neutron Documentation, Release 25.1.1.dev7

systemctl start openvswitch RHEL/Fedora
systemctl start openvswitch-switch Ubuntu/Debian

4. Configure the OVS service.

¢ Use OVS databases on the controller node.

{ ovs-vsctl open . external-ids:ovn-remote tcp:IP_ADDRESS:6642 }

Replace IP_ADDRESS with the IP address of the controller node that runs the ovsdb-server
service.

* Enable one or more overlay network protocols. At a minimum, OVN requires enabling the
geneve protocol. Deployments using VTEP gateways should also enable the vx1lan protocol.

ovs-vsctl open . external-ids:ovn-encap-type geneve,vxlan

Note

Deployments without VTEP gateways can safely enable both protocols.

* Configure the overlay network local endpoint IP address.

ovs-vsctl open . external-ids:ovn-encap-ip IP_ADDRESS

Replace TP_ADDRESS with the IP address of the overlay network interface on the compute
node.

5. Start the ovn-controller and neutron-ovn-metadata-agent services.

Using the systemd unit:

{ systemctl start ovn-controller neutron-ovn-metadata-agent }

7.1.5 Verify operation

1. Each compute node should contain an ovn-controller instance.

ovn-sbctl show J

7.1.6 References
7.2 TripleO/RDO based deployments

TripleO is a project aimed at installing, upgrading and operating OpenStack clouds using OpenStacks
own cloud facilities as the foundation.

RDO is the OpenStack distribution that runs on top of CentOS, and can be deployed via TripleO.

TripleO Quickstart is an easy way to try out TripleO in a libvirt virtualized environment.

98 Chapter 7. OVN Install Documentation

http://tripleo.org/
http://rdoproject.org/
https://github.com/openstack/tripleo-quickstart/blob/master/README.rst

Neutron Documentation, Release 25.1.1.dev7

In this document we will stick to the details of installing a 3 controller + 1 compute in high availability
through TripleO Quickstart, but the non-quickstart details in this document also work with TripleO.

Note

This deployment requires 32GB for the VMs, so your host may have >32GB of RAM at least. If you
have 32GB I recommend to trim down the compute node memory in config/nodes/3ctlr_1comp.yml
to 2GB and controller nodes to 5SGB.

7.2.1 Deployment steps

1. Download the quickstart.sh script with curl:

curl -0 https://raw.githubusercontent.com/openstack/tripleo-quickstart/
—master/quickstart.sh

|

2. Install the necessary dependencies by running:

[bash quickstart.sh --install-deps

3. Clone the tripleo-quickstart and neutron repositories:

git clone https://opendev.org/openstack/tripleo-quickstart
git clone https://opendev.org/openstack/neutron

L J

4. Once youre done, run quickstart as follows (3 controller HA + 1 compute):

Exporting the tags is a workaround the bug
https://bugs.launchpad.net/tripleo/+bug/1737602 is resolved

bash ./quickstart.sh --tags --teardown all
--release master-tripleo-ci
--nodes tripleo-quickstart/config/nodes/3ctlr_lcomp.yml
--config neutron/tools/tripleo/ovn.yml
VIRTHOST

L

Note

When deploying directly on localhost use the loopback address 127.0.0.2 as your
$VIRTHOST. The loopback address 127.0.0.1 is reserved by ansible. Also make sure that
127.0.0.2 is accessible via public keys:

[$ cat ~/.ssh/id_rsa.pub >> ~/.ssh/authorized_keys }

7.2. TripleO/RDO based deployments 99

Neutron Documentation, Release 25.1.1.dev7

Note

You can adjust RAM/VCPUs if you want by editing config/nodes/3ctlr_I1comp.yml before run-
ning the above command. If you have enough memory stick to the defaults. We recommend
using 8GB of RAM for the controller nodes.

5. When quickstart has finished you will have 5 VMs ready to be used, 1 for the undercloud (TripleOs
node to deploy your openstack from), 3 VMs for controller nodes and 1 VM for the compute node.

6. Log in into the undercloud:

{ ssh -F ~/.quickstart/ssh.config.ansible undercloud

7. Prepare overcloud container images:

[./overcloud-prep-containers.sh

8. Run inside the undercloud:

{ ./overcloud-deploy.sh

9. Grab a coftee, that may take around 1 hour (depending on your hardware).

10. If anything goes wrong, go to IRC on OFTC, and ask on #000q

7.2.2 Description of the environment

Once deployed, inside the undercloud root directory two files are present: stackrc and overcloudrc, which
will let you connect to the APIs of the undercloud (managing the openstack node), and to the overcloud
(where your instances would live).

We can find out the existing controller/computes this way:

stackrc
openstack server list -c Name -c Networks -
—c Flavor

100 Chapter 7. OVN Install Documentation

Neutron Documentation, Release 25.1.1.dev7

Network architecture of the environment

vlans0
Tenant/geneve
Interna lAPI

ET
Tenant/geneve

=)
™
[
]
=

Compute Node 1

Controller Node 1..3

Externalf Y (klnternal APl Y

Provider Net NBEDE/SEDE 4

__ 7] e
172.17.0.0/24

- - -
o= 7 undercloud
\ControIPlane
192: e ((ethl) eth0 | = M

192.23.0.0/24

Connecting to one of the nodes via ssh

We can connect to the IP address in the openstack server list we showed before.

r(undercloud) [stack@undercloud ~]% ssh heat-admin@192.168.24.16

[heat-admin@overcloud-controller-1 ~]$ ps fax | grep ovn-controller

[heat-admin@overcloud-controller-1 ~]$ sudo ovs-vsctl show

(continues on next page)

7.2. TripleO/RDO based deployments 101

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

7.2.3 Initial resource creation

Well, now you have a virtual cloud with 3 controllers in HA, and one compute node, but no instances or
routers running. We can give it a try and create a few resources:

102 Chapter 7. OVN Install Documentation

Neutron Documentation, Release 25.1.1.dev7

router 1
10.0.0.23/192.168.99.1

4
_private =
4 10.0.0.130 (FIP) 192 23"0 024 cirros
10.0.0.0/24 e e » 192.168..99.5
Virtual resources
undercloud

External/

Provider Net

"datacentre"

10.0.0.0/24 (vlan10)

10.0.0.1 (vlanl0)

You can use the following script to create the resources.

(continues on next page)

7.2. TripleO/RDO based deployments 103

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

Note

You can now log in into the instance if you want. In a CirrOS >0.4.0 image, the login account is
cirros. The password is gocubsgo.

ssh cirros@10.0.0.130

ip a grep eth® -A

ping .0.0.1

ping £.8.8.8

(continues on next page)

104 Chapter 7. OVN Install Documentation

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

curl http://169.254.169.254/2009-04-04/meta-data/instance-id

This chapter explains how to install and configure the Networking service (neutron) using the provider
networks or self-service networks option.

For more information about the Networking service including virtual networking components, layout,
and traffic flows, see the OpenStack Networking Guide.

7.2. TripleO/RDO based deployments 105

Neutron Documentation, Release 25.1.1.dev7

106 Chapter 7. OVN Install Documentation

CHAPTER
EIGHT

OPENSTACK NETWORKING GUIDE

This guide targets OpenStack administrators seeking to deploy and manage OpenStack Networking (neu-
tron).

8.1 Introduction

The OpenStack Networking service (neutron) provides an API that allows users to set up and define
network connectivity and addressing in the cloud. The project code-name for Networking services is
neutron. OpenStack Networking handles the creation and management of a virtual networking infrastruc-
ture, including networks, switches, subnets, and routers for devices managed by the OpenStack Compute
service (nova). Advanced services such as firewalls or virtual private network (VPN) can also be used.

OpenStack Networking consists of the neutron-server, a database for persistent storage, and any num-
ber of plug-in agents, which provide other services such as interfacing with native Linux networking
mechanisms, external devices, or SDN controllers.

OpenStack Networking is entirely standalone and can be deployed to a dedicated host. If your deployment
uses a controller host to run centralized Compute components, you can deploy the Networking server to
that specific host instead.

OpenStack Networking integrates with various OpenStack components:
* OpenStack Identity service (keystone) is used for authentication and authorization of API requests.

* OpenStack Compute service (nova) is used to plug each virtual NIC on the VM into a particular
network.

* OpenStack Dashboard (horizon) is used by administrators and project users to create and manage
network services through a web-based graphical interface.

Note

The network address ranges used in this guide are chosen in accordance with RFC 5737 and RFC
3849, and as such are restricted to the following:

IPv4:
* 192.0.2.0/24
* 198.51.100.0/24
* 203.0.113.0/24
IPv6:

107

https://tools.ietf.org/rfc/rfc5737
https://tools.ietf.org/html/rfc3849
https://tools.ietf.org/html/rfc3849

Neutron Documentation, Release 25.1.1.dev7

* 2001:DBS::/32

The network address ranges in the examples of this guide should not be used for any purpose other
than documentation.

Note

To reduce clutter, this guide removes command output without relevance to the particular action.

8.1.1 Basic networking
Ethernet

Ethernet is a networking protocol, specified by the IEEE 802.3 standard. Most wired network interface
cards (NICs) communicate using Ethernet.

In the OSI model of networking protocols, Ethernet occupies the second layer, which is known as the
data link layer. When discussing Ethernet, you will often hear terms such as local network, layer 2, L2,
link layer and data link layer.

In an Ethernet network, the hosts connected to the network communicate by exchanging frames. Every
host on an Ethernet network is uniquely identified by an address called the media access control (MAC)
address. In particular, every virtual machine instance in an OpenStack environment has a unique MAC
address, which is different from the MAC address of the compute host. A MAC address has 48 bits
and is typically represented as a hexadecimal string, such as 08:00:27:19:88:74. The MAC address
is hard-coded into the NIC by the manufacturer, although modern NICs allow you to change the MAC
address programmatically. In Linux, you can retrieve the MAC address of a NIC using the ip command:

ip link show eth®

Conceptually, you can think of an Ethernet network as a single bus that each of the network hosts connects
to. In early implementations, an Ethernet network consisted of a single coaxial cable that hosts would tap
into to connect to the network. However, network hosts in modern Ethernet networks connect directly to a
network device called a swirch. Still, this conceptual model is useful, and in network diagrams (including
those generated by the OpenStack dashboard) an Ethernet network is often depicted as if it was a single
bus. Youll sometimes hear an Ethernet network referred to as a layer 2 segment.

In an Ethernet network, every host on the network can send a frame directly to every other host. An
Ethernet network also supports broadcasts so that one host can send a frame to every host on the network
by sending to the special MAC address £f: ff:ff: £ff: £f:ff ARP and DHCP are two notable protocols
that use Ethernet broadcasts. Because Ethernet networks support broadcasts, you will sometimes hear
an Ethernet network referred to as a broadcast domain.

When a NIC receives an Ethernet frame, by default the NIC checks to see if the destination MAC address
matches the address of the NIC (or the broadcast address), and the Ethernet frame is discarded if the
MAC address does not match. For a compute host, this behavior is undesirable because the frame may
be intended for one of the instances. NICs can be configured for promiscuous mode, where they pass all

108 Chapter 8. OpenStack Networking Guide

https://en.wikipedia.org/wiki/OSI_model

Neutron Documentation, Release 25.1.1.dev7

Ethernet frames to the operating system, even if the MAC address does not match. Compute hosts should
always have the appropriate NICs configured for promiscuous mode.

As mentioned earlier, modern Ethernet networks use switches to interconnect the network hosts. A
switch is a box of networking hardware with a large number of ports that forward Ethernet frames from
one connected host to another. When hosts first send frames over the switch, the switch doesnt know
which MAC address is associated with which port. If an Ethernet frame is destined for an unknown
MAC address, the switch broadcasts the frame to all ports. The switch learns which MAC addresses are
at which ports by observing the traffic. Once it knows which MAC address is associated with a port, it can
send Ethernet frames to the correct port instead of broadcasting. The switch maintains the mappings of
MAC addresses to switch ports in a table called a forwarding table or forwarding information base (FIB).
Switches can be daisy-chained together, and the resulting connection of switches and hosts behaves like
a single network.

VLANs

VLAN is a networking technology that enables a single switch to act as if it was multiple independent
switches. Specifically, two hosts that are connected to the same switch but on different VLANSs do not
see each others traffic. OpenStack is able to take advantage of VLANS to isolate the traffic of different
projects, even if the projects happen to have instances running on the same compute host. Each VLAN
has an associated numerical ID, between 1 and 4094. We say VLAN 15 to refer to the VLAN with a
numerical ID of 15.

To understand how VLANs work, lets consider VLAN applications in a traditional IT environment,
where physical hosts are attached to a physical switch, and no virtualization is involved. Imagine a
scenario where you want three isolated networks but you only have a single physical switch. The network
administrator would choose three VLAN IDs, for example, 10, 11, and 12, and would configure the switch
to associate switchports with VLAN IDs. For example, switchport 2 might be associated with VLAN
10, switchport 3 might be associated with VLAN 11, and so forth. When a switchport is configured for a
specific VLAN, it is called an access port. The switch is responsible for ensuring that the network traffic
is isolated across the VLANS.

Now consider the scenario that all of the switchports in the first switch become occupied, and so the
organization buys a second switch and connects it to the first switch to expand the available number of
switchports. The second switch is also configured to support VLAN IDs 10, 11, and 12. Now imagine
host A connected to switch 1 on a port configured for VLAN ID 10 sends an Ethernet frame intended
for host B connected to switch 2 on a port configured for VLAN ID 10. When switch 1 forwards the
Ethernet frame to switch 2, it must communicate that the frame is associated with VLAN ID 10.

If two switches are to be connected together, and the switches are configured for VLANSs, then the switch-
ports used for cross-connecting the switches must be configured to allow Ethernet frames from any VLAN
to be forwarded to the other switch. In addition, the sending switch must tag each Ethernet frame with
the VLAN ID so that the receiving switch can ensure that only hosts on the matching VLAN are eligible
to receive the frame.

A switchport that is configured to pass frames from all VLANs and tag them with the VLAN IDs is
called a trunk port. IEEE 802.1Q is the network standard that describes how VLAN tags are encoded in
Ethernet frames when trunking is being used.

Note that if you are using VLANs on your physical switches to implement project isolation in your
OpenStack cloud, you must ensure that all of your switchports are configured as trunk ports.

It is important that you select a VLAN range not being used by your current network infrastructure. For
example, if you estimate that your cloud must support a maximum of 100 projects, pick a VLAN range

8.1. Introduction 109

Neutron Documentation, Release 25.1.1.dev7

outside of that value, such as VLAN 200299. OpenStack, and all physical network infrastructure that
handles project networks, must then support this VLAN range.

Trunking is used to connect between different switches. Each trunk uses a tag to identify which VLAN
is in use. This ensures that switches on the same VLAN can communicate.

Subnets and ARP

While NICs use MAC addresses to address network hosts, TCP/IP applications use IP addresses. The
Address Resolution Protocol (ARP) bridges the gap between Ethernet and IP by translating IP addresses
into MAC addresses.

IP addresses are broken up into two parts: a network number and a host identifier. Two hosts are on
the same subnet if they have the same network number. Recall that two hosts can only communicate
directly over Ethernet if they are on the same local network. ARP assumes that all machines that are in
the same subnet are on the same local network. Network administrators must take care when assigning
IP addresses and netmasks to hosts so that any two hosts that are in the same subnet are on the same local
network, otherwise ARP does not work properly.

To calculate the network number of an IP address, you must know the netmask associated with the address.
A netmask indicates how many of the bits in the 32-bit IP address make up the network number.

There are two syntaxes for expressing a netmask:
* dotted quad
* classless inter-domain routing (CIDR)

Consider an IP address of 192.0.2.5, where the first 24 bits of the address are the network number. In
dotted quad notation, the netmask would be written as 255.255.255.0. CIDR notation includes both
the IP address and netmask, and this example would be written as 192.0.2.5/24.

Note

Creating CIDR subnets including a multicast address or a loopback address cannot be used in an
OpenStack environment. For example, creating a subnet using 224.0.0.0/16 or 127.0.1.0/24 is
not supported.

Sometimes we want to refer to a subnet, but not any particular IP address on the subnet. A common
convention is to set the host identifier to all zeros to make reference to a subnet. For example, if a hosts
IP address is 192.0.2.24/24, then we would say the subnet is 192.0.2.0/24.

To understand how ARP translates IP addresses to MAC addresses, consider the following example.
Assume host A has an IP address of 192.0.2.5/24 and a MAC address of £c:99:47:49:d4:a0, and
wants to send a packet to host B with an IP address of 192.0.2.7. Note that the network number is the
same for both hosts, so host A is able to send frames directly to host B.

The first time host A attempts to communicate with host B, the destination MAC address is not known.
Host A makes an ARP request to the local network. The request is a broadcast with a message like this:

To: everybody (ff-ff-fF:11-ff-ff). I am looking for the computer who has IP address 192.0.2.7. Signed:
MAC address fc:99:47:49:d4:a0.

Host B responds with a response like this:

To: fc:99:47:49:d4:a0. I have IP address 192.0.2.7. Signed: MAC address 54:78:1a:86:00:a5.

110 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Host A then sends Ethernet frames to host B.

You can initiate an ARP request manually using the arping command. For example, to send an ARP
request to IP address 192.0.2.132:

arping -I eth@ .0.2.132

To reduce the number of ARP requests, operating systems maintain an ARP cache that contains the
mappings of IP addresses to MAC address. On a Linux machine, you can view the contents of the ARP
cache by using the arp command:

arp -n

DHCP

Hosts connected to a network use the Dynamic Host Configuration Protocol (DHCP) to dynamically
obtain IP addresses. A DHCP server hands out the IP addresses to network hosts, which are the DHCP
clients.

DHCEP clients locate the DHCP server by sending a UDP packet from port 68 to address 255.255.255.
255 on port 67. Address 255.255.255.255 is the local network broadcast address: all hosts on the
local network see the UDP packets sent to this address. However, such packets are not forwarded to other
networks. Consequently, the DHCP server must be on the same local network as the client, or the server
will not receive the broadcast. The DHCP server responds by sending a UDP packet from port 67 to port
68 on the client. The exchange looks like this:

1. The client sends a discover (Im a client at MAC address 08:00:27:b9:88:74, I need an IP ad-
dress)

2. The server sends an offer (OK 08:00:27:b9:88:74, Im offering IP address 192.0.2.112)
3. The client sends a request (Server 192.0.2.131, I would like to have IP 192.0.2.112)
4. The server sends an acknowledgement (OK 08:00:27:b9:88:74,IP 192.0.2.112 is yours)

OpenStack uses a third-party program called dnsmasq to implement the DHCP server. Dnsmasq writes
to the syslog, where you can observe the DHCP request and replies:

—

(continues on next page)

8.1. Introduction 111

http://www.thekelleys.org.uk/dnsmasq/doc.html

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

When troubleshooting an instance that is not reachable over the network, it can be helpful to examine
this log to verify that all four steps of the DHCP protocol were carried out for the instance in question.

IP

The Internet Protocol (IP) specifies how to route packets between hosts that are connected to different
local networks. IP relies on special network hosts called routers or gateways. A router is a host that is
connected to at least two local networks and can forward IP packets from one local network to another.
A router has multiple IP addresses: one for each of the networks it is connected to.

In the OSI model of networking protocols IP occupies the third layer, known as the network layer. When
discussing IP, you will often hear terms such as layer 3, L3, and network layer.

A host sending a packet to an IP address consults its routing table to determine which machine on the
local network(s) the packet should be sent to. The routing table maintains a list of the subnets associated
with each local network that the host is directly connected to, as well as a list of routers that are on these
local networks.

On a Linux machine, any of the following commands displays the routing table:

ip route show
route -n
netstat -rn

Here is an example of output from ip route show:

ip route show

Line 1 of the output specifies the location of the default route, which is the effective routing rule if none
of the other rules match. The router associated with the default route (192.0.2. 2 in the example above)
is sometimes referred to as the default gateway. A DHCP server typically transmits the IP address of the
default gateway to the DHCP client along with the clients IP address and a netmask.

Line 2 of the output specifies that IPs in the 192.0.2.0/24 subnet are on the local network associated
with the network interface ethO.

Line 3 of the output specifies that IPs in the 198.51.100.0/25 subnet are on the local network associated
with the network interface eth1.

Line 4 of the output specifies that IPs in the 198.51.180.192/26 subnet are on the local network asso-
ciated with the network interface virbr0.

The output of the route -nand netstat -rncommands are formatted in a slightly different way. This
example shows how the same routes would be formatted using these commands:

112 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

route -n

J

The ip route get command outputs the route for a destination IP address. From the below example,
destination IP address 192.0.2. 14 is on the local network of ethO and would be sent directly:

‘ ip route get .0.2.14 J

The destination IP address 203.0.113.34 is not on any of the connected local networks and would be
forwarded to the default gateway at 192.0.2.2:

| ip route get .0.113.34 }

It is common for a packet to hop across multiple routers to reach its final destination. On a Linux machine,
the traceroute and more recent mtr programs prints out the IP address of each router that an IP packet
traverses along its path to its destination.

TCP/UDP/ICMP

For networked software applications to communicate over an IP network, they must use a protocol layered
atop IP. These protocols occupy the fourth layer of the OSI model known as the transport layer or layer
4. See the Protocol Numbers web page maintained by the Internet Assigned Numbers Authority (IANA)
for a list of protocols that layer atop IP and their associated numbers.

The Transmission Control Protocol (TCP) is the most commonly used layer 4 protocol in networked
applications. TCP is a connection-oriented protocol: it uses a client-server model where a client connects
to a server, where server refers to the application that receives connections. The typical interaction in a
TCP-based application proceeds as follows:

1. Client connects to server.
2. Client and server exchange data.
3. Client or server disconnects.

Because a network host may have multiple TCP-based applications running, TCP uses an addressing
scheme called ports to uniquely identify TCP-based applications. A TCP port is associated with a number
in the range 1-65535, and only one application on a host can be associated with a TCP port at a time, a
restriction that is enforced by the operating system.

A TCP server is said to listen on a port. For example, an SSH server typically listens on port 22. For a
client to connect to a server using TCP, the client must know both the IP address of a servers host and
the servers TCP port.

The operating system of the TCP client application automatically assigns a port number to the client. The
client owns this port number until the TCP connection is terminated, after which the operating system

8.1. Introduction 113

http://www.iana.org/assignments/protocol-numbers/protocol-numbers.xhtml

Neutron Documentation, Release 25.1.1.dev7

reclaims the port number. These types of ports are referred to as ephemeral ports.

TIANA maintains a registry of port numbers for many TCP-based services, as well as services that use
other layer 4 protocols that employ ports. Registering a TCP port number is not required, but registering
a port number is helpful to avoid collisions with other services. See firewalls and default ports in Open-
Stack Installation Guide for the default TCP ports used by various services involved in an OpenStack
deployment.

The most common application programming interface (API) for writing TCP-based applications is called
Berkeley sockets, also known as BSD sockets or, simply, sockets. The sockets API exposes a stream
oriented interface for writing TCP applications. From the perspective of a programmer, sending data over
a TCP connection is similar to writing a stream of bytes to a file. It is the responsibility of the operating
systems TCP/IP implementation to break up the stream of data into IP packets. The operating system
is also responsible for automatically retransmitting dropped packets, and for handling flow control to
ensure that transmitted data does not overrun the senders data buffers, receivers data buffers, and network
capacity. Finally, the operating system is responsible for re-assembling the packets in the correct order
into a stream of data on the receivers side. Because TCP detects and retransmits lost packets, it is said to
be a reliable protocol.

The User Datagram Protocol (UDP) is another layer 4 protocol that is the basis of several well-known
networking protocols. UDP is a connectionless protocol: two applications that communicate over UDP
do not need to establish a connection before exchanging data. UDP is also an unreliable protocol. The
operating system does not attempt to retransmit or even detect lost UDP packets. The operating system
also does not provide any guarantee that the receiving application sees the UDP packets in the same order
that they were sent in.

UDP, like TCP, uses the notion of ports to distinguish between different applications running on the same
system. Note, however, that operating systems treat UDP ports separately from TCP ports. For example,
it is possible for one application to be associated with TCP port 16543 and a separate application to be
associated with UDP port 16543.

Like TCP, the sockets API is the most common API for writing UDP-based applications. The sockets API
provides a message-oriented interface for writing UDP applications: a programmer sends data over UDP
by transmitting a fixed-sized message. If an application requires retransmissions of lost packets or a well-
defined ordering of received packets, the programmer is responsible for implementing this functionality
in the application code.

DHCP, the Domain Name System (DNS), the Network Time Protocol (NTP), and Virtual extensible
local area network (VXLAN) are examples of UDP-based protocols used in OpenStack deployments.

UDP has support for one-to-many communication: sending a single packet to multiple hosts. An appli-
cation can broadcast a UDP packet to all of the network hosts on a local network by setting the receiver
IP address as the special IP broadcast address 255.255.255.255. An application can also send a UDP
packet to a set of receivers using IP multicast. The intended receiver applications join a multicast group
by binding a UDP socket to a special IP address that is one of the valid multicast group addresses. The
receiving hosts do not have to be on the same local network as the sender, but the intervening routers
must be configured to support IP multicast routing. VXLAN is an example of a UDP-based protocol that
uses IP multicast.

The Internet Control Message Protocol (ICMP) is a protocol used for sending control messages over an
IP network. For example, a router that receives an IP packet may send an ICMP packet back to the source
if there is no route in the routers routing table that corresponds to the destination address (ICMP code
1, destination host unreachable) or if the IP packet is too large for the router to handle (ICMP code 4,
fragmentation required and dont fragment flag is set).

The ping and mtr Linux command-line tools are two examples of network utilities that use ICMP.

114 Chapter 8. OpenStack Networking Guide

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://docs.openstack.org/install-guide/firewalls-default-ports.html

Neutron Documentation, Release 25.1.1.dev7

8.1.2 Network components
Switches

Switches are Multi-Input Multi-Output (MIMO) devices that enable packets to travel from one node to
another. Switches connect hosts that belong to the same layer-2 network. Switches enable forwarding
of the packet received on one port (input) to another port (output) so that they reach the desired destina-
tion node. Switches operate at layer-2 in the networking model. They forward the traffic based on the
destination Ethernet address in the packet header.

Routers

Routers are special devices that enable packets to travel from one layer-3 network to another. Routers
enable communication between two nodes on different layer-3 networks that are not directly connected
to each other. Routers operate at layer-3 in the networking model. They route the traffic based on the
destination IP address in the packet header.

Firewalls

Firewalls are used to regulate traffic to and from a host or a network. A firewall can be either a spe-
cialized device connecting two networks or a software-based filtering mechanism implemented on an
operating system. Firewalls are used to restrict traffic to a host based on the rules defined on the host.
They can filter packets based on several criteria such as source IP address, destination IP address, port
numbers, connection state, and so on. It is primarily used to protect the hosts from unauthorized access
and malicious attacks.

Load balancers

Load balancers can be software-based or hardware-based devices that allow traffic to evenly be distributed
across several servers. By distributing the traffic across multiple servers, it avoids overload of a single
server thereby preventing a single point of failure in the product. This further improves the performance,
network throughput, and response time of the servers. Load balancers are typically used in a 3-tier
architecture. In this model, a load balancer receives a request from the front-end web server, which then
forwards the request to one of the available back-end database servers for processing. The response from
the database server is passed back to the web server for further processing.

8.1.3 Overlay (tunnel) protocols

Tunneling is a mechanism that makes transfer of payloads feasible over an incompatible delivery net-
work. It allows the network user to gain access to denied or insecure networks. Data encryption may be
employed to transport the payload, ensuring that the encapsulated user network data appears as public
even though it is private and can easily pass the conflicting network.

8.1. Introduction 115

Neutron Documentation, Release 25.1.1.dev7

Generic routing encapsulation (GRE)

Generic routing encapsulation (GRE) is a protocol that runs over IP and is employed when delivery and
payload protocols are compatible but payload addresses are incompatible. For instance, a payload might
think it is running on a datalink layer but it is actually running over a transport layer using datagram proto-
col over IP. GRE creates a private point-to-point connection and works by encapsulating a payload. GRE
is a foundation protocol for other tunnel protocols but the GRE tunnels provide only weak authentication.

Virtual extensible local area network (VXLAN)

The purpose of VXLAN is to provide scalable network isolation. VXLAN is a Layer 2 overlay scheme
on a Layer 3 network. It allows an overlay layer-2 network to spread across multiple underlay layer-3
network domains. Each overlay is termed a VXLAN segment. Only VMs within the same VXLAN
segment can communicate.

Generic Network Virtualization Encapsulation (GENEVE)

Geneve is designed to recognize and accommodate changing capabilities and needs of different devices
in network virtualization. It provides a framework for tunneling rather than being prescriptive about the
entire system. Geneve defines the content of the metadata flexibly that is added during encapsulation and
tries to adapt to various virtualization scenarios. It uses UDP as its transport protocol and is dynamic in
size using extensible option headers. Geneve supports unicast, multicast, and broadcast.

8.1.4 Network namespaces

A namespace is a way of scoping a particular set of identifiers. Using a namespace, you can use the
same identifier multiple times in different namespaces. You can also restrict an identifier set visible to
particular processes.

For example, Linux provides namespaces for networking and processes, among other things. If a process
is running within a process namespace, it can only see and communicate with other processes in the same
namespace. So, if a shell in a particular process namespace ran ps waux, it would only show the other
processes in the same namespace.

Linux network namespaces

In a network namespace, the scoped identifiers are network devices; so a given network device, such as
eth@, exists in a particular namespace. Linux starts up with a default network namespace, so if your
operating system does not do anything special, that is where all the network devices will be located. But
it is also possible to create further non-default namespaces, and create new devices in those namespaces,
or to move an existing device from one namespace to another.

Each network namespace also has its own routing table, and in fact this is the main reason for namespaces
to exist. A routing table is keyed by destination IP address, so network namespaces are what you need if
you want the same destination IP address to mean different things at different times - which is something
that OpenStack Networking requires for its feature of providing overlapping IP addresses in different
virtual networks.

116 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Each network namespace also has its own set of iptables (for both IPv4 and IPv6). So, you can ap-
ply different security to flows with the same IP addressing in different namespaces, as well as different
routing.

Any given Linux process runs in a particular network namespace. By default this is inherited from its
parent process, but a process with the right capabilities can switch itself into a different namespace; in
practice this is mostly done using the ip netns exec NETNS COMMAND... invocation, which starts
COMMAND running in the namespace named NETNS. Suppose such a process sends out a message to IP
address A.B.C.D, the effect of the namespace is that A.B.C.D will be looked up in that namespaces
routing table, and that will determine the network device that the message is transmitted through.

Virtual routing and forwarding (VRF)

Virtual routing and forwarding is an IP technology that allows multiple instances of a routing table to
coexist on the same router at the same time. It is another name for the network namespace functionality
described above.

8.1.5 Network address translation

Network Address Translation (NAT) is a process for modifying the source or destination addresses in the
headers of an IP packet while the packet is in transit. In general, the sender and receiver applications are
not aware that the IP packets are being manipulated.

NAT is often implemented by routers, and so we will refer to the host performing NAT as a NAT router.
However, in OpenStack deployments it is typically Linux servers that implement the NAT functionality,
not hardware routers. These servers use the iptables software package to implement the NAT function-
ality.

There are multiple variations of NAT, and here we describe three kinds commonly found in OpenStack
deployments.

SNAT

In Source Network Address Translation (SNAT), the NAT router modifies the IP address of the sender in
IP packets. SNAT is commonly used to enable hosts with private addresses to communicate with servers
on the public Internet.

RFC 1918 reserves the following three subnets as private addresses:
* 10.0.0.0/8
* 172.16.0.0/12
* 192.168.0.0/16

These IP addresses are not publicly routable, meaning that a host on the public Internet can not send an
IP packet to any of these addresses. Private IP addresses are widely used in both residential and corporate
environments.

Often, an application running on a host with a private IP address will need to connect to a server on the
public Internet. An example is a user who wants to access a public website such as www.openstack.org.
If the IP packets reach the web server at www.openstack.org with a private IP address as the source, then
the web server cannot send packets back to the sender.

8.1. Introduction 117

https://www.netfilter.org/projects/iptables/index.html
https://tools.ietf.org/rfc/rfc1918

Neutron Documentation, Release 25.1.1.dev7

SNAT solves this problem by modifying the source IP address to an IP address that is routable on the
public Internet. There are different variations of SNAT; in the form that OpenStack deployments use, a
NAT router on the path between the sender and receiver replaces the packets source IP address with the
routers public IP address. The router also modifies the source TCP or UDP port to another value, and
the router maintains a record of the senders true IP address and port, as well as the modified IP address
and port.

When the router receives a packet with the matching IP address and port, it translates these back to the
private IP address and port, and forwards the packet along.

Because the NAT router modifies ports as well as IP addresses, this form of SNAT is sometimes referred
to as Port Address Translation (PAT). It is also sometimes referred to as NAT overload.

OpenStack uses SNAT to enable applications running inside of instances to connect out to the public
Internet.

DNAT

In Destination Network Address Translation (DNAT), the NAT router modifies the IP address of the
destination in IP packet headers.

OpenStack uses DNAT to route packets from instances to the OpenStack metadata service. Applications
running inside of instances access the OpenStack metadata service by making HTTP GET requests to a
web server with IP address 169.254.169.254. In an OpenStack deployment, there is no host with this IP
address. Instead, OpenStack uses DNAT to change the destination IP of these packets so they reach the
network interface that a metadata service is listening on.

One-to-one NAT

In one-to-one NAT, the NAT router maintains a one-to-one mapping between private IP addresses and
public IP addresses. OpenStack uses one-to-one NAT to implement floating IP addresses.

8.1.6 OpenStack Networking

OpenStack Networking allows you to create and manage network objects, such as networks, subnets, and
ports, which other OpenStack services can use. Plug-ins can be implemented to accommodate different
networking equipment and software, providing flexibility to OpenStack architecture and deployment.

The Networking service, code-named neutron, provides an API that lets you define network connectivity
and addressing in the cloud. The Networking service enables operators to leverage different networking
technologies to power their cloud networking. The Networking service also provides an API to configure
and manage a variety of network services ranging from L3 forwarding and Network Address Translation
(NAT) to perimeter firewalls, and virtual private networks.

It includes the following components:

API server
The OpenStack Networking API includes support for Layer 2 networking and IP Address Manage-
ment (IPAM), as well as an extension for a Layer 3 router construct that enables routing between
Layer 2 networks and gateways to external networks. OpenStack Networking includes a grow-
ing list of plug-ins that enable interoperability with various commercial and open source network
technologies, including routers, switches, virtual switches and software-defined networking (SDN)
controllers.

118 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

OpenStack Networking plug-in and agents
Plugs and unplugs ports, creates networks or subnets, and provides IP addressing. The chosen
plug-in and agents differ depending on the vendor and technologies used in the particular cloud. It
is important to mention that only one plug-in can be used at a time.

Messaging queue
Accepts and routes RPC requests between agents to complete API operations. Message queue is
used in the ML2 plug-in for RPC between the neutron server and neutron agents that run on each
hypervisor, in the ML2 mechanism drivers for Open vSwitch and Linux bridge.

Concepts

To configure rich network topologies, you can create and configure networks and subnets and instruct
other OpenStack services like Compute to attach virtual devices to ports on these networks. OpenStack
Compute is a prominent consumer of OpenStack Networking to provide connectivity for its instances. In
particular, OpenStack Networking supports each project having multiple private networks and enables
projects to choose their own IP addressing scheme, even if those IP addresses overlap with those that
other projects use. There are two types of network, project and provider networks. It is possible to share
any of these types of networks among projects as part of the network creation process.

Provider networks

Provider networks offer layer-2 connectivity to instances with optional support for DHCP and metadata
services. These networks connect, or map, to existing layer-2 networks in the data center, typically using
VLAN (802.1q) tagging to identify and separate them.

Provider networks generally offer simplicity, performance, and reliability at the cost of flexibility. By
default only administrators can create or update provider networks because they require configuration
of physical network infrastructure. It is possible to change the user who is allowed to create or update
provider networks with the following parameters of policy.yaml:

e create_network:provider:physical_network

e update_network:provider:physical_network

Warning

The creation and modification of provider networks enables use of physical network resources, such
as VLAN-s. Enable these changes only for trusted projects.

Also, provider networks only handle layer-2 connectivity for instances, thus lacking support for features
such as routers and floating IP addresses.

In many cases, operators who are already familiar with virtual networking architectures that rely on
physical network infrastructure for layer-2, layer-3, or other services can seamlessly deploy the OpenStack
Networking service. In particular, provider networks appeal to operators looking to migrate from the
Compute networking service (nova-network) to the OpenStack Networking service. Over time, operators
can build on this minimal architecture to enable more cloud networking features.

In general, the OpenStack Networking software components that handle layer-3 operations impact perfor-
mance and reliability the most. To improve performance and reliability, provider networks move layer-3
operations to the physical network infrastructure.

8.1. Introduction 119

Neutron Documentation, Release 25.1.1.dev7

In one particular use case, the OpenStack deployment resides in a mixed environment with conventional
virtualization and bare-metal hosts that use a sizable physical network infrastructure. Applications that
run inside the OpenStack deployment might require direct layer-2 access, typically using VLANS, to
applications outside of the deployment.

Routed provider networks

Routed provider networks offer layer-3 connectivity to instances. These networks map to existing layer-3
networks in the data center. More specifically, the network maps to multiple layer-2 segments, each of
which is essentially a provider network. Each has a router gateway attached to it which routes traffic
between them and externally. The Networking service does not provide the routing.

Routed provider networks offer performance at scale that is difficult to achieve with a plain provider
network at the expense of guaranteed layer-2 connectivity.

Neutron port could be associated with only one network segment, but there is an exception for OVN
distributed services like OVN Metadata.

See Routed provider networks for more information.

Self-service networks

Self-service networks primarily enable general (non-privileged) projects to manage networks without
involving administrators. These networks are entirely virtual and require virtual routers to interact with
provider and external networks such as the Internet. Self-service networks also usually provide DHCP
and metadata services to instances.

In most cases, self-service networks use overlay protocols such as VXLAN or GRE because they can
support many more networks than layer-2 segmentation using VLAN tagging (802.1q). Furthermore,
VLANS typically require additional configuration of physical network infrastructure.

IPv4 self-service networks typically use private IP address ranges (RFC1918) and interact with provider
networks via source NAT on virtual routers. Floating IP addresses enable access to instances from
provider networks via destination NAT on virtual routers. IPv6 self-service networks always use public
IP address ranges and interact with provider networks via virtual routers with static routes.

The Networking service implements routers using a layer-3 agent that typically resides at least one net-
work node. Contrary to provider networks that connect instances to the physical network infrastructure
at layer-2, self-service networks must traverse a layer-3 agent. Thus, oversubscription or failure of a
layer-3 agent or network node can impact a significant quantity of self-service networks and instances
using them. Consider implementing one or more high-availability features to increase redundancy and
performance of self-service networks.

Users create project networks for connectivity within projects. By default, they are fully isolated and are
not shared with other projects. OpenStack Networking supports the following types of network isolation
and overlay technologies.

Flat
All instances reside on the same network, which can also be shared with the hosts. No VLAN
tagging or other network segregation takes place.

VLAN
Networking allows users to create multiple provider or project networks using VLAN IDs (802.1Q

120 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

tagged) that correspond to VLANS present in the physical network. This allows instances to com-
municate with each other across the environment. They can also communicate with dedicated
servers, firewalls, and other networking infrastructure on the same layer 2 VLAN.

GRE and VXLAN
VXLAN and GRE are encapsulation protocols that create overlay networks to activate and control
communication between compute instances. A Networking router is required to allow traffic to
flow outside of the GRE or VXLAN project network. A router is also required to connect directly-
connected project networks with external networks, including the Internet. The router provides the
ability to connect to instances directly from an external network using floating IP addresses.

Compute Node Network Node

Neutron Router

Project Network @
L —t L

Prowder Network
VM2 VM4

Project Network 1 Project Network 2 Physical
Network

Subnets

A block of IP addresses and associated configuration state. This is also known as the native IPAM
(IP Address Management) provided by the networking service for both project and provider networks.
Subnets are used to allocate IP addresses when new ports are created on a network.

Subnet pools

End users normally can create subnets with any valid IP addresses without other restrictions. However,
in some cases, it is nice for the admin or the project to pre-define a pool of addresses from which to create
subnets with automatic allocation.

Using subnet pools constrains what addresses can be used by requiring that every subnet be within the
defined pool. It also prevents address reuse or overlap by two subnets from the same pool.

See Subnet Pools for more information.

8.1. Introduction 121

Neutron Documentation, Release 25.1.1.dev7

Ports

A port is a connection point for attaching a single device, such as the NIC of a virtual server, to a virtual
network. The port also describes the associated network configuration, such as the MAC and IP addresses
to be used on that port.

Routers

Routers provide virtual layer-3 services such as routing and NAT between self-service and provider net-
works or among self-service networks belonging to a project. The Networking service uses a layer-3
agent to manage routers via namespaces.

Security groups

Security groups provide a container for virtual firewall rules that control ingress (inbound to instances)
and egress (outbound from instances) network traffic at the port level. Security groups use a default deny
policy and only contain rules that allow specific traffic. Each port can reference one or more security
groups in an additive fashion. The firewall driver translates security group rules to a configuration for
the underlying packet filtering technology such as iptables.

Each project contains a default security group that by default allows all egress traffic and de-
nies all ingress traffic. You can change the rules in the default security group. Admin user can
also define own set of security group rules which will be added by default to each new default
and each new non default (custom) security group created for every project in the cloud. There is
security-group-default-rules API extension which allows to define such own set of the default
security group rules. If you launch an instance without specifying a security group, the default security
group automatically applies to it. Similarly, if you create a port without specifying a security group, the
default security group automatically applies to it.

Note

If you use the metadata service, removing the default egress rules denies access to TCP port 80 on
169.254.169.254, thus preventing instances from retrieving metadata.

Security group rules are stateful. Thus, allowing ingress TCP port 22 for secure shell automatically
creates rules that allow return egress traffic and ICMP error messages involving those TCP connections.

By default, all security groups contain a series of basic (sanity) and anti-spoofing rules that perform the
following actions:

* Allow egress traffic only if it uses the source MAC and IP addresses of the port for the instance,
source MAC and IP combination in allowed-address-pairs, or valid MAC address (port or
allowed-address-pairs) and associated EUI64 link-local IPv6 address.

* Allow egress DHCP discovery and request messages that use the source MAC address of the port
for the instance and the unspecified IPv4 address (0.0.0.0).

* Allow ingress DHCP and DHCPv6 responses from the DHCP server on the subnet so instances
can acquire IP addresses.

* Deny egress DHCP and DHCPv6 responses to prevent instances from acting as DHCP(v6) servers.

122 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

* Allow ingress/egress ICMPv6 MLD, neighbor solicitation, and neighbor discovery messages so
instances can discover neighbors and join multicast groups.

* Deny egress ICMPv6 router advertisements to prevent instances from acting as IPv6 routers and
forwarding IPv6 traffic for other instances.

* Allow egress ICMPv6 MLD reports (vl and v2) and neighbor solicitation messages that use the
source MAC address of a particular instance and the unspecified IPv6 address (::). Duplicate
address detection (DAD) relies on these messages.

* Allow egress non-IP traffic from the MAC address of the port for the instance and any additional
MAC addresses in allowed-address-pairs on the port for the instance.

Those rules mentioned above are added automatically by neutron and cannot be changed using default
security group rules API provided by the security-group-default-rules extensions.

Although non-IP traffic, security groups do not implicitly allow all ARP traffic. Separate ARP filtering
rules prevent instances from using ARP to intercept traffic for another instance. You cannot disable or
remove these rules.

You can disable security groups including basic and anti-spoofing rules by setting the port attribute
port_security_enabled to False.

Extensions

The OpenStack Networking service is extensible. Extensions serve two purposes: they allow the intro-
duction of new features in the API without requiring a version change and they allow the introduction
of vendor specific niche functionality. Applications can programmatically list available extensions by
performing a GET on the /extensions URI. Note that this is a versioned request; that is, an extension
available in one API version might not be available in another.

DHCP

The optional DHCP service manages IP addresses for instances on provider and self-service networks.
The Networking service implements the DHCP service using an agent that manages qdhcp namespaces
and the dnsmasq service.

Metadata

The optional metadata service provides an API for instances to obtain metadata such as SSH keys.

Service and component hierarchy

Server

* Provides API, manages database, etc.

8.1. Introduction 123

Neutron Documentation, Release 25.1.1.dev7

Plug-ins

* Manages agents

Agents

* Provides layer 2/3 connectivity to instances
* Handles physical-virtual network transition

¢ Handles metadata, etc.

Layer 2 (Ethernet and Switching)

* Linux Bridge
* OVS

Layer 3 (IP and Routing)

L3
* DHCP

Miscellaneous

¢ Metadata

Services
Routing services
VPNaa$S

The Virtual Private Network-as-a-Service (VPNaaS) is a neutron extension that introduces the VPN fea-
ture set.

LBaaS

The Load-Balancer-as-a-Service (LBaaS) API provisions and configures load balancers. The reference
implementation is based on the HAProxy software load balancer. See the Octavia project for more infor-
mation.

124 Chapter 8. OpenStack Networking Guide

https://docs.openstack.org/octavia/latest/

Neutron Documentation, Release 25.1.1.dev7

FWaa$S

The Firewall-as-a-Service (FWaaS) API allows to apply firewalls to OpenStack objects such as projects,
routers, and router ports.

8.1.7 Neutron API policies and supported roles

As part of the Consistent and Secure Default RBAC community goal' Neutron implemented sup-
port for various scopes and personas in all of the API policies which are defined in the Neutron code.

Roles supported by the default Neutron API policies

Roles supported by the default Neutron API policies are:
* PROJECT_READER - this role is intended to have read-only access to the project owned resources.

* PROJECT_MEMBER - this role inherits all of the privileges from the PROJECT_READER role
and also has access to create, update and delete project-owned resources.

* PROJECT_MANAGER - this role inherits all of the privileges from the PROJECT_MEMBER
role and additionally is allowed to do more operations on the project-owned resources.

* ADMIN - this role is the same as it was in the old default policies. A user with granted ADMIN
role is allowed to do almost every possible modification on all resources, even those which belong
to different projects.

» SERVICE - this is a special role designed to be used for service-to-service communication only,
for example, between Nova and Neutron. It does not inherit any privileges from any other roles
mentioned above.

Default API policies defined in Neutron

By default, all of the existing API policies can be used with project scoped tokens only. Tokens with
service scope are not supported by any of the policies defined in the Neutron code.

Default API policies

Default API policies defined in the Neutron code can be found in the Policy Reference document.

References
8.1.8 Firewall-as-a-Service (FWaaS)

The Firewall-as-a-Service (FWaaS) plug-in applies firewalls to OpenStack objects such as projects,
routers, and router ports.

The central concepts with OpenStack firewalls are the notions of a firewall policy and a firewall rule. A
policy is an ordered collection of rules. A rule specifies a collection of attributes (such as port ranges,

! https://governance.openstack.org/tc/goals/selected/consistent-and- secure-rbac.html

8.1. Introduction 125

https://governance.openstack.org/tc/goals/selected/consistent-and-secure-rbac.html

Neutron Documentation, Release 25.1.1.dev7

protocol, and IP addresses) that constitute match criteria and an action to take (allow or deny) on matched
traffic. A policy can be made public, so it can be shared across projects.

Firewalls are implemented in various ways, depending on the driver used. For example, an iptables driver
implements firewalls using iptable rules. An OpenVSwitch driver implements firewall rules using flow
entries in flow tables.

FWaaS v2
The newer FWaaS implementation, v2, provides a much more granular service. The notion of a firewall
has been replaced with firewall group to indicate that a firewall consists of two policies: an ingress policy

and an egress policy. A firewall group is applied not at the router level (all ports on a router) but at the
port level. Currently, router ports can be specified. For Ocata, VM ports can also be specified.

FWaas v1

FWaaS v1 was deprecated in the Newton cycle and removed entirely in the Stein cycle.

FWaa$S Feature Matrix

The following table shows FWaaS v2 features.

Feature Supported

Supports L3 firewalling for routers NO*
Supports L3 firewalling for router ports YES
Supports L2 firewalling (VM ports) YES
CLI support YES
Horizon support YES

* A firewall group can be applied to all ports on a given router in order to effect this.

For further information, see the FWaaS v2 configuration guide.

8.2 Configuration

8.2.1 Active-active L3 Gateway with Multihoming
Why

By default, Neutron routers are set up with a single external gateway port connected to a single layer 2
broadcast domain. To allow layer 3 connectivity to the outside world, a single static default route is added
per address family, pointing at the IP address provided by the network administrator.

In such a configuration high availability is achieved by ensuring the same layer 2 broadcast domain is
available to all gateway chassis, allowing the network equipment to be configured to provide the gateway
IP as a virtual IP address serviced by multiple routers.

Providing a single layer 2 broadcast domain to many hosts in a large data center network can be undesired,
this feature may provide a way to implement external gateway high availability at the layer 3 level.

126 Chapter 8. OpenStack Networking Guide

./fwaas-v2-scenario.html

Neutron Documentation, Release 25.1.1.dev7

Both approaches have their benefits and drawbacks, so make sure to familiarize yourself with the /imita-
tions and scale considerations before deciding whether this feature meets your requirements.

Prerequisites

The network equipment involved in routing to/from the cloud needs to support Bidirectional Forwarding
Detection (BFD) for static routes. For the purpose of this document we will be using FRR support for
BFD static route monitoring.

There are further requirements for the network equipment acting as border gateways, which may include
provision of direct links, configuration of IGP, redistribution of static routes and so on, however these
details are outside the scope of this document.

Supported drivers and versions

* OpenStack 2024.1 or newer.
* OVN 22.03 or newer.

Note

At the time of this writing only the ML2/OVN driver supports this feature.

Limitations

* There is currently no integration with dynamic routing protocols such as BGP for this feature,
next-hop liveness detection is provided by BFD.

* The feature can not be used together with Network address translation (NAT).

Warning

The feature can not be used together with NAT, routers and gateways must be created with the
--disable-snat argument, and instances must use site- or globally routable addresses.

Scale considerations

* Enabling BFD for default routes will establish one BFD session per router gateway port. Each
participant in a BFD Session typically transmit one message per second. The BFD Control packets
are subject to slow path processing and it is advised to ensure the control plane capacity in network
equipment aligns with the expected number of router gateway ports.

8.2. Configuration 127

https://datatracker.ietf.org/doc/html/rfc5880
https://datatracker.ietf.org/doc/html/rfc5880
https://github.com/FRRouting/frr/pull/12424
https://github.com/FRRouting/frr/pull/12424
https://docs.openstack.org/neutron/latest/admin/intro-nat.html

Neutron Documentation, Release 25.1.1.dev7

How
As laid out in the Active-active L3 Gateway with Multihoming specification, the components involved
in achieving high availability at the layer 3 level are:

* Adding multiple gateway ports to a router, providing interfaces in multiple layer 2 broadcast do-
mains and/or layer 3 subnets.

* Adding multiple default routes to a router, each with different output port and next-hop addresses,
effectively enabling Equal-cost multi-path routing (ECMP).

* Enabling BFD for next-hop liveness detection.
* Avoiding the use of NAT .

There are also a set of use cases with examples below.

Adding multiple gateway ports to a router

A router can be set up with multiple gateway ports at router creation time by passing multiple
--external-gateway arguments. You can also specify which IP address to use by passing the
--fixed-ip with both the subnet and ip-address keys populated. The subnet provided must be
attached to one of the networks provided to the --external-gateway arguments.

An existing router can be modified to have multiple gateway ports by using the openstack router add
gateway command with router and network as arguments and optionally specifying the IP address by
passing the --fixed-ip argument.

By default only one default route will be created.

Adding multiple default routes to a router

Whether to create multiple default routes is controlled by the enable-default-route-ecmp router
property. It can be set per router at router creation time by passing the --enable-default-route-ecmp
argument or by updating an existing router using the openstack router set command.

The default behavior for new routers can be controlled using the enable_default_route_ecmp configura-
tion option.

Note

Adding multiple default routes without also enabling BFD for next-hop liveness detection is not rec-
ommended, as it will lead to degraded performance in the event of failure.

128 Chapter 8. OpenStack Networking Guide

https://specs.openstack.org/openstack/neutron-specs/specs/2024.1/active-active-l3-gateway-with-multihoming.html
https://docs.openstack.org/neutron/latest/configuration/neutron.html#DEFAULT.enable_default_route_ecmp

Neutron Documentation, Release 25.1.1.dev7

Enabling BFD for next-hop liveness detection

Whether to enable monitoring of next-hop liveness through BFD for default routes is controlled by the
enable-default-route-bfd router property. It can be set per router at router creation time by passing
the --enable-default-route-bfd argument or by updating an existing router using the openstack
router set command.

The default behavior for new routers can be controlled using the enable_default_route_bfd configuration
option.

It is recommended to enable this when adding multiple default routes to a router as failure to do so will
lead to degraded performance in the event of failure.

Avoiding the use of NAT

OVN relies on connection tracking to keep required state for ongoing connections to implement NAT,
and this state is local to each gateway chassis.

When you set up high availability at the layer 3 level, traffic can take multiple paths, even individual
packets in a single flow.

Packets of an individual flow taking multiple paths does not work well with the local state of gateway
chassis. To give an example; if traffic from a flow exits chassis A and then return traffic enters on chassis
B, chassis B will not know to whom the packet belongs when NAT is enabled.

Use cases

Independent network paths for gateways without need for shared L2

8.2. Configuration 129

https://docs.openstack.org/neutron/latest/configuration/neutron.html#DEFAULT.enable_default_route_bfd

Neutron Documentation, Release 25.1.1.dev7

Example

First create the external networks:

openrc admin

openstack network create
--external
--provider-network-type flat
--provider-physical-network phyl
netl

openstack network create
--external
--provider-network-type flat
--provider-physical-network phy?2
net2

Then create subnets for the external networks:

openrc admin

openstack subnet create
--subnet-range .0.2.0/24
--no-dhcp
--network netl
--gateway .0.2.2
subnetl

openstack subnet create

--subnet-range .51.100.0/24
--no-dhcp

--network net2

--gateway .51.100.2

subnet?2

Then create the router with gateway ports in both external networks:

openrc admin

openstack router create
--disable-snat
--external-gateway netl

--fixed-ip subnetl,ip-address .0.2.100
--external-gateway net2
--fixed-ip subnet2,ip-address .51.100.100

--enable-default-route-bfd
--enable-default-route-ecmp
routerl

The end user can then create a subnet for use by a project:

130 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

openrc demo
openstack network create project-network

openstack subnet create
--subnet-range .0.113.0/24
--network project-network
project-subnet

And finally attach the project subnet to the router:

openrc demo

openstack router add subnet routerl project-subnet

The border router configuration might look like this:

(continues on next page)

8.2. Configuration 131

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

In a successful configuration the BFD status might look like this:

sudo ovn-nbctl find bfd

sudo ovn-nbctl find bfd

.0.2.2

.51.100.2

132

Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Load sharing

Expanding on the above example, load sharing can also be accomplished by adding multiple gateway

ports in each subnet.

Assuming there are enough chassis available, Neutron will make sure to schedule multiple Logical Router
Ports (LRP) for a single router so that different chassis serve as the primary gateway chassis.

openstack router add gateway
--fixed-ip subnetl,ip-address
routerl
netl

openstack router add gateway
--fixed-ip subnet2,ip-address
routerl
net2

.0.2.101

.51.100.101

(continues on next page)

8.2. Configuration

133

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

sudo ovn-nbctl find bfd .0.2.2

sudo ovn-nbctl find bfd .51.100.2

(continues on next page)

134 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

(continues on next page)

8.2. Configuration 135

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

(continues on next page)

136 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

8.2.2 Address Scopes

Address scopes build from subnet pools. While subnet pools provide a mechanism for controlling the al-
location of addresses to subnets, address scopes show where addresses can be routed between networks,
preventing the use of overlapping addresses in any two subnets. Because all addresses allocated in the
address scope do not overlap, neutron routers do not NAT between your projects network and your exter-
nal network. As long as the addresses within an address scope match, the Networking service performs
simple routing between networks.

Accessing address scopes

Anyone with access to the Networking service can create their own address scopes. However, network
administrators can create shared address scopes, allowing other projects to create networks within that
address scope.

Access to addresses in a scope are managed through subnet pools. Subnet pools can either be created in
an address scope, or updated to belong to an address scope.

With subnet pools, all addresses in use within the address scope are unique from the point of view of
the address scope owner. Therefore, add more than one subnet pool to an address scope if the pools
have different owners, allowing for delegation of parts of the address scope. Delegation prevents address
overlap across the whole scope. Otherwise, you receive an error if two pools have the same address
ranges.

Each router interface is associated with an address scope by looking at subnets connected to the network.
When a router connects to an external network with matching address scopes, network traffic routes
between without Network address translation (NAT). The router marks all traffic connections originating
from each interface with its corresponding address scope. If traffic leaves an interface in the wrong scope,
the router blocks the traffic.

Backwards compatibility

Networks created before the Mitaka release do not contain explicitly named address scopes, unless the
network contains subnets from a subnet pool that belongs to a created or updated address scope. The
Networking service preserves backwards compatibility with pre-Mitaka networks through special address
scope properties so that these networks can perform advanced routing:

1. Unlimited address overlap is allowed.
2. Neutron routers, by default, will NAT traffic from internal networks to external networks.

3. Pre-Mitaka address scopes are not visible through the API. You cannot list address scopes or show
details. Scopes exist implicitly as a catch-all for addresses that are not explicitly scoped.

8.2. Configuration 137

Neutron Documentation, Release 25.1.1.dev7

Create shared address scopes as an administrative user

This section shows how to set up shared address scopes to allow simple routing for project networks with
the same subnet pools.

Note

Irrelevant fields have been trimmed from the output of these commands for brevity.

1. Create IPv6 and IPv4 address scopes:

openstack address scope create --share --ip-version 6 address-scope-ip6

openstack address scope create --share --ip-version 4 address-scope-ip4

2. Create subnet pools specifying the name (or UUID) of the address scope that the subnet pool
belongs to. If you have existing subnet pools, use the openstack subnet pool set command
to put them in a new address scope:

openstack subnet pool create --address-scope address-scope-ip6
--share --pool-prefix :db8:a583::/48 --default-prefix-length
subnet-pool-ip6

(continues on next page)

138 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

openstack subnet pool create --address-scope address-scope-ip4
--share --pool-prefix .0.113.0/24 --default-prefix-length
subnet-pool-ip4

3. Make sure that subnets on an external network are created from the subnet pools created above:

-

openstack subnet show ipv6-public-subnet

(continues on next page)

8.2. Configuration 139

Neutron Documentation, Release 25.1.1.dev7

L

(continued from previous page)

-

openstack subnet show public-subnet

140

Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Routing with address scopes for non-privileged users

This section shows how non-privileged users can use address scopes to route straight to an external
network without NAT.

1. Create a couple of networks to host subnets:

openstack network create networkl

openstack network create network2

(continues on next page)

8.2. Configuration 141

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

. Create a subnet not associated with a subnet pool or an address scope:

-

openstack subnet create --network networkl --subnet-range
.51.100.0/26 subnet-ip4-1

openstack subnet create --network networkl --ipv6-ra-mode slaac
--ipv6-address-mode slaac --ip-version 6 --subnet-range
:db8:80d2:c4d3::/64 subnet-ip6-1

(continues on next page)

142

Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

3. Create a subnet using a subnet pool associated with an address scope from an external network:

openstack subnet create --subnet-pool subnet-pool-ip4
--network network2 subnet-ip4-2

(continues on next page)

8.2. Configuration 143

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

openstack subnet create --ip-version 6 --ipv6-ra-mode slaac
--ipv6-address-mode slaac --subnet-pool subnet-pool-ip6
--network network2 subnet-ip6-2

By creating subnets from scoped subnet pools, the network is associated with the address scope.

openstack network show network?2

(continues on next page)

144 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

L

4. Connect a router to each of the project subnets that have been created, for example, using a router
called routerl:

openstack router add subnet routerl subnet-ip4-1
openstack router add subnet routerl subnet-ip4-2
openstack router add subnet routerl subnet-ip6-1
openstack router add subnet routerl subnet-ip6-2

Checking connectivity

This example shows how to check the connectivity between networks with address scopes.

1. Launch two instances, instancel on networkl and instance2 on network?2. Associate a float-
ing IP address to both instances.

2. Adjust security groups to allow pings and SSH (both IPv4 and IPv6):

-

openstack server list

(continues on next page)

8.2. Configuration 145

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

Regardless of address scopes, the floating IPs can be pinged from the external network:

ping -c .0.113.3

ping -c .0.113.4

You can now ping instance?2 directly because instance2 shares the same address scope as the external
network:

Note

BGP routing can be used to automatically set up a static route for your instances.

ip route add .0.113.0/26 via .0.113.2
ping -c .0.113.3

ip route add :db8:a583::/64 via :db8::1
ping6 -c :db8:a583:0:£816:3eff:fed2:1eeb

You cannot ping instancel directly because the address scopes do not match:

ip route add .51.100.0/26 via .0.113.2

ping -c .51.100.3

ip route add :db8:80d2:c4d3::/64 via :db8::1
ping6 -c :db8:80d2:c4d3:£816:3eff:fe52:b69f

If the address scopes match between networks then pings and other traffic route directly through. If the
scopes do not match between networks, the router either drops the traffic or applies NAT to cross scope
boundaries.

146 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

8.2.3 Automatic allocation of network topologies
The auto-allocation feature introduced in Mitaka simplifies the procedure of setting up an external con-
nectivity for end-users, and is also known as Get Me A Network.

Previously, a user had to configure a range of networking resources to boot a server and get access to the
Internet. For example, the following steps are required:

¢ Create a network
e Create a subnet

e Create a router

Uplink the router on an external network
* Downlink the router on the previously created subnet

These steps need to be performed on each logical segment that a VM needs to be connected to, and may
require networking knowledge the user might not have.

This feature is designed to automate the basic networking provisioning for projects. The steps to provision
a basic network are run during instance boot, making the networking setup hands-free.

To make this possible, provide a default external network and default subnetpools (one for IPv4, or one
for IPv6, or one of each) so that the Networking service can choose what to do in lieu of input. Once
these are in place, users can boot their VMs without specifying any networking details. The Compute
service will then use this feature automatically to wire user VMs.

Enabling the deployment for auto-allocation

To use this feature, the neutron service must have the following extensions enabled:
e auto-allocated-topology
* subnet_allocation
* external-net
* router

Before the end-user can use the auto-allocation feature, the operator must create the resources that will be
used for the auto-allocated network topology creation. To perform this task, proceed with the following
steps:

1. Setup a default external network

Setting up an external network is described in OpenStack Networking Guide. Assuming the ex-
ternal network to be used for the auto-allocation feature is named public, make it the default
external network with the following command:

[openstack network public --default

Note

The flag --default (and --no-default flag) is only effective with external networks and
has no effects on regular (or internal) networks.

8.2. Configuration 147

./archives/adv-features.html

Neutron Documentation, Release 25.1.1.dev7

2. Create default subnetpools

The auto-allocation feature requires at least one default subnetpool. One for IPv4, or one for IPv6,
or one of each.

openstack subnet pool create --share --default
--pool-prefix .0.2.0/24 --default-prefix-length
shared-default

openstack subnet pool create --share --default
--pool-prefix :db8:8000::/48 --default-prefix-length
default-v6

(continues on next page)

148 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

Get Me A Network

In a deployment where the operator has set up the resources as described above, they can get or create
their auto-allocated network topology as follows:

openstack network auto allocated topology create --or-show

Note

When the --or-show option is used the command returns the topology information if it already
exists, or creates it if it does not.

Operators (and users with admin role) can get or create the auto-allocated topology for a project by
specifying the project ID:

openstack network auto allocated topology create --project
cfd1889ac7d64ad891d4£f20aef9£f8d7c --or-show

The ID returned by this command is a network which can be used for booting a VM.

openstack server create --flavor ml.small --image
cirros-0.3.5-x86_64-uec --nic
net-id 8b835bfb-cae2-4acc-b53f-c16bb5f9a7d® vml

The auto-allocated topology for a user never changes. In practice, when a user boots a server omitting
the --nic option, and there is more than one network available, the Compute service will invoke the API
behind auto allocated topology create, fetch the network UUID, and pass it on during the boot
process.

8.2. Configuration 149

Neutron Documentation, Release 25.1.1.dev7

Alternately one can delete their auto-allocated network topology as follows:

[openstack network auto allocated topology delete

Validating the requirements for auto-allocation

To validate that the required resources are correctly set up for auto-allocation, without actually provision-
ing anything, use the --check-resources option:

openstack network auto allocated topology create --check-resources

openstack network public --default

openstack network auto allocated topology create --check-resources

openstack subnet pool shared-default --default

openstack network auto allocated topology create --check-resources

J

The validation option behaves identically for all users. However, it is considered primarily an admin or
service utility since it is the operator who must set up the requirements.

Project resources created by auto-allocation

The auto-allocation feature creates one network topology in every project where it is used. The auto-
allocated network topology for a project contains the following resources:

Resource Name

network auto_allocated_network
subnet (IPv4) auto_allocated_subnet_v4
subnet (IPv6) auto_allocated_subnet_v6
router auto_allocated_router

150 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Compatibility notes

Nova uses the auto allocated topology feature with API micro version 2.37 or later. This is be-
cause, unlike the neutron feature which was implemented in the Mitaka release, the integration for nova
was completed during the Newton release cycle. Note that the CLI option --nic can be omitted regard-
less of the microversion used as long as there is no more than one network available to the project, in
which case nova fails with a 400 error because it does not know which network to use. Furthermore,
nova does not start using the feature, regardless of whether or not a user requests micro version 2.37 or
later, unless all of the nova-compute services are running Newton-level code.

8.2.4 Availability Zones

An availability zone groups network nodes that run services like DHCP, L3, FW, and others. It is defined
as an agents attribute on the network node. This allows users to associate an availability zone with their
resources so that the resources get high availability.

Use case

An availability zone is used to make network resources highly available. The operators group the nodes
that are attached to different power sources under separate availability zones and configure scheduling
for resources with high availability so that they are scheduled on different availability zones.

Required extensions

The core plug-in must support the availability_zone extension. The core plug-in also must support
the network_availability_zone extension to schedule a network according to availability zones.
The M12P1ugin supports it. The router service plug-in must support the router_availability_zone
extension to schedule a router according to the availability zones. The L3RouterPlugin supports it.

openstack extension list --network -c Alias -c Name

8.2. Configuration 151

Neutron Documentation, Release 25.1.1.dev7

Availability zone of agents

The availability_zone attribute can be defined in dhcp-agent and 13-agent. To define an avail-
ability zone for each agent, set the value into [AGENT] section of /etc/neutron/dhcp_agent.ini or
/etc/neutron/13_agent.ini:

To confirm the agents availability zone:

openstack network agent show 116cc128-4398-49af-ad4ed-3e95494cd5fc

openstack network agent show 9632309a-2aa4-4304-8603-c4de®2c4a55f

(continues on next page)

152 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

Availability zone related attributes

The following attributes are added into network and router:

Attribute name Ac- Re- Input Description
cess quired type
availabil- RW(PO! No list of availability zone candidates for the resource
ity_zone_hints only) string
availability_zones RO N/A list of availability zones for the resource
string

Use availability_zone_hints to specify the zone in which the resource is hosted:

openstack network create --availability-zone-hint zone-1
--availability-zone-hint zone-2 netl

(continues on next page)

8.2. Configuration

153

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

openstack router create --ha --availability-zone-hint zone-1
--availability-zone-hint zone-2 routerl

Auvailability zone is selected from default_availability_zonesin /etc/neutron/neutron.conf
if a resource is created without availability_zone_hints

[

To confirm the availability zone defined by the system:

openstack availability zone list

Look at the availability_zones attribute of each resource to confirm in which zone the resource is
hosted:

154 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

openstack network show netl

openstack router show routerl

(continues on next page)

8.2. Configuration 155

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

Note

The availability_zones attribute does not have a value until the resource is scheduled. Once
the Networking service schedules the resource to zones according to availability_zone_hints,
availability_zones shows in which zone the resource is hosted practically. The
availability_zones may not match availability_zone_hints. For example, even if
you specify a zone with availability_zone_hints, all agents of the zone may be dead before the
resource is scheduled. In general, they should match, unless there are failures or there is no capacity
left in the zone requested.

Availability zone aware scheduler

Network scheduler

Set AZAwareWeightScheduler to network_scheduler_driver in /etc/neutron/neutron.conf
so that the Networking service schedules a network according to the availability zone:

The Networking service schedules a network to one of the agents within the selected zone as with
WeightScheduler. In this case, scheduler refers to dhcp_load_type as well.

Router scheduler

Set AZLeastRoutersScheduler to router_scheduler_driver in file /etc/neutron/neutron.
conf so that the Networking service schedules a router according to the availability zone:

The Networking service schedules a router to one of the agents within the selected zone as with
LeastRouterScheduler.

156 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Achieving high availability with availability zone

Although, the Networking service provides high availability for routers and high availability and fault
tolerance for networks DHCP services, availability zones provide an extra layer of protection by seg-
menting a Networking service deployment in isolated failure domains. By deploying HA nodes across
different availability zones, it is guaranteed that network services remain available in face of zone-wide
failures that affect the deployment.

This section explains how to get high availability with the availability zone for L3 and DHCP. You should
naturally set above configuration options for the availability zone.

L3 high availability

Set the following configuration options in file /etc/neutron/neutron. conf so that you get L3 high
availability.

HA routers are created on availability zones you selected when creating the router.

DHCP high availability

Set the following configuration options in file /etc/neutron/neutron.conf so that you get DHCP
high availability.

[

DHCP services are created on availability zones you selected when creating the network.

8.2.5 BGP Dynamic Routing

BGP dynamic routing enables advertisement of self-service (private) network prefixes to physical net-
work devices that support BGP such as routers, thus removing the conventional dependency on static
routes. The feature relies on address scopes and requires knowledge of their operation for proper deploy-
ment.

BGP dynamic routing consists of a service plug-in and an agent. The service plug-in implements the
Networking service extension and the agent manages BGP peering sessions. A cloud administrator cre-
ates and configures a BGP speaker using the CLI or API and manually schedules it to one or more hosts
running the agent. Agents can reside on hosts with or without other Networking service agents. Prefix
advertisement depends on the binding of external networks to a BGP speaker and the address scope of
external and internal IP address ranges or subnets.

8.2. Configuration 157

Neutron Documentation, Release 25.1.1.dev7

BGP Dynamic Routing

Overview
BGP Agent L3 Agent
Y
Peering Self-service
Rou{er 1 @
H
Self-service
H
Self-service
Router 3 @
Provider _J
Router
Peering T

Router X

Provider
Networks

Note

Although self-service networks generally use private IP address ranges (RFC1918) for IPv4 subnets,
BGP dynamic routing can advertise any IPv4 address ranges.

Example configuration

The example configuration involves the following components:
* One BGP agent.

* One address scope containing IP address range 203.0.113.0/24 for provider networks, and IP ad-
dress ranges 192.0.2.0/25 and 192.0.2.128/25 for self-service networks.

* One provider network using IP address range 203.0.113.0/24.
* Three self-service networks.
— Self-service networks 1 and 2 use IP address ranges inside of the address scope.

— Self-service network 3 uses a unique IP address range 198.51.100.0/24 to demonstrate that
the BGP speaker does not advertise prefixes outside of address scopes.

* Three routers. Each router connects one self-service network to the provider network.
— Router 1 contains IP addresses 203.0.113.11 and 192.0.2.1
— Router 2 contains IP addresses 203.0.113.12 and 192.0.2.129

158 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

— Router 3 contains IP addresses 203.0.113.13 and 198.51.100.1

* One preexisting peering network 10.0.0.0/24 on the host running the neutron BGP dynamic routing
agent to facilitate BGP communication with its peer. 10.0.0.1 is the address for the host and 10.0.0.2
the address for the peer.

Note

The example configuration assumes sufficient knowledge about the Networking service, routing, and
BGP. For basic deployment of the Networking service, consult one of the Deployment examples. For
more information on BGP, see RFC 4271.

Controller node

* Inthe neutron. conf file, enable the conventional layer-3 and BGP dynamic routing service plug-
ins:

Agent nodes

 In the bgp_dragent.ini file:

— Configure the driver.

Note

The agent currently only supports the os-ken BGP driver.

— Configure the router ID.

Replace ROUTER_ID with a suitable unique 32-bit number, typically an IPv4 address on the
host running the agent. For example, 10.0.0.1.

8.2. Configuration 159

https://tools.ietf.org/html/rfc4271

Neutron Documentation, Release 25.1.1.dev7

Verify service operation

1. Source the administrative project credentials.

2. Verify presence and operation of each BGP dynamic routing agent.

openstack network agent list --agent-type bgp

Create the address scope and subnet pools

1. Create an address scope. The provider (external) and self-service networks must belong to the
same address scope for the agent to advertise those self-service network prefixes.

openstack address scope create --share --ip-version 4 bgp

2. Create subnet pools. The provider and self-service networks use different pools.

* Create the provider network pool.

openstack subnet pool create --pool-prefix .0.113.0/24
--address-scope bgp provider

(continues on next page)

160 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

* Create the self-service network pool.

openstack subnet pool create --pool-prefix .0.2.0/25
--pool-prefix .0.2.128/25 --address-scope bgp
--share selfservice

8.2. Configuration 161

Neutron Documentation, Release 25.1.1.dev7

Create the provider and self-service networks

1. Create the provider network.

—network
provider --provider-network-type flat

openstack network create provider --external --provider-physical-

2. Create a subnet on the provider network using an IP address range from the provider subnet pool.

openstack subnet create --subnet-pool provider

--prefix-length --gateway .0.113.1 --network provider
--allocation-pool .0.113.11,end .0.113.254 provider

(continues on next page)

162 Chapter 8. OpenStack Networking Guide

N

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

Note

The IP address allocation pool starting at . 11 improves clarity of the diagrams. You can safely
omit it.

3. Create the self-service networks.

openstack network create selfservicel

(continues on next page)

8.2. Configuration 163

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

openstack network create selfservice2

openstack network create selfservice3

(continues on next page)

164 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

4. Create a subnet on the first two self-service networks using an IP address range from the self-service
subnet pool.

-

openstack subnet create --network selfservicel --subnet-pool.
—selfservice
--prefix-length selfservicel

openstack subnet create --network selfservice2 --subnet-pool.
—selfservice
--prefix-length selfservice2

(continues on next page)

8.2. Configuration 165

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

5. Create a subnet on the last self-service network using an IP address range outside of the address
scope

openstack subnet create --network selfservice3 --prefix .51.100.0/24..
—subnet3

(continues on next page)

166 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

Create and configure the routers

1. Create the routers.

openstack router create routerl

openstack router create router2

(continues on next page)

8.2. Configuration 167

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

openstack router create routers3

L

2. For each router, add one self-service subnet as an interface on the router.

openstack router add subnet routerl selfservicel
openstack router add subnet router2 selfservice2

openstack router add subnet router3 selfservice3

3. Add the provider network as a gateway on each router.

openstack router --external-gateway provider routerl
openstack router --external-gateway provider router2
openstack router --external-gateway provider router3

168 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Create and configure the BGP speaker

The BGP speaker advertises the next-hop IP address for eligible self-service networks and floating IP
addresses for instances using those networks.

1. Create the BGP speaker.

(

openstack bgp speaker create --ip-version
--local-as LOCAL_AS bgpspeaker

Replace LOCAL_AS with an appropriate local autonomous system number. The example configu-
ration uses AS 1234.

2. A BGP speaker requires association with a provider network to determine eligible prefixes. The
association builds a list of all virtual routers with gateways on provider and self-service networks
in the same address scope so the BGP speaker can advertise self-service network prefixes with the
corresponding router as the next-hop IP address. Associate the BGP speaker with the provider
network.

openstack bgp speaker add network bgpspeaker provider

3. Verity association of the provider network with the BGP speaker.

8.2. Configuration 169

Neutron Documentation, Release 25.1.1.dev7

openstack bgp speaker show bgpspeaker

4. Verify the prefixes and next-hop IP addresses that the BGP speaker advertises.

L

openstack bgp speaker list advertised routes bgpspeaker

5. Create a BGP peer.

openstack bgp peer create --peer-ip .0.0.2
--remote-as REMOTE_AS bgppeer

(continues on next page)

170

Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

Replace REMOTE_AS with an appropriate remote autonomous system number. The example con-
figuration uses AS 4321 which triggers EBGP peering.

Note

The host containing the BGP agent must have layer-3 connectivity to the provider router.

6. Add a BGP peer to the BGP speaker.

openstack bgp speaker add peer bgpspeaker bgppeer

7. Verify addition of the BGP peer to the BGP speaker.

openstack bgp speaker show bgpspeaker

Note

After creating a peering session, you cannot change the local or remote autonomous system

8.2. Configuration 171

Neutron Documentation, Release 25.1.1.dev7

numbers.

Schedule the BGP speaker to an agent

1. Unlike most agents, BGP speakers require manual scheduling to an agent. BGP speakers only form
peering sessions and begin prefix advertisement after scheduling to an agent. Schedule the BGP
speaker to agent 37729181-2224-48d8-89%ef-16eca8e2f77e.

openstack bgp dragent add speaker -2224-48d8-89ef-16eca8e2f77e.,
—Dbgpspeaker

2. Verify scheduling of the BGP speaker to the agent.

-

openstack bgp dragent list --bgp-speaker bgpspeaker

Prefix advertisement
BGP dynamic routing advertises prefixes for self-service networks and host routes for floating IP ad-
dresses.
Advertisement of a self-service network requires satisfying the following conditions:
* The external and self-service network reside in the same address scope.
* The router contains an interface on the self-service subnet and a gateway on the external network.
* The BGP speaker associates with the external network that provides a gateway on the router.

* The BGP speaker has the advertise_tenant_networks attribute set to True.

172 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

BGP Dynamic Routing

Example with self-service networks

-
BGP Agent L3 Agent

Peering Session
AS 1234

Self-service

10.0.0.1 Network 1

203.0.113.1
192.0.2.1

Router 2
203.0.113.2
192.0.2.129

Prefix Advertisements
192.0.2.0/25 next-hop 203.0.113.1
192.0.2.128/25 next-hop 203.0.113.2 \

Self-service
Network 2

00

Router 3
203.0.113.3
198.51.100.1

Self-service
Network 3

)

Provider Router

Peering Session
AS 4321

10.0.0.2
External

Networks

Peering network Provider network
. External networks 10.0.0.0/24 203.0.113.0/24
Self-service network 1 Self-service network 2 Self-service network 3
192.0.2.0/25 192.0.2.128/25 198.51.100.0/24

P _: Address scope

[I —

Advertisement of a floating IP address requires satisfying the following conditions:

* The router with the floating IP address binding contains a gateway on an external network with the
BGP speaker association.

* The BGP speaker has the advertise_floating_ip_host_routes attribute set to True.

8.2. Configuration 173

Neutron Documentation, Release 25.1.1.dev7

BGP Dynamic Routing

Example with floating IP addresses

BGP Agent
Peering Session [N UGG I »
S 1234 Router 1 Self-service I Instance 1
0. 0113, Network 1 203.0.113.101

f
[}
T
1 192.0.2.1
1
I
1

Prefix Advertisements Router 2
192.0.2.0/25 next-hop 203.0.113.1 203.0.113.2
192.0.2.128/25 nexi-hop 203.0.113.2 '\ 192.0.2.129

203.0.113.101/32 next-hop 203.0.113.1

203.0.113.102/32 next-hop 203.0.113.2 znng';‘ﬁrsaa T Inatance 3
198.51.100.1 Network 3 203.0.113.103
\, J
Provider Router
Peering Session
AS 431
10.0.0.2
Peering network Provider network
. External networks 10.0.0.0/24 203.0.113.0/24
Self-service network 1 Self-service network 2 Self-service network 3
192.0.2.0/25 192.0.2.128/25 198.51.100.0/24

N
I | Address scope

b -

Operation with Distributed Virtual Routers (DVR)

For both floating IP and IPv4 fixed IP addresses, the BGP speaker advertises the floating IP agent gateway
on the corresponding compute node as the next-hop IP address. When using IPv6 fixed IP addresses, the
BGP speaker advertises the DVR SNAT node as the next-hop IP address.

For example, consider the following components:

1. A provider network using IP address range 203.0.113.0/24, and supporting floating IP addresses
203.0.113.101, 203.0.113.102, and 203.0.113.103.

A self-service network using IP address range 198.51.100.0/24.
Instances with fixed IPs 198.51.100.11, 198.51.100.12, and 198.51.100.13
The SNAT gateway resides on 203.0.113.11.

A

The floating IP agent gateways (one per compute node) reside on 203.0.113.12, 203.0.113.13, and
203.0.113.14.

o

Three instances, one per compute node, each with a floating IP address.

7. advertise_tenant_networks is set to False on the BGP speaker

174 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

openstack bgp speaker list advertised routes bgpspeaker

When floating IPs are disassociated and advertise_tenant_networks is set to True, the following

routes will be advertised:

openstack bgp speaker list advertised routes bgpspeaker

J

You can also identify floating IP agent gateways in your environment to assist with verifying operation

of the BGP speaker.

openstack port list --device-owner network:floatingip_agent_gateway

8.2. Configuration

175

Neutron Documentation, Release 25.1.1.dev7

IPv6

BGP dynamic routing supports peering via I[Pv6 and advertising IPv6 prefixes.
* To enable peering via IPv6, create a BGP peer and use an IPv6 address for peer_ip.

* To enable advertising IPv6 prefixes, create an address scope with ip_version=6 and a BGP
speaker with ip_version=6.

Note

DVR lacks support for routing directly to a fixed IPv6 address via the floating IP agent gateway port
and thus prevents the BGP speaker from advertising /128 host routes.

High availability

BGP dynamic routing supports scheduling a BGP speaker to multiple agents which effectively multiplies
prefix advertisements to the same peer. If an agent fails, the peer continues to receive advertisements
from one or more operational agents.

1. Show available dynamic routing agents.

openstack network agent list --agent-type bgp

2. Schedule BGP speaker to multiple agents.

openstack bgp dragent add speaker -2224-48d8-89ef-16eca8e2f77e.,
—bgpspeaker

openstack bgp dragent add speaker 1a2d33bb-9321-30a2-76ab-22eff3d2f56a..
—bgpspeaker

openstack bgp dragent list --bgp-speaker bgpspeaker

(continues on next page)

176 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

8.2.6 BGP Floating IPs over L2 Segmented Networks

The general principle is that L2 connectivity will be bound to a single rack. Everything outside the
switches of the rack will be routed using BGP. To perform the BGP announcement, neutron-dynamic-
routing is leveraged.

To achieve this, on each rack, servers are setup with a different management network using a vlan ID per
rack (light green and orange network below). Note that a unique vlan ID per rack isnt mandatory, its also
possible to use the same vlan ID on all racks. The point here is only to isolate L2 segments (typically,
routing between the switch of each racks will be done over BGP, without L2 connectivity).

INTERNET

BACKBONE
SWITCH 2

BACKBONE
SWITCH 1

10201 10201
VLAN 13 VLAN 13

RACK2

—————— Inter-switch full BGP network

Handled by (and cont

L2 Provider ‘e next HOP for floating IPs RACK 1

) segmented network: the next HOP for floating IPs RACK 2

s 3 Fioating IP, announced over the L2 Provider segmented network

On the OpenStack side, a provider network must be setup, which is using a different subnet range and
vlan ID for each rack. This includes:

* an address scope
* some network segments for that network, which are attached to a named physical network
* a subnet pool using that address scope

* one provider network subnet per segment (each subnet+segment pair matches one rack physical
network name)

A segment is attached to a specific vlan and physical network name. In the above figure, the provider
network is represented by 2 subnets: the dark green and the red ones. The dark green subnet is on
one network segment, and the red one on another. Both subnet are of the subnet service type net-
work:floatingip_agent_gateway, so that they cannot be used by virtual machines directly.

On top of all of this, a floating IP subnet without a segment is added, which spans in all of the racks. This
subnet must have the below service types:

8.2. Configuration 177

Neutron Documentation, Release 25.1.1.dev7

* network:routed
* network:floatingip
* network:router_gateway

Since the network:routed subnet isnt bound to a segment, it can be used on all racks. As the service types
network:floatingip and network:router_gateway are used for the provider network, the subnet can only be
used for floating IPs and router gateways, meaning that the subnet using segments will be used as floating
IP gateways (ie: the next HOP to reach these floating IP / router external gateways).

Configuring the Neutron API side

On the controller side (ie: API and RPC server), only the Neutron Dynamic Routing Python library must
be installed (for example, in the Debian case, that would be the neutron-dynamic-routing-common and
python3-neutron-dynamic-routing packages). On top of that, segments and bgp must be added to the list
of plugins in service_plugins. For example in neutron.conf:

The BGP agent

The neutron-bgp-agent must be installed. Best is to install it twice per rack, on any machine (it doesnt
mater much where). Then each of these BGP agents will establish a session with one switch, and advertise
all of the BGP configuration.

Setting-up BGP peering with the switches

A peer that represents the network equipment must be created. Then a matching BGP speaker needs to
be created. Then, the BGP speaker must be associated to a dynamic-routing-agent (in our example, the
dynamic-routing agents run on compute 1 and 4). Finally, the peer is added to the BGP speaker, so the
speaker initiates a BGP session to the network equipment.

openstack bgp peer create
--peer-ip .1.0.253
--remote-as
rackl-switch-1

openstack bgp speaker create
--local-as --ip-version 4 mycloud-compute-1.example.com
--format value -c id

openstack network agent list
--host mycloud-compute-1.example.com --agent-type bgp
--format value -c ID

(continues on next page)

178 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

openstack bgp dragent add speaker
BGP_AGENT_ID_COMPUTE_1

openstack bgp speaker add peer
compute-1.example.com rackl-switch-1

openstack bgp speaker
--no-advertise-tenant-networks mycloud-compute-1.example.com

It is possible to repeat this operation for a 2nd machine on the same rack, if the deployment is using
bonding (and then, LACP between both switches), as per the figure above. It also can be done on each
rack. One way to deploy is to select two computers in each rack (for example, one compute node and one
network node), and install the neutron-dynamic-routing-agent on each of them, so they can talk to both
switches of the rack. All of this depends on what the configuration is on the switch side. It may be that
you only need to talk to two ToR racks in the whole deployment. The thing you must know is that you
can deploy as many dynamic-routing agent as needed, and that one agent can talk to a single device.

Setting-up physical network names

Before setting-up the provider network, the physical network name must be set in each
host, according to the rack names. On the compute or network nodes, this is done in
/etc/neutron/plugins/ml2/openvswitch_agent.ini using the bridge_mappings directive:

All of the physical networks created this way must be added in the configuration of the neutron-server as
well (ie: this is used by both neutron-api and neutron-rpc-server). For example, with 3 racks, heres how
/etc/neutron/plugins/ml2/ml2_conf.ini should look like:

Once this is done, the provider network can be created, using physnet-rack1 as physical network.

8.2. Configuration 179

Neutron Documentation, Release 25.1.1.dev7

Setting-up the provider network

Everything that is in the provider networks scope will be advertised through BGP. Here is how to create
the network scope:

openstack address scope create --share --ip-version 4 provider-addr-scope

Then, the network can be ceated using the physical network name set above:

openstack network create --external --share
--provider-physical-network physnet-rackl
--provider-network-type vlan
--provider-segment
provider-network

This automatically creates a network AND a segment. Though by default, this segment has no name,
which isnt convenient. This name can be changed though:

openstack network show provider-network
--format value -c id

openstack network segment list
--format csv -c ID -c Network
a -H _d’

openstack network segment --name segment-rackl

Setting-up the 2nd segment

The 2nd segment, which will be attached to our provider network, is created this way:

openstack network segment create
--physical-network physnet-rack2
--network-type vlan
--segment
--network provider-network
segment-rack2

180 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Setting-up the provider subnets for the BGP next HOP routing

These subnets will be in use in different racks, depending on what physical network is in use in the
machines. In order to use the address scope, subnet pools must be used. Here is how to create the subnet
pool with the two ranges to use later when creating the subnets:

openstack subnet pool create
--pool-prefix .1.0.0/24
--pool-prefix .2.0.0/24
--address-scope provider-addr-scope
--share
provider-subnet-pool

Then, this is how to create the two subnets. In this example, we are keeping the addresses in .1 for the
gateway, .2 for the DHCP server, and .253 +.254, as these addresses will be used by the switches for the
BGP announcements:

openstack subnet create
--service-type
--subnet-pool provider-subnet-pool
--subnet-range .1.0.0/24
--allocation-pool .1.0.3,end .1.0.252
--gateway .1.0.1
--network provider-network
--network-segment segment-rackl
provider-subnet-rackl

openstack subnet create
--service-type
--subnet-pool provider-subnet-pool
--subnet-range .2.0.0/24
--allocation-pool .2.0.3,end .2.0.252
--gateway .2.0.1
--network provider-network
--network-segment segment-rack2
provider-subnet-rack?2

Note the service types. network:floatingip_agent_gateway makes sure that these subnets will be in use
only as gateways (ie: the next BGP hop). The above can be repeated for each new rack.

8.2. Configuration 181

Neutron Documentation, Release 25.1.1.dev7

Adding a subnet for VM floating IPs and router gateways

This is to be repeated each time a new subnet must be created for floating IPs and router gateways. First,
the range is added in the subnet pool, then the subnet itself is created:

openstack subnet pool
--pool-prefix .0.113.0/24
provider-subnet-pool

openstack subnet create vm-fip
--service-type
--service-type
--service-type
--subnet-pool provider-subnet-pool
--subnet-range .0.113.0/24
--network provider-network

The service-type network:routed ensures were using BGP through the provider network to advertize the
IPs. network:floatingip and network:router_gateway limits the use of these IPs to floating IPs and router
gateways.

Setting-up BGP advertizing

The provider network needs to be added to each of the BGP speakers. This means each time a new rack
is setup, the provider network must be added to the 2 BGP speakers of that rack.

openstack bgp speaker add network
mycloud-compute-1.example.com provider-network

openstack bgp speaker add network
mycloud-compute-4.example.com provider-network

In this example, weve selected two compute nodes that are also running an instance of the neutron-
dynamic-routing-agent daemon.

Per project operation

This can be done by each customer. A subnet pool isnt mandatory, but it is nice to have. Typically, the
customer network will not be advertized through BGP (but this can be done if needed).

openstack network create tenant-network

openstack subnet pool create
--pool-prefix .168.130.0/23
--share
tenant-subnet-pool

(continues on next page)

182 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

openstack subnet create
--network tenant-network
--subnet-pool tenant-subnet-pool
--prefix-length
tenant-subnet-1

openstack router create tenant-router

openstack router add subnet
tenant-router tenant-subnet-1

openstack router
--external-gateway provider-network tenant-router

openstack server create --image debian-10.5.0-openstack-amd64.qgcow?2
--flavor cpu2-ram6-disk20
--nic net-id tenant-network
--key-name yubikey-zigo
test-server-1

openstack floating ip create provider-network

(continues on next page)

8.2. Configuration 183

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

openstack server add floating ip test-server-1 .0.113.17

Cumulus switch configuration

Because of the way Neutron works, for each new port associated with an IP address, a GARP is issued, to
inform the switch about the new MAC / IP association. Unfortunately, this confuses the switches where
they may think they should use local ARP table to route the packet, rather than giving it to the next HOP
to route. The definitive solution would be to patch Neutron to make it stop sending GARP for any port on
a subnet with the network:routed service type. Such patch would be hard to write, though lucky, theres
a fix that works (at least with Cumulus switches). Heres how.

In /etc/network/switchd.conf we change this:

and then simply restart switchd:

[

J

This reboots the switch ASIC of the switch, so it may be a dangerous thing to do with no switch redun-

dancy (so be careful when doing it). The completely safe procedure, if having 2 switches per rack, looks
like this:

save clagd priority
make sure that this switch is not the primary clag switch. otherwise the

secondary switch will also shutdown all interfaces when loosing contact
with the primary switch.

tell neighbors to not route through this router

184 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Verification

If everything goes well, the floating IPs are advertized over BGP through the provider network. Here is
an example with 4 VMs deployed on 2 racks. Neutron is here picking-up IPs on the segmented network
as Nexthop.

openstack bgp speaker list advertised routes
mycloud-compute-4.example.com

8.2.7 Agents and Services

A usual neutron setup consists of multiple services and agents running on one or multiple nodes (though
some setups may not need any agents). Each of these services provide some of the networking or API
services. Among those of special interest are:

1. The neutron-server that provides API endpoints and serves as a single point of access to the
database. It usually runs on the controller nodes.

2. Layer2 agent that can utilize Open vSwitch, Linux Bridge or other vendor-specific technology to
provide network segmentation and isolation for project networks. The L2 agent should run on
every node where it is deemed responsible for wiring and securing virtual interfaces (usually both
compute and network nodes).

3. Layer3 agent that runs on network node and provides east-west and north-south routing plus some
advanced services such as FWaaS or VPNaaS.

Configuration options

The neutron configuration options are segregated between neutron-server and agents. Both services and
agents may load the main neutron. conf since this file should contain the oslo.messaging configuration
for internal neutron RPCs and may contain host specific configuration, such as file paths. The neutron.
conf contains the database, keystone, nova credentials, and endpoints strictly for neutron-server to use.

In addition, neutron-server may load a plugin-specific configuration file, yet the agents should not. As
the plugin configuration is primarily site wide options and the plugin provides the persistence layer for
neutron, agents should be instructed to act upon these values through RPC.

Each individual agent may have its own configuration file. This file should be loaded after the main
neutron. conf file, so the agent configuration takes precedence. The agent-specific configuration may
contain configurations which vary between hosts in a neutron deployment such as the local_ip for an
L2 agent. If any agent requires access to additional external services beyond the neutron RPC, those end-
points should be defined in the agent-specific configuration file (for example, nova metadata for metadata
agent).

8.2. Configuration 185

Neutron Documentation, Release 25.1.1.dev7

Agents admin state specific config options

When creating a new agent the admin_state_up field will be set to the value of enable_new_agents
config option, the default value of this config option is true:

It is possible to set the admin_state_up value of an agent to False via the API, or CLI:

[openstack network agent agent-uuid --disable J

The effect of this varies by agent type:

L2 agents

The admin_state_up field of the agent in the Neutron database is set to False, but the agent is still
capable of binding ports. This is true for openvswitch-agent, linuxbridge-agent, and sriov-agent.

Note

In case of OVN based deployment Neutron doesnt keep track of OVN controllers in the agents db
table, so setting the admin_state_up is not allowed as Neutron has no control over OVN entities.
The possiblity to delete an OVN agent via Neutron REST API, is to clean up bad chassis information.

Metadata agent

Setting admin_state_up to False has no effect to the Metadata agent.

DHCP agent

DHCP agent scheduler will schedule networks to agents whose admin_state_up is True.

L3 agent

L3 scheduler will schedule routers to L3 agents whose admin_state_up field is True.

External processes run by agents

Some neutron agents, like DHCP, Metadata or L3, often run external processes to provide some of their
functionalities. It may be keepalived, dnsmasq, haproxy or some other process. Neutron agents are re-
sponsible for spawning and killing such processes when necessary. By default, to kill such processes,
agents use a simple kill command, but in some cases, like for example when those additional ser-
vices are running inside containers, it may be not a good solution. To address this problem, operators
should use the AGENT config group option kill_scripts_path to configure a path to where kill
scripts for such processes live. By default, it is set to /etc/neutron/kill_scripts/. If option

186 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

kill_scripts_pathischanged in the config to the different location, exec_dirsin /etc/rootwrap.
conf should be changed accordingly. If kill_scripts_pathis set, every time neutron has to kill a pro-
cess, for example dnsmasq, it will look in this directory for a file with the name <process_name>-kill.
So for dnsmasq process it will look for a dnsmasq-kill script. If such a file exists there, it will be called
instead of using the kill command.

Kill scripts are called with two parameters:

where: <sig> is the signal, same as with the kill command, for example 9 or SIGKILL; and <pid> is
pid of the process to kill.

This external script should then handle killing of the given process as neutron will not call the kill
command for it anymore.

8.2.8 DHCP High-availability

This section describes how to use the agent management (alias agent) and scheduler (alias
agent_scheduler) extensions for DHCP agents scalability and HA.

Note

Use the openstack extension list command to check if these extensions are enabled. Check
agent and agent_scheduler are included in the output.
openstack extension list --network -c Name -c Alias

8.2. Configuration 187

Neutron Documentation, Release 25.1.1.dev7

188 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Demo setup
|
. Neutron Server L2 Agent
Nova Services Nova Compute
Keystone Data
DHCP Agent Network
Controller Node Management HostA
[Network |
HostB
Nova Compute
DHCP Agent
L2 Agent

There will be three hosts in the setup.

Host Description

OpenStack controller host - con- Runs the Networking, Identity, and Compute services that are re-
trolnode quired to deploy VMs. The node must have at least one network
interface that is connected to the Management Network. Note that
nova-network should not be running because it is replaced by

Neutron.
HostA Runs nova-compute, the Neutron L2 agent and DHCP agent
HostB Same as HostA

8.2. Configuration 189

Neutron Documentation, Release 25.1.1.dev7

Configuration

controlnode: neutron server

1. Neutron configuration file /etc/neutron/neutron.conf:

e

Note

In the above configuration, we use dhcp_agents_per_network = 1 for this demonstration.
In usual deployments, we suggest setting dhcp_agents_per_network to more than one to
match the number of DHCP agents in your deployment. See Enabling DHCP high availability
by default.

2. Update the plug-in configuration file /etc/neutron/plugins/linuxbridge/
linuxbridge_conf.ini:

HostA and HostB: L2 agent

1. Neutron configuration file /etc/neutron/neutron.conf:

2. Update the plug-in configuration file /etc/neutron/plugins/linuxbridge/
linuxbridge_conf.ini:

(continues on next page)

190 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

3. Update the nova configuration file /etc/nova/nova.conft:

HostA and HostB: DHCP agent

* Update the DHCP configuration file /etc/neutron/dhcp_agent.ini:

Prerequisites for demonstration

Admin role is required to use the agent management and scheduler extensions. Ensure you run the fol-
lowing commands under a project with an admin role.

To experiment, you need VMs and a neutron network:

openstack server list

openstack network list

—

(continues on next page)

8.2. Configuration 191

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

Managing agents in neutron deployment

1.

List all agents:

openstack network agent list

Every agent that supports these extensions will register itself with the neutron server when it starts
up.
The output shows information for four agents. The alive field shows True if the agent reported

its state within the period defined by the agent_down_time option in the neutron.conf file.
Otherwise the alive is False.

2. List DHCP agents that host a specified network:

openstack network agent list --network netl

192

Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

3. List the networks hosted by a given DHCP agent:

This command is to show which networks a given dhcp agent is managing.

openstack network list --agent -0lea-4231-ba45-3bd316f425e6

—

L

4. Show agent details.

The openstack network agent show command shows details for a specified agent:

openstack network agent show 2444c54d-0d28-460c-ab0f-cdleb6b5d3c7b

In this output, last_heartbeat_at is the time on the neutron server. You do not need to syn-
chronize all agents to this time for this extension to run correctly. configurations describes the
static configuration for the agent or run time data. This agent is a DHCP agent and it hosts one
network, one subnet, and three ports.

Different types of agents show different details. The following output shows information for a
Linux bridge agent:

8.2. Configuration 193

Neutron Documentation, Release 25.1.1.dev7

L

openstack network agent show -0lea-4231-ba45-3bd316£f425e6

The output shows bridge-mapping and the number of virtual network devices on this L.2 agent.

Managing assignment of networks to DHCP agent

A single network can be assigned to more than one DHCP agents and one DHCP agent can host more
than one network. You can add a network to a DHCP agent and remove one from it.

1. Default scheduling.

When you create a network with one port, the network will be scheduled to an active DHCP agent.
If many active DHCP agents are running, select one randomly. You can design more sophisticated
scheduling algorithms in the same way as nova-schedule later on.

openstack network create net2

openstack subnet create --network net2 --subnet-range .51.100.0/24.
—subnet?2

openstack port create port2 --network net2

openstack network agent list --network net2

194

Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

It is allocated to DHCP agent on HostA. If you want to validate the behavior through the dnsmasq
command, you must create a subnet for the network because the DHCP agent starts the dnsmasq
service only if there is a DHCP.

Assign a network to a given DHCP agent.

To add another DHCP agent to host the network, run this command:

openstack network agent add network --dhcp
55569f4e-6f31-41a6-be9d-526efcelf7fe net2
openstack network agent list --network net2

Both DHCP agents host the net2 network.

. Remove a network from a specified DHCP agent.

This command is the sibling command for the previous one. Remove net2 from the DHCP agent
for HostA:

openstack network agent remove network --dhcp
2444c54d-0d28-460c-ab0f-cdlebb5d3c7b net2
openstack network agent list --network net2

You can see that only the DHCP agent for HostB is hosting the net2 network.

HA of DHCP agents

Boot a VM on net2. Let both DHCP agents host net2. Fail the agents in turn to see if the VM can still
get the desired IP.

1. Boota VM on net2:

openstack network list

(continues on next page)

8.2.

Configuration 195

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

openstack server create --image tty --flavor | myserver4
--nic net-id 9b96b14f-71b8-4918-90aa-c5d705606bla

openstack server list

—
.

2. Make sure both DHCP agents hosting net2:

Use the previous commands to assign the network to agents.

openstack network agent list --network net2

To test the HA of DHCP agent:
1. Log in to the myserver4 VM, and run udhcpc, dhclient or other DHCP client.

2. Stop the DHCP agent on HostA. Besides stopping the neutron-dhcp-agent binary, you must
stop the dnsmasq processes.

Run a DHCP client in VM to see if it can get the wanted IP.
Stop the DHCP agent on HostB too.

Run udhcpc in the VM; it cannot get the wanted IP.

AU

Start DHCP agent on HostB. The VM gets the wanted IP again.

196 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

No HA for metadata service on isolated networks

All Neutron backends using the DHCP agent can also provide metadata service in isolated networks (i.e.
networks without a router). In this case the DHCP agent manages the metadata service (see config option
enable_isolated_metadata).

Note however that the metadata service is only redundant for IPv4, and not IPv6, even when the DHCP
service is configured to be highly available (config option dhcp_agents_per_network > 1). This is because
the DHCP agent will insert a route to the well known metadata IPv4 address (169.254.169.254) via its
own IP address, so it will be reachable as long as the DHCP service is available at that IP address. This
also means that recovery after a failure is tied to the renewal of the DHCP lease, since that route will only
change if the DHCP server for a VM changes.

With IPv6, the well known metadata IPv6 address (fe80::a9fe:a9fe) is used, but directly configured in
the DHCP agent network namespace. Due to the enforcement of duplicate address detection (DAD), this
address can only be configured in at most one DHCP network namespaces at any time. See RFC 4862
for details on the DAD process.

For this reason, even when you have multiple DHCP agents, an arbitrary one (where the metadata IPv6
address is not in dadfailed state) will serve all metadata requests over IPv6. When that metadata service
instance becomes unreachable there is no failover and the service will become unreachable.

Disabling and removing an agent

An administrator might want to disable an agent if a system hardware or software upgrade is planned.
Some agents that support scheduling also support disabling and enabling agents, such as L3 and DHCP
agents. After the agent is disabled, the scheduler does not schedule new resources to the agent.

After the agent is disabled, you can safely remove the agent. Even after disabling the agent, resources on
the agent are kept assigned. Ensure you remove the resources on the agent before you delete the agent.

Disable the DHCP agent on HostA before you stop it:

openstack network agent 2444c54d-0d28-460c-ab0f-cdle6b5d3c7b --disable
openstack network agent list

After you stop the DHCP agent on HostA, you can delete it by the following command:

8.2. Configuration 197

https://docs.openstack.org/nova/latest/user/metadata.html
https://docs.openstack.org/neutron/latest/configuration/dhcp-agent.html#DEFAULT.enable_isolated_metadata
https://docs.openstack.org/neutron/latest/configuration/neutron.html#DEFAULT.dhcp_agents_per_network
https://www.rfc-editor.org/rfc/rfc4862#section-5.4

Neutron Documentation, Release 25.1.1.dev7

openstack network agent delete 2444c54d-0d28-460c-ab0®f-cdlebb5d3c7b
openstack network agent list

After deletion, if you restart the DHCP agent, it appears on the agent list again.

Enabling DHCP high availability by default

You can control the default number of DHCP agents assigned to a network by setting the following
configuration option in the file /etc/neutron/neutron.conf.

8.2.9 DNS Integration

This page serves as a guide for how to use the DNS integration functionality of the Networking service
and its interaction with the Compute service.

The integration of the Networking service with an external DNSaaS (DNS-as-a-Service) is described in
DNS Integration with an External Service.

Users can control the behavior of the Networking service in regards to DNS using two attributes associ-
ated with ports, networks, and floating IPs. The following table shows the attributes available for each
one of these resources:

Resource dns_name dns_domain
Ports Yes Yes
Networks No Yes

Floating IPs Yes Yes

Note

The DNS Integration extension enables all the attribute and resource combinations shown in the
previous table, except for dns_domain for ports, which requires the dns_domain for ports ex-
tension.

198 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Note

Since the DNS Integration extension is a subset of dns_domain for ports, if dns_domain
functionality for ports is required, only the latter extension has to be configured.

Note

When the dns_domain for ports extension is configured, DNS Integration is also included
when the Neutron server responds to a request to list the active API extensions. This preserves back-
wards API compatibility.

The Networking service internal DNS resolution
The Networking service enables users to control the name assigned to ports by the internal DNS. To
enable this functionality, do the following:

1. Edit the /etc/neutron/neutron. conf file and assign a value different to openstacklocal (its
default value) to the dns_domain parameter in the [default] section. As an example:

2. Add dns (for the DNS Integration extension) or dns_domain_ports (for the dns_domain

for ports extension) to extension_drivers in the [ml2] section of /etc/neutron/

plugins/ml2/ml2_conf.ini. The following is an example:
After re-starting the neutron-server, users will be able to assign a dns_name attribute to their ports.
Note

The enablement of this functionality is prerequisite for the enablement of the Networking service
integration with an external DNS service, which is described in detail in DNS Integration with an
External Service.

The following illustrates the creation of a port with my-port in its dns_name attribute.

Note

The name assigned to the port by the Networking service internal DNS is now visible in the response
in the dns_assignment attribute.

openstack port create --network my-net --dns-name my-port

—

(continues on next page)

8.2. Configuration 199

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

(continues on next page)

200 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

—

When this functionality is enabled, it is leveraged by the Compute service when creating instances. When
allocating ports for an instance during boot, the Compute service populates the dns_name attributes of
these ports with the hostname attribute of the instance, which is a DNS sanitized version of its display
name. As a consequence, at the end of the boot process, the allocated ports will be known in the dnsmasq
associated to their networks by their instance hostname.

The following is an example of an instance creation, showing how its hostname populates the dns_name
attribute of the allocated port:

openstack server create --image cirros --flavor
--nic net-id 37aaff3a-6047-45ac-bf4f-a825e56fd2b3 my_vm

(continues on next page)

8.2. Configuration 201

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

[}

openstack port list --device-id 66c13cb4-3002-4ab3-8400-7efc2659c363

(continues on next page)

202 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

openstack port show b3ecc464-1263-44a7-8c38-2d8a52751773

(continues on next page)

8.2. Configuration 203

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

[}

In the above example notice that:

* The name given to the instance by the user, my_vm, is sanitized by the Compute service and becomes
my-vm as the ports dns_name.

* The ports dns_assignment attribute shows that its FQDN is my-vm.example.org. in the Net-
working service internal DNS, which is the result of concatenating the ports dns_name with the
value configured in the dns_domain parameter in neutron. conf, as explained previously.

* The dns_assignment attribute also shows that the ports hostname in the Networking service
internal DNS is my-vm.

* Instead of having the Compute service create the port for the instance, the user might have created
it and assigned a value to its dns_name attribute. In this case, the value assigned to the dns_name
attribute must be equal to the value that Compute service will assign to the instances hostname,

204 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

in this example my-vm. Otherwise, the instance boot will fail.

Note

When the Networking service integration with an external DNS service is enabled, a ports FQDN in
the dns_assignment attribute will not be calculated as described above in some well defined cases.
For a description of these cases please see The ports dns_assignment attribute with use case 3.

8.2.10 DNS Integration with an External Service

This page serves as a guide for how to use the DNS integration functionality of the Networking service
with an external DNSaaS (DNS-as-a-Service).

As a prerequisite this needs the internal DNS functionality offered by the Networking service to be en-
abled, see DNS Integration.

Configuring OpenStack Networking for integration with an external DNS service

The first step to configure the integration with an external DNS service is to enable the functionality
described in The Networking service internal DNS resolution. Once this is done, the user has to take the
following steps and restart neutron-server.

1. Edit the [default] section of /etc/neutron/neutron.conf and specify the external DNS
service driver to be used in parameter external_dns_driver. The valid options are defined in
namespace neutron.services.external_dns_drivers. The following example shows how
to set up the driver for the OpenStack DNS service:

{ 1

2. If the OpenStack DNS service is the target external DNS, the [designate] section of /etc/
neutron/neutron.conf must define the following parameters:

* url: the OpenStack DNS service public endpoint URL. Note that this must always be the
versioned endpoint currently.

* auth_type: the authorization plugin to use. Usually this should be password, see https:
//docs.openstack.org/keystoneauth/latest/authentication-plugins.html for other options.

e auth_url: the Identity service authorization endpoint url. This endpoint will be used by
the Networking service to authenticate as an user to create and update reverse lookup (PTR)
zones.

* username: the username to be used by the Networking service to create and update reverse
lookup (PTR) zones.

* password: the password of the user to be used by the Networking service to create and
update reverse lookup (PTR) zones.

* project_name: the name of the project to be used by the Networking service to create and
update reverse lookup (PTR) zones.

* project_domain_name: the name of the domain for the project to be used by the Network-
ing service to create and update reverse lookup (PTR) zones.

8.2. Configuration 205

https://docs.openstack.org/keystoneauth/latest/authentication-plugins.html
https://docs.openstack.org/keystoneauth/latest/authentication-plugins.html

Neutron Documentation, Release 25.1.1.dev7

* user_domain_name: the name of the domain for the user to be used by the Networking
service to create and update reverse lookup (PTR) zones.

* region_name: the name of the region to be used by the Networking service to create and
update reverse lookup (PTR) zones.

* allow_reverse_dns_lookup: a boolean value specifying whether to enable or not the
creation of reverse lookup (PTR) records.

* ipv4_ptr_zone_prefix_size: the size in bits of the prefix for the IPv4 reverse lookup
(PTR) zones.

* ipv6_ptr_zone_prefix_size: the size in bits of the prefix for the IPv6 reverse lookup
(PTR) zones.

* ptr_zone_email: the email address to use when creating new reverse lookup (PTR) zones.
The default is admin@<dns_domain> where <dns_domain> is the domain for the first record
being created in that zone.

* insecure: whether to disable SSL certificate validation. By default, certificates are vali-
dated.

» cafile: Path to a valid Certificate Authority (CA) certificate. Optional, the system CAs are
used as default.

The following is an example:

Once the neutron-server has been configured and restarted, users will have functionality that covers
three use cases, described in the following sections. In each of the use cases described below:

* The examples assume the OpenStack DNS service as the external DNS.
* A, AAAA and PTR records will be created in the DNS service.

* Before executing any of the use cases, the user must create in the DNS service under their project
a DNS zone where the A and AAAA records will be created. For the description of the use cases
below, it is assumed the zone example.org. was created previously.

» The PTR records will be created in zones owned by the project specified for project_name above.

206 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Use case 1: Floating IPs are published with associated port DNS attributes

In this use case, the address of a floating IP is published in the external DNS service in conjunction with
the dns_name of its associated port and the dns_domain of the ports network. The steps to execute in
this use case are the following:

1. Assign a valid domain name to the networks dns_domain attribute. This name must end with a
period (.).

2. Boot an instance or alternatively, create a port specifying a valid value to its dns_name attribute.
If the port is going to be used for an instance boot, the value assigned to dns_name must be equal
to the hostname that the Compute service will assign to the instance. Otherwise, the boot will
fail.

3. Create a floating IP and associate it to the port.

Following is an example of these steps:

openstack network --dns-domain example.org. 38c5e950-b450-4c30-83d4-
—eel81c28aad3

openstack network show 38c5e950-b450-4c30-83d4-eel81c28aad3

(continues on next page)

8.2. Configuration 207

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

openstack server create --image cirros --flavor
--nic net-id 38c5e950-b450-4c30-83d4-eel81c28aad3 my_vm

[}

(continues on next page)

208 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

openstack server list

openstack port list --device-id 43£f328bb-b2d1-4cfl1-a36f-3b2593397cbl

(continues on next page)

8.2. Configuration 209

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

openstack port show da®bl1£f75-c895-460f-9fcl-4d6ec84cf85f

(continues on next page)

210 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

[}

openstack recordset list example.org.

openstack floating ip create 41fa3995-9e4a-4cd9-bb51-3e5424f2ff2a
--port da®blf75-c895-460f-9fcl-4d6ec84cf85f

(continues on next page)

8.2. Configuration 211

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

openstack recordset list example.org.

In this example, notice that the data is published in the DNS service when the floating IP is associated to
the port.

Following are the PTR records created for this example. Note that for IPv4, the value of
ipv4_ptr_zone_prefix_size is 24. Also, since the zone for the PTR records is created in the

212 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

service project, you need to use admin credentials in order to be able to view it.

openstack recordset list --all-projects .51.198.in-addr.arpa.

Use case 2: Floating IPs are published in the external DNS service

In this use case, the user assigns dns_name and dns_domain attributes to a floating IP when it is created.
The floating IP data becomes visible in the external DNS service as soon as it is created. The floating
IP can be associated with a port on creation or later on. The following example shows a user booting an
instance and then creating a floating IP associated to the port allocated for the instance:

openstack network show 38c5e950-b450-4c30-83d4-eel81c28aad3

—

(continues on next page)

8.2. Configuration 213

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

openstack server create --image cirros --flavor
--nic net-id 38c5e950-b450-4c30-83d4-eel81c28aad3 my_vm

(continues on next page)

214 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

(continues on next page)

8.2. Configuration 215

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

[}

openstack server list

openstack port list --device-id 71fb4ac8-eed8-4644-8113-0641962bb125

openstack port show 1e7033fb-8e9d-458b-89ed-8312cafcfdch

(continues on next page)

216 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

[}

[}

(continues on next page)

8.2. Configuration 217

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

openstack recordset list example.org.

openstack floating ip create --dns-domain example.org. --dns-name my-
—floatingip 41fa3995-9e4a-4cd9-bb51-3e5424f2ff2a

(continues on next page)

218 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

openstack recordset list example.org.

Note that in this use case:

* The dns_name and dns_domain attributes of a floating IP must be specified together on creation.
They cannot be assigned to the floating IP separately and they cannot be changed after the floating
IP has been created.

* The dns_name and dns_domain of a floating IP have precedence, for purposes of being published
in the external DNS service, over the dns_name of its associated port and the dns_domain of the
ports network, whether they are specified or not. Only the dns_name and the dns_domain of the

8.2. Configuration 219

Neutron Documentation, Release 25.1.1.dev7

floating IP are published in the external DNS service.

Following are the PTR records created for this example. Note that for IPv4, the value of
ipv4_ptr_zone_prefix_size is 24. Also, since the zone for the PTR records is created in the project
specified in the [designate] section in the config above, usually the service project, you need to use
admin credentials in order to be able to view it.

openstack recordset list --all-projects .51.198.in-addr.arpa.

Use case 3: Ports are published directly in the external DNS service

In this case, the user is creating ports or booting instances on a network that is accessible externally.
There are multiple possible scenarios here depending on which of the DNS extensions is enabled in the
Neutron configuration. These extensions are described in the following in descending order of priority.

Use case 3a: The subnet_dns_publish_fixed_ip extension

When the subnet_dns_publish_fixed_ip extension is enabled, it is possible to make a selection per
subnet whether DNS records should be published for fixed IPs that are assigned to ports from that subnet.
This happens via the dns_publish_fixed_ips attribute that this extension adds to the definition of the
subnet resource. It is a boolean flag with a default value of False but it can be set to True when creating
or updating subnets. When the flag is True, all fixed IPs from this subnet are published in the external
DNS service, while at the same time IPs from other subnets having the flag set to False are not published,
even if they otherwise would meet the criteria from the other use cases below.

A typical scenario for this use case is a dual stack deployment, where a tenant network would be con-
figured with both an IPv4 and an IPv6 subnet. The IPv4 subnet will usually be using some RFC1918
address space and being NATted towards the outside on the attached router, therefore the fixed IPs from
this subnet will not be globally routed and they also should not be published in the DNS service. (One

220 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

can still bind floating IPs to these fixed IPs and DNS records for those floating IPs can still be published
as described above in use cases 1 and 2).

But for the IPv6 subnet, no NAT will happen, instead the subnet will be configured with some globally
routable prefix and thus the user will want to publish DNS records for fixed IPs from this subnet. This
can be achieved by setting the dns_publish_fixed_ips attribute for the IPv6 subnet to True while
leaving the flag set to False for the IPv4 subnet. Example:

openstack network create dualstack

openstack subnet create --network dualstack dualstackv4 --subnet-range
~0.2.0/24

openstack subnet create --network dualstack dualstackvé --protocol ipv6 --
—»subnet-range :db8:42:42::/64 --dns-publish-fixed-ip

openstack zone create example.org. --email mail@example.org

openstack recordset list example.org.

openstack port create portl --dns-domain example.org. --dns-name portl --
—network dualstack

(continues on next page)

8.2. Configuration 221

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

— o
>

o

— (]
—

—

— o
N

o

— o
N

o

> [
N

[

— u
N

o

— o
.

o

— [}
N

o

— o
N

— —
—

— o
N

i

— o
>

o

— (]
N

—

— o
N

— o
N

> [
N

[}

(continues on next page)

222 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

— [
N
u
— [
N
[
— o
o
u
— [
SN
[
— w
>
[
— (]
.
o
s [
AN
[
— u
.
w
> [
N
[
— [
N
[
— u
N
o
— [
N
[
— [
N
[
— o
s
O
— [
N
[
— w
>
N

(continues on next page)

8.2. Configuration 223

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

—

openstack recordset list example.org.

Use case 3b: The dns_domain_ports extension

If the dns_domain for ports extension has been configured, the user can create a port specifying a
non-blank value in its dns_domain attribute. If the port is created in an externally accessible network,
DNS records will be published for this port:

openstack port create --network 37aaff3a-6047-45ac-bf4f-a825e56fd2b3 --dns-
—name my-vm --dns-domain port-domain.org.

(continues on next page)

224 Chapter 8. OpenStack Networking Guide

N

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

[}

[}

(continues on next page)

8.2. Configuration 225

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

In this case, the ports dns_name (my-vm) will be published in the port-domain.org. zone, as shown
here:

openstack recordset list port-domain.org.

Note

If both the port and its network have a valid non-blank string assigned to their dns_domain attributes,
the ports dns_domain takes precedence over the networks.

Note

226 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

The name assigned to the ports dns_domain attribute must end with a period (.).

Note

In the above example, the port-domain.org. zone must be created before Neutron can publish any
port data to it.

Note

See Configuration of the externally accessible network for use cases 3b and 3c for detailed instructions
on how to create the externally accessible network.

Use case 3c: The dns extension

If the user wants to publish a port in the external DNS service in a zone specified by the dns_domain
attribute of the network, these are the steps to be taken:

1. Assign a valid domain name to the networks dns_domain attribute. This name must end with a
period (.).

2. Boot an instance specifying the externally accessible network. Alternatively, create a port on the
externally accessible network specifying a valid value to its dns_name attribute. If the port is going
to be used for an instance boot, the value assigned to dns_name must be equal to the hostname
that the Compute service will assign to the instance. Otherwise, the boot will fail.

Once these steps are executed, the ports DNS data will be published in the external DNS service. This
is an example:

openstack network list

openstack network --dns-domain example.org. 37aaff3a-6047-45ac-bf4f-
—a825e56fd2b3

(continues on next page)

8.2. Configuration 227

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

openstack network show 37aaff3a-6047-45ac-bf4f-a825e56fd2b3

[}

(continues on next page)

228 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

openstack recordset list example.org.

openstack port create --network 37aaff3a-6047-45ac-bf4f-a825e56fd2b3 --dns-
—name my-vm

[}

(continues on next page)

8.2. Configuration 229

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

(continues on next page)

230 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

[}

openstack recordset list example.org.

openstack server create --image cirros --flavor
--nic port-id 04be331b-dc5e-410a-9103-9¢c8983aeb186 my_vm

(continues on next page)

8.2. Configuration 231

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

[}

(continues on next page)

232 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

openstack server list

In this example the port is created manually by the user and then used to boot an instance. Notice that:
* The ports data was visible in the DNS service as soon as it was created.

» See Performance considerations for an explanation of the potential performance impact associated
with this use case.

Following are the PTR records created for this example. Note that for IPv4, the value of
ipv4_ptr_zone_prefix_sizeis24. Inthe case of IPv6, the value of ipv6_ptr_zone_prefix_size
is 116.

openstack recordset list --all-projects .0.203.in-addr.arpa.

openstack recordset list --all-projects .0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
-0.1.0.0.8.b.d.0.1.0.0.2.ip6.arpa.

(continues on next page)

8.2. Configuration 233

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

See Configuration of the externally accessible network for use cases 3b and 3c for detailed instructions
on how to create the externally accessible network.

Performance considerations

Only for Use case 3: Ports are published directly in the external DNS service, if the port binding exten-
sion is enabled in the Networking service, the Compute service will execute one additional port update
operation when allocating the port for the instance during the boot process. This may have a noticeable
adverse effect in the performance of the boot process that should be evaluated before adoption of this use
case.

Configuration of the externally accessible network for use cases 3b and 3c

For use cases 3b and 3c, the externally accessible network must meet the following requirements:
* The network may not have attribute router:external set to True.
* The network type can be FLAT, VLAN, GRE, VXLAN or GENEVE.

* For network types VLAN, GRE, VXLAN or GENEVE, the segmentation ID must be outside the
ranges assigned to project networks.

This usually implies that these use cases only work for networks specifically created for this purpose by
an admin, they do not work for networks which tenants can create on their own.

234 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

The ports dns_assignment attribute with use case 3

The dns_assignment attribute is not calculated as described in DNS Integration when a port is cre-
ated under use case 3. Instead of concatenating the ports dns_name with the value configured in the
dns_domain parameter in neutron.conf, the dns_name is concatenated with the dns_domain of ei-
ther the port or the network, depending on whether the use case is 3a, 3b or 3c. For example:

openstack network show external -c dns_domain -f value
cat /etc/neutron/neutron.conf grep dns_domain

openstack recordset list dns-domain-1.org.

—

openstack port create --dns-name a-port --network external a_port

—
= —

(continues on next page)

8.2. Configuration 235

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

N

o

> [
N

[

— u
N

o

— o
.

o

— [}
N

o

— o
N

u

— —
s

o

— o
<

i

— o
>

o

— (]
N

— o
N

— o
N

o

> [
N

[

— o
N

o

— =
.

= o
N

— o
N

(continues on next page)

236 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

— w
>

[

— (]
s
o
N

[

— u
.

w

> [
N

[

— [
N

[

— u
—

u

= o
N

[

— [
N

[

— o
o

u

— [
AN

[

— w
>

[

— (]
N

o

— [
N

[

— u
.

w

> —
N

[}

(continues on next page)

8.2. Configuration 237

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

s o

openstack recordset list dns-domain-1.org.

In this manner, the FQDN in the dns_assignment attribute is compatible with what is being published
by the external DNS service.

238 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

8.2.11 DNS Resolution for Instances

The Networking service offers several methods to configure name resolution (DNS) for instances. Most
deployments should implement case 1 or 2a. Case 2b requires security considerations to prevent leaking
internal DNS information to instances.

Note

All of these setups require the configured DNS resolvers to be reachable from the virtual network in
question. So unless the resolvers are located inside the virtual network itself, this implies the need for
a router to be attached to that network having an external gateway configured.

Case 1: Each virtual network uses unique DNS resolver(s)

In this case, the DHCP agent offers one or more unique DNS resolvers to instances via DHCP on each
virtual network. You can configure a DNS resolver when creating or updating a subnet. To configure
more than one DNS resolver, repeat the option multiple times.

* Configure a DNS resolver when creating a subnet.

{ openstack subnet create --dns-nameserver DNS_RESOLVER }

Replace DNS_RESOLVER with the IP address of a DNS resolver reachable from the virtual network.
Repeat the option if you want to specify multiple IP addresses. For example:

{ openstack subnet create --dns-nameserver .0.113.8 --dns-nameserver,, }
. .51.100.53

Note

This command requires additional options outside the scope of this content.

* Add a DNS resolver to an existing subnet.

[openstack subnet --dns-nameserver DNS_RESOLVER SUBNET_ID_OR_NAME J

Replace DNS_RESOLVER with the IP address of a DNS resolver reachable from the virtual net-
work and SUBNET_ID_OR_NAME with the UUID or name of the subnet. For example, using the
selfservice subnet:

[openstack subnet --dns-nameserver .0.113.9 selfservice }

¢ Remove all DNS resolvers from a subnet.

{ openstack subnet --no-dns-nameservers SUBNET_ID_OR_NAME }

Replace SUBNET_ID_OR_NAME with the UUID or name of the subnet. For example, using the
selfservice subnet:

8.2. Configuration 239

Neutron Documentation, Release 25.1.1.dev7

[openstack subnet --no-dns-nameservers selfservice

Note

You can use this option in combination with the previous one in order to replace all existing
DNS resolver addresses with new ones.

You can also set the DNS resolver address to 0.0.0.0 for IPv4 subnets, or :: for IPv6 subnets, which
are special values that indicate to the DHCP agent that it should not announce any DNS resolver at all on
the subnet.

Note

When DNS resolvers are explicitly specified for a subnet this way, that setting will take precedence
over the options presented in case 2.

Case 2: DHCP agents forward DNS queries from instances

In this case, the DHCP agent offers the list of all DHCP agents IP addresses on a subnet as DNS resolver(s)
to instances via DHCP on that subnet.

The DHCP agent then runs a masquerading forwarding DNS resolver with two possible options to deter-
mine where the DNS queries are sent to.

Note

The DHCP agent will answer queries for names and addresses of instances running within the virtual
network directly instead of forwarding them.

Case 2a: Queries are forwarded to an explicitly configured set of DNS resolvers

In the dhcp_agent.ini file, configure one or more DNS resolvers. To configure more than one DNS
resolver, use a comma between the values.

Replace DNS_RESOLVER with a list of IP addresses of DNS resolvers reachable from all virtual networks.
For example:

Note

You must configure this option for all eligible DHCP agents and restart them to activate the values.

240 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Case 2b: Queries are forwarded to DNS resolver(s) configured on the host

In this case, the DHCP agent forwards queries from the instances to the DNS resolver(s) configured in
the resolv. conf file on the host running the DHCP agent. This requires these resolvers being reachable
from all virtual networks.

In the dhcp_agent.ini file, enable using the DNS resolver(s) configured on the host.

Note

You must configure this option for all eligible DHCP agents and restart them to activate this setting.

8.2.12 Distributed Virtual Routing with VRRP

Open vSwitch: High availability using DVR supports augmentation using Virtual Router Redundancy
Protocol (VRRP). Using this configuration, virtual routers support both the --distributed and --ha
options.

Similar to legacy HA routers, DVR/SNAT HA routers provide a quick fail over of the SNAT service to a
backup DVR/SNAT router on an 13-agent running on a different node.

SNAT high availability is implemented in a manner similar to the Linux bridge: High availability using
VRRP and Open vSwitch: High availability using VRRP examples where keepalived uses VRRP to
provide quick failover of SNAT services.

During normal operation, the primary router periodically transmits heartbeat packets over a hidden
project network that connects all HA routers for a particular project.

If the DVR/SNAT backup router stops receiving these packets, it assumes failure of the primary
DVR/SNAT router and promotes itself to primary router by configuring IP addresses on the interfaces in
the snat namespace. In environments with more than one backup router, the rules of VRRP are followed
to select a new primary router.

Warning

There is a known bug with keepalived v1.2.15 and earlier which can cause packet loss when
max_13_agents_per_router is set to 3 or more. Therefore, we recommend that you upgrade to
keepalived v1.2.16 or greater when using this feature.

8.2. Configuration 241

Neutron Documentation, Release 25.1.1.dev7

Configuration example

The basic deployment model consists of one controller node, two or more network nodes, and multiple

computes nodes.

Controller node configuration

1. Add the following to /etc/neutron/neutron. conf:

J

When the router_distributed = True flag is configured, routers created by all users are dis-
tributed. Without it, only privileged users can create distributed routers by using --distributed

True.

Similarly, when the 13_ha = True flag is configured, routers created by all users default to HA.

It follows that with these two flags set to True in the configuration file, routers created by all users

will default to distributed HA routers (DVR HA).

The same can explicitly be accomplished by a user with administrative credentials setting the flags

in the openstack router create command:

openstack router create name-of-router --distributed --ha

Note

The max_I3_agents_per_router determine the number of backup DVR/SNAT routers which

will be instantiated.

2. Add the following to /etc/neutron/plugins/ml2/ml2_conf.ini:

-

Replace MIN_VXLAN_ID and MAX_VXLAN_ID with VXLAN ID minimum and maximum values

suitable for your environment.

242

Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Note

The first value in the tenant_network_types option becomes the default project network
type when a regular user creates a network.

Network nodes

1. Configure the Open vSwitch agent. Add the following to /etc/neutron/plugins/ml2/
openvswitch_agent.ini:

Replace TUNNEL_INTERFACE_IP_ADDRESS with the IP address of the interface that handles
VXLAN project networks.

2. Configure the L3 agent. Add the following to /etc/neutron/13_agent.ini:

Compute nodes

1. Configure the Open vSwitch agent. Add the following to /etc/neutron/plugins/ml2/
openvswitch_agent.ini:

-

2. Configure the L3 agent. Add the following to /etc/neutron/13_agent.ini:

8.2. Configuration 243

Neutron Documentation, Release 25.1.1.dev7

Replace TUNNEL_INTERFACE_IP_ADDRESS with the IP address of the interface that handles
VXLAN project networks.

Keepalived VRRP health check

The health of your keepalived instances can be automatically monitored via a bash script that verifies
connectivity to all available and configured gateway addresses. In the event that connectivity is lost, the
master router is rescheduled to another node.

If all routers lose connectivity simultaneously, the process of selecting a new master router will be re-
peated in a round-robin fashion until one or more routers have their connectivity restored.

To enable this feature, edit the 13_agent. ini file:

Where ha_vrrp_health_check_interval indicates how often in seconds the health check should run.
The default value is 0, which indicates that the check should not run at all.

Known limitations

* There are certain scenarios where 12pop and distributed HA routers do not interact in an expected
manner. These situations are the same that affect HA only routers and 12pop.

8.2.13 Experimental Features Framework

Some Neutron features are not supported because the community doesnt have the resources and/or tech-
nical expertise to maintain them anymore. As they arise, the Neutron team designates these features as
experimental. Deployers can continue using these features at their own risk, by explicitly enabling them
in the experimental section of neutron.conf.

Note

Of course, the Neutron core team would love to return experimetal features to the supported status, if
interested parties step up to maintain them. If you are interested in maintaining any of the experimental
features listed below, please contact the PTL shown in the Neutron project page.

The following table shows the Neutron features currently designated as experimetal:

Table 1: Neutron Experimental features

Feature Option in neutron.conf to enable

ML2 Linuxbridge driver linuxbridge

This is an example of how to enable the use of an experimental feature:

244 Chapter 8. OpenStack Networking Guide

https://governance.openstack.org/tc/reference/projects/neutron.html

Neutron Documentation, Release 25.1.1.dev7

[experimental]
linuxbridge = true

8.2.14 Floating IP Port Forwarding

Floating IP port forwarding enables users to forward traffic from a TCP/UDP/other protocol port of a
floating IP to a TCP/UDP/other protocol port associated to one of the fixed IPs of a Neutron port. This
is accomplished by associating port_forwarding sub-resource to a floating IP.

CRUD operations for port forwarding are implemented by a Neutron API extension and a service plug-in.
Please refer to the Neutron API Reference documentation for details on the CRUD operations.

Configuring floating IP port forwarding

To configure floating IP port forwarding, take the following steps:

* Add the port_forwarding service to the service_plugins setting in /etc/neutron/
neutron.conf. For example:

» Set the extensions option in the [agent] section of /etc/neutron/13_agent.ini toinclude
port_forwarding. This has to be done in each network and compute node where the L3 agent is
running. For example:

E

Note

The router service plug-in manages floating IPs and routers. As a consequence, it has to be config-
ured along with the port_forwarding service plug-in.

Note
After updating the options in the configuration files, the neutron-server and every neutron-13-agent

need to be restarted for the new values to take effect.

After configuring floating IP port forwarding, the floating-ip-port-forwarding extension alias will
be included in the output of the following command:

[openstack extension list --network

8.2. Configuration 245

Neutron Documentation, Release 25.1.1.dev7

8.2.15 IPAM Configuration

Starting with the Liberty release, OpenStack Networking includes a pluggable interface for the IP Ad-
dress Management (IPAM) function. This interface creates a driver framework for the allocation and
de-allocation of subnets and IP addresses, enabling the integration of alternate IPAM implementations
or third-party IP Address Management systems.

The basics

In Liberty and Mitaka, the IPAM implementation within OpenStack Networking provided a pluggable
and non-pluggable flavor. As of Newton, the non-pluggable flavor is no longer available. Instead, it is
completely replaced with a reference driver implementation of the pluggable framework. All data will be
automatically migrated during the upgrade process, unless you have previously configured a pluggable
IPAM driver. In that case, no migration is necessary.

To configure a driver other than the reference driver, specify it in the neutron. conf file. Do this after
the migration is complete. There is no need to specify any value if you wish to use the reference driver.

1

There is no need to specify any value if you wish to use the reference driver, though specifying internal
will explicitly choose the reference driver. The documentation for any alternate drivers will include the
value to use when specifying that driver.

Known limitations
* The driver interface is designed to allow separate drivers for each subnet pool. However, the current
implementation allows only a single IPAM driver system-wide.

* Third-party drivers must provide their own migration mechanisms to convert existing OpenStack
installations to their IPAM.

8.2.16 IPv6

This section describes the OpenStack Networking reference implementation for IPv6, including the fol-
lowing items:

e How to enable dual-stack (IPv4 and IPv6 enabled) instances.

* How those instances receive an IPv6 address.

* How those instances communicate across a router to other subnets or the internet.
* How those instances interact with other OpenStack services.

Enabling a dual-stack network in OpenStack Networking simply requires creating a subnet with the
ip_version field set to 6, then the IPv6 attributes (ipv6_ra_mode and ipv6_address_mode) set.
The ipv6_ra_mode and ipv6_address_mode will be described in detail in the next section. Finally,
the subnets cidr needs to be provided.

This section does not include the following items:
* Single stack IPv6 project networking

* OpenStack control communication between servers and services over an IPv6 network.

246 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

* Connection to the OpenStack APIs via an IPv6 transport network
* IPv6 multicast

» [Pv6 support in conjunction with any out of tree routers, switches, services or agents whether in
physical or virtual form factors.

Neutron subnets and the IPv6 API attributes
As of Juno, the OpenStack Networking service (neutron) provides two new attributes to the subnet object,
which allows users of the API to configure IPv6 subnets.
There are two IPv6 attributes:
e ipv6_ra_mode
* ipv6_address_mode
These attributes can be set to the following values:
* slaac
e dhcpv6-stateful
e dhcpvb-stateless

The attributes can also be left unset.

IPv6 addressing

The ipv6_address_mode attribute is used to control how addressing is handled by OpenStack. There
are a number of different ways that guest instances can obtain an IPv6 address, and this attribute exposes
these choices to users of the Networking API.

Router advertisements

The ipv6_ra_mode attribute is used to control router advertisements for a subnet.

The IPv6 Protocol uses Internet Control Message Protocol packets ICMPv6) as a way to distribute infor-
mation about networking. ICMPv6 packets with the type flag set to 134 are called Router Advertisement
messages, which contain information about the router and the route that can be used by guest instances
to send network traffic.

The ipv6_ra_mode is used to specify if the Networking service should generate Router Advertisement
messages for a subnet.

8.2. Configuration 247

Neutron Documentation, Release 25.1.1.dev7

ipv6_ra_mode and ipv6_address_mode combinations

ipv6 ra ipv6 neutron- Ex- Description
mode ad- generat¢ ternal

dress adver- Router

mode tise- AM,0O

ments
(radvd)
AM,0
N/S N/S Off Not Backwards compatibility with pre-Juno IPv6 behavior.
De-
fined
N/S slaac Off 1,0,0 Guest instance obtains IPv6 address from non-OpenStack
router using SLAAC.
N/S dhcpv6- Off 0,1,1 Not currently implemented in the reference implementation.
stateful
N/S dhcpv6- Off 1,0,1 Not currently implemented in the reference implementation.
stateless
slaac N/S 1,0,0 Off Not currently implemented in the reference implementation.
dhcpv6- N/S 0,1,0 Off Not currently implemented in the reference implementation.
stateful
dhcpv6- N/S 1,0,1 off Not currently implemented in the reference implementation.
stateless
slaac slaac 1,0,0 Off Guest instance obtains IPv6 address from OpenStack man-
aged radvd using SLAAC.
dhcpv6- dhepv6- 0,1,0 Off Guest instance obtains IPv6 address from dnsmasq using
stateful stateful DHCPv6 stateful and optional info from dnsmasq using
DHCPv6.
dhcpv6- dhepv6- 1,0,1 Off Guest instance obtains IPv6 address from OpenStack man-
stateless stateless aged radvd using SLAAC and optional info from dnsmasq
using DHCPv6.
slaac dhcpv6- Invalid combination.
stateful
slaac dhcpv6- Invalid combination.
stateless
dhcpv6- slaac Invalid combination.
stateful
dhcpv6- dhepv6- Invalid combination.
stateful stateless
dhcpv6- slaac Invalid combination.
stateless
dhcpv6- dhcpv6- Invalid combination.

stateless stateful

A - Autonomous Address Configuration Flag, M - Managed Address Configuration Flag, O - Other Con-
figuration Flag

248 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Note

If the M flag is set to 1, the O flag can be either 1 or 0. This is because the O flag can be ignored when
the M flag is set to 1, as mentioned in RFC 4861 below:

If the M flag is set, the O flag is redundant and can be ignored because DHCPv6 will return all
available configuration information.

For this reason, the neutron-generated advertisements will have the M flag set to 1 and the O flag set
to 0.

Project network considerations

Dataplane

All dataplane modules, including OVN, Open vSwitch and Linux bridge, support forwarding IPv6 pack-
ets amongst the guests and router ports. Similar to IPv4, there is no special configuration or setup required
to enable the dataplane to properly forward packets from the source to the destination using IPv6. Note
that these dataplanes will forward Link-local Address (LLA) packets between hosts on the same network
just fine without any participation or setup by OpenStack components after the ports are all connected
and MAC addresses learned.

Warning

The only exception to this is the setting of the MTU value on the network an IPv6 subnet is created
on. If the MTU is less than 1280 octets (the minimum link MTU value specified in RFC 8200), then
it could lead to issues configuring both IPv6 and IPv4 addresses on the network, leaving the subnets
unusable. For that reason, the API validates the MTU value when subnets are created to avoid this
issue.

Addresses for subnets

There are three methods currently implemented for a subnet to get its cidr in OpenStack:
1. Direct assignment during subnet creation via command line or Horizon
2. Referencing a subnet pool during subnet creation
3. Using a Prefix Delegation (PD) client to request a prefix for a subnet from a PD server

In the future, additional techniques could be used to allocate subnets to projects, for example, use of an
external IPAM module.

8.2. Configuration 249

https://www.rfc-editor.org/rfc/rfc4861#section-4.2
https://www.rfc-editor.org/rfc/rfc8200

Neutron Documentation, Release 25.1.1.dev7

Address modes for ports

Note

An external DHCPV6 server in theory could override the full address OpenStack assigns based on the
EUI-64 address, but that would not be wise as it would not be consistent through the system.

IPv6 supports three different addressing schemes for address configuration and for providing optional
network information.

Stateless Address Auto Configuration (SLAAC)
Address configuration using Router Advertisements.

DHCPve6-stateless
Address configuration using Router Advertisements and optional information using DHCPv6.

DHCPv6-stateful
Address configuration and optional information using DHCPv6.

OpenStack can be setup such that OpenStack Networking directly provides Router Advertisements,
DHCP relay and DHCPv6 address and optional information for their networks or this can be delegated
to external routers and services based on the drivers that are in use. There are two neutron subnet at-
tributes - ipv6_ra_mode and ipv6_address_mode that determine how IPv6 addressing and network
information is provided to project instances:

e ipv6_ra_mode: Determines who sends Router Advertisements.

* ipv6_address_mode: Determines how instances obtain IPv6 address, default gateway, or op-
tional information.

For the above two attributes to be effective, enable_dhcp of the subnet object must be set to True.

Warning

When updating a network which already has bound ports with a subnet in which Autonomous Address
Configuration is enabled (Stateless Address Auto Configuration, DHCPv6-stateless) the ports will be
updated with the new address. This will not happen if the subnet is DHCPv6-stateful. The same is
true for the case when the ports are bound with an IPv6 subnet (the network has no other IPv4 subnet),
and an [Pv4 subnet is added later, the ports will not be updated.

For more details see the bug https://bugs.launchpad.net/neutron/+bug/1719806.

A workaround is to manually update the port with fixed_ips and add the subnet in the request.

250 Chapter 8. OpenStack Networking Guide

https://bugs.launchpad.net/neutron/+bug/1719806

Neutron Documentation, Release 25.1.1.dev7

Using SLAAC for addressing

When using SLAAC, the currently supported combinations for ipv6_ra_mode and
ipv6_address_mode are as follows.

ipv6_ra_mot ipv6_addres Result

Not speci- SLAAC Addresses are assigned using EUI-64, and an external router will be used
fied. for routing.
SLAAC SLAAC Address are assigned using EUI-64, and OpenStack Networking pro-

vides routing.

Setting SLAAC for ipv6_ra_mode configures the neutron router with an radvd agent to send Router
Advertisements. The list below captures the values set for the address configuration flags in the Router
Advertisement messages in this scenario.

* Autonomous Address Configuration Flag = 1
* Managed Address Configuration Flag = 0
* Other Configuration Flag =0

New or existing neutron networks that contain a SLAAC enabled IPv6 subnet will result in all neutron
ports attached to the network receiving IPv6 addresses. This is because when Router Advertisement
messages are multicast on a neutron network, they are received by all IPv6 capable ports on the network,
and each port will then configure an IPv6 address based on the information contained in the Router
Advertisement messages. In some cases, an IPv6 SLAAC address will be added to a port, in addition to
other IPv4 and IPv6 addresses that the port already has been assigned.

Note

If a router is not created and added to the subnet, SLAAC addressing will not succeed for instances
since no Router Advertisement messages will be generated.

DHCPv6

For DHCPV6, the currently supported combinations are as follows:

ipv6_ra_mot ipv6_addres Result

DHCPv6- DHCPv6- Addresses are assigned through Router Advertisements (see SLAAC
stateless stateless above) and optional information is delivered through DHCPv6.
DHCPv6- DHCPv6- Addresses and optional information are assigned using DHCPv6.
stateful stateful

Setting DHCPv6-stateless for ipv6_ra_mode configures the neutron router with an radvd agent to
send Router Advertisements. The list below captures the values set for the address configuration
flags in the Router Advertisement messages in this scenario. Similarly, setting DHCPv6-stateless for
ipv6_address_mode configures neutron DHCP implementation to provide the additional network in-
formation.

8.2. Configuration 251

Neutron Documentation, Release 25.1.1.dev7

* Autonomous Address Configuration Flag = 1
* Managed Address Configuration Flag = 0
* Other Configuration Flag = 1

Setting DHCPv6-stateful for ipv6_ra_mode configures the neutron router with an radvd agent to
send Router Advertisements. The list below captures the values set for the address configuration
flags in the Router Advertisements messages in this scenario. Similarly, setting DHCPv6-stateful for
ipv6_address_mode configures neutron DHCP implementation to provide addresses and additional
network information through DHCPv6.

* Autonomous Address Configuration Flag = 0
* Managed Address Configuration Flag = 1
* Other Configuration Flag =0

Note

If a router is not created and added to the subnet, DHCPv6 addressing will not succeed for instances
since no Router Advertisement messages will be generated.

Note

If the M flag is set to 1, the O flag can be either 1 or 0. This is because the O flag can be ignored when
the M flag is set to 1, as mentioned in RFC 4861 below:

If the M flag is set, the O flag is redundant and can be ignored because DHCPv6 will return all
available configuration information.

For this reason, the neutron-generated advertisements will have the M flag set to 1 and the O flag set
to 0.

Router support

The behavior of the neutron router for IPv6 is different than for IPv4 in a few ways.

Internal router ports, that act as default gateway ports for a network, will share a common port for all
IPv6 subnets associated with the network. This implies that there will be an IPv6 internal router interface
with multiple IPv6 addresses from each of the IPv6 subnets associated with the network and a separate
IPv4 internal router interface for the IPv4 subnet. On the other hand, external router ports are allowed to
have a dual-stack configuration with both an IPv4 and an IPv6 address assigned to them.

Neutron project networks that are assigned Global Unicast Address (GUA) prefixes and addresses dont
require NAT on the neutron router external gateway port to access the outside world. As a consequence of
the lack of NAT the external router port doesnt require a GUA to send and receive to the external networks.
This implies a GUA IPv6 subnet prefix is not necessarily needed for the neutron external network. By
default, a IPv6 LLA associated with the external gateway port can be used for routing purposes. To
handle this scenario, the implementation of router-gateway-set API in neutron has been modified so that
an [Pv6 subnet is not required for the external network that is associated with the neutron router. The
LLA address of the upstream router can be learned in two ways.

252 Chapter 8. OpenStack Networking Guide

https://www.rfc-editor.org/rfc/rfc4861#section-4.2

Neutron Documentation, Release 25.1.1.dev7

1. In the absence of an upstream Router Advertisement message, the ipv6_gateway flag can be set
with the external router gateway LLA in the neutron L3 agent configuration file. This also requires
that no subnet is associated with that port.

2. The upstream router can send a Router Advertisement and the neutron router will automatically
learn the next-hop LLA, provided again that no subnet is assigned and the ipv6_gateway flag is
not set.

Effectively the ipv6_gateway flag takes precedence over a Router Advertisements that is received from
the upstream router. If it is desired to use a GUA next hop that is accomplished by allocating a subnet to
the external router port and assigning the upstream routers GUA address as the gateway for the subnet.

Note

It should be possible for projects to communicate with each other on an isolated network (a network
without a router port) using LLLA with little to no participation on the part of OpenStack. The authors
of this section have not proven that to be true for all scenarios.

Note

When using the neutron L3 agent in a configuration where it is auto-configuring an IPv6 address via
SLAAC, and the agent is learning its default IPv6 route from the ICMPv6 Router Advertisement, it
may be necessary to set the net.ipv6.conf.<physical_interface>.accept_ra sysctl to the
value 2 in order for routing to function correctly. For a more detailed description, please see the bug.

Neutrons Distributed Router feature and IPv6

IPv6 does work when the Distributed Virtual Router functionality is enabled, but all ingress/egress traffic
is via the centralized router (hence, not distributed). More work is required to fully enable this function-
ality.

Advanced services

VPNaaS

VPNaaS supports IPv6, but support in Kilo and prior releases will have some bugs that may limit how
it can be used. More thorough and complete testing and bug fixing is being done as part of the Liberty
release. IPv6-based VPN-as-a-Service is configured similar to the IPv4 configuration. Either or both the
peer_address and the peer_cidr can specified as an IPv6 address. The choice of addressing modes
and router modes described above should not impact support.

8.2. Configuration 253

https://bugs.launchpad.net/neutron/+bug/1616282

Neutron Documentation, Release 25.1.1.dev7

FWaa$S

FWaasS allows creation of IPv6 based rules.

NAT & Floating IPs

At the current time OpenStack Networking does not provide any facility to support any flavor of NAT
with IPv6. Unlike IPv4 there is no current embedded support for floating IPs with IPv6. It is assumed
that the IPv6 addressing amongst the projects is using GUAs with no overlap across the projects.

Security considerations

For more information about security considerations, see the Security groups section in OpenStack
Networking.

Configuring interfaces of the guest

OpenStack currently doesnt support the Privacy Extensions defined by RFC 4941, or the Opaque Iden-
tifier generation methods defined in RFC 7217. The interface identifier and DUID used must be directly
derived from the MAC address as described in RFC 2373. The compute instances must not be set up
to utilize either of these methods when generating their interface identifier, or they might not be able to
communicate properly on the network. For example, in Linux guests, these are controlled via these two
sysctl variables:

* net.ipv6.conf.*.use_tempaddr (Privacy Extensions)

This allows the use of non-changing interface identifiers for IPv6 addresses according to RFC3041 se-
mantics. It should be disabled (zero) so that stateless addresses are constructed using a stable, EUI64-
based value.

* net.ipv6.conf.*.addr_gen_mode

This defines how link-local and auto-configured IPv6 addresses are generated. It should be set to zero
(default) so that IPv6 addresses are generated using an EUI64-based value.

Note

Support for addr_gen_mode was added in kernel version 4.11.

Other types of guests might have similar configuration options, please consult your distribution docu-
mentation for more information.

Unlike IPv4, the MTU of a given network can be conveyed in both the Router Advertisement messages
sent by the router, as well as in DHCP messages.

254 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

OpenStack control & management network considerations

As of the Kilo release, considerable effort has gone in to ensuring the project network can handle dual
stack IPv6 and IPv4 transport across the variety of configurations described above. OpenStack control
network can be run in a dual stack configuration and OpenStack API endpoints can be accessed via an
IPv6 network. At this time, Open vSwitch (OVS) tunnel types - STT, VXLAN, GRE, support both IPv4
and IPv6 endpoints.

Prefix delegation

Warning

This feature is experimental with low test coverage, and the Dibbler client which is used for this feature
is no longer maintained. For details see: https://github.com/tomaszmrugalski/dibbler#project-status

From the Liberty release onwards, OpenStack Networking supports IPv6 prefix delegation. This section
describes the configuration and workflow steps necessary to use IPv6 prefix delegation to provide auto-
matic allocation of subnet CIDRs. This allows you as the OpenStack administrator to rely on an external
(to the OpenStack Networking service) DHCPv6 server to manage your project network prefixes.

Note

Prefix delegation became available in the Liberty release, it is not available in the Kilo release. HA
and DVR routers are not currently supported by this feature.

Configuring OpenStack Networking for prefix delegation

To enable prefix delegation, edit the /etc/neutron/neutron.conf file.

Note

If you are not using the default dibbler-based driver for prefix delegation, then you also need to set
the driver in /etc/neutron/neutron.conf:

[J

Drivers other than the default one may require extra configuration.

This tells OpenStack Networking to use the prefix delegation mechanism for subnet allocation when the
user does not provide a CIDR or subnet pool id when creating a subnet.

8.2. Configuration 255

https://github.com/tomaszmrugalski/dibbler#project-status

Neutron Documentation, Release 25.1.1.dev7

Requirements

To use this feature, you need a prefix delegation capable DHCPv6 server that is reachable from your
OpenStack Networking node(s). This could be software running on the OpenStack Networking node(s)
or elsewhere, or a physical router. For the purposes of this guide we are using the open-source DHCPv6
server, Dibbler. Dibbler is available in many Linux package managers, or from source at tomaszmrugal-
ski/dibbler.

When using the reference implementation of the OpenStack Networking prefix delegation driver, Dibbler
must also be installed on your OpenStack Networking node(s) to serve as a DHCPv6 client. Version 1.0.1
or higher is required.

This guide assumes that you are running a Dibbler server on the network node where the external network
bridge exists. If you already have a prefix delegation capable DHCPv6 server in place, then you can skip
the following section.

Configuring the Dibbler server

After installing Dibbler, edit the /etc/dibbler/server. conf file:

script "/var/lib/dibbler/pd-server.sh"

iface "br-ex" {
pd-class {
pd-pool 2001:db8:2222::/48
pd-length 64

The options used in the configuration file above are:

* script Points to a script to be run when a prefix is delegated or released. This is only needed if
you want instances on your subnets to have external network access. More on this below.

* iface The name of the network interface on which to listen for prefix delegation messages.

* pd-pool The larger prefix from which you want your delegated prefixes to come. The example
given is sufficient if you do not need external network access, otherwise a unique globally routable
prefix is necessary.

* pd-length The length that delegated prefixes will be. This must be 64 to work with the current
OpenStack Networking reference implementation.

To provide external network access to your instances, your Dibbler server also needs to create new routes
for each delegated prefix. This is done using the script file named in the config file above. Edit the
/var/lib/dibbler/pd-server. sh file:

sudo ip -6 route add /64 via dev

sudo ip -6 route del /64 via dev
(continues on next page)

256 Chapter 8. OpenStack Networking Guide

https://github.com/tomaszmrugalski/dibbler
https://github.com/tomaszmrugalski/dibbler

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

The variables used in the script file above are:
* $PREFIX1 The prefix being added/deleted by the Dibbler server.
* $1 The operation being performed.
* $REMOTE_ADDR The IP address of the requesting Dibbler client.
* $TFACE The network interface upon which the request was received.

The above is all you need in this scenario, but more information on installing, configuring, and running
Dibbler is available in the Dibbler user guide, at Dibbler a portable DHCPv6.

To start your Dibbler server, run:

[dibbler-server run }

Or to run in headless mode:

[dibbler-server start }

When using DevStack, it is important to start your server after the stack. sh script has finished to ensure
that the required network interfaces have been created.

User workflow

First, create a network and IPv6 subnet:

openstack network create ipv6-pd

(continues on next page)

8.2. Configuration 257

http://klub.com.pl/dhcpv6/doc/dibbler-user.pdf

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

openstack subnet create --ip-version 6 --ipv6-ra-mode slaac
--ipv6-address-mode slaac --use-prefix-delegation
--network ipv6-pd ipv6-pd-1

The subnet is initially created with a temporary CIDR before one can be assigned by prefix delegation.
Any number of subnets with this temporary CIDR can exist without raising an overlap error. The sub-
netpool_id is automatically set to prefix_delegation.

To trigger the prefix delegation process, create a router interface between this subnet and a router with
an active interface on the external network:

[openstack router add subnet routerl ipv6-pd-1]

The prefix delegation mechanism then sends a request via the external network to your prefix delegation
server, which replies with the delegated prefix. The subnet is then updated with the new prefix, including
issuing new IP addresses to all ports:

258 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

openstack subnet show ipv6-pd-1

If the prefix delegation server is configured to delegate globally routable prefixes and setup routes, then
any instance with a port on this subnet should now have external network access.

Deleting the router interface causes the subnet to be reverted to the temporary CIDR, and all ports have
their IPs updated. Prefix leases are released and renewed automatically as necessary.

References

The following presentation from the Barcelona Summit provides a great guide for setting up IPv6 with
OpenStack: Deploying IPv6 in OpenStack Environments.

8.2.17 Macvtap Mechanism Driver

The Macvtap mechanism driver for the ML2 plug-in generally increases network performance of in-
stances.

Consider the following attributes of this mechanism driver to determine practicality in your environment:

* Supports only instance ports. Ports for DHCP and layer-3 (routing) services must use another
mechanism driver such as Linux bridge or Open vSwitch (OVS).

* Supports only untagged (flat) and tagged (VLAN) networks.

* Lacks support for security groups including basic (sanity) and anti-spoofing rules.

8.2. Configuration 259

https://www.youtube.com/watch?v=j5hy11YlSOU

Neutron Documentation, Release 25.1.1.dev7

* Lacks support for layer-3 high-availability mechanisms such as Virtual Router Redundancy Proto-
col (VRRP) and Distributed Virtual Routing (DVR).

* Only compute resources can be attached via macvtap. Attaching other resources like DHCP,
Routers and others is not supported. Therefore run either OVS or linux bridge in VLAN or flat
mode on the controller node.

 Instance migration requires the same values for the physical_interface_mapping configura-
tion option on each compute node. For more information, see https://bugs.launchpad.net/neutron/
+bug/1550400.

Prerequisites

You can add this mechanism driver to an existing environment using either the Linux bridge or OVS
mechanism drivers with only provider networks or provider and self-service networks. You can change
the configuration of existing compute nodes or add compute nodes with the Macvtap mechanism driver.
The example configuration assumes addition of compute nodes with the Macvtap mechanism driver to
the Linux bridge: Self-service networks or Open vSwitch: Self-service networks deployment examples.

Add one or more compute nodes with the following components:
* Three network interfaces: management, provider, and overlay.

* OpenStack Networking Macvtap layer-2 agent and any dependencies.

Note

To support integration with the deployment examples, this content configures the Macvtap mechanism
driver to use the overlay network for untagged (flat) or tagged (VLAN) networks in addition to over-
lay networks such as VXLAN. Your physical network infrastructure must support VLAN (802.1q)
tagging on the overlay network.

Architecture

The Macvtap mechanism driver only applies to compute nodes. Otherwise, the environment resembles
the prerequisite deployment example.

260 Chapter 8. OpenStack Networking Guide

https://bugs.launchpad.net/neutron/+bug/1550400
https://bugs.launchpad.net/neutron/+bug/1550400

Neutron Documentation, Release 25.1.1.dev7

Compute Node Overview

Compute Node

() VLAN network

8.2. Configuration 261

Neutron Documentation, Release 25.1.1.dev7

Compute Node Components

Instance Instance Instance
| etho |
#

‘; VLAN Sub ‘ ‘ VLAN Sub
Interface Interface

Interface 2
{unnumibenad)
I_. 4 '.I
 VLANs
- ""\-..,._. B __.__-‘- 4
< Project Network 1 — Project Network 2
" VLAN network . 182.168.1.0/24 - 192.168.2.0/24

Example configuration

Use the following example configuration as a template to add support for the Macvtap mechanism driver
to an existing operational environment.

Controller node

1. Inthe m12_conf.ini file:

¢ Add macvtap to mechanism drivers.

[ml2]
macvtap

* Configure network mappings.

262 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Note

Use of macvtap is arbitrary. Only the self-service deployment examples require VLAN
ID ranges. Replace VLAN_ID_START and VLAN_ID_END with appropriate numerical val-
ues.

2. Restart the following services:

e Server
Network nodes

No changes.

Compute nodes

1. Install the Networking service Macvtap layer-2 agent.

2. In the neutron. conf file, configure common options:

See the Installation Tutorials and Guides and Configuration Reference for your OpenStack

release to obtain the appropriate additional configuration for the [DEFAULT], [database],
[keystone_authtoken], [nova], and [agent] sections.

3. In the macvtap_agent.ini file, configure the layer-2 agent.

8.2. Configuration 263

https://docs.openstack.org
https://docs.openstack.org

Neutron Documentation, Release 25.1.1.dev7

Replace MACVTAP_INTERFACE with the name of the underlying interface that handles Macv-
tap mechanism driver interfaces. If using a prerequisite deployment example, replace
MACVTAP_INTERFACE with the name of the underlying interface that handles overlay networks.
For example, ethl.

4. Start the following services:

* Macvtap agent

Verify service operation

1. Source the administrative project credentials.

2. Verify presence and operation of the agents:

-

openstack network agent list

Create initial networks

This mechanism driver simply changes the virtual network interface driver for instances. Thus, you can
reference the Create initial networks content for the prerequisite deployment example.

264 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Verify network operation

This mechanism driver simply changes the virtual network interface driver for instances. Thus, you can
reference the Verify network operation content for the prerequisite deployment example.

Network traffic flow

This mechanism driver simply removes the Linux bridge handling security groups on the compute nodes.
Thus, you can reference the network traffic flow scenarios for the prerequisite deployment example.

8.2.18 Metadata Service Caching

The OpenStack Networking service proxies requests that VMs send to the Compute service
to obtain their metadata. This functionality is provided by the neutron-metadata-agent or
neutron-ovn-metadata-agent, depending on the ML2 backend used in the deployment. To obtain
metadata from the Compute service, the instance ID needs to be sent to the nova-metadata-api. These
two metadata agents provide the same functionality, but do it in slightly different ways, the difference be-
ing how the metadata agents find out the ID of the instance which is asking for metadata:

* neutron-metadata-agent uses RPC to ask the neutron-server process for details about a port
with a specific fixed IP address connected to the given network or router (proxy service is spawned
for each Neutron router or Neutron network),

* neutron-ovn-metadata-agent checks the instance ID in the port details of the OVN Southband
DB.

For large scale deployments which are using the neutron-metadata-agent this may cause significant
load on the RPC bus and neutron-server, since by default for each request to the metadata service (169.
254.169.254), the proxy will need to send an RPC query to retrieve the port details, and cloud-init is
making many requests to this service during the VM boot process. To avoid this high load on the RPC
bus, the neutron-metadata-agent allows using a caching mechanism for port details. Neutron uses
oslo cache for this and it is configured through the following parameters in the cache section of the
metadata_agent.ini file:

* enabled: enables the caching mechanism.
* backend: backend module to be used for caching.

e expiration_time: TTL, in seconds, for cached items. In case of neutron-metadata-agent
it is recommended to use some low value here, for example, 10 seconds. Usually cloud-init will
make many requests to the metadata service in a short time during boot of a VM, so caching port
details for just a few seconds should be enough to avoid many RPC requests. On the other hand,
using too big a value may result in having cached details for a port which has already been deleted,
as a fixed IP address can be quickly re-associated to a new port in Neutron.

The oslo.cache module provides many more configuration options which can be used to tune this caching
mechanism. All of them are described in the oslo.cache documentation.

8.2. Configuration 265

https://cloudinit.readthedocs.io/
https://docs.openstack.org/oslo.cache/latest/index.html
https://docs.openstack.org/oslo.cache/latest/configuration/index.html

Neutron Documentation, Release 25.1.1.dev7

8.2.19 Metadata Service Query Rate-limiting

The OpenStack Networking service proxies the requests that VMs send to the Compute service to obtain
their metadata. The Networking service offers cloud administrators the ability to limit the rate at which
VMs query the Computes metadata service, in order to protect the OpenStack deployment from DoS or
misbehaved instances.

Metadata requests rate limiting is configured through the following parameters in the
metadata_rate_limiting section of neutron.conf:

* rate_limit_enabled: enables rate limiting of metadata requests. It is a boolean that is set to
False by default.

* ip_versions: list of comma separated strings that specify the metadata address versions (4 and/or
6) for which rate limiting must be enabled. The default is to configure rate limiting only for the
IPv4 address.

* base_window_duration: defines in seconds the duration of the base time sliding window in
which query requests will be rate limited. The default value is 10 seconds.

* base_query_rate_limit: maximum number of requests to be allowed during the base time
window. The default value is 10 requests.

* burst_window_duration: this parameter can be used to define, in seconds, a shorter sliding
window of time during which a requests rate higher than the base one will be allowed. The default
value is 10 seconds.

* burst_query_rate_limit: maximum number of requests to be allowed during the burst time
window. The default value is 10 requests.

Note

These parameters are used to configure HAProxy servers to perform the rate limiting. These servers
run inside L3 routers and DHCP agents in the OVS backend and the metadata agent in the OVN
backend.

Note

At the moment, rate limiting can only be configured either for IPv4 or IPv6 but not both at the same
time, due to a limitation in the open source version of HAProxy.

Note

From the point of view of the Networking services, the base and burst windows are just two different
sliding periods of time during which to enforce two different metadata requests rate limits. The Net-
working service doesnt enforce that the burst window should be shorter or that the burst rate should
be higher. It is recommended, though, that cloud administrators use the burst window to allow, for
shorter periods of time, a higher requests rate than the allowed during the base window, if there is a
need to do so.

In the following neutron.conf snippet, the Networking service is configured to allow VMs to query
the IPv4 metadata service address 6 times over a 60 seconds period, while allowing a higher rate of 2

266 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

queries during shorter periods of 10 seconds each:

8.2.20 ML2 Plug-in
Architecture

The Modular Layer 2 (ML2) neutron plug-in is a framework allowing OpenStack Networking to simul-
taneously use the variety of layer 2 networking technologies found in complex real-world data centers.
The ML2 framework distinguishes between the two kinds of drivers that can be configured:

* Type drivers
Define how an OpenStack network is technically realized. Example: VXLAN

Each available network type is managed by an ML2 type driver. Type drivers maintain any needed
type-specific network state. They validate the type specific information for provider networks and
are responsible for the allocation of a free segment in project networks.

¢ Mechanism drivers

Define the mechanism to access an OpenStack network of a certain type. Example: Open vSwitch
mechanism driver.

The mechanism driver is responsible for taking the information established by the type driver and
ensuring that it is properly applied given the specific networking mechanisms that have been en-
abled.

Mechanism drivers can utilize L2 agents (via RPC) and/or interact directly with external devices
or controllers.

Multiple mechanism and type drivers can be used simultaneously to access different ports of the same
virtual network.

Todo

Picture showing relationships

8.2. Configuration 267

Neutron Documentation, Release 25.1.1.dev7

ML2 driver support matrix

Table 2: Mechanism drivers and L2 agents

type driver / mech driver Flat VLAN VXLAN GRE Geneve
Open vSwitch yes yes yes yes yes
Linux bridge yes yes yes no no
OVN yes yes yes (requires OVN 20.09+) no yes
SRIOV yes yes no no no
MacVTap yes yes no no no
L2 population no no yes yes yes
Note

L2 population is a special mechanism driver that optimizes BUM (Broadcast, unknown destination
address, multicast) traffic in the overlay networks VXL AN, GRE and Geneve. It needs to be used in
conjunction with either the Linux bridge or the Open vSwitch mechanism driver and cannot be used
as standalone mechanism driver. For more information, see the Mechanism drivers section below.

Configuration

Network type drivers

To enable type drivers in the ML2 plug-in. Edit the /etc/neutron/plugins/ml2/ml2_conf.ini file:

Note

For more detailssee the Bug 1567792.

For more details, see the Networking configuration options of Configuration Reference.

The following type drivers are available

* Flat

* VLAN
* GRE

* VXLAN

268

Chapter 8. OpenStack Networking Guide

https://bugs.launchpad.net/openstack-manuals/+bug/1567792
../configuration/ml2-conf.html

Neutron Documentation, Release 25.1.1.dev7

Provider network types

Provider networks provide connectivity like project networks. But only administrative (privileged) users
can manage those networks because they interface with the physical network infrastructure. More infor-
mation about provider networks see OpenStack Networking.

¢ Flat

The administrator needs to configure a list of physical network names that can be used for provider
networks. For more details, see the related section in the Configuration Reference.

* VLAN

The administrator needs to configure a list of physical network names that can be used for provider
networks. For more details, see the related section in the Configuration Reference.

* GRE
No additional configuration required.
* VXLAN

The administrator can configure the VXLAN multicast group that should be used.

Note
VXLAN multicast group configuration is not applicable for the Open vSwitch agent.

As of today it is not used in the Linux bridge agent. The Linux bridge agent has its own agent
specific configuration option. For more details, see the Bug 1523614.

Project network types

Project networks provide connectivity to instances for a particular project. Regular (non-privileged)
users can manage project networks within the allocation that an administrator or operator defines for
them. More information about project and provider networks see OpenStack Networking.

Project network configurations are made in the /etc/neutron/plugins/ml2/ml2_conf.ini config-
uration file on the neutron server:

* VLAN

The administrator needs to configure the range of VLAN IDs that can be used for project network
allocation. For more details, see the related section in the Configuration Reference.

* GRE

The administrator needs to configure the range of tunnel IDs that can be used for project network
allocation. For more details, see the related section in the Configuration Reference.

* VXLAN

The administrator needs to configure the range of VXL AN IDs that can be used for project network
allocation. For more details, see the related section in the Configuration Reference.

8.2. Configuration 269

../configuration/ml2-conf.html#ml2-type-flat
../configuration/ml2-conf.html#ml2-type-vlan
https://bugs.launchpad.net/neutron/+bug/1523614
../configuration/ml2-conf.html#ml2-type-vlan
../configuration/ml2-conf.html#ml2-type-gre
../configuration/ml2-conf.html#ml2-type-vxlan

Neutron Documentation, Release 25.1.1.dev7

Note

Flat networks for project allocation are not supported. They only can exist as a provider network.

Mechanism drivers

To enable mechanism drivers in the ML2 plug-in, edit the /etc/neutron/plugins/ml2/ml2_conf.
ini file on the neutron server:

Note

For more details, see the Bug 1567792.

For more details, see the Configuration Reference.

Linux bridge

No additional configurations required for the mechanism driver. Additional agent configuration is
required. For details, see the related L2 agent section below.

Open vSwitch

No additional configurations required for the mechanism driver. Additional agent configuration is
required. For details, see the related L2 agent section below.

OVN

The administrator must configure some additional configuration options for the mechanism driver.
When this driver is used, architecture of the Neutron application in the cluster is different from
what it is with other drivers like e.g. Open vSwitch or Linuxbridge. For details, see OVN reference
architecture.

SRIOV
The SRIOV driver accepts all PCI vendor devices.
MacVTap

No additional configurations required for the mechanism driver. Additional agent configuration is
required. Please see the related section.

L2 population

The administrator can configure some optional configuration options. For more details, see the
related section in the Configuration Reference.

Specialized
— Open source

External open source mechanism drivers exist as well as the neutron integrated reference
implementations. Configuration of those drivers is not part of this document. For example:

270

Chapter 8. OpenStack Networking Guide

https://bugs.launchpad.net/openstack-manuals/+bug/1567792
../configuration/ml2-conf.html#ml2
../configuration/ml2-conf.html#l2pop

Neutron Documentation, Release 25.1.1.dev7

% OpenDaylight
% OpenContrail
— Proprietary (vendor)

External mechanism drivers from various vendors exist as well as the neutron integrated
reference implementations.

Configuration of those drivers is not part of this document.

Supported VNIC types

The vnic_type_prohibit_list option is used to remove values from the mechanism drivers
supported_vnic_types list.

Table 3: Mechanism drivers and supported VNIC types

mech driver / sup- supported VNIC types prohibiting available
ported_vnic_types

Linux bridge normal no

OVN normal, direct, di- no
rect_macvtap, di-
rect_physical

MacVTap macvtap no

Open vSwitch normal, direct yes (ovs_driver vnic_type_prohibit_list,

see: Configuration Reference)

SRIOV direct, macvtap, di- yes (sriov_driver vnic_type_prohibit_list,

rect_physical see: Configuration Reference)

Extension Drivers

The ML2 plug-in also supports extension drivers that allows other pluggable drivers to extend the core
resources implemented in the ML2 plug-in (networks, ports, etc.). Examples of extension drivers
include support for QoS, port security, etc. For more details see the extension_drivers configuration
option in the Configuration Reference.

Agents
L2 agent

An L2 agent serves layer 2 (Ethernet) network connectivity to OpenStack resources. It typically runs on
each Network Node and on each Compute Node.

* Open vSwitch agent

The Open vSwitch agent configures the Open vSwitch to realize L2 networks for OpenStack re-
sources.

Configuration for the Open vSwitch agent is typically done in the openvswitch_agent.ini con-
figuration file. Make sure that on agent start you pass this configuration file as argument.

8.2. Configuration 271

../configuration/ml2-conf.html#ovs_driver
../configuration/ml2-conf.html#sriov_driver
../configuration/ml2-conf.html#ml2.extension_drivers

Neutron Documentation, Release 25.1.1.dev7

For a detailed list of configuration options, see the related section in the Configuration Reference.
* Linux bridge agent
The Linux bridge agent configures Linux bridges to realize L2 networks for OpenStack resources.

Configuration for the Linux bridge agent is typically done in the 1inuxbridge_agent.ini con-
figuration file. Make sure that on agent start you pass this configuration file as argument.

For a detailed list of configuration options, see the related section in the Configuration Reference.
* SRIOV Nic Switch agent

The sriov nic switch agent configures PCI virtual functions to realize L2 networks for OpenStack
instances. Network attachments for other resources like routers, DHCP, and so on are not sup-
ported.

Configuration for the SRIOV nic switch agent is typically done in the sriov_agent.ini config-
uration file. Make sure that on agent start you pass this configuration file as argument.

For a detailed list of configuration options, see the related section in the Configuration Reference.
* MacVTap agent

The MacVTap agent uses kernel MacVTap devices for realizing L2 networks for OpenStack in-
stances. Network attachments for other resources like routers, DHCP, and so on are not supported.

Configuration for the MacVTap agent is typically done in the macvtap_agent.ini configuration
file. Make sure that on agent start you pass this configuration file as argument.

For a detailed list of configuration options, see the related section in the Configuration Reference.

L3 agent

The L3 agent offers advanced layer 3 services, like virtual Routers and Floating IPs. It requires an L2
agent running in parallel.

Configuration for the L3 agent is typically done in the 13_agent.ini configuration file. Make sure that
on agent start you pass this configuration file as argument.

For a detailed list of configuration options, see the related section in the Configuration Reference.

DHCP agent

The DHCP agent is responsible for DHCP (Dynamic Host Configuration Protocol) and RADVD (Router
Advertisement Daemon) services. It requires a running L2 agent on the same node.

Configuration for the DHCP agent is typically done in the dhcp_agent.ini configuration file. Make
sure that on agent start you pass this configuration file as argument.

For a detailed list of configuration options, see the related section in the Configuration Reference.

272 Chapter 8. OpenStack Networking Guide

../configuration/openvswitch-agent.html
../configuration/linuxbridge-agent.html
../configuration/sriov-agent.html
../configuration/macvtap-agent.html
../configuration/l3-agent.html
../configuration/dhcp-agent.html

Neutron Documentation, Release 25.1.1.dev7

Metadata agent

The Metadata agent allows instances to access cloud-init meta data and user data via the network. It
requires a running L2 agent on the same node.

Configuration for the Metadata agent is typically done in the metadata_agent.ini configuration file.
Make sure that on agent start you pass this configuration file as argument.

For a detailed list of configuration options, see the related section in the Configuration Reference.

L3 metering agent

The L3 metering agent enables layer3 traffic metering. It requires a running L3 agent on the same node.

Configuration for the L3 metering agent is typically done in the metering_agent.ini configuration
file. Make sure that on agent start you pass this configuration file as argument.

For a detailed list of configuration options, see the related section in the Configuration Reference.

Security

L2 agents support some important security configurations.
* Security Groups
For more details, see the related section in the Configuration Reference.
* Arp Spoofing Prevention

Configured in the L2 agent configuration.

Reference implementations

Overview

In this section, the combination of a mechanism driver and an L2 agent is called reference implementa-
tion. The following table lists these implementations:

Table 4: Mechanism drivers and L2 agents

Mechanism Driver L2 agent

Open vSwitch Open vSwitch agent

Linux bridge Linux bridge agent

OVN No (there is ovn-controller running on nodes)
SRIOV SRIOV nic switch agent

MacVTap MacVTap agent

L2 population Open vSwitch agent, Linux bridge agent

The following tables shows which reference implementations support which non-L2 neutron agents:

8.2. Configuration 273

../configuration/metadata-agent.html
../configuration/metering-agent.html
../configuration/ml2-conf.html#securitygroup

Neutron Documentation, Release 25.1.1.dev7

Table 5: Reference implementations and other agents

Reference Im- L3 agent DHCP agent Metadata agent L3 Me-
plementation tering
agent
Open vSwitch yes yes yes yes
& Open vSwitch
agent
Linux bridge yes yes yes yes
& Linux bridge
agent
OVN no (own L3 no (DHCP provided by yes (running on com- no
implementa- OVN, fully distributed) pute nodes, fully dis-
tion) tributed)
SRIOV & SRIOV no no no no
nic switch agent
MacVTap & no no no no

MacVTap agent

Note

L2 population is not listed here, as it is not a standalone mechanism. If other agents are supported
depends on the conjunctive mechanism driver that is used for binding a port.

More information about L2 population see the OpenStack Manuals.

Buying guide

This guide characterizes the L2 reference implementations that currently exist.

* Open vSwitch mechanism and Open vSwitch agent

Can be used for instance network attachments as well as for attachments of other network resources
like routers, DHCP, and so on.

Linux bridge mechanism and Linux bridge agent

Can be used for instance network attachments as well as for attachments of other network resources
like routers, DHCP, and so on.

OVN mechanism driver

Can be used for instance network attachments as well as for attachments of other network resources
like routers, metadata ports, and so on.

SRIOV mechanism driver and SRIOV NIC switch agent
Can only be used for instance network attachments (device_owner = compute).

Is deployed besides an other mechanism driver and L2 agent such as OVS or Linux bridge. It offers
instances direct access to the network adapter through a PCI Virtual Function (VF). This gives an
instance direct access to hardware capabilities and high performance networking.

274

Chapter 8. OpenStack Networking Guide

https://networkop.co.uk/blog/2016/05/06/neutron-l2pop/

Neutron Documentation, Release 25.1.1.dev7

The cloud consumer can decide via the neutron APIs VNIC_TYPE attribute, if an instance gets a
normal OVS port or an SRIOV port.

Due to direct connection, some features are not available when using SRIOV. For example, DVR,
security groups, migration.

For more information see the SR-I0V .
* MacVTap mechanism driver and MacVTap agent

Can only be used for instance network attachments (device_owner = compute) and not for attach-
ment of other resources like routers, DHCP, and so on.

It is positioned as alternative to Open vSwitch or Linux bridge support on the compute node for
internal deployments.

MacVTap offers a direct connection with very little overhead between instances and down to the
adapter. You can use MacVTap agent on the compute node when you require a network connection
that is performance critical. It does not require specific hardware (like with SRIOV).

Due to the direct connection, some features are not available when using it on the compute node.
For example, DVR, security groups and arp-spoofing protection.

8.2.21 MTU Considerations

The Networking service uses the MTU of the underlying physical network to calculate the MTU for
virtual network components including instance network interfaces. By default, it assumes a standard
1500-byte MTU for the underlying physical network.

The Networking service only references the underlying physical network MTU. Changing the underlying
physical network device MTU requires configuration of physical network devices such as switches and
routers.

Jumbo frames

The Networking service supports underlying physical networks using jumbo frames and also enables
instances to use jumbo frames minus any overlay protocol overhead. For example, an underlying physical
network with a 9000-byte MTU yields a 8950-byte MTU for instances using a VXLAN network with
IPv4 endpoints. Using IPv6 endpoints for overlay networks adds 20 bytes of overhead for any protocol.

The Networking service supports the following underlying physical network architectures. Case 1 refers
to the most common architecture. In general, architectures should avoid cases 2 and 3.

Note

After you adjust MTU configuration options in neutron. conf and m12_conf. ini, you should up-
date mtu attribute for all existing networks that need a new MTU. (Network MTU update is available
for all core plugins that implement the net-mtu-writable API extension.)

8.2. Configuration 275

Neutron Documentation, Release 25.1.1.dev7

Case 1

For typical underlying physical network architectures that implement a single MTU value, you can lever-
age jumbo frames using two options, one in the neutron. conf file and the other in the m12_conf.ini
file. Most environments should use this configuration.

For example, referencing an underlying physical network with a 9000-byte MTU:

1. In the neutron. conf file:

|

2. Inthe m12_conf. ini file:

|

Case 2

Some underlying physical network architectures contain multiple layer-2 networks with different MTU
values. You can configure each flat or VLAN provider network in the bridge or interface mapping options
of the layer-2 agent to reference a unique MTU value.

For example, referencing a 4000-byte MTU for provider2, a 1500-byte MTU for provider3, and a
9000-byte MTU for other networks using the Open vSwitch agent:

1. In the neutron. conf file:

(

2. Inthe openvswitch_agent.ini file:

-

L

3. Intheml2_conf.ini file:

276 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Case 3

Some underlying physical network architectures contain a unique layer-2 network for overlay networks
using protocols such as VXLAN and GRE.

For example, referencing a 4000-byte MTU for overlay networks and a 9000-byte MTU for other net-
works:

1. In the neutron. conf file:

| |

2. Inthe m12_conf. ini file:

| |

Note

Other networks including provider networks and flat or VLAN self-service networks assume
the value of the global_physnet_mtu option.

Instance network interfaces (VIFs)

The DHCP agent provides an appropriate MTU value to instances using IPv4, while the L3 agent provides
an appropriate MTU value to instances using IPv6. IPv6 uses RA via the L3 agent because the DHCP
agent only supports IPv4. Instances using IPv4 and IPv6 should obtain the same MTU value regardless
of method.

Note

If you are using an MTU value on your network below 1280, please read the warning listed in the
[Pv6 configuration guide before creating any subnets.

Networks with enabled vlan transparency

In case of networks with enabled vlan transparency, if additional vlan tag is configured inside guest VM,
MTU has to be lowered by 4 bytes to make space for additional vlan tag in the packets header. For
example, if networks MTU is set to 1500, value configured for the interfaces in the guest v should be
manually set to 1496 or less bytes.

8.2. Configuration 277

./config-ipv6.html#project-network-considerations

Neutron Documentation, Release 25.1.1.dev7

8.2.22 NDP Proxy

If NDP proxy is set on a router, it is used to publish IPv6 addresses to external routers. Its purpose is
similar to floating IP, but it forwards the traffic directly by using route rules and has no NAT action. Read
the related specification for more details.

Configuration of NDP proxy

To configure NDP proxy, take the following steps:
* On the controller nodes:

Add the ndp_prozxy service to the service_plugins setting in the [DEFAULT] section of /etc/
neutron/neutron.conf. For example:

Note

The router service plug-in has to be configured along with the ndp_proxy service plug-in.

* On the network nodes or the compute nodes (for the dvr mode router):

Set the extensions option in the [agent] section of /etc/neutron/13_agent.ini to include
ndp_proxy. This has to be done in each network and compute node where the L3 agent is running.
For example:

Note

After updating the options in the configuration files, the neutron-server and every neutron-13-agent
need to be restarted for the new values to take effect.

After configuring NDP proxy, the ndp-proxy extension alias will be included in the output of the
following command:

For API extension:

[openstack extension list --network]
For agent extension:

[openstack network agent show <l3-agent-id>]
Note

We introduced a new command ndsend for the NDP proxy feature, the command can send Neighbor
Advertisement about IPv6 to upstream router. With this command, we can make the upstream router

278 Chapter 8. OpenStack Networking Guide

https://specs.openstack.org/openstack/neutron-specs/specs/xena/l3-router-support-ndp-proxy.html

Neutron Documentation, Release 25.1.1.dev7

rapidly perceive the change of internal IPv6 address (such as, port migrated to other node). Read the
manual page for more details about this command.

Currently, you need to install this command manually in every L3 agent node. For Ubuntu, the com-
mand is provided by the vzctl pkg, the install command: sudo apt install vzctl.

* On the upstream router (the datacenters physical router):

Generally, the admin operator should plan one or more IPv6 subnetpools to use when NDP proxy
is enabled, so that all internal subnets can be allocated from a single, integrated subnetpool. In
order to make NDP proxy work correctly, the admin operator needs to set direct routes for these
subnetpools.

Such as, we have a IPv6 subnetpool, its CIDR is 2001:db8::/96. The direct route like below should
be set:

[20@1 :db8::/96 dev <ext-gw> }

The ext-gw is the gateway interface of the clouds external network.

User workflow

The basic steps to publish an IPv6 address to an external network (such as: public network) are the
following:

Note

In order to prevent a potential security risk, the NDP proxy feature requires that an IPv6 address scope
be used to ensure the uniqueness of the IPv6 address which is published externally.

1. Create an IPv6 address scope

openstack address scope create test-ipv6-as --ip-version

2. Create an IPv6 subnet pool

openstack subnet pool create test-subnetpool --address-scope test-ipv6-
—da$sS

--pool-prefix :db8::/96 --default-prefix-length

(continues on next page)

8.2. Configuration 279

http://manpages.ubuntu.com/manpages/focal/man8/ndsend.8.html
https://bugs.launchpad.net/neutron/+bug/1987410

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

3. Create an external network

-

openstack network create --external --provider-network-type flat
--provider-physical -network public public

(continues on next page)

280

Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

. Create an external subnet

openstack subnet create --network public --subnet-pool test-subnetpool

--prefix-length --ip-version

--no-dhcp ext-sub

5. Create a router:

-

openstack router create test-router

(continues on next page)

8.2. Configuration

281

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

6. Set external gateway for the router:

openstack router test-router --external-gateway public

Note

If the external network has no IPv6 subnet and the ipv6_gateway is configured on the
neutron-13-agent, you may want to set use_lla_address to True at /etc/neutron/
neutron. conf, otherwise the following command will raise a 403 error.

7. Enable NDP proxy support on the router:

[openstack router test-router --enable-ndp-proxy

Warning

If you are using another method (such as: BGP, Prefix delegation etc.) to publish the internal
IPv6 address, the command will break dataplane traffic.

8. Create an internal network and IPv6 subnet and add the subnet to the above router:

openstack network create int-net

(continues on next page)

282 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

openstack subnet create --network int-net --subnet-pool test-subnetpool..
--prefix-length --ip-version

--ipv6-ra-mode dhcpv6-stateful

--ipv6-address-mode dhcpv6-stateful int-sub

openstack router add subnet test-router int-sub

8.2. Configuration 283

Neutron Documentation, Release 25.1.1.dev7

9. Launch an instance:

openstack server create --flavor ml.tiny --image cirros-0.5.2-x86_64-
—disk --network int-net test-server

[}

(continues on next page)

284 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

—
.

10. Create NDP proxy for the instances port:

Query the port of the instance

openstack port list --server test-server

Create NDP proxy for the port

openstack router ndp proxy create test-router --port bdd64aa®-437a-4db6-
—bbca-99869426c908 --name test-np

(continues on next page)

8.2. Configuration 285

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

11. Then ping the ports address from the upstream router:

ping :db8::1:284

Note

You may also need to add a security group rule that allows ICMPv6 traffic towards the instance.

Known limitations

» Using NDP proxies in combination with the OVN backend is not supported.

8.2.23 Network Segment Ranges

The network segment range service exposes the segment range management to be administered via the
Neutron API. In addition, it introduces the ability for the administrator to control the segment ranges
globally or on a per-tenant basis.

Why you need it

Before Stein, network segment ranges were configured as an entry in ML.2 config filem12_conf.ini that
was statically defined for tenant network allocation and therefore had to be managed as part of the host
deployment and management. When a regular tenant user creates a network, Neutron assigns the next
free segmentation ID (VLAN ID, VNI etc.) from the configured segment ranges. Only an administrator
can assign a specific segment ID via the provider extension.

The network segment range management service provides the following capabilities that the administrator
may be interested in:

1. To check out the network segment ranges defined by the operators in the ML2 config file so that
the admin can use this information to make segment range allocation.

286 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

2. To dynamically create and assign network segment ranges, which can help with the distribution of
the underlying network connection mapping for privacy or dedicated business connection needs.
This includes:

* global shared network segment ranges
* tenant-specific network segment ranges

3. To dynamically update a network segment range to offer the ability to adapt to the connection
mapping changes.
4. To dynamically manage a network segment range when there are no segment ranges defined within

the ML2 config fileml2_conf. ini and no restart of the Neutron server is required in this situation.

5. To check the availability and usage statistics of network segment ranges.

How it works

A network segment range manages a set of segments from which self-service networks can be allocated.
The network segment range management service is admin-only.

As a regular project in an OpenStack cloud, you can not create a network segment range of your own and
you just create networks in regular way.

If you are an admin, you can create a network segment range which can be shared (i.e. used by any
regular project) or tenant-specific (i.e. assignment on a per-tenant basis). Your network segment ranges
will not be visible to any other regular projects. Other CRUD operations are also supported.

When a tenant allocates a segment, it will first be allocated from an available segment range assigned to
the tenant, and then a shared range if no tenant specific allocation is possible.

Default network segment ranges

A set of default network segment ranges are created out of the values defined in the ML?2 config file:
network_vlan_ranges for ml2_type_vlan, vni_ranges for ml2_type_vxlan, tunnel_id_ranges for
ml2_type_gre and vni_ranges for ml2_type_geneve. They will be reloaded when Neutron server starts
or restarts. The default network segment ranges are read-only, but will be treated as any other
shared ranges on segment allocation.

The administrator can use the default network segment range information to make shared and/or per-
tenant range creation and assignment.

Example configuration

Controller node

1. Enable the network segment range service plugin by appending network_segment_range to the
list of service_plugins in the neutron.conf file on all nodes running the neutron-server
service:

8.2. Configuration 287

Neutron Documentation, Release 25.1.1.dev7

2. Restart the neutron-server service.

Verify service operation

1. Source the administrative project credentials and list the enabled extensions.

2. Use the command openstack extension list --network to verify that the Neutron
Network Segment Range extension with Alias network-segment-range is enabled.

openstack extension list --network

Workflow

At a high level, the basic workflow for a network segment range creation is the following:
1. The Cloud administrator:
* Lists the existing network segment ranges.
* Creates a shared or a tenant-specific network segment range based on the requirement.

2. A regular tenant creates a network in regular way. The network created will automatically allocate
a segment from the segment ranges assigned to the tenant or shared if no tenant specific range
available.

At a high level, the basic workflow for a network segment range update is the following:
1. The Cloud administrator:
* Lists the existing network segment ranges and identifies the one that needs to be updated.
* Updates the network segment range based on the requirement.

2. A regular tenant creates a network in regular way. The network created will automatically allocate
a segment from the updated network segment ranges available.

288 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

List the network segment ranges or show a network segment range

As admin, list the existing network segment ranges:

openstack network segment range list

The network segment ranges with Default as True are the ranges specified by the operators in the ML2
config file. Besides, there are also shared and tenant specific network segment ranges created by the
admin previously.

The admin is also able to check/show the detailed information (e.g. availability and usage statistics) of a
network segment range:

openstack network segment range show test_range_1

(continues on next page)

8.2. Configuration 289

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

Create or update the network segment range

As admin, create a network segment range based on your requirement:

openstack network segment range create --private --project demo
--network-type vxlan --minimum --maximum test_range_4

Update a network segment range based on your requirement:

openstack network segment range --minimum --maximum
test_range_4

290 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Create a tenant network

Now, as project demo (to source the client environment script demo-openrc for demo project accord-
ing to https://docs.openstack.org/keystone/latest/install/keystone-openrc-rdo.html), create a network in
a regular way.

demo-openrc
openstack network create test_net

Then, switch back to the admin to check the segmentation ID of the tenant network created.

admin-openrc
openstack network show test_net

(continues on next page)

8.2. Configuration 291

https://docs.openstack.org/keystone/latest/install/keystone-openrc-rdo.html

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

The tenant network created automatically allocates a segment with segmentation ID 137 from the network
segment range with segmentation ID range 120-140 that is assigned to the tenant.

If no more available segment in the network segment range assigned to this tenant, then the segment
allocation would refer to the shared segment ranges to check whether theres one segment available. If
still there is no segment available, the allocation will fail as follows:

openstack network create test_net
Unable to create the network. No tenant network is available

In this case, the admin is advised to check the availability and usage statistics of the related network
segment ranges in order to take further actions (e.g. enlarging a segment range etc.).

292 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Known limitations

* This service plugin is only compatible with ML2 core plugin for now. However, it is possible for
other core plugins to support this feature with a follow-on effort.

8.2.24 Open vSwitch with DPDK Datapath

This page serves as a guide for how to use the OVS with DPDK datapath functionality available in the
Networking service as of the Mitaka release.

The basics

Open vSwitch (OVS) provides support for a Data Plane Development Kit (DPDK) datapath since OVS
2.2, and a DPDK-backed vhost-user virtual interface since OVS 2.4. The DPDK datapath provides
lower latency and higher performance than the standard kernel OVS datapath, while DPDK-backed
vhost-user interfaces can connect guests to this datapath. For more information on DPDK, refer to
the DPDK website.

OVS with DPDK, or OVS-DPDK, can be used to provide high-performance networking between in-
stances on OpenStack compute nodes.

Prerequisites

Using DPDK in OVS requires the following minimum software versions:
* OVS 24
* DPDK 2.0
* QEMU 2.1.0
* libvirt 1.2.13

Support of vhost-user multiqueue that enables use of multiqueue with virtio-net and igb_uio is
available if the following newer versions are used:

« OVS 25

« DPDK 2.2

« QEMU 2.5
e libvirt 1.2.17

In both cases, install and configure Open vSwitch with DPDK support for each node. For more informa-
tion, see the OVS-DPDK installation guide (select an appropriate OVS version in the Branch drop-down
menu).

Neutron Open vSwitch vhost-user Support for configuration of neutron OVS agent.

In case you wish to configure multiqueue, see the OVS configuration chapter on vhost-user in QEMU
documentation.

The technical background of multiqueue is explained in the corresponding blueprint.

8.2. Configuration 293

http://dpdk.org/
https://github.com/openvswitch/ovs/blob/master/Documentation/intro/install/dpdk.rst
http://wiki.qemu.org/Documentation/vhost-user-ovs-dpdk#Enabling_multi-queue
https://specs.openstack.org/openstack/nova-specs/specs/liberty/implemented/libvirt-virtiomq.html

Neutron Documentation, Release 25.1.1.dev7

Additionally, OpenStack supports vhost-user reconnect feature starting from the Ocata release, as
implementation of fix for bug 1604924. Starting from OpenStack Ocata release this feature is used
without any configuration necessary in case the following minimum software versions are used:

. OVS 2.6
« DPDK 16.07
« QEMU 2.7

The support of this feature is not yet present in the ML2 OVN mechanism driver.
Using vhost-user interfaces
Once OVS and neutron are correctly configured with DPDK support, vhost-user interfaces are com-

pletely transparent to the guest (except in case of multiqueue configuration described below). However,
guests must request huge pages. This can be done through flavors. For example:

[openstack flavor ml.large --property hw:mem_page_size large }

For more information about the syntax for hw:mem_page_size, refer to the Flavors guide.

Note

vhost-user requires file descriptor-backed shared memory. Currently, the only way to request this
is by requesting large pages. This is why instances spawned on hosts with OVS-DPDK must request
large pages. The aggregate flavor affinity filter can be used to associate flavors with large page support
to hosts with OVS-DPDK support.

Create and add vhost-user network interfaces to instances in the same fashion as conventional inter-
faces. These interfaces can use the kernel virtio-net driver or a DPDK-compatible driver in the guest

[openstack server create --nic net-id ... testserver

Using vhost-user multiqueue

To use this feature, the following should be set in the flavor extra specs (flavor keys):

[openstack flavor .large --property hw:vif multiqueue_enabled

|

This setting can be overridden by the image metadata property if the feature is enabled in the extra specs:

[openstack image --property IMAGE_NAME }

Support of virtio-net multiqueue needs to be present in kernel of guest VM and is available starting
from Linux kernel 3.8.

Check pre-set maximum for number of combined channels in channel configuration. Configuration of
OVS and flavor done successfully should result in maximum being more than 1):

[ethtool -1 INTERFACE_NAME

294 Chapter 8. OpenStack Networking Guide

https://bugs.launchpad.net/neutron/+bug/1604924
https://docs.openstack.org/nova/latest/admin/flavors.html

Neutron Documentation, Release 25.1.1.dev7

To increase number of current combined channels run following command in guest VM:

[ethtool -L INTERFACE_NAME combined QUEUES_NR

J

The number of queues should typically match the number of vCPUs defined for the instance. In newer
kernel versions this is configured automatically.

Known limitations

* This feature is only supported when using the libvirt compute driver, and the KVM/QEMU hyper-
visor.

* Huge pages are required for each instance running on hosts with OVS-DPDK. If huge pages are
not present in the guest, the interface will appear but will not function.

* Expect performance degradation of services using tap devices: these devices do not support
DPDK. Example services include DVR and FWaaS.

* When the ovs_use_veth option is set to True, any traffic sent from a DHCP namespace will have
an incorrect TCP checksum. This means that if enable_isolated_metadata is set to True and
metadata service is reachable through the DHCP namespace, responses from metadata will be
dropped due to an invalid checksum. In such cases, ovs_use_veth should be switched to False
and Open vSwitch (OVS) internal ports should be used instead.

8.2.25 Open vSwitch Hardware Offloading

The purpose of this page is to describe how to enable Open vSwitch hardware offloading functionality
available in OpenStack (using OpenStack Networking). This functionality was first introduced in the
OpenStack Pike release. This page intends to serve as a guide for how to configure OpenStack Networking
and OpenStack Compute to enable Open vSwitch hardware offloading.

The basics

Open vSwitch is a production quality, multilayer virtual switch licensed under the open source Apache 2.0
license. It is designed to enable massive network automation through programmatic extension, while still
supporting standard management interfaces and protocols. Open vSwitch (OVS) allows Virtual Machines
(VM) to communicate with each other and with the outside world. The OVS software based solution is
CPU intensive, affecting system performance and preventing fully utilizing available bandwidth.

Term Definition

PF Physical Function. The physical Ethernet controller that supports SR-IOV.

VF Virtual Function. The virtual PCle device created from a physical Ethernet
controller.

Representor Port Virtual network interface similar to SR-IOV port that represents Nova in-
stance.

First Compute Node OpenStack Compute Node that can host Compute instances (Virtual Ma-
chines).

Second Compute Node OpenStack Compute Node that can host Compute instances (Virtual Ma-
chines).

8.2. Configuration 295

Neutron Documentation, Release 25.1.1.dev7

Supported Ethernet controllers

The following manufacturers are known to work:
¢ Mellanox ConnectX-4 NIC (VLAN Offload)
* Mellanox ConnectX-4 Lx/ConnectX-5 NICs (VLAN/VXLAN Offload)
* Broadcom NetXtreme-S series NICs
* Broadcom NetXtreme-E series NICs

For information on Mellanox Ethernet Cards, see Mellanox: Ethernet Cards - Overview.

Prerequisites

* Linux Kernel >=4.13
* Open vSwitch >=2.8
* iproute >=4.12

¢ Mellanox or Broadcom NIC

Note

Mellanox NIC FW that supports Open vSwitch hardware offloading:
ConnectX-5 >=16.21.0338

ConnectX-4 >=12.18.2000

ConnectX-4 Lx >=14.21.0338

Using Open vSwitch hardware offloading

In order to enable Open vSwitch hardware offloading, the following steps are required:
1. Enable SR-IOV
2. Configure NIC to switchdev mode (relevant Nodes)

3. Enable Open vSwitch hardware offloading

Note

Throughout this guide, enp3s0£0 is used as the PF and eth3 is used as the representor port. These
ports may vary in different environments.

Note

Throughout this guide, we use systemctl to restart OpenStack services. This is correct for systemd
OS. Other methods to restart services should be used in other environments.

296 Chapter 8. OpenStack Networking Guide

http://www.mellanox.com/page/ethernet_cards_overview

Neutron Documentation, Release 25.1.1.dev7

Create Compute virtual functions

Create the VFs for the network interface that will be used for SR-IOV. We use enp3s0£0 as PF, which
is also used as the interface for the VLAN provider network and has access to the private networks of all
nodes.

Note
The following steps detail how to create VFs using Mellanox ConnectX-4 and SR-IOV Ethernet cards
on an Intel system. Steps may be different for the hardware of your choice.
1. Ensure SR-IOV and VT-d are enabled on the system. Enable IOMMU in Linux by adding
intel_iommu=on to kernel parameters, for example, using GRUB.

2. On each Compute node, create the VFs:

[

Note

A network interface can be used both for PCI passthrough, using the PF, and SR-IOV, using
the VFs. If the PF is used, the VF number stored in the sriov_numvfs file is lost. If the PF
is attached again to the operating system, the number of VFs assigned to this interface will
be zero. To keep the number of VFs always assigned to this interface, update a relevant file
according to your OS. See some examples below:

In Ubuntu, modifying the /etc/network/interfaces file:

. J

In Red Hat, modifying the /sbin/ifup-local file:

> /sys/class/net/enp3s0f0/device/sriov_numvfs

Warning

Alternatively, you can create VFs by passing the max_vfs to the kernel module of your network
interface. However, the max_vfs parameter has been deprecated, so the PCI /sys interface is
the preferred method.

You can determine the maximum number of VFs a PF can support:

8.2. Configuration 297

Neutron Documentation, Release 25.1.1.dev7

3. Verify that the VFs have been created and are in up state:

Note
The PCI bus number of the PF (03:00.0) and VFs (03:00.2 .. 03:00.5) will be used later.

:00.0 Ethernet controller: Mellanox Technologies MT27800 Family..
— ConnectX-5

:00.1 Ethernet controller: Mellanox Technologies MT27800 Family..
— ConnectX-5

:00.2 Ethernet controller: Mellanox Technologies MT27800 Family..
— ConnectX-5 Virtual Function

:00.3 Ethernet controller: Mellanox Technologies MT27800 Family..
— ConnectX-5 Virtual Function

:00.4 Ethernet controller: Mellanox Technologies MT27800 Family..
— ConnectX-5 Virtual Function

:00.5 Ethernet controller: Mellanox Technologies MT27800 Family..
— ConnectX-5 Virtual Function

: enp3s0f0: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu gdisc mg state UP,
—mode DEFAULT glen

link/ether a0:36:9f:8f:3f:b8 brd ff:ff:ff:ff:ff:ff

vi 0 MAC :00:00:00:00:00, spoof checking on, link-state auto

vE 1 MAC :00:00:00:00:00, spoof checking on, link-state auto

vE 2 MAC :00:00:00:00:00, spoof checking on, link-state auto

vEf 3 MAC :00:00:00:00:00, spoof checking on, link-state auto

L J

If the interfaces are down, set them to up before launching a guest, otherwise the instance will fail
to spawn:

E J

Configure Open vSwitch hardware offloading

1. Change the e-switch mode from legacy to switchdev on the PF device. This will also create the
VF representor network devices in the host OS.

[1

This tells the driver to unbind VF 03:00.2

Note
This should be done for all relevant VFs (in this example 0000:03:00.2 .. 0000:03:00.5)

2. Enable Open vSwitch hardware offloading, set PF to switchdev mode and bind VFs back.

298 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Note
This should be done for all relevant VFs (in this example 0000:03:00.2 .. 0000:03:00.5)

3. Restart Open vSwitch

Note

The given aging of OVS is given in milliseconds and can be controlled with:

Configure Nodes (VLAN Configuration)

1. Update /etc/neutron/plugins/ml2/ml2_conf.ini on Controller nodes

2. Update /etc/neutron/neutron.conf on Controller nodes

-

3. Update /etc/nova/nova.conf on Controller nodes

L

4. Update /etc/nova/nova.conf on Compute nodes

8.2. Configuration 299

Neutron Documentation, Release 25.1.1.dev7

Configure Nodes (VXLAN Configuration)

1. Update /etc/neutron/plugins/ml2/ml2_conf.ini on Controller nodes

2. Update /etc/neutron/neutron.conf on Controller nodes

|

3. Update /etc/nova/nova.conf on Controller nodes

|

4. Update /etc/nova/nova.conf on Compute nodes

Note

VXLAN configuration requires physical_network to be null.

5. Restart nova and neutron services

Validate Open vSwitch hardware offloading

Note

In this example we will bring up two instances on different Compute nodes and send
ICMP echo packets between them. Then we will check TCP packets on a representor
port and we will see that only the first packet will be shown there. All the rest will be
offloaded.

1. Create a port direct on private network

[

300 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

2. Create an instance using the direct port on First Compute Node

3. Repeat steps above and create a second instance on Second Compute Node

Note

You can use availability-zone nova:compute_node_1 option to set the desired Compute Node

4. Connect to instancel and send ICMP Echo Request packets to instance2

vm_1# ping vm2

5. Connect to Second Compute Node and find representor port of the instance

Note

Find a representor port first, in our case its eth3

(continues on next page)

8.2. Configuration 301

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

6. Check traffic on the representor port. Verify that only the first ICMP packet appears.

-

8.2.26 Open vSwitch Native Firewall Driver

Historically, Open vSwitch (OVS) could not interact directly with iptables to implement security groups.
Thus, the OVS agent and Compute service use a Linux bridge between each instance (VM) and the OVS
integration bridge br-int to implement security groups. The Linux bridge device contains the iptables
rules pertaining to the instance. In general, additional components between instances and physical net-
work infrastructure cause scalability and performance problems. To alleviate such problems, the OVS
agent includes an optional firewall driver that natively implements security groups as flows in OVS rather
than the Linux bridge device and iprables. This increases scalability and performance.

302 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Configuring heterogeneous firewall drivers

L2 agents can be configured to use differing firewall drivers. There is no requirement that they all be the
same. If an agent lacks a firewall driver configuration, it will default to what is configured on its server.
This also means there is no requirement that the server has any firewall driver configured at all, as long
as the agents are configured correctly.

Prerequisites

The native OVS firewall implementation requires kernel and user space support for conntrack, thus requir-
ing minimum versions of the Linux kernel and Open vSwitch. All cases require Open vSwitch version
2.5 or newer.

» Kernel version 4.3 or newer includes conntrack support.

» Kernel version 3.3, but less than 4.3, does not include conntrack support and requires building the
OVS modules.

It also requires the conntrack kernel module(s) to be loaded, which varies depending on the kernel version.
* Kernel version 4.19 or newer requires the nf_conntrack module.

» Kernel versions 4.18 or older require the nf_conntrack_ipv4 and nf_conntrack_ipv6 modules.

Enable the native OVS firewall driver

* On nodes running the Open vSwitch agent, edit the openvswitch_agent.ini file and enable the
firewall driver.

For more information, see the Open vSwitch Firewall Driver and the video.

Using GRE tunnels inside VMs with OVS firewall driver

If GRE tunnels from VM to VM are going to be used, the native OVS firewall implementation requires
nf_conntrack_proto_gre module to be loaded in the kernel on nodes running the Open vSwitch agent.
It can be loaded with the command:

[modprobe nf_conntrack_proto_gre }

Some Linux distributions have files that can be used to automatically load kernel modules at boot time,
for example, /etc/modules. Check with your distribution for further information.

This isnt necessary to use gre tunnel network type Neutron.

8.2. Configuration 303

https://www.youtube.com/watch?v=SOHeZ3g9yxM

Neutron Documentation, Release 25.1.1.dev7

Differences between OVS and iptables firewall drivers

Both OVS and iptables firewall drivers should always behave in the same way if the same rules are
configured for the security group. But in some cases that is not true and there may be slight differences
between those drivers.

Case ovs iptables
Traffic marked as INVALID by conntrack but Blocked Allowed because it first matches SG
matching some of the SG rules (please check' and” rule, never reaches rule to drop invalid
for details) packets
Multicast traffic sent in the group 224.0.0.X Al- Blocked, Can be enabled by SG rule.
(please check® for details) lowed

always

Open Flow rules processing considerations

The native Open vSwitch firewall driver increases the number of Open Flow rules to be installed in the
integration bridge, that could be up to thousands of entries, depending on the number or rules, rule type
and number of ports in the compute node.

By default, these rules are written into the integration bridge in batches. The _constants.
AGENT_RES_PROCESSING_STEP constant defines how many rules are written in a single operation. It is
set to 100.

As seen in LP#1934917, during the Open Flow processing (that could be better displayed during the OVS
agent initial transient period), there could be some inconsistencies in the port rules. In order to avoid them,
the configuration variable OVS . openflow_processed_per_port allows to process all Open Flow rules
related to a single port in a single transaction.

The following script provides a tool to measure, in each deployment, the processing time when using
OVS.openflow_processed_per_port or the default _constants.AGENT_RES_PROCESSING_STEP:

openstack network create net-scale

openstack subnet create --subnet-range .250.0.0/16 --network net-scale snet-
—scale
i ..400

openstack port create
--security-group <security_group_id>
--device-owner testing:scale
--binding-profile <compute_node_host_name>
--network net-scale test-large-scale-port-

(continues on next page)

! https://bugs.launchpad.net/neutron/+bug/ 1460741
2 https://bugs.launchpad.net/neutron/+bug/ 1896587
3 https://bugs.launchpad.net/neutron/+bug/188963 1

304 Chapter 8. OpenStack Networking Guide

https://bugs.launchpad.net/neutron/+bug/1934917
https://bugs.launchpad.net/neutron/+bug/1460741
https://bugs.launchpad.net/neutron/+bug/1896587
https://bugs.launchpad.net/neutron/+bug/1889631

Neutron Documentation, Release 25.1.1.dev7

.. 4000

(continued from previous page)

curl -g -i -X POST http://controller:9696/v2.0/security-group-rules
-H -H
-H -H
-d
> > /dev/null
$ p openstack port list -f value -c id -c name -c mac_address -c.

—fixed_ips grep test-

large-scale-port

cut -f3 -d
cut -£f7 -d cut -f2 -d
cut -f1 -d cut -b 1-11
ovs-vsctl --may-exist add-port br-int -- Interface
internal
-- Interface external-ids:attached-mac
-- Interface external-ids:iface-id
-- Interface external-ids:iface-status active
sleep 0.2
ip link dev address
ip addr add dev
ip link up

8.2.

Configuration

305

Neutron Documentation, Release 25.1.1.dev7

Permitted ethertypes

The OVS Firewall blocks traffic that does not have either the IPv4 or IPv6 ethertypes at present. This is
a behavior change compared to the iptables_hybrid firewall, which only operates on IP packets and thus
does not address other ethertypes. With the configuration option permitted_ethertypes itis possible
to define a set of allowed ethertypes. Any traffic with these allowed ethertypes with destination to a local
port or generated from a local port and MAC address, will be allowed.

References
8.2.27 Packet Logging Framework

Packet logging service is designed as a Neutron plug-in that captures network packets for relevant re-
sources (e.g. security group or firewall group) when the registered events occur.

ML2/OVN Driver

Supported loggable resource types

From the Wallaby release the ML2/OVN driver supports the security_group resource.

The following diagram shows a mapping from Neutron security group framework to the ACLs, which
are the resources where we enable the logging when using ML2/OVN. Each security group rule maps to
an ACL associated to a port group that contains all the ports belonging to the security group.

Mapping Security group rules to ACLs AcL

from-lport allow-related

Inport ==
@pg_1a307721 ec83 47d5_88ba_

b9038e88c3f4 && ip6
VM1 &
(serverl) secur'ty Group
)

(secaroupd | Port Group ACL

15307721-ec83_47d5-88ba-b9038e88c3f4 (@pg_la30772]_ec83 47d5 88 [| to-iport allow-related
VM2 ba_b9038e88c3f4)
(server2) outport ==

Security group Rule @pg_1a30772] ec83_47d5_88ba_

Accept ICMP b9038e88c3f4 && ip4 && ip4.src
==0.0.0.0/0 && icmp4

F

ACL
from-lport allow-related
inport ==

Neutron OVN @pg_l1a30772]_ec83_47d5_88ba_

b9038e88c34 &% ip4

For more details on the developing peculiarities of this implementation, you can check the contributors
documentation.

306 Chapter 8. OpenStack Networking Guide

https://docs.openstack.org/neutron/latest/contributor/internals/ovn/ovn_network_logging.html
https://docs.openstack.org/neutron/latest/contributor/internals/ovn/ovn_network_logging.html

Neutron Documentation, Release 25.1.1.dev7

Service Configuration

To enable the logging service, add log to the service_plugins setting in /etc/neutron/neutron.
conf:

[service_plugins = router,metering, log }

It is possible to set parameters in ml2_conf.ini to tune how we want to log the packets by modify-
ing rate_limit and burst_limit in section [network_log] in /etc/neutron/plugins/ml2/
ml2_conf.ini:

* rate_limit - Limit the packet rate of the logs that are sent to the OVN controller, in packets per
second. The higher the number, the more logs we will get in the log file.

* burst_limit - Increase the packet rate limit by the specified value for a short period of time.

Note

There is a minimum value for these parameters. For rate_limit it is 100 and for burst_limit it
is 25.

In order to make the changes to rate and burst effective, restart the neutron-server service. To ensure
the configuration for rate and burst was updated, check the meter-band table on the OVN Northbound
database. You need to create at least one log object to see the meter band entry created.

ovn-nbctl list meter-band

Service workflow

Create a logging resource with security group as resource type:

openstack network log create --resource-type security_group
--resource sgl --event ALL logl

(continues on next page)

8.2. Configuration 307

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

Note

Due to the internal design of the ML2/OVN driver, there is one ACL that aggregates all dropped
traffic, instead of having one drop ACL per security group. Since the smallest logging unit in OVN is
the ACL, that means that if we choose to log DROP traffic, we will get traffic logged from all security
groups.

If we choose to log ALL traffic, we will get the accepted traffic from the selected security group, but
the dropped traffic from all security groups.

This can change in following releases if the ACL management is redesigned in OVN.

Warning

We cannot assign individual ports when using ML2/OVN, so the --target parameter is not used.

Just as with ML2/OVS, we can enable or disable logging objects at runtime. If we have two objects
targeted to log the same resource, as long as one of them is enabled, the resource will be logged on the
logfile.

Understanding the logging

In ML2/OVN we find the packet monitoring logging recorded on each ovn-controller.log file within
the compute nodes. This means that we will have as many logfiles as compute nodes, because each OVN
controller has the capacity of logging only the traffic they manage. The location of the OVN controller
log may differ depending on the distribution, please consult your installation documentation for more
details. The format of the logging is:

In this example, the name is neutron-<security group log object ID>. We can also see the
verdict, the severity, the direction of the datagram and the content.

308 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

ML2/OVS Driver

Log C: Virtual Router

Rule: DENY &)
(FlrewaIIGroup Rule: ALLOW-:)
4

] .
(Rule: DROP & 7 Security Group) Virtual network

&

Supported loggable resource types

(‘Rule: ACCEPT

From Rocky Release, the ML2/OVS driver supports both security_group and firewall_group as
resource types in the Neutron packet logging framework.

Service Configuration

To enable the logging service, follow the below steps.

1. On Neutron controller node, add log to service_plugins setting in /etc/neutron/neutron.
conf file. For example:

service_plugins = router,metering,log

2. To enable logging service for security_group in Layer 2, add 1log to option extensions in
section [agent] in /etc/neutron/plugins/ml2/ml2_conf.ini for controller node and in
/etc/neutron/plugins/ml2/openvswitch_agent.ini for compute/network nodes. For ex-
ample:

Note

Fwaas v2 log is currently only supported by openvswitch, the firewall logging driver of lin-
uxbridge is not implemented.

8.2. Configuration 309

Neutron Documentation, Release 25.1.1.dev7

3. To enable logging service for firewall _group in Layer 3, add fwaas_v2_log to option
extensions in section [AGENT] in /etc/neutron/13_agent.ini for network nodes. For ex-
ample:

4. On compute/network nodes, add configuration for logging service to [network_log] in /etc/
neutron/plugins/ml2/openvswitch_agent.ini and in /etc/neutron/13_agent.ini as
shown below:

In which, rate_limit is used to configure the maximum number of packets to be logged per
second (packets per second). When a high rate triggers rate_limit, logging queues packets
to be logged. burst_limit is used to configure the maximum of queued packets. And logged
packets can be stored anywhere by using local_output_log_base.

Note
* It requires at least 100 for rate_limit and at least 25 for burst_limit.
e If rate_limit is unset, logging will log unlimited.

* If we dont specify local_output_log_base, logged packets will be stored in system
journal like /var/log/syslog by default.

Trusted projects policy.yaml configuration

With the default /etc/neutron/policy.yaml, administrators must set up resource logging on behalf
of the cloud projects.

If projects are trusted to administer their own loggable resources in their cloud, neutrons policy file
policy.yaml can be modified to allow this.

Modify /etc/neutron/policy.yaml entries as follows:

"get_loggable_resources": "rule:regular_user",
"create_log": "rule:regular_user",

"get_log": "rule:regular_user",

"get_logs": "rule:regular_user",

"update_log": "rule:regular_user",
"delete_log": "rule:regular_user",

310 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Service workflow for Operator

1. To check the loggable resources that are supported by framework:

-

openstack network loggable resources list

Note

* In VM ports, logging for security_group in currently works with openvswitch fire-
wall driver only. 1inuxbridge is under development.

* Logging for firewall_group works on internal router ports only. VM ports would be
supported in the future.

2. Log creation:

* Create a logging resource with an appropriate resource type

-

openstack network log create --resource-type security_group
--description
--event ALL Log_Created

Warning

In the case of --resource and --target are not specified from the request, these argu-
ments will be assigned to ALL by default. Hence, there is an enormous range of log events
will be created.

8.2. Configuration 311

Neutron Documentation, Release 25.1.1.dev7

* Create logging resource with a given resource (sgl or fwgl)

openstack network log create my-log --resource-type security_group..
—--resource sgl

openstack network log create my-log --resource-type firewall group..
—--resource fwgl

* Create logging resource with a given target (portA)

e N

openstack network log create my-log --resource-type security_group..
—--target portA

L J

Create logging resource for only the given target (portB) and the given resource (sgl or fwgl)

openstack network log create my-log --resource-type security_group..
—--target portB --resource sgl

openstack network log create my-log --resource-type firewall group..
—,--target portB --resource fwgl

Note

* The Enabled field is set to True by default. If enabled, logged events are written to the
destination if local_output_log_base is configured or /var/log/syslog in default

* The Event field will be set to ALL if --event is not specified from log creation request.

3. Enable/Disable log

We can enable or disable logging objects at runtime. It means that it will apply to all registered
ports with the logging object immediately. For example:

openstack network log --disable Log_Created
openstack network log show Log_Created

312 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Logged events description

Currently, packet logging framework supports to collect ACCEPT or DROP or both events related to regis-
tered resources. As mentioned above, Neutron packet logging framework offers two loggable resources
through the log service plug-in: security_group and firewall_group.

The general characteristics of each event will be shown as the following:

* Logevery DROP event: Every DROP security events will be generated when an incoming or outgoing
session is blocked by the security groups or firewall groups

* Log an ACCEPT event: The ACCEPT security event will be generated only for each NEW incoming or
outgoing session that is allowed by security groups or firewall groups. More details for the ACCEPT
events are shown as bellow:

— North/South ACCEPT: For a North/South session there would be a single ACCEPT event irre-
spective of direction.

— East/West ACCEPT/ACCEPT: In an intra-project East/West session where the originating port
allows the session and the destination port allows the session, i.e. the traffic is allowed, there
would be two ACCEPT security events generated, one from the perspective of the originating
port and one from the perspective of the destination port.

— East/West ACCEPT/DROP: In an intra-project East/West session initiation where the originat-
ing port allows the session and the destination port does not allow the session there would
be ACCEPT security events generated from the perspective of the originating port and DROP
security events generated from the perspective of the destination port.

1. The security events that are collected by security group should include:
* A timestamp of the flow.
* A status of the flow ACCEPT/DROP.

* An indication of the originator of the flow, e.g which project or log resource generated the
events.

* An identifier of the associated instance interface (neutron port id).
* A layer 2, 3 and 4 information (mac, address, port, protocol, etc).
* Security event record format:

Logged data of an ACCEPT event would look like:

(continues on next page)

8.2. Configuration 313

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

Logged data of a DROP event:

2. The events that are collected by firewall group should include:

* A timestamp of the flow.

* A status of the flow ACCEPT/DROP.

* The identifier of log objects that are collecting this event

* An identifier of the associated instance interface (neutron port id).
* A layer 2, 3 and 4 information (mac, address, port, protocol, etc).
* Security event record format:

Logged data of an ACCEPT event would look like:

(

(continues on next page)

314

Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

Logged data of a DROP event:

Note

No other extraneous events are generated within the security event logs, e.g. no debugging data, etc.

8.2.28 Quality of Service (QoS)

QoS is defined as the ability to guarantee certain network requirements like bandwidth, latency, jitter,
and reliability in order to satisfy a Service Level Agreement (SLA) between an application provider and
end users.

Network devices such as switches and routers can mark traffic so that it is handled with a higher priority
to fulfill the QoS conditions agreed under the SLA. In other cases, certain network traffic such as Voice
over IP (VoIP) and video streaming needs to be transmitted with minimal bandwidth constraints. On a
system without network QoS management, all traffic will be transmitted in a best-effort manner making
it impossible to guarantee service delivery to customers.

QoS is an advanced service plug-in. QoS is decoupled from the rest of the OpenStack Networking code
on multiple levels and it is available through the ml2 extension driver.

Details about the DB models, API extension, and use cases are out of the scope of this guide but can be
found in the Neutron QoS specification.

8.2. Configuration 315

https://specs.openstack.org/openstack/neutron-specs/specs/liberty/qos-api-extension.html

Neutron Documentation, Release 25.1.1.dev7

Supported QoS rule types

QoS supported rule types are now available as VALID_RULE_TYPES in QoS rule types:

* bandwidth_limit: Bandwidth limitations on networks, ports or floating IPs.

* packet_rate_limit: Packet rate limitations on certain types of traffic.

* dscp_marking: Marking network traffic with a DSCP value.

* minimum_bandwidth: Minimum bandwidth constraints on certain types of traffic.

* minimum_packet_rate: Minimum packet rate constraints on certain types of traffic.

Any QoS driver can claim support for some QoS rule types by providing a driver property called
supported_rules, the QoS driver manager will recalculate rule types dynamically that the QoS driver
supports. In the most simple case, the property can be represented by a simple Python list defined on the

class.

The following table shows the Networking back ends, QoS supported rules, and traffic directions (from
the VM point of view).

Table 6: Networking back ends, supported rules, and traffic di-

rection
Rule \ back end Open vSwitch SR-I0V Linux bridge OVN
Bandwidth limit ~ Egress \ Ingress Egress (1) Egress \ Ingress Egress \ Ingress

Packet rate limit

Minimum band-
width

Minimum packet
rate

DSCP marking

Egress \ Ingress

Egress \ Ingress

2

Egress

Egress \ Ingress

2

Egress

Egress

Note

(1) Max burst parameter is skipped because it is not supported by the IP tool.

(2) Placement based enforcement works for both egress and ingress directions, but dataplane en-
forcement depends on the backend.

316

Chapter 8. OpenStack Networking Guide

https://opendev.org/openstack/neutron-lib/src/branch/master/neutron_lib/services/qos/constants.py

Neutron Documentation, Release 25.1.1.dev7

Table 7: Neutron backends, supported directions and enforce-
ment types for Minimum Bandwidth rule

Enforcement Open vSwitch SR-I0V Linux Bridge OVN
type Backend

Dataplane Egress (3) Egress (1) . .

Placement Egress/Ingress Egress/Ingress . .
(2) (2)

Note

(1) Since Newton
(2) Since Stein

(3) Open vSwitch minimum bandwidth support is only implemented for egress direction and only
for networks without tunneled traffic (only VLAN and flat network types).

Note

The SR-IOV agent does not support dataplane enforcement for ports with direct-physical
vnic_type. However since Yoga the Placement enforcement is supported for this vnic_type too.

Table 8: Neutron backends, supported directions and enforce-
ment types for Minimum Packet Rate rule

Enforcement Open vSwitch SR-10V Linux Bridge OVN
type Backend

Dataplane

Placement Any(1)/Egress/Ingr . . .
2

Note

(1) Minimum packet rate rule supports any direction that can be used with non-hardware-offloaded
OVS deployments, where packets processed from both ingress and egress directions are handled
by the same set of CPU cores.

(2) Since Yoga.

For an ml2 plug-in, the list of supported QoS rule types and parameters is defined as a common subset of
rules supported by all active mechanism drivers. A QoS rule is always attached to a QoS policy. When
a rule is created or updated:

8.2. Configuration 317

Neutron Documentation, Release 25.1.1.dev7

* The QoS plug-in will check if this rule and parameters are supported by any active mechanism
driver if the QoS policy is not attached to any port or network.

* The QoS plug-in will check if this rule and parameters are supported by the mechanism drivers
managing those ports if the QoS policy is attached to any port or network.

Valid DSCP Marks

Valid DSCP mark values are even numbers between 0 and 56, except 2-6, 42, and 50-54. The full list of
valid DSCP marks is:

0, 8,10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 44, 46, 48, 56

L3 QoS support
The Neutron L3 services have implemented their own QoS extensions. Currently only bandwidth limit
QoS is provided. This is the L3 QoS extension list:

* Floating IP bandwidth limit: the rate limit is applied per floating IP address independently.

* Gateway IP bandwidth limit: the rate limit is applied in the router namespace gateway port (or in
the SNAT namespace in case of DVR edge router). The rate limit applies to the gateway IP; that
means all traffic using this gateway IP will be limited. This rate limit does not apply to the floating
IP traffic.

L3 services that provide QoS extensions:
* L3 router: implements the rate limit using Linux TC.
* OVN L3: implements the rate limit using the OVN QoS metering rules.

The following table shows the L3 service, the QoS supported extension, and traffic directions (from the
VM point of view) for bandwidth limiting.

Table 9: L3 service, supported extension, and traffic direction

Rule \ L3 service L3 router OVN L3
Floating IP Egress \ Ingress Egress \ Ingress
Gateway [P Egress \ Ingress Egress \ Ingress

Configuration

To enable the service on a cloud with the architecture described in Networking architecture, follow the
steps below:

On the controller nodes:

1. Add the QoS service to the service_plugins setting in /etc/neutron/neutron.conf. For
example:

service_plugins = router,metering,gos

2. Optionally, set the needed notification_drivers in the [qos] section in /etc/neutron/
neutron.conf (message_queue is the default).

318 Chapter 8. OpenStack Networking Guide

https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/ovn-nbctl.8.html#LOGICAL_SWITCH_QOS_RULE_COMMANDS
https://docs.openstack.org/security-guide/networking/architecture.html#openstack-networking-service-placement-on-physical-servers

Neutron Documentation, Release 25.1.1.dev7

3. Optionally, in order to enable the floating IP QoS extension qos-fip, set the service_plugins
option in /etc/neutron/neutron. conf to include both router and qos. For example:

[servi ce_plugins = router,qos }

4. In /etc/neutron/plugins/ml2/ml2_conf.ini, add qos to extension_drivers in the
[m12] section. For example:

|

5. Edit the configuration file for the agent you are using and set the extensions to include qos
in the [agent] section of the configuration file. The agent configuration file will reside in /
etc/neutron/plugins/ml2/<agent_name>_agent.ini where agent_name is the name of
the agent being used (for example openvswitch). For example:

On the network and compute nodes:

1. Edit the configuration file for the agent you are using and set the extensions to include qos
in the [agent] section of the configuration file. The agent configuration file will reside in /
etc/neutron/plugins/ml2/<agent_name>_agent.ini where agent_name is the name of
the agent being used (for example openvswitch). For example:

| |

2. Optionally, in order to enable QoS for floating IPs, set the extensions option in the [agent]
section of /etc/neutron/13_agent.ini to include fip_qos. If dvr is enabled, this has to be
done for all the L3 agents. For example:

{ |

Note

Floating IP associated to neutron port or to port forwarding can all have bandwidth limit since Stein
release. These neutron server side and agent side extension configs will enable it once for all.

1. Optionally, in order to enable QoS for router gateway IPs, set the extensions option in the
[agent] section of /etc/neutron/13_agent.ini to include gateway_ip_qgos. Set this to
all the dvr_snat or legacy L3 agents. For example:

And gateway_ip_qos should work together with the fip_qos in L3 agent for centralized routers,
then all L3 IPs with binding QoS policy can be limited under the QoS bandwidth limit rules:

8.2. Configuration 319

Neutron Documentation, Release 25.1.1.dev7

| |

2. As rate limit doesnt work on Open vSwitchs internal ports, optionally, as a workaround, to
make QoS bandwidth limit work on routers gateway ports, set ovs_use_veth to True in DEFAULT
section in /etc/neutron/13_agent.ini

| |

Note

QoS currently works with mI2 only (SR-IOV, Open vSwitch, and linuxbridge are drivers enabled for
QoS).

DSCP marking on outer header for overlay networks

When using overlay networks (e.g., VXLAN), the DSCP marking rule only applies to the inner header,
and during encapsulation, the DSCP mark is not automatically copied to the outer header.

1. In order to set the DSCP value of the outer header, modify the dscp configuration option in /etc/
neutron/plugins/ml2/<agent_name>_agent.ini where <agent_name> is the name of the
agent being used (e.g., openvswitch):

| |

2. In order to copy the DSCP field of the inner header to the outer header, change the dscp_inherit
configuration option to true in /etc/neutron/plugins/ml2/<agent_name>_agent.ini
where <agent_name> is the name of the agent being used (e.g., openvswitch):

| |

If the dscp_inherit option is set to true, the previous dscp option is overwritten.

Trusted projects policy.yaml configuration

If projects are trusted to administrate their own QoS policies in your cloud, neutrons file policy.yaml
can be modified to allow this.

Modify /etc/neutron/policy.yaml policy entries as follows:

"get_policy": "rule:regular_user"

"create_policy": "rule:regular_user"
"update_policy": "rule:regular_user"
"delete_policy": "rule:regular_user"
"get_rule_type": "rule:regular_user"

To enable bandwidth limit rule:

320 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

"get_policy_bandwidth_limit_rule": "rule:regular_user"

"create_policy_bandwidth_limit_rule": "rule:regular_user"
"delete_policy_bandwidth_limit_rule": "rule:regular_user"
"update_policy_bandwidth_limit_rule": "rule:regular_user"

To enable DSCP marking rule:

"get_policy_dscp_marking_rule": "rule:regular_user"

"create_policy_dscp_marking rule": "rule:regular_user"
"delete_policy_dscp_marking rule": "rule:regular_user"
"update_policy_dscp_marking_rule": "rule:regular_user"

To enable minimum bandwidth rule:

"get_policy_minimum_bandwidth_rule": "rule:regular_user"

"create_policy_minimum_bandwidth_rule": "rule:regular_user"
"delete_policy_minimum_bandwidth_rule": "rule:regular_user"
"update_policy_minimum_bandwidth_rule": "rule:regular_user"

To enable minimum packet rate rule:

"get_policy_minimum_packet_rate_rule": "rule:regular_user"

"create_policy_minimum_packet_rate_rule": "rule:regular_user"
"delete_policy_minimum_packet_rate_rule": "rule:regular_user"
"update_policy_minimum_packet_rate_rule": "rule:regular_user"

User workflow
QoS policies are only created by admins with the default policy.yaml. Therefore, you should have the
cloud operator set them up on behalf of the cloud projects.

If projects are trusted to create their own policies, check the trusted projects policy.yaml configuration
section.

First, create a QoS policy and its bandwidth limit rule:

openstack network gos policy create bw-limiter

openstack network gos rule create --type bandwidth-limit --max-kbps
(continues on next page)

8.2. Configuration 321

Neutron Documentation, Release 25.1.1.dev7

--max-burst-kbits

(continued from previous page)

--egress bw-limiter

Note

The QoS implementation requires a burst value to ensure proper behavior of bandwidth limit rules in
the Open vSwitch and Linux bridge agents. Configuring the proper burst value is very important. If
the burst value is set too low, bandwidth usage will be throttled even with a proper bandwidth limit
setting. This issue is discussed in various documentation sources, for example in Junipers documen-
tation. For TCP traffic it is recommended to set burst value as 80% of desired bandwidth limit value.
For example, if the bandwidth limit is set to 1000kbps then enough burst value will be 800kbit. If
the configured burst value is too low, achieved bandwidth limit will be lower than expected. If the

configured burst value is

too high, too few packets could be limited and achieved bandwidth limit

would be higher than expected. If you do not provide a value, it defaults to 80% of the bandwidth
limit which works for typical TCP traffic.

Second, associate the created policy with an existing neutron port. In order to do this, user extracts the
port id to be associated to the already created policy. In the next example, we will assign the bw-1imiter
policy to the VM with IP address 192.0.2.1.

openstack port list

openstack port
88101e57-76fa-4d1

--gos-policy bw-limiter
2-b0e0-4fc7634b874a

In order to detach a port from the QoS policy, simply update again the port configuration.

[openstack port

--qos-policy 88101e57-76fa-4d12-b0e®-4£fc7634b874a

-

Ports can be created with a policy attached to them too.

‘ openstack port crea

te --gos-policy bw-limiter --network private portl

(continues on next page)

322

Chapter 8. OpenStack Networking Guide

http://www.juniper.net/documentation/en_US/junos12.3/topics/concept/policer-mx-m120-m320-burstsize-determining.html
http://www.juniper.net/documentation/en_US/junos12.3/topics/concept/policer-mx-m120-m320-burstsize-determining.html

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

You can attach networks to a QoS policy. The meaning of this is that any compute port connected to the
network will use the network policy by default unless the port has a specific policy attached to it. Internal
network owned ports like DHCP and internal router ports are excluded from network policy application.

In order to attach a QoS policy to a network, update an existing network, or initially create the network
attached to the policy.

[openstack network --gqos-policy bw-limiter private

The created policy can be associated with an existing floating IP. In order to do this, user extracts the
floating IP id to be associated to the already created policy. In the next example, we will assign the
bw-limiter policy to the floating IP address 172.16.100.18.

8.2. Configuration 323

Neutron Documentation, Release 25.1.1.dev7

openstack floating ip list

openstack floating ip --gos-policy bw-limiter d0®ed7491-3eb7-4c4f-a®f0-
—df04£f10a067c

In order to detach a floating IP from the QoS policy, simply update the floating IP configuration.

openstack floating ip --no-qos-policy d0ed7491-3eb7-4c4f-a®f0-
—df04£10a067c

Or use the unset action.

openstack floating ip --qos-policy d®ed7491-3eb7-4c4f-a0f0-
—df04£10a067c

Floating IPs can be created with a policy attached to them too.

openstack floating ip create --qos-policy bw-limiter public

324 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

The QoS bandwidth limit rules attached to a floating IP will become active when you associate the latter
with a port. For example, to associate the previously created floating IP 172.16.100. 12 to the instance
port with uuid a7£25e73-4288-4a16-93b9-b71e6£d00862 and fixed [P 192.168.222.5:

openstack floating ip --port a7f25e73-4288-4a16-93b9-b71e6£d00862
Oeeblf8a-de96-4cd9-a0£f6-3£535c409558

Note

The QoS policy attached to a floating IP is not applied to a port, it is applied to an associated floating IP
only. Thus the ID of QoS policy attached to a floating IP will not be visible in a ports qos_policy_id
field after asscoating a floating IP to the port. It is only visible in the floating IP attributes.

Note

For now, the L3 agent floating IP QoS extension only supports bandwidth_limit rules. Other rule
types (like DSCP marking) will be silently ignored for floating IPs. A QoS policy that does not contain
any bandwidth_limit rules will have no effect when attached to a floating IP.

If floating IP is bound to a port, and both have binding QoS bandwidth rules, the L3 agent floating
IP QoS extension ignores the behavior of the port QoS, and installs the rules from the QoS policy
associated to the floating IP on the appropriate device in the router namespace.

Each project can have at most one default QoS policy, although it is not mandatory. If a default QoS
policy is defined, all new networks created within this project will have this policy assigned, as long as
no other QoS policy is explicitly attached during the creation process. If the default QoS policy is unset,
no change to existing networks will be made.

In order to set a QoS policy as default, the parameter --default must be used. To unset this QoS policy
as default, the parameter --no-default must be used.

openstack network gos policy create --default bw-limiter

openstack network gos policy --no-default bw-limiter

(continues on next page)

8.2. Configuration 325

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

Create qos policy with packet rate limit rules:

openstack network qos policy create pps-limiter

openstack network gos rule create --max-kpps --max-burst-kpps --
—ingress --type packet-rate-limit pps-limiter

openstack network gos rule create --max-kpps --max-burst-kpps --
—egress --type packet-rate-limit pps-limiter

326 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Note

The unit for the rate and burst is kilo (1000) packets per second.

Now apply the packet rate limit QoS policy to a Port:

openstack port --qos-policy pps-limiter 251948bd-08e4-4569-a47f-
—ecbclfd4afad

Note

Packet rate limit is only supported by the ml2 ovs driver. And it leverages the meter actions of the
ovs kernel datapath or the userspace ovs dpdk datapath. The meter action is only supported when the
datapath is in user mode or ovs kernel datapath with kernerl version >= 4.15.

Administrator enforcement

Administrators are able to enforce policies on project ports or networks. As long as the policy is not
shared, the project is not be able to detach any policy attached to a network or port.

If the policy is shared, the project is able to attach or detach such policy from its own ports and networks.

Rule modification

You can modify rules at runtime. Rule modifications will be propagated to any attached port.

openstack network gos rule --max-kbps --max-burst-kbits
--ingress bw-limiter 92ceb52f-170f-49d0-9528-976e2fee2d6f

openstack network gos rule show
bw-limiter 92ceb52f-170f-49d0-9528-976e2fee2d6f

Just like with bandwidth limiting, create a policy for DSCP marking rule:

openstack network qos policy create dscp-marking

(continues on next page)

8.2. Configuration 327

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

You can create, update, list, delete, and show DSCP markings with the neutron client:

openstack network qos rule create --type dscp-marking --dscp-mark
dscp-marking

openstack network qos rule --dscp-mark
dscp-marking 115e4f70-8034-4176-8fe9-2c47£8878a7d

openstack network qos rule list dscp-marking

openstack network gos rule show
dscp-marking 115e4f70-8034-4176-8fe9-2c47£8878a7d

openstack network gos rule delete
dscp-marking 115e4f70-8034-4176-8fe9-2c47£8878a7d

You can also include minimum bandwidth rules in your policy:

openstack network qos policy create bandwidth-control

(continues on next page)

328 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

openstack network gos rule create
--type minimum-bandwidth --min-kbps --egress bandwidth-control

A policy with a minimum bandwidth ensures best efforts are made to provide no less than the specified
bandwidth to each port on which the rule is applied. However, as this feature is not yet integrated with
the Compute scheduler, minimum bandwidth cannot be guaranteed.

It is also possible to combine several rules in one policy, as long as the type or direction of each rule is
different. For example, You can specify two bandwidth-1limit rules, one with egress and one with
ingress direction.

openstack network qos rule create --type bandwidth-limit
--max-Kkbps --max-burst-kbits --egress bandwidth-control

openstack network qos rule create --type bandwidth-limit
--max-kbps --max-burst-kbits --ingress bandwidth-control

(continues on next page)

8.2. Configuration 329

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

openstack network qos rule create --type minimum-bandwidth
--min-kbps --egress bandwidth-control

openstack network gos policy show bandwidth-control

(continues on next page)

330 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

—

8.2.29 Quality of Service (QoS): Guaranteed Minimum Bandwidth

Most Networking Quality of Service (QoS) features are implemented solely by OpenStack Neutron and
they are already documented in the QoS configuration chapter of the Networking Guide. Some more
complex QoS features necessarily involve the scheduling of a cloud server, therefore their implementation
is shared between OpenStack Nova, Neutron and Placement. As of the OpenStack Stein release the
Guaranteed Minimum Bandwidth feature is like the latter.

This Networking Guide chapter does not aim to replace Nova or Placement documentation in any way,
but it still hopes to give an overall OpenStack-level guide to understanding and configuring a deployment
to use the Guaranteed Minimum Bandwidth feature.

A guarantee of minimum available bandwidth can be enforced on two levels:

* Scheduling a server on a compute host where the bandwidth is available. To be more precise:
scheduling one or more ports of a server on a compute hosts physical network interfaces where the
bandwidth is available.

* Queueing network packets on a physical network interface to provide the guaranteed bandwidth.
In short the enforcement has two levels:

* (server) placement and

* data plane.

Since the data plane enforcement is already documented in the QoS chapter, here we only document the
placement-level enforcement.

8.2. Configuration 331

Neutron Documentation, Release 25.1.1.dev7

Limitations

* A pre-created port with a minimum-bandwidth rule must be passed when booting a server

(openstack server create). Passing a network with a minimum-bandwidth rule at boot is
not supported because of technical reasons (in this case the port is created too late for Neutron to
affect scheduling).

In Stein there is no support for networks with multiple physnets. However some simpler multi-
segment networks are still supported:

— Networks with multiple segments all having the same physnet name.
— Networks with only one physnet segment (the other segments being tunneled segments).

If you mix ports with and without bandwidth guarantees on the same physical interface then the
ports without a guarantee may starve. Therefore mixing them is not recommended. Instead it is
recommended to separate them by Nova host aggregates.

Changing the guarantee of a QoS policy (adding/deleting aminimum_bandwidthrule, or changing
themin_kbps field of aminimum_bandwidth rule) is only possible while the policy is not in effect.
That is ports of the QoS policy are not yet used by Nova. Requests to change guarantees of in-use
policies are rejected.

Changing the QoS policy of the port with new minimum_bandwidth rules changes placement
allocations from Wallaby release. If the VM was booted with port without QoS policy and
minimum_bandwidth rules the port update succeeds but placement allocations will not change.
The same is true if the port has no binding:profile, thus no placement allocation record exists
for it. But if the VM was booted with a port with QoS policy and minimum_bandwidth rules the
update is possible and the allocations are changed in placement as well.

Note

As it is possible to update a port to remove the QoS policy, updating it back to have QoS policy with
minimum_bandwidth rule will not result in placement allocation record, only the dataplane
enforcement will happen.

Note

updating the minimum_bandwidth rule of a QoS policy that is attached to a port which is bound to
a VM is still not possible.

* The first data-plane-only Guaranteed Minimum Bandwidth implementation (for SR-IOV egress

traffic) was released in the Newton release of Neutron. Because of the known lack of placement-
level enforcement it was marked as best effort (Sth bullet point). Since placement-level enforcement
was not implemented bandwidth may have become overallocated and the system level resource in-
ventory may have become inconsistent. Therefore for users of the data-plane-only implementation
a migration/healing process is mandatory (see section On Healing of Allocations) to bring the
system level resource inventory to a consistent state. Further operations that would reintroduce
inconsistency (e.g. migrating a server with minimum_bandwidth QoS rule, but no resource allo-
cation in Placement) are rejected now in a backward-incompatible way.

* The Guaranteed Minimum Bandwidth feature is not complete in the Stein release. Not all Nova

server lifecycle operations can be executed on a server with bandwidth guarantees. Since Stein

332

Chapter 8. OpenStack Networking Guide

https://docs.openstack.org/nova/2024.2/admin/aggregates
https://docs.openstack.org/releasenotes/neutron/newton.html#other-notes

Neutron Documentation, Release 25.1.1.dev7

(Nova API microversion 2.72+) you can boot and delete a server with a guarantee and detach a
port with a guarantee. Since Train you can also migrate and resize a server with a guarantee.
Support for further server move operations (for example evacuate, live-migrate and unshelve after
shelve-offload) is to be implemented later. For the definitive documentation please refer to the Port
with Resource Request chapter of the OpenStack Compute API Guide.

* If an SR-IOV physical function is configured for use by the neutron-openvswitch-agent, and the
same physical functions virtual functions are configured for use by the neutron-sriov-agent then
the available bandwidth must be statically split between the corresponding resource providers by
administrative choice. For example a 10 Gbps SR-IOV capable physical NIC could be treated as
two independent NICs - a 5 Gbps NIC (technically the physical function of the NIC) added to
an Open vSwitch bridge, and another 5 Gbps NIC whose virtual functions can be handed out to
servers by neutron-sriov-agent.

* Neutron allows physnet names to be case sensitive. So physnet0 and PhysnetO are treated as dif-
ferent physnets. Physnets are mapped to traits in Placement for scheduling purposes. However
Placement traits are case insensitive and normalized to full capital. Therefore the scheduling treats
physnetO and PhysnetO as the same physnet. It is advised not to use physnet names that are only
differ by case.

* There are hardware platforms (e.g.: Cavium ThunderX) where its possible to have virtual functions
which are network devices that are not associated to a physical function. As bandwidth resources
are tracked per physical function, for such hardware the placement enforcement of the QoS min-
imum bandwidth rules cannot be supported. Creating a server with ports using such QoS policy
targeting such hardware backend will result in a NoValidHost error during scheduling.

* When QoS is used with a trunk, Placement enforcement is applied only to the trunks parent port.
Subports are not going to have Placement allocation. As a workaround, parent ports QoS policy
should take into account subports needs and request enough minimum bandwidth resources to
accommodate every port in the trunk.

Placement pre-requisites

Placement must support microversion 1.29. This was first released in Rocky.

Nova pre-requisites

Nova must support microversion 2.72. This was first released in Stein.

Not all Nova virt drivers are supported, please refer to the Virt Driver Support section of the Nova Admin
Guide.

Neutron pre-requisites

Neutron must support the following API extensions:
* agent-resources-synced
* port-resource-request
* qos-bw-minimum-ingress

These were all first released in Stein.

8.2. Configuration 333

https://docs.openstack.org/api-guide/compute/port_with_resource_request.html
https://docs.openstack.org/api-guide/compute/port_with_resource_request.html
https://docs.openstack.org/placement/latest/placement-api-microversion-history.html#support-allocation-candidates-with-nested-resource-providers
https://docs.openstack.org/nova/latest/reference/api-microversion-history.html#maximum-in-stein
https://docs.openstack.org/nova/latest/admin/port_with_resource_request.html#virt-driver-support
https://docs.openstack.org/nova/latest/admin/port_with_resource_request.html#virt-driver-support

Neutron Documentation, Release 25.1.1.dev7

Supported drivers and agents

In release Stein the following agent-based ML2 mechanism drivers are supported:
* Open vSwitch (openvswitch) vnic_types: normal, direct
* SR-IOV (sriovnicswitch) vnic_types: direct, macvtap, direct-physical

* OVN (ovn) vnic_types: normal

Note

SR-IOV (sriovnicswitch) agent does not handle direct-physical ports. However the agent can
report the bandwidth capacity of a network device that will be used by a direct-physical port.

Since 2023.1 (Antelope), Open vSwitch and OVN mechanism drivers can specify the available bandwidth
for tunnelled networks (SR-IOV does not support these network types yet). The key rp_tunnelled is used
to model those networks that are not backed by a physical network. This bandwidth models the limits of
the VTEP/TEP interface used to send the tunnelled traffic (VXLAN, Geneve).

neutron-server config

The placement service plugin synchronizes the agents resource provider information from neutron-
server to Placement.

Since neutron-server talks to Placement you need to configure how neutron-server should find Placement
and authenticate to it.

/etc/neutron/neutron. conf (on controller nodes):

If a vnic_type is supported by default by multiple ML2 mechanism drivers (e.g. vhic_type=direct by
both openvswitch and sriovnicswitch) and multiple agents resources are also meant to be tracked
by Placement, then the admin must decide which driver to take ports of that vnic_type by prohibiting the
vnic_type for the unwanted drivers. Use ovs_driver.vnic_type_prohibit_list in this case. Valid
values are all the supported_vnic_types of the respective mechanism drivers.

/etc/neutron/plugins/ml2/ml2_conf.ini (on controller nodes):

334 Chapter 8. OpenStack Networking Guide

https://docs.openstack.org/neutron/latest/admin/config-ml2.html#supported-vnic-types

Neutron Documentation, Release 25.1.1.dev7

neutron-openvswitch-agent config

Set the agent configuration as the authentic source of the resources available. Set it on a per-bridge basis
by ovs.resource_provider_bandwidths. The formatis: bridge:egress:ingress, ... You may
set only one direction and omit the other.

Note

egress / ingress is meant from the perspective of a cloud server. That is egress = cloud server
upload, ingress = download.

Egress and ingress available bandwidth values are in kilobit/sec (kbps).

If desired, resource provider inventory fields can be tweaked on a per-agent basis by setting ovs.
resource_provider_inventory_defaults. Valid values are all the optional parameters of the up-
date resource provider inventory call.

/etc/neutron/plugins/ml2/ovs_agent.ini (on compute and network nodes):

Note

rp_tunnelled is not a bridge nor an interface present in the host. The ML2/OVS agent will read
the host local resource_provider_bandwidths and will assign, by default, the rp_tunnelled resource
provider to the local host where is running. In other words, it is not needed to populate re-
source_provider_hypervisors with the host assigned to this specific resource provider.

neutron-sriov-agent config

The configuration of neutron-sriov-agent is analog to that of neutron-openvswitch-agent. However look
out for:

* The different .ini section names as you can see below.
* That neutron-sriov-agent allows a physnet to be backed by multiple physical devices.

* Of course refer to SR-IOV physical functions instead of bridges in sriov_nic.
resource_provider_bandwidths.

8.2. Configuration 335

https://docs.openstack.org/api-ref/placement/?expanded=update-resource-provider-inventory-detail#update-resource-provider-inventory
https://docs.openstack.org/api-ref/placement/?expanded=update-resource-provider-inventory-detail#update-resource-provider-inventory

Neutron Documentation, Release 25.1.1.dev7

/etc/neutron/plugins/ml2/sriov_agent.ini (on compute nodes):

OVN chassis config

Bandwidth config values are stored in each SB chassis register, in external_ids:ovn-cms-options. The
configuration options are the same as in SR-IOV and OVS agents. This is how the values are registered:

§ root@dev20:~# ovs-vsctl list Open_vSwitch

external_ids : dev20.fistro.com,
ovn-cms-options

system-id

Each configuration option defined in external_ids:ovn-cms-options is divided by commas.

This information is retrieved from the OVN SB database during the Neutron server initialization and
when the Chassis registers are updated.

During the Neutron server initialization, a MaintenanceWorker thread will call OvhSbSynchronizer.
do_sync, that will call OVNClientPlacementExtension.read_initial_chassis_config. This
method lists all chassis and builds the resource provider information needed by Placement. This in-
formation is stored in the Chassis registers, in external_ids:ovn-cms-options, with the same format as
retrieved from the local Open_vSwitch registers from each chassis.

The second method to update the Placement information is when a Chassis registers is updated. The
OVNClientPlacementExtension extension registers an event handler that attends the OVN SB Chas-
sis bandwidth configuration changes. This event handler builds a PlacementState instance and sends
it to the Placement API. If a new chassis is added or an existing one changes its resource provider con-
figuration, this event updates it in the Placement database.

336 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Propagation of resource information

The flow of information is different for available and used resources.

The authentic source of available resources is neutron agent configuration - where the resources actu-
ally exist, as described in the agent configuration sections above. This information is propagated in the
following chain: neutron-12-agent -> neutron-server -> Placement.

From neutron agent to server the information is included in the configurations field of the agent
heartbeat message sent on the message queue periodically.

as admin
openstack network agent list --agent-type open-vswitch --host devstack®

output shortened and pretty printed

note: on the wire, but the cli

openstack network agent show -f value -c configuration 5e57b85f-b0®17-419a-
—8745-9c406e1491f9%e

Re-reading the resource related subset of configuration on SIGHUP is not implemented. The agent must
be restarted to pick up and send changed configuration.

Neutron-server propagates the information further to Placement for the resources of each agent via Place-
ments HTTP REST API. To avoid overloading Placement this synchronization generally does not happen
on every received heartbeat message. Instead the re-synchronization of the resources of one agent is trig-
gered by:

* The creation of a network agent record (as queried by openstack network agent list).
Please note that deleting an agent record and letting the next heartbeat to re-create it can be used
to trigger synchronization without restarting an agent.

* The restart of that agent (technically start_flag being present in the heartbeat message).

8.2. Configuration 337

Neutron Documentation, Release 25.1.1.dev7

Both of these can be used by an admin to force a re-sync if needed.

The success of a synchronization attempt from neutron-server to Placement is persisted into the relevant
agents resources_synced attribute. For example:

as admin
openstack network agent show -f value -c resources_synced 5e57b85f-b017-
—419a-8745-9c406e149f9%e

resources_synced may take the value True, False and None:
* None: No sync was attempted (normal for agents not reporting Placement-backed resources).
* True: The last sync attempt was completely successful.
* False: The last sync attempt was partially or utterly unsuccessful.

In case resources_synced is not True for an agent, neutron-server does try to re-sync on receiving
every heartbeat message from that agent. Therefore it should be able to recover from transient errors of
Neutron-Placement communication (e.g. Placement being started later than Neutron).

It is important to note that the restart of neutron-server does not trigger any kind of re-sync to Placement
(to avoid an update storm).

As mentioned before, the information flow for resources requested and (if proper) allocated is different.
It involves a conversation between Nova, Neutron and Placement.

1. Neutron exposes a ports resource needs in terms of resource classes and traits as the admin-only
resource_request attribute of that port.

2. Nova reads this and incorporates it as a numbered request group into the cloud servers overall
allocation candidate request to Placement.

3. Nova selects (schedules) and allocates one candidate returned by Placement.

4. Novainforms Neutron when binding the port of which physical network interface resource provider
had been selected for the ports resource request in the binding:profile.allocation sub-
attribute of that port.

For details please see slides 13-15 of a (pre-release) demo that was presented on the Berlin Summit in
November 2018.

Since Yoga, the resource_request attribute of the port changed. With the extension
port-resource-request-groups, Neutron informs that the blob passed to Nova can contain several
bandwidth requests. Please check resource_request sanitization.

Sample usage

Physnets and QoS policies (together with their rules) are usually pre-created by a cloud admin:

as admin

openstack network create net0
--provider-network-type vlan
--provider-physical-network physnet®
--provider-segment

(continues on next page)

338 Chapter 8. OpenStack Networking Guide

https://docs.openstack.org/nova/latest/admin/port_with_resource_request.html#resource-group-policy
https://www.openstack.org/videos/summits/berlin-2018/guaranteed-minimum-bandwidth-feature-demo
https://docs.openstack.org/neutron/latest/admin/config-qos-min-pps.html#neutron-db-sanitization

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

openstack subnet create subnet®
--network net®
--subnet-range .0.4.0/24

openstack network gos policy create policy®

openstack network gos rule create policy®
--type minimum-bandwidth
--min-kbps
--egress

openstack network gos rule create policy®
--type minimum-bandwidth
--min-kbps
--ingress

Then a normal user can use the pre-created policy to create ports and boot servers with those ports:

as an unprivileged user

an ordinary soft-switched port: --vnic-type normal is the default
openstack port create port-normal-qos

--network net®

--gos-policy policy®

alternatively an SR-IOV port, unused this example
openstack port create port-direct-qos

--network net®

--vnic-type direct

--gos-policy policy®

openstack server create server®
--flavor cirros256
--image cirros-0.5.1-x86_64-disk
--port port-normal-gos

On Healing of Allocations

Since Placement carries a global view of a cloud deployments resources (what is available, what is used)
it may in some conditions get out of sync with reality.

One important case is when the data-plane-only Minimum Guaranteed Bandwidth feature was used be-
fore Stein (first released in Newton). Since before Stein guarantees were not enforced during server
placement the available resources may have become overallocated without notice. In this case Place-
ments view and the reality of resource usage should be made consistent during/after an upgrade to Stein.

Another case stems from OpenStack not having distributed transactions to allocate resources provided
by multiple OpenStack components (here Nova and Neutron). There are known race conditions in which
Placements view may get out of sync with reality. The design knowingly minimizes the race condition

8.2. Configuration 339

Neutron Documentation, Release 25.1.1.dev7

windows, but there are known problems:

* If a QoS policy is modified after Nova read a ports resource_request but before the port is
bound its state before the modification will be applied.

 If a bound port with a resource allocation is deleted. The ports allocation is leaked. https://bugs.
launchpad.net/nova/+bug/1820588

Note

Deleting a bound port has no known use case. Please consider detaching the interface first by
openstack server remove port instead.

Incorrect allocations may be fixed by:

* Moving the server, which will delete the wrong allocation and create the correct allocation as
soon as move operations are implemented (not in Stein unfortunately). Moving servers fixes local
overallocations.

* The need for an upgrade-helper allocation healing tool is being tracked in bug 1819923.

* Manually, by using openstack resource provider allocation set /delete.

Debugging

* Are all components running at least the Stein release?
* Is the placement service plugin enabled in neutron-server?
* Is resource_provider_bandwidths configured for the relevant neutron agent?

e Is resource_provider_bandwidths aligned with bridge_mappings or
physical_device_mappings?

* Was the agent restarted since changing the configuration file?

* Is resource_provider_bandwidths reaching neutron-server?

as admin
openstack network agent show ... grep configurations

Please find an example in section Propagation of resource information.

* Did neutron-server successfully sync to Placement?

as admin
openstack network agent show ... grep resources_synced

Please find an example in section Propagation of resource information.

* Is the resource provider tree correct? Is the root a compute host? One level below the agents? Two
levels below the physical network interfaces?

openstack --os-placement-api-version 1.17 resource provider list

(continues on next page)

340 Chapter 8. OpenStack Networking Guide

https://bugs.launchpad.net/nova/+bug/1820588
https://bugs.launchpad.net/nova/+bug/1820588
https://bugs.launchpad.net/nova/+bug/1819923
https://docs.openstack.org/osc-placement/latest/cli/index.html#resource-provider-allocation-set
https://docs.openstack.org/osc-placement/latest/cli/index.html#resource-provider-allocation-delete

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

* Does Placement have the expected traits?

as admin

openstack --os-placement-api-version

—

sort

.17 trait list awk o

* Do the physical network interface resource providers have the proper trait associations and inven-

tories?

as admin

openstack --os-placement-api-version

—UUID

openstack --os-placement-api-version

—RP-UUID

.17 resource provider trait list RP-

.17 resource provider inventory list.

* Does the QoS policy have a minimum-bandwidth rule?

8.2. Configuration

341

Neutron Documentation, Release 25.1.1.dev7

* Does the port have the proper policy?

* Does the port have a resource_request?

as admin
openstack port show port-normal-gos grep resource_request

* Was the server booted with a port (as opposed to a network)?

¢ Did nova allocate resources for the server in Placement?

as admin
openstack --os-placement-api-version 1.17 resource provider allocation show.
—SERVER-UUID

* Does the allocation have a part on the expected physical network interface resource provider?

as admin
openstack --os-placement-api-version 1.17 resource provider show --
—allocations RP-UUID

* Did placement manage to produce an allocation candidate list to nova during scheduling?
* Did nova manage to schedule the server?

* Did nova tell neutron which physical network interface resource provider was allocated to satisfy
the bandwidth request?

as admin
openstack port show port-normal-gos grep binding.profile.*allocation

* Did neutron manage to bind the port?

Links

* Pre-release feature demo presented on the Berlin Summit in November 2018
* Nova documentation on using a port with resource_request
— API Guide
— Admin Guide
* Neutron spec: QoS minimum bandwidth allocation in Placement API
— on specs.openstack.org
— on review.opendev.org
* Nova spec: Network Bandwidth resource provider
— on specs.openstack.org
— on review.opendev.org
* Nova spec: QoS minimum guaranteed packet rate
— on specs.openstack.org

» Relevant OpenStack Networking API references

342 Chapter 8. OpenStack Networking Guide

https://www.openstack.org/videos/summits/berlin-2018/guaranteed-minimum-bandwidth-feature-demo
https://docs.openstack.org/api-guide/compute/port_with_resource_request.html
https://docs.openstack.org/nova/latest/admin/port_with_resource_request.html
https://specs.openstack.org/openstack/neutron-specs/specs/rocky/minimum-bandwidth-allocation-placement-api.html
https://review.opendev.org/508149
https://specs.openstack.org/openstack/nova-specs/specs/stein/approved/bandwidth-resource-provider.html
https://review.opendev.org/502306
https://specs.openstack.org/openstack/nova-specs/specs/yoga/implemented/qos-minimum-guaranteed-packet-rate.html

Neutron Documentation, Release 25.1.1.dev7

— https://docs.openstack.org/api-ref/network/v2/#agent-resources-synced-extension
— https://docs.openstack.org/api-ref/network/v2/#port-resource-request
— https://docs.openstack.org/api-ref/network/v2/#qos-minimum-bandwidth-rules
* Microversion histories
— Compute 2.72
— Placement 1.29
* Implementation
— on review.opendev.org
* Known Bugs
— Missing tool to heal allocations

— Bandwidth resource is leaked

8.2.30 Quality of Service (QoS): Guaranteed Minimum Packet Rate

Similarly to how bandwidth can be a limiting factor of a network interface, packet processing capacity
tend to be a limiting factor of the soft switching solutions like OVS. At the same time certain applications
are dependent on not just guaranteed bandwidth, but also on guaranteed packet rate to function properly.
OpenStack already supports bandwidth guarantees via the minimum bandwidth QoS policy rules, which
is described in detail in Quality of Service (QoS): Guaranteed Minimum Bandwidth. Its recommended
to read Guaranteed Minimum Bandwidth guide first, but its not strictly required.

Just like Quality of Service (QoS): Guaranteed Minimum Bandwidth guide, this chapter does not aim
to replace Nova or Placement documentation in any way, but gives a brief overview of the feature and
explains how it can be configured.

In a similar way to guaranteed bandwidth, we can distinguish two levels of enforcement for guaranteeing
packet processing capacity constraint:

* placement: Avoiding over-subscription when placing (scheduling) VMs and their ports.

* data plane: Enforcing the guarantee on the soft switch

Note

At the time of writing this guide, only placement enforcement is supported. For detailed list of sup-
ported enforcement types and backends, please refer to QoS configuration chapter of the Networking
Guide.

The solution needs to differentiate between two different deployment scenarios:

1) The packet processing functionality is implemented on the compute host CPUs and therefore pack-
ets processed from both ingress and egress directions are handled by the same set of CPU cores.
This is the case in the non-hardware-offloaded OVS deployments. In this scenario OVS represents
a single packet processing resource pool, which is represented with a single resource class called
NET_PACKET_RATE_KILOPACKET_PER_SEC.

2) The packet processing functionality is implemented in a specialized hardware where the incom-
ing and outgoing packets are handled by independent hardware resources. This is the case for

8.2. Configuration 343

https://docs.openstack.org/api-ref/network/v2/#agent-resources-synced-extension
https://docs.openstack.org/api-ref/network/v2/#port-resource-request
https://docs.openstack.org/api-ref/network/v2/#qos-minimum-bandwidth-rules
https://docs.openstack.org/nova/latest/reference/api-microversion-history.html#maximum-in-stein
https://docs.openstack.org/placement/latest/placement-api-microversion-history.html#support-allocation-candidates-with-nested-resource-providers
https://review.opendev.org/#/q/topic:minimum-bandwidth-allocation-placement-api+OR+topic:bp/bandwidth-resource-provider
https://bugs.launchpad.net/nova/+bug/1819923
https://bugs.launchpad.net/nova/+bug/1820588

Neutron Documentation, Release 25.1.1.dev7

hardware-offloaded OVS. In this scenario a single OVS has two independent resource pools one
for the incoming packets and one for the outgoing packets. Therefore these needs to be repre-
sented with two different resource classes NET_PACKET_RATE_EGR_KILOPACKET_PER_SEC and
NET_PACKET_RATE_IGR_KILOPACKET_PER_SEC.

Limitations

Since Guaranteed Minimum Packet Rate and Guaranteed Minimum Bandwidth features have a lot in
common, they also share certain limitations.

* A pre-created port with a minimum-packet-rate rule must be passed when booting a server

(openstack server create). Passing a network with a minimum-packet-rate rule at boot is
not supported because of technical reasons (in this case the port is created too late for Neutron to
affect scheduling).

Changing the guarantee of a QoS policy (adding/deleting a minimum_packet_rate rule, or
changing the min_kpps field of a minimum_packet_rate rule) is only possible while the pol-
icy is not in effect. That is ports of the QoS policy are not yet bound by Nova. Requests to change
guarantees of in-use policies are rejected.

Changing the QoS policy of the port with new minimum_packet_rate rules changes place-
ment allocations from Yoga release. If the VM was booted with port without QoS policy and
minimum_packet_rate rules the port update succeeds but placement allocations will not change.
The same is true if the port had no allocation record in Placement before QoS policy update. But
if the VM was booted with a port with QoS policy and minimum_packet_rate rules the update
is possible and the allocations are changed in placement as well.

Note

As it is possible to update a port to remove the QoS policy, updating it back to have QoS policy with
minimum_packet_rate rule will not result in placement allocation record. In this case only
dataplane enforcement will happen.

Note

Updating the minimum_packet_rate rule of a QoS policy that is attached to a port which is bound
to a VM is still not possible.

* When QoS is used with a trunk, Placement enforcement is applied only to the trunks parent port.

Subports are not going to have Placement allocation. As a workaround, parent port QoS policy
should take into account subports needs and request enough minimum packet rate resources to
accommodate every port in the trunk.

344

Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Placement pre-requisites

Placement must support microversion 1.36. This was first released in Train.

Nova pre-requisites
Nova must support top of microversion 2.72, additionally the Nova Xena release is needed to support the
new port-resource-request-groups Neutron API extension.

Not all Nova virt drivers are supported, please refer to the Virt Driver Support section of the Nova Admin
Guide.

Neutron pre-requisites

Neutron must support the following API extensions:
* (os-pps-minimum
* port-resource-request-groups

These were all first released in Yoga.

Neutron DB sanitization

The resource_request field of the Neutron port is used to express the resource needs of the port.
The information in this field is calculated from the QoS policy rules attached to the port. Initially,
only the minimum bandwidth rule was used as a source of requested resources. The format of
resource_request looked like this:

J

This structure allowed to describe only one group of resources and traits, which was sufficient at the time.
However, with the introduction of QoS minimum packet rate rule, ports can now have multiple sources
of requested resources and traits. Because of that, the format of resource_request field was incapable
of expressing such request and it had to be changed.

To solve this issue, port-resource-request-groups extension was added in Neutron Yoga release. It
provides support for the new format of resource_request field, that allows to request multiple groups
of resources and traits from the same RP subtree. The new format looks like this:

(continues on next page)

8.2. Configuration 345

https://docs.openstack.org/placement/latest/placement-api-microversion-history.html#support-same-subtree-queryparam-on-get-allocation-candidates
https://docs.openstack.org/nova/latest/reference/api-microversion-history.html#maximum-in-stein
https://docs.openstack.org/nova/latest/admin/port_with_resource_request.html#virt-driver-support
https://docs.openstack.org/nova/latest/admin/port_with_resource_request.html#virt-driver-support

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

The main drawback about the new structure of resource_request field is lack of backwards com-
patibility. This can cause issues if ml2_port_bindings table in Neutron DB contains port bindings
that were created before the introduction of port-resource-request-groups extension. Because
port-resource-request-groups extension is enabled by default in Yoga release, its necessary to
perform DB sanitization before upgrading Neutron to Yoga.

DB sanitization will ensure that every row of m12_port_bindings table uses the new format. Upgrade
check can be run before DB sanitization, to see if there are any rows in the DB that require sanitization.

neutron-status upgrade check

If fails, DB sanitization is needed

neutron-sanitize-port-binding-profile-allocation --config-file /etc/neutron/
—neutron.conf

346 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Supported drivers and agents

In release Yoga the following agent-based ML2 mechanism drivers are supported:

* Open vSwitch (openvswitch) vnic_types: normal, direct

neutron-server config

QoS minimum packet rate rule requires exactly the same configuration in the neutron-server as QoS
minimum bandwidth rule. Please refer to neutron-server config section of Quality of Service
(Q0S): Guaranteed Minimum Bandwidth guide for more details.

neutron-openvswitch-agent config

Set the agent configuration as the authentic source of the resources available. Depending on OVS de-
ployment type, packet processing capacity can be configured with:

e ovs.resource_provider_packet_processing_without_direction Format for this option
is <hypervisor>:<packet_rate>. This option should be used for non-hardware-offloaded OVS
deployments.

* ovs.resource_provider_packet_processing_with_direction Format for this option is
<hypervisor>:<egress_packet_rate>:<ingress_packet_rate>. You may set only one
direction and omit the other. This option should be used for hardware-offloaded OVS deployments.

Regardless if direction-less or direction-oriented packet processing mode is used, configuration is always
applied to the whole OVS instance.

Note

egress / ingress is meant from the VM point of view. That is egress = cloud server upload,
ingress = download.

Egress and ingress available packet rate values are in kilo packet/sec (kpps).

Direction-less and direction-oriented modes are mutually exclusive options. Only one can be used at
a time.

The hypervisor name is optional, and needs to be set only in the rare case cases. For more information,
please refer to Neutron agent documentation.

If desired, resource provider inventory fields can be tweaked on a per-agent basis by setting ovs.
resource_provider_packet_processing_inventory_defaults. Valid values are all the optional
parameters of the update resource provider inventory call.

/etc/neutron/plugins/ml2/ovs_agent.ini (on compute and network nodes):

8.2. Configuration 347

https://docs.openstack.org/api-ref/placement/?expanded=update-resource-provider-inventory-detail#update-resource-provider-inventory
https://docs.openstack.org/api-ref/placement/?expanded=update-resource-provider-inventory-detail#update-resource-provider-inventory

Neutron Documentation, Release 25.1.1.dev7

Propagation of resource information

Propagation of resource information is explained in detail in Quality of Service (QoS): Guaranteed Min-
imum Bandwidth guide.

Sample usage

Network and QoS policies (together with their rules) are usually pre-created by a cloud admin:

as admin
openstack network create net®

openstack subnet create subnet®
--network net®
--subnet-range .0.4.0/24

openstack network gos policy create policy®

openstack network gos rule create policy®
--type minimum-packet-rate
--min-kpps
--egress

openstack network qos rule create policy®
--type minimum-packet-rate
--min-kpps
--ingress

Then a normal user can use the pre-created policy to create ports and boot servers with those ports:

as an unprivileged user

an ordinary soft-switched port: --vhic-type normal is the default
openstack port create port-normal-gos

--network net®

--qos-policy policy®

openstack server create server®
--0s-compute-api-version 2.72
--flavor cirros256
--image cirros-0.5.2-x86_64-disk
--port port-normal-gos

348 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

On Healing of Allocations
Since Placement carries a global view of a cloud deployments resources (what is available, what is used)
it may in some conditions get out of sync with reality.

One important case stems from OpenStack not having distributed transactions to allocate resources pro-
vided by multiple OpenStack components (here Nova and Neutron). There are known race conditions
in which Placements view may get out of sync with reality. The design knowingly minimizes the race
condition windows, but there are known problems:

* If a QoS policy is modified after Nova read a ports resource_request but before the port is
bound its state before the modification will be applied.

* If a bound port with a resource allocation is deleted. The ports allocation is leaked. https://bugs.
launchpad.net/nova/+bug/1820588

Note

Deleting a bound port has no known use case. Please consider detaching the interface first by
openstack server remove port instead.

Incorrect allocations may be fixed by:

* Moving the server, which will delete the wrong allocation and create the correct allocation. Moving
servers fixes local overallocations.

* With placement heal_allocations tool.

* Manually, by using openstack resource provider allocation set /delete.

Debugging

* Is Nova running at least Xena release and Neutron at least the Yoga release?

* Are qos-pps-minimum and port-resource-request-groups extensions available?

openstack extension show qos-pps-minimum
openstack extension show port-resource-request-groups

* Is the placement service plugin enabled in neutron-server?

e Is resource_provider_packet_processing with_direction or
resource_provider_packet_processing_without_direction configured for the rel-
evant neutron agent?

* Was the agent restarted since changing the configuration file?

e Is resource_provider_packet_processing_with_direction or
resource_provider_packet_processing_without_direction reaching neutron-server?

as admin
openstack network agent show ... -c configuration -f json

Please find an example in section Propagation of resource information.

* Did neutron-server successfully sync to Placement?

8.2. Configuration 349

https://bugs.launchpad.net/nova/+bug/1820588
https://bugs.launchpad.net/nova/+bug/1820588
https://docs.openstack.org/nova/latest/cli/nova-manage.html#placement-heal-allocations
https://docs.openstack.org/osc-placement/latest/cli/index.html#resource-provider-allocation-set
https://docs.openstack.org/osc-placement/latest/cli/index.html#resource-provider-allocation-delete

Neutron Documentation, Release 25.1.1.dev7

as admin
openstack network agent show ... grep resources_synced

Please find an example in section Propagation of resource information.

* Is the resource provider tree correct? Is the root a compute host? One level below the agents?

openstack --os-placement-api-version 1.17 resource provider list

* Does Placement have the expected traits?

as admin
openstack --os-placement-api-version 1.17 trait list awk -
- sort

* Do the OVS agent resource provider have the proper trait associations and inventories?

as admin

openstack --os-placement-api-version 1.17 resource provider trait list <RP-
—UUID>

openstack --os-placement-api-version 1.17 resource provider inventory list
—<RP-UUID>

* Does the QoS policy have a minimum-packet-rate rule?
* Does the port have the proper policy?

* Does the port have a resource_request?

as admin
openstack port show port-normal-qos grep resource_request

350 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

* Was the server booted with a port (as opposed to a network)?

¢ Did nova allocate resources for the server in Placement?

as admin
openstack --os-placement-api-version 1.17 resource provider allocation show
«.<SERVER-UUID>

* Does the allocation have a part on the expected OVS agent resource provider?

as admin
openstack --os-placement-api-version 1.17 resource provider show --
—~allocations <RP-UUID>

* Did placement manage to produce an allocation candidate list to nova during scheduling?
* Did nova manage to schedule the server?

* Did nova tell neutron which OVS agent resource provider was allocated to satisfy the packet rate
request?

as admin
openstack port show port-normal-qos grep binding.profile.*allocation

* Did neutron manage to bind the port?

Links

* Nova documentation on using a port with resource_request
— API Guide
— Admin Guide
* Neutron spec: QoS minimum guaranteed packet rate
— on specs.openstack.org
— on review.opendev.org
* Nova spec: QoS minimum guaranteed packet rate
— on specs.openstack.org
— on review.opendev.org
» Relevant OpenStack Networking API references
— https://docs.openstack.org/api-ref/network/v2/#agent-resources-synced-extension
— https://docs.openstack.org/api-ref/network/v2/#port-resource-request
— https://docs.openstack.org/api-ref/network/v2/#port-resource-request-groups
— https://docs.openstack.org/api-ref/network/v2/#qos-minimum-packet-rate-rules
* Microversion histories
— Compute 2.72

— Placement 1.36

8.2. Configuration 351

https://docs.openstack.org/api-guide/compute/port_with_resource_request.html
https://docs.openstack.org/nova/latest/admin/port_with_resource_request.html
https://specs.openstack.org/openstack/neutron-specs/specs/xena/qos-minimum-guaranteed-packet-rate.html
https://review.opendev.org/785236
https://specs.openstack.org/openstack/nova-specs/specs/xena/approved/qos-minimum-guaranteed-packet-rate.html
https://review.opendev.org/785014
https://docs.openstack.org/api-ref/network/v2/#agent-resources-synced-extension
https://docs.openstack.org/api-ref/network/v2/#port-resource-request
https://docs.openstack.org/api-ref/network/v2/#port-resource-request-groups
https://docs.openstack.org/api-ref/network/v2/#qos-minimum-packet-rate-rules
https://docs.openstack.org/nova/latest/reference/api-microversion-history.html#maximum-in-stein
https://docs.openstack.org/placement/latest/placement-api-microversion-history.html#support-same-subtree-queryparam-on-get-allocation-candidates

Neutron Documentation, Release 25.1.1.dev7

* Implementation
— on review.opendev.org
* Known Bugs

— Bandwidth resource is leaked this issue also affects packet rate resources.

8.2.31 Role-Based Access Control (RBAC)

The Role-Based Access Control (RBAC) policy framework enables both operators and users to grant
access to resources for specific projects.

Supported objects for sharing with specific projects

Currently, the access that can be granted using this feature is supported by:
* Regular port creation permissions on networks (since Liberty).
* Binding QoS policies permissions to networks or ports (since Mitaka).
 Attaching router gateways to networks (since Mitaka).
* Binding security groups to ports (since Stein).
* Assigning address scopes to subnet pools (since Ussuri).
* Assigning subnet pools to subnets (since Ussuri).

* Assigning address groups to security group rules (since Wallaby).

Sharing an object with specific projects

Sharing an object with a specific project is accomplished by creating a policy entry that permits the target
project the access_as_shared action on that object.

Sharing a network with specific projects

Create a network to share:

openstack network create secret_network

(continues on next page)

352 Chapter 8. OpenStack Networking Guide

https://review.opendev.org/#/q/topic:bp/qos-minimum-guaranteed-packet-rate"
https://bugs.launchpad.net/nova/+bug/1820588

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

Create the policy entry using the openstack network rbac create command (in this example, the
ID of the project we want to share with is b87b2fc13e0248a4a031d38e06dc191d):

openstack network rbac create --target-project
b87b2fc13e0248a4a031d38e06dc191d --action access_as_shared
--type network f55961b9-3eb8-42eb-ac96-b97038b568de

The target-project parameter specifies the project that requires access to the network. The action
parameter specifies what the project is allowed to do. The type parameter says that the target object is a
network. The final parameter is the ID of the network we are granting access to.

Project b87b2fc13e0248a4a031d38e06dc191d will now be able to see the network when running
openstack network list and openstack network show and will also be able to create ports on
that network. No other users (other than admins and the owner) will be able to see the network.

Note

Subnets inherit the RBAC policy entries of their network.

To remove access for that project, delete the policy that allows it using the openstack network rbac

8.2. Configuration 353

Neutron Documentation, Release 25.1.1.dev7

delete command:

[openstack network rbac delete f93efdbf-fle0-41d2-b093-8328959d469e

If that project has ports on the network, the server will prevent the policy from being deleted until the
ports have been deleted:

openstack network rbac delete f93efdbf-fle0-41d2-b093-8328959d469e

This process can be repeated any number of times to share a network with an arbitrary number of projects.

Sharing a QoS policy with specific projects

Create a QoS policy to share:

openstack network gos policy create secret_policy

Create the RBAC policy entry using the openstack network rbac create command (in this exam-
ple, the ID of the project we want to share with is be98b82£8fdf46b696e9e01cebc33£d9):

openstack network rbac create --target-project
be98b82f8fdf46b696e9e01lcebc33fd9 --action access_as_shared
--type qos_policy 1£730d69-1c45-4ade-a8f2-89070ac4£f046

The target-project parameter specifies the project that requires access to the QoS policy. The action
parameter specifies what the project is allowed to do. The type parameter says that the target object is a
QoS policy. The final parameter is the ID of the QoS policy we are granting access to.

354 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Project be98b82£8fdf46b696e9e®1lcebc33£d9 will now be able to see the QoS policy when run-
ning openstack network qos policy list and openstack network qos policy show and
will also be able to bind it to its ports or networks. No other users (other than admins and the owner) will
be able to see the QoS policy.

To remove access for that project, delete the RBAC policy that allows it using the openstack network
rbac delete command:

openstack network rbac delete 8828e38d-a®df-4c78-963b-e5£215d3d550

If that project has ports or networks with the QoS policy applied to them, the server will not delete the
RBAC policy until the QoS policy is no longer in use:

openstack network rbac delete 8828e38d-a0df-4c78-963b-e5£215d3d550

This process can be repeated any number of times to share a qos-policy with an arbitrary number of
projects.

Sharing a security group with specific projects

Create a security group to share:

openstack security group create my_security_group

Create the RBAC policy entry using the openstack network rbac create command (in this exam-
ple, the ID of the project we want to share with is 32016615de5d43bb88de99e7f2e26ale):

openstack network rbac create --target-project
32016615de5d43bb88de99e7f2e26ale --action access_as_shared
--type security_group 5ba835b7-22b0-4be6-bdbe-e0722d1b5f24

(continues on next page)

8.2. Configuration 355

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

J

The target-project parameter specifies the project that requires access to the security group. The
action parameter specifies what the project is allowed to do. The type parameter says that the target
object is a security group. The final parameter is the ID of the security group we are granting access to.

Project 32016615de5d43bb88de99e7£2e26ale will now be able to see the security group when run-
ning openstack security group list and openstack security group show and will also be
able to bind it to its ports. No other users (other than admins and the owner) will be able to see the
security group.

To remove access for that project, delete the RBAC policy that allows it using the openstack network
rbac delete command:

[openstack network rbac delete 8828e38d-a®df-4c78-963b-e5£215d3d550 }

If that project has ports with the security group applied to them, the server will not delete the RBAC
policy until the security group is no longer in use:

openstack network rbac delete 8828e38d-a®df-4c78-963b-e5£f215d3d550

This process can be repeated any number of times to share a security-group with an arbitrary number of
projects.

Creating an instance which uses a security group shared through RBAC, but only specifying the network
ID when calling Nova will not work currently. In such cases Nova will check if the given security group
exists in Neutron before it creates a port in the given network. The problem with that is that Nova asks
only for the security groups filtered by the project_id thus it will not get the shared security group back
from the Neutron API. See bug 1942615 for details. To workaround the issue, the user needs to create a
port in Neutron first, and then pass that port to Nova:

openstack port create --network netl --security-group

openstack server create --image cirros-0.5.1-x86_64-disk --flavor ml.tiny

356 Chapter 8. OpenStack Networking Guide

https://bugs.launchpad.net/neutron/+bug/1942615

Neutron Documentation, Release 25.1.1.dev7

Sharing an address scope with specific projects

Create an address scope to share:

openstack address scope create my_address_scope

Create the RBAC policy entry using the openstack network rbac create command (in this exam-
ple, the ID of the project we want to share with is 32016615de5d43bb88de99e7f2e26ale):

openstack network rbac create --target-project
32016615de5d43bb88de99e7f2e26ale --action access_as_shared
--type address_scope c19cb654-3489-4160-9c82-8a3015483643

The target-project parameter specifies the project that requires access to the address scope. The
action parameter specifies what the project is allowed to do. The type parameter says that the target
object is an address scope. The final parameter is the ID of the address scope we are granting access to.

Project 32016615de5d43bb88de99e7f2e26ale will now be able to see the address scope when run-
ning openstack address scope listand openstack address scope show and will also be able
to assign it to its subnet pools. No other users (other than admins and the owner) will be able to see the
address scope.

To remove access for that project, delete the RBAC policy that allows it using the openstack network
rbac delete command:

[openstack network rbac delete d54b1482-98c4-44aa-9115-ede80387ffe® }

If that project has subnet pools with the address scope applied to them, the server will not delete the
RBAC policy until the address scope is no longer in use:

8.2. Configuration 357

Neutron Documentation, Release 25.1.1.dev7

openstack network rbac delete d54b1482-98c4-44aa-9115-ede80387ffe®

This process can be repeated any number of times to share an address scope with an arbitrary number of
projects.

Sharing a subnet pool with specific projects

Create a subnet pool to share:

openstack subnet pool create my_subnetpool --pool-prefix .0.113.0/24

Create the RBAC policy entry using the openstack network rbac create command (in this exam-
ple, the ID of the project we want to share with is 32016615de5d43bb88de99e7f2e26ale):

openstack network rbac create --target-project
32016615de5d43bb88de99e7f2e26ale --action access_as_shared
--type subnetpool 11£79287-bcl17-46b2-bfd0-2562471eb631

(continues on next page)

358 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

The target-project parameter specifies the project that requires access to the subnet pool. The
action parameter specifies what the project is allowed to do. The type parameter says that the tar-
get object is a subnet pool. The final parameter is the ID of the subnet pool we are granting access
to.

Project 32016615de5d43bb88de99e7f2e26ale will now be able to see the subnet pool when running
openstack subnet pool list and openstack subnet pool show and will also be able to assign
it to its subnets. No other users (other than admins and the owner) will be able to see the subnet pool.

To remove access for that project, delete the RBAC policy that allows it using the openstack network
rbac delete command:

openstack network rbac delete d54b1482-98c4-44aa-9115-ede80387ffel®

If that project has subnets with the subnet pool applied to them, the server will not delete the RBAC
policy until the subnet pool is no longer in use:

openstack network rbac delete d54b1482-98c4-44aa-9115-ede80387ffeld

This process can be repeated any number of times to share a subnet pool with an arbitrary number of
projects.

Sharing an address group with specific projects

Create an address group to share:

openstack address group create test-ag --address .1.1.1

Create the RBAC policy entry using the openstack network rbac create command (in this exam-
ple, the ID of the project we want to share with is bbd82892525d4372911390b984ed3265):

openstack network rbac create --target-project
bbd82892525d4372911390b984ed3265 --action access_as_shared
--type address_group cdb6eb3e-f9a0-4d52-8478-358eaa2c4737

(continues on next page)

8.2. Configuration 359

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

J

The target-project parameter specifies the project that requires access to the address group. The
action parameter specifies what the project is allowed to do. The type parameter says that the target
object is an address group. The final parameter is the ID of the address group we are granting access to.

Project bbd82892525d4372911390b984ed3265 will now be able to see the address group when run-
ning openstack address group listand openstack address group show and will also be able
to assign it to its security group rules. No other users (other than admins and the owner) will be able to
see the address group.

To remove access for that project, delete the RBAC policy that allows it using the openstack network
rbac delete command:

[openstack network rbac delete c7414ac2-9a6b-420b-84c5-4158a6ccadf9

If that project has security group rules with the address group applied to them, the server will not delete
the RBAC policy until the address group is no longer in use:

openstack network rbac delete c7414ac2-9a6b-420b-84c5-4158a6ccadf9

This process can be repeated any number of times to share an address group with an arbitrary number of
projects.

How the shared flag relates to these entries

As introduced in other guide entries, neutron provides a means of making an object (address-scope,
network, qos-policy, security-group, subnetpool) available to every project. This is accom-
plished using the shared flag on the supported object:

openstack network create global_network --share

(continues on next page)

360 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

This is the equivalent of creating a policy on the network that permits every project to perform the action
access_as_shared on that network. Neutron treats them as the same thing, so the policy entry for that
network should be visible using the openstack network rbac list command

openstack network rbac list

Use the openstack network rbac show command to see the details:

openstack network rbac show 27efbd79-£384-4d89-9dfc-6c4a606ceech

(continues on next page)

8.2. Configuration 361

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

The output shows that the entry allows the action access_as_shared on object
84a7e627-573b-49da-af66-c9a65244f3ce of type network to target project *, which is a
wildcard that represents all projects.

Currently, the shared flag is just a mapping to the underlying RBAC policies for a network. Setting
the flag to True on a network creates a wildcard RBAC entry. Setting it to False removes the wildcard
entry.

When you run openstack network list or openstack network show, the shared flag is calcu-
lated by the server based on the calling project and the RBAC entries for each network. For QoS ob-
jects use openstack network qos policy list or openstack network qos policy show re-
spectively. If there is a wildcard entry, the shared flag is always set to True. If there are only entries
that share with specific projects, only the projects the object is shared to will see the flag as True and the
rest will see the flag as False.

Allowing a network to be used as an external network

To make a network available as an external network for specific projects rather than all projects, use the
access_as_external action.

1. Create a network that you want to be available as an external network:

~

openstack network create secret_external_network

(continues on next page)

362 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

2. Create a policy entry using the openstack network rbac create command (in this example,
the ID of the project we want to share with is 838030a7b£3c4d04b4b054c0f0b2b17c):

openstack network rbac create --target-project
838030a7b£3c4d04b4b054c0f0b2bl7c --action access_as_external
--type network 802d4e9e-4649-43e6-9ee2-8d052a880cfb

J

The target-project parameter specifies the project that requires access to the network. The action
parameter specifies what the project is allowed to do. The type parameter indicates that the target object
is a network. The final parameter is the ID of the network we are granting external access to.

Now project 838030a7b£f3c4d04b4b054c0£0b2b17c is able to see the network when running
openstack network list and openstack network show and can attach router gateway ports to
that network. No other users (other than admins and the owner) are able to see the network.

To remove access for that project, delete the policy that allows it using the openstack network rbac
delete command:

[openstack network rbac delete afdd5b8d-b6f5-4a15-9817-5231434057be }

If that project has router gateway ports attached to that network, the server prevents the policy from being
deleted until the ports have been deleted:

openstack network rbac delete afdd5b8d-b6f5-4a15-9817-5231434057be

This process can be repeated any number of times to make a network available as external to an arbitrary
number of projects.

8.2. Configuration 363

Neutron Documentation, Release 25.1.1.dev7

If a network is marked as external during creation, it now implicitly creates a wildcard RBAC policy
granting everyone access to preserve previous behavior before this feature was added.

openstack network create global_external_network --external

J

In the output above the standard router:external attribute is External as expected. Now a wildcard
policy is visible in the RBAC policy listings:

openstack network rbac list --long -c ID -c Action

J

You can modify or delete this policy with the same constraints as any other RBAC access_as_external
policy.

364 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Preventing regular users from sharing objects with each other

The default policy.yaml file will not allow regular users to share objects with every other project using
a wildcard; however, it will allow them to share objects with specific project IDs.

If an operator wants to prevent normal users from doing this, the "create_rbac_policy": entry in
policy.yaml can be adjusted from "" to "rule:admin_only".

Improve database RBAC query operations

Since!, present in Yoga version, Neutron has indexes for target_tenant (now target_project) and action
columns in all RBAC related tables. That improves the SQL queries involving the RBAC tables”. Any
system before Yoga wont have these indexes but the system administrator can manually add them to the
Neutron database following the next steps:

¢ Find the RBAC tables:

mysql -e grep rbac

* Insert the indexes for the target_tenant and action columns:

$ for table in $tables do; mysql -e
alter table $table add key (action); alter table $table add key (target_tenant);; done

In order to prevent errors during a system upgrade,’ was implemented and backported up to Yoga. This
patch checks if any index is already present in the Neutron tables and avoids executing the index creation
command again.

8.2.32 Routed provider networks

Note

Use of this feature requires the OpenStack client version 3.3 or newer.

Before routed provider networks, the Networking service could not present a multi-segment layer-3 net-
work as a single entity. Thus, each operator typically chose one of the following architectures:

* Single large layer-2 network
* Multiple smaller layer-2 networks
Single large layer-2 networks become complex at scale and involve significant failure domains.

Multiple smaller layer-2 networks scale better and shrink failure domains, but leave network selection to
the user. Without additional information, users cannot easily differentiate these networks.

A routed provider network enables a single provider network to represent multiple layer-2 networks
(broadcast domains) or segments and enables the operator to present one network to users. However,
the particular IP addresses available to an instance depend on the segment of the network available on

! https://review.opendev.org/c/openstack/neutron/+/810072

2 https://github.com/openstack/neutron-1ib/blob/890d62a3df3f35bb18bf1al 1€79a9¢97e7dd2d2c/neutron_lib/db/model_
query.py#L123-L131

3 https://review.opendev.org/c/openstack/neutron/+/884617

8.2. Configuration 365

https://review.opendev.org/c/openstack/neutron/+/810072
https://github.com/openstack/neutron-lib/blob/890d62a3df3f35bb18bf1a11e79a9e97e7dd2d2c/neutron_lib/db/model_query.py#L123-L131
https://github.com/openstack/neutron-lib/blob/890d62a3df3f35bb18bf1a11e79a9e97e7dd2d2c/neutron_lib/db/model_query.py#L123-L131
https://review.opendev.org/c/openstack/neutron/+/884617

Neutron Documentation, Release 25.1.1.dev7

the particular compute node. Neutron port could be associated with only one network segment, but there
is an exception for OVN distributed services like OVN Metadata.

Similar to conventional networking, layer-2 (switching) handles transit of traffic between ports on the
same segment and layer-3 (routing) handles transit of traffic between segments.

Each segment requires at least one subnet that explicitly belongs to that segment. The association be-
tween a segment and a subnet distinguishes a routed provider network from other types of networks.
The Networking service enforces that either zero or all subnets on a particular network associate with a
segment. For example, attempting to create a subnet without a segment on a network containing subnets
with segments generates an error.

The Networking service does not provide layer-3 services between segments. Instead, it relies on phys-
ical network infrastructure to route subnets. Thus, both the Networking service and physical network
infrastructure must contain configuration for routed provider networks, similar to conventional provider
networks. In the future, implementation of dynamic routing protocols may ease configuration of routed
networks.

Prerequisites
Routed provider networks require additional prerequisites over conventional provider networks. We rec-
ommend using the following procedure:
1. Begin with segments. The Networking service defines a segment using the following components:
» Unique physical network name
* Segmentation type
* Segmentation ID
For example, provider1, VLAN, and 2016. See the API reference for more information.

Within a network, use a unique physical network name for each segment which enables reuse of
the same segmentation details between subnets. For example, using the same VLAN ID across all
segments of a particular provider network. Similar to conventional provider networks, the operator
must provision the layer-2 physical network infrastructure accordingly.

2. Implement routing between segments.

The Networking service does not provision routing among segments. The operator must implement
routing among segments of a provider network. Each subnet on a segment must contain the gateway
address of the router interface on that particular subnet. For example:

Segment Version Addresses Gateway
segment] 4 203.0.113.0/24 203.0.113.1
segmentl 6 fd00:203:0:113::/64 £d00:203:0:113::1
segment2 4 198.51.100.0/24 198.51.100.1
segment2 6 fd00:198:51:100::/64 £d00:198:51:100::1

3. Map segments to compute nodes.

Routed provider networks imply that compute nodes reside on different segments. The operator
must ensure that every compute host that is supposed to participate in a router provider network
has direct connectivity to one of its segments.

366 Chapter 8. OpenStack Networking Guide

https://docs.openstack.org/api-ref/network/v2/#segments

Neutron Documentation, Release 25.1.1.dev7

Host Rack Physical Network

compute0001 rack 1 segment 1
compute0002 rack 1 segment 1

compute0101 rack2 segment 2
compute0102 rack2 segment 2
compute0102 rack2 segment 2

4. Deploy DHCP agents.

Unlike conventional provider networks, a DHCP agent cannot support more than one segment
within a network. The operator must deploy at least one DHCP agent per segment. Consider de-
ploying DHCP agents on compute nodes containing the segments rather than one or more network
nodes to reduce node count.

Host Rack Physical Network

networkO00O1 rack 1 segment 1
network0002 rack 2 segment 2

5. Configure communication of the Networking service with the Compute scheduler.

An instance with an interface with an IPv4 address in a routed provider network must be placed
by the Compute scheduler in a host that has access to a segment with available IPv4 addresses. To
make this possible, the Networking service communicates to the Compute scheduler the inventory
of IPv4 addresses associated with each segment of a routed provider network. The operator must
configure the authentication credentials that the Networking service will use to communicate with
the Compute schedulers placement API. Please see below an example configuration.

Note

Coordination between the Networking service and the Compute scheduler is not necessary for
IPv6 subnets as a consequence of their large address spaces.

Note

The coordination between the Networking service and the Compute scheduler requires the fol-
lowing minimum API micro-versions.

* Compute service API: 2.41
* Placement API: 1.1

8.2. Configuration 367

Neutron Documentation, Release 25.1.1.dev7

Example configuration

Controller node

1. Enable the segments service plug-in by appending segments to the list of service_plugins in
the neutron. conf file on all nodes running the neutron-server service:

2. Add a placement section to the neutron. conf file with authentication credentials for the Com-
pute service placement API:

-

L

3. Restart the neutron-server service.

4. (Optional) Configure the Nova scheduler to filter based upon routed network host aggregates. With-
out this option set, once ports are attached to instances and have IP addresses assigned, Nova may
schedule instances to hosts which do not have access to the required segment. See the Nova con-
figuration reference for more information.

Network or compute nodes

» Configure the layer-2 agent on each node to map one or more segments to the appropriate physical
network bridge or interface and restart the agent.

Create a routed provider network
The following steps create a routed provider network with two segments. Each segment contains one
IPv4 subnet and one IPv6 subnet.

1. Source the administrative project credentials.

2. Create a VLAN provider network which includes a default segment. In this example, the network
uses the providerl physical network with VLAN ID 2016.

openstack network create --share --provider-physical-network providerl
--provider-network-type vlan --provider-segment multisegmentl

(continues on next page)

368 Chapter 8. OpenStack Networking Guide

https://docs.openstack.org/nova/latest/configuration/config.html#scheduler.query_placement_for_routed_network_aggregates
https://docs.openstack.org/nova/latest/configuration/config.html#scheduler.query_placement_for_routed_network_aggregates

Neutron Documentation, Release 25.1.1.dev7

L

(continued from previous page)

3. Rename the default segment to segment1.

openstack network segment list --network multisegmentl

openstack network segment
—acf756709e18

L

--name segmentl 43e16869-ad31-48e4-87ce-

Note

This command provides no output.

4. Create a second segment on the provider network.
provider2 physical network with VLAN ID 2017.

In this example, the segment uses the

openstack network segment create --physical-network provider2

--network-type vlan --segment

--network multisegmentl segment?2

(continues on next page)

8.2. Configuration

369

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

5. Verify that the network contains the segment1 and segment2 segments.

openstack network segment list --network multisegmentl

6. Create subnets on the segmentl segment. In this example, the [Pv4 subnet uses 203.0.113.0/24
and the IPv6 subnet uses fd00:203:0:113::/64.

openstack subnet create

--network multisegmentl --network-segment segmentl
--ip-version 4 --subnet-range .0.113.0/24
multisegmentl-segmentl-v4

(continues on next page)

370 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

openstack subnet create

--network multisegmentl --network-segment segmentl
--ip-version 6 --subnet-range f£d00:203:0:113::/64
--ipv6-address-mode slaac multisegmentl-segmentl-v6

Note

By default, IPv6 subnets on provider networks rely on physical network infrastructure for state-
less address autoconfiguration (SLAAC) and router advertisement.

7. Create subnets on the segment2 segment. In this example, the IPv4 subnet uses 198.51.100.0/24
and the IPv6 subnet uses fd00:198:51:100::/64

8.2. Configuration 371

Neutron Documentation, Release 25.1.1.dev7

openstack subnet create

--network multisegmentl --network-segment segment2
--ip-version 4 --subnet-range .51.100.0/24
multisegmentl-segment2-v4

openstack subnet create

--network multisegmentl --network-segment segment?2

--ip-version 6 --subnet-range fd00:198:51:100::/64

--ipv6-address-mode slaac multisegmentl-segment2-v6

(continues on next page)

372 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

()

L J

8. Verify that each IPv4 subnet associates with at least one DHCP agent.

openstack network agent list --agent-type dhcp --network multisegmentl

—
.

9. Verify that inventories were created for each segment IPv4 subnet in the Compute service place-
ment API (for the sake of brevity, only one of the segments is shown in this example).

e N

053b7925-9a89-4489-9992-e164c8cc8763
openstack resource provider inventory list

10. Verify that host aggregates were created for each segment in the Compute service (for the sake of
brevity, only one of the segments is shown in this example).

openstack aggregate list

(continues on next page)

8.2. Configuration 373

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

11. Launch one or more instances. Each instance obtains IP addresses according to the segment it uses
on the particular compute node.

Note

If a fixed IP is specified by the user in the port create request, that particular IP is allocated
immediately to the port. However, creating a port and passing it to an instance yields a dif-
ferent behavior than conventional networks. If the fixed IP is not specified on the port create
request, the Networking service defers assignment of IP addresses to the port until the particular
compute node becomes apparent. For example:

openstack port create --network multisegmentl portl

Migrating non-routed networks to routed

Migration of existing non-routed networks is only possible if there is only one segment and one subnet
on the network. To migrate a candidate network, update the subnet and set id of the existing network
segment as segment_id.

Note

In the case where there are multiple subnets or segments it is not possible to safely migrate. The reason
for this is that in non-routed networks addresses from the subnets allocation pools are assigned to ports
without considering to which network segment the port is bound.

374 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Example

The following steps migrate an existing non-routed network with one subnet and one segment to a routed
one.

1. Source the administrative project credentials.

2. Get the id of the current network segment on the network that is being migrated.

openstack network segment list --network my_network

3. Get the id or name of the current subnet on the network.

(

openstack subnet list --network my_network

4. Verify the current segment_id of the subnet is None.

openstack subnet show my_subnet --c segment_id

5. Update the segment_id of the subnet.

-

openstack subnet --network-segment 81e5453d-4c9f-43a5-8ddf-
—feaf3937e8c7 my_subnet

6. Verify that the subnet is now associated with the desired network segment.

openstack subnet show my_subnet --c segment_id

(continues on next page)

8.2. Configuration 375

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

Routed provider networks as external networks for tenant routed networks

Note

This section applies only to legacy routers, not DVR nor HA routers. A legacy router has a single
instance that is hosted in one single host.

One of the consequences of this feature is the externalization of any routing operation. The communi-
cation (routing) between segments is done using the underlying network infrastructure, not managed by
Neutron.

Could be the case that the user needs to split the communication between several hosts. It is possible
to create tenant networks and connect them using a router. To access to the routed provider network, it
should be connected as router gateway.

Tenant netl

Routed provided network
GW port
Tenant net2

The routed provider network, acting as router gateway, contains all subnets associated to the segments.
In a deployment without routed provided networks, the gateway port has L2 connectivity to all subnet
CIDRs. In this case, the gateway port has only connectivity to the attached segment subnets and its L2
broadcast domains.

The L3 agent will create, inside the router namespace, a default route in the gateway port fixed IP CIDR.
For each other subnet not belonging to the ports fixed IP address, an onlink route is created. These routes
use the gateway port as routing device and allow to route any packet with destination on these CIDRs
through this port.

The problem in the case of connecting the gatewat port to a routed provider network is that it will have
broadcast connectivity only to those subnets that belong to the host segment:

* One of those subnets will provide the port IP address. The gateway IP address of this subnet will
be the default route, through the gateway port.

* Any other subnet belonging to this segment will create a onlink route, using the gateway port as
route device.

For example, lets consider the following configuration:

¢ Two tenant networks with CIDRs 10.1.0.0/24 and 10.2.0.0/24.

376 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

* A RPN with two segments; each segment with two subnets: segment 1 with 10.51.0.0/24 and
10.52.0.0/24, segment 2 with 10.53.0.0/24 and 10.54.0.0/24.

* The router is connected to the first segment and the gateway port has an IP address in the range of
10.51.0.0/24. This is why the default route uses an IP address in this range.

Without considering that the gateway network is a router provided network, this is the routing table set
in the router namespace:

$ ip netns ip r

default via .51.0.1 dev qg-gwport proto static
.1.0.0/24 dev qr-tenantl proto kernel scope link src 1.0.1
.2.0.0/24 dev qr-tenant2 proto kernel scope link src .2.0.1
.51.0.0/24 dev qg-gwport proto kernel scope link src .100.0.15

.52.0.0/24 dev qg-gwport proto static scope link

.53.0.0/24 dev qg-gwport proto static scope link <-- should be removed,.
—belongs to segment

.54.0.0/24 dev qg-gwport proto static scope link <-- should be removed,.
—belongs to segment

Those packets sent to 10.53.0.0/24 and 10.54.0.0/24 (the second RPN subnet CIDRs), dont have L2
connectivity and the ARP packets wont be replied. In the case of having a RPN as gateway network,
all packets exiting the router through the gateway, must be sent to the gateway IP address, in this case
10.51.0.1. This is why the L3 plugin does not send the information of other segments subnets L.3 agent
when:

* The network is the router gateway.
* The segments plugin is enabled; this plugin is needed for routed provided networks.

* The network is connected to a segment.

Multiple routed provider segments per host

Starting with 2023.1 (Antelope), the support of routed provider networks has been enhanced to handle
multiple segments per host. The main consequence will be for an operator to extend the IP pool without
creating multiple networks and/or increasing broadcast domain.

Note

The present support is only available for OVS agent at this point.

1. On a given provider network, create a second segment. In this example, the second segment uses
the provider1 physical network with VLAN ID 2020.

openstack network segment create --physical-network providerl
--network-type vlan --segment --network multisegmentl segmentl-2

(continues on next page)

8.2. Configuration 377

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

2. Create subnets on the segment1-2 segment. In this example, the [Pv4 subnet uses 203.0.114.0/24.

openstack subnet create

--network multisegmentl --network-segment segmentl-2
--ip-version 4 --subnet-range .0.114.0/24
multisegmentl-segmentl-2

Considering that, for a subnet of the given provider network providerl running out of available IP,
Neutron will automatically switch to the subnet multisegmentl-segmentl1-2.

8.2.33 Router flavors with the L3 OVN service plugin
In this chapter we give examples on how to create routers with user-defined flavors.

Note

The following example refers to a dummy user-defined service provider, which in a real
situation must be replaced with user provided code.

1. Add service providers to neutron.conf. The second provider is a high availability version of the
first one:

(continues on next page)

378 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

-

2. Re-start the neutron server and verify the user-defined provider has been loaded:

openstack network service provider list

L

3. Create service profiles for the router flavors:

openstack network flavor profile create --description o
= --enable --driver neutron.services.ovn_13.
—service_providers.user_defined.UserDefined

4. Create the router flavors:

-

openstack network flavor create --service-type L3_ROUTER_NAT --
—description user-
—defined-router-flavor

[}

(continues on next page)

8.2. Configuration 379

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

5. Add service profile to the router flavors:

openstack network flavor add profile user-defined-router-flavor..
—a717c92c-63f7-47e8-9efb-6ad0d61c4875

6. Create routers specifying user-defined flavors. Please note the ha characteristics of the routers
created:

openstack router create router-of-user-defined-flavor-noha --no-ha --
—,external-gateway public --flavor-id 65df2587-c535-4c3a-af2f-
-»86b2968a3191 --max-width

()

(continues on next page)

380 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

openstack router create router-of-user-defined-flavor-ha --ha --
—,external-gateway public --flavor-id 65df2587-c535-4c3a-af2f-
—86b2968a3191 --max-width

(continues on next page)

8.2. Configuration 381

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

—

—

(continues on next page)

382 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

openstack router create router-of-user-defined-flavor-noha-implicit --
—external-gateway public --flavor-id 65df2587-c535-4c3a-af2f-
—86b2968a3191 --max-width

(continues on next page)

8.2. Configuration 383

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

()

7. Create an OVN flavor router to verify it co-exists with the user-defined flavors:

-

openstack router create ovn-flavor-router --external-gateway public --
—max-width

(continues on next page)

384 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

8.2. Configuration 385

Neutron Documentation, Release 25.1.1.dev7

Note

OVN routers are natively highly available at the OVN/OVS level, through the use of BFD mon-
itoring. Neutron doesnt get involved in the high availability aspect beyond router scheduling.
For this reason, the ha attribute is associated to routers of the default OVN flavor and is always
set to True. This is done for consistency with user defined flavors routers for which the ha
attribute will be True or False, depending on the characteristics of the router.

8. List routers to verify:

openstack router list

8.2.34 SR-IOV

The purpose of this page is to describe how to enable SR-IOV functionality available in OpenStack (using
OpenStack Networking). This functionality was first introduced in the OpenStack Juno release. This page
intends to serve as a guide for how to configure OpenStack Networking and OpenStack Compute to create
SR-IOV ports.

The basics

PCI-SIG Single Root I/O Virtualization and Sharing (SR-IOV) functionality is available in OpenStack
since the Juno release. The SR-IOV specification defines a standardized mechanism to virtualize PCle
devices. This mechanism can virtualize a single PCle Ethernet controller to appear as multiple PCle
devices. Each device can be directly assigned to an instance, bypassing the hypervisor and virtual switch
layer. As a result, users are able to achieve low latency and near-line wire speed.

The following terms are used throughout this document:

386 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Term Definition

PF Physical Function. The physical Ethernet controller that supports SR-IOV.
VF Virtual Function. The virtual PCle device created from a physical Ethernet controller.
SR-IOV agent

The SR-IOV agent allows you to set the admin state of ports, configure port security (enable and disable
spoof checking), and configure QoS rate limiting and minimum bandwidth. You must include the SR-IOV
agent on each compute node using SR-IOV ports.

Note

The SR-IOV agent was optional before Mitaka, and was not enabled by default before Liberty.

Note

The ability to control port security and QoS rate limit settings was added in Liberty.

Supported Ethernet controllers

The following manufacturers are known to work:
* Intel
* Mellanox
* QLogic
* Broadcom

For information on Mellanox SR-IOV Ethernet ConnectX cards, see the Mellanox: How To Configure
SR-IOV VFs on ConnectX-4 or newer.

For information on QLogic SR-IOV Ethernet cards, see the Users Guide OpenStack Deployment with
SR-IOV Configuration.

For information on Broadcom NetXtreme Series Ethernet cards, see the Broadcom NetXtreme Product
Page.

8.2. Configuration 387

https://support.mellanox.com/s/article/HowTo-Configure-SR-IOV-for-ConnectX-4-ConnectX-5-ConnectX-6-with-KVM-Ethernet
https://support.mellanox.com/s/article/HowTo-Configure-SR-IOV-for-ConnectX-4-ConnectX-5-ConnectX-6-with-KVM-Ethernet
http://www.qlogic.com/solutions/Documents/UsersGuide_OpenStack_SR-IOV.pdf
http://www.qlogic.com/solutions/Documents/UsersGuide_OpenStack_SR-IOV.pdf
https://www.broadcom.com/products/ethernet-connectivity/network-adapters
https://www.broadcom.com/products/ethernet-connectivity/network-adapters

Neutron Documentation, Release 25.1.1.dev7

Using SR-IOV interfaces

In order to enable SR-IOV, the following steps are required:
1. Create Virtual Functions (Compute)
2. Configure allow list for PCI devices in nova-compute (Compute)
3. Configure neutron-server (Controller)
4. Configure nova-scheduler (Controller)
5. Enable neutron sriov-agent (Compute)

We recommend using VLAN provider networks for segregation. This way you can combine instances
without SR-IOV ports and instances with SR-IOV ports on a single network.

Note

Throughout this guide, eth3 is used as the PF and physnet?2 is used as the provider network config-
ured as a VLAN range. These ports may vary in different environments.

Create Virtual Functions (Compute)

Create the VFs for the network interface that will be used for SR-IOV. We use eth3 as PF, which is
also used as the interface for the VLAN provider network and has access to the private networks of all
machines.

Note

The steps detail how to create VFs using Mellanox ConnectX-4 and newer/Intel SR-IOV Ethernet
cards on an Intel system. Steps may differ for different hardware configurations.

1. Ensure SR-IOV and VT-d are enabled in BIOS.

2. Enable IOMMU in Linux by adding intel_iommu=on to the kernel parameters, for example, using
GRUB.

3. On each compute node, create the VFs via the PCI SYS interface:

[> /sys/class/net/eth3/device/sriov_numvfs

Note

On some PCI devices, observe that when changing the amount of VFs you receive the error
Device or resource busy. In this case, you must first set sriov_numvfs to 0, then set it
to your new value.

Note

388 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

A network interface could be used both for PCI passthrough, using the PF, and SR-IOV, using
the VFs. If the PF is used, the VF number stored in the sriov_numvfs file is lost. If the PF
is attached again to the operating system, the number of VFs assigned to this interface will
be zero. To keep the number of VFs always assigned to this interface, modify the interfaces
configuration file adding an ifup script command.

On Ubuntu, modify the /etc/network/interfaces file:

On RHEL and derivatives, modify the /sbin/ifup-local file:

> /sys/class/net/eth3/device/sriov_numvfs

Warning

Alternatively, you can create VFs by passing the max_vfs to the kernel module of your network
interface. However, the max_vfs parameter has been deprecated, so the PCI SYS interface is
the preferred method.

You can determine the maximum number of VFs a PF can support:

cat /sys/class/net/eth3/device/sriov_totalvfs

4. Verify that the VFs have been created and are in up state. For example:

lspci = grep Ethernet

—

(continues on next page)

8.2. Configuration 389

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

ip link show eth3

If the interfaces are down, set them to up before launching a guest, otherwise the instance will fail
to spawn:

[ip link eth3 up]

5. Persist created VFs on reboot:

>> /etc/rc.
—Jlocal

Note

The suggested way of making PCI SYS settings persistent is through the sysfsutils tool.
However, this is not available by default on many major distributions.

Configuring allow list for PCI devices nova-compute (Compute)

1. Configure which PCI devices the nova-compute service may use. Edit the nova. conf file:

This tells the Compute service that all VFs belonging to eth3 are allowed to be passed through to
instances and belong to the provider network physnet2.

Alternatively the [pci] passthrough_whitelist parameter also supports allowing devices by:

* PCI address: The address uses the same syntax as in 1spci and an asterisk (*) can be used
to match anything.

390 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

For example, to match any domain, bus 0a, slot 00, and all functions:

—
. J

* PCI vendor_id and product_id as displayed by the Linux utility 1spci.

If the device defined by the PCI address or devname corresponds to an SR-IOV PF, all VFs un-
der the PF will match the entry. Multiple [pci] passthrough_whitelist entries per host are
supported.

In order to enable SR-IOV to request trusted mode, the [pci] passthrough_whitelist param-
eter also supports a trusted tag.

Note

This capability is only supported starting with version 18.0.0 (Rocky) release of the compute
service configured to use the libvirt driver.

Important

There are security implications of enabling trusted ports. The trusted VFs can be set into VF
promiscuous mode which will enable it to receive unmatched and multicast traffic sent to the
physical function.

For example, to allow users to request SR-IOV devices with trusted capabilities on device eth3:

The ports will have to be created with a binding profile to match the trusted tag, see Launching
instances with SR-IOV ports.

2. Restart the nova-compute service for the changes to go into effect.

8.2. Configuration 391

Neutron Documentation, Release 25.1.1.dev7

Configure neutron-server (Controller)

Note

This section does not apply to remote-managed ports of SmartNIC DPU devices which

also use SR-IOV at the host side but do not rely on the sriovnicswitch mechanism
driver.

1. Add sriovnicswitch as mechanism driver. Edit the m12_conf.ini file on each controller:

| |

2. Ensure your physnet is configured for the chosen network type. Edit the m12_conf.ini file on
each controller:

. Add the plugin.ini file as a parameter to the neutron-server service. Edit the appropriate
initialization script to configure the neutron-server service to load the plugin configuration file:

--config-file /etc/neutron/plugin.ini

SR

--config-file /etc/neutron/neutron.conf l

4. Restart the neutron-server service.

Configure nova-scheduler (Controller)

1. On every controller node running the nova-scheduler service, add PciPassthroughFilter to
[filter_scheduler] enabled_filters to enable this filter. Ensure [filter_scheduler]
available_filters is set to the default of nova.scheduler.filters.all_filters:

2. Restart the nova-scheduler service.

392 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Enable neutron-sriov-nic-agent (Compute)

1. Install the SR-IOV agent, if necessary.

2. Edit the sriov_agent.ini file on each compute node. For example:

Note

The physical_device_mappings parameter is not limited to be a 1-1 mapping between phys-
ical networks and NICs. This enables you to map the same physical network to more than
one NIC. For example, if physnet2 is connected to eth3 and eth4, then physnet2:eth3,
physnet2:eth4 is a valid option.

The exclude_devices parameter is empty, therefore, all the VFs associated with eth3 may be
configured by the agent. To exclude specific VFs, add them to the exclude_devices parameter
as follows:

3. Ensure the SR-IOV agent runs successfully:

,

neutron-sriov-nic-agent
--config-file /etc/neutron/neutron.conf
--config-file /etc/neutron/plugins/ml2/sriov_agent.ini

4. Enable the neutron SR-IOV agent service.

If installing from source, you must configure a daemon file for the init system manually.

(Optional) FDB L2 agent extension

Forwarding DataBase (FDB) population is an L2 agent extension to OVS agent or Linux bridge. Its
objective is to update the FDB table for existing instance using normal port. This enables communication
between SR-IOV instances and normal instances. The use cases of the FDB population extension are:

* Direct port and normal port instances reside on the same compute node.
* Direct port instance that uses floating IP address and network node are located on the same host.

For additional information describing the problem, refer to: Virtual switching technologies and Linux
bridge.

1. Edit the ovs_agent.ini or linuxbridge_agent.ini file on each compute node. For example:

8.2. Configuration 393

https://events.static.linuxfound.org/sites/events/files/slides/LinuxConJapan2014_makita_0.pdf
https://events.static.linuxfound.org/sites/events/files/slides/LinuxConJapan2014_makita_0.pdf

Neutron Documentation, Release 25.1.1.dev7

| |

2. Add the FDB section and the shared_physical_device_mappings parameter. This parameter
maps each physical port to its physical network name. Each physical network can be mapped to
several ports:

| |

Launching instances with SR-IOV ports

Once configuration is complete, you can launch instances with SR-IOV ports.

1. Ifit does not already exist, create a network and subnet for the chosen physnet. This is the network
to which SR-IOV ports will be attached. For example:

openstack network create --provider-physical-network physnet2
--provider-network-type vlan --provider-segment
sriov-net

openstack subnet create --network sriov-net
--subnet-pool shared-default-subnetpool-v4
sriov-subnet

L

2. Get the id of the network where you want the SR-IOV port to be created:

[openstack network show sriov-net -c id -f value }

3. Create the SR-IOV port. vnic-type=direct is used here, but other options include normal,
direct-physical, and macvtap:

openstack port create --network --vhic-type direct
sriov-port

Alternatively, to request that the SR-IOV port accept trusted capabilities, the binding profile should
be enhanced with the trusted tag.

openstack port create --network --vhic-type direct
--binding-profile
sriov-port

4. Get the id of the created port:

{ openstack port show sriov-port -c id -f value }

5. Create the instance. Specify the SR-IOV port created in step two for the NIC:

openstack server create --flavor ml.large --image ubuntu_18.04
--nic port-id
test-sriov

394 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Note

There are two ways to attach VFs to an instance. You can create an SR-IOV port or use the
pci_alias in the Compute service. For more information about using pci_alias, refer to
nova-api configuration.

SR-IOV with ConnectX-3/ConnectX-3 Pro Dual Port Ethernet

In contrast to Mellanox newer generation NICs, ConnectX-3 family network adapters expose a single PCI
device (PF) in the system regardless of the number of physical ports. When the device is dual port and
SR-IOV is enabled and configured we can observe some inconsistencies in linux networking subsystem.

Note

In the example below enp4s0 represents PF net device associated with physical port 1 and enp4s0d1
represents PF net device associated with physical port 2.

Example: A system with ConnectX-3 dual port device and a total of four VFs configured, two VFs
assigned to port one and two VFs assigned to port two.

lspci grep Mellanox

Four VFs are available in the system, however,

ip link show

8.2. Configuration 395

https://docs.openstack.org/nova/latest/admin/pci-passthrough.html#configure-nova-api-controller

Neutron Documentation, Release 25.1.1.dev7

ip command identifies each PF associated net device as having four VFs each.

Note

Mellanox m1x4 driver allows ip commands to perform configuration of all VFs from either PF asso-
ciated network devices.

To allow neutron SR-IOV agent to properly identify the VFs that belong to the correct PF network device
(thus to the correct network port) Admin is required to provide the exclude_devices configuration
option in sriov_agent.ini

Step 1: derive the VF to Port mapping from mlx4 driver configuration file: /etc/modprobe.d/mlnx.
conf or /etc/modprobe.d/mlx4.conf

cat /etc/modprobe.d/mlnx.conf = grep

Where:

num_vfs=nl,n2,n3 - The driver will enable n1 VFs on physical port 1, n2 VFs on physical port 2 and
n3 dual port VFs (applies only to dual port HCA when all ports are Ethernet ports).

probe_vfs=ml,m2,m3 - the driver probes ml single port VFs on physical port 1, m2 single port VFs
on physical port 2 (applies only if such a port exist) m3 dual port VFs. Those VFs are attached to the
hypervisor. (applies only if all ports are configured as Ethernet).

The VFs will be enumerated in the following order:
1. port 1 VFs
2. port 2 VFs
3. dual port VFs

In our example:

04:00.0 : PF associated to both ports.
04:00.1 : VF associated to port 1
04:00.2 : VF associated to port 1
04:00.3 : VF associated to port 2
04:00.4 : VF associated to port 2

Step 2: Update exclude_devices configuration option in sriov_agent.ini with the correct mapping

Each PF associated net device shall exclude the other ports VFs

396 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

SR-I0V with InfiniBand

The support for SR-IOV with InfiniBand allows a Virtual PCI device (VF) to be directly mapped to
the guest, allowing higher performance and advanced features such as RDMA (remote direct memory
access). To use this feature, you must:

1. Use InfiniBand enabled network adapters.
2. Run InfiniBand subnet managers to enable InfiniBand fabric.

All InfiniBand networks must have a subnet manager running for the network to function. This is
true even when doing a simple network of two machines with no switch and the cards are plugged
in back-to-back. A subnet manager is required for the link on the cards to come up. It is possible
to have more than one subnet manager. In this case, one of them will act as the primary, and any
other will act as a backup that will take over when the primary subnet manager fails.

3. Install the ebrctl utility on the compute nodes.

Check that ebrctl is listed somewhere in /etc/nova/rootwrap.d/*:

[grep /etc/nova/rootwrap.d/*

J

If ebrctl does not appear in any of the rootwrap files, add this to the /etc/nova/rootwrap.d/
compute.filters file in the [Filters] section.

|

Known limitations
* When using Quality of Service (QoS), max_burst_kbps (burst over max_kbps) is not supported.
In addition, max_kbps is rounded to Mbps.

* Security groups are not supported when using SR-IOV, thus, the firewall driver must be disabled.
This can be done in the neutron. conf file.

e SR-IOV is not integrated into the OpenStack Dashboard (horizon). Users must use the CLI or API
to configure SR-IOV interfaces.

* Live migration support has been added to the Libvirt Nova virt-driver in the Train release for
instances with neutron SR-IOV ports. Indirect mode SR-IOV interfaces (vnic-type: macvtap or
virtio-forwarder) can now be migrated transparently to the guest. Direct mode SR-IOV interfaces
(vnic-type: direct or direct-physical) are detached before the migration and reattached after the
migration so this is not transparent to the guest. To avoid loss of network connectivy when live
migrating with direct mode sriov the user should create a failover bond in the guest with a trans-
parently live migration port type e.g. vnic-type normal or indirect mode SR-IOV.

Note

SR-IOV features may require a specific NIC driver version, depending on the vendor. Intel
NICs, for example, require ixgbe version 4.4.6 or greater, and ixgbevf version 3.2.2 or greater.

8.2. Configuration 397

Neutron Documentation, Release 25.1.1.dev7

* Attaching SR-IOV ports to existing servers is supported starting with the Victoria release.

8.2.35 Service Function Chaining

Service function chain (SFC) essentially refers to the software-defined networking (SDN) version of
policy-based routing (PBR). In many cases, SFC involves security, although it can include a variety of
other features.

Fundamentally, SFC routes packets through one or more service functions instead of conventional routing
that routes packets using destination IP address. Service functions essentially emulate a series of physical
network devices with cables linking them together.

A basic example of SFC involves routing packets from one location to another through a firewall that
lacks a next hop IP address from a conventional routing perspective. A more complex example involves
an ordered series of service functions, each implemented using multiple instances (VMs). Packets must
flow through one instance and a hashing algorithm distributes flows across multiple instances at each
hop.

Architecture

All OpenStack Networking services and OpenStack Compute instances connect to a virtual network via
ports making it possible to create a traffic steering model for service chaining using only ports. Including
these ports in a port chain enables steering of traffic through one or more instances providing service
functions.

A port chain, or service function path, consists of the following:
* A set of ports that define the sequence of service functions.
* A set of flow classifiers that specify the classified traffic flows entering the chain.

If a service function involves a pair of ports, the first port acts as the ingress port of the service function
and the second port acts as the egress port. If both ports use the same value, they function as a single
virtual bidirectional port.

A port chain is a unidirectional service chain. The first port acts as the head of the service function chain
and the second port acts as the tail of the service function chain. A bidirectional service function chain
consists of two unidirectional port chains.

A flow classifier can only belong to one port chain to prevent ambiguity as to which chain should handle
packets in the flow. A check prevents such ambiguity. However, you can associate multiple flow classifiers
with a port chain because multiple flows can request the same service function path.

Currently, SFC lacks support for multi-project service functions.

The port chain plug-in supports backing service providers including the OVS driver and a variety of SDN
controller drivers. The common driver API enables different drivers to provide different implementations
for the service chain path rendering.

398 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Neutron Server

Port Chain API

Port Chain Database

Driver Manager

Common Driver API

) Controller Controller
OVS Driver Driver 1 Driver 2
| | |
SDN SDN
OVS Agent || nirolier 1 || Controller 2
Por_t - Port Pair |1 Port Pair
Chain [port_pair_groups | Group | port_pairs
1 11
lﬁow_classifiers l ingress/
. egress
1-2
Flow Neutron
Classifier Port

See the networking-sfc documentation for more information.

Resources

Port chain

e id - Port chain ID

* project_id - Project ID

* name - Readable name

* description - Readable description

* port_pair_groups - List of port pair group IDs

» flow_classifiers - List of flow classifier IDs

* chain_parameters - Dictionary of chain parameters

A port chain consists of a sequence of port pair groups. Each port pair group is a hop in the port chain. A
group of port pairs represents service functions providing equivalent functionality. For example, a group
of firewall service functions.

A flow classifier identifies a flow. A port chain can contain multiple flow classifiers. Omitting the flow
classifier effectively prevents steering of traffic through the port chain.

The chain_parameters attribute contains one or more parameters for the port chain. Currently, it
only supports a correlation parameter that defaults to mpls for consistency with Open vSwitch (OVS)
capabilities. Future values for the correlation parameter may include the network service header (NSH).

8.2. Configuration 399

https://docs.openstack.org/networking-sfc/latest/

Neutron Documentation, Release 25.1.1.dev7

Port pair group

* id - Port pair group ID

* project_id - Project ID

* name - Readable name

* description - Readable description

* port_pairs - List of service function port pairs

A port pair group may contain one or more port pairs. Multiple port pairs enable load balanc-
ing/distribution over a set of functionally equivalent service functions.

Port pair

e id - Port pair ID

* project_id - Project ID

* name - Readable name

* description - Readable description

* ingress - Ingress port

* egress - Egress port

* service_function_parameters - Dictionary of service function parameters

A port pair represents a service function instance that includes an ingress and egress port. A service
function containing a bidirectional port uses the same ingress and egress port.

The service_function_parameters attribute includes one or more parameters for the service func-
tion. Currently, it only supports a correlation parameter that determines association of a packet with
a chain. This parameter defaults to none for legacy service functions that lack support for correlation
such as the NSH. If set to none, the data plane implementation must provide service function proxy
functionality.

Flow classifier

* id - Flow classifier ID

* project_id - Project ID

* name - Readable name

* description - Readable description

* ethertype - Ethertype (IPv4/IPv6)

* protocol - IP protocol

* source_port_range_min - Minimum source protocol port
* source_port_range_max - Maximum source protocol port

* destination_port_range_min - Minimum destination protocol port

400 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

* destination_port_range_max - Maximum destination protocol port
* source_ip_prefix - Source IP address or prefix

* destination_ip_prefix - Destination IP address or prefix

* logical_source_port - Source port

* logical_destination_port - Destination port

* 17_parameters - Dictionary of L7 parameters

A combination of the source attributes defines the source of the flow. A combination of the desti-
nation attributes defines the destination of the flow. The 17_parameters attribute is a place holder
that may be used to support flow classification using layer 7 fields, such as a URL. If unspecified, the
logical_source_port and logical_destination_port attributes default to none, the ethertype
attribute defaults to IPv4, and all other attributes default to a wildcard value.

Operations

Create a port chain

The following example uses the openstack command-line interface (CLI) to create a port chain con-
sisting of three service function instances to handle HTTP (TCP) traffic flows from 192.0.2.11:1000 to
198.51.100.11:80.

* Instance 1

— Name: vml

— Function: Firewall

— Port pair: [pl, p2]
* Instance 2

— Name: vm2

— Function: Firewall

— Port pair: [p3, p4]
* Instance 3

— Name: vm3

— Function: Intrusion detection system (IDS)

— Port pair: [p5, p6]
Note
The example network net1 must exist before creating ports on it.

1. Source the credentials of the project that owns the net1 network.

2. Create ports on network net1 and record the UUID values.

8.2. Configuration 401

Neutron Documentation, Release 25.1.1.dev7

openstack port create pl --network netl
openstack port create p2 --network netl
openstack port create p3 --network netl
openstack port create p4 --network netl
openstack port create p5 --network netl
openstack port create p6 --network netl

3. Launch service function instance vm1 using ports p1 and p2, vm2 using ports p3 and p4, and vm3
using ports p5 and p6.

openstack server create --nic port-id P1_ID --nic port-id P2_ID vml
openstack server create --nic port-id P3_ID --nic port-id P4_ID vm2
openstack server create --nic port-id P5_ID --nic port-id P6_ID vm3

Replace P1_ID, P2_ID, P3_ID, P4_ID, P5_ID, and P6_ID with the UUIDs of the respective ports.

Note

This command requires additional options to successfully launch an instance. See the CLI
reference for more information.

Alternatively, you can launch each instance with one network interface and attach additional ports
later.

4. Create flow classifier FC1 that matches the appropriate packet headers.

openstack sfc flow classifier create
--description

--ethertype IPv4

--source-ip-prefix .0.2.11/32
--destination-ip-prefix .51.100.11/32
--protocol tcp

--source-port : 1000
--destination-port :80 FC1

Note

When using the (default) OVS driver, the --1ogical-source-port parameter is also required

5. Create port pair PP1 with ports pl and p2, PP2 with ports p3 and p4, and PP3 with ports p5 and
po.

openstack sfc port pair create
--description

--ingress pl

--egress p2 PP1

openstack sfc port pair create
--description

(continues on next page)

402 Chapter 8. OpenStack Networking Guide

https://docs.openstack.org/cli-reference/openstack.html
https://docs.openstack.org/cli-reference/openstack.html

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)
--ingress p3
--egress p4 PP2

openstack sfc port pair create
--description

--ingress p5

--egress p6 PP3

6. Create port pair group PPG1 with port pair PP1 and PP2 and PPG2 with port pair PP3.

openstack sfc port pair group create
--port-pair PP1 --port-pair PP2 PPGl
openstack sfc port pair group create
--port-pair PP3 PPG2

Note

You can repeat the --port-pair option for multiple port pairs of functionally equivalent ser-
vice functions.

7. Create port chain PC1 with port pair groups PPG1 and PPG2 and flow classifier FC1.

openstack sfc port chain create
--port-pair-group PPGl --port-pair-group PPG2
--flow-classifier FC1 PC1

Note

You can repeat the --port-pair-group option to specify additional port pair groups in the
port chain. A port chain must contain at least one port pair group.

You can repeat the --flow-classifier option to specify multiple flow classifiers for a port
chain. Each flow classifier identifies a flow.

Update a port chain or port pair group

* Use the openstack sfc port chain set command to dynamically add or remove port pair
groups or flow classifiers on a port chain.

— For example, add port pair group PPG3 to port chain PC1:

openstack sfc port chain

--port-pair-group PPGl --port-pair-group PPG2 --port-pair-group..
—PPG3

--flow-classifier FCl1 PC1

— For example, add flow classifier FC2 to port chain PC1:

8.2. Configuration 403

Neutron Documentation, Release 25.1.1.dev7

openstack sfc port chain
--port-pair-group PPGl --port-pair-group PPG2
--flow-classifier FCl --flow-classifier FC2 PC1

SEC steers traffic matching the additional flow classifier to the port pair groups in the port
chain.

* Use the openstack sfc port pair group set command to perform dynamic scale-out or
scale-in operations by adding or removing port pairs on a port pair group.

openstack sfc port pair group
--port-pair PP1 --port-pair PP2 --port-pair PP4 PPG1

SFC performs load balancing/distribution over the additional service functions in the port pair
group.

8.2.36 Service Subnets

Service subnets enable operators to define valid port types for each subnet on a network without limiting
networks to one subnet or manually creating ports with a specific subnet ID. Using this feature, operators
can ensure that ports for instances and router interfaces, for example, always use different subnets.

Operation

Define one or more service types for one or more subnets on a particular network. Each service type
must correspond to a valid device owner within the port model in order for it to be used.

During IP allocation, the /PAM driver returns an address from a subnet with a service type matching the
port device owner. If no subnets match, or all matching subnets lack available IP addresses, the IPAM
driver attempts to use a subnet without any service types to preserve compatibility. If all subnets on
a network have a service type, the IPAM driver cannot preserve compatibility. However, this feature
enables strict IP allocation from subnets with a matching device owner. If multiple subnets contain the
same service type, or a subnet without a service type exists, the IPAM driver selects the first subnet
with a matching service type. For example, a floating IP agent gateway port uses the following selection
process:

* network:floatingip_agent_gateway

e None

Note

Ports with the device owner network : dhcp are exempt from the above IPAM logic for subnets with
dhcp_enabled set to True. This preserves the existing automatic DHCP port creation behaviour for
DHCP-enabled subnets.

Creating or updating a port with a specific subnet skips this selection process and explicitly uses the given
subnet.

404 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Usage

Note

Creating a subnet with a service type requires administrative privileges.

Example 1 - Proof-of-concept

This following example is not typical of an actual deployment. It is shown to allow users to experiment
with configuring service subnets.

1. Create a network.

e

openstack network create demo-netl

L

2. Create a subnet on the network with one or more service types. For example, the compute:nova
service type enables instances to use this subnet.

-

openstack subnet create demo-subnetl --subnet-range .0.2.0/24
--service-type --network demo-netl

(continues on next page)

8.2. Configuration 405

Neutron Documentation, Release 25.1.1.dev7

L

(continued from previous page)

J

3. Optionally, create another subnet on the network with a different service type. For example, the

compute: foo arbitrary service type.

L

openstack subnet create demo-subnet2 --subnet-range .51.100.0/24
--service-type --network demo-netl

4. Launch an instance using the network. For example, using the cirros image and m1. tiny flavor.

openstack server create demo-instancel --flavor ml.tiny
--image cirros --nic net-id b5b729d8-31cc-4d2c-8284-72b3291fecO2

(continues on next page)

406

Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

()

8.2. Configuration 407

Neutron Documentation, Release 25.1.1.dev7

5. Check the instance status. The Networks field contains an IP address from the subnet having the
compute:nova service type.

openstack server list

Example 2 - DVR configuration

The following example outlines how you can configure service subnets in a DVR-enabled deployment,
with the goal of minimizing public IP address consumption. This example uses three subnets on the same
external network:

* 192.0.2.0/24 for instance floating IP addresses
* 198.51.100.0/24 for floating IP agent gateway IPs configured on compute nodes
* 203.0.113.0/25 for all other IP allocations on the external network

This example uses again the private network, demo-net1 (b5b729d8-31cc-4d2c-8284-72b3291fec02)
which was created in Example 1 - Proof-of-concept.

1. Create an external network:

openstack network create --external demo-ext-net

2. Create a subnet on the external network for the instance floating IP addresses. This uses the
network:floatingip service type.

openstack subnet create demo-floating-ip-subnet
--subnet-range .0.2.0/24 --no-dhcp
--service-type --network demo-ext-net

3. Create a subnet on the external network for the floating IP agent gateway IP addresses, which are
configured by DVR on compute nodes. This will use the network: floatingip_agent_gateway
service type.

openstack subnet create demo-floating-ip-agent-gateway-subnet
--subnet-range .51.100.0/24 --no-dhcp

--service-type

--network demo-ext-net

4. Create a subnet on the external network for all other IP addresses allocated on the external network.
This will not use any service type. It acts as a fall back for allocations that do not match either of
the above two service subnets.

408 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

openstack subnet create demo-other-subnet
--subnet-range .0.113.0/25 --no-dhcp
--network demo-ext-net

5. Create a router:

[openstack router create demo-router }

6. Add an interface to the router on demo-subnetl:

{ openstack router add subnet demo-router demo-subnetl }

7. Set the external gateway for the router, which will create an interface and allocate an IP address on
demo-ext-net:

{ openstack router --external-gateway demo-ext-net demo-router }

8. Launch an instance on a private network and retrieve the neutron port ID that was allocated. As
above, use the cirros image and m1. tiny flavor:

openstack server create demo-instancel --flavor ml.tiny
--image cirros --nic net-id b5b729d8-31cc-4d2c-8284-72b3291fecO2
openstack port list --server demo-instancel

9. Associate a floating IP with the instance port and verify it was allocated an IP address from the
correct subnet:

openstack floating ip create --port
a752bb24-9b£2-4d37-b9d6-07da69c86£19 demo-ext-net

(continues on next page)

8.2. Configuration 409

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

10. As the admin user, verify the neutron routers are allocated IP addresses from their correct subnets.

Use openstack port list to find ports associated with the routers.

First, the router gateway external port:

-

openstack port show f148ffeb-3c26-4067-bc5f-5c3dfddae2£5

Second, the router floating IP agent gateway external port:

openstack port show a2dle756-8ael-4f96-9aal-e7ealbabab8a

(continues on next page)

410

Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

8.2.37 Subnet Onboarding

The subnet onboard feature allows you to take existing subnets that have been created outside of a subnet
pool and move them into an existing subnet pool. This enables you to begin using subnet pools and
address scopes if you havent allocated existing subnets from subnet pools. It also allows you to move
individual subnets between subnet pools, and by extension, move them between address scopes.

8.2. Configuration 411

Neutron Documentation, Release 25.1.1.dev7

How it works

One of the fundamental constraints of subnet pools is that all subnets of the same address family (IPv4,
IPv6) on a network must be allocated from the same subnet pool. Because of this constraint, subnets
must be moved, or onboarded, into a subnet pool as a group at the network level rather than being handled
individually. As such, the onboarding of subnets requires users to supply the UUID of the network the
subnet(s) to onboard are associated with, and the UUID of the target subnet pool to perform the operation.

Does my environment support subnet onboard?

To test that subnet onboard is supported in your environment, execute the following command:

openstack extension list --network -c Alias -c Description grep subnet_
—onboard

Support for subnet onboard exists in the ML2 plugin as of the Stein release. If you require subnet onboard
but your current environment does not support it, consider upgrading to a release that supports subnet
onboard. When using third-party plugins with neutron, check with the supplier of the plugin regarding
support for subnet onboard.

Demo

Suppose an administrator has an existing provider network in their environment that was created without
allocating its subnets from a subnet pool.

openstack network list

openstack subnet show 5153cab7-7ab6-4956-8466-39aa85dccc9a

(continues on next page)

412 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

The administrator has created a subnet pool named routable-prefixes and wants to onboard the
subnets associated with network provider-net-1. The administrator now wants to manage the address
space for provider networks using a subnet pool, but doesnt have the prefixes used by these provider
networks under the management of a subnet pool or address scope.

openstack subnet pool list

openstack subnet pool show routable-prefixes

(continues on next page)

8.2. Configuration 413

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

The administrator can use the following command to bring these subnets under the management of a
subnet pool:

[openstack network onboard subnets provider-net-1 routable-prefixes }

The subnets on provider-net-1 should now all have their subnetpool_id updated to match the UUID
of the routable-prefixes subnet pool:

openstack subnet show 5153cab7-7ab6-4956-8466-39aa85dccc9a

The subnet pool will also now show the onboarded prefix(es) in its prefix list:

openstack subnet pool show routable-prefixes

(continues on next page)

414 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

8.2.38 Subnet Pools

Subnet pools have been made available since the Kilo release. It is a simple feature that has the potential
to improve your workflow considerably. It also provides a building block from which other new features
will be built in to OpenStack Networking.

To see if your cloud has this feature available, you can check that it is listed in the supported aliases. You
can do this with the OpenStack client.

openstack extension list grep subnet_allocation

Why you need them

Before Kilo, Networking had no automation around the addresses used to create a subnet. To create one,
you had to come up with the addresses on your own without any help from the system. There are valid
use cases for this but if you are interested in the following capabilities, then subnet pools might be for
you.

First, would not it be nice if you could turn your pool of addresses over to Neutron to take care of? When
you need to create a subnet, you just ask for addresses to be allocated from the pool. You do not have to
worry about what you have already used and what addresses are in your pool. Subnet pools can do this.

Second, subnet pools can manage addresses across projects. The addresses are guaranteed not to over-
lap. If the addresses come from an externally routable pool then you know that all of the projects have
addresses which are routable and unique. This can be useful in the following scenarios.

1. IPv6 since OpenStack Networking has no IPv6 floating IPs.

2. Routing directly to a project network from an external network.

8.2. Configuration 415

Neutron Documentation, Release 25.1.1.dev7

How they work

A subnet pool manages a pool of addresses from which subnets can be allocated. It ensures that there is
no overlap between any two subnets allocated from the same pool.

As aregular project in an OpenStack cloud, you can create a subnet pool of your own and use it to manage
your own pool of addresses. This does not require any admin privileges. Your pool will not be visible to
any other project.

If you are an admin, you can create a pool which can be accessed by any regular project. Being a shared
resource, there is a quota mechanism to arbitrate access.

Quotas

Subnet pools have a quota system which is a little bit different than other quotas in Neutron. Other quotas
in Neutron count discrete instances of an object against a quota. Each time you create something like a
router, network, or a port, it uses one from your total quota.

With subnets, the resource is the IP address space. Some subnets take more of it than others. For example,
203.0.113.0/24 uses 256 addresses in one subnet but 198.51.100.224/28 uses only 16. If address space
is limited, the quota system can encourage efficient use of the space.

With IPv4, the default_quota can be set to the number of absolute addresses any given project is al-
lowed to consume from the pool. For example, with a quota of 128, I might get 203.0.113.128/26,
203.0.113.224/28, and still have room to allocate 48 more addresses in the future.

With IPv6 it is a little different. It is not practical to count individual addresses. To avoid ridiculously
large numbers, the quota is expressed in the number of /64 subnets which can be allocated. For example,
with a default_quota of 3, I might get 2001:db8:c18e:c05a::/64, 2001:db8:221c:8ef3::/64, and still have
room to allocate one more prefix in the future.

Default subnet pools

Beginning with Mitaka, a subnet pool can be marked as the default. This is handled with a new extension.

openstack extension list grep default-subnetpools

An administrator can mark a pool as default. Only one pool from each address family can be marked
default.

[openstack subnet pool --default -f8bf-4fc0-ab®3-81229d189467 J

If there is a default, it can be requested by passing --use-default-subnetpool instead of
--subnet-pool SUBNETPOOL.

416 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Demo

If you have access to an OpenStack Kilo or later based neutron, you can play with this feature now. Give
it a try. All of the following commands work equally as well with IPv6 addresses.

First, as admin, create a shared subnet pool:

openstack subnet pool create --share --pool-prefix
--default-prefix-length demo-subnetpool4

.0.113.0/24

The default_prefix_length defines the subnet size you will get if you do not specify

--prefix-length when creating a subnet.

Do essentially the same thing for IPv6 and there are now two subnet pools. Regular projects can see

them. (the output is trimmed a bit for display)

openstack subnet pool list

8.2. Configuration

417

Neutron Documentation, Release 25.1.1.dev7

Now, use them. It is easy to create a subnet from a pool:

openstack subnet create --ip-version 4 --subnet-pool
demo-subnetpool4 --network demo-networkl demo-subnetl

You can request a specific subnet from the pool. You need to specify a subnet that falls within the pools
prefixes. If the subnet is not already allocated, the request succeeds. You can leave off the IP version
because it is deduced from the subnet pool.

openstack subnet create --subnet-pool demo-subnetpool4
--network demo-networkl --subnet-range .0.113.128/26 subnet2

(continues on next page)

418 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

If the pool becomes exhausted, load some more prefixes:

openstack subnet pool --pool-prefix
.51.100.0/24 demo-subnetpool4d
openstack subnet pool show demo-subnetpool4

8.2. Configuration 419

Neutron Documentation, Release 25.1.1.dev7

8.2.39 Trunking

The network trunk service allows multiple networks to be connected to an instance using a single virtual
NIC (vNIC). Multiple networks can be presented to an instance by connecting it to a single port.

Operation

Network trunking consists of a service plug-in and a set of drivers that manage trunks on different layer-
2 mechanism drivers. Users can create a port, associate it with a trunk, and launch an instance on that
port. Users can dynamically attach and detach additional networks without disrupting operation of the
instance.

Every trunk has a parent port and can have any number of subports. The parent port is the port that the
trunk is associated with. Users create instances and specify the parent port of the trunk when launching
instances attached to a trunk.

The network presented by the subport is the network of the associated port. When creating a subport,
a segmentation-id may be required by the driver. segmentation-id defines the segmentation ID
on which the subport network is presented to the instance. segmentation-type may be required by
certain drivers like OVS. At this time the following segmentation-type values are supported:

* vlan uses VLAN for segmentation.

* inherit uses the segmentation-type from the network the subport is connected to if no
segmentation-type is specified for the subport. Note that using the inherit type re-
quires the provider extension to be enabled and only works when the connected networks
segmentation-type is vlan.

Note

The segmentation-type and segmentation-id parameters are optional in the Networking API.
However, all drivers as of the Newton release require both to be provided when adding a subport to a
trunk. Future drivers may be implemented without this requirement.

The segmentation-type and segmentation-id specified by the user on the subports is intentionally
decoupled from the segmentation-type and ID of the networks. For example, it is possible to con-
figure the Networking service with tenant_network_types = vxlan and still create subports with
segmentation_type = vlan. The Networking service performs remapping as necessary.

Example configuration

The ML2 plug-in supports trunking with the following mechanism drivers:
* Open vSwitch (OVS)
* Linux bridge
* Open Virtual Network (OVN)

When using a segmentation-type of vlan, the OVS and Linux bridge drivers present the network of
the parent port as the untagged VLAN and all subports as tagged VLANS.

420 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Controller node

* In the neutron. conf file, enable the trunk service plug-in:

Verify service operation

1. Source the administrative project credentials and list the enabled extensions.

2. Use the command openstack extension list --network to verify that the Trunk
Extension and Trunk port details extensions are enabled.

Workflow

At a high level, the basic steps to launching an instance on a trunk are the following:
1. Create networks and subnets for the trunk and subports
2. Create the trunk
3. Add subports to the trunk

4. Launch an instance on the trunk

Create networks and subnets for the trunk and subports

Create the appropriate networks for the trunk and subports that will be added to the trunk. Create subnets
on these networks to ensure the desired layer-3 connectivity over the trunk.

Create the trunk

* Create a parent port for the trunk.

,

openstack port create --network project-net-A trunk-parent

(continues on next page)

8.2. Configuration 421

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

* Create the trunk using --parent-port to reference the port from the previous step:

-

openstack network trunk create --parent-port trunk-parent trunkl

Add subports to the trunk

Subports can be added to a trunk in two ways: creating the trunk with subports or adding subports to an
existing trunk.

* Create trunk with subports:

This method entails creating the trunk with subports specified at trunk creation.

-

openstack port create --network project-net-A trunk-parent

—

(continues on next page)

422 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

openstack port create --network trunked-net subportl

(continues on next page)

8.2. Configuration 423

Neutron Documentation, Release 25.1.1.dev7

openstack network trunk create
--parent-port trunk-parent

trunkl

(continued from previous page)

--subport subportl, segmentation-type vlan,segmentation-id

* Add subports to an existing trunk:

This method entails creating a trunk, then adding subports to the trunk after it has already been

created.
openstack network trunk --subport
subportl, segmentation-type vlan,segmentation-id
trunk1l
Note

The command provides no output.

openstack network trunk show trunkl

—

(continues on next page)

424

Chapter 8.

OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

* When using the OVN driver, additional logical switch port information is available using the fol-
lowing commands:

ovn-nbctl lsp-get-parent 61d8e620-fe3a-4d8f-b9%e6-elb0deabd9e3

ovn-nbctl lsp-get-tag 61d8e620-fe3a-4d8f-b9eb6-elb0deabd9e3

Launch an instance on the trunk

* Show trunk details to get the port_id of the trunk.

openstack network trunk show trunkl

* Launch the instance by specifying port-id using the value of port_id from the trunk details.
Launching an instance on a subport is not supported.

8.2. Configuration 425

Neutron Documentation, Release 25.1.1.dev7

Using trunks and subports inside an instance

When configuring instances to use a subport, ensure that the interface on the instance is set to use the
MAC address assigned to the port by the Networking service. Instances are not made aware of changes
made to the trunk after they are active. For example, when a subport with a segmentation-type of
vlan is added to a trunk, any operations specific to the instance operating system that allow the instance
to send and receive traffic on the new VLAN must be handled outside of the Networking service.

When creating subports, the MAC address of the trunk parent port can be set on the subport. This will
allow VLAN subinterfaces inside an instance launched on a trunk to be configured without explicitly
setting a MAC address. Although unique MAC addresses can be used for subports, this can present
issues with ARP spoof protections and the native OVS firewall driver. If the native OVS firewall driver
is to be used, we recommend that the MAC address of the parent port be re-used on all subports.

Trunk states

* ACTIVE

The trunk is ACTIVE when both the logical and physical resources have been created. This means
that all operations within the Networking and Compute services have completed and the trunk is
ready for use.

* DOWN

A trunk is DOWN when it is first created without an instance launched on it, or when the instance
associated with the trunk has been deleted.

* DEGRADED

A trunk can be in a DEGRADED state when a temporary failure during the provisioning process is
encountered. This includes situations where a subport add or remove operation fails. When in a
degraded state, the trunk is still usable and some subports may be usable as well. Operations that
cause the trunk to go into a DEGRADED state can be retried to fix temporary failures and move the
trunk into an ACTIVE state.

* ERROR

A trunk is in ERROR state if the request leads to a conflict or an error that cannot be fixed by retrying
the request. The ERROR status can be encountered if the network is not compatible with the trunk
configuration or the binding process leads to a persistent failure. When a trunk is in ERROR state,
it must be brought to a sane state (ACTIVE), or else requests to add subports will be rejected.

e BUILD

A trunk is in BUILD state while the resources associated with the trunk are in the process of being
provisioned. Once the trunk and all of the subports have been provisioned successfully, the trunk
transitions to ACTIVE. If there was a partial failure, the trunk transitions to DEGRADED.

When admin_state is set to DOWN, the user is blocked from performing operations on the trunk.
admin_state is set by the user and should not be used to monitor the health of the trunk.

426 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Limitations and issues

* In neutron-ovs-agent the use of iptables_hybrid firewall driver and trunk ports are not
compatible with each other. The iptables_hybrid firewall is not going to filter the traffic of
subports. Instead use other firewall drivers like openvswitch.

* See bugs for more information.

8.2.40 WSGI Usage with the Neutron API
This document is a guide to deploying Neutron using WSGI. There are two ways to deploy using WSGI:
uwsgi and Apache mod_wsgi.

Please note that if you intend to use mode uwsgi, you should install the mode_proxy_uwsgi module.
For example on deb-based system:

sudo apt-get install libapache2-mod-proxy-uwsgi
sudo a2enmod proxy
sudo aZenmod proxy_uwsgi

WSGI Application

The function neutron. server.get_application will setup a WSGI application to run behind uwsgi
and mod_wsgi.

Neutron API behind uwsgi

Create a /etc/neutron/neutron-api-uwsgi.ini file with the content below:

Start neutron-api:

[uwsgi --procname-prefix neutron-api --ini /etc/neutron/neutron—api—uwsgi.ini}

8.2. Configuration 427

https://bugs.launchpad.net/neutron/+bugs?field.tag=trunk

Neutron Documentation, Release 25.1.1.dev7

Neutron API behind mod_wsgi

Create /etc/apache2/neutron. conf with content below:

J

For deb-based systems copy or symlink the file to /etc/apache2/sites-available. Then enable the

neutron site:

aZensite neutron
systemctl reload apache2.service

For rpm-based systems copy the file to /etc/httpd/conf.d. Then enable the neutron site:

[systemctl reload httpd.service

428

Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Start Neutron RPC server

When Neutron API is served by a web server (like Apache?) it is difficult to start an rpc listener thread.
So start the Neutron RPC server process to serve this job:

/usr/bin/neutron-rpc-server --config-file /etc/neutron/neutron.conf --
—config-file /etc/neutron/plugins/ml2/ml2_conf.ini

Neutron Worker Processes

Neutron will attempt to spawn a number of child processes for handling API and RPC requests. The
number of API workers is set to the number of CPU cores, further limited by available memory, and the
number of RPC workers is set to half that number.

It is strongly recommended that all deployers set these values themselves, via the api_workers and
rpc_workers configuration parameters.

For a cloud with a high load to a relatively small number of objects, a smaller value for api_workers
will provide better performance than many (somewhere around 4-8.) For a cloud with a high load to
lots of different objects, then the more the better. Budget neutron-server using about 2GB of RAM in
steady-state.

For rpc_workers, there needs to be enough to keep up with incoming events from the various neutron
agents. Signs that there are too few can be agent heartbeats arriving late, nova vif bindings timing out on
the hypervisors, or rpc message timeout exceptions in agent logs (for example, broken pipe errors).

There is also the rpc_state_report_workers option, which determines the number fo RPC worker pro-
cesses dedicated to process state reports from the various agents. This may be increased to resolve fre-
quent delay in processing agents heartbeats.

Note

If OVN ML2 plugin is used without any additional agents, neutron requires no worker for RPC mes-
sage processing. Set both rpc_workers and rpc_state_report_workers to 0, to disable RPC workers.

Note

For general configuration, see the Configuration Reference.

8.3 Deployment examples

The following deployment examples provide building blocks of increasing architectural complexity using
the Networking service reference architecture which implements the Modular Layer 2 (ML2) plug-in and
either the Open vSwitch (OVS) or Linux bridge mechanism drivers. Both mechanism drivers support
the same basic features such as provider networks, self-service networks, and routers. However, more
complex features often require a particular mechanism driver. Thus, you should consider the requirements
(or goals) of your cloud before choosing a mechanism driver.

After choosing a mechanism driver, the deployment examples generally include the following building
blocks:

8.3. Deployment examples 429

Neutron Documentation, Release 25.1.1.dev7

1. Provider (public/external) networks using IPv4 and IPv6
2. Self-service (project/private/internal) networks including routers using IPv4 and IPv6
3. High-availability features

4. Other features such as BGP dynamic routing

8.3.1 Prerequisites

Prerequisites, typically hardware requirements, generally increase with each building block. Each build-
ing block depends on proper deployment and operation of prior building blocks. For example, the first
building block (provider networks) only requires one controller and two compute nodes, the second build-
ing block (self-service networks) adds a network node, and the high-availability building blocks typically
add a second network node for a total of five nodes. Each building block could also require additional
infrastructure or changes to existing infrastructure such as networks.

For basic configuration of prerequisites, see the latest Install Tutorials and Guides.

Note

Example commands using the openstack client assume version 3.2.0 or higher.

Nodes

The deployment examples refer one or more of the following nodes:

* Controller: Contains control plane components of OpenStack services and their dependencies.

Two network interfaces: management and provider.

Operational SQL server with databases necessary for each OpenStack service.

Operational message queue service.

Operational OpenStack Identity (keystone) service.

Operational OpenStack Image Service (glance).

Operational management components of the OpenStack Compute (nova) service with appro-
priate configuration to use the Networking service.

— OpenStack Networking (neutron) server service and ML2 plug-in.

» Network: Contains the OpenStack Networking service layer-3 (routing) component. High avail-
ability options may include additional components.

— Three network interfaces: management, overlay, and provider.
— OpenStack Networking layer-2 (switching) agent, layer-3 agent, and any dependencies.

* Compute: Contains the hypervisor component of the OpenStack Compute service and the Open-
Stack Networking layer-2, DHCP, and metadata components. High-availability options may in-
clude additional components.

— Two network interfaces: management and provider.

430 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

— Operational hypervisor components of the OpenStack Compute (nova) service with appro-
priate configuration to use the Networking service.

— OpenStack Networking layer-2 agent, DHCP agent, metadata agent, and any dependencies.

Each building block defines the quantity and types of nodes including the components on each node.

Note

You can virtualize these nodes for demonstration, training, or proof-of-concept purposes. However,
you must use physical hosts for evaluation of performance or scaling.

Networks and network interfaces

The deployment examples refer to one or more of the following networks and network interfaces:

* Management: Handles API requests from clients and control plane traffic for OpenStack services
including their dependencies.

* Overlay: Handles self-service networks using an overlay protocol such as VXLAN or GRE.

* Provider: Connects virtual and physical networks at layer-2. Typically uses physical network in-
frastructure for switching/routing traffic to external networks such as the Internet.

Note

For best performance, 10+ Gbps physical network infrastructure should support jumbo frames.

For illustration purposes, the configuration examples typically reference the following IP address ranges:
* Provider network 1:
— 1Pv4: 203.0.113.0/24
— IPv6: £d00:203:0:113::/64
* Provider network 2:
- 1Pv4: 192.0.2.0/24
— IPv6: £d00:192:0:2::/64
* Self-service networks:
— IPv4: 198.51.100.0/24 in /24 segments
— IPv6: £d00:198:51::/48 in /64 segments

You may change them to work with your particular network infrastructure.

8.3. Deployment examples 431

Neutron Documentation, Release 25.1.1.dev7

8.3.2 Mechanism drivers
Linux bridge mechanism driver

The Linux bridge mechanism driver uses only Linux bridges and veth pairs as interconnection devices.
A layer-2 agent manages Linux bridges on each compute node and any other node that provides layer-3
(routing), DHCP, metadata, or other network services.

Compatibility with nftables

nftables replaces iptables, ip6tables, arptables and ebtables, in order to provide a single API for all
Netfilter operations. nftables provides a backwards compatibility set of tools for those replaced
binaries that present the legacy API to the user while using the new packet classification framework. As
reported in LP#1915341 and LP#1922892, the tool ebtables-nft is not totally compatible with the
legacy API and returns some errors. To use Linux Bridge mechanism driver in newer operating systems
that use nftables by default, it is needed to switch back to the legacy tool.

[/usr/bin/update-alternatives --set ebtables /usr/sbin/ebtables-legacy

Since LP#1922127 and LP#1922892 were fixed, Neutron Linux Bridge mechanism driver is compatible
with the nftables binaries using the legacy API.

Note

Just to unravel the possible terminology confusion, these are the three Netfilter available frame-
work alternatives:

* The legacy binaries (iptables, ip6tables, arptables and ebtables) that use the legacy
API.

* The new nftables binaries that use the legacy API, to help in the transition to this new frame-
work. Those binaries replicate the same commands as the legacy one but using the new frame-
work. The binaries have the same name ended in -nft.

* The new nftables framework using the new API. All Netfilter operations are executed using
this new API and one single binary, nft.

Currently we support the first two options. The migration (total or partial) to the new API is tracked
in LP#1508155.

In order to use the nftables binaries with the legacy API, it is needed to execute the following com-
mands.

/usr/bin/update-alternatives --set iptables /usr/sbin/iptables-nft
/usr/bin/update-alternatives --set ip6tables /usr/sbin/ip6tables-nft
/usr/bin/update-alternatives --set ebtables /usr/sbin/ebtables-nft
/usr/bin/update-alternatives --set arptables /usr/sbin/arptables-nft

The ipset tool is not compatible with nftables. To disable it, enable_ipset must be set to False
in the ML2 plugin configuration file /etc/neutron/plugins/ml2/ml2_conf.ini.

432 Chapter 8. OpenStack Networking Guide

https://netfilter.org/projects/nftables/
https://bugs.launchpad.net/neutron/+bug/1915341
https://bugs.launchpad.net/neutron/+bug/1922892
https://bugs.launchpad.net/neutron/+bug/1922127
https://bugs.launchpad.net/neutron/+bug/1922892
https://bugs.launchpad.net/neutron/+bug/1508155

Neutron Documentation, Release 25.1.1.dev7

Linux bridge: Provider networks

The provider networks architecture example provides layer-2 connectivity between instances and the
physical network infrastructure using VLAN (802.1q) tagging. It supports one untagged (flat) network
and up to 4095 tagged (VLAN) networks. The actual quantity of VLAN networks depends on the physical
network infrastructure. For more information on provider networks, see Provider networks.

Prerequisites

One controller node with the following components:

* Two network interfaces: management and provider.

* OpenStack Networking server service and ML2 plug-in.
Two compute nodes with the following components:

* Two network interfaces: management and provider.

* OpenStack Networking Linux bridge layer-2 agent, DHCP agent, metadata agent, and any depen-
dencies.

Note

Larger deployments typically deploy the DHCP and metadata agents on a subset of compute nodes to
increase performance and redundancy. However, too many agents can overwhelm the message bus.
Also, to further simplify any deployment, you can omit the metadata agent and use a configuration
drive to provide metadata to instances.

8.3. Deployment examples 433

Neutron Documentation, Release 25.1.1.dev7

Architecture

Linux Bridge - Provider Networks
Overview

Controller Node Compute Nodes

R
Networking Instance DHCP Agent
Management
DHCP
" ™)
Linux Bridge Agent Namespace

sSqQL
Database

Message
Bus

Firewall —_—
Metadata

ML2 Plug-in
Agent

Metadata
Process

Interface 1

Interface 1 Interface 2

Physical Network
Infrastructure

Management network Provider network . Provider network
10.0.0.0/24 Aggregate

The following figure shows components and connectivity for one untagged (flat) network. In this par-
ticular case, the instance resides on the same compute node as the DHCP agent for the network. If the
DHCP agent resides on another compute node, the latter only contains a DHCP namespace and Linux
bridge with a port on the provider physical network interface.

434 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Linux Bridge - Provider Networks

Components and Connectivity

DHCP

Mamespace
qdhecp

-

Metadata
Process

N
Compute Node

~
A

Linux Bridge
birg

0D

Interface 2

\- _J
Physical Network
Infrastructure
Provider network Provider network 1
Aggregate VLAM 1 (untagged)

The following figure describes virtual connectivity among components for two tagged (VLAN) networks.
Essentially, each network uses a separate bridge that contains a port on the VLAN sub-interface on the
provider physical network interface. Similar to the single untagged network case, the DHCP agent may
reside on a different compute node.

8.3. Deployment examples

435

Neutron Documentation, Release 25.1.1.dev7

Linux Bridge - Provider Networks

Components and Connectivity

p
Compute Node
s ~ s ~
tap Linux Bridge 1 Linux Bridge 2 tap
ethd brg brg ethi
Yeth Port vet
tap
DHCP DHCP
Port Part
SR ,@ Sub-Interface Sub-Interface Namespace 2
qdhep - N qdhep
210 2.102
e/ h t j k J -’ \ﬂ
Metadata Metadata
Process Process
N ﬁ ﬁ

VLAN 101
VLAN 102

Physical Network
Infrastructure

Provider network 2
WLAN 102

Provider network 1
WLAMN 101

Provider network
Aggregate

Note

These figures omit the controller node because it does not handle instance network traffic.

Example configuration

Use the following example configuration as a template to deploy provider networks in your environment.

Controller node

1. Install the Networking service components that provides the neutron-server service and ML2
plug-in.

2. In the neutron. conf file:

* Configure common options:

[DEFAULT]
ml2

(continues on next page)

436 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

See the Installation Tutorials and Guides and Configuration Reference for your OpenStack
release to obtain the appropriate additional configuration for the [DEFAULT], [database],
[keystone_authtoken], [nova], and [agent] sections.

 Disable service plug-ins because provider networks do not require any. However, this breaks
portions of the dashboard that manage the Networking service. See the latest Install Tutorials
and Guides for more information.

| |

* Enable two DHCP agents per network so both compute nodes can provide DHCP service
provider networks.

| |

* If necessary, configure MTU.

3. Intheml2_conf.ini file:

* Configure drivers and network types:

* Configure network mappings:

8.3. Deployment examples 437

https://docs.openstack.org
https://docs.openstack.org

Neutron Documentation, Release 25.1.1.dev7

Note

The tenant_network_types option contains no value because the architecture does not
support self-service networks.

Note

The provider value in the network_vlan_ranges option lacks VLAN ID ranges to
support use of arbitrary VLAN IDs.

4. Populate the database.

su -s /bin/sh -c

—

—heutron

5. Start the following services:

e Server

Compute nodes

1. Install the Networking service Linux bridge layer-2 agent.

2. In the neutron. conf file, configure common options:

See the Installation Tutorials and Guides and Configuration Reference for your OpenStack
release to obtain the appropriate additional configuration for the [DEFAULT], [database],
[keystone_authtoken], [nova], and [agent] sections.

3. Inthe 1inuxbridge_agent. ini file, configure the Linux bridge agent:

438 Chapter 8. OpenStack Networking Guide

https://docs.openstack.org
https://docs.openstack.org

Neutron Documentation, Re

lease 25.1.1.dev7

J

Replace PROVIDER_INTERFACE with the name of the underlying interface that handles provider

networks. For example, ethl.

4. In the dhcp_agent.ini file, configure the DHCP agent:

Note

The force_metadata option forces the DHCP agent to provide a host route to the metadata ser-
vice on 169.254.169.254 regardless of whether the subnet contains an interface on a router,

thus maintaining similar and predictable metadata behavior among subnets.

5. In the metadata_agent.ini file, configure the metadata agent:

The value of METADATA_SECRET must match the value of the same option in
tion of the nova. conf file.

6. Start the following services:
* Linux bridge agent
* DHCP agent

* Metadata agent

Verify service operation

1. Source the administrative project credentials.

2. Verify presence and operation of the agents:

the [neutron] sec-

openstack network agent list

(continues on next page)

8.3. Deployment examples

439

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

—

Create initial networks

The configuration supports one flat or multiple VLAN provider networks. For simplicity, the following
procedure creates one flat provider network.

1. Source the administrative project credentials.

2. Create a flat network.

-

openstack network create --share --provider-physical-network provider
--provider-network-type flat providerl

Note

The share option allows any project to use this network. To limit access to provider networks,
see Role-Based Access Control (RBAC).

440 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Note

To create a VLAN network instead of a flat network, change --provider-network-type
flat to --provider-network-type vlanandadd --provider-segment with a value ref-
erencing the VLAN ID.

3. Create a IPv4 subnet on the provider network.

openstack subnet create --subnet-range .0.113.0/24 --gateway .0.
—113.1

--network providerl --allocation-pool .0.113.11,end .0.113.
250

--dns-nameserver 8.8.4.4 providerl-v4

Important

Enabling DHCP causes the Networking service to provide DHCP which can interfere with
existing DHCP services on the physical network infrastructure. Use the --no-dhcp option to
have the subnet managed by existing DHCP services.

4. Create a IPv6 subnet on the provider network.

openstack subnet create --subnet-range fd00:203:0:113::/64 --gateway.
—£d00:203:0:113::1

--ip-version 6 --ipv6-address-mode slaac --network providerl

--dns-nameserver :4860:4860::8844 providerl-v6

(continues on next page)

8.3. Deployment examples 441

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

()

Note

The Networking service uses the layer-3 agent to provide router advertisement. Provider net-
works rely on physical network infrastructure for layer-3 services rather than the layer-3 agent.
Thus, the physical network infrastructure must provide router advertisement on provider net-
works for proper operation of IPv6.

Verify network operation

1. On each compute node, verify creation of the gdhcp namespace.

ip netns

2. Source a regular (non-administrative) project credentials.

3. Create the appropriate security group rules to allow ping and SSH access instances using the
network.

openstack security group rule create --proto icmp default

openstack security group rule create --ethertype IPv6 --proto ipv6-icmp.
—default

(continues on next page)

442 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

openstack security group rule create --proto tcp --dst-port default

openstack security group rule create --ethertype IPv6 --proto tcp --dst-
—port default

4. Launch an instance with an interface on the provider network. For example, a CirrOS image using
flavor ID 1.

openstack server create --flavor 1 --image cirros
--nic net-id NETWORK_ID provider-instancel

Replace NETWORK_ID with the ID of the provider network.

5. Determine the IPv4 and IPv6 addresses of the instance.

openstack server list

(continues on next page)

8.3. Deployment examples 443

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

[}

— (]

J

. On the controller node or any host with access to the provider network, ping the IPv4 and IPv6

addresses of the instance.

ping -c .0.113.13

ping6 -c 4 £d00:203:0:113:£f816:3eff:fe58:bede

[}

. Obtain access to the instance.

Test IPv4 and IPv6 connectivity to the Internet or other external network.

444

Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Network traffic flow

The following sections describe the flow of network traffic in several common scenarios. North-south
network traffic travels between an instance and external network such as the Internet. East-west network
traffic travels between instances on the same or different networks. In all scenarios, the physical network
infrastructure handles switching and routing among provider networks and external networks such as the
Internet. Each case references one or more of the following components:

e Provider network 1 (VLAN)
— VLANID 101 (tagged)
— IP address ranges 203.0.113.0/24 and £d00:203:0:113::/64
— Gateway (via physical network infrastructure)
% [P addresses 203.0.113.1 and £d00:203:0:113:0::1
¢ Provider network 2 (VLAN)
— VLANID 102 (tagged)
— IP address range 192.0.2.0/24 and £d00:192:0:2::/64
— Gateway
IP addresses 192.0.2.1 and fd00:192:0:2::1
* Instance 1
— IP addresses 203.0.113.101 and £d00:203:0:113:0::101
* Instance 2

— IP addresses 192.0.2.101 and £fd00:192:0:2:0::101

North-south scenario: Instance with a fixed IP address

* The instance resides on compute node 1 and uses provider network 1.
* The instance sends a packet to a host on the Internet.
The following steps involve compute node 1.

1. The instance interface (1) forwards the packet to the provider bridge instance port (2) via veth
pair.

2. Security group rules (3) on the provider bridge handle firewalling and connection tracking for the
packet.

3. The VLAN sub-interface port (4) on the provider bridge forwards the packet to the physical network
interface (5).

4. The physical network interface (5) adds VLAN tag 101 to the packet and forwards it to the physical
network infrastructure switch (6).

The following steps involve the physical network infrastructure:
1. The switch removes VLAN tag 101 from the packet and forwards it to the router (7).

2. The router routes the packet from the provider network (8) to the external network (9) and forwards
the packet to the switch (10).

8.3. Deployment examples 445

Neutron Documentation, Release 25.1.1.dev7

3. The switch forwards the packet to the external network (11).

4. The external network (12) receives the packet.

Linux Bridge - Provider Networks
Network Traffic Flow - North/South Scenario

Compute Node
Linux Bridge
brg
(1) 2 g “
. A

Physical Network Infrastructure

s
Router Switch

o-
|) : : (10) I"l (amn : @
\ y \ J

. Provider network Provider network 1
Aggregate VLAM 101, 203.0.113.0/24

Note

Return traffic follows similar steps in reverse.

East-west scenario 1: Instances on the same network

Instances on the same network communicate directly between compute nodes containing those instances.
* Instance 1 resides on compute node 1 and uses provider network 1.
* Instance 2 resides on compute node 2 and uses provider network 1.
* Instance 1 sends a packet to instance 2.

The following steps involve compute node 1:

1. The instance 1 interface (1) forwards the packet to the provider bridge instance port (2) via veth
pair.

446 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

2. Security group rules (3) on the provider bridge handle firewalling and connection tracking for the
packet.

3. The VLAN sub-interface port (4) on the provider bridge forwards the packet to the physical network
interface (5).

4. The physical network interface (5) adds VLAN tag 101 to the packet and forwards it to the physical
network infrastructure switch (6).

The following steps involve the physical network infrastructure:
1. The switch forwards the packet from compute node 1 to compute node 2 (7).
The following steps involve compute node 2:

1. The physical network interface (8) removes VLAN tag 101 from the packet and forwards it to the
VLAN sub-interface port (9) on the provider bridge.

2. Security group rules (10) on the provider bridge handle firewalling and connection tracking for the
packet.

3. The provider bridge instance port (11) forwards the packet to the instance 2 interface (12) via veth
pair.

8.3. Deployment examples 447

Neutron Documentation, Release 25.1.1.dev7

Linux Bridge - Provider Networks
Network Traffic Flow - East/West Scenario 1

¢ ™
Compute Node 1
Instance 1 Linux Bridge
brg
e A
7 ™
Physical Network ~
Infrastructure NV

Switch i |
v,

Compute Node 2

l
/[_:d.rlu. -’I']'l.'
0

Linux Bridge
brg

. Provider network Provider network 1
Aggragate VLAN 101, 203.0.112.0/24

Note

Return traffic follows similar steps in reverse.

East-west scenario 2: Instances on different networks

Instances communicate via router on the physical network infrastructure.
* Instance 1 resides on compute node 1 and uses provider network 1.
* Instance 2 resides on compute node 1 and uses provider network 2.

* Instance 1 sends a packet to instance 2.

448 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Note

Both instances reside on the same compute node to illustrate how VLAN tagging enables multiple
logical layer-2 networks to use the same physical layer-2 network.

The following steps involve the compute node:

1. The instance 1 interface (1) forwards the packet to the provider bridge instance port (2) via veth
pair.

2. Security group rules (3) on the provider bridge handle firewalling and connection tracking for the
packet.

3. The VLAN sub-interface port (4) on the provider bridge forwards the packet to the physical network
interface (5).

4. The physical network interface (5) adds VLAN tag 101 to the packet and forwards it to the physical
network infrastructure switch (6).

The following steps involve the physical network infrastructure:
1. The switch removes VLAN tag 101 from the packet and forwards it to the router (7).
2. The router routes the packet from provider network 1 (8) to provider network 2 (9).
3. The router forwards the packet to the switch (10).
4. The switch adds VLAN tag 102 to the packet and forwards it to compute node 1 (11).
The following steps involve the compute node:

1. The physical network interface (12) removes VLAN tag 102 from the packet and forwards it to the
VLAN sub-interface port (13) on the provider bridge.

2. Security group rules (14) on the provider bridge handle firewalling and connection tracking for the
packet.

3. The provider bridge instance port (15) forwards the packet to the instance 2 interface (16) via veth
pair.

8.3. Deployment examples 449

Neutron Documentation, Release 25.1.1.dev7

Linux Bridge - Provider Networks
Network Traffic Flow - East/West Scenario 2

Compute Node 1

Ny r ™
Instance 1 Linux Bridge
brg

Ve e “ n
b o

Linux Bridge
bryg

6
[1 J} Ve w m

[

Instance 2

e

Physical Network Infrastructure

-
Router Switch

VLAM 101 nm/
(10
VLAM 102 10

Provider network Provider network 1
Aggregate WVLAM 1071, 203.0.113.0/24

Provider network 2
VLAMN 102, 192.0.2.0/24

|

(8)

5
|

Note

Return traffic follows similar steps in reverse.

450 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Linux bridge: Self-service networks

This architecture example augments Linux bridge: Provider networks to support a nearly limitless quan-
tity of entirely virtual networks. Although the Networking service supports VLAN self-service networks,
this example focuses on VXLAN self-service networks. For more information on self-service networks,
see Self-service networks.

Note

The Linux bridge agent lacks support for other overlay protocols such as GRE and Geneve.

Prerequisites

Add one network node with the following components:
* Three network interfaces: management, provider, and overlay.

* OpenStack Networking Linux bridge layer-2 agent, layer-3 agent, and any
dependencies.

Modify the compute nodes with the following components:

* Add one network interface: overlay.

Note

You can keep the DHCP and metadata agents on each compute node or move them to the network
node.

8.3. Deployment examples 451

Neutron Documentation, Release 25.1.1.dev7

Architecture
Linux Bridge - Self-service Networks
Overview
- ~ -
Controller Node Compute Nodes
. F
sQL Networking E TS DHCP Agent
Database Management
- ™
Message API Linux Bridge Agent Namespace
Bus
Firewall ——
Metadata
Process
Interface 1
\.
Interface 3
S,

Network Node

Layer-3 Agent
Router
Namespace

Linux Bridge Agent

Physical Metwork
Infrastructure

Interface 2

Interface 3

Interface 1

Provider network
Aggregate

Management network
10.0.0.0/24

. Self-service network

Overlay network

. Provider network
10.0.1.0/24

The following figure shows components and connectivity for one self-service network and one untagged
(flat) provider network. In this particular case, the instance resides on the same compute node as the
DHCP agent for the network. If the DHCP agent resides on another compute node, the latter only contains

452 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

a DHCP namespace and Linux bridge with a port on the overlay physical network interface.

Linux Bridge - Self-service Networks
Components and Connectivity

I N I N

Compute Node Network Node

I ~ s
Router Linux Bridge
Namespace brg
' ™ grouter
Linux Bridge Port
brg — VXLAN 101

veth \

Linux Bridge
a
Port P e i
VELAN 101 M’ Vegs E Port
v

DHCP

Namespace
qdhep

L
B

\Jer_\‘.\

Interface 2

Interface 2

Metadata
Process
H

Physical Network
Infrastructure

Provider network Overlay network

Aggregate 10.0.1.0/24
Provider network Self-service network
WLAN 1 {untagged) VNI 101

Example configuration

Use the following example configuration as a template to add support for self-service networks to an
existing operational environment that supports provider networks.

Controller node

1. In the neutron. conf file:

* Enable routing and allow overlapping IP address ranges.

[DEFAULT]
router

2. Intheml2_conf.ini file:

* Add vxlan to type drivers and project network types.

8.3. Deployment examples 453

Neutron Documentation, Release 25.1.1.dev7

L

Enable the layer-2 population mechanism driver.

» Configure the VXLAN network ID (VNI) range.

Replace VNI_START and VNI_END with appropriate numerical values.
3. Restart the following services:

e Server

Network node

1. Install the Networking service layer-3 agent.

2. In the neutron. conf file, configure common options:

See the Installation Tutorials and Guides and Configuration Reference for your OpenStack
release to obtain the appropriate additional configuration for the [DEFAULT], [database],
[keystone_authtoken], [nova], and [agent] sections.

3. In the 1inuxbridge_agent. ini file, configure the layer-2 agent.

(continues on next page)

454 Chapter 8. OpenStack Networking Guide

https://docs.openstack.org
https://docs.openstack.org

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

Warning

By default, Linux uses UDP port 8472 for VXLAN tunnel traffic. This default value doesnt
follow the IANA standard, which assigned UDP port 4789 for VXLAN communication. As
a consequence, if this node is part of a mixed deployment, where nodes with both OVS and
Linux bridge must communicate over VXLAN tunnels, it is recommended that a line containing
udp_dstport = 4789 be added to the [vxlan] section of all the Linux bridge agents. OVS
follows the IANA standard.

Replace PROVIDER_INTERFACE with the name of the underlying interface that handles provider
networks. For example, ethl.

Replace OVERLAY_INTERFACE_IP_ADDRESS with the IP address of the interface that handles
VXLAN overlays for self-service networks.

4. Inthe 13_agent.ini file, configure the layer-3 agent.

5. Start the following services:
* Linux bridge agent

» Layer-3 agent

Compute nodes

1. In the linuxbridge_agent.ini file, enable VXLAN support including layer-2 population.

Warning

By default, Linux uses UDP port 8472 for VXLAN tunnel traffic. This default value doesnt
follow the IANA standard, which assigned UDP port 4789 for VXLAN communication. As
a consequence, if this node is part of a mixed deployment, where nodes with both OVS and
Linux bridge must communicate over VXLAN tunnels, it is recommended that a line containing

8.3. Deployment examples 455

Neutron Documentation, Release 25.1.1.dev7

udp_dstport = 4789 be added to the [vxlan] section of all the Linux bridge agents. OVS
follows the IANA standard.

Replace OVERLAY_INTERFACE_TIP_ADDRESS with the IP address of the interface that handles
VXLAN overlays for self-service networks.

2. Restart the following services:

* Linux bridge agent

Verify service operation

1. Source the administrative project credentials.

2. Verify presence and operation of the agents.

openstack network agent list

456 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Create initial networks

The configuration supports multiple VXLAN self-service networks. For simplicity, the following pro-
cedure creates one self-service network and a router with a gateway on the flat provider network. The
router uses NAT for IPv4 network traffic and directly routes IPv6 network traffic.

Note
IPv6 connectivity with self-service networks often requires addition of static routes to nodes and

physical network infrastructure.

1. Source the administrative project credentials.

2. Update the provider network to support external connectivity for self-service networks.

openstack network --external providerl }

Note

This command provides no output.

3. Source a regular (non-administrative) project credentials.

4. Create a self-service network.

openstack network create selfservicel

Note

If you are using an MTU value on your network below 1280, please read the warning listed in
the [Pv6 configuration guide before creating any subnets.

5. Create a IPv4 subnet on the self-service network.

openstack subnet create --subnet-range .0.2.0/24
--network selfservicel --dns-nameserver 8.8.4.4 selfservicel-v4

(continues on next page)

8.3. Deployment examples 457

../config-ipv6.html#project-network-considerations

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

6. Create a IPv6 subnet on the self-service network.

—

openstack subnet create --subnet-range fd00:192:0:2::/64 --ip-version 6.,

--ipv6-ra-mode slaac --ipv6-address-mode slaac --network selfservicel
--dns-nameserver :4860:4860::8844 selfservicel-v6

7. Create a router.

(

openstack router create routerl

(continues on next page)

458

Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

8. Add the IPv4 and IPv6 subnets as interfaces on the router.

openstack router add subnet routerl selfservicel-v4
openstack router add subnet routerl selfservicel-vé6

Note

These commands provide no output.

9. Add the provider network as the gateway on the router.

{ openstack router --external-gateway providerl routerl

Verify network operation

1. On each compute node, verify creation of a second qdhcp namespace.

ip netns

2. On the network node, verify creation of the grouter namespace.

ip netns

3. Source a regular (non-administrative) project credentials.

4. Create the appropriate security group rules to allow ping and SSH access instances using the

network.

.

openstack security group rule create --proto icmp default

openstack security group rule create --ethertype IPv6 --proto ipv6-icmp.
—default

(continues on next page)

8.3.

Deployment examples 459

Neutron Documentation, Release 25.1.1.dev7

L

(continued from previous page)

openstack security group rule create --proto tcp --dst-port default

openstack security group rule create --ethertype IPv6 --proto tcp --dst-

—port default

J

5. Launch an instance with an interface on the self-service network. For example, a CirrOS image
using flavor ID 1.

openstack server create --flavor
—ID selfservice-instancel

--image cirros --nic net-id NETWORK_

Replace NETWORK_ID with the ID of the self-service network.

6. Determine the IPv4 and IPv6 addresses of the instance.

openstack server list

(continues on next page)

460

Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

Warning

The IPv4 address resides in a private IP address range (RFC1918). Thus, the Networking
service performs source network address translation (SNAT) for the instance to access external
networks such as the Internet. Access from external networks such as the Internet to the instance
requires a floating IPv4 address. The Networking service performs destination network address
translation (DNAT) from the floating IPv4 address to the instance IPv4 address on the self-
service network. On the other hand, the Networking service architecture for IPv6 lacks support
for NAT due to the significantly larger address space and complexity of NAT. Thus, floating
IP addresses do not exist for IPv6 and the Networking service only performs routing for IPv6
subnets on self-service networks. In other words, you cannot rely on NAT to hide instances
with IPv4 and IPv6 addresses or only IPv6 addresses and must properly implement security
groups to restrict access.

7. On the controller node or any host with access to the provider network, ping the IPv6 address of
the instance.

-

ping6 -c 4 £d00:192:0:2:£f816:3eff:fe30:9chd

L

8. Optionally, enable IPv4 access from external networks such as the Internet to the instance.

1. Create a floating IPv4 address on the provider network.

openstack floating ip create providerl

(continues on next page)

8.3. Deployment examples 461

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

L J

2. Associate the floating IPv4 address with the instance.

openstack server add floating ip selfservice-instancel .0.113.16

Note

This command provides no output.

3. On the controller node or any host with access to the provider network, ping the floating
IPv4 address of the instance.

ping -c .0.113.16

L J

9. Obtain access to the instance.

10. Test IPv4 and IPv6 connectivity to the Internet or other external network.

Network traffic flow

The following sections describe the flow of network traffic in several common scenarios. North-south
network traffic travels between an instance and external network such as the Internet. East-west network
traffic travels between instances on the same or different networks. In all scenarios, the physical network
infrastructure handles switching and routing among provider networks and external networks such as the
Internet. Each case references one or more of the following components:

e Provider network (VLAN)
— VLANID 101 (tagged)

* Self-service network 1 (VXLAN)
— VXLANID (VNI) 101

¢ Self-service network 2 (VXLAN)
— VXLANID (VNI) 102

462 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

¢ Self-service router

— Gateway on the provider network
— Interface on self-service network 1

— Interface on self-service network 2

¢ Instance 1

¢ Instance 2

North-south scenario 1: Instance with a fixed IP address

For instances with a fixed IPv4 address, the network node performs SNAT on north-south traffic passing
from self-service to external networks such as the Internet. For instances with a fixed IPv6 address, the
network node performs conventional routing of traffic between self-service and external networks.

* The instance resides on compute node 1 and uses self-service network 1.

* The instance sends a packet to a host on the Internet.

The following steps involve compute node 1:

1.

The instance interface (1) forwards the packet to the self-service bridge instance port (2) via veth
pair.

. Security group rules (3) on the self-service bridge handle firewalling and connection tracking for

the packet.

. The self-service bridge forwards the packet to the VXL AN interface (4) which wraps the packet

using VNI 101.

. The underlying physical interface (5) for the VXLAN interface forwards the packet to the network

node via the overlay network (6).

The following steps involve the network node:

1.

The underlying physical interface (7) for the VXLAN interface forwards the packet to the VXLAN
interface (8) which unwraps the packet.

The self-service bridge router port (9) forwards the packet to the self-service network interface
(10) in the router namespace.

* For IPv4, the router performs SNAT on the packet which changes the source IP address to
the router IP address on the provider network and sends it to the gateway IP address on the
provider network via the gateway interface on the provider network (11).

* For IPv6, the router sends the packet to the next-hop IP address, typically the gateway IP
address on the provider network, via the provider gateway interface (11).

. The router forwards the packet to the provider bridge router port (12).

The VLAN sub-interface port (13) on the provider bridge forwards the packet to the provider
physical network interface (14).

. The provider physical network interface (14) adds VLAN tag 101 to the packet and forwards it to

the Internet via physical network infrastructure (15).

8.3. Deployment examples 463

Neutron Documentation, Release 25.1.1.dev7

Note

Return traffic follows similar steps in reverse. However, without a floating IPv4 address, hosts on the
provider or external networks cannot originate connections to instances on the self-service network.

Linux Bridge - Self-service Networks
Network Traffic Flow - North/South Scenario 1

s ~\
Compute Node
Linux Bridge
brg
"
s
Network Node
s ™ s ™\
Router Linux Bridge
Namespace bry
grouter
_—
A ,
s ™\
Linux Bridge
bryg
EM
u II;I_AH .' I:1 w
A v,
. S

Provider network Overlay network
Aggregate 10.0.1.0/24

Provider network Self-service network
VLAM 101, 203.0.113.0/24 WM 10T, 192.168.1.0/24

North-south scenario 2: Instance with a floating IPv4 address

For instances with a floating IPv4 address, the network node performs SNAT on north-south traffic pass-
ing from the instance to external networks such as the Internet and DNAT on north-south traffic passing
from external networks to the instance. Floating IP addresses and NAT do not apply to IPv6. Thus, the
network node routes IPv6 traffic in this scenario.

* The instance resides on compute node 1 and uses self-service network 1.
* A host on the Internet sends a packet to the instance.

The following steps involve the network node:

464 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

1. The physical network infrastructure (1) forwards the packet to the provider physical network inter-
face (2).

2. The provider physical network interface removes VLAN tag 101 and forwards the packet to the
VLAN sub-interface on the provider bridge.

3. The provider bridge forwards the packet to the self-service router gateway port on the provider
network (5).

* For IPv4, the router performs DNAT on the packet which changes the destination IP address
to the instance IP address on the self-service network and sends it to the gateway IP address
on the self-service network via the self-service interface (6).

* For IPv6, the router sends the packet to the next-hop IP address, typically the gateway IP
address on the self-service network, via the self-service interface (6).

4. The router forwards the packet to the self-service bridge router port (7).

5. The self-service bridge forwards the packet to the VXLAN interface (8) which wraps the packet
using VNI 101.

6. The underlying physical interface (9) for the VXLAN interface forwards the packet to the network
node via the overlay network (10).

The following steps involve the compute node:

1. The underlying physical interface (11) for the VXLAN interface forwards the packet to the VXLAN
interface (12) which unwraps the packet.

2. Security group rules (13) on the self-service bridge handle firewalling and connection tracking for
the packet.

3. The self-service bridge instance port (14) forwards the packet to the instance interface (15) via
veth pair.

Note

Egress instance traffic flows similar to north-south scenario 1, except SNAT changes the source IP
address of the packet to the floating IPv4 address rather than the router IP address on the provider
network.

8.3. Deployment examples 465

Neutron Documentation, Release 25.1.1.dev7

Linux Bridge - Self-service Networks
Network Traffic Flow - North/South Scenario 2

' ™

Compute Node
Linux Bridge
bryg
N "
FA
'Y ™ J:f’,b
Network Node -
I ™
Router Linux Bridge
Namespace brg L
grouter i
Linux Bridge
bry
_’
. -
. A

Provider network Overlay network
Aggregate 10.0.1.0/24

Provider network Self-service network
VLAN 101, 203.0.113.0/24 VNI 101, 192.168.1.0/24

East-west scenario 1: Instances on the same network

Instances with a fixed IPv4/IPv6 or floating IPv4 address on the same network communicate directly
between compute nodes containing those instances.

By default, the VXLAN protocol lacks knowledge of target location and uses multicast to discover it.
After discovery, it stores the location in the local forwarding database. In large deployments, the discov-
ery process can generate a significant amount of network that all nodes must process. To eliminate the
latter and generally increase efficiency, the Networking service includes the layer-2 population mecha-
nism driver that automatically populates the forwarding database for VXLAN interfaces. The example
configuration enables this driver. For more information, see ML2 Plug-in.

* Instance 1 resides on compute node 1 and uses self-service network 1.
* Instance 2 resides on compute node 2 and uses self-service network 1.
* Instance 1 sends a packet to instance 2.

The following steps involve compute node 1:

466 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

1. The instance 1 interface (1) forwards the packet to the self-service bridge instance port (2) via
veth pair.

2. Security group rules (3) on the self-service bridge handle firewalling and connection tracking for
the packet.

3. The self-service bridge forwards the packet to the VXLAN interface (4) which wraps the packet
using VNI 101.

4. The underlying physical interface (5) for the VXLAN interface forwards the packet to compute
node 2 via the overlay network (6).

The following steps involve compute node 2:

1. The underlying physical interface (7) for the VXLAN interface forwards the packet to the VXLAN
interface (8) which unwraps the packet.

2. Security group rules (9) on the self-service bridge handle firewalling and connection tracking for
the packet.

3. The self-service bridge instance port (10) forwards the packet to the instance 1 interface (11) via
veth pair.

Note

Return traffic follows similar steps in reverse.

Linux Bridge - Self-service Networks
Network Traffic Flow - East/West Scenario 1

¢ ™

Compute Node 1

Linux Bridge
brg

A

A

Linux Bridge
bryg
(10) = “
A A
. Overlay network . Self-service netwaork 1

10.0.1.0024 VNI 101, 192.168.1.0/24

8.3. Deployment examples 467

Neutron Documentation, Release 25.1.1.dev7

East-west scenario 2: Instances on different networks

Instances using a fixed IPv4/IPv6 address or floating IPv4 address communicate via router on the network
node. The self-service networks must reside on the same router.

* Instance 1 resides on compute node 1 and uses self-service network 1.

* Instance 2 resides on compute node 1 and uses self-service network 2.

* Instance 1 sends a packet to instance 2.

Note

Both instances reside on the same compute node to illustrate how VXLAN enables multiple overlays
to use the same layer-3 network.

The following steps involve the compute node:

1.

The instance 1 interface (1) forwards the packet to the self-service bridge instance port (2) via
veth pair.

Security group rules (3) on the self-service bridge handle firewalling and connection tracking for
the packet.

. The self-service bridge forwards the packet to the VXLAN interface (4) which wraps the packet

using VNI 101.

The underlying physical interface (5) for the VXLAN interface forwards the packet to the network
node via the overlay network (6).

The following steps involve the network node:

1.

The underlying physical interface (7) for the VXLAN interface forwards the packet to the VXLAN
interface (8) which unwraps the packet.

The self-service bridge router port (9) forwards the packet to the self-service network 1 interface
(10) in the router namespace.

. The router sends the packet to the next-hop IP address, typically the gateway IP address on self-

service network 2, via the self-service network 2 interface (11).

The router forwards the packet to the self-service network 2 bridge router port (12).

. The self-service network 2 bridge forwards the packet to the VXLAN interface (13) which wraps

the packet using VNI 102.

The physical network interface (14) for the VXLAN interface sends the packet to the compute node
via the overlay network (15).

The following steps involve the compute node:

1.

The underlying physical interface (16) for the VXLAN interface sends the packet to the VXLAN
interface (17) which unwraps the packet.

Security group rules (18) on the self-service bridge handle firewalling and connection tracking for
the packet.

. The self-service bridge instance port (19) forwards the packet to the instance 2 interface (20) via

veth pair.

468

Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Note

Return traffic follows similar steps in reverse.

Linux Bridge - Self-service Networks
Network Traffic Flow - East/West Scenario 2

' ™
Compute Node

Linux Bridge
brg

Linux Bridge
brg

p
Network Node
- ~ . ~
Router Linux Bridge
MNamespace brg
grouter
=
\
. >
Linux Bridge
bry
\ﬂ
"\ _ >,
. Overlay network Self-service network 1

10.0.1.0/24 VMNIE101, 192.168.1.0/24

Self-service network 2
WML 102, 192.168.2.0/24

8.3. Deployment examples

469

Neutron Documentation, Release 25.1.1.dev7

Linux bridge: High availability using VRRP

This architecture example augments the self-service deployment example with a high-availability mech-
anism using the Virtual Router Redundancy Protocol (VRRP) via keepalived and provides failover of
routing for self-service networks. It requires a minimum of two network nodes because VRRP creates
one master (active) instance and at least one backup instance of each router.

During normal operation, keepalived on the master router periodically transmits heartbeat pack-
ets over a hidden network that connects all VRRP routers for a particular project. Each project
with VRRP routers uses a separate hidden network. By default this network uses the first value
in the tenant_network_types option in the m12_conf.ini file. For additional control, you can
specify the self-service network type and physical network name for the hidden network using the
13_ha_network_type and 13_ha_network_name options in the neutron. conf file.

If keepalived on the backup router stops receiving heartbeat packets, it assumes failure of the master
router and promotes the backup router to master router by configuring IP addresses on the interfaces in
the grouter namespace. In environments with more than one backup router, keepalived on the backup
router with the next highest priority promotes that backup router to master router.

Note

This high-availability mechanism configures VRRP using the same priority for all routers. Therefore,
VRRP promotes the backup router with the highest IP address to the master router.

Warning

There is a known bug with keepalived v1.2.15 and earlier which can cause packet loss when
max_13_agents_per_router is set to 3 or more. Therefore, we recommend that you upgrade to
keepalived v1.2.16 or greater when using this feature.

Interruption of VRRP heartbeat traffic between network nodes, typically due to a network interface or
physical network infrastructure failure, triggers a failover. Restarting the layer-3 agent, or failure of it,
does not trigger a failover providing keepalived continues to operate.

Consider the following attributes of this high-availability mechanism to determine practicality in your
environment:

* Instance network traffic on self-service networks using a particular router only traverses the master
instance of that router. Thus, resource limitations of a particular network node can impact all
master instances of routers on that network node without triggering failover to another network
node. However, you can configure the scheduler to distribute the master instance of each router
uniformly across a pool of network nodes to reduce the chance of resource contention on any
particular network node.

* Only supports self-service networks using a router. Provider networks operate at layer-2 and rely
on physical network infrastructure for redundancy.

* For instances with a floating IPv4 address, maintains state of network connections during failover
as a side effect of 1:1 static NAT. The mechanism does not actually implement connection tracking.

For production deployments, we recommend at least three network nodes with sufficient resources to
handle network traffic for the entire environment if one network node fails. Also, the remaining two

470 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

nodes can continue to provide redundancy.

Warning

This high-availability mechanism is not compatible with the layer-2 population mechanism. You must
disable layer-2 population in the 1inuxbridge_agent.ini file and restart the Linux bridge agent
on all existing network and compute nodes prior to deploying the example configuration.

Prerequisites

Add one network node with the following components:
» Three network interfaces: management, provider, and overlay.

* OpenStack Networking layer-2 agent, layer-3 agent, and any dependencies.

Note

You can keep the DHCP and metadata agents on each compute node or move them to the network
nodes.

8.3. Deployment examples 471

Neutron Documentation, Release 25.1.1.dev7

Architecture
Linux Bridge - High-availability with VRRP
Overview
i ™ i ™
Controller Node Compute Nodes
- *« —
sQL Networking Instance DHCP Agent
Database Management
DHCP
i N
Message API Linux Bridge Agent hlamEspacE
Bus

Firewall
Metadata
Agent

ML2 Plug-in

Interface 1 Interface 2 Interface 3

Network Nodes

Layer-3 Agent

Router
Namespace
/_inux Bridge Agen\

Physical Network
Infrastructure

| Bridge ' l Bridge I

Interface 2

Interface 3

Interface 1

Provider network
Aggregate

Management network
10.0.0.0/24

Owverlay network

. Provider network
10.0.1.0/24

The following figure shows components and connectivity for one self-service network and one untagged
(flat) network. The master router resides on network node 1. In this particular case, the instance resides

472 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

on the same compute node as the DHCP agent for the network. If the DHCP agent resides on another

compute node, the latter only contains a DHCP namespace and Linux bridge with a port on the overlay
physical network interface.

Linux Bridge - High-availability with VRRP

Components and Connectivity

e ~ - ™
Compute Node Network Node
s ™) e ™
Master Router Linux Bridge
Namespace brg
7 ™ grouter _
Linux Bridge Port
brg VXLAN 101
DHCP Linux Bridge
Namespace brg
i E m ..b.‘.- Part
or
B//L 4 Interface 2
Interface 2 Interface 3
Process
ﬁ
- J
Provider network
Agpregate
Provider network Physical Network
YLAN 1 (untagged) Infrastructure
. Owverlay network
10.0.1.0/24
Self-service network .
VNI
Network Node
s) s ™
Backup Router Linux Bridge
Namespace brg
grouter
Port
VXLAN 101
Linux Bridge
brg
N
Port
Interface 2
Interface 2 Interface 3
\. J

8.3. Deployment examples 473

Neutron Documentation, Release 25.1.1.dev7

Example configuration

Use the following example configuration as a template to add support for high-availability using VRRP
to an existing operational environment that supports self-service networks.

Controller node

1. In the neutron. conf file:

e Enable VRRP.

2. Restart the following services:

e Server

Network node 1

No changes.

Network node 2

1. Install the Networking service Linux bridge layer-2 agent and layer-3 agent.

2. In the neutron. conf file, configure common options:

L

J

See the Installation Tutorials and Guides and Configuration Reference for your OpenStack
release to obtain the appropriate additional configuration for the [DEFAULT], [database],
[keystone_authtoken], [nova], and [agent] sections.

3. In the 1inuxbridge_agent. ini file, configure the layer-2 agent.

474

Chapter 8. OpenStack Networking Guide

https://docs.openstack.org
https://docs.openstack.org

Neutron Documentation, Release 25.1.1.dev7

Warning

follows the TANA standard.

By default, Linux uses UDP port 8472 for VXLAN tunnel traffic. This default value doesnt
follow the IANA standard, which assigned UDP port 4789 for VXLAN communication. As
a consequence, if this node is part of a mixed deployment, where nodes with both OVS and
Linux bridge must communicate over VXLAN tunnels, it is recommended that a line containing
udp_dstport = 4789 be added to the [vxlan] section of all the Linux bridge agents. OVS

Replace PROVIDER_INTERFACE with the name of the underlying interface that handles provider

networks. For example, ethl.

Replace OVERLAY_INTERFACE_TIP_ADDRESS with the IP address of the interface that handles

VXLAN overlays for self-service networks.

4. Inthe 13_agent.ini file, configure the layer-3 agent.

5. Start the following services:
* Linux bridge agent

* Layer-3 agent

Compute nodes

No changes.

Verify service operation

1. Source the administrative project credentials.

2. Verify presence and operation of the agents.

openstack network agent list

[}

(continues on next page)

8.3. Deployment examples

475

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

Create initial networks

Similar to the self-service deployment example, this configuration supports multiple VXLAN self-service
networks. After enabling high-availability, all additional routers use VRRP. The following procedure
creates an additional self-service network and router. The Networking service also supports adding high-
availability to existing routers. However, the procedure requires administratively disabling and enabling
each router which temporarily interrupts network connectivity for self-service networks with interfaces
on that router.

1. Source a regular (non-administrative) project credentials.

2. Create a self-service network.

openstack network create selfservice2

(continues on next page)

476 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

3. Create a IPv4 subnet on the self-service network.

openstack subnet create --subnet-range .51.100.0/24
--network selfservice2 --dns-nameserver 8.8.4.4 selfservice2-v4

4. Create a IPv6 subnet on the self-service network.

openstack subnet create --subnet-range fd00:198:51:100::/64 --ip-
—version

--ipv6-ra-mode slaac --ipv6-address-mode slaac --network selfservice2

--dns-nameserver :4860:4860::8844 selfservice2-v6

(continues on next page)

8.3. Deployment examples 477

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

-

5. Create a router.

openstack router create router2

6. Add the IPv4 and IPv6 subnets as interfaces on the router.

openstack router add subnet router2 selfservice2-v4
openstack router add subnet router2 selfservice2-vé6

Note

These commands provide no output.

7. Add the provider network as a gateway on the router.

openstack router --external-gateway providerl router2

Verify network operation

1. Source the administrative project credentials.

2. Verify creation of the internal high-availability network that handles VRRP heartbeat traffic.

-

openstack network list

3. On each network node, verify creation of a qrouter namespace with the same ID.

Network node 1:

478 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

ip netns J

Network node 2:

{ ip netns l

Note

The namespace for router 1 from Linux bridge: Self-service networks should only appear on
network node 1 because of creation prior to enabling VRRP.

4. On each network node, show the IP address of interfaces in the grouter namespace. With the
exception of the VRRP interface, only one namespace belonging to the master router instance
contains IP addresses on the interfaces.

Network node 1:

e N

ip netns grouter-b6206312-878e-497c-8ef7-eb384£8add96 ip addr show

—

(continues on next page)

8.3. Deployment examples 479

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

—

Network node 2:

(

ip netns grouter-b6206312-878e-497c-8ef7-eb384£f8add96 ip addr show

[}

Note

The master router may reside on network node 2.

5. Launch an instance with an interface on the additional self-service network. For example, a CirrOS
image using flavor ID 1.

openstack server create --flavor | --image cirros --nic net-id NETWORK_
—ID selfservice-instance2

Replace NETWORK_ID with the ID of the additional self-service network.

6. Determine the IPv4 and IPv6 addresses of the instance.

480 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

openstack server list

7. Create a floating IPv4 address on the provider network.

-

openstack floating ip create providerl

8. Associate the floating IPv4 address with the instance.

{ openstack server add floating ip selfservice-instance2 .0.113.17 }

Note

This command provides no output.

Verify failover operation

. Begin a continuous ping of both the floating IPv4 address and IPv6 address of the instance. While

performing the next three steps, you should see a minimal, if any, interruption of connectivity to
the instance.

. On the network node with the master router, administratively disable the overlay network interface.

. On the other network node, verify promotion of the backup router to master router by noting ad-

dition of IP addresses to the interfaces in the qrouter namespace.

. On the original network node in step 2, administratively enable the overlay network interface. Note

that the master router remains on the network node in step 3.

8.3.

Deployment examples 481

Neutron Documentation, Release 25.1.1.dev7

Keepalived VRRP health check

The health of your keepalived instances can be automatically monitored via a bash script that verifies
connectivity to all available and configured gateway addresses. In the event that connectivity is lost, the
master router is rescheduled to another node.

If all routers lose connectivity simultaneously, the process of selecting a new master router will be re-
peated in a round-robin fashion until one or more routers have their connectivity restored.

To enable this feature, edit the 13_agent. ini file:

[

Where ha_vrrp_health_check_interval indicates how often in seconds the health check should run.
The default value is 0, which indicates that the check should not run at all.

Network traffic flow

This high-availability mechanism simply augments Linux bridge: Self-service networks with failover of
layer-3 services to another router if the master router fails. Thus, you can reference Self-service network
traffic flow for normal operation.

Open vSwitch mechanism driver

The Open vSwitch (OVS) mechanism driver uses a combination of OVS and Linux bridges as inter-
connection devices. However, optionally enabling the OVS native implementation of security groups
removes the dependency on Linux bridges.

We recommend using Open vSwitch version 2.4 or higher. Optional features may require a higher mini-
mum version.

Open vSwitch: Provider networks

This architecture example provides layer-2 connectivity between instances and the physical network in-
frastructure using VLAN (802.1q) tagging. It supports one untagged (flat) network and up to 4095 tagged
(VLAN) networks. The actual quantity of VLAN networks depends on the physical network infrastruc-
ture. For more information on provider networks, see Provider networks.

Warning

Linux distributions often package older releases of Open vSwitch that can introduce issues during
operation with the Networking service. We recommend using at least the latest long-term stable
(LTS) release of Open vSwitch for the best experience and support from Open vSwitch. See http:
/Iwww.openvswitch.org for available releases and the installation instructions for more details.

482 Chapter 8. OpenStack Networking Guide

http://www.openvswitch.org
http://www.openvswitch.org
http://docs.openvswitch.org/en/latest/intro/install/general/

Neutron Documentation, Release 25.1.1.dev7

Prerequisites

One controller node with the following components:

* Two network interfaces: management and provider.

* OpenStack Networking server service and ML2 plug-in.
Two compute nodes with the following components:

* Two network interfaces: management and provider.

* OpenStack Networking Open vSwitch (OVS) layer-2 agent, DHCP agent, metadata agent, and any
dependencies including OVS.

Note

Larger deployments typically deploy the DHCP and metadata agents on a subset of compute nodes to
increase performance and redundancy. However, too many agents can overwhelm the message bus.
Also, to further simplify any deployment, you can omit the metadata agent and use a configuration
drive to provide metadata to instances.

8.3. Deployment examples 483

Neutron Documentation, Release 25.1.1.dev7

Architecture
Open vSwitch - Provider Networks
Overview
s A s A
Controller Node Compute Nodes

N !

sqQL Networking E TS DHCP Agent

Database Management
DHCP

Message) Namespace
Bus Firewall A
s ™)

Open vSwitch Agent Metadata

Agent
' Integration Provider

- - Metadata
Bridge Bridge
N—

Interface 1
\
Interface 1 Interface 2
S

Physical Network
Infrastructure

Management network Provider network . Provider network
10.0.0.0/24 Aggregate

The following figure shows components and connectivity for one untagged (flat) network. In this par-
ticular case, the instance resides on the same compute node as the DHCP agent for the network. If the
DHCP agent resides on another compute node, the latter only contains a DHCP namespace with a port

on the OVS integration bridge.

484 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Open vSwitch - Provider Networks
Components and Connectivity

¢ ™
Compute Node

Linux Bridge

-
DHCP OVS Integration Bridge
Namespace br-int
qdhecp
Patch
e’ int-br-provider

nternal WLAN

OVS Provider Bridge
br-provider

Metadata
Process

H
Patch Port

phy-br-provider Interface 2

Interface 2

Physical Network
Infrastructure

Provider network Provider network 1
Aggregate WVLAM 1 {untagged)

The following figure describes virtual connectivity among components for two tagged (VLAN) networks.
Essentially, all networks use a single OVS integration bridge with different internal VLAN tags. The
internal VLAN tags almost always differ from the network VLAN assignment in the Networking service.
Similar to the untagged network case, the DHCP agent may reside on a different compute node.

8.3. Deployment examples 485

Neutron Documentation, Release 25.1.1.dev7

Open vSwitch - Provider Networks
Components and Connectivity

Linux Bridge

Compute Node
Linux Bridge
gbr

N
DHCP

Namespace 2
qdhcp

141.3.'\

Vatk

Instance 1

qbr
VS Integration Bridge ;

R
DHCP

Namespace 1

qdhep

0
br-int
Patch
int-br-provider

/n:erral VLANS
OVS Provider Bridge

br-provider
Patch
phy-br-provider

Metadata
Process
H
Port
Interface 2
WVLAN 101
WLAN 102

Interface 2

VLAN 101
VLAN 102

0

Metadata
Process
H

Physical Network
Infrastructure

Provider network Provider network 1
VLAN 101

Aggregate

Provider network 2

VLAN 102

Note

These figures omit the controller node because it does not handle instance network traffic

Example configuration

Use the following example configuration as a template to deploy provider networks in your environment.

Chapter 8. OpenStack Networking Guide

486

Neutron Documentation, Release 25.1.1.dev7

Controller node

1. Install the Networking service components that provide the neutron-server service and ML2
plug-in.

2. In the neutron. conf file:

* Configure common options:

L

See the Installation Tutorials and Guides and Configuration Reference for your OpenStack
release to obtain the appropriate additional configuration for the [DEFAULT], [database],
[keystone_authtoken], [nova], and [agent] sections.

 Disable service plug-ins because provider networks do not require any. However, this breaks
portions of the dashboard that manage the Networking service. See the latest Install Tutorials
and Guides for more information.

| |

* Enable two DHCP agents per network so both compute nodes can provide DHCP service
provider networks.

| |

* If necessary, configure MTU.

3. Intheml2_conf.ini file:

* Configure drivers and network types:

* Configure network mappings:

8.3. Deployment examples 487

https://docs.openstack.org
https://docs.openstack.org

Neutron Documentation, Release 25.1.1.dev7

Note

The tenant_network_types option contains no value because the architecture does not
support self-service networks.

Note

The provider value in the network_vlan_ranges option lacks VLAN ID ranges to
support use of arbitrary VLAN IDs.

4. Populate the database.

su -s /bin/sh -c

—

—heutron

5. Start the following services:

e Server

Compute nodes

1. Install the Networking service OVS layer-2 agent, DHCP agent, and metadata agent.
2. Install OVS.

3. In the neutron. conf file, configure common options:

(continues on next page)

488 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

See the Installation Tutorials and Guides and Configuration Reference for your OpenStack
release to obtain the appropriate additional configuration for the [DEFAULT], [database],
[keystone_authtoken], [nova], and [agent] sections.

4. In the openvswitch_agent.ini file, configure the OVS agent:

5. In the dhcp_agent. ini file, configure the DHCP agent:

Note

The force_metadata option forces the DHCP agent to provide a host route to the metadata ser-
vice on 169.254.169. 254 regardless of whether the subnet contains an interface on a router,
thus maintaining similar and predictable metadata behavior among subnets.

6. In the metadata_agent.ini file, configure the metadata agent:

The value of METADATA_SECRET must match the value of the same option in the [neutron] sec-
tion of the nova. conf file.

7. Start the following services:
* OVS
8. Create the OVS provider bridge br-provider:

{ ovs-vsctl add-br br-provider }

9. Add the provider network interface as a port on the OVS provider bridge br-provider:

{ ovs-vsctl add-port br-provider PROVIDER_INTERFACE }

Replace PROVIDER_INTERFACE with the name of the underlying interface that handles provider
networks. For example, ethl.

10. Start the following services:

8.3. Deployment examples 489

https://docs.openstack.org
https://docs.openstack.org

Neutron Documentation, Release 25.1.1.dev7

* OVS agent
e DHCP agent

* Metadata agent

Verify service operation

1. Source the administrative project credentials.

2. Verify presence and operation of the agents:

openstack network agent list

Create initial networks

The configuration supports one flat or multiple VLAN provider networks. For simplicity, the following
procedure creates one flat provider network.

1. Source the administrative project credentials.

2. Create a flat network.

,

openstack network create --share --provider-physical-network provider
--provider-network-type flat providerl

(continues on next page)

490 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

Note

The share option allows any project to use this network. To limit access to provider networks,
see Role-Based Access Control (RBAC).

Note

To create a VLAN network instead of a flat network, change --provider-network-type
flat to --provider-network-type vlanandadd --provider-segment with a value ref-
erencing the VLAN ID.

3. Create a IPv4 subnet on the provider network.

openstack subnet create --subnet-range .0.113.0/24 --gateway .0.
—113.1

--network providerl --allocation-pool .0.113.11,end .0.113.
250

--dns-nameserver 8.8.4.4 providerl-v4

Important

Enabling DHCP causes the Networking service to provide DHCP which can interfere with
existing DHCP services on the physical network infrastructure. Use the --no-dhcp option to
have the subnet managed by existing DHCP services.

4. Create a IPv6 subnet on the provider network.

8.3. Deployment examples 491

Neutron Documentation, Release 25.1.1.dev7

openstack subnet create --subnet-range fd00:203:0:113::/64 --gateway.
—fd00:203:0:113::1

--ip-version 6 --ipv6-address-mode slaac --network providerl

--dns-nameserver :4860:4860: :8844 providerl-vé6

Note

The Networking service uses the layer-3 agent to provide router advertisement. Provider net-
works rely on physical network infrastructure for layer-3 services rather than the layer-3 agent.
Thus, the physical network infrastructure must provide router advertisement on provider net-
works for proper operation of IPv6.

Verify network operation

1. On each compute node, verify creation of the gdhcp namespace.

ip netns

2. Source a regular (non-administrative) project credentials.

3. Create the appropriate security group rules to allow ping and SSH access instances using the
network.

492 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

openstack security group rule create --proto icmp default

openstack security group rule create --ethertype IPv6 --proto ipv6-icmp.
—default

openstack security group rule create --proto tcp --dst-port default

openstack security group rule create --ethertype IPv6 --proto tcp --dst-
—port default

L J

4. Launch an instance with an interface on the provider network. For example, a CirrOS image using
flavor ID 1.

openstack server create --flavor 1 --image cirros
--nic net-id NETWORK_ID provider-instancel

Replace NETWORK_ID with the ID of the provider network.

8.3. Deployment examples 493

Neutron Documentation, Release 25.1.1.dev7

5. Determine the IPv4 and IPv6 addresses of the instance.

~

openstack server list

6. On the controller node or any host with access to the provider network, ping the IPv4 and IPv6
addresses of the instance.

ping -c .0.113.13

ping6 -c 4 £d00:203:0:113:£f816:3eff:fe58:bede

[}

7. Obtain access to the instance.

494 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

8. Test IPv4 and IPv6 connectivity to the Internet or other external network.

Network traffic flow

The following sections describe the flow of network traffic in several common scenarios. North-south
network traffic travels between an instance and external network such as the Internet. East-west network
traffic travels between instances on the same or different networks. In all scenarios, the physical network
infrastructure handles switching and routing among provider networks and external networks such as the
Internet. Each case references one or more of the following components:

¢ Provider network 1 (VLAN)
— VLAN ID 101 (tagged)
— [P address ranges 203.0.113.0/24 and £d00:203:0:113::/64
— Gateway (via physical network infrastructure)
IP addresses 203.0.113.1 and £d00:203:0:113:0::1
¢ Provider network 2 (VLAN)
— VLANID 102 (tagged)
— [P address range 192.0.2.0/24 and £d00:192:0:2::/64
— Gateway
* [P addresses 192.0.2.1 and £fd00:192:0:2::1
* Instance 1
— [P addresses 203.0.113.101 and fd00:203:0:113:0::101
* Instance 2

— IP addresses 192.0.2.101 and £d00:192:0:2:0::101

North-south

* The instance resides on compute node 1 and uses provider network 1.
* The instance sends a packet to a host on the Internet.
The following steps involve compute node 1.

1. The instance interface (1) forwards the packet to the security group bridge instance port (2) via
veth pair.

2. Security group rules (3) on the security group bridge handle firewalling and connection tracking
for the packet.

3. The security group bridge OVS port (4) forwards the packet to the OVS integration bridge security
group port (5) via veth pair.

4. The OVS integration bridge adds an internal VLAN tag to the packet.

5. The OVS integration bridge int-br-provider patch port (6) forwards the packet to the OVS
provider bridge phy-br-provider patch port (7).

8.3. Deployment examples 495

Neutron Documentation, Release 25.1.1.dev7

6. The OVS provider bridge swaps the internal VLAN tag with actual VLAN tag 101.

7. The OVS provider bridge provider network port (8) forwards the packet to the physical network
interface (9).

8. The physical network interface forwards the packet to the physical network infrastructure switch
(10).

The following steps involve the physical network infrastructure:
1. The switch removes VLAN tag 101 from the packet and forwards it to the router (11).

2. The router routes the packet from the provider network (12) to the external network (13) and for-
wards the packet to the switch (14).

3. The switch forwards the packet to the external network (15).

4. The external network (16) receives the packet.

496 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Open vSwitch - Provider Networks
Network Traffic Flow - North/South Scenario

Compute Node

s ™)
Instance Linux Bridge
gbr

00

OVS Provider Bridge OVS Integration Brldge

br-provider br-int A

e A
w
i i
Physical Network Infrastructure
N 4

Router Switch F

(13) : (14) I"l (15) : @
L ’

Provider network Provider network 1
Aggregate WLAN 101, 203.0.113.0/24

ar

Note

Return traffic follows similar steps in reverse.

8.3. Deployment examples 497

Neutron Documentation, Release 25.1.1.dev7

East-west scenario 1: Instances on the same network

Instances on the same network communicate directly between compute nodes containing those instances.

* Instance 1 resides on compute node 1 and uses provider network 1.

* Instance 2 resides on compute node 2 and uses provider network 1.

* Instance 1 sends a packet to instance 2.

The following steps involve compute node 1:

1.

The instance 1 interface (1) forwards the packet to the security group bridge instance port (2) via
veth pair.

. Security group rules (3) on the security group bridge handle firewalling and connection tracking

for the packet.

. The security group bridge OVS port (4) forwards the packet to the OVS integration bridge security

group port (5) via veth pair.

The OVS integration bridge adds an internal VLAN tag to the packet.

. The OVS integration bridge int-br-provider patch port (6) forwards the packet to the OVS

provider bridge phy-br-provider patch port (7).
The OVS provider bridge swaps the internal VLAN tag with actual VLAN tag 101.

. The OVS provider bridge provider network port (8) forwards the packet to the physical network

interface (9).

. The physical network interface forwards the packet to the physical network infrastructure switch

(10).

The following steps involve the physical network infrastructure:

1.

The switch forwards the packet from compute node 1 to compute node 2 (11).

The following steps involve compute node 2:

1.

The physical network interface (12) forwards the packet to the OVS provider bridge provider net-
work port (13).

The OVS provider bridge phy-br-provider patch port (14) forwards the packet to the OVS in-
tegration bridge int-br-provider patch port (15).

. The OVS integration bridge swaps the actual VLAN tag 101 with the internal VLAN tag.

The OVS integration bridge security group port (16) forwards the packet to the security group
bridge OVS port (17).

. Security group rules (18) on the security group bridge handle firewalling and connection tracking

for the packet.

. The security group bridge instance port (19) forwards the packet to the instance 2 interface (20)

via veth pair.

498

Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Open vSwitch - Provider Networks
Network Traffic Flow - East/West Scenario 1

Compute Node 1

Linux Bridge
qbr

OVS Provider Bridge
br-provider

OVS Integration Bridge
br-int

7 ™y

Physical Network
Infrastructure

Switch

p A

Compute Node 2

- ™)
Instance 2 Linux Bridge
brg
Tﬂ L

-

br-provider

A

OVS Provider Bridge

A

br-int

OVS Integration Bridge

‘

. Provider network Provider network 1

Aggregate

WLAN 101, 203.0.113.0/24

8.3. Deployment examples

499

Neutron Documentation, Release 25.1.1.dev7

Note

Return traffic follows similar steps in reverse.

East-west scenario 2: Instances on different networks

Instances communicate via router on the physical network infrastructure.
* Instance 1 resides on compute node 1 and uses provider network 1.
* Instance 2 resides on compute node 1 and uses provider network 2.

* Instance 1 sends a packet to instance 2.

Note

Both instances reside on the same compute node to illustrate how VLAN tagging enables multiple
logical layer-2 networks to use the same physical layer-2 network.

The following steps involve the compute node:

1. The instance 1 interface (1) forwards the packet to the security group bridge instance port (2) via
veth pair.

2. Security group rules (3) on the security group bridge handle firewalling and connection tracking
for the packet.

3. The security group bridge OVS port (4) forwards the packet to the OVS integration bridge security
group port (5) via veth pair.

4. The OVS integration bridge adds an internal VLAN tag to the packet.

5. The OVS integration bridge int-br-provider patch port (6) forwards the packet to the OVS
provider bridge phy-br-provider patch port (7).

6. The OVS provider bridge swaps the internal VLAN tag with actual VLAN tag 101.

7. The OVS provider bridge provider network port (8) forwards the packet to the physical network
interface (9).

8. The physical network interface forwards the packet to the physical network infrastructure switch
(10).

The following steps involve the physical network infrastructure:
1. The switch removes VLAN tag 101 from the packet and forwards it to the router (11).
2. The router routes the packet from provider network 1 (12) to provider network 2 (13).
3. The router forwards the packet to the switch (14).
4. The switch adds VLAN tag 102 to the packet and forwards it to compute node 1 (15).
The following steps involve the compute node:

1. The physical network interface (16) forwards the packet to the OVS provider bridge provider net-
work port (17).

500 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

2. The OVS provider bridge phy-br-provider patch port (18) forwards the packet to the OVS in-
tegration bridge int-br-provider patch port (19).

3. The OVS integration bridge swaps the actual VLAN tag 102 with the internal VLAN tag.

4. The OVS integration bridge security group port (20) removes the internal VLAN tag and forwards

the packet to the security group bridge OVS port (21).

5. Security group rules (22) on the security group bridge handle firewalling and connection tracking

for the packet.

6. The security group bridge instance port (23) forwards the packet to the instance 2 interface (24)

via veth pair.

Open vSwitch - Provider Networks
Network Traffic Flow - East/West Scenario 2

Compute Node
™
Instance 1 Linux Bridge Linux Bridge
gl
.
OVS5 Provider Bridge
br-provider
&
p
VILAMN 102
' ™
Physical Network Infrastructure
0 ' ™
Router Switch

L o

!

Provider network

. Provider network 1
rgregate WLAN 101, 203.0.113.0/24
El=E

. Provider network 2
WLAN 102, 192.0.2.0/24

Note

Return traffic follows similar steps in reverse.

8.3. Deployment examples

501

Neutron Documentation, Release 25.1.1.dev7

Open vSwitch: Self-service networks

This architecture example augments Open vSwitch: Provider networks to support a nearly limitless quan-
tity of entirely virtual networks. Although the Networking service supports VLAN self-service networks,
this example focuses on VXLAN self-service networks. For more information on self-service networks,
see Self-service networks.

Prerequisites

Add one network node with the following components:

* Three network interfaces: management, provider, and overlay.

* OpenStack Networking Open vSwitch (OVS) layer-2 agent, layer-3 agent, and any including OVS.
Modify the compute nodes with the following components:

* Add one network interface: overlay.

Note

You can keep the DHCP and metadata agents on each compute node or move them to the network
node.

502 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Architecture

Open vSwitch - Self-service Networks

Controller Node

sQL Metworking
Database Management

Message
Bus

ML2 Plug-in

Overview

Compute Nodes

DHCP Agent

DHCP
Namespace

Instance

Firewall

Interface 1

-
Metadata

Agent

Metadata
Process

Open vSwitch Agent

Tunnel
Bridge

Integration
Bridge

\.
p
Network Node
Layer-3 Agent
Router
Namespace
-

Open vSwitch Agent

Provider
Bridge

Integration
Bridge

Tunnel
Bridge

! |

Physical Network
Infrastructure

b
A

i

Provider network
Aggregate

Management network
10.0.0.0/24

. Overlay network
10.0.1.0/24

. Provider network

. Self-service network

8.3. Deployment examples

503

Neutron Documentation, Release 25.1.1.dev7

The following figure shows components and connectivity for one self-service network and one untagged
(flat) provider network. In this particular case, the instance resides on the same compute node as the
DHCP agent for the network. If the DHCP agent resides on another compute node, the latter only contains
a DHCP namespace and with a port on the OVS integration bridge.

Open vSwitch - Self-service Networks
Components and Connectivity

e ™ e ™
Compute Nade Network Node
™ e ™ e N ™
Instance Linux Bridge Router OVS Integration Bridge
qbr Namespace br-int
qrouter
tap Port |
ethd veth (=]]
\ V,
k=
: Patch
(" h " - s N int-br-provider
DHCP OVS Integration Bridge
Namespace br-int
qdhep nternal
Tunnel ID
e ™ e ™
nternal OV5 Tunnel Bridge
Tunnel ID i (e
g ™ -provi
Metadata OVS Tunnel Bridge
Process br-tun
LN o phy-br-provider

Port
Interface 3

Port
Interface 2 Interface 3

Interface 3

Interface 2 Interface 3

WM 101

Physical Network
Infrastructure

. Provider network Provider network 1

Aggregate VLAN 1 (untagged)

. Overlay network Self-service network
10.0.1.0/24 VNI 101

504 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Example configuration

Use the following example configuration as a template to add support for self-service networks to an
existing operational environment that supports provider networks.

Controller node

1. In the neutron. conf file:

* Enable routing and allow overlapping IP address ranges.

2. Inthe m12_conf. ini file:

* Add vxlan to type drivers and project network types.

* Enable the layer-2 population mechanism driver.

| |

* Configure the VXLAN network ID (VNI) range.

|

Replace VNI_START and VNI_END with appropriate numerical values.
3. Restart the following services:
* Neutron Server

* Open vSwitch agent

Network node

1. Install the Networking service OVS layer-2 agent and layer-3 agent.
2. Install OVS.

3. In the neutron. conf file, configure common options:

(continues on next page)

8.3. Deployment examples 505

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

L J

See the Installation Tutorials and Guides and Configuration Reference for your OpenStack
release to obtain the appropriate additional configuration for the [DEFAULT], [database],
[keystone_authtoken], [nova], and [agent] sections.

4. Start the following services:
* OVS

5. Create the OVS provider bridge br-provider:

[ovs-vsctl add-br br-provider }

6. Add the provider network interface as a port on the OVS provider bridge br-provider:

{ ovs-vsctl add-port br-provider PROVIDER_INTERFACE }

Replace PROVIDER_INTERFACE with the name of the underlying interface that handles provider
networks. For example, ethl.

7. In the openvswitch_agent.ini file, configure the layer-2 agent.

Replace OVERLAY_INTERFACE_IP_ADDRESS with the IP address of the interface that handles
VXLAN overlays for self-service networks.

8. In the 13_agent.ini file, configure the layer-3 agent.

9. Start the following services:

* Open vSwitch agent

506 Chapter 8. OpenStack Networking Guide

https://docs.openstack.org
https://docs.openstack.org

Neutron Documentation, Release 25.1.1.dev7

* Layer-3 agent

Compute nodes

1. In the openvswitch_agent.ini file, enable VXLAN support including layer-2 population.

Replace OVERLAY_INTERFACE_IP_ADDRESS with the IP address of the interface that handles
VXLAN overlays for self-service networks.

2. Restart the following services:

* Open vSwitch agent

Verify service operation

1. Source the administrative project credentials.

2. Verify presence and operation of the agents.

openstack network agent list

8.3. Deployment examples 507

Neutron Documentation, Release 25.1.1.dev7

Create initial networks

The configuration supports multiple VXLAN self-service networks. For simplicity, the following pro-
cedure creates one self-service network and a router with a gateway on the flat provider network. The
router uses NAT for IPv4 network traffic and directly routes IPv6 network traffic.

Note
IPv6 connectivity with self-service networks often requires addition of static routes to nodes and

physical network infrastructure.

1. Source the administrative project credentials.

2. Update the provider network to support external connectivity for self-service networks.

openstack network --external providerl }

Note

This command provides no output.

3. Source a regular (non-administrative) project credentials.

4. Create a self-service network.

openstack network create selfservicel

Note

If you are using an MTU value on your network below 1280, please read the warning listed in
the [Pv6 configuration guide before creating any subnets.

5. Create a IPv4 subnet on the self-service network.

openstack subnet create --subnet-range .0.2.0/24
--network selfservicel --dns-nameserver 8.8.4.4 selfservicel-v4

(continues on next page)

508 Chapter 8. OpenStack Networking Guide

../config-ipv6.html#project-network-considerations

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

6. Create a IPv6 subnet on the self-service network.

openstack subnet create --subnet-range fd00:192:0:2::/64 --ip-version 6.,
--ipv6-ra-mode slaac --ipv6-address-mode slaac --network selfservicel
--dns-nameserver :4860:4860::8844 selfservicel-v6

7. Create a router.

(

openstack router create routerl

(continues on next page)

8.3. Deployment examples 509

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

8. Add the IPv4 and IPv6 subnets as interfaces on the router.

openstack router add subnet routerl selfservicel-v4
openstack router add subnet routerl selfservicel-vé6

Note

These commands provide no output.

9. Add the provider network as the gateway on the router.

{ openstack router --external-gateway providerl routerl

Verify network operation

1. On each compute node, verify creation of a second qdhcp namespace.

ip netns

2. On the network node, verify creation of the grouter namespace.

ip netns

3. Source a regular (non-administrative) project credentials.

4. Create the appropriate security group rules to allow ping and SSH access instances using the
network.

.

openstack security group rule create --proto icmp default

openstack security group rule create --ethertype IPv6 --proto ipv6-icmp.
—default

(continues on next page)

510 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

L

(continued from previous page)

openstack security group rule create --proto tcp --dst-port default

openstack security group rule create --ethertype IPv6 --proto tcp --dst-

—port default

J

5. Launch an instance with an interface on the self-service network. For example, a CirrOS image
using flavor ID 1.

openstack server create --flavor 1 --image cirros --nic net-id NETWORK_

—ID selfservice-instancel

Replace NETWORK_ID with the ID of the self-service network.

6. Determine the IPv4 and IPv6 addresses of the instance.

openstack server list

(continues on next page)

8.3. Deployment examples

511

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

Warning

The IPv4 address resides in a private IP address range (RFC1918). Thus, the Networking
service performs source network address translation (SNAT) for the instance to access external
networks such as the Internet. Access from external networks such as the Internet to the instance
requires a floating IPv4 address. The Networking service performs destination network address
translation (DNAT) from the floating IPv4 address to the instance IPv4 address on the self-
service network. On the other hand, the Networking service architecture for IPv6 lacks support
for NAT due to the significantly larger address space and complexity of NAT. Thus, floating
IP addresses do not exist for IPv6 and the Networking service only performs routing for IPv6
subnets on self-service networks. In other words, you cannot rely on NAT to hide instances
with IPv4 and IPv6 addresses or only IPv6 addresses and must properly implement security
groups to restrict access.

7. On the controller node or any host with access to the provider network, ping the IPv6 address of
the instance.

-

ping6 -c 4 £d00:192:0:2:£f816:3eff:fe30:9chd

8. Optionally, enable IPv4 access from external networks such as the Internet to the instance.

1. Create a floating IPv4 address on the provider network.

openstack floating ip create providerl

(continues on next page)

512 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

L J

2. Associate the floating IPv4 address with the instance.

openstack server add floating ip selfservice-instancel .0.113.16

Note

This command provides no output.

3. On the controller node or any host with access to the provider network, ping the floating
IPv4 address of the instance.

ping -c .0.113.16

L J

9. Obtain access to the instance.

10. Test IPv4 and IPv6 connectivity to the Internet or other external network.

Network traffic flow

The following sections describe the flow of network traffic in several common scenarios. North-south
network traffic travels between an instance and external network such as the Internet. East-west network
traffic travels between instances on the same or different networks. In all scenarios, the physical network
infrastructure handles switching and routing among provider networks and external networks such as the
Internet. Each case references one or more of the following components:

e Provider network (VLAN)
— VLANID 101 (tagged)

* Self-service network 1 (VXLAN)
— VXLANID (VNI) 101

¢ Self-service network 2 (VXLAN)
— VXLANID (VNI) 102

8.3. Deployment examples 513

Neutron Documentation, Release 25.1.1.dev7

¢ Self-service router

— Gateway on the provider network
— Interface on self-service network 1

— Interface on self-service network 2

¢ Instance 1

¢ Instance 2

North-south scenario 1: Instance with a fixed IP address

For instances with a fixed IPv4 address, the network node performs SNAT on north-south traffic passing
from self-service to external networks such as the Internet. For instances with a fixed IPv6 address, the
network node performs conventional routing of traffic between self-service and external networks.

* The instance resides on compute node 1 and uses self-service network 1.

* The instance sends a packet to a host on the Internet.

The following steps involve compute node 1:

1.

The instance interface (1) forwards the packet to the security group bridge instance port (2) via
veth pair.

. Security group rules (3) on the security group bridge handle firewalling and connection tracking

for the packet.

The security group bridge OVS port (4) forwards the packet to the OVS integration bridge security
group port (5) via veth pair.

The OVS integration bridge adds an internal VLAN tag to the packet.

. The OVS integration bridge exchanges the internal VLAN tag for an internal tunnel ID.

The OVS integration bridge patch port (6) forwards the packet to the OVS tunnel bridge patch port
).

. The OVS tunnel bridge (8) wraps the packet using VNI 101.

. The underlying physical interface (9) for overlay networks forwards the packet to the network node

via the overlay network (10).

The following steps involve the network node:

1.

The underlying physical interface (11) for overlay networks forwards the packet to the OVS tunnel
bridge (12).

The OVS tunnel bridge unwraps the packet and adds an internal tunnel ID to it.

. The OVS tunnel bridge exchanges the internal tunnel ID for an internal VLAN tag.

The OVS tunnel bridge patch port (13) forwards the packet to the OVS integration bridge patch
port (14).

. The OVS integration bridge port for the self-service network (15) removes the internal VLAN tag

and forwards the packet to the self-service network interface (16) in the router namespace.

514

Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

* For IPv4, the router performs SNAT on the packet which changes the source IP address to
the router IP address on the provider network and sends it to the gateway IP address on the
provider network via the gateway interface on the provider network (17).

* For IPv6, the router sends the packet to the next-hop IP address, typically the gateway IP
address on the provider network, via the provider gateway interface (17).

6. The router forwards the packet to the OVS integration bridge port for the provider network (18).
7. The OVS integration bridge adds the internal VL AN tag to the packet.

8. The OVS integration bridge int-br-provider patch port (19) forwards the packet to the OVS
provider bridge phy-br-provider patch port (20).

9. The OVS provider bridge swaps the internal VLAN tag with actual VLAN tag 101.

10. The OVS provider bridge provider network port (21) forwards the packet to the physical network
interface (22).

11. The physical network interface forwards the packet to the Internet via physical network infrastruc-
ture (23).

Note

Return traffic follows similar steps in reverse. However, without a floating IPv4 address, hosts on the
provider or external networks cannot originate connections to instances on the self-service network.

8.3. Deployment examples 515

Neutron Documentation, Release 25.1.1.dev7

Open vSwitch - Self-service Networks
Network Traffic Flow - North/South Scenario 1

s !
Compute Node
o 4 ™)
Instance Linux Bridge
gbr
_ o
E
g ~ 2!
OVS Tunnel Bridge OVS Integration Bridge
br-tun br-int
n_ ﬂ J
. J
%'—-__
s N
Network Node
Router Namespace
grouter
o
=z
=
-
OVS Integration Bridge
br-int
-
OVS Provider Bridge OVS Tunnel Bridge
br-provider bir-tun
N u ﬂ
\ W-’
WLAN 101
Provider network . Overlay network
Aggregate 10.0.1.0/24
Provider network 1 Self-service network
VLAN 101, 203.0.113.0/24 VNI 101, 192.168.1.0/24

516 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

North-south scenario 2: Instance with a floating IPv4 address

For instances with a floating IPv4 address, the network node performs SNAT on north-south traffic pass-
ing from the instance to external networks such as the Internet and DNAT on north-south traffic passing
from external networks to the instance. Floating IP addresses and NAT do not apply to IPv6. Thus, the
network node routes IPv6 traffic in this scenario.

* The instance resides on compute node 1 and uses self-service network 1.

* A host on the Internet sends a packet to the instance.

The following steps involve the network node:

A

10.
1.

1

1.

The physical network infrastructure (1) forwards the packet to the provider physical network inter-
face (2).

The provider physical network interface forwards the packet to the OVS provider bridge provider
network port (3).

. The OVS provider bridge swaps actual VLAN tag 101 with the internal VLAN tag.

The OVS provider bridge phy-br-provider port (4) forwards the packet to the OVS integration
bridge int-br-provider port (5).

. The OVS integration bridge port for the provider network (6) removes the internal VLAN tag and

forwards the packet to the provider network interface (6) in the router namespace.

* For IPv4, the router performs DNAT on the packet which changes the destination IP address
to the instance IP address on the self-service network and sends it to the gateway IP address
on the self-service network via the self-service interface (7).

* For IPv6, the router sends the packet to the next-hop IP address, typically the gateway IP
address on the self-service network, via the self-service interface (8).

The router forwards the packet to the OVS integration bridge port for the self-service network (9).
The OVS integration bridge adds an internal VLAN tag to the packet.
The OVS integration bridge exchanges the internal VLAN tag for an internal tunnel ID.

The OVS integration bridge patch-tun patch port (10) forwards the packet to the OVS tunnel
bridge patch-int patch port (11).

The OVS tunnel bridge (12) wraps the packet using VNI 101.

The underlying physical interface (13) for overlay networks forwards the packet to the network
node via the overlay network (14).

The following steps involve the compute node:

1.

The underlying physical interface (15) for overlay networks forwards the packet to the OVS tunnel
bridge (16).

. The OVS tunnel bridge unwraps the packet and adds an internal tunnel ID to it.
. The OVS tunnel bridge exchanges the internal tunnel ID for an internal VLAN tag.
. The OVS tunnel bridge patch-int patch port (17) forwards the packet to the OVS integration

bridge patch-tun patch port (18).

. The OVS integration bridge removes the internal VLAN tag from the packet.

8.3.

Deployment examples 517

Neutron Documentation, Release 25.1.1.dev7

6. The OVS integration bridge security group port (19) forwards the packet to the security group
bridge OVS port (20) via veth pair.

7. Security group rules (21) on the security group bridge handle firewalling and connection tracking
for the packet.

8. The security group bridge instance port (22) forwards the packet to the instance interface (23) via
veth pair.

518 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Open vSwitch - Self-service Networks

Netwaork Traffic Flow - North/South Scenario 2
N

Compute Node

N 4 ™)
Instance Linux Bridge
gbr
_ m
S’

s ™
OVS Tunnel Bridge OVS Integration Bridge

br-tun br-int /

A
R??Cl-r—-__

Network Node

~
o

Router Namespace
grouter

VNI 107

OVS Integration Bridge
br-int

-
OVS Tunnel Bridge

br-tun
é/j

Provider network . Overlay network
Aggregate 10.0.1.0/24

Provider network 1 Self-service network
VLAN 101, 203.0.113.0/24 VNI 101, 192.168.1.0/24

OVS Provider Bridge
br-provider

L u

WLAN 101

8.3. Deployment examples 519

Neutron Documentation, Release 25.1.1.dev7

Note

Egress instance traffic flows similar to north-south scenario 1, except SNAT changes the source IP
address of the packet to the floating IPv4 address rather than the router IP address on the provider
network.

East-west scenario 1: Instances on the same network

Instances with a fixed IPv4/IPv6 address or floating IPv4 address on the same network communicate
directly between compute nodes containing those instances.

By default, the VXLAN protocol lacks knowledge of target location and uses multicast to discover it.
After discovery, it stores the location in the local forwarding database. In large deployments, the discov-
ery process can generate a significant amount of network that all nodes must process. To eliminate the
latter and generally increase efficiency, the Networking service includes the layer-2 population mecha-
nism driver that automatically populates the forwarding database for VXLAN interfaces. The example
configuration enables this driver. For more information, see ML2 Plug-in.

* Instance 1 resides on compute node 1 and uses self-service network 1.
* Instance 2 resides on compute node 2 and uses self-service network 1.
* Instance 1 sends a packet to instance 2.

The following steps involve compute node 1:

1. The instance 1 interface (1) forwards the packet to the security group bridge instance port (2) via
veth pair.

2. Security group rules (3) on the security group bridge handle firewalling and connection tracking
for the packet.

3. The security group bridge OVS port (4) forwards the packet to the OVS integration bridge security
group port (5) via veth pair.

4. The OVS integration bridge adds an internal VLAN tag to the packet.
5. The OVS integration bridge exchanges the internal VLAN tag for an internal tunnel ID.

6. The OVS integration bridge patch port (6) forwards the packet to the OVS tunnel bridge patch port
().

7. The OVS tunnel bridge (8) wraps the packet using VNI 101.

8. The underlying physical interface (9) for overlay networks forwards the packet to compute node 2
via the overlay network (10).

The following steps involve compute node 2:

1. The underlying physical interface (11) for overlay networks forwards the packet to the OVS tunnel
bridge (12).

2. The OVS tunnel bridge unwraps the packet and adds an internal tunnel ID to it.
3. The OVS tunnel bridge exchanges the internal tunnel ID for an internal VLAN tag.

4. The OVS tunnel bridge patch-int patch port (13) forwards the packet to the OVS integration
bridge patch-tun patch port (14).

520 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

5. The OVS integration bridge removes the internal VLAN tag from the packet.

6. The OVS integration bridge security group port (15) forwards the packet to the security group
bridge OVS port (16) via veth pair.

7. Security group rules (17) on the security group bridge handle firewalling and connection tracking
for the packet.

8. The security group bridge instance port (18) forwards the packet to the instance 2 interface (19)
via veth pair.

8.3. Deployment examples 521

Neutron Documentation, Release 25.1.1.dev7

Open vSwitch - Self-service Networks
Metwork Traffic Flow - EastWest Scenario 1

Compute Node 1

-,

-~

Imslanca 1

Linux Bridge
qor

00

o ™
WS Tunnal Bridge

Br-lun Br-il

-
OV Integration Bridge

(13
a

-E::?-'E?-__

Compute Node 2

Insiance 3 Linuz Erldga

qbr

OVS Tunnal Bridgs

Erdun Ear-iml

QWS Integration Bridge

ruilleg

Overlay network
10.0.1.0¢24

Sait-sanvice natwork 1
WL 101, 1821681 0724

Note

Return traffic follows similar steps in reverse.

522

Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

East-west scenario 2: Instances on different networks

Instances using a fixed IPv4/IPv6 address or floating IPv4 address communicate via router on the network
node. The self-service networks must reside on the same router.

* Instance 1 resides on compute node 1 and uses self-service network 1.

* Instance 2 resides on compute node 1 and uses self-service network 2.

* Instance 1 sends a packet to instance 2.

Note

Both instances reside on the same compute node to illustrate how VXLAN enables multiple overlays
to use the same layer-3 network.

The following steps involve the compute node:

1.

The instance interface (1) forwards the packet to the security group bridge instance port (2) via
veth pair.

Security group rules (3) on the security group bridge handle firewalling and connection tracking
for the packet.

. The security group bridge OVS port (4) forwards the packet to the OVS integration bridge security

group port (5) via veth pair.

The OVS integration bridge adds an internal VLAN tag to the packet.

. The OVS integration bridge exchanges the internal VLAN tag for an internal tunnel ID.

The OVS integration bridge patch-tun patch port (6) forwards the packet to the OVS tunnel bridge
patch-int patch port (7).

. The OVS tunnel bridge (8) wraps the packet using VNI 101.

The underlying physical interface (9) for overlay networks forwards the packet to the network node
via the overlay network (10).

The following steps involve the network node:

1.

The underlying physical interface (11) for overlay networks forwards the packet to the OVS tunnel
bridge (12).

. The OVS tunnel bridge unwraps the packet and adds an internal tunnel ID to it.
. The OVS tunnel bridge exchanges the internal tunnel ID for an internal VLAN tag.

. The OVS tunnel bridge patch-int patch port (13) forwards the packet to the OVS integration

bridge patch-tun patch port (14).

. The OVS integration bridge port for self-service network 1 (15) removes the internal VLAN tag

and forwards the packet to the self-service network 1 interface (16) in the router namespace.

. The router sends the packet to the next-hop IP address, typically the gateway IP address on self-

service network 2, via the self-service network 2 interface (17).

. The router forwards the packet to the OVS integration bridge port for self-service network 2 (18).

. The OVS integration bridge adds the internal VLAN tag to the packet.

8.3.

Deployment examples 523

Neutron Documentation, Release 25.1.1.dev7

9.
10.

11.
12.

The OVS integration bridge exchanges the internal VLAN tag for an internal tunnel ID.

The OVS integration bridge patch-tun patch port (19) forwards the packet to the OVS tunnel
bridge patch-int patch port (20).

The OVS tunnel bridge (21) wraps the packet using VNI 102.

The underlying physical interface (22) for overlay networks forwards the packet to the compute
node via the overlay network (23).

The following steps involve the compute node:

1.

The underlying physical interface (24) for overlay networks forwards the packet to the OVS tunnel
bridge (25).

The OVS tunnel bridge unwraps the packet and adds an internal tunnel ID to it.

. The OVS tunnel bridge exchanges the internal tunnel ID for an internal VLAN tag.

The OVS tunnel bridge patch-int patch port (26) forwards the packet to the OVS integration
bridge patch-tun patch port (27).

. The OVS integration bridge removes the internal VLAN tag from the packet.

The OVS integration bridge security group port (28) forwards the packet to the security group
bridge OVS port (29) via veth pair.

. Security group rules (30) on the security group bridge handle firewalling and connection tracking

for the packet.

. The security group bridge instance port (31) forwards the packet to the instance interface (32) via

veth pair.

Note

Return traffic follows similar steps in reverse.

524

Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Open vSwitch - Self-service Networks
Network Traffic Flow - East/West Scenario 2

-
Compute Node
Yy s ™,
Instance 1 Linux Eridge
gbr
|:1:I - o &
N . \ r
Yy - ™
Instance 2 Linux Bridge
qbr
H
OVS Tunnel Bridge OVS Integration Bridge
br-tun br-int
N
s
Network Node
Router Namespace OVS Tunnel Bridge
grouter
OVS Integration Bridge
br-int

N

Self-service network 1
VNI 101, 192.168.1.0/24

Overlay network
10.0.1.0/24

Self-service network 2
WML 102, 192.168.2.0/24

8.3. Deployment examples

525

Neutron Documentation, Release 25.1.1.dev7

Open vSwitch: High availability using VRRP

This architecture example augments the self-service deployment example with a high-availability mech-
anism using the Virtual Router Redundancy Protocol (VRRP) via keepalived and provides failover of
routing for self-service networks. It requires a minimum of two network nodes because VRRP creates
one master (active) instance and at least one backup instance of each router.

During normal operation, keepalived on the master router periodically transmits heartbeat pack-
ets over a hidden network that connects all VRRP routers for a particular project. Each project
with VRRP routers uses a separate hidden network. By default this network uses the first value
in the tenant_network_types option in the m12_conf.ini file. For additional control, you can
specify the self-service network type and physical network name for the hidden network using the
13_ha_network_type and 13_ha_network_name options in the neutron. conf file.

If keepalived on the backup router stops receiving heartbeat packets, it assumes failure of the master
router and promotes the backup router to master router by configuring IP addresses on the interfaces in
the grouter namespace. In environments with more than one backup router, keepalived on the backup
router with the next highest priority promotes that backup router to master router.

Note

This high-availability mechanism configures VRRP using the same priority for all routers. Therefore,
VRRP promotes the backup router with the highest IP address to the master router.

Warning

There is a known bug with keepalived v1.2.15 and earlier which can cause packet loss when
max_13_agents_per_router is set to 3 or more. Therefore, we recommend that you upgrade to
keepalived v1.2.16 or greater when using this feature.

Interruption of VRRP heartbeat traffic between network nodes, typically due to a network interface or
physical network infrastructure failure, triggers a failover. Restarting the layer-3 agent, or failure of it,
does not trigger a failover providing keepalived continues to operate.

Consider the following attributes of this high-availability mechanism to determine practicality in your
environment:

* Instance network traffic on self-service networks using a particular router only traverses the master
instance of that router. Thus, resource limitations of a particular network node can impact all
master instances of routers on that network node without triggering failover to another network
node. However, you can configure the scheduler to distribute the master instance of each router
uniformly across a pool of network nodes to reduce the chance of resource contention on any
particular network node.

* Only supports self-service networks using a router. Provider networks operate at layer-2 and rely
on physical network infrastructure for redundancy.

* For instances with a floating IPv4 address, maintains state of network connections during failover
as a side effect of 1:1 static NAT. The mechanism does not actually implement connection tracking.

For production deployments, we recommend at least three network nodes with sufficient resources to
handle network traffic for the entire environment if one network node fails. Also, the remaining two

526 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

nodes can continue to provide redundancy.

Prerequisites

Add one network node with the following components:
* Three network interfaces: management, provider, and overlay.

* OpenStack Networking layer-2 agent, layer-3 agent, and any dependencies.

Note

You can keep the DHCP and metadata agents on each compute node or move them to the network
nodes.

8.3. Deployment examples 527

Neutron Documentation, Release 25.1.1.dev7

Architecture
Open vSwitch - High-availability with VRRP
Overview
- ™ - ~
Controller Node Compute Nodes
=) s) Yy
Q Networking Instance DHCP Agent
Database Management
Namespace
Message API Firewall
Bus
s s ~
ML2 Plug-in Open vSwitch Agent Metadata
Agent
Integration
' . Metadata
Bridge Bridge
.
e
Network Nodes
Interface 2
Layer-3 Agent
Router
Namespace
-
Open vSwitch Agent
Physical Metwork
Provider Tunnel Infrastructure
Bridge Bridge
Integration
Bridge
. w
. Management network Provider network . Self-service network
10.0.0.0/24 Aggregate
Overlay network . _
. 10.0.1.0024 Provider network

528 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

The following figure shows components and connectivity for one self-service network and one untagged
(flat) network. The primary router resides on network node 1. In this particular case, the instance resides
on the same compute node as the DHCP agent for the network. If the DHCP agent resides on another
compute node, the latter only contains a DHCP namespace and Linux bridge with a port on the overlay
physical network interface.

8.3. Deployment examples 529

Neutron Documentation, Release 25.1.1.dev7

Open vSwitch - High-availability with VRRP

Components and Connectivity

Compute Node

4 ™
Instance Linux Bridge
qbr
veth _m_m m
L. o

~
o

DHCP

Namespace
qdhecp

e @

OVS Integration Bridge
br-int

nternal
Tunnel 1D

Metadata
Process
H

0OVS Tunnel Bridge
br-tumn

Port
Interface 3

Interface 3

~,

-

Network Node

grouter

4 ™
Master OVS Integration Bridge
Router br-int
Namespace

~

Patch
int-br-provider

nternal
Tunnel 1D

OVS Provider
Bridge
br-provider,

Patch
phy-br-provider

~

~
OVS Tunnel Bridge
br-tun

Port
Interface 3

.
Interface 2 Interface 3
VNI 101
Physical Network
Infrastructure Network Node
s ~ ™\
Backup OVS Integration Bridge
Router br-int
. Provider network Provider network 1 NE;:I::E?CE
Aggregate VLAN 1 (untagged) »
. Overlay network Self-service network
10.0.1.0/24 VNI101 Patch
int-br-provider
-~
@/ nternal
\ r. Tunnel 1D
s ™\ ™\
OV'S Provider OVS Tunnel Bridge
Bridge br-tun
br-provider,
Port
Interface 2 Interface 3
Interface 2 Interface 3
530 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Example configuration

Use the following example configuration as a template to add support for high-availability using VRRP
to an existing operational environment that supports self-service networks.

Controller node

1. In the neutron. conf file:

e Enable VRRP.

2. Restart the following services:

e Server

Network node 1

No changes.

Network node 2

1. Install the Networking service OVS layer-2 agent and layer-3 agent.

2. Install OVS.

3. In the neutron. conf file, configure common options:

See the Installation Tutorials and Guides and Configuration Reference for your OpenStack
release to obtain the appropriate additional configuration for the [DEFAULT], [database],

[keystone_authtoken], [nova], and [agent] sections.

4. Start the following services:

8.3. Deployment examples 531

https://docs.openstack.org
https://docs.openstack.org

Neutron Documentation, Release 25.1.1.dev7

* OVS

5. Create the OVS provider bridge br-provider:

{ ovs-vsctl add-br br-provider }

6. Add the provider network interface as a port on the OVS provider bridge br-provider:

[ovs-vsctl add-port br-provider PROVIDER_INTERFACE }

Replace PROVIDER_INTERFACE with the name of the underlying interface that handles provider
networks. For example, ethl.

7. In the openvswitch_agent.ini file, configure the layer-2 agent.

Replace OVERLAY_INTERFACE_IP_ADDRESS with the IP address of the interface that handles
VXLAN overlays for self-service networks.

8. Inthe 13_agent.ini file, configure the layer-3 agent.

9. Start the following services:
* Open vSwitch agent

» Layer-3 agent

532 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Compute nodes

No changes.

Verify service operation

1. Source the administrative project credentials.

2. Verify presence and operation of the agents.

-

openstack network agent list

Create initial networks

Similar to the self-service deployment example, this configuration supports multiple VXLAN self-service
networks. After enabling high-availability, all additional routers use VRRP. The following procedure
creates an additional self-service network and router. The Networking service also supports adding high-
availability to existing routers. However, the procedure requires administratively disabling and enabling
each router which temporarily interrupts network connectivity for self-service networks with interfaces
on that router.

1. Source a regular (non-administrative) project credentials.

8.3. Deployment examples 533

Neutron Documentation, Release 25.1.1.dev7

2. Create a self-service network.

openstack network create selfservice2

L

3. Create a IPv4 subnet on the self-service network.

openstack subnet create --subnet-range .51.100.0/24
--network selfservice2 --dns-nameserver 8.8.4.4 selfservice2-v4

4. Create a IPv6 subnet on the self-service network.

openstack subnet create --subnet-range fd00:198:51:100::/64 --ip-
—version

--ipv6-ra-mode slaac --ipv6-address-mode slaac --network selfservice2

--dns-nameserver :4860:4860::8844 selfservice2-v6

(continues on next page)

534 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

L

(continued from previous page)

()

5. Create a router.

openstack router create router2

6. Add the IPv4 and IPv6 subnets as interfaces on the router.

openstack router add subnet router2 selfservice2-v4
openstack router add subnet router2 selfservice2-vé6

Note

These commands provide no output.

7. Add the provider network as a gateway on the router.

openstack router --external-gateway providerl router2

Verify network operation

1. Source the administrative project credentials.

2. Verify creation of the internal high-availability network that handles VRRP heartbeat traffic.

-

openstack network list

(continues on next page)

8.3. Deployment examples

535

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

3. On each network node, verify creation of a gqrouter namespace with the same ID.

Network node 1:

ip netns

Network node 2:

{ ip netns

Note

The namespace for router 1 from Linux bridge: Self-service networks should only appear on
network node 1 because of creation prior to enabling VRRP.

4. On each network node, show the IP address of interfaces in the qrouter namespace. With the
exception of the VRRP interface, only one namespace belonging to the master router instance
contains IP addresses on the interfaces.

Network node 1:

ip netns grouter-b6206312-878e-497c-8ef7-eb384£f8add96 ip addr show

—

(continues on next page)

536 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

L

Network node 2:

ip netns gqrouter-b6206312-878e-497c-8ef7-eb384f8add96 ip addr show

()

8.3.

Deployment examples 537

Neutron Documentation, Release 25.1.1.dev7

Note

The master router may reside on network node 2.

5. Launch an instance with an interface on the additional self-service network. For example, a CirrOS
image using flavor ID 1.

openstack server create --flavor | --image cirros --nic net-id NETWORK_
—ID selfservice-instance2

Replace NETWORK_ID with the ID of the additional self-service network.

6. Determine the IPv4 and IPv6 addresses of the instance.

openstack server list

—

—

L

7. Create a floating IPv4 address on the provider network.

-

openstack floating ip create providerl

8. Associate the floating IPv4 address with the instance.

openstack server add floating ip selfservice-instance?2 .0.113.17

Note

This command provides no output.

538 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Verify failover operation

1. Begin a continuous ping of both the floating IPv4 address and IPv6 address of the instance. While
performing the next three steps, you should see a minimal, if any, interruption of connectivity to
the instance.

2. On the network node with the master router, administratively disable the overlay network interface.

3. On the other network node, verify promotion of the backup router to master router by noting ad-
dition of IP addresses to the interfaces in the qrouter namespace.

4. On the original network node in step 2, administratively enable the overlay network interface. Note
that the master router remains on the network node in step 3.

Keepalived VRRP health check

The health of your keepalived instances can be automatically monitored via a bash script that verifies
connectivity to all available and configured gateway addresses. In the event that connectivity is lost, the
master router is rescheduled to another node.

If all routers lose connectivity simultaneously, the process of selecting a new master router will be re-
peated in a round-robin fashion until one or more routers have their connectivity restored.

To enable this feature, edit the 13_agent. ini file:

Where ha_vrrp_health_check_interval indicates how often in seconds the health check should run.
The default value is 0, which indicates that the check should not run at all.

Network traffic flow

This high-availability mechanism simply augments Open vSwitch: Self-service networks with failover of
layer-3 services to another router if the primary router fails. Thus, you can reference Self-service network
traffic flow for normal operation.

Open vSwitch: High availability using DVR

This architecture example augments the self-service deployment example with the Distributed Virtual
Router (DVR) high-availability mechanism that provides connectivity between self-service and provider
networks on compute nodes rather than network nodes for specific scenarios. For instances with a floating
IPv4 address, routing between self-service and provider networks resides completely on the compute
nodes to eliminate single point of failure and performance issues with network nodes. Routing also
resides completely on the compute nodes for instances with a fixed or floating IPv4 address using self-
service networks on the same distributed virtual router. However, instances with a fixed IP address still
rely on the network node for routing and SNAT services between self-service and provider networks.

Consider the following attributes of this high-availability mechanism to determine practicality in your
environment:

* Only provides connectivity to an instance via the compute node on which the instance resides if the
instance resides on a self-service network with a floating IPv4 address. Instances on self-service

8.3. Deployment examples 539

Neutron Documentation, Release 25.1.1.dev7

networks with only an IPv6 address or both IPv4 and IPv6 addresses rely on the network node for
IPv6 connectivity.

* The instance of a router on each compute node consumes an [Pv4 address on the provider network
on which it contains a gateway.

Prerequisites

Modify the compute nodes with the following components:

* Install the OpenStack Networking layer-3 agent.

Note

Consider adding at least one additional network node to provide high-availability for instances with
a fixed IP address. See See Distributed Virtual Routing with VRRP for more information.

540 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Architecture
Open vSwitch - High-availability with DVR
Overview
' ! ' ™
Controller Node Compute Nodes
g It g It
sqQL Networking Layer-3 Agent DHCP Agent
Database Management

DHCP
Namespace

Dist Router
Namespace
Floating IP
Namespace

Message
Bus

APl

ML2 Plug-in

Firewall

Metadata
Agent
\. Metadata
Process
s ™ i
Provider
Network Nodes
N
Layer-3 Agent
Interface 1 Interface 2
MNamespace
S
SNAT
/ MNamespace
s ™
Physical Network
Infrastructure
Integration
Bridge
\ /‘
. m/,
. Management network Provider network . Self-service network
10.0.0.0/24 Aggregate
. Overlay network . Provider network
H-0-1-6124

8.3. Deployment examples 541

Neutron Documentation, Release 25.1.1.dev7

The following figure shows components and connectivity for one self-service network and one untagged
(flat) network. In this particular case, the instance resides on the same compute node as the DHCP agent
for the network. If the DHCP agent resides on another compute node, the latter only contains a DHCP
namespace with a port on the OVS integration bridge.

Open vSwitch - High-availability with DVR

Components and Connectivity

- > - ~
Compute Node Network Node
~ e ™ s ™
Instance Linux Bridge Router OVS Integration Bridge
qbr Mamespace brint
grouter
tap
ethd wveth
Teth
s >
DHCP 0OVS Integration Bridge —_——
Mamespace brint SNAT
qdhcp
MNamespace / Patch
H snat int-br-provider

Metadata
Process

ﬁ

ql [euung
[T

)

Dist Router

Namespace
grouter

OVS Tunnel Bridge
br-tun

OVS Provider
Bridge
br-provider

Patch
phy-br-provider

N
22
FIP Namespace
fip

Bridge
br-provider

phy-br-provi

OVS Provider

Port

OVS Tunnel Bridge
Interface 3

br-tun

Interface 3

Physical Network
Infrastructure

VN0

b
VLAM 1
Provider network Provider network 1 . DVR internal network
Aggregate VLAN 1 (untagged)
. Overlay network Self-service network
10.0.1.0/24 VNI 101

542

Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Example configuration

Use the following example configuration as a template to add support for high-availability using DVR to
an existing operational environment that supports self-service networks.

Controller node

1. In the neutron. conf file:

* Enable distributed routing by default for all routers.

Note

For a large scale cloud, if your deployment is running DVR with DHCP, we recommend you set
host_dvr_for_dhcp=False to achieve higher L3 agent router processing performance. When
this is set to False, DNS functionality will not be available via the DHCP namespace (dnsmasq)
however, a different nameserver will have to be configured, for example, by specifying a value in
dns_nameservers for subnets.

1. Restart the following services:

e Server

Network node

1. In the openvswitch_agent.ini file, enable distributed routing.

| |

2. Inthe 13_agent.ini file, configure the layer-3 agent to provide SNAT services.

| |

Note

agent_mode = dvr_snat is not supported on compute nodes. For discussion please see: bug
#1934666
1. Restart the following services:
* Open vSwitch agent

» Layer-3 agent

8.3. Deployment examples 543

https://bugs.launchpad.net/neutron/+bug/1934666
https://bugs.launchpad.net/neutron/+bug/1934666

Neutron Documentation, Release 25.1.1.dev7

Compute nodes

1. Install the Networking service layer-3 agent.

2. In the openswitch_agent.ini file, enable distributed routing.

3. Inthe 13_agent.ini file, configure the layer-3 agent.

4. Restart the following services:
* Open vSwitch agent

* Layer-3 agent

Verify service operation

1. Source the administrative project credentials.

2. Verify presence and operation of the agents.

-

openstack network agent list

(continues on next page)

544 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

(continued from previous page)

—

Create initial networks

Similar to the self-service deployment example, this configuration supports multiple VXLAN self-service
networks. After enabling high-availability, all additional routers use distributed routing. The following
procedure creates an additional self-service network and router. The Networking service also supports
adding distributed routing to existing routers.

1. Source a regular (non-administrative) project credentials.

2. Create a self-service network.

-

openstack network create selfservice2

3. Create a IPv4 subnet on the self-service network.

openstack subnet create --subnet-range .0.2.0/24
--network selfservice2 --dns-nameserver 8.8.4.4 selfservice2-v4

8.3. Deployment examples 545

Neutron Documentation, Release 25.1.1.dev7

4. Create a IPv6 subnet on the self-service network.

(

openstack subnet create --subnet-range fd00:192:0:2::/64 --ip-version 6.
--ipv6-ra-mode slaac --ipv6-address-mode slaac --network selfservice2
--dns-nameserver :4860:4860::8844 selfservice2-v6

—

L

5. Create a router.

openstack router create router2

6. Add the IPv4 and IPv6 subnets as interfaces on the router.

546 Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

openstack router add subnet router2 selfservice2-v4
openstack router add subnet router2 selfservice2-vé6

Note

These commands provide no output.

7. Add the provider network as a gateway on the router.

openstack router router2 --external-gateway providerl

Verify network operation

1. Source the administrative project credentials.

2. Verify distributed routing on the router.

openstack router show router2

3. On each compute node, verify creation of a qrouter namespace with the same ID.

Compute node 1:

{ ip netns

Compute node 2:

ip netns

4. On the network node, verify creation of the snat and qrouter namespaces with the same ID.

ip netns

Note

8.3. Deployment examples 547

Neutron Documentation, Release 25.1.1.dev7

The namespace for router 1 from Open vSwitch: Self-service networks should also appear on
network node 1 because of creation prior to enabling distributed routing.

5. Launch an instance with an interface on the additional self-service network. For example, a CirrOS

image using flavor ID 1.

openstack server create --flavor 1 --image cirros --nic net-id NETWORK_
—ID selfservice-instance2

Replace NETWORK_ID with the ID of the additional self-service network.

6. Determine the IPv4 and IPv6 addresses of the instance.

L

openstack server list

—

—

7. Create a floating IPv4 address on the provider network.

openstack floating ip create providerl

8. Associate the floating IPv4 address with the instance.

{ openstack server add floating ip selfservice-instance?2 .0.113.17

548

Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

Note

This command provides no output.

9. On the compute node containing the instance, verify creation of the £ip namespace with the same
ID as the provider network.

ip netns

Network traffic flow

The following sections describe the flow of network traffic in several common scenarios. North-south
network traffic travels between an instance and external network such as the Internet. East-west network
traffic travels between instances on the same or different networks. In all scenarios, the physical network
infrastructure handles switching and routing among provider networks and external networks such as the
Internet. Each case references one or more of the following components:

e Provider network (VLAN)
— VLAN ID 101 (tagged)
¢ Self-service network 1 (VXLAN)
— VXLANID (VNI) 101
¢ Self-service network 2 (VXLAN)
— VXLANID (VNI) 102
 Self-service router
— Gateway on the provider network
— Interface on self-service network 1
— Interface on self-service network 2
* Instance 1
* Instance 2

This section only contains flow scenarios that benefit from distributed virtual routing or that differ from
conventional operation. For other flow scenarios, see Network traffic flow.

North-south scenario 1: Instance with a fixed IP address

Similar to North-south scenario 1: Instance with a fixed IP address, except the router namespace on the
network node becomes the SNAT namespace. The network node still contains the router namespace, but
it serves no purpose in this case.

8.3. Deployment examples 549

Neutron Documentation, Release 25.1.1.dev7

Open vSwitch - High-availability with DVR

Network Traffic Flow - North/South Scenario 1

- ™
Compute Node
N g ™
Instance Linux Bridge
qbr
- e
E
g ™ ™
OVS Tunnel Bridge OVS Integration Bridge
br-tun br-int /
n_ r
\
%'—-__
- ™
Network Node
SNAT Namespace
snat
-
OVS Integration Bridge
br-int
-
OVS Provider Bridge OVS Tunnel Bridge
br-provider br-tun
L. m ﬂ
\ Wj

VNI 07

l‘u"LAN 101

Provider network
Aggregate

Provider network 1
VLAN 101, 203.0.113.0/24

Overlay network
10.0.1.0/24

Self-service network
VNI 101, 192.168.1.0/24

550

Chapter 8. OpenStack Networking Guide

Neutron Documentation, Release 25.1.1.dev7

North-south scenario 2: Instance with a floating IPv4 address

For instances with a floating IPv4 address using a self-service network on a distributed router, the compute
node containing the instance performs SNAT on north-south traffic passing from the instance to external
networks such as the Internet and DNAT on north-south traffic passing from external networks to the
instance. Floating IP addresses and NAT do not apply to IPv6. Thus, the network node routes IPv6
traffic in this scenario. north-south traffic passing between the instance and external networks such as the
Internet.

* Instance 1 resides on compute node 1 and uses self-service network 1.

* A host on the Internet sends a packet to the instance.

The following steps involve the compute node:

1.

10.
11.

12.

13.

The physical network infrastructure (1) forwards the packet to the provider physical network inter-
face (2).

. The provider physical network interface forwards the packet to the OVS provider bridge provider

network port (3).

. The OVS provider bridge swaps actual VLAN tag 101 with the internal VLAN tag.

The OVS provider bridge phy-br-provider port (4) forwards the packet to the OVS integration
bridge int-br-provider port (5).

. The OVS integration bridge port for the provider network (6) removes the internal VLAN tag

and forwards the packet to the provider network interface (7) in the floating IP namespace. This
interface responds to any ARP requests for the instance floating IPv4 address.

The floating IP namespace routes the packet (8) to the distributed router namespace (9) using a
pair of IP addresses on the DVR internal network. This namespace contains the instance floating
IPv4 address.

. The router performs DNAT on the packet which changes the destination IP address to the instance

IP address on the self-service network via the self-service network interface (10).

. The router forwards the packet to the OVS integration bridge port for the self-service network (11).

The OVS integration bridge adds an internal VLAN tag to the packet.
The OVS integration bridge removes the internal VLAN tag from the packet.

The OVS integration bridge security group port (12) forwards the packet to the security group
bridge OVS port (13) via veth pair.

Security group rules (14) on the security group bridge handle firewalling and connection tracking
for the packet.

The security group bridge instance port (15) forwards the packet to the instance interface (16) via
veth pair.

8.3. Deployment examples 551

Neutron Documentation, Release 25.1.1.dev7

Open vSwitch - High-availability with DVR

Network Traffic Flow - North/South Scenario 2

Compute Node

Linux Bridge Distributed Router Floating IP
gbr MNamespace Namespace
fip

grouter
(15) o

OVS Provider Bridge OVS Integration Bridge
br-provider br-int

) ©

Provider network Self-service network
Aggregate WML 101, 192,168.1.0/24
Provider network 1 . DVR internal network

VLAN 101, 203.0.113.0/24

Note

Egress traffic follows similar steps in reverse, except SNAT changes the source IPv4 address of the
packet to the floating IPv4 address.

East-west scenario 1: Instances on different networks on the same router

Instances with fixed IPv4/IPv6 address or floating IPv4 address on the same compute node communicate
via router on the compute node. Instances on different compute nodes communicate via an instance of
the router on each compute node.

Note

This scenario places the instances on different compute nodes to show the most complex