
Networking SFC Documentation
Release 19.1.0.dev11

OpenStack Foundation

Dec 09, 2024

CONTENTS

1 Service Function Chaining Extension for OpenStack Networking 1
1.1 Team and repository tags . 1
1.2 Service Function Chaining API . 1
1.3 Features . 2
1.4 Service Function Chaining Key Contributors . 2
1.5 Background on the Subject of Service Function Chaining 2

2 Install Guide 3
2.1 Installation . 3
2.2 Configuration . 3

2.2.1 Controller nodes . 3
2.2.2 Compute nodes . 4
2.2.3 Database setup . 4

3 Using the Service Function Chaining 5
3.1 Usage . 5
3.2 Command extension . 5

3.2.1 List of New Neutron CLI Commands: . 5

4 Configuration Guide 6
4.1 Configuration . 6

4.1.1 networking-sfc.conf . 6
4.1.2 Sample networking-sfc.conf . 7

4.2 Policy . 8
4.2.1 networking-sfc policies . 9
4.2.2 Sample networking-sfc Policy File . 12

5 Contributor Guide 15
5.1 Programming HowTos and Tutorials . 15

5.1.1 Contribution . 15
5.1.2 Alembic-migration . 15

5.2 Networking-SFC Internals . 17
5.2.1 API Model . 17
5.2.2 System Design and Workflow . 28
5.2.3 OVS Driver and Agent Workflow . 32
5.2.4 Networking-sfc / OVN Driver . 37
5.2.5 OVS Driver and Agent for Symmetric Port Chains 41
5.2.6 Service Function Tap for Port Chains . 44
5.2.7 Non-Transparent Service Functions for Port Chains 48

i

5.2.8 IETF SFC Encapsulation . 50
5.2.9 Exclusive Port-Pair Group for Non-Transparent Service Functions 60

ii

CHAPTER

ONE

SERVICE FUNCTION CHAINING EXTENSION FOR OPENSTACK
NETWORKING

1.1 Team and repository tags

openstackopenstackcommunity projectcommunity projectcii best practicescii best practicespassingpassing

1.2 Service Function Chaining API
This project provides APIs and implementations to support Service Function Chaining in Neutron.

Service Function Chaining is a mechanism for overriding the basic destination based forwarding that is
typical of IP networks. It is conceptually related to Policy Based Routing in physical networks but it is
typically thought of as a Software Defined Networking technology. It is often used in conjunction with
security functions although it may be used for a broader range of features. Fundamentally SFC is the
ability to cause network packet flows to route through a network via a path other than the one that would
be chosen by routing table lookups on the packets destination IP address. It is most commonly used in
conjunction with Network Function Virtualization when recreating in a virtual environment a series of
network functions that would have traditionally been implemented as a collection of physical network
devices connected in series by cables.

A very simple example of a service chain would be one that forces all traffic from point A to point B to
go through a firewall even though the firewall is not literally between point A and B from a routing table
perspective.

A more complex example is an ordered series of functions, each implemented in multiple VMs, such that
traffic must flow through one VM at each hop in the chain but the network uses a hashing algorithm to
distribute different flows across multiple VMs at each hop.

This is an initial release, feedback is requested from users and the API may evolve based on that feedback.

• Free software: Apache license

• Source: https://opendev.org/openstack/networking-sfc

• Documentation: https://docs.openstack.org/networking-sfc/latest

• Overview: https://launchpad.net/networking-sfc

• Bugs: https://bugs.launchpad.net/networking-sfc

• Blueprints: https://blueprints.launchpad.net/networking-sfc

• Wiki: https://wiki.openstack.org/wiki/Neutron/ServiceInsertionAndChaining

• Release notes: https://docs.openstack.org/releasenotes/networking-sfc/

1

https://governance.openstack.org/tc/reference/tags/index.html
https://opendev.org/openstack/networking-sfc
https://docs.openstack.org/networking-sfc/latest
https://launchpad.net/networking-sfc
https://bugs.launchpad.net/networking-sfc
https://blueprints.launchpad.net/networking-sfc
https://wiki.openstack.org/wiki/Neutron/ServiceInsertionAndChaining
https://docs.openstack.org/releasenotes/networking-sfc/

Networking SFC Documentation, Release 19.1.0.dev11

1.3 Features
• Creation of Service Function Chains consisting of an ordered sequence of Service Functions. SFs

are virtual machines (or potentially physical devices) that perform a network function such as
firewall, content cache, packet inspection, or any other function that requires processing of packets
in a flow from point A to point B.

• Reference implementation with Open vSwitch

• Flow classification mechanism (ability to select and act on traffic)

• Vendor neutral API

• Modular plugin driver architecture

1.4 Service Function Chaining Key Contributors
• Cathy Zhang (Project Lead): https://launchpad.net/~cathy-h-zhang

• Louis Fourie: https://launchpad.net/~lfourie

• Paul Carver: https://launchpad.net/~pcarver

• Vikram: https://launchpad.net/~vikschw

• Mohankumar: https://blueprints.launchpad.net/~mohankumar-n

• Rao Fei: https://launchpad.net/~milo-frao

• Xiaodong Wang: https://launchpad.net/~xiaodongwang991481

• Ramanjaneya Reddy Palleti: https://launchpad.net/~ramanjieee

• Stephen Wong: https://launchpad.net/~s3wong

• Igor Duarte Cardoso: https://launchpad.net/~igordcard

• Prithiv: https://launchpad.net/~prithiv

• Akihiro Motoki: https://launchpad.net/~amotoki

• Swaminathan Vasudevan: https://launchpad.net/~swaminathan-vasudevan

• Armando Migliaccio https://launchpad.net/~armando-migliaccio

• Kyle Mestery https://launchpad.net/~mestery

1.5 Background on the Subject of Service Function Chaining
• Original Neutron bug (request for enhancement): https://bugs.launchpad.net/neutron/+bug/

1450617

• https://blueprints.launchpad.net/neutron/+spec/neutron-api-extension-for-service-chaining

• https://blueprints.launchpad.net/neutron/+spec/common-service-chaining-driver-api

• https://wiki.opnfv.org/display/VFG/Openstack+Based+VNF+Forwarding+Graph

1.3. Features 2

https://launchpad.net/~cathy-h-zhang
https://launchpad.net/~lfourie
https://launchpad.net/~pcarver
https://launchpad.net/~vikschw
https://blueprints.launchpad.net/~mohankumar-n
https://launchpad.net/~milo-frao
https://launchpad.net/~xiaodongwang991481
https://launchpad.net/~ramanjieee
https://launchpad.net/~s3wong
https://launchpad.net/~igordcard
https://launchpad.net/~prithiv
https://launchpad.net/~amotoki
https://launchpad.net/~swaminathan-vasudevan
https://launchpad.net/~armando-migliaccio
https://launchpad.net/~mestery
https://bugs.launchpad.net/neutron/+bug/1450617
https://bugs.launchpad.net/neutron/+bug/1450617
https://blueprints.launchpad.net/neutron/+spec/neutron-api-extension-for-service-chaining
https://blueprints.launchpad.net/neutron/+spec/common-service-chaining-driver-api
https://wiki.opnfv.org/display/VFG/Openstack+Based+VNF+Forwarding+Graph

CHAPTER

TWO

INSTALL GUIDE

2.1 Installation
If possible, you should rely on packages provided by your Linux and/or OpenStack distribution:

• For Fedora or CentOS, you can install the python-networking-sfc RPM package provided by
the RDO project.

If you use pip, follow these steps to install networking-sfc:

• identify the version of the networking-sfc package that matches your OpenStack version:

– 2023.1 Antelope: latest 16.0.x version

– Zed: latest 15.0.x version

– Yoga: latest 14.0.x version

• indicate pip to (a) install precisely this version and (b) take into account OpenStack upper con-
straints on package versions for dependencies (example for Antelope):

pip install -c https://opendev.org/openstack/requirements/raw/branch/
↪→stable/2023.1/upper-constraints.txt networking-sfc==16.0.0

2.2 Configuration

2.2.1 Controller nodes
After installing the package, enable the service plugins in neutron-server by adding them in neutron.
conf (typically found in /etc/neutron/):

[DEFAULT]
service_plugins = flow_classifier,sfc

In the same configuration file, specify the driver to use in the plugins. Here we use the OVS driver:

[sfc]
drivers = ovs

[flowclassifier]
drivers = ovs

After that, restart the neutron-server. In devstack, run:

3

https://opendev.org/openstack/releases/src/branch/master/deliverables

Networking SFC Documentation, Release 19.1.0.dev11

systemctl restart devstack@q-svc

In a similar way with systemd setups, you can run:

systemctl restart neutron-server

2.2.2 Compute nodes
After installing the package, enable the networking-sfc extension in the Open vSwitch agent. The con-
figuration file name can change, the default one is /etc/neutron/plugins/ml2/ml2_conf.ini. Add
the sfc extension:

[agent]
extensions = sfc

And restart the neutron-openvswitch-agent process. In devstack, run:

systemctl restart devstack@q-agt

And with systemd setups you can run:

systemctl restart neutron-openvswitch-agent

2.2.3 Database setup
The database is the standard Neutron database with a few more tables, which can be configured with
neutron-db-manage command-line tool:

neutron-db-manage --subproject networking-sfc upgrade head

2.2. Configuration 4

CHAPTER

THREE

USING THE SERVICE FUNCTION CHAINING

3.1 Usage
To use networking-sfc in a project:

import networking_sfc

3.2 Command extension
Networking-sfc uses python-neutronclients existing command extension framework for adding required
command lines for realizing service function chaining functionality. Refer to Python-neutronclient com-
mand extension for further details.

3.2.1 List of New Neutron CLI Commands:
Below listed command lines are introduced for realizing service function chaining.

flow-classifier-create Create a flow-classifier.
flow-classifier-delete Delete a given flow-classifier.
flow-classifier-list List flow-classifiers that belong to a given tenant.
flow-classifier-show Show information of a given flow-classifier.
flow-classifier-update Update flow-classifier information.

port-pair-create Create a port-pair.
port-pair-delete Delete a given port-pair.
port-pair-list List port-pairs that belongs to a given tenant.
port-pair-show Show information of a given port-pair.
port-pair-update Update port-pair's information.

port-pair-group-create Create a port-pair-group.
port-pair-group-delete Delete a given port-pair-group.
port-pair-group-list List port-pair-groups that belongs to a given tenant.
port-pair-group-show Show information of a given port-pair-group.
port-pair-group-update Update port-pair-group's information.

port-chain-create Create a port-chain.
port-chain-delete Delete a given port-chain.
port-chain-list List port-chains that belong to a given tenant.
port-chain-show Show information of a given port-chain.
port-chain-update Update port-chain's information.

5

https://docs.openstack.org/python-neutronclient/latest/contributor/client_command_extensions.html
https://docs.openstack.org/python-neutronclient/latest/contributor/client_command_extensions.html

CHAPTER

FOUR

CONFIGURATION GUIDE

4.1 Configuration
This section provides a list of all possible options for each configuration file.

networking-sfc uses the following configuration file.

4.1.1 networking-sfc.conf

flowclassifier

drivers

Type
list

Default
['dummy']

An ordered list of flow classifier drivers entrypoints to be loaded from the network-
ing_sfc.flowclassifier.drivers namespace.

quotas

quota_flow_classifier

Type
integer

Default
100

Maximum number of Flow Classifiers per tenant. A negative value means unlimited.

quota_port_chain

Type
integer

Default
10

Maximum number of port chains per tenant. A negative value means unlimited.

6

Networking SFC Documentation, Release 19.1.0.dev11

quota_port_pair_group

Type
integer

Default
10

maximum number of port pair group per tenant. a negative value means unlimited.

quota_port_pair

Type
integer

Default
100

maximum number of port pair per tenant. a negative value means unlimited.

quota_service_graphs

Type
integer

Default
10

maximum number of Service Graphs per project. a negative value means unlimited.

sfc

drivers

Type
list

Default
['dummy']

An ordered list of service chain drivers entrypoints to be loaded from the network-
ing_sfc.sfc.drivers namespace.

The following is a sample configuration file for networking-sfc. It is generated from code and reflect the
current state of code in the networking-sfc repository.

4.1.2 Sample networking-sfc.conf
This sample configuration can also be viewed in the raw format.

[DEFAULT]

[flowclassifier]

#
From networking-sfc
#

(continues on next page)

4.1. Configuration 7

../../_static/config_samples/networking-sfc.conf.sample

Networking SFC Documentation, Release 19.1.0.dev11

(continued from previous page)

An ordered list of flow classifier drivers entrypoints to be loaded from the
networking_sfc.flowclassifier.drivers namespace. (list value)
#drivers = dummy

[quotas]

#
From networking-sfc.quotas
#

Maximum number of Flow Classifiers per tenant. A negative value means
unlimited. (integer value)
#quota_flow_classifier = 100

Maximum number of port chains per tenant. A negative value means unlimited.
(integer value)
#quota_port_chain = 10

maximum number of port pair group per tenant. a negative value means
unlimited. (integer value)
#quota_port_pair_group = 10

maximum number of port pair per tenant. a negative value means unlimited.
(integer value)
#quota_port_pair = 100

maximum number of Service Graphs per project. a negative value means
unlimited. (integer value)
#quota_service_graphs = 10

[sfc]

#
From networking-sfc
#

An ordered list of service chain drivers entrypoints to be loaded from the
networking_sfc.sfc.drivers namespace. (list value)
#drivers = dummy

4.2 Policy
networking-sfc, like most OpenStack projects, uses a policy language to restrict permissions on REST
API actions.

4.2. Policy 8

Networking SFC Documentation, Release 19.1.0.dev11

4.2.1 networking-sfc policies
The following is an overview of all available policies in networking-sfc. For a sample configuration file,
refer to Sample networking-sfc Policy File.

networking-sfc

create_flow_classifier

Default
rule:regular_user

Operations

• POST /sfc/flow_classifiers

Create a flow classifier

update_flow_classifier

Default
rule:admin_or_owner

Operations

• PUT /sfc/flow_classifiers/{id}

Update a flow classifier

delete_flow_classifier

Default
rule:admin_or_owner

Operations

• DELETE /sfc/flow_classifiers/{id}

Delete a flow classifier

get_flow_classifier

Default
rule:admin_or_owner

Operations

• GET /sfc/flow_classifiers

• GET /sfc/flow_classifiers/{id}

Get flow classifiers

create_port_chain

Default
rule:regular_user

Operations

• POST /sfc/port_chains

Create a port chain

update_port_chain

4.2. Policy 9

Networking SFC Documentation, Release 19.1.0.dev11

Default
rule:admin_or_owner

Operations

• PUT /sfc/port_chains/{id}

Update a port chain

delete_port_chain

Default
rule:admin_or_owner

Operations

• DELETE /sfc/port_chains/{id}

Delete a port chain

get_port_chain

Default
rule:admin_or_owner

Operations

• GET /sfc/port_chains

• GET /sfc/port_chains/{id}

Get port chains

create_port_pair_group

Default
rule:regular_user

Operations

• POST /sfc/port_pair_groups

Create a port pair group

update_port_pair_group

Default
rule:admin_or_owner

Operations

• PUT /sfc/port_pair_groups/{id}

Update a port pair group

delete_port_pair_group

Default
rule:admin_or_owner

Operations

• DELETE /sfc/port_pair_groups/{id}

Delete a port pair group

4.2. Policy 10

Networking SFC Documentation, Release 19.1.0.dev11

get_port_pair_group

Default
rule:admin_or_owner

Operations

• GET /sfc/port_pair_groups

• GET /sfc/port_pair_groups/{id}

Get port pair groups

create_port_pair

Default
rule:regular_user

Operations

• POST /sfc/port_pairs

Create a port pair

update_port_pair

Default
rule:admin_or_owner

Operations

• PUT /sfc/port_pairs/{id}

Update a port pair

delete_port_pair

Default
rule:admin_or_owner

Operations

• DELETE /sfc/port_pairs/{id}

Delete a port pair

get_port_pair

Default
rule:admin_or_owner

Operations

• GET /sfc/port_pairs

• GET /sfc/port_pairs/{id}

Get port pairs

create_service_graph

Default
rule:regular_user

Operations

4.2. Policy 11

Networking SFC Documentation, Release 19.1.0.dev11

• POST /sfc/service_graphs

Create a service graph

update_service_graph

Default
rule:admin_or_owner

Operations

• PUT /sfc/service_graphs/{id}

Update a service graph

delete_service_graph

Default
rule:admin_or_owner

Operations

• DELETE /sfc/service_graphs/{id}

Delete a service graph

get_service_graph

Default
rule:admin_or_owner

Operations

• GET /sfc/service_graphs

• GET /sfc/service_graphs/{id}

Get service graphs

4.2.2 Sample networking-sfc Policy File
The following is a sample networking-sfc policy file for adaptation and use.

The sample policy can also be viewed in file form.

Important

The sample policy file is auto-generated from networking-sfc when this documentation is built. You
must ensure your version of networking-sfc matches the version of this documentation.

Create a flow classifier
POST /sfc/flow_classifiers
#"create_flow_classifier": "rule:regular_user"

Update a flow classifier
PUT /sfc/flow_classifiers/{id}
#"update_flow_classifier": "rule:admin_or_owner"

Delete a flow classifier
(continues on next page)

4.2. Policy 12

Networking SFC Documentation, Release 19.1.0.dev11

(continued from previous page)

DELETE /sfc/flow_classifiers/{id}
#"delete_flow_classifier": "rule:admin_or_owner"

Get flow classifiers
GET /sfc/flow_classifiers
GET /sfc/flow_classifiers/{id}
#"get_flow_classifier": "rule:admin_or_owner"

Create a port chain
POST /sfc/port_chains
#"create_port_chain": "rule:regular_user"

Update a port chain
PUT /sfc/port_chains/{id}
#"update_port_chain": "rule:admin_or_owner"

Delete a port chain
DELETE /sfc/port_chains/{id}
#"delete_port_chain": "rule:admin_or_owner"

Get port chains
GET /sfc/port_chains
GET /sfc/port_chains/{id}
#"get_port_chain": "rule:admin_or_owner"

Create a port pair group
POST /sfc/port_pair_groups
#"create_port_pair_group": "rule:regular_user"

Update a port pair group
PUT /sfc/port_pair_groups/{id}
#"update_port_pair_group": "rule:admin_or_owner"

Delete a port pair group
DELETE /sfc/port_pair_groups/{id}
#"delete_port_pair_group": "rule:admin_or_owner"

Get port pair groups
GET /sfc/port_pair_groups
GET /sfc/port_pair_groups/{id}
#"get_port_pair_group": "rule:admin_or_owner"

Create a port pair
POST /sfc/port_pairs
#"create_port_pair": "rule:regular_user"

Update a port pair
PUT /sfc/port_pairs/{id}
#"update_port_pair": "rule:admin_or_owner"

(continues on next page)

4.2. Policy 13

Networking SFC Documentation, Release 19.1.0.dev11

(continued from previous page)

Delete a port pair
DELETE /sfc/port_pairs/{id}
#"delete_port_pair": "rule:admin_or_owner"

Get port pairs
GET /sfc/port_pairs
GET /sfc/port_pairs/{id}
#"get_port_pair": "rule:admin_or_owner"

Create a service graph
POST /sfc/service_graphs
#"create_service_graph": "rule:regular_user"

Update a service graph
PUT /sfc/service_graphs/{id}
#"update_service_graph": "rule:admin_or_owner"

Delete a service graph
DELETE /sfc/service_graphs/{id}
#"delete_service_graph": "rule:admin_or_owner"

Get service graphs
GET /sfc/service_graphs
GET /sfc/service_graphs/{id}
#"get_service_graph": "rule:admin_or_owner"

4.2. Policy 14

CHAPTER

FIVE

CONTRIBUTOR GUIDE

In the Contributor Guide, you will find information on Networking-SFC lower level programming
APIs. There are sections that cover the core pieces of networking-sfc, including its api, command-lines,
database, system-design, alembic-migration etc. There are also subsections that describe specific plugins
inside networking-sfc. Finally, the developer guide includes information about testing infrastructure.

5.1 Programming HowTos and Tutorials

5.1.1 Contribution
If you would like to contribute to the development of OpenStack, you must follow the steps in this page:
https://docs.openstack.org/infra/manual/developers.html

If you already have a good understanding of how the system works and your OpenStack accounts are
set up, you can skip to the development workflow section of this documentation to learn how changes to
OpenStack should be submitted for review via the Gerrit tool: https://docs.openstack.org/infra/manual/
developers.html#development-workflow

Pull requests submitted through GitHub will be ignored.

Bugs should be filed on Launchpad, not GitHub: https://bugs.launchpad.net/networking-sfc

5.1.2 Alembic-migration
Using alembic-migration, required data modeling for networking-sfc is defined and applied to the
database. Refer to Neutron alembic migration process for further details.

The important operations are listed below.

Checking migration

neutron-db-manage --subproject networking-sfc check_migration
Running branches for networking-sfc ...

start_networking_sfc (branchpoint)
-> 48072cb59133 (contract) (head)
-> 24fc7241aa5 (expand)

OK

15

https://docs.openstack.org/infra/manual/developers.html
https://docs.openstack.org/infra/manual/developers.html#development-workflow
https://docs.openstack.org/infra/manual/developers.html#development-workflow
https://bugs.launchpad.net/networking-sfc
https://docs.openstack.org/neutron/latest/contributor/alembic_migrations.html

Networking SFC Documentation, Release 19.1.0.dev11

Checking branch information

neutron-db-manage --subproject networking-sfc branches
Running branches for networking-sfc ...

start_networking_sfc (branchpoint)
-> 48072cb59133 (contract) (head)
-> 24fc7241aa5 (expand)

OK

Checking migration history

neutron-db-manage --subproject networking-sfc history
Running history for networking-sfc ...

9768e6a66c9 -> 5a475fc853e6 (expand) (head), Defining OVS data-model
24fc7241aa5 -> 9768e6a66c9 (expand), Defining flow-classifier data-model
start_networking_sfc -> 24fc7241aa5 (expand), Defining Port Chain data-model.
start_networking_sfc -> 48072cb59133 (contract) (head), Initial Liberty no-op␣
↪→script.
<base> -> start_networking_sfc (branchpoint), start networking-sfc chain

Applying changes

neutron-db-manage --subproject networking-sfc upgrade head
INFO [alembic.runtime.migration] Context impl MySQLImpl.
INFO [alembic.runtime.migration] Will assume non-transactional DDL.

Running upgrade for networking-sfc ...
INFO [alembic.runtime.migration] Context impl MySQLImpl.
INFO [alembic.runtime.migration] Will assume non-transactional DDL.
INFO [alembic.runtime.migration] Running upgrade -> start_networking_sfc,␣
↪→start networking-sfc chain
INFO [alembic.runtime.migration] Running upgrade start_networking_sfc ->␣
↪→48072cb59133, Initial Liberty no-op script.
INFO [alembic.runtime.migration] Running upgrade start_networking_sfc ->␣
↪→24fc7241aa5, Defining Port Chain data-model.
INFO [alembic.runtime.migration] Running upgrade 24fc7241aa5 -> 9768e6a66c9,␣
↪→Defining flow-classifier data-model
INFO [alembic.runtime.migration] Running upgrade 9768e6a66c9 -> 5a475fc853e6,
↪→ Defining OVS data-model
OK

Checking current version

neutron-db-manage --subproject networking-sfc current
Running current for networking-sfc ...

INFO [alembic.runtime.migration] Context impl MySQLImpl.
INFO [alembic.runtime.migration] Will assume non-transactional DDL.
48072cb59133 (head)
5a475fc853e6 (head)

OK

5.1. Programming HowTos and Tutorials 16

Networking SFC Documentation, Release 19.1.0.dev11

5.2 Networking-SFC Internals

5.2.1 API Model

Problem Description

Currently Neutron does not support service function chaining. To support service function chaining,
Service VMs must be attached at points in the network and then traffic must be steered between these
attachment points. Please refer to Neutron Service Chain blue-print and Bugs [1] [2] related to this
specification for more information.

Proposed Change

All Neutron network services and VMs are connected to a Neutron network via Neutron ports. This
makes it possible to create a traffic steering model for service chaining that uses only Neutron ports. This
traffic steering model has no notion of the actual services attached to these Neutron ports.

The service VM hosting the service functions is instantiated and configured, then VNICs are added to
the VM and then these VNICs are attached to the network by Neutron ports. Once the service function
is attached to Neutron ports, the ports may be included in a port chain to allow the service function to
provide treatment to the users traffic.

A Port Chain (Service Function Path) consists of:

• a set of Neutron ports, to define the sequence of service functions

• a set of flow classifiers, to specify the classified traffic flows to enter the chain

If a service function has a pair of ports, the first port in the port-pair is the ingress port of the service
function, and the second port is the egress port of the service function. If a service function has one
bidirectional port, then both ports in the port-pair have the same value. A Port Chain is a directional
service chain. The first port of the first port-pair is the head of the service chain. The second port of the
last port-pair is the tail of the service chain. A bidirectional service chain would be composed of two
unidirectional Port Chains.

For example, [{p1: p2}, {p3: p4}, {p5: p6}] represents:

+------+ +------+ +------+
| SF1 | | SF2 | | SF3 |
+------+ +------+ +------+
p1| |p2 p3| |p4 p5| |p6
| | | | | |

->---+ +---------+ +----------+ +---->

where p1 is the head of the Port Chain and p6 is the tail of the Port Chain, and SF1 has ports p1 and p2,
SF2 has ports p3 and p4, and SF3 has ports p5 and p6.

In order to create a chain, the user needs to have the actual port objects. The work flow would typically
be:

1. create the ports

2. create the chain

3. boot the vms passing the ports as nics parameters

The sequence of 2. and 3. can be switched.

5.2. Networking-SFC Internals 17

https://blueprints.launchpad.net/neutron/+spec/neutron-api-extension-for-service-chaining
https://bugs.launchpad.net/neutron/+bug/1450617
https://bugs.launchpad.net/neutron/+bug/1450625

Networking SFC Documentation, Release 19.1.0.dev11

A SFs Neutron port may be associated with more than one Port Chain to allow a service function to be
shared by multiple chains.

If there is more than one service function instance of a specific type available to meet the users service
requirement, their Neutron ports are included in the port chain as a sub-list. For example, if {p3, p4},
{p7, p8} are the port-pairs of two FW instances, they both may be included in a port chain for load
distribution as shown below:

[{'p1': 'p2'}, [{'p3': 'p4'},{'p7': 'p8'}], {'p5': 'p6'}]

Flow classifiers are used to select the traffic that can access the chain. Traffic that matches any flow
classifier will be directed to the first port in the chain. The flow classifier will be a generic independent
module and may be used by other projects like FW, QOS, etc.

A flow classifier cannot be part of two different port-chains otherwise ambiguity will arise as to which
chain path that flows packets should go. A check will be made to ensure no ambiguity. But multiple flow
classifiers can be associated with a port chain since multiple different types of flows can request the same
service treatment path.

CLI Commands

Syntax:

openstack sfc port pair create [-h]
[--description <description>]
--ingress <port-id>
--egress <port-id>
[--service-function-parameters <parameter>] PORT-PAIR-NAME

openstack sfc port pair group create [-h]
[--description <description>]
--port-pair <port-pair-id>
[--port-pair-group-parameters <parameter>] PORT-PAIR-GROUP-NAME

openstack sfc flow classifier create [-h]
[--description <description>]
[--protocol <protocol>]
[--ethertype <Ethertype>]
[--source-port <Minimum source protocol port>:<Maximum source␣

↪→protocol port>]
[--destination-port <Minimum destination protocol port>:<Maximum␣

↪→destination protocol port>]
[--source-ip-prefix <Source IP prefix>]
[--destination-ip-prefix <Destination IP prefix>]
[--logical-source-port <Neutron source port>]
[--logical-destination-port <Neutron destination port>]
[--l7-parameters <L7 parameter>] FLOW-CLASSIFIER-NAME

openstack sfc port chain create [-h]
[--description <description>]
--port-pair-group <port-pair-group-id>
[--flow-classifier <classifier-id>]

(continues on next page)

5.2. Networking-SFC Internals 18

Networking SFC Documentation, Release 19.1.0.dev11

(continued from previous page)

[--chain-parameters <chain-parameter>] PORT-CHAIN-NAME

openstack sfc port chain create

The sfc port chain create command returns the ID of the Port Chain.

Each --port-pair-group option specifies a type of SF. If a chain consists of a sequence of different
types of SFs, then the chain will have multiple port-pair-groups. There must be at least one port-pair-
group in the Port Chain.

The -flow-classifier option may be repeated to associate multiple flow classifiers with a port chain,
with each classifier identifying a flow. If the flow-classifier is not specified, then no traffic will be steered
through the chain.

One chain parameter option is currently defined. More parameter options can be added in future exten-
sions to accommodate new requirements. The correlation parameter is used to specify the type of
chain correlation mechanism. This parameter allows different correlation mechanisms to be selected.
The chain correlation concept is equivalent to SFC Encapsulation, as defined in RFC 7665. The default
is mpls, but nsh is also supported.

The sfc port chain create command returns the ID of a Port chain.

A port chain can be created, read, updated and deleted, and when a chain is created/read/updated/deleted,
the options that are involved would be based on the CRUD in the Port Chain resource table below.

openstack sfc port pair group create

Inside each port-pair-group, there could be one or more port-pairs. Multiple port-pairs may be included
in a port-pair-group to allow the specification of a set of functionally equivalent SFs that can be used for
load distribution, i.e., the --port-pair option may be repeated for multiple port-pairs of functionally
equivalent SFs.

The sfc port pair group create command returns the ID of a Port Pair group.

openstack sfc port pair create

A Port Pair represents a service function instance. The ingress port and the egress port of the service
function may be specified. If a service function has one bidirectional port, the ingress port has the same
value as the egress port. The --service-function-parameters option allows the passing of SF
specific parameter information to the data path. These include:

• The correlation parameter is used to specify the type of chain correlation mechanism supported
by a specific SF. This is needed by the data plane switch to determine how to associate a packet
with a chain. This will be set to none for now since there is no correlation mechanism supported by
the SF. In the future, it can be extended to include mpls, nsh, etc.. If this parameter is not specified,
it will default to none.

• The weight parameter is used to specify the weight for each SF for load distribution in a port pair
group. This represents a percentage of the traffic to be sent to each SF.

The sfc port pair create command returns the ID of a Port Pair.

5.2. Networking-SFC Internals 19

Networking SFC Documentation, Release 19.1.0.dev11

openstack sfc flow classifier create

A combination of the source options defines the source of the flow. A combination of the destination
options defines the destination of the flow. The l7_parameter is a place-holder that may be used to support
flow classification using L7 fields, such as URL. If an option is not specified, it will default to wildcard
value except for ethertype which defaults to IPv4, for logical-source-port and logical-destination-port
which defaults to none.

The sfc flow classifier create command returns the ID of a flow classifier.

Data Model Impact

Data model:

+-------+ +----------+ +------------+
| Port |--------| Port Pair|--------| Port Pairs |
| Chain |* *| Groups | 1 *| |
+-------+ +----------+ +------------+

|1
|
|*

+--------------+
| Flow |
| Classifiers |
+--------------+

New objects:

Port Chain

• id - Port chain ID.

• project_id - Tenant ID.

• name - Readable name.

• description - Readable description.

• port_pair_groups - List of port-pair-group IDs.

• flow_classifiers - List of flow-classifier IDs.

• chain_parameters - Dict. of chain parameters.

• chain_id - Data-plane chain path ID.

Port Pair Group

• id - Port pair group ID.

• project_id - Tenant ID.

• name - Readable name.

• description - Readable description.

• port_pairs - List of service function (Neutron) port-pairs.

• port_pair_group_parameters - Dict. of port pair group parameters.

Port Pair

5.2. Networking-SFC Internals 20

Networking SFC Documentation, Release 19.1.0.dev11

• id - Port pair ID.

• project_id - Tenant ID.

• name - Readable name.

• description - Readable description.

• ingress - Ingress port.

• egress - Egress port.

• service_function_parameters - Dict. of service function parameters

Flow Classifier

• id - Flow classifier ID.

• project_id - Tenant ID.

• name - Readable name.

• description - Readable description.

• ethertype - Ethertype (IPv4/IPv6).

• protocol - IP protocol.

• source_port_range_min - Minimum source protocol port.

• source_port_range_max - Maximum source protocol port.

• destination_port_range_min - Minimum destination protocol port.

• destination_port_range_max - Maximum destination protocol port.

• source_ip_prefix - Source IP address or prefix.

• destination_ip_prefix - Destination IP address or prefix.

• logical_source_port - Neutron source port.

• logical_destination_port - Neutron destination port.

• l7_parameters - Dictionary of L7 parameters.

REST API

Port Chain Operations:

Operation URL Description
POST /sfc/port_chains Create a Port Chain
PUT /sfc/port_chains/{chain_id} Update a specific Port Chain
DELETE /sfc/port_chains/{chain_id} Delete a specific Port Chain
GET /sfc/port_chains List all Port Chains for specified tenant
GET /sfc/port_chains/{chain_id} Show information for a specific Port Chain

Port Pair Group Operations:

5.2. Networking-SFC Internals 21

Networking SFC Documentation, Release 19.1.0.dev11

Operation URL Description
POST /sfc/port_pair_groups Create a Port Pair Group
PUT /sfc/port_pair_groups/{group_id} Update a specific Port Pair Group
DELETE /sfc/port_pair_groups/{group_id} Delete a specific Port Pair Group
GET /sfc/port_pair_groups List all Port Pair Groups for specified tenant
GET /sfc/port_pair_groups/{group_id} Show information for a specific Port Pair

Port Pair Operations:

Operation URL Description
POST /sfc/port_pairs Create a Port Pair
PUT /sfc/port_pairs/{pair_id} Update a specific Port Pair
DELETE /sfc/port_pairs/{pair_id} Delete a specific Port Pair
GET /sfc/port_pairs List all Port Pairs for specified tenant
GET /sfc/port_pairs/{pair_id} Show information for a specific Port Pair

Flow Classifier Operations:

Operation URL Description
POST /sfc/flow_classifiers Create a Flow-classifier
PUT /sfc/flow_classifiers/{flow_id} Update a specific Flow-classifier
DELETE /sfc/flow_classifiers/{flow_id} Delete a specific Flow-classifier
GET /sfc/flow_classifiers List all Flow-classifiers for specified tenant
GET /sfc/flow_classifiers/{flow_id} Show information for a specific Flow-classifier

REST API Impact

The following new resources will be created as a result of the API handling.

Port Chain resource:

Attribute
Name

Type Ac-
cess

Default
Value

CRUD Description

id uuid RO, all generated R Port Chain ID.
project_id uuid RO, all from auth to-

ken
CR Tenant ID.

name string RW, all CRU Port Chain name.
description string RW, all CRU Port Chain description.
port_pair_groups list(uuid) RW, all N/A CRU List of port-pair-groups.
flow_classifiers list(uuid) RW, all [] CRU List of flow-classifiers.
chain_parameters dict RW, all mpls CR Dict. of parameters: correla-

tion:String
chain_id integer RW, all Any CR Data-plane Chain Path ID.

The data-plane chain path ID is normally generated by the data-plane implementation. However, an
application may optionally generate its own data-plane chain path ID and apply it to the Port Chain using

5.2. Networking-SFC Internals 22

Networking SFC Documentation, Release 19.1.0.dev11

the chain_id attribute.

Port Pair Group resource:

Attribute Name Type Ac-
cess

Default
Value

CRUD Description

id uuid RO,
all

generated R Port pair group ID.

project_id uuid RO,
all

from auth
token

CR Tenant ID.

name string RW,
all

CRU Port pair group name.

description string RW,
all

CRU Port pair group description.

port_pairs list RW,
all

N/A CRU List of port-pairs.

port_pair_group
_parameters

dict RW,
all

CR Dict. of parameters: lb_fields:String ser-
vice_type:String

Port Pair resource:

Attribute Name Type Ac-
cess

Default CRUD Description

id uuid RO,
all

generated R Port pair ID.

project_id uuid RO,
all

from auth
token

CR Tenant ID.

name string RW,
all

CRU Port pair name.

description string RW,
all

CRU Port pair description.

ingress uuid RW,
all

N/A CR Ingress port ID.

egress uuid RW,
all

N/A CR Egress port ID.

ser-
vice_function_parameters

dict RW,
all

None CR Dict. of parameters: correlation:String
weight:Integer

Flow Classifier resource:

5.2. Networking-SFC Internals 23

Networking SFC Documentation, Release 19.1.0.dev11

Attribute Name Type Ac-
cess

Default
Value

CRUD Description

id uuid RO,
all

generated R Flow-classifier ID.

project_id uuid RO,
all

from auth to-
ken

CR Tenant ID.

name string RW,
all

CRU Flow-classifier name.

description string RW,
all

CRU Flow-classifier description.

ethertype string RW,
all

IPv4 CR L2 ethertype. Can be IPv4 or
IPv6 only.

protocol string RW,
all

Any CR IP protocol name.

source_port_range_min inte-
ger

RW,
all

Any CR Minimum source protocol port.

source_port_range_max inte-
ger

RW,
all

Any CR Maximum source protocol port.

destina-
tion_port_range_min

inte-
ger

RW,
all

Any CR Minimum destination protocol
port.

destina-
tion_port_range_max

inte-
ger

RW,
all

Any CR Maximum destination protocol
port.

source_ip_prefix CIDR RW,
all

Any CR Source IPv4 or IPv6 prefix.

destination_ip_prefix CIDR RW,
all

Any CR Destination IPv4 or IPv6 prefix.

logical_source_port uuid RW,
all

None CR Neutron source port.

logi-
cal_destination_port

uuid RW,
all

None CR Neutron destination port.

l7_parameters dict RW,
all

Any CR Dict. of L7 parameters.

Json Port-pair create request example:

{"port_pair": {"name": "SF1",
"project_id": "d382007aa9904763a801f68ecf065cf5",
"description": "Firewall SF instance",
"ingress": "dace4513-24fc-4fae-af4b-321c5e2eb3d1",
"egress": "aef3478a-4a56-2a6e-cd3a-9dee4e2ec345",

}
}

{"port_pair": {"name": "SF2",
"project_id": "d382007aa9904763a801f68ecf065cf5",
"description": "Loadbalancer SF instance",
"ingress": "797f899e-73d4-11e5-b392-2c27d72acb4c",
"egress": "797f899e-73d4-11e5-b392-2c27d72acb4c",

}
(continues on next page)

5.2. Networking-SFC Internals 24

Networking SFC Documentation, Release 19.1.0.dev11

(continued from previous page)

}

Json Port-pair create response example:

{"port_pair": {"name": "SF1",
"project_id": "d382007aa9904763a801f68ecf065cf5",
"description": "Firewall SF instance",
"ingress": "dace4513-24fc-4fae-af4b-321c5e2eb3d1",
"egress": "aef3478a-4a56-2a6e-cd3a-9dee4e2ec345",
"id": "78dcd363-fc23-aeb6-f44b-56dc5e2fb3ae",

}
}

{"port_pair": {"name": "SF2",
"project_id": "d382007aa9904763a801f68ecf065cf5",
"description": "Loadbalancer SF instance",
"ingress": "797f899e-73d4-11e5-b392-2c27d72acb4c",
"egress": "797f899e-73d4-11e5-b392-2c27d72acb4c",
"id": "d11e9190-73d4-11e5-b392-2c27d72acb4c"

}
}

Json Port Pair Group create request example:

{"port_pair_group": {"name": "Firewall_PortPairGroup",
"project_id": "d382007aa9904763a801f68ecf065cf5",
"description": "Grouping Firewall SF instances",
"port_pairs": [

"78dcd363-fc23-aeb6-f44b-56dc5e2fb3ae"
],
"port_pair_group_parameters": [

"lb_fields: ip_src"
]

}
}

{"port_pair_group": {"name": "Loadbalancer_PortPairGroup",
"project_id": "d382007aa9904763a801f68ecf065cf5",
"description": "Grouping Loadbalancer SF instances",
"port_pairs": [

"d11e9190-73d4-11e5-b392-2c27d72acb4c"
]
"port_pair_group_parameters": [

"lb_fields: ip_src"
]

}
}

Json Port Pair Group create response example:

5.2. Networking-SFC Internals 25

Networking SFC Documentation, Release 19.1.0.dev11

{"port_pair_group": {"name": "Firewall_PortPairGroup",
"project_id": "d382007aa9904763a801f68ecf065cf5",
"description": "Grouping Firewall SF instances",
"port_pairs": [

"78dcd363-fc23-aeb6-f44b-56dc5e2fb3ae
],
"port_pair_group_parameters": [

"lb_fields: ip_src"
]
"id": "4512d643-24fc-4fae-af4b-321c5e2eb3d1",

}
}

{"port_pair_group": {"name": "Loadbalancer_PortPairGroup",
"project_id": "d382007aa9904763a801f68ecf065cf5",
"description": "Grouping Loadbalancer SF instances",
"port_pairs": [

"d11e9190-73d4-11e5-b392-2c27d72acb4c"
],
"port_pair_group_parameters": [

"lb_fields: ip_src"
]
"id": "4a634d49-76dc-4fae-af4b-321c5e23d651",

}
}

Json Flow Classifier create request example:

{"flow_classifier": {"name": "FC1",
"project_id": "1814726e2d22407b8ca76db5e567dcf1",
"description": "Flow rule for classifying TCP traffic",
"protocol": "TCP",
"source_port_range_min": 22, "source_port_range_max": 4000,
"destination_port_range_min": 80, "destination_port_range_max": 80,
"source_ip_prefix": null, "destination_ip_prefix": "22.12.34.45"

}
}

{"flow_classifier": {"name": "FC2",
"project_id": "1814726e2d22407b8ca76db5e567dcf1",
"description": "Flow rule for classifying UDP traffic",
"protocol": "UDP",
"source_port_range_min": 22, "source_port_range_max": 22,
"destination_port_range_min": 80, "destination_port_range_max": 80,
"source_ip_prefix": null, "destination_ip_prefix": "22.12.34.45"

}
}

Json Flow Classifier create response example:

5.2. Networking-SFC Internals 26

Networking SFC Documentation, Release 19.1.0.dev11

{"flow_classifier": {"name": "FC1",
"project_id": "1814726e2d22407b8ca76db5e567dcf1",
"description": "Flow rule for classifying TCP traffic",
"protocol": "TCP",
"source_port_range_min": 22, "source_port_range_max": 4000,
"destination_port_range_min": 80, "destination_port_range_max": 80,
"source_ip_prefix": null , "destination_ip_prefix": "22.12.34.45",
"id": "4a334cd4-fe9c-4fae-af4b-321c5e2eb051"

}
}

{"flow_classifier": {"name": "FC2",
"project_id": "1814726e2d22407b8ca76db5e567dcf1",
"description": "Flow rule for classifying UDP traffic",
"protocol": "UDP",
"source_port_range_min": 22, "source_port_range_max": 22,
"destination_port_range_min": 80, "destination_port_range_max": 80,
"source_ip_prefix": null , "destination_ip_prefix": "22.12.34.45",
"id": "105a4b0a-73d6-11e5-b392-2c27d72acb4c"

}
}

Json Port Chain create request example:

{"port_chain": {"name": "PC1",
"project_id": "d382007aa9904763a801f68ecf065cf5",
"description": "Steering TCP and UDP traffic first to Firewall and␣

↪→then to Loadbalancer",
"flow_classifiers": [

"4a334cd4-fe9c-4fae-af4b-321c5e2eb051",
"105a4b0a-73d6-11e5-b392-2c27d72acb4c"

],
"port_pair_groups": [

"4512d643-24fc-4fae-af4b-321c5e2eb3d1",
"4a634d49-76dc-4fae-af4b-321c5e23d651"

],
"chain_id": "10034"

}
}

Json Port Chain create response example:

{"port_chain": {"name": "PC1",
"project_id": "d382007aa9904763a801f68ecf065cf5",
"description": "Steering TCP and UDP traffic first to Firewall and␣

↪→then to Loadbalancer",
"flow_classifiers": [

"4a334cd4-fe9c-4fae-af4b-321c5e2eb051",
"105a4b0a-73d6-11e5-b392-2c27d72acb4c"

],
(continues on next page)

5.2. Networking-SFC Internals 27

Networking SFC Documentation, Release 19.1.0.dev11

(continued from previous page)

"port_pair_groups": [
"4512d643-24fc-4fae-af4b-321c5e2eb3d1",
"4a634d49-76dc-4fae-af4b-321c5e23d651"

],
"chain_id": "10034",
"id": "1278dcd4-459f-62ed-754b-87fc5e4a6751"

}
}

Implementation

Assignee(s)

Authors of the Specification and Primary contributors:

• Cathy Zhang (cathy.h.zhang@huawei.com)

• Louis Fourie (louis.fourie@huawei.com)

Other contributors:

• Vikram Choudhary (vikram.choudhary@huawei.com)

• Swaminathan Vasudevan (swaminathan.vasudevan@hp.com)

• Yuji Azama (yuj-azama@rc.jp.nec.com)

• Mohan Kumar (nmohankumar1011@gmail.com)

• Ramanjaneya (ramanjieee@gmail.com)

• Stephen Wong (stephen.kf.wong@gmail.com)

• Nicolas Bouthors (Nicolas.BOUTHORS@qosmos.com)

• Akihiro Motoki <amotoki@gmail.com>

• Paul Carver <pcarver@att.com>

5.2.2 System Design and Workflow

Problem Description

The Service Chaining API specification proposes a Neutron port based solution for setting up a service
chain. A specification on the system architecture and related API work flow is needed to guide the code
design.

System Architecture

The following figure shows the generic architecture of the Port Chain Plugin. As shown in the diagram,
Port Chain Plugin can be backed by different service providers such as OVS Driver and/or different
types of SDN Controller Drivers. Through the Common Driver API, these different drivers can provide
different implementations for the service chain path rendering. In the first release and deployment based
on this release, we will only deliver codes for the OVS driver. In the next release, we can add codes to
support multiple active drivers:

5.2. Networking-SFC Internals 28

mailto:cathy.h.zhang@huawei.com
mailto:louis.fourie@huawei.com
mailto:vikram.choudhary@huawei.com
mailto:swaminathan.vasudevan@hp.com
mailto:yuj-azama@rc.jp.nec.com
mailto:nmohankumar1011@gmail.com
mailto:ramanjieee@gmail.com
mailto:stephen.kf.wong@gmail.com
mailto:Nicolas.BOUTHORS@qosmos.com
mailto:amotoki@gmail.com
mailto:pcarver@att.com
api.html

Networking SFC Documentation, Release 19.1.0.dev11

Port Chain Plugin With Different Types of Drivers
+---+
| +---+ |
| | Port Chain API | |
| +---+ |
| | Port Chain Database | |
| +---+ |
| | Driver Manager | |
| +---+ |
| | Common Driver API | |
| +---+ |
| | |
| +------------+------------------------+---------------------+ |
| | OVS Driver | Controller Driver1 | Controller Driver2 | |
| +------------+------------------------+---------------------+ |
+-------|------------------|-------------------------|------------+

| | |
+-----------+ +-----------------+ +-----------------+
| OVS Agent | | SDN Controller1 | | SDN Controller2 |
+-----------+ +-----------------+ +-----------------+

The second figure below shows the reference implementation architecture, which is through the OVS
Driver path. The figure shows the components that will be added on the Neutron Server and the compute
nodes to support this Neutron Based SFC functionality. As shown in the diagram, a new Port Chain
Plugin will be added to the Neutron Server. The existing OVS Driver and OVS Agent will be extended
to support the service chain functionality. The OVS Driver will communicate with each OVS Agent to
program its OVS forwarding table properly so that a tenants traffic flow can be steered through the user
defined sequence of Neutron ports to get the desired service treatment from the Service Function running
on the VMs.

A separate OVS Driver and Agent specification will describe in more detail on the design consideration
of the Driver, Agent, and how to set up the classification rules on the OVS to identify different flows and
how to set up the OVS forwarding table. In the reference implementation, the OVS Driver communicates
with OVS Agent through RPC to program the OVS. The communication between the OVS Agent and the
OVS is through OVSDB/Openflow:

Port Chain Plugin With OVS Driver
+-------------------------------+
| +-------------------------+ |
| | Port Chain API | |
| +-------------------------+ |
| | Port Chain Database | |
| +-------------------------+ |
| | Driver Manager | |
| +-------------------------+ |
| | Common Driver API | |
| +-------------------------+ |
| | |
| +-------------------------+ |
| | OVS Driver | |
| +-------------------------+ |

(continues on next page)

5.2. Networking-SFC Internals 29

ovs_driver_and_agent_workflow.html

Networking SFC Documentation, Release 19.1.0.dev11

(continued from previous page)

+-------|----------------|------+
| |

+-----------+ +-----------+
| OVS Agent | | OVS Agent |
+-----------+ +-----------+

Port Chain Creation Workflow

The following example shows how the Neutron CLI commands may be used to create a port-chain con-
sisting of a service VM vm1 and a service VM vm2. The user can be an Admin/Tenant or an Application
built on top.

Traffic flow into the Port Chain will be from source IP address 22.1.20.1 TCP port 23 to destination
IP address 171.4.5.6 TCP port 100. The flow needs to be treated by SF1 running on VM1 identified
by Neutron port pair [p1, p2], SF2 running on VM2 identified by Neutron port pair [p3, p4], and SF3
running on VM3 identified by Neutron port pair [p5, p6].

The net1 should be created before creating Neutron port using existing Neutron API. The design has
no restriction on the type of net1, i.e. it can be any type of Neutron network since SFC traffic will be
tunneled transparently through the type of communication channels of net1. If the transport between
vSwitches is VXLAN, then we will use that VXLAN tunnel (and NOT create another new tunnel) to
transport the SFC traffic through. If the transport between vSwitches is Ethernet, then the SFC traffic
will be transported through Ethernet. In other words, the SFC traffic will be carried over existing trans-
port channel between vSwitches and the external transport channel between vSwitches is set up for net1
through existing Neutron API and ML2. The built-in OVS backend implements tunneling the original
flow packets over VXLAN tunnel. The detailed outer VXLAN tunnel transport format and inner SFC
flow format including how to leverage existing OVSs support for MPLS label to carry chain ID will be
described in the Port Chain OVS Driver and Agent specification. In the future we can add implementation
of tunneling the SFC flow packets over flat L2 Ethernet or L3 IP network or GRE tunnel etc.

Boot service VMs and attach ports

Create Neutron ports on network net1:

openstack port create --network net1 p1
openstack port create --network net1 p2
openstack port create --network net1 p3
openstack port create --network net1 p4
openstack port create --network net1 p5
openstack port create --network net1 p6

Boot VM1 from Nova with ports p1 and p2 using two nic options:

openstack server create --image xxx --nic port-id=p1-id --nic port-id=p2-id␣
↪→vm1 --flavor <image-flavour>

Boot VM2 from Nova with ports p3 and p4 using two nic options:

openstack server create --image yyy --nic port-id=p3-id --nic port-id=p4-id␣
↪→vm2 --flavor <image-flavour>

Boot VM3 from Nova with ports p5 and p6 using two nic options:

5.2. Networking-SFC Internals 30

ovs_driver_and_agent_workflow.html

Networking SFC Documentation, Release 19.1.0.dev11

openstack server create --image zzz --nic port-id=p5-id --nic port-id=p6-id␣
↪→vm3 --flavor <image-flavour>

Alternatively, the user can create each VM with one VNIC and then attach another Neutron port to the
VM:

openstack server create --image xxx --nic port-id=p1-id vm1
openstack server add port vm1 p2-id
openstack server create --image yyy --nic port-id=p3-id vm2
openstack server add port vm2 p4-id
openstack server create --image zzz --nic port-id=p5-id vm3
openstack server add port vm3 p6-id

Once the Neutron ports p1 - p6 exist, the Port Chain is created using the steps described below.

Create Flow Classifier

Create flow-classifier FC1 that matches on source IP address 22.1.20.1 (ingress direction) and destination
IP address 171.4.5.6 (egress direction) with TCP connection, source port 23 and destination port 100:

openstack sfc flow classifier create \
--ethertype IPv4 \
--source-ip-prefix 22.1.20.1/32 \
--destination-ip-prefix 172.4.5.6/32 \
--protocol tcp \
--source-port 23:23 \
--destination-port 100:100 FC1

Note

When using the (default) OVS driver, the --logical-source-port parameter is also required

Create Port Pair

Create port-pair PP1 with ports p1 and p2, port-pair PP2 with ports p3 and p4, port-pair PP3 with ports
P5 and P6:

openstack sfc port pair create \
--ingress=p1 \
--egress=p2 PP1

openstack sfc port pair create \
--ingress=p3 \
--egress=p4 PP2

openstack sfc port pair create \
--ingress=p5 \
--egress=p6 PP3

5.2. Networking-SFC Internals 31

Networking SFC Documentation, Release 19.1.0.dev11

Create Port Group

Create port-pair-group PG1 with port-pair PP1 and PP2, and port-pair-group PG2 with port-pair PP3:

openstack sfc port pair group create \
--port-pair PP1 --port-pair PP2 PG1

openstack sfc port pair group create \
--port-pair PP3 PG2

Create Port Chain

Create port-chain PC1 with port-group PG1 and PG2, and flow classifier FC1:

openstack sfc port chain create \
--port-pair-group PG1 --port-pair-group PG2 --flow-classifier FC1 PC1

This will result in the Port chain driver being invoked to create the Port Chain.

The following diagram illustrates the code execution flow (not the exact codes) for the port chain creation:

PortChainAPIParsingAndValidation: create_port_chain
|
V

PortChainPlugin: create_port_chain
|
V

PortChainDbPlugin: create_port_chain
|
V

DriverManager: create_port_chain
|
V

portchain.drivers.OVSDriver: create_port_chain

The vSwitch Driver needs to figure out which switch VM1 is connecting with and which switch VM2 is
connecting with (for OVS case, the OVS driver has that information given the VMs port info). As to the
connection setup between the two vSwitches, it should be done through existing ML2 plugin mechanism.
The connection between these two vSwitches should already be set up before the user initiates the SFC
request. The service chain flow packets will be tunneled through the connecting type/technology (e.g.
VXLAN or GRE) between the two vSwitches. For our reference code implementation, we will use
VXLAN to show a complete data path setup. Please refer to the OVS Driver and OVS Agent specification
for more detail info.

5.2.3 OVS Driver and Agent Workflow
Blueprint about Common Service chaining driver describes the OVS driver and agent necessity for real-
izing service function chaining.

5.2. Networking-SFC Internals 32

ovs_driver_and_agent_workflow.html
https://blueprints.launchpad.net/neutron/+spec/common-service-chaining-driver-api

Networking SFC Documentation, Release 19.1.0.dev11

Problem Description

The service chain OVS driver and agents are used to configure back-end Openvswitch devices to render
service chaining in the data-plane. The driver manager controls a common service chain API which
provides a consistent interface between the service chain manager and different device drivers.

Proposed Change

Design:

Port Chain Plugin
+-------------------------------+
| +-------------------------+ |
| | Port Chain API | |
| +-------------------------+ |
| | Port Chain Database | |
| +-------------------------+ |
| | Driver Manager | |
| +-------------------------+ |
| | Common Driver API | |
| +-------------------------+ |
| | |
| +-------------------------+ |
| | OVS Driver | |
| +-------------------------+ |
+-------|----------------|------+

|rpc |rpc
+-----------+ +-----------+
| OVS Agent | | OVS Agent |
+-----------+ +-----------+

A OVS service chain driver and agents communicate via rpc.

OVS Driver

The OVS Driver is extended to support service chaining. The driver interfaces with the OVS agents that
reside on each Compute node. The OVS driver is responsible for the following:

• Identify the OVS agents that directly connects to the SF instances and establish communication
with OVS agents on the Compute nodes.

• Send commands to the OVS agents to create bridges, flow tables and flows to steer chain traffic to
the SF instances.

OVS Agent

The OVS agent will manage the OVS using OVSDB commands to create bridges and tables, and install
flows to steer chain traffic to the SF instances.

Existing tunnels between the Tunnel bridges on each Compute node are used to transport Port Chain
traffic between the CNs.

The OVS Agent will create these tunnels to transport SFC traffic between Compute nodes on which there
are SFs. Each tunnel port has the following attributes:

5.2. Networking-SFC Internals 33

Networking SFC Documentation, Release 19.1.0.dev11

• Name

• Local tunnel IP address

• Remote tunnel IP address

• Tunnel Type: VXLAN, GRE

The OVS agent installs additional flows on the Integration bridge and the Tunnel bridge to perform the
following functions:

• Traffic classification. The Integration bridge classifies traffic from a VM port or Service VM port
attached to the Integration bridge. The flow classification is based on the n-tuple rules.

• Service function forwarding. The Tunnel bridge forwards service chain packets to the next-hop
Compute node via tunnels, or to the next Service VM port on that Compute node. Integration
bridge will terminate a Service Function Path.

The OVS Agent will use the MPLS header to transport the chain path identifier and chain hop index. The
MPLS label will transport the chain path identifier, and the MPLS ttl will transport the chain hop index.
The following packet encapsulation will be used:

IPv4 Packet:
+----------+------------------------+-------+
|L2 header | IP + UDP dst port=4790 | VXLAN |
+----------+------------------------+-------+
-----------------------------+---------------+--------------------+
Original Ethernet, ET=0x8847 | MPLS header | Original IP Packet |
-----------------------------+---------------+--------------------+

This is not intended as a general purpose MPLS implementation but rather as a temporary internal
mechanism. It is anticipated that the MPLS label will be replaced with an NSH encapsulation (https:
//datatracker.ietf.org/doc/draft-ietf-sfc-nsh/) once NSH support is available upstream in Open vSwitch.
If the service function does not support the header, then the vSwitch will act as Service Function For-
warder (SFF) Proxy which will strip off the header when forwarding the packet to the SF and re-add the
header when receiving the packet from the SF.

OVS Bridge and Tunnel

Existing tunnels between the Tunnel bridges on each Compute node are used to transport Port Chain
traffic between the CNs:

CN1 CN2
+--------------------------+ +-------------------------+
+-----+ +-----+		+-----+ +-----+								
	VM1		SF1				SF2		SF3	
+-----+ +-----+		+-----+ +-----+								
	. ^	.		^		. ^	.			
+----.-----------.-.--+		+-.---.---------.-.---+								
					
	Integration Bridge.				.Integration Bridge					
					
+-----------.---------+		+-------.--.----------+								
	.		.	.						
+-----------.---------+		+-------.--.----------+								

(continues on next page)

5.2. Networking-SFC Internals 34

https://datatracker.ietf.org/doc/draft-ietf-sfc-nsh/
https://datatracker.ietf.org/doc/draft-ietf-sfc-nsh/

Networking SFC Documentation, Release 19.1.0.dev11

(continued from previous page)

| |>
	Tunnel Bridge	-------------	Tunnel Bridge	
+---------------------+	Tunnel	+---------------------+		
+--------------------=-----+ +-------------------------+

Flow Tables and Flow Rules

The OVS Agent adds additional flows (shown above) on the Integration bridge to support Port Chains:

1. Egress Port Chain flows to steer traffic from SFs attached to the Integration bridge to a Tunnel
bridge to the next-hop Compute node. These flows may be handled using the OpenFlow Group in
the case where there are multiple port-pairs in the next-hop port-pair group.

2. Ingress Port Chain flows on the Tunnel bridge to steer service chain traffic from a tunnel from a
previous Compute node to SFs attached to the Integration bridge.

3. Internal Port Chain flows are used to steer service chain traffic from one SF to another SF on the
same Compute Node.

The Port Chain flow rules have the higher priority, and will not impact the existing flow rules on the
Integration bridge. If traffic from SF is not part of a service chain, e.g., DHCP messages, ARP packets
etc., it will match the existing flow rules on the Integration bridge.

The following tables are used to process Port Chain traffic:

• Local Switching Table (Table 0). This existing table has two new flows to handle incoming traffic
from the SF egress port and the tunnel port between Compute nodes.

• Group Table. This new table is used to select multiple paths for load-balancing across multiple
port-pairs in a port-pair group. There are multiple buckets in the group if the next hop is a port-
pair group with multiple port-pairs. The group actions will be to send the packet to next hop SF
instance. If the next hop port-pair is on another Compute node, the action output to the tunnel port
to the next hop Compute node. If the next hop port-pair is on the same Compute node, then the
action will be to resubmit to the TUN_TABLE for local chaining process.

Local Switching Table (Table 0) Flows

Traffic from SF Egress port: classify for chain and direct to group:

priority=10,in_port=SF_EGRESS_port,traffic_match_field,
actions=strip_vlan,set_tunnel:VNI,group:gid.

Traffic from Tunnel port:

priority=10,in_port=TUNNEL_port,
actions=resubmit(,TUN_TABLE[type]).

Group Table Flows

The Group table is used for load distribution to spread the traffic load across a port-pair group of multiple
port-pairs (SFs of the same type). This uses the hashing of several fields in the packet. There are multiple
buckets in the group if the next hop is a port-pair group with multiple port-pairs.

5.2. Networking-SFC Internals 35

Networking SFC Documentation, Release 19.1.0.dev11

The group actions will be to send the packet to next hop SF instances. If the next hop port-pair is on
another Compute node, the action output to the tunnel port to the next hop Compute node. If the next
hop port-pair is on the same Compute node, then the action will be to resubmit to the TUN_TABLE for
local chaining process.

The OVSDB command to create a group of type Select with a hash selection method and two buckets is
shown below. This is existing OVS functionality. The ip_src,nw_proto,tp_src packet fields are used for
the hash:

group_id=gid,type=select,selection_method=hash,fields=ip_src,nw_proto,tp_src
bucket=set_field:10.1.1.3->ip_dst,output:10,
bucket=set_field:10.1.1.4->ip_dst,output:10

Data Model Impact

None

Alternatives

None

Security Impact

None.

Notifications Impact

There will be logging to trouble-shoot and verify correct operation.

Other End User Impact

None.

Performance Impact

It is not expected that these flows will have a significant performance impact.

IPv6 Impact

None.

Other Deployer Impact

None

Developer Impact

None

5.2. Networking-SFC Internals 36

Networking SFC Documentation, Release 19.1.0.dev11

Community Impact

Existing OVS driver and agent functionality will not be affected.

Implementation

Assignee(s)

• Cathy Zhang (cathy.h.zhang@huawei.com)

• Louis Fourie (louis.fourie@huawei.com)

• Stephen Wong (stephen.kf.wong@gmail.com)

Work Items

• Port Chain OVS driver.

• Port Chain OVS agent.

• Unit test.

Dependencies

This design depends upon the proposed Neutron Service Chaining API extensions

Openvswitch.

Testing

Tempest and functional tests will be created.

Documentation Impact

Documented as extension.

User Documentation

Update networking API reference. Update admin guide.

Developer Documentation

None

5.2.4 Networking-sfc / OVN Driver
https://blueprints.launchpad.net/networking-sfc/+spec/networking-sfc-ovn-driver

This specification describes a networking-sfc driver that will interface with a new Logical Port Chain
resource API for the OVN infrastructure. The driver will translate networking-sfc requests into Logical
Port Chain resources in the OVN northbound DB. These Logical Port Chain resources are created in
OVN by updating the appropriate tables in the OVN northbound database (an ovsdb database).

5.2. Networking-SFC Internals 37

mailto:cathy.h.zhang@huawei.com
mailto:louis.fourie@huawei.com
mailto:stephen.kf.wong@gmail.com
https://blueprints.launchpad.net/neutron/+spec/neutron-api-extension-for-service-chaining
https://blueprints.launchpad.net/networking-sfc/+spec/networking-sfc-ovn-driver
http://openvswitch.org/support/dist-docs-2.5/ovn-architecture.7.html

Networking SFC Documentation, Release 19.1.0.dev11

Problem Description

networking-sfc allows various drivers to be used. Currently, drivers exist for OVS, ONOS and ODL
infrastructures. Service chaining is being added to OVN and a driver is required to interface between
networking-sfc and the OVN infrastructure.

Proposed Changes

The proposed extensions to the OVN northbound DB schema and API are described briefly here. Refer to
openvswitch documentation for details. In addition the new OVN driver for networking-sfc will map from
networking-sfc requests to Logical Port Chain resources in the OVN northbound DB via the networking-
ovn driver.

The OVN driver for networking-sfc is shown below.

+---+
| +-----------------------+ +----------------------+ |
| | Port Chain API | | Neutron API | |
| +-----------------------+ +----------------------+ |
| | Driver Manager | | ML2 Manager | |
| +-----------------------+ +----------------------+ |
| | Common Driver API | | ML2 Driver API | |
| +-----------------------+ +----------------------+ |
| | | |
| v v |
| +=======================+ +----------------------+ |
| | networking-sfc / |->| networking-ovn | |
| | OVN Driver | | ML2 Driver | |
| +=======================+ +----------------------+ |
| | Neutron Server|
+-----------------------------------|-------------------+

|
+-----------------------------------|-------------------+
| v |
| +-----------------------+ |
| | OVN Northbound DB | |
| +-----------------------+ OVS Server |
+---+

OVN Northbound Port Chain DB

The proposed OVN northbound DB extensions for Logical Port Chains are shown below with three new
resources:

• Logical Port Chain

• Logical Port Pair Group

• Logical Port Pair

action=sfc port-pair-
+---------+ +=========+ groups +===========+
| | | Logical | | Logical |
| ACL |------>| Port |-------->| Port Pair |

(continues on next page)

5.2. Networking-SFC Internals 38

Networking SFC Documentation, Release 19.1.0.dev11

(continued from previous page)

| |1 1| Chain |1 *| Group |
+---------+ +=========+ +===========+

^* port-pairs |1
| |

acls |1 v*
+---------+ports +---------+1 1 +===========+
Logical	------>	Logical	<--------	Logical
Switch	1 *	Switch	inport/	Port Pair
		Port	outport	
+---------+ +---------+ +===========+

The OVN ACL actions are extended to include a SFC action with an external_id to reference the name of
the Logical Port Chain (lchain) with which the ACL is associated. The sfc action means that the packet
is allowed and steered into the port-chain.

Logical Port Chain

A Logical Port Chain can contain one or more Logical Port Pair Groups. The order of Logical Port Pair
Groups in the Logical Port Chain specifies the order of steering packets through the Port Chain from the
outport of a Logical Port Pair in one Logical Port Pair Group to the inport of a Logical Port Pair in the
next Logical Port Pair Group.

Logical Port Pair Group

A Logical Port Pair Group can contain one or more Logical Port Pairs and is used to load balance traffic
across the Service Functions (Logical Port Pairs) in the Logical Port Pair Group. A Logical Port Pair
Group can be a member of multiple Logical Port Chains.

Logical Port Pair

A Logical Port Pair represents the ingress Logical Switch Port and the egress Logical Switch Port of a
Service Function. A Logical Port Pair can be a member of only one Logical Port Pair Group. An OVN
Logical Switch Port can be a member of only one Logical Port Pair.

ACL

The existing OVN ACL action will be extended to add a sfc action with an external_id to reference the
name of the Logical Port Chain with which the ACL is associated.

Networking-sfc / OVN Driver

The networking-sfc / OVN driver maps the Port Chain commands to OVN ovn-nbctl commands.

Port-chain to lport-chain Mapping

A Port-chain is mapped to a single lport-chain.

5.2. Networking-SFC Internals 39

Networking SFC Documentation, Release 19.1.0.dev11

Port-pair-group to lport-pair-group Mapping

A Port-pair-group is mapped to a single lport-pair-group.

Port-pair to lport-pair Mapping

A Port-pair is mapped to a single lport-pair.

Flow-classifier to OVN ACL Mapping

Flow-classifers will be mapped to OVN ACLs as follows. A flow-classifier is mapped to a single OVN
ACL.

When a flow-classifier is created its OVN ACL is created at that time. The OVN ACL is only created
when the flow-classifier is associated with the port-chain: Then the driver does:

acl-add lswitch direction priority match sfc [lchain=<lport-chain>]

When a port-chain is updated to add/remove flow-classifiers then the necessary OVN ACLs are created
and deleted.

If a port-chain that has flow-classifiers associated with it is deleted, then the OVN ACLs associated with
those flow-classifiers are deleted.

Function Mapping

Port Chain Function OVN Command Description
create_port_chain lchain-add, acl-add Use acl-add when a port-chain

is created with flow-classifiers
delete_port_chain lchain-del, acl-del Use acl-del to delete all flow-

classifiers associated with a
port-chain

update_port_chain lchain-set-port- pair-group Use this OVN command when
PPGs are added to or removed
from a port-chain

acl-add, acl-del Use acl-add/del when flow-
classifiers are added or removed
to a port-chain

create_port_pair_group lport-pair-group-add
delete_port_pair_group lport-pair-group-del
update_port_pair_group

lport-pair-group-
set-port-pair

Use this command to add / port-
pairs to a PPG

create_port_pair lport-pair-add
delete_port_pair lport-pair-del
create_flow_classifier No action OVN ACLs are only created

when flow-classifiers are at-
tached to a port-chain

delete_flow_classifier No action

5.2. Networking-SFC Internals 40

Networking SFC Documentation, Release 19.1.0.dev11

Flow-Classifier Mapping

Flow Classifier OVN ACL Field
protocol ip.protocol
ethertype eth.type
source_port_range_min/maxIf protocol = tcp: min < tcp.src < max, if protocol = udp: min < udp.src < max
destina-
tion_port_range_min/max

If protocol = tcp: min < tcp.dst < max, if protocol = udp: min < udp.dst < max

src_ip_prefix If ethertype = IPv4: ip4.src/mask, if ethertype = IPv6: ip6.src/mask
destina-
tion_ip_prefix

If ethertype = IPv4: ip4.dst/mask, if ethertype = IPv6 ip6.dst/mask

logi-
cal_source_port

If the logical-source-port is specified in the classifier then OVN ACL inport=
logical_source_port.id and OVN ACL direction=from-port

logi-
cal_destination_port

A single asymmetric port chain will use only the logical-source-port, and not
the logical-destination-port

A symmetric port chain is defined with a classifier that must have both a logical-source-port and a logical-
destination-port. In this case, symmetric forward and reverse OVN port chains are created. The OVN
ACL for the forward chain uses the logical-source-port, and the OVN ACL for the reverse chain uses the
logical-destination-port.

The OVN ACL for the forward chain has inport=logical-source-port.id and OVN ACL direction=from-
port. The OVN ACL for the reverse chain has inport=logical-destination-port.id and OVN ACL
direction=from-port.

Implementation

Assignee(s)

Authors of the Specification and Primary contributors:

• Cathy Zhang (cathy.h.zhang@huawei.com)

• Louis Fourie (louis.fourie@huawei.com)

• Farhad Sunavala (farhad.sunavala@huawei.com)

• John McDowall (jmcdowall@paloaltonetworks.com)

5.2.5 OVS Driver and Agent for Symmetric Port Chains
Include the URL of your launchpad blueprint:

https://blueprints.launchpad.net/networking-sfc/+spec/symmetric-port-chain-ovs-agent

This specification describes OVS driver and agent enhancements to support symmetric Port Chains.

Problem Description

Work to add the symmetric parameter to the Port Chain API [1] is in progress. This describes the exten-
sions to the networking-sfc OVS driver and agent to support symmetric Port Chain paths.

5.2. Networking-SFC Internals 41

mailto:cathy.h.zhang@huawei.com
mailto:louis.fourie@huawei.com
mailto:farhad.sunavala@huawei.com
mailto:jmcdowall@paloaltonetworks.com
https://blueprints.launchpad.net/networking-sfc/+spec/symmetric-port-chain-ovs-agent

Networking SFC Documentation, Release 19.1.0.dev11

Proposed Changes

Two port chain paths are created for a symmetric Port Chain: one path for the forward direction and one
for the reverse direction. The SFs in the reverse path (from destination to source) are traversed in reverse
order to the SFs in the forward path (from source to destination).

Forward path: SF1 SFn

Reverse path: SFn SF1

A symmetric Port Chain is defined with the symmetric attribute. Both the source and destination Logical
Ports must be defined for a symmetric Port Chain. If a Port Chain terminates externally via a vrouter the
vrouter port attached to the local subnet is used as the destination Logical Port. When a symmetric Port
Chain is deleted both the forward and reverse paths are deleted.

The steering of chain traffic in the data-plane ensures symmetry:

• The source Logical Port in the flow-classifier is used to install OVS rules to match traffic for the
forward path. The destination Logical Port in the flow-classifier is used to install OVS rules to
match traffic for the reverse path.

• Rules must be installed so that the SFs in the reverse path are traversed in reverse order to that of
the forward path.

• Each Port Pair Group must have a Load Balancer pair: one for the forward direction and the other
for the reverse direction. In addition, to ensure that traffic in the forward and reverse directions is
delivered to the same SF in a Port Pair Group, these LB pairs must use symmetric hash functions.

For symmetric hashing, the source and destination fields from packet header used in the hash function
of the reverse LB must be the reverse of the packet header fields used in the hash function of the forward
LB. If a source field, such as the source IP address, is used as a hash field in the forward direction, the
corresponding destination field, the destination IP address, must be used as the hash field in the reverse
direction.

The example below shows a symmetric Port Chain that has a forward path and a symmetric reverse path.
The Port Chain transits Port Pair Group 1 and Port Pair Group 2. PPG1 consists of service functions
SF1a - SF1c, and PPG2 has service functions SF2a - SF2d.

Classification rule CLf matches traffic from the source Logical Port and steers it to the forward path.
Classification rule CLr matches traffic from the destination Logical Port and steers it to the reverse path.

Port Pair Group 1 has a pair of Load Balancers, LB1f to load balance traffic in the forward direction, and
LB1r to load balance traffic in the reverse direction. Port Pair Group 2 also has a pair of Load Balancers,
LB2f and LB2r.

LB1f hashes a certain forward traffic flow to SF1c, and LB1r, using symmetric hashing, hashes the reverse
traffic for the same flow to the same SF, SF1c. Similarly, LB2f hashes that forward traffic flow to SF2a,
and LB2r hashes the reverse traffic for the same flow to SF2a.

Port Pair Port Pair
Group 1 Group 2

Reverse path
................... +----+ +----+ Forward path
. . |SF1a| ----->|SF2a|-----------------------
v . | | | +----| |<.... |

+---+ +---+----+ . +----+|.|LB1r+----+ . |
|VM1|->|CLf|LB1f|-- . |SF1b| . | +----|SF2b| . v

(continues on next page)

5.2. Networking-SFC Internals 42

Networking SFC Documentation, Release 19.1.0.dev11

(continued from previous page)

+---+ +---+----+ | . | | . | | | . +----+---+ +---+
| . +----+ . | +----||LB2r|CLr|<..|VM2|
| ..|SF1c|<... | |SF2c| +----+---+ +---+
-->| |----+ | | |

+----|LB2f|-- +----+
+----+ |SF2d|

| |
+----+

The Load Balancers of the LB pairs may reside on different Compute Nodes. For example, LB1f may be
hosted on one Compute Node and LB1r on another Compute Node.

Alternatives

None

Data model impact

None

REST API impact

None

Security impact

None

Notifications impact

None

Other end user impact

None

Performance Impact

None

Other deployer impact

None.

Developer impact

None.

5.2. Networking-SFC Internals 43

Networking SFC Documentation, Release 19.1.0.dev11

Implementation

Assignee(s)

• Cathy Zhang (cathy.h.zhang@huawei.com)

• Louis Fourie (louis.fourie@huawei.com)

• Farhad Sunavala (farhad.sunavala@huawei.com)

Work Items

1. Extend networking-sfc OVS driver to support symmetric port chains.

2. Add unit tests.

3. Add tempest tests.

4. Update documentation.

Dependencies

None

Testing

Unit tests and function tests will be added.

Documentation Impact

None

References

[1] https://review.openstack.org/#/c/308274/

5.2.6 Service Function Tap for Port Chains
Include the URL of your launchpad blueprint:

https://blueprints.launchpad.net/networking-sfc/+spec/sfc-tap-port-pair

This specification describes the support for passive Service Functions in SFC Port Chains.

Problem Description

There are some Service Functions (SF) that operate in a passive mode and only receive packets on the
ingress port but do not send packets on an egress port. An example of this is a Service Function that has
an Intrusion Detection Service (IDS). In order to include such a SF in a port chain, the packets must be
delivered to this SF and also forwarded on to the next downstream SF in the port chain.

Proposed Changes

The Port Pair Group port-pair-group-parameter attribute allows service specific configuration to be ap-
plied to all Service Functions (Port Pairs) in a Port Pair Group.

The port-pair-group-parameter will be enhanced to add a tap-enabled field. The tap-enabled field will
apply to all Service Functions in the Port Pair Group. This field is set to true to indicate that the data-plane
switch behavior will be to send the packets to the ingress port of the SF and also forward these packets to

5.2. Networking-SFC Internals 44

mailto:cathy.h.zhang@huawei.com
mailto:louis.fourie@huawei.com
mailto:farhad.sunavala@huawei.com
https://review.openstack.org/#/c/308274/
https://blueprints.launchpad.net/networking-sfc/+spec/sfc-tap-port-pair

Networking SFC Documentation, Release 19.1.0.dev11

the next hop SF. Each Port Pair in the Port Pair Group will act as a tap by passing packets to the passive
SF and also forwarding these packets to the next downstream SF. This Port Pair will only send packets
to the ingress port of the SF and not receive any packets from the egress port of the SF.

If tap-enabled is set to false or is not present then default behavior will occur. The tap may be applied at
any hop (Port Pair Group) in a Port Chain. Every hop in a Port Chain may be configured as a tap.

OVS Driver Implementation

If a SF is configured as a tap the OVS Integration bridge will add a tap to replicate packets received from
upstream SFs. One copy is sent to the ingress port (P1) of the passive Service Function (SF 1 on VM1).
The other copy is sent to the ingress port (P2) of the next downstream Service Function (SF 2 on VM2).

Compute Node
+--+
| VM1 VM2 |
| +--------------------+ +--------------------+ |
| | Service Function 1 | | Service Function 2 | |
| | (Passive) | | | |
| +--------------------+ +--------------------+ |
P1	^ P2	^ P3	.
	.	.	.
	.	.	.
+----------.-------------------.--------.----+			
	Tap. . .		
	...>....x.........>.......... ...>		
	OVS Integration		
	Bridge		
+--+			
+--+

The tap will work regardless of whether the next hop SF is hosted on the same Compute node as the tap
Port Pair as shown above or on another Compute node as shown below.

Compute Node 1 Compute Node 2
+-------------------------+ +-------------------------+
VM1		VM2				
+--------------------+		+--------------------+				
	Service Function 1				Service Function 2	
	(Passive)					
+--------------------+		+--------------------+				
P1	^		P2	^ P3	.	
	.			.	.	
	.			.	.	
+----------.---------+		+------.--------.----+				
	Tap.				. .	
	...>....x........			>	
	.				.	
	OVS Integration .				. OVS Integration	
	Bridge .				. Bridge	

(continues on next page)

5.2. Networking-SFC Internals 45

Networking SFC Documentation, Release 19.1.0.dev11

(continued from previous page)

| +------------------.-+ | | +-.------------------+ |
| . | | . |
+---------------------.---+ +---.---------------------+

.............

Workflow & OVS working details for Tap SF

Tap SFs are deployed to monitor/analyze traffic of a network segment. These SFs receive copy of the
packet coming out from egress port of default SFs or any logical ports (source/destination) of a service
chain.

Steps for Tap Port Pair and Port Pair Group creation:

1. Create Port
openstack sfc port create name p1 net1

2. Create Port Pair
openstack sfc port pair create tap_pp ingress p1 egress p1

3. Create Port Pair Group
openstack sfc port pair group create tap_ppg port-pair tap_pp tap-enabled=True

Apart from sending packet to next-hop SF, the egress port-chain flow in Local Switching Table sends a
copy of packet to TAP_CLASSIFIER_TABLE using RESUBMIT action, which does further processing
on the Tap destined packet.

Following tables are introduced to process Tap destined traffic:

1. TAP_CLASSIFIER_TABLE (Table 7) - This table classifies traffic based on source mac of SF egress
port or any logical port and the IP header (MPLS or IP). VLAN tagging and MPLS encapsulation is done
on the packet to send to Tap SF. Based on the location of Tap SF, if on same compute node, action is to
resubmit to INGRESS_TABLE. If located on another compute node, action is to output packet to tunnel
patch port.

2. TAP_TUNNEL_OUTPUT_TABLE (Table 25) - This table belongs to tunnel bridge or br-tun. This
table contains the flows which floods Tap SF destined packets to the tunnel ports.

Alternatives

None

Data model impact

Add tap-enabled to the Port Pair Group parameter. The tap-enabled field is set to true to enable the tap
feature. The tap-enabled field is set to false to disable the tap feature.

REST API impact

Add tap-enabled: true to the port-pair-group-parameter.

5.2. Networking-SFC Internals 46

Networking SFC Documentation, Release 19.1.0.dev11

Security impact

None

Notifications impact

None

Other end user impact

None

Performance Impact

None

Other deployer impact

None.

Developer impact

None.

Implementation

Assignee(s)

• Cathy Zhang (cathy.h.zhang@huawei.com)

• Louis Fourie (louis.fourie@huawei.com)

• Farhad Sunavala (farhad.sunavala@huawei.com)

• Vikash Kumar (vikash.kumar@oneconvergence.com)

Work Items

1. Extend API port-pair-group-parameter to support tap-enabled field.

2. Extend networking-sfc OVS driver to support tap-enabled field.

3. Add unit and functional tests.

4. Update documentation.

Dependencies

None

Testing

Unit tests and functional tests will be added.

5.2. Networking-SFC Internals 47

mailto:cathy.h.zhang@huawei.com
mailto:louis.fourie@huawei.com
mailto:farhad.sunavala@huawei.com
mailto:vikash.kumar@oneconvergence.com

Networking SFC Documentation, Release 19.1.0.dev11

Documentation Impact

None

References

None

5.2.7 Non-Transparent Service Functions for Port Chains
URL of the launchpad blueprint:

https://blueprints.launchpad.net/networking-sfc/+spec/sfc-non-transparent-sf

This specification describes the support for non-transparent Service Functions in SFC Port Chains.

Problem Description

Service Functions (SF) that do not support SFC encapsulation, such as NSH, require an SFC Proxy to
re-classify a packet that is returned from the egress port of the SF. The SFC Proxy uses the N-tuple values
of a packet header to re-classify a packet. The packet N-tuple consists of the following:

• Source IP address

• Destination IP address

• Source TCP/UDP port

• Destination TCP/UDP port

• IP Protocol

However, if the SF is non-transparent (it modifies a part of the N-tuple of a packet), then re-classification
cannot be done correctly. See https://datatracker.ietf.org/doc/draft-song-sfc-legacy-sf-mapping/

Proposed Changes

This is an enhancement to the SFC proxy so that it is configured with the N-tuple translation rules of the
SF. In other words how the SF translates the ingress Port N-tuple to the egress Port N-tuple of a packet:

SF Ingress port N-tuple => SF Egress port N-Tuple

The SFC Proxy can then adjust for the SF translation rules by using this N-tuple mapping. The SFC Proxy
applies the N-tuple mapping to packets received from the egress port of the SF before the re-classification
function.

The Port Pair Group port-pair-group-parameter attribute allows service specific configuration to be ap-
plied to all Service Functions (Port Pairs) in a Port Pair Group.

The port-pair-group-parameter will be enhanced to add an n-tuple-map. This is an array of ingress-
egress N-tuple value pairs: {ingress-N-tuple-value, egress-N-tuple-value} that are the same as the actual
translation done by the SF itself.

An example of the CLI format is shown below:

n_tuple_map=source_ip_prefix_ingress=10.0.0.9&
source_ip_prefix_egress=10.0.0.12& protocol_ingress=icmp& protocol_egress=tcp

The SFC Proxy in the OVS Integration Bridge will apply the n-tuple-map to the N-tuple of packets
received from the egress port of the SF before they are passed to the re-classification function so that the
re-classification rules are matched correctly.

5.2. Networking-SFC Internals 48

https://blueprints.launchpad.net/networking-sfc/+spec/sfc-non-transparent-sf
https://datatracker.ietf.org/doc/draft-song-sfc-legacy-sf-mapping/

Networking SFC Documentation, Release 19.1.0.dev11

Compute Node
+--------------------------------+
| VM |
| +--------------------------+ |
| | Non-transparent | |
| | Service Function | |
| +--------------------------+ |
| P1 |^ P2 |. |
| |. |. |
| +------.------------.------+ |
	. SFC Proxy v			
	. +-----------+			
	.	N-tuple Map		
	. +-----------+			
	.	Re-classify		
	. +-----------+			
	. .			
	.>.... ...>			
	OVS Integration			
	Bridge			
+--------------------------+				
+--------------------------------+

Alternatives

None

Data model impact

Add n-tuple-map to the Port Pair Group port-pair-group-parameter attribute.

REST API impact

Add n-tuple-map: N-TUPLE-MAP to the port-pair-group-parameter.

Security impact

None

Notifications impact

None

Other end user impact

None

5.2. Networking-SFC Internals 49

Networking SFC Documentation, Release 19.1.0.dev11

Performance Impact

None

Other deployer impact

None.

Developer impact

None.

Implementation

Assignee(s)

• Cathy Zhang (cathy.h.zhang@huawei.com)

• Louis Fourie (louis.fourie@huawei.com)

Work Items

1. Extend API port-pair-group-parameter to support n-tuple-map attribute.

2. Extend networking-sfc OVS driver to support n-tuple-map attribute.

3. Add unit and functional tests.

4. Update documentation.

Dependencies

None

Testing

Unit tests and functional tests will be added.

Documentation Impact

None

References

None

5.2.8 IETF SFC Encapsulation
This section explains SFC Encapsulation support in networking-sfc.

The link to Launchpad at [4] is an umbrella for SFC Encapsulation work with the following scope:

• MPLS correlation support (labels exposed to SFs)

• Service Graphs allowing port-chains to be linked together

• The IETF SFC Encapsulation protocol, NSH (exposed to SFs), support

• No NSH Metadata support

5.2. Networking-SFC Internals 50

mailto:cathy.h.zhang@huawei.com
mailto:louis.fourie@huawei.com

Networking SFC Documentation, Release 19.1.0.dev11

SFC Encapsulation is an architectural concept from IETF SFC, which states [1]:

The SFC Encapsulation provides, at a minimum, SFP identification, and is used by the SFC-aware func-
tions, such as the SFF and SFC-aware SFs. The SFC encapsulation is not used for network packet
forwarding. In addition to SFP identification, the SFC Encapsulation carries metadata including data-
plane context information.

Metadata is a very important capability of SFC Encapsulation, but its out of scope for this umbrella of
work in networking-sfc.

Correlation is the term used to correlate packets to chains, in essence it is the Service Function Path (SFP)
information that is part of the SFC Encapsulation. Correlation can be MPLS or NSH (SFC Encapsula-
tion).

To clarify, MPLS correlation cannot be strictly called SFC Encapsulation since it doesnt fully encapsulate
the packets, amongst other limitations such as available space to carry metadata [1]. However, since it
can be used for Service Function Path identification, it is a good workaround to exercise the IETF SFC
Encapsulation architectural concept in networking-sfc, when NSH is not desired.

Service Graphs is a concept mentioned in [1] but further defined and refined in [5] that builds on top of
Reclassification and Branching (from [1]). Service Graphs make use of the full encapsulation of frames
the SFC Encapsulation provides, and the Service Function Path information that is carried by it, to create
dependencies between SFPs, making sure that theres no leakage of frames between paths. The figure
below outlines the key elements in a Service Graph:

Branch1 Join1
pc1 --+--> pc2 ------> pc4

| ^
| |
--> pc3 ---

Branch1: pc1 = initial (source)
pc2 = destination
pc3 = destination

Join1: pc2 = source
pc3 = source
pc4 = destination

Since Port Chains resemble Service Function Paths, with the chain_id attribute mapping to a Service
Path Identifier (SPI), they are used as the SFPs for the Service Graph, and consequently Service Graphs in
networking-sfc allow the creation of dependencies between Port Chains (alongside traffic classification
criteria, just like a normal Port Chain, via Flow Classifier).

Terminology

• Branching Point: Or branch point, is a point in a Service Graph that leads to new SFPs.

• Correlation: Related to SFC Encapsulation, but focused on the fact that a Port Chain (an SFP)
will be mapped to a unique identifier (the SPI) and that the hops of that chain will also have a
unique index associated (the SI), with the forwarding of traffic based on those two parameters.

• Destination Chain: A Port Chain that branches from a previous chain (the Source Chain), i.e.
a dependent chain. A Destination Chain may also be a Source Chain. For traffic to be accepted
into a Destination Chain, it has to have come from the Source Chains that the Destination Chain

5.2. Networking-SFC Internals 51

Networking SFC Documentation, Release 19.1.0.dev11

depends on plus the Destination Chains own flow classifier (except logical source ports, which will
be ignored as that would clash with the traffic coming out of respective Source Chains).

• Initial Chain: A Port Chain that is not a Destination Chain, but may be a Source Chain if its
included in a Service Graph. In other words, this chain only matches on a Flow Classifier and takes
into account the Logical Source Port defined by it (unlike Destination Chains).

• Joining Point: A point in a Service Graph that merges multiple incoming branches (Source
Chains) into the same Destination Chain.

• NSP: Network Service Path (same as SPI).

• NSI: Network Service Index (same as SI).

• SFP: Service Function Path.

• SI: Service Index.

• Source Chain: The Port Chain that provides a branching point to Destination Chains. A Source
Chain may also be an Initial Chain or a Destination Chain. Traffic that leaves a Source Chain,
i.e. the egressing traffic from the last SF of the chain (and encapsulated for that particular chain)
will be put into either one or no Destination Chains respective to this Source Chain, depending on
whether the flow classifiers of the Destination Chains successfully match on the egressing traffic
of the Source Chain.

• SPI: Service Path Identifier (numerically identifies an SFP).

Usage

In order to create Port Chains with Port Pairs that make use of the NSH correlation (i.e. the Network
Service Header (NSH) is exposed to the SFs, so no SFC Proxy is logically instantiated by the networking-
sfc backend), the Port Pairs correlation service function parameter can be used, by setting it to nsh
(default is set to None):

service_function_parameters: {correlation: 'nsh'}

Alternatively, the MPLS correlation can be used as a workaround to NSH:

service_function_parameters: {correlation: 'mpls'}

Enabling the MPLS correlation doesnt fully encapsulate frames like NSH would, since the MPLS labels
are inserted between the Ethernet header and the L3 protocol.

By default, port-chains always have their correlation set to mpls:

chain_parameters: {correlation: 'mpls'}

A Port Chain can have Port Pair Groups with MPLS-correlated Port Pairs or Port Pairs with no correlation.
However, each Port Pair Group can only group Port Pairs that share the same correlation type (to process
each hop and expose their feature set in a consistent and predictable way). The SFC OVS driver and agent
are smart enough to only apply SFC Proxies to the hops that require so.

The MPLS correlation is only recommended when using SFC-proxied Port Pair Groups. In order to use
NSH, the Port Chain correlation must be set to nsh (to clarify, SFC Proxies can also be used with NSH
Port Chains, as long as the Port Pairs have no correlation set):

chain_parameters: {correlation: 'nsh'}

To create a Service Graph, first create the set of Port Chains that will compose the Service Graph. Then,
create the Service Graph itself by referencing the Port Chains needed as a dictionary of source to (list
of) destination chains, essentially describing each of the branching points of the chain. The following

5.2. Networking-SFC Internals 52

Networking SFC Documentation, Release 19.1.0.dev11

example, using the OpenStack Client, illustrates this (by creating a graph that starts from an initial chain
pc1 which forks into pc2 and pc3, and then joins back into a single chain pc4 (if thats what the user
intended) using the MPLS correlation (if using NSH, the flows are equivalent but OpenFlow NSH actions
and matches are used instead):

we assume that the Neutron ports p0..p4 are already created and bound
$ openstack sfc port pair create --ingress p1 --egress p1 --service-function-
↪→parameters correlation=mpls pp1
$ openstack sfc port pair create --ingress p2 --egress p2 --service-function-
↪→parameters correlation=mpls pp2
$ openstack sfc port pair create --ingress p3 --egress p3 --service-function-
↪→parameters correlation=mpls pp3
$ openstack sfc port pair create --ingress p4 --egress p4 --service-function-
↪→parameters correlation=mpls pp4
$ openstack sfc port pair group create --port-pair pp1 ppg1
$ openstack sfc port pair group create --port-pair pp2 ppg2
$ openstack sfc port pair group create --port-pair pp3 ppg3
$ openstack sfc port pair group create --port-pair pp4 ppg4
$ openstack sfc flow classifier create --protocol udp --source-port 2001 --
↪→logical-source-port p0 fc1
$ openstack sfc flow classifier create --protocol udp --source-port 2002 --
↪→logical-source-port p0 fc2
$ openstack sfc flow classifier create --protocol udp --source-port 2003 --
↪→logical-source-port p0 fc3
$ openstack sfc flow classifier create --protocol udp --source-port 2004 --
↪→logical-source-port p0 fc4
$ openstack sfc port chain create --port-pair-group ppg1 --flow-classifier --
↪→chain-parameters correlation=mpls fc1 pc1
$ openstack sfc port chain create --port-pair-group ppg2 --flow-classifier --
↪→chain-parameters correlation=mpls fc2 pc2
$ openstack sfc port chain create --port-pair-group ppg3 --flow-classifier --
↪→chain-parameters correlation=mpls fc3 pc3
$ openstack sfc port chain create --port-pair-group ppg4 --flow-classifier --
↪→chain-parameters correlation=mpls fc4 pc4
$ openstack sfc service graph create --branching-point pc1:pc2,pc3 --
↪→branching-point pc2:pc4 --branching-point pc3:pc4 sg1

In the Python language, the dictionary of Port Chains provided above via the OpenStack Client would
look like this:

{
'port_chains': {

'pc1': ['pc2', 'pc3'],
'pc2': ['pc4'],
'pc3': ['pc4']

}
}

Note that, because pc2, pc3 and pc4 depend on other chains, their Flow Classifiers Logical Source Ports
will be ignored.

To clarify what happens under the hood when using the Open vSwitch driver, lets look at the relevant

5.2. Networking-SFC Internals 53

Networking SFC Documentation, Release 19.1.0.dev11

flows that are generated for the above example:

Table 0:

priority=30,udp,tp_src=2001,in_port=10 actions=push_mpls:0x8847,set_field:511-
↪→>mpls_label,set_mpls_ttl(255),group:1
priority=30,udp,tp_src=2002,reg0=0x1fe actions=push_mpls:0x8847,set_field:767-
↪→>mpls_label,set_mpls_ttl(255),group:2
priority=30,udp,tp_src=2003,reg0=0x1fe actions=push_mpls:0x8847,set_
↪→field:1023->mpls_label,set_mpls_ttl(255),group:3
priority=30,udp,tp_src=2004,reg0=0x2fe actions=push_mpls:0x8847,set_
↪→field:1279->mpls_label,set_mpls_ttl(255),group:4
priority=30,udp,tp_src=2004,reg0=0x3fe actions=push_mpls:0x8847,set_
↪→field:1279->mpls_label,set_mpls_ttl(255),group:4
priority=30,mpls,in_port=11,mpls_label=510 actions=load:0x1fe->NXM_NX_REG0[],
↪→pop_mpls:0x0800,resubmit(,0)
priority=30,mpls,in_port=12,mpls_label=766 actions=load:0x2fe->NXM_NX_REG0[],
↪→pop_mpls:0x0800,resubmit(,0)
priority=30,mpls,in_port=13,mpls_label=1022 actions=load:0x3fe->NXM_NX_REG0[],
↪→pop_mpls:0x0800,resubmit(,0)
priority=30,mpls,in_port=14,mpls_label=1278 actions=pop_mpls:0x0800,NORMAL

Table 5: (usual flows for sending to table 10 or across tunnel, without proxying)

Table 10: (usual flows to make traffic ingress into the Service Functions, shown below):

priority=1,mpls,dl_vlan=1,dl_dst=fa:16:3e:97:91:a2,mpls_label=511 actions=pop_
↪→vlan,output:11
priority=1,mpls,dl_vlan=1,dl_dst=fa:16:3e:87:2a:ad,mpls_label=767 actions=pop_
↪→vlan,output:12
priority=1,mpls,dl_vlan=1,dl_dst=fa:16:3e:77:59:f1,mpls_label=1023␣
↪→actions=pop_vlan,output:13
priority=1,mpls,dl_vlan=1,dl_dst=fa:16:3e:34:07:f5,mpls_label=1279␣
↪→actions=pop_vlan,output:14

Groups Table: (usual flows for load-balancing and re-writing the destination MAC addresses)

Considering that the OF port 10 is p0, 11 is p1, and so on with 14 being p4, there are three important
things to notice from the Service Graphs flows above:

• At the end of the Source Chains (pc1, pc2 and pc3), instead of the typical flow (in table 0) that
would remove the MPLS shim (with pop_mpls) and then use the NORMAL action, the chains
SFP information is written to a register (e.g. actions=load:0x1fe->NXM_NX_REG0[]) and the
packet is sent back to the same table to be matched by a Destination Chain.

• At the beginning of the Destination Chains (pc2, pc3 and pc4), instead of the typical flow (in table
0) that would match solely on the Flow Classifier (specifically the ingress OF port that comes
from the Logical Source Port together with the actual traffic classification definition), a specific
SFP information register value will be matched on (e.g. reg0=0x1fe) together with the traffic
classification definition from the Flow Classifier but not OF ingress port will be used (i.e. Logical
Source Port ignored).

• For the case of Joining Points, where a chain is Destination to multiple Source Chains, there will
be one flow matching on the register value per Source Chain, the only difference in the entire flow

5.2. Networking-SFC Internals 54

Networking SFC Documentation, Release 19.1.0.dev11

being the value of that register (reflecting each of the Source Chains SFP infos). Two flows can be
seen above in table 0, matching on traffic meant for pc4.

Implementation

PPG/SF Correlation

At the API side, both MPLS and NSH correlations are defined as possible options (values) to the
correlation key in the service_function_parameters field of the port_pair resource. Further-
more, Port Pair Groups must include Port Pairs of the same correlation type.

The parameter is saved in the database in the same way as any other port-pair parameter, inside the
sfc_service_function_params table (example for NSH):

keyword='correlation'
value='nsh'
pair_id=PORT_PAIR_UUID

The NSH correlation parameter will eventually be fed to the enabled backend, such as Open vSwitch.
Through the OVS SFC driver and agent, the vswitches on the multiple nodes where networking-sfc is
deployed will be configured with the set of flows that allow classification, encapsulation, decapsulation
and forwarding of MPLS tagged or untagged packets. Applying the IETF SFC view to this, Open vSwitch
switches thus implement the logical elements of Classifier, Service Function Forwarder (SFF) and SFC
Proxy (stateless) [1].

In networking-sfc, the OVS driver talks to the agents on the multiple compute nodes by sending flow rule
messages to them across the RPC channels.

In flow rules, correlation parameters of both port-chains and port-pairs are specified using the pc_corr
and pp_corr flow rule keys, respectively. Moreover, a pp_corr key is also specified in each of the hops
of the next_hops flow rule key.

Remember: a port-pair-group contains port-pairs that all share the same correlation type, so the compar-
ison between pc_corr and each of the pp_corr of the next hops will yield the same result.

pc_corr is the correlation mechanism (SFC Encapsulation) to be used for the entire port-chain. The
values may be None, 'mpls', or 'nsh'.

pp_corr is the correlation mechanism supported by an individual SF. The values may be 'None',
'mpls', or 'nsh'.

The backend driver compares pc_corr and pp_corr to determine if SFC Proxy is needed for a SF that
is not capable of processing the SFC Encapsulation mechanism. For example, if pc_corr is 'mpls' and
pp_corr is None, then SFC Proxy is needed.

The following is an example of an sf_node flow rule (taken from one of the SFC OVS agents unit tests):

'nsi': 255,
'ingress': '6331a00d-779b-462b-b0e4-6a65aa3164ef',
'next_hops': [{

'local_endpoint': '10.0.0.1',
'ingress': '8768d2b3-746d-4868-ae0e-e81861c2b4e6',
'weight': 1,
'net_uuid': '8768d2b3-746d-4868-ae0e-e81861c2b4e7',
'network_type': 'vxlan',
'segment_id': 33,

(continues on next page)

5.2. Networking-SFC Internals 55

Networking SFC Documentation, Release 19.1.0.dev11

(continued from previous page)

'gw_mac': '00:01:02:03:06:09',
'cidr': '10.0.0.0/8',
'mac_address': '12:34:56:78:cf:23',
'pp_corr': 'nsh'

}],
'del_fcs': [],
'group_refcnt': 1,
'node_type': 'sf_node',
'egress': '29e38fb2-a643-43b1-baa8-a86596461cd5',
'next_group_id': 1,
'nsp': 256,
'add_fcs': [{

'source_port_range_min': 100,
'destination_ip_prefix': u'10.200.0.0/16',
'protocol': u'tcp',
'l7_parameters': {},
'source_port_range_max': 100,
'source_ip_prefix': '10.100.0.0/16',
'destination_port_range_min': 100,
'ethertype': 'IPv4',
'destination_port_range_max': 100,

}],
'pc_corr': 'nsh',
'pp_corr': 'nsh',
'id': uuidutils.generate_uuid()

It can be seen that 'nsh' appears three times in the flow rule, twice in the root (specifying the correlation
of port-chain and port-pair of the current hop) and once inside the single hop of next_hops, regarding
its port-pair.

The three appearances will dictate how flows (both matches and actions) will be added by the OVS agent.

Lets take a look at the possible scenarios:

Curr Hop
pp_corr

Next Hop
pp_corr

Action

1 NSH/MPLS NSH/MPLS Egress from SF: match on NSH/MPLS to determine next hop
Ingress to next SF: send NSH/MPLS to SF

2 NSH/MPLS None Egress from SF: match on NSH/MPLS to determine next hop
Ingress to next SF: pop NSH/MPLS first

3 None NSH/MPLS Egress from SF: reclassify packet and add new NSH/MPLS Ingress
to next SF: send NSH/MPLS to SF

4 None None Egress from SF: reclassify packet and add new NSH/MPLS Ingress
to next SF: pop NSH/MPLS first

An important point to make is that correlations cannot be mixed, i.e. if the Port Chain uses the MPLS
correlation, then its PPGs cannot include Port Pairs using the NSH correlation, and vice-versa. So, on
the table above, consider either NSH or MPLS for any given row, but not both.

The following further explains each of the possibilities from the table above. To simplify, the NSH

5.2. Networking-SFC Internals 56

Networking SFC Documentation, Release 19.1.0.dev11

correlation is considered (MPLS is equivalent here).

1. pp_corr=nsh and every next_hops pp_corr=nsh

The ingress of this sf_node will not remove the NSH. When egressing from this sf_node, OVS will not
attempt to match on the flow_classifier defined in add_fcs, but rather the expected NSH after the SF is
done processing the packet (the NSI is supposed to be decremented by 1 by the SF). When preparing the
packet to go to the next hop, no attempt at inserting NSH will be done, since the packet already has the
correct labels.

2. pp_corr=nsh and every next_hops pp_corr=None

The ingress of this sf_node will not remove the NSH. When egressing from this sf_node, OVS will not
attempt to match on the flow_classifier defined in add_fcs, but rather the expected NSH after the SF is
done processing the packet (the NSI is supposed to be decremented by 1 by the SF). When preparing the
packet to go to the next hop, no attempt at inserting NSH will be done, since the packet already has the
correct labels. The next hops own flow rule (not the one shown above) will have an action to first remove
the NSH and then forward to the SF.

3. pp_corr=None and every next_hops pp_corr=nsh

The ingress of this sf_node will first remove the NSH and then forward to the SF, as its actions. When
egressing from this sf_node, OVS will match on the flow-classifier defined in add_fcs, effectively im-
plementing an SFC Proxy and running networking-sfcs classic mode. When preparing the packet to go
to the next hop, a new NSH needs to be inserted. This is done on Table 0, the same table where add_fcs
was matched. Right before the packets are submitted to the Groups Table, they receive the expected
NSH for the next hop. The reason why this cant be done on the ACROSS_SUBNET_TABLE like when the
next_hops correlation is set to None, is the fact that the choice of labels would be ambiguous. If multi-
ple port-chains share the same port-pair-group at a given hop, then encapsulating/adding NSH as one of
ACROSS_SUBNET_TABLEs actions means that at least one of port-chains will be fed the wrong label and,
consequently, leak into a different port-chain. This is due to the fact that, in ACROSS_SUBNET_TABLE,
the flow matches only on the destination MAC address of the frame (and that isnt enough to know what
chain the frame is part of). So, again, the encapsulation/adding of NSH will have to be done in Table 0
for this specific scenario where in the current hop the packets dont have labels but on the next hop they
are expected to.

4. pp_corr=None and every next_hops pp_corr=None

This is classic networking-sfc. The ingress of this sf_node will first remove the NSH and then forward
to the SF, as its actions. When egressing from this sf_node, OVS will match on the flow-classifier de-
fined in add_fcs effectively implementing an SFC Proxy and running networking-sfcs classic mode.
When preparing the packet to go to the next hop, a new NSH needs to be inserted, which is done at the
ACROSS_SUBNET_TABLE, after a destination port-pair has been chosen with the help of the Groups Table.

Service Graphs

At the API side, Service Graphs are presented as a specific resource called service_graph. Besides the
attributes id, name, description and project_id, this resource expects to have a dictionary called
port_chains that maps source chains to (lists of) destination chains.

Service Graphs glue existing Port Chains, creating dependencies between them, in effect changing the
criteria to get into each of the chains by not relying solely on the Flow Classifier anymore (except for
the initial chain of the graph). Traffic entering a destination chain of a Service Graph is dependent on its
source chain and its own flow classifiers.

In the database, Service Graphs are stored as 2 tables:

5.2. Networking-SFC Internals 57

Networking SFC Documentation, Release 19.1.0.dev11

• sfc_service_graphs: This table stores the independent data of each of the Service Graph re-
sources, specifically the name, description and project ID.

• sfc_service_graph_chain_associations: This table stores the actual associations between
Service Graphs and Port Chains, stating which ones are source chains and which ones are
destination chains. Besides the service_graph_id field (primary key, and foreign key to
sfc_service_graphs.id), there are the src_chain and the dst_chain fields, each pointing to
an ID of a Port Chain, both being foreign keys to sfc_port_chains.id.

So, to represent the branching points of the example graph provided in the Usage section above, the
following entries would be stored in sfc_service_graph_chain_associations:

service_graph_id src_chain dst_chain
SG1 ID SG1 ID SG1 ID SG1 ID PC1 ID PC1 ID PC2 ID PC3 ID PC2 ID PC3 ID PC4 ID PC4 ID

Some of the validations that occur at the database/plugin level are:

• Port Chains cant be deleted if they are in use by a graph.

• Port Chains cant be updated (to include a different set of Port Pair Groups) if they are in use by a
graph.

• Service Graphs cant have Port Chain loops or circular paths.

• A Port Chain cant be added twice as destination of the same source chain (that would essentially
replicate packets).

• Port Chains cannot be part of more than one graph at any given time.

• Branching points have to support a correlation protocol (MPLS or NSH).

• The correlation protocol has to be the same for every included Port Chain.

• For a given branching point (destination chain), the traffic classification of each branch has to be
different to prevent ambiguity.

At the OVS driver level, all of the logic takes place in the postcommit methods,
create_service_graph_postcommit and delete_service_graph_postcommit. At present
time, the dictionary of Port Chains that a Service Graph references cannot be updated and, as such, the
drivers (not just OVS) dont have to support the update operation.

In essence, the OVS driver will look at the port_chains dictionary of the graph and generate flow rules
for every branching point. Each branching point includes both the last path node (the last sf_node) of
the respective source chain and each first path node (the src_node) of the respective destination chains.
All of these flow rules are meant to replace the flows that the original flow rules (during creation of the
Port Chains themselves) had requested the agent to create.

The flow rules for the source chains will include a special attribute called branch_point, set to the value
of True. This indicates to the agent that this path nodes (expected to be the last sf_node of that chain)
NSP and NSI should be saved so that the destination chains can match on them while doing the normal
traffic classification (via their own Flow Classifiers). Example:

'branch_point': True

The flow rules for the destination chains will include a special attribute called branch_info, a dictionary
with two keys: matches and on_add. Example:

5.2. Networking-SFC Internals 58

Networking SFC Documentation, Release 19.1.0.dev11

'branch_info': {
'matches': set([(2, 254), (3, 254)]),
'on_add': True

}

matches contains a set of tuples with the NSP and NSI ((<nsp>, <nsi>)) to be matched by the par-
ticular destination chain. on_add simply specifies whether the matches should be used when adding
the flow or otherwise when removing the flow - in very much the same fashion as add_fcs/del_fcs
for the Flow Classifiers, except that here its either adding or removing the NSP/NSI matches and never
replacing/updating them.

For source chains branch_point there is no need to have an on_add since the OpenFlow matches will
not change depending on whether we are removing or adding this branch point. Only the actions will
change (for relevant flows in Table 0).

At the OVS agent level, branch_point and branch_info are interpreted in order to generate the appro-
priate set of flows, replacing the ones originally created by the constituent Port Chains (to clarify, only
the flows at the branching points).

'branch_point': True will tell the agent to replace the egress flow from the last sf_node, in Table
0, with a new one whose actions will be to: * copy the NSP and NSI from the MPLS label or NSH
into a register: reg0; * remove the MPLS label or NSH; * send the traffic back to Table 0, now without
MPLS/NSH but with reg0 set. Example of this flow (using MPLS correlation):

table=0,priority=30,mpls,in_port=8,mpls_label=509 actions=load:0x1fd->NXM_NX_
↪→REG0[],pop_mpls:0x0800,resubmit(,0)

When branch_info is set, with 'on_add': True and 'matches': set([(1, 253)), the agent
will replace the egress flow from the src_node of the destination chain that is specified in the flow rule,
in Table 0, with a different set of matches from a typical src_node: * it will still match on what the
Flow Classifiers specify; * but the logical source port match is ignored (there is not in_port=X); * most
importantly, it will match on a specified value of reg0 (NSP/NSI). Example of this flow (using MPLS
correlation):

table=0,priority=30,udp,reg0=0x1fd actions=push_mpls:0x8847,set_field:767->
↪→mpls_label,set_mpls_ttl(255),group:3

With 'on_add': False, the agent will replace the above flow with the original flow for the src_node
of that Port Chain, matching only on the Flow Classifiers fields.

Known Limitations

• Service Graphs is not compatible with Symmetric Port Chains at the moment. Furthermore, Ser-
vice Graphs are unidirectional;

• The MPLS correlation protocol does not provide full frame encapsulation, so the SFC Encapsula-
tion NSH protocol should be used instead;

• Every Port Chain has to have a different set of Flow Classifiers, even if the logical source ports
are different, even when they are attached to Service Graphs. This is necessary when deploying
Port Chains that have Port Pairs with no correlation protocol (to prevent per-hop classification
ambiguity), but is a limitation otherwise and hasnt been addressed yet;

• SI/NSI is only available at the Open vSwitch driver level, meaning that the networking-sfc API
cant consistently manage and persist all of the SFP information (only SPI/NSP) independently of

5.2. Networking-SFC Internals 59

Networking SFC Documentation, Release 19.1.0.dev11

the driver. SI/NSI and SPI/NSP are used by the logical Service Function Forwarders (SFF) that
the drivers are expected to control.

References

[1] https://datatracker.ietf.org/doc/rfc7665/?include_text=1

[2] http://i.imgur.com/rxzNNUZ.png

[3] http://i.imgur.com/nzgatKB.png

[4] https://bugs.launchpad.net/networking-sfc/+bug/1587486

[5] https://datatracker.ietf.org/doc/draft-ietf-sfc-nsh/?include_text=1

5.2.9 Exclusive Port-Pair Group for Non-Transparent Service Functions
URL of the launchpad blueprint:

https://blueprints.launchpad.net/networking-sfc/+spec/sfc-proxy-port-correlation

This specification describes the support for non-transparent Service Functions in SFC Port Chains using
a SFC Port Pair Group that is used exclusively by one Port Chain. Non-transparent Service Functions
modify the N-tuple header fields of a packet.

Problem Description

Most legacy Service Functions (SF) do not support SFC encapsulation, such as NSH, and therefore
require an SFC Proxy to re-classify a packet that is returned from the egress port of the SF. The SFC
Proxy uses the N-tuple values of a packet header to re-classify a packet. The packet N-tuple consists of
the following:

• Source IP address

• Destination IP address

• Source TCP/UDP port

• Destination TCP/UDP port

• IP Protocol

However, if the SF is non-transparent (it modifies a part of the N-tuple of a packet), then re-classification
cannot be done correctly. See https://datatracker.ietf.org/doc/draft-song-sfc-legacy-sf-mapping/

In addition the SF may dynamically change the mapping of the N-tuple values as the SF operations
progress. A mechanism that uses a static N-tuple mapping to adjust for N-tuple changes cannot be em-
ployed.

Proposed Changes

This is an enhancement to the SFC proxy so that it can handle the dynamic changes to N-tuple translation
rules of the SF.

A solution to the non-transparent SF is to use a SF VM that has multiple instances and assign the port-
pairs for each SF instance to a separate Port Chain.

This can be done by adding these ports to a SFC Proxy Port Pair Group which operates as a Port Pair
Correlation Map instead of a normal Load Distribution function. The Proxy Port Pair Group is configured

5.2. Networking-SFC Internals 60

https://datatracker.ietf.org/doc/rfc7665/?include_text=1
http://i.imgur.com/rxzNNUZ.png
http://i.imgur.com/nzgatKB.png
https://bugs.launchpad.net/networking-sfc/+bug/1587486
https://datatracker.ietf.org/doc/draft-ietf-sfc-nsh/?include_text=1
https://blueprints.launchpad.net/networking-sfc/+spec/sfc-proxy-port-correlation
https://datatracker.ietf.org/doc/draft-song-sfc-legacy-sf-mapping/

Networking SFC Documentation, Release 19.1.0.dev11

with multiple Port Pairs that are attached to the SF Instances of a specific non-transparent SF type, such
as a Firewall SF. This Port Pair Group is configured to operate as a Port Pair Correlation Map.

Each non-transparent SF instance is attached to a single Port Pair. These SF instances may either run on
a VM or on a container within a VM. If an SF instance runs within a container, the container sub-port
([1][2]) is used as the ingress and/or egress port of the Port Pair.

Each Port Chain is mapped to one of these port-pairs. Packets for a Port Chain arriving at the OVS
Integration bridge are steered to the ingress port of the Port Pair assigned to that Port Chain. Packets
received back from the SF on its egress port are then mapped back to the corresponding Port Chain. This
mechanism avoids the need for the SFC Proxy to re-classify packets returned from the egress port of the
non-transparent SF.

For example, in the figure below, packets on Port Chain A are steered to Port Pair 1 and sent to the ingress
port of SF Instance 1. Packets from the egress port of SF Instance 1 are then mapped back to Port Chain
A and are delivered to the next hop in the chain.

When a Port Chain is created (or updated) that uses a SFC Proxy PPG, the Port Chain is assigned to one
of the Port Pairs in the PPG and the Port Pair is reserved for that Port Chain. If the Port Chain is deleted
or the PPG is removed from the Port Chain, its Port Pair becomes available for use by another Port Chain.

The Port Pairs in the SFC Proxy Port Pair Group may be hosted on different Compute Nodes as shown
in the diagram below.

If a Port Chain is created that uses a SFC Proxy Port Pair Group and all the Pairs in that PPG are in use
by other Port Chains, an error Maximum number of Port Chains reached is returned.

This obviously requires that multiple instances of the non-transparent SF be deployed in either VMs or
containers. The number of SF instances that must be deployed and configured as Port Pairs depends on
the maximum number of Port Chains that are expected to use that particular SF. However, deploying
multiple instances of a SF is easily done in modern data centers.

A Port Chain may include multiple SFC Proxy PPGs, each one for a different type of non-transparent SF.
For example PPG1 may be a group of non-transparent Firewall SF instances and PPG2 may be a group
of non-transparent HTTP Optimizer SF instances.

Compute Node 1
+--+
| |
| OVS Integration Bridge Non-transparent SF |
| +--------------------------+ +.........................+ |
	SFC Proxy Port Pair	. .	
	Correlation Map PPG	. VM/Container1 .	
	+.....................+	. pp1+------------------+ .	
	.Port Chain A <-> pp1 .--------->	Non-transparent	.
	. .<---------	SF Instance 1	.
	. .	. +------------------+ .	
	. .	. VM/Container2 .	
	. .	. pp2+------------------+ .	
	.Port Chain C <-> pp2 .--------->	Non-transparent	.
	. .<---------	SF Instance 2	.
	. .	. +------------------+ .	
+-.---------------------.--+ . .			
+----.---------------------.-----.-------------------------.-+

. Compute Node 2 . . .
(continues on next page)

5.2. Networking-SFC Internals 61

Networking SFC Documentation, Release 19.1.0.dev11

(continued from previous page)

+----.---------------------.-----.-------------------------.-+
| |
| .OVS Integration Bridge . . |
| +-.---------------------.--+ . . |
	. .	. VM/Container3 .	
	. .	. pp3+------------------+ .	
	.Port chain X <-> pp3 .--------->	Non-transparent	.
	. .<---------	SF Instance 3	.
	+.....................+	. +------------------+ .	
		+.........................+	
+--------------------------+			
+--+

Alternatives

An alternative mechanism for non-transparent SFs is to mark PPG as exclusive so that it is assigned to
one port chain only. This would require a PPG be created for each port chain. The advantage to this
approach is that the PPG can be used for load balancing.

Data model impact

Add a proxy-correlation-map attribute to the Port Pair Group. This is a Boolean that will enable the
Proxy Port Correlation. Add an exclusive attribute to the Port Pair Group. This is a Boolean that will
enable exclusive use of a Port Pair Group by one Port Chain.

REST API impact

Add proxy-correlation-map: true to the Port Pair Group. Add exclusive: true to the Port Pair Group.

Security impact

None

Notifications impact

None

Other end user impact

None

Performance Impact

None

Other deployer impact

None.

5.2. Networking-SFC Internals 62

Networking SFC Documentation, Release 19.1.0.dev11

Developer impact

None.

Implementation

Assignee(s)

• Cathy Zhang (cathy.h.zhang@huawei.com)

• Louis Fourie (louis.fourie@huawei.com)

Work Items

1. Extend API port-pair-group-parameter to support proxy-correlation-map and the exclusive attributes.
2. Extend networking-sfc OVS driver to support proxy-correlation-map and exclusive attributes. 3. Add
unit and functional tests. 4. Update documentation.

Dependencies

None

Testing

Unit tests and functional tests will be added.

Documentation Impact

None

References

[1] Neutron Trunk-port https://wiki.openstack.org/wiki/Neutron/TrunkPort

[2] VLAN aware VMs https://review.openstack.org/#/c/243786/11/specs/mitaka/vlan-aware-vms.rst

5.2. Networking-SFC Internals 63

mailto:cathy.h.zhang@huawei.com
mailto:louis.fourie@huawei.com
https://wiki.openstack.org/wiki/Neutron/TrunkPort
https://review.openstack.org/#/c/243786/11/specs/mitaka/vlan-aware-vms.rst

	Service Function Chaining Extension for OpenStack Networking
	Team and repository tags
	Service Function Chaining API
	Features
	Service Function Chaining Key Contributors
	Background on the Subject of Service Function Chaining

	Install Guide
	Installation
	Configuration
	Controller nodes
	Compute nodes
	Database setup

	Using the Service Function Chaining
	Usage
	Command extension
	List of New Neutron CLI Commands:

	Configuration Guide
	Configuration
	networking-sfc.conf
	flowclassifier
	quotas
	sfc

	Sample networking-sfc.conf

	Policy
	networking-sfc policies
	networking-sfc

	Sample networking-sfc Policy File

	Contributor Guide
	Programming HowTos and Tutorials
	Contribution
	Alembic-migration
	Checking migration
	Checking branch information
	Checking migration history
	Applying changes
	Checking current version

	Networking-SFC Internals
	API Model
	Problem Description
	Proposed Change
	CLI Commands
	openstack sfc port chain create
	openstack sfc port pair group create
	openstack sfc port pair create
	openstack sfc flow classifier create

	Data Model Impact
	REST API
	REST API Impact

	Implementation
	Assignee(s)

	System Design and Workflow
	Problem Description
	System Architecture
	Port Chain Creation Workflow
	Boot service VMs and attach ports
	Create Flow Classifier
	Create Port Pair
	Create Port Group
	Create Port Chain

	OVS Driver and Agent Workflow
	Problem Description
	Proposed Change
	OVS Driver
	OVS Agent
	OVS Bridge and Tunnel
	Flow Tables and Flow Rules
	Local Switching Table (Table 0) Flows
	Group Table Flows
	Data Model Impact
	Alternatives
	Security Impact
	Notifications Impact
	Other End User Impact
	Performance Impact
	IPv6 Impact
	Other Deployer Impact
	Developer Impact
	Community Impact

	Implementation
	Assignee(s)
	Work Items

	Dependencies
	Testing
	Documentation Impact
	User Documentation
	Developer Documentation

	Networking-sfc / OVN Driver
	Problem Description
	Proposed Changes
	OVN Northbound Port Chain DB
	Logical Port Chain
	Logical Port Pair Group
	Logical Port Pair
	ACL

	Networking-sfc / OVN Driver
	Port-chain to lport-chain Mapping
	Port-pair-group to lport-pair-group Mapping
	Port-pair to lport-pair Mapping
	Flow-classifier to OVN ACL Mapping
	Function Mapping
	Flow-Classifier Mapping

	Implementation
	Assignee(s)

	OVS Driver and Agent for Symmetric Port Chains
	Problem Description
	Proposed Changes
	Alternatives
	Data model impact
	REST API impact
	Security impact
	Notifications impact
	Other end user impact
	Performance Impact
	Other deployer impact
	Developer impact

	Implementation
	Assignee(s)
	Work Items

	Dependencies
	Testing
	Documentation Impact
	References

	Service Function Tap for Port Chains
	Problem Description
	Proposed Changes
	OVS Driver Implementation
	Workflow & OVS working details for Tap SF
	Alternatives
	Data model impact
	REST API impact
	Security impact
	Notifications impact
	Other end user impact
	Performance Impact
	Other deployer impact
	Developer impact

	Implementation
	Assignee(s)
	Work Items

	Dependencies
	Testing
	Documentation Impact
	References

	Non-Transparent Service Functions for Port Chains
	Problem Description
	Proposed Changes
	Alternatives
	Data model impact
	REST API impact
	Security impact
	Notifications impact
	Other end user impact
	Performance Impact
	Other deployer impact
	Developer impact

	Implementation
	Assignee(s)
	Work Items

	Dependencies
	Testing
	Documentation Impact
	References

	IETF SFC Encapsulation
	Terminology
	Usage
	Implementation
	PPG/SF Correlation
	Service Graphs

	Known Limitations
	References

	Exclusive Port-Pair Group for Non-Transparent Service Functions
	Problem Description
	Proposed Changes
	Alternatives
	Data model impact
	REST API impact
	Security impact
	Notifications impact
	Other end user impact
	Performance Impact
	Other deployer impact
	Developer impact

	Implementation
	Assignee(s)
	Work Items

	Dependencies
	Testing
	Documentation Impact
	References

