
networking-bagpipe Documentation
Release 17.0.1.dev3

OpenStack Foundation

Oct 21, 2022

CONTENTS

1 Overview 3

2 Using BaGPipe 5
2.1 Design overview . 5
2.2 Applications . 6
2.3 BaGPipe-BGP . 8

3 Installation 17
3.1 Networking-bagpipe installation . 17
3.2 BaGPipe for Neutron L2 . 17
3.3 BaGPipe for BGPVPN . 19
3.4 BaGPipe for networking-sfc . 19

4 Configuration Options 23
4.1 Configuration Reference . 23
4.2 Sample Configuration Files . 30

5 Development 37
5.1 Contributing . 37

i

ii

networking-bagpipe Documentation, Release 17.0.1.dev3

Driver and agent code to use BaGPipe lightweight implementation of BGP-based VPNs as a backend for
Neutron.

• Free software: Apache license

• Documentation: https://docs.openstack.org/networking-bagpipe/latest/

• Source: http://opendev.org/openstack/networking-bagpipe

• Bugs: https://bugs.launchpad.net/networking-bagpipe

• Release notes: https://docs.openstack.org/releasenotes/networking-bagpipe/

CONTENTS 1

https://docs.openstack.org/networking-bagpipe/latest/
http://opendev.org/openstack/networking-bagpipe
https://bugs.launchpad.net/networking-bagpipe
https://docs.openstack.org/releasenotes/networking-bagpipe/

networking-bagpipe Documentation, Release 17.0.1.dev3

2 CONTENTS

CHAPTER

ONE

OVERVIEW

BGP-based VPNs rely on extensions to the BGP routing protocol and dataplane isolation (e.g. MPLS-
over-x, VXLAN) to create multi-site isolated virtual networks over a shared infrastructure, such as
BGP/MPLS IPVPNs (RFC4364) and E-VPN (RFC7432). They have been heavily used in IP/MPLS
WAN backbones since the early 2000s.

These BGP VPNs are relevant in the context of Neutron, for two distinct use cases:

1. creating reachability between Neutron ports (typically VMs) and BGP VPNs outside the cloud
datacenter (this use case can be relevantindependently of the backend chosen for Neutron)

2. leveraging these BGP VPNs in Neutrons backend, to benefit from the flexibility, robustness and
scalability of the underlying technology (as do other existing backends such as OpenContrail, Nu-
age Networks, or Calico although the latter relies on plain, non-VPN, BGP)

BaGPipe proposal is to address these two use cases by implementing this protocol stack both the BGP
routing protocol VPN extensions and the dataplane encapsulation in compute nodes or possibly ToR
switches, and articulating it with Neutron thanks to drivers and plugins.

The networking-bagpipe package includes:

• for use case 1: backend code for Neutrons BGPVPN Interconnection service plugin (networking-
bgpvpn) ; only compute node code (agent and BGP) is in networking-bagpipe, the Neutron server-
side part, being currently in networking-bgpvpn package)

• for use case 2: a Neutron ML2 mechanism driver (base Neutron networks), a networking-sfc driver
(service chaining)

• compute code common to both: agent extensions for Neutron agent (linuxbridge or openvswitch)
to consolidate and pass information via its REST API to BaGPipe-BGP (a lightweight BGP VPN
implementation)

3

http://tools.ietf.org/html/rfc4364
http://tools.ietf.org/html/rfc7432
https://github.com/openstack/networking-bgpvpn
https://github.com/openstack/networking-bgpvpn
https://github.com/openstack/networking-bgpvpn

networking-bagpipe Documentation, Release 17.0.1.dev3

4 Chapter 1. Overview

CHAPTER

TWO

USING BAGPIPE

2.1 Design overview

The common design choices underlying bagpipe architecture are:

a. on Neutron server, allocate and associate BGP VPN constructs necessary to realize Neutron API
abstractions: network, router, service chain, BGP VPN interconnection, etc.

b. pass the information about these BGP VPN constructs to the compute node agent via Openstack
Neutron message bus (typically, but not necessarily RabbitMQ)

c. on compute node, a bagpipe extension of the Neutron agent (OVS or linuxbridge) passes the infor-
mation to the local implementation of BGP VPN extensions (BaGPipe-BGP) that will advertise
and receive BGP VPN routes and populate the dataplane accordingly

d. depending on the use cases, BGP VPN routes are exchanged between compute nodes, between
compute nodes and DC gateway IP/MPLS routers, or both ; the strategy to scale this control plane
will depend on the deployment context but will typically involve BGP Route Reflectors and the use
of the RT Constraints pub/sub mechanism (RFC4684)

e. traffic is exchanged using an overlay encapsulation, with VXLAN as the typical choice for vswitch-
to-vswitch, and MPLS-over-GRE or MPLS-over-UDP (future) as the target for vswitch-to-DC-
gateway traffic

5

http://tools.ietf.org/html/rfc4684

networking-bagpipe Documentation, Release 17.0.1.dev3

2.2 Applications

2.2.1 Neutron networks (ML2)

Note: This application is distinct from the use of BaGPipe to create IPVPN or E-VPN interconnections
in the context of the BGPVPN Interconnection API (see below).

The bagpipe mechanism driver for Neutrons ML2 core plugin, when enabled along with the corre-
sponding compute node agent extension, will result in Neutron tenant networks to be realized with E-
VPN/VXLAN.

How it works is that a BGP VPN identifier (called a BGP Route Target) will be defined for each Neutron
tenant network, derived from the VXLAN VNI a.k.a segmentation ID, and the bagpipe agent extension
on compute nodes will setup a corresponding E-VPN instance with this identifier on the local BaGPipe-
BGP instance on the compute node and attach VM ports to this instance as needed.

6 Chapter 2. Using BaGPipe

networking-bagpipe Documentation, Release 17.0.1.dev3

This solution is currently supported with the linux networking stack (i.e. with the linuxbridge agent
enabled with bagpipe extension, and BaGPipe-BGP driver for the linux bridge VXLAN implementation).
The approach would be easily extended to support OpenVSwitch as well.

Another way to understand this approach for someone coming with a Neutron ML2 background is that
it is similar to the l2population mechanism except that the bridge forwarding entries are populated based
on BGP VPN routes rather than based on information distributed in RPCs. This similarity comes with a
difference: while l2population announces the information on one messaging topic, each compute node
receiving information about all Neutron networks even the ones not present on its vswitch, the behavior
with BaGPipe ML2 is that a compute node will only receive the mappings that it needs.

2.2.2 Neutron BGPVPN Interconnection

Note: This application is distinct from the use of BaGPipe to realize Neutron networks with BGP E-
VPNs. bagpipe driver for networking-bgpvpn supports both IPVPNs and E-VPNs, but does not rely on
bagpipe ML2 mechanism driver to do so.

In this application, networking-bagpipe aims at proposing a lightweight implementation of the BG-
PVPN Interconnection service, designed to work with the ML2 openvswitch or linuxbridge mech-
anism drivers (or as an alternative with the bagpipe ML2 mechanism driver).

When used along with the openvswitch or linuxbridge ML2 mechanism driver, it involves the use
of:

• bagpipe driver for the BGPVPN service plugin (in networking-bgpvpn package)

• bagpipe_bgpvpn extension for the Neutron compute node agent (in this package)

• BaGPipe-BGP lightweight BGP VPN implementation (in this package)

Example with OVS agent:

2.2. Applications 7

https://github.com/openstack/networking-bgpvpn
https://github.com/openstack/networking-bgpvpn

networking-bagpipe Documentation, Release 17.0.1.dev3

2.2.3 Service Chaining (SFC)

For this application, networking-bagpipe provides a bagpipe driver for the networking-sfc that
will result in service chains defined via the networking-sfc API, being realized with BGP VPN stiching,
BGP VPN route redistribution and BGP Flowspec routes.

The components involved are:

• bagpipe driver for the networking-sfc service plugin (in this package)

• bagpipe_sfc extension for the Neutron compute node agent (in this package)

• BaGPipe-BGP lightweight BGP VPN implementation (in this package)

Note: This driver is still quite experimental, and still currently relies on using the linuxbrige agent
along with the OVS dataplane driver for IPVPN in bagpipe-bgp.

2.2.4 Work in progress and future applications

Work in progress:

• BaGPipe ML2 with openvswitch agent

Considered:

• networking-l2gw driver leveraging bagpipe-bgp running on a ToR

• L3 plugin for inter-subnet distributed routing

2.3 BaGPipe-BGP

BaGPipe-BGP is a component of networking-bagpipe, used on compute nodes along the Neutron agent
and bagpipe agent extension of this agent.

It is a lightweight implementation of BGP VPNs (IP VPNs and E-VPNs), targeting deployments on
compute nodes hosting VMs, in particular for Openstack/KVM platforms.

The goal of BaGPipe-BGP is not to fully implement BGP specifications, but only the subset of
specifications required to implement IP VPN VRFs and E-VPN EVIs (RFC4364 a.k.a RFC2547bis,
RFC7432/draft-ietf-bess-evpn-overlay, and RFC4684).

8 Chapter 2. Using BaGPipe

http://tools.ietf.org/html/rfc4364
http://tools.ietf.org/html/rfc7432
http://tools.ietf.org/html/draft-ietf-bess-evpn-overlay
http://tools.ietf.org/html/RFC4684

networking-bagpipe Documentation, Release 17.0.1.dev3

BaGPipe-BGP is designed to use encapsulations over IP (such as MPLS-over-GRE or VXLAN), and thus
does not require the use of LDP. Bare MPLS over Ethernet is also supported and can be used if compute
nodes/routers have direct Ethernet connectivity.

2.3.1 Typical Use/deployment

BaGPipe-BGP has been designed to provide VPN (IP VPN or E-VPN) connectivity to local VMs running
on an Openstack compute node.

BaGPipe-BGP is typically driven via its HTTP REST interface, by Openstack Neutron agent extensions
found in this package.

Moreover, BaGPipe-BGP can also be used standalone (in particular for testing purposes), with for in-
stance VMs tap interfaces or with veth interfaces to network namespaces (see below).

2.3.2 BGP and Route Reflection

If you only want to test how to interconnect one compute node running bagpipe-bgp and an IP/MPLS
router, you dont need to setup a BGP Route Reflector.

However, using BaGPipe-BGP between compute nodes currently requires setting up a BGP Route Re-
flector (see BGP Implementation and Caveats). Typically, passive mode will have to be used for BGP
peerings.

The term BGP Route Reflector refers to a BGP implementation that redistributes routes between iBGP
peers RFC4456.

When using bagpipe-bgp on more than one compute node, we thus need each instance of BaGPipe-BGP
to be configured to peer with at least one route reflector (see Configuration).

We provide a tool that can be used to emulate a route reflector to interconnect 2 BaGPipe-BGP imple-
mentations, typically for test purposes (see Fake RR).

For more than 2 compute nodes running BaGPipe-BGP, you will need a real BGP implementation sup-
porting RFC4364 and BGP route reflection (and ideally also RFC4684), different options can be consid-
ered:

• BGP implementations in other opensource projects would possibly be suitable, but we did not
explore these exhaustively:

– GoBGP , see sample configuration and GoBGP as a RR for bagpipe-bgp PE implementations,
with E-VPN

– we have successfully used OpenBSD BGPd as an IP VPN RR for bagpipe-bgp

– FRRouting

– Quagga

• A commercial router from for instance, Alcatel-Lucent, Cisco or Juniper can be used; some of
these vendors also provide their OSes as virtual machines

2.3. BaGPipe-BGP 9

http://tools.ietf.org/html/RFC4456
http://osrg.github.io/gobgp/
http://git.openstack.org/cgit/openstack/networking-bagpipe/tree/samples/gobgp.conf
https://github.com/osrg/gobgp/blob/master/docs/sources/evpn.md
https://github.com/osrg/gobgp/blob/master/docs/sources/evpn.md

networking-bagpipe Documentation, Release 17.0.1.dev3

2.3.3 Configuration

The bagpipe-bgp config file default location is: /etc/bagpipe-bgp/bgp.conf.

It needs to be customized, at least for the following:

• local_address: the local address to use for BGP sessions and traffic encapsulation (can also be
specified as an interface, e.g. eth0, in which the IPv4 address of this interface will be used)

• peers: the list of BGP peers, it depends on the BGP setup that you have chosen (see above BGP
Route Reflection)

• dataplane configuration, if you really want packets to get through (see Dataplane configuration)

Example with two compute nodes and relying on bagpipe fake route reflector:

• On compute node A (local_address=10.0.0.1):

– run bagpipe-fakerr

– run bagpipe-bgp with peers=127.0.0.1 (compute node A will thus connect to the locally run-
ning fake route-reflector)

• On compute node B (local_address=10.0.0.2):

– run bagpipe-bgp with peers=10.0.0.1

Dataplane driver configuration

Note well that the dataplane drivers proposed in the sample config file are dummy drivers that will not
actually drive any dataplane state. To have traffic really forwarded into IP VPNs or E-VPNs, you need to
select real dataplane drivers.

For instance, you can use the ovs dataplane driver for IP VPN, and the linux driver for E-VPN.

Note well that there are specific constraints or dependencies applying to dataplane drivers for IP VPNs:

• the ovs driver can be used on most recent Linux kernels, but requires an OpenVSwitch with suitable
MPLS code (OVS 2.4 to 2.6 was tested); this driver can do bare-MPLS or MPLS-over-GRE (but see
Caveats for MPLS-over-GRE); for bare MPLS, this driver requires the OVS bridge to be associated
with an IP address, and that VRF interfaces be plugged into OVS prior to calling BaGPipe-BGP
API to attach them

• the linux driver relies on the native MPLS stack of the Linux kernel, it currently requires a ker-
nel 4.4+ and uses the pyroute2 module that allows defining all states via Netlink rather than by
executing ip commands

For E-VPN, the linux driver is supported without any particular additional configuration being required,
and simply requires a Linux kernel >=3.10 (linux_vxlan.py).

10 Chapter 2. Using BaGPipe

networking_bagpipe/bagpipe_bgp/vpn/evpn/linux_vxlan.py#L269

networking-bagpipe Documentation, Release 17.0.1.dev3

2.3.4 Usage

BaGPipe-BGP local service

If systemd init scripts are installed (see samples/systemd), bagpipe-bgp is typically started with:
systemctl start bagpipe-bgp

It can also be started directly with the bagpipe-bgp command (--help to see what parameters can be
used).

By default, it outputs logs on stdin (captured by systemd if run under systemd).

BaGPipe Fake BGP Route Reflector

If you choose to use our fake BGP Route Reflector (see BGP Route Reflection), you can start it
whether with the bagpipe-fakerr command, or if you have startup scripts installed, with service
bagpipe-fakerr start. Note that this tool requires the additional installation of the twisted python
package.

There isnt anything to configure, logs will be in syslog.

This tool is not a BGP implementation and simply plugs together two TCP connections face to face.

REST API tool for interface attachments

The bagpipe-rest-attach tool allows to exercise the REST API through the command line to attach
and detach interfaces from IP VPN VRFs and E-VPN EVIs.

See bagpipe-rest-attach --help.

IP VPN example with a VM tap interface

This example assumes that there is a pre-existing tap interface tap42.

• on compute node A, plug tap interface tap42, MAC de:ad:00:00:be:ef, IP 11.11.11.1 into an IP
VPN VRF with route-target 64512:77:

bagpipe-rest-attach --attach --port tap42 --mac de:ad:00:00:be:ef --ip 11.
↪→11.11.1 --gateway-ip 11.11.11.254 --network-type ipvpn --rt 64512:77

• on compute node B, plug tap interface tap56, MAC ba:d0:00:00:ca:fe, IP 11.11.11.2 into an IP
VPN VRF with route-target 64512:77:

bagpipe-rest-attach --attach --port tap56 --mac ba:d0:00:00:ca:fe --ip 11.
↪→11.11.2 --gateway-ip 11.11.11.254 --network-type ipvpn --rt 64512:77

Note that this example is a schoolbook example only, but does not actually work unless you try to use
one of the two MPLS Linux dataplane drivers.

Note also that, assuming that VMs are behind these tap interfaces, these VMs will need to have proper
IP configuration. When BaGPipe-BGP is use standalone, no DHCP service is provided, and the IP
configuration will have to be static.

2.3. BaGPipe-BGP 11

networking-bagpipe Documentation, Release 17.0.1.dev3

Another IP VPN example

In this example, the bagpipe-rest-attach tool will build for you a network namespace and a properly
configured pair of veth interfaces, and will plug one of the veth to the VRF:

• on compute node A, plug a netns interface with IP 12.11.11.1 into a new IP VPN VRF named test,
with route-target 64512:78

bagpipe-rest-attach --attach --port netns --ip 12.11.11.1 --network-type␣
↪→ipvpn --vpn-instance-id test --rt 64512:78

• on compute node B, plug a netns interface with IP 12.11.11.2 into a new IP VPN VRF named test,
with route-target 64512:78

bagpipe-rest-attach --attach --port netns --ip 12.11.11.2 --network-type␣
↪→ipvpn --vpn-instance-id test --rt 64512:78

For this last example, assuming that you have configured bagpipe-bgp to use the ovs dataplane driver for
IP VPN, you will actually be able to have traffic exchanged between the network namespaces:

ip netns exec test ping 12.11.11.2
PING 12.11.11.2 (12.11.11.2) 56(84) bytes of data.
64 bytes from 12.11.11.2: icmp_req=6 ttl=64 time=1.08 ms
64 bytes from 12.11.11.2: icmp_req=7 ttl=64 time=0.652 ms

An E-VPN example

In this example, similarly as the previous one, the bagpipe-rest-attach tool will build for you a network
namespace and a properly configured pair of veth interfaces, and will plug one of the veth to the E-VPN
instance:

• on compute node A, plug a netns interface with IP 12.11.11.1 into a new E-VPN named test2, with
route-target 64512:79

bagpipe-rest-attach --attach --port netns --ip 12.11.11.1 --network-type␣
↪→evpn --vpn-instance-id test2 --rt 64512:79

• on compute node B, plug a netns interface with IP 12.11.11.2 into a new E-VPN named test2, with
route-target 64512:79

bagpipe-rest-attach --attach --port netns --ip 12.11.11.2 --network-type␣
↪→evpn --vpn-instance-id test2 --rt 64512:79

For this last example, assuming that you have configured bagpipe-bgp to use the linux dataplane driver
for E-VPN, you will actually be able to have traffic exchanged between the network namespaces:

ip netns exec test2 ping 12.11.11.2
PING 12.11.11.2 (12.11.11.2) 56(84) bytes of data.
64 bytes from 12.11.11.2: icmp_req=1 ttl=64 time=1.71 ms
64 bytes from 12.11.11.2: icmp_req=2 ttl=64 time=1.06 ms

12 Chapter 2. Using BaGPipe

networking-bagpipe Documentation, Release 17.0.1.dev3

Looking glass

The REST API (default port 8082) provide troubleshooting information, in read-only, through the
/looking-glass URL.

It can be accessed with a browser: e.g. http://10.0.0.1:8082/looking-glass or http://127.0.0.1:8082/
looking-glass (a browser extension to nicely display JSON data is recommended).

It can also be accessed with the bagpipe-looking-glass utility:

bagpipe-looking-glass
bgp: (...)
vpns: (...)
config: (...)
logs: (...)
summary:

warnings_and_errors: 2
start_time: 2014-06-11 14:52:32
local_routes_count: 1
BGP_established_peers: 0
vpn_instances_count: 1
received_routes_count: 0

bagpipe-looking-glass bgp peers
* 192.168.122.1 (...)

state: Idle

bagpipe-looking-glass bgp routes
match:IPv4/mpls-vpn,*:

* RD:192.168.122.101:1 12.11.11.1/32 MPLS:[129-B]:
attributes:
next_hop: 192.168.122.101
extended_community: target:64512:78

afi-safi: IPv4/mpls-vpn
source: VRF 1 (...)
route_targets:
* target:64512:78

match:IPv4/rtc,*:
* RTC<64512>:target:64512:78:

attributes:
next_hop: 192.168.122.101

afi-safi: IPv4/rtc
source: BGPManager (...)

match:L2VPN/evpn,*: -

2.3. BaGPipe-BGP 13

http://10.0.0.1:8082/looking-glass
http://127.0.0.1:8082/looking-glass
http://127.0.0.1:8082/looking-glass

networking-bagpipe Documentation, Release 17.0.1.dev3

2.3.5 Design overview

The main components of BaGPipe-BGP are:

• the engine dispatching events related to BGP routes between workers

• a worker for each BGP peers

• a VPN manager managing the life-cycle of VRFs, EVIs

• a worker for each IP VPN VRF, or E-VPN EVI

• a REST API:

– to attach/detach interfaces to VRFs and control the parameters for said VRFs

– to access internal information useful for troubleshooting (/looking-glass/ URL sub-tree)

Publish/Subscribe design

The engine dispatching events related to BGP routes is designed with a publish/subscribe pattern based
on the principles in RFC4684. Workers (a worker can be a BGP peer or a local worker responsible for an
IP VPN VRF) publish BGP VPN routes with specified Route Targets, and subscribe to the Route Targets
that they need to receive. The engine takes care of propagating advertisement and withdrawal events
between the workers, based on subscriptions and BGP semantics (e.g. no redistribution between BGP
peers sessions).

Best path selection

The core engine does not do any BGP best path selection. For routes received from external BGP peers,
best path selection happens in the VRF workers. For routes that local workers advertise, no best path
selection is done because two distinct workers will never advertise a route of same BGP NLRI.

Multi-threading

For implementation convenience, the design choice was made to use Python native threads and python
Queues to manage the API, local workers, and BGP peers workloads:

• the engine (RouteTableManager) is running as a single thread

• each local VPN worker has its own thread to process route events

• each BGP peer worker has two threads to process outgoing route events, and receive socket data,
plus a few timers.

• VPN port attachment actions are done in the main thread handling initial setup and API calls, these
calls are protected by Python locks

14 Chapter 2. Using BaGPipe

http://tools.ietf.org/html/rfc4684

networking-bagpipe Documentation, Release 17.0.1.dev3

Non-persistency of VPN and port attachments

The BaGPipe-BGP service, as currently designed, does not persist information on VPNs (VRFs or EVIs)
and the ports attached to them. On a restart, the component responsible triggering the attachment of
interfaces to VPNs, can detect the restart of the BGP and re-trigger these attachments.

BGP Implementation

The BGP protocol implementation reuses BGP code from ExaBGP. BaGPipe-BGP only reuses the low-
level classes for message encodings and connection setup.

Non-goals for this BGP implementation:

• full-fledged BGP implementation

• redistribution of routes between BGP peers (hence, no route reflection, no eBGP)

• accepting incoming BGP connections

• scaling to a number of routes beyond the number of routes required to route traffic in/out of VMs
hosted on a compute node running BaGPipe-BGP

Dataplanes

BaGPipe-BGP was designed to allow for a modular dataplane implementation. For each type of VPN
(IP VPN, E-VPN) a dataplane driver is chosen through configuration. A dataplane driver is responsible
for setting up forwarding state for incoming and outgoing traffic based on port attachment information
and BGP routes.

(see Dataplane driver configuration)

2.3.6 Caveats

• BGP implementation not written for compliancy

– the BaGPipe-BGP service does not listen for incoming BGP connections (using a BGP route
reflector is required to interconnect bagpipe-bgp instance together, typically using passive
mode for BGP peerings)

– the state machine, in particular retry timers is possibly not fully compliant

– however, interop testing has been done with a fair amount of implementations

• standard MPLS-over-GRE, interoperating with routers, requires OVS >= 2.8 (previous Open-
VSwitch releases do MPLS-o-Ethernet-o-GRE and not MPLS-o-GRE)

2.3. BaGPipe-BGP 15

http://code.google.com/p/exabgp

networking-bagpipe Documentation, Release 17.0.1.dev3

16 Chapter 2. Using BaGPipe

CHAPTER

THREE

INSTALLATION

3.1 Networking-bagpipe installation

The details related to how a package should be installed may depend on your environment.

If possible, you should rely on packages provided by your Linux and/or OpenStack distribution.

If you use pip, follow these steps to install networking-bagpipe:

• identify the version of the networking-bagpipe package that matches your Openstack version:

– Liberty: most recent of 3.0.x

– Mitaka: most recent of 4.0.x

– Newton: most recent of 5.0.x

– Ocata: most recent of 6.0.x

– Pike: most recent of 7.0.x

– Queens: most recent of 8.0.x

– (see https://releases.openstack.org/index.html)

• indicate pip to (a) install precisely this version and (b) take into account Openstack upper con-
straints on package versions for dependencies (example for Queens):

$ pip install -c https://releases.openstack.org/constraints/upper/queens

3.2 BaGPipe for Neutron L2

3.2.1 Installation in a devstack test/development environment

• install devstack (whether stable/x or master)

• enable the devstack plugin by adding this to local.conf:

– to use branch stable/x (e.g. stable/queens):

enable_plugin networking-bagpipe https://git.openstack.org/openstack/
↪→networking-bagpipe.git stable/X

– to use the development branch:

17

https://releases.openstack.org/index.html

networking-bagpipe Documentation, Release 17.0.1.dev3

enable_plugin networking-bagpipe https://git.openstack.org/openstack/
↪→networking-bagpipe.git master

• enable bagpipe ML2 by adding this to local.conf:

ENABLE_BAGPIPE_L2=True

• for multinode setups, configure BaGPipe-BGP on each compute node, i.e. you need each BaGPipe-
BGP to peer with a BGP Route Reflector:

– in local.conf:

IP of your route reflector or BGP router, or fakeRR:
BAGPIPE_BGP_PEERS=1.2.3.4

– for two compute nodes, you can use the FakeRR provided in BaGPipe-BGP

– for more than two compute nodes, you can use GoBGP (sample configuration) or a com-
mercial E-VPN implementation (e.g. vendors participating in EANTC interop testing on
E-VPN)

3.2.2 Deployment

On Neutron servers, the following needs to be done, based on an ML2/linuxbridge or ML2/openvswitch
configuration as a starting point:

• installing networking-bagpipe python package (see Networking-bagpipe installation)

• in ML2 configuration (/etc/neutron/plugins/ml2.ini):

– adding the bagpipe mechanism driver (additionally to the linuxbridge or openvswitch
driver which will still handle flat and vlan networks)

– before Queens release (i.e. if networking-bagpipe < 8) use the route_target type driver as
default

– result:

[ml2]
tenant_network_types = route_target # before queens only!
mechanism_drivers = openvswitch,linuxbridge,bagpipe

You need to deploy a BGP Route Reflector, that will distribute BGP VPN routes among compute and
network nodes. This route reflector will need to support E-VPN and, optionally, RT Constraints. One
option, among others is to use GoBGP (sample configuration).

On compute node (and network nodes if any) the following needs to be done, based on an
ML2/linuxbridge or ML2/openvswitch configuration as a starting point:

• installing networking-bagpipe python package (see Networking-bagpipe installation)

• configuring Neutron linuxbridge or OpenvSwitch agent for bagpipe /etc/neutron/plugins/
ml2.ini:

– enabling bagpipe agent extension

– before Queens release (i.e. if networking-bagpipe < 8), disable VXLAN:

18 Chapter 3. Installation

http://osrg.github.io/gobgp
http://git.openstack.org/cgit/openstack/networking-bagpipe/tree/samples/gobgp.conf
http://www.eantc.de/fileadmin/eantc/downloads/events/2011-2015/MPLSSDN2015/EANTC-MPLSSDN2015-WhitePaper_online.pdf
http://www.eantc.de/fileadmin/eantc/downloads/events/2011-2015/MPLSSDN2015/EANTC-MPLSSDN2015-WhitePaper_online.pdf
http://osrg.github.io/gobgp
http://git.openstack.org/cgit/openstack/networking-bagpipe/tree/samples/gobgp.conf

networking-bagpipe Documentation, Release 17.0.1.dev3

– configuring the AS number and range to use to allocate BGP Route Targets for tenant net-
works

– result:

[agent]
extensions = bagpipe

[vxlan]
for a release strictly before OpenStack Queens (networking-bagpipe
↪→< 8)
enable_vxlan = False

[ml2_bagpipe_extension]
as_number = 64512

• configuring BaGPipe-BGP:

– setting local_address to the compute node address (or the name of one of its interfaces
e.g. eth0)

– adding the Route Reflector IP to peers

– selecting the EVPN dataplane driver corresponding to your agent in (/etc/bagpipe-bgp/
bgp.conf):

∗ ovs for the openvswitch agent:

[DATAPLANE_DRIVER_EVPN]
dataplane_driver = ovs

∗ linux for the linuxbridge agent:

[DATAPLANE_DRIVER_EVPN]
dataplane_driver = linux

3.3 BaGPipe for BGPVPN

Information on how to use bagpipe driver for networking-bgpvpn is provided in BGPVPN bagpipe
driver documentation.

3.4 BaGPipe for networking-sfc

To enable the use of networking-bagpipe driver for networking-sfc, the following needs to be done:

• enable bagpipe driver for the networking-sfc service plugin, in /etc/neutron/neutron.
conf and configure its parameters (see SFC):

[sfc]
drivers = bagpipe

(continues on next page)

3.3. BaGPipe for BGPVPN 19

http://git.openstack.org/cgit/openstack/networking-bgpvpn
https://docs.openstack.org/networking-bgpvpn/latest/user/drivers/bagpipe/index.html
https://docs.openstack.org/networking-bgpvpn/latest/user/drivers/bagpipe/index.html

networking-bagpipe Documentation, Release 17.0.1.dev3

(continued from previous page)

[sfc_bagpipe]
examples, of course!
as_number = 64517
rtnn = 10000,30000

• add the bagpipe_sfc agent extension to the Neutron linuxbridge agent config
in“/etc/neutron/plugins/ml2.ini“:

[agent]
extensions = bagpipe_sfc

• BaGPipe-BGP lightweight BGP VPN implementation, configured to use ovs as dataplane driver
for IPVPNs, and linux as dataplane driver for EVPN (/etc/bagpipe-bgp/bgp.conf):

[DATAPLANE_DRIVER_IPVPN]
dataplane_driver = ovs

[DATAPLANE_DRIVER_EVPN]
dataplane_driver = linux

3.4.1 In a devstack

To experiment with sfc driver in a devstack, the following is can be added in your local.conf (replace
stable/X with stable/queens for e.g. Openstack Queens release) :

enable_plugin networking-sfc https://git.openstack.org/openstack/
↪→networking-bagpipe.git
enable_plugin networking-sfc https://git.openstack.org/openstack/
↪→networking-bagpipe.git stable/X
enable_plugin networking-bagpipe https://git.openstack.org/openstack/
↪→networking-bagpipe.git
enable_plugin networking-bagpipe https://git.openstack.org/
↪→openstack/networking-bagpipe.git stable/X

BAGPIPE_DATAPLANE_DRIVER_EVPN=linux
BAGPIPE_DATAPLANE_DRIVER_IPVPN=ovs

[[post-config|$NEUTRON_CONF]]

[sfc]
drivers = bagpipe

[sfc_bagpipe]
as_number = 64517
rtnn = 10000,30000

[[post-config|/$NEUTRON_CORE_PLUGIN_CONF]]

(continues on next page)

20 Chapter 3. Installation

networking-bagpipe Documentation, Release 17.0.1.dev3

(continued from previous page)

[agent]
extensions = bagpipe_sfc

3.4. BaGPipe for networking-sfc 21

networking-bagpipe Documentation, Release 17.0.1.dev3

22 Chapter 3. Installation

CHAPTER

FOUR

CONFIGURATION OPTIONS

This section provides a list of all possible options for each configuration file.

4.1 Configuration Reference

networking-bagpipe uses the following configuration files for its various services.

4.1.1 Neutron config

SFC

The following section can be added to Neutron server configuration to parameters related to the sfc driver.

sfc_bagpipe

as_number

Type integer

Default 64512

Autonomous System number used to generate BGP Route Targets that will be used for Port Chain
allocations

rtnn

Type list

Default [5000, 5999]

List containing <rtnn_min>, <rtnn_max> defining a range of BGP Route Targets that will be used
for Port Chain allocations. This range MUST not intersect the one used for network segmentation
identifiers

23

networking-bagpipe Documentation, Release 17.0.1.dev3

4.1.2 Neutron agent config

The following section can be added to Neutron agent configuration.

bagpipe

mpls_bridge

Type string

Default br-mpls

OVS MPLS bridge to use

bagpipe_ml2_extension

as_number

Type list

Default [64512]

Autonomous System number used to generate BGP RTs forE-VPNs used by bagpipe ML2 (more
than one is possible,to allow a deployment to do a 2-step transition to change the AS number used)

4.1.3 bagpipe-bgp.conf

api

host

Type host address

Default 127.0.0.1

IP address on which the API server should listen

Table 1: Deprecated Variations
Group Name
api api_host

port

Type port number

Default 8082

Minimum Value 0

Maximum Value 65535

24 Chapter 4. Configuration Options

networking-bagpipe Documentation, Release 17.0.1.dev3

Port on which the API server should listen

Table 2: Deprecated Variations
Group Name
api api_port

bgp

local_address

Type unknown type

Default <None>

IP address used for BGP peerings

peers

Type list

Default []

IP addresses of BGP peers

my_as

Type integer

Default <None>

Minimum Value 1

Maximum Value 65535

Our BGP Autonomous System

enable_rtc

Type boolean

Default True

Enable RT Constraint (RFC4684)

bgp_port

Type port number

Default 179

Minimum Value 0

Maximum Value 65535

TCP port of connections to BGP peers

4.1. Configuration Reference 25

networking-bagpipe Documentation, Release 17.0.1.dev3

common

root_helper

Type string

Default sudo

Root helper command.

root_helper_daemon

Type string

Default <None>

Root helper daemon application to use when possible.

dataplane_driver_evpn

dataplane_local_address

Type unknown type

Default <None>

IP address to use as next-hop in our route advertisements, will be used to send us VPN traffic

dataplane_driver

Type string

Default dummy

Dataplane driver.

dataplane_driver_ipvpn

dataplane_local_address

Type unknown type

Default <None>

IP address to use as next-hop in our route advertisements, will be used to send us VPN traffic

dataplane_driver

Type string

Default dummy

Dataplane driver.

More dataplane configuration parameters exist depending on the driver:

26 Chapter 4. Configuration Options

networking-bagpipe Documentation, Release 17.0.1.dev3

[DATAPLANE_DRIVER_EVPN] with driver=linux

dataplane_driver_evpn

vxlan_dst_port

Type integer

Default 4789

UDP port toward which send VXLAN traffic (defaults to standard IANA-allocated port)

[DATAPLANE_DRIVER_IPVPN] with driver=linux

dataplane_driver_ipvpn

mpls_interface

Type string

Default <None>

Interface used to send/receive MPLS traffic. Use gre to choose automatic creation of a tunnel
interface for MPLS/GRE encap

[DATAPLANE_DRIVER_IPVPN] with driver=ovs

dataplane_driver_ipvpn

mpls_interface

Type string

Default <None>

Interface used to send/receive MPLS traffic. Use gre to choose automatic creation of a tunnel port
for MPLS/GRE encap

mpls_over_gre

Type string

Default auto

Valid Values auto, True, False

Advanced Option Intended for advanced users and not used by the majority of users,
and might have a significant effect on stability and/or performance.

Force the use of MPLS/GRE even with mpls_interface specified

proxy_arp

Type boolean

Default False

4.1. Configuration Reference 27

networking-bagpipe Documentation, Release 17.0.1.dev3

Advanced Option Intended for advanced users and not used by the majority of users,
and might have a significant effect on stability and/or performance.

Activate ARP responder per VRF for any IP address

arp_responder

Type boolean

Default False

Advanced Option Intended for advanced users and not used by the majority of users,
and might have a significant effect on stability and/or performance.

ARP responder per VRF

vxlan_encap

Type boolean

Default False

Advanced Option Intended for advanced users and not used by the majority of users,
and might have a significant effect on stability and/or performance.

Be ready to receive VPN traffic as VXLAN, and to preferrably send traffic as VXLAN when ad-
vertised by the remote end

ovs_bridge

Type string

Default br-mpls

Advanced Option Intended for advanced users and not used by the majority of users,
and might have a significant effect on stability and/or performance.

input_table

Type integer

Default 0

Advanced Option Intended for advanced users and not used by the majority of users,
and might have a significant effect on stability and/or performance.

ovs_table_id_start

Type integer

Default 1

Advanced Option Intended for advanced users and not used by the majority of users,
and might have a significant effect on stability and/or performance.

gre_tunnel

Type string

Default mpls_gre

Advanced Option Intended for advanced users and not used by the majority of users,
and might have a significant effect on stability and/or performance.

28 Chapter 4. Configuration Options

networking-bagpipe Documentation, Release 17.0.1.dev3

OVS interface name for MPLS/GRE encap

gre_tunnel_options

Type list

Default []

Options, comma-separated, passed to OVS for GRE tunnel port creation (e.g.
packet_type=legacy_l3,) that will be added as OVS tunnel interface options (e.g. op-
tions:packet_type=legacy_l3 options:)

ovsbr_interfaces_mtu

Type integer

Default <None>

Advanced Option Intended for advanced users and not used by the majority of users,
and might have a significant effect on stability and/or performance.

hash_method

Type string

Default dp_hash

Valid Values hash, dp_hash

Advanced Option Intended for advanced users and not used by the majority of users,
and might have a significant effect on stability and/or performance.

Can be used to control the OVS group bucket selection method (mapped to ovs selection_method)

hash_method_param

Type string

Default 0

Advanced Option Intended for advanced users and not used by the majority of users,
and might have a significant effect on stability and/or performance.

Can be used to control the OVS group bucket selection method (mapped to ovs selec-
tion_method_param)

hash_fields

Type list

Default []

Advanced Option Intended for advanced users and not used by the majority of users,
and might have a significant effect on stability and/or performance.

Can be used to control the fields used by the OVS group bucket selection method (mapped to ovs
fields)

4.1. Configuration Reference 29

networking-bagpipe Documentation, Release 17.0.1.dev3

4.2 Sample Configuration Files

The following are sample configuration files for all networking-bagpipe. These are generated from code
and reflect the current state of code in the networking-bagpipe repository.

4.2.1 Sample Neutron agent config

This sample configuration can also be viewed in the raw format.

[DEFAULT]

[bagpipe]

#
From networking_bagpipe.bagpipe_bgp_agent
#

OVS MPLS bridge to use (string value)
#mpls_bridge = br-mpls

[bagpipe_ml2_extension]

#
From networking_bagpipe.bagpipe_bgp_agent
#

Autonomous System number used to generate BGP RTs forE-VPNs used by bagpipe
ML2 (more than one is possible,to allow a deployment to do a 2-step
transition to change the AS number used) (list value)
#as_number = 64512

4.2.2 Sample bagpipe-bgp.conf

This sample configuration can also be viewed in the raw format.

[DEFAULT]

[api]

#
From networking_bagpipe.api
#

IP address on which the API server should listen (host address value)
Deprecated group/name - [api]/api_host
#host = 127.0.0.1

(continues on next page)

30 Chapter 4. Configuration Options

../../_static/config_samples/neutron-agent.conf.sample
../../_static/config_samples/bagpipe-bgp.conf.sample

networking-bagpipe Documentation, Release 17.0.1.dev3

(continued from previous page)

Port on which the API server should listen (port value)
Minimum value: 0
Maximum value: 65535
Deprecated group/name - [api]/api_port
#port = 8082

[bgp]

#
From networking_bagpipe.bgp_common
#

IP address used for BGP peerings (interface address value)
#local_address = <None>

IP addresses of BGP peers (list value)
#peers =

Our BGP Autonomous System (integer value)
Minimum value: 1
Maximum value: 65535
#my_as = <None>

Enable RT Constraint (RFC4684) (boolean value)
#enable_rtc = true

TCP port of connections to BGP peers (port value)
Minimum value: 0
Maximum value: 65535
#bgp_port = 179

[common]

#
From networking_bagpipe.run_command
#

Root helper command. (string value)
#root_helper = sudo

Root helper daemon application to use when possible. (string value)
#root_helper_daemon = <None>

[dataplane_driver_evpn]

(continues on next page)

4.2. Sample Configuration Files 31

networking-bagpipe Documentation, Release 17.0.1.dev3

(continued from previous page)

#
From networking_bagpipe.dataplane.evpn
#

IP address to use as next-hop in our route advertisements, will be used to
send us VPN traffic (interface address value)
#dataplane_local_address = <None>

Dataplane driver. (string value)
#dataplane_driver = dummy

[dataplane_driver_ipvpn]

#
From networking_bagpipe.dataplane.ipvpn
#

IP address to use as next-hop in our route advertisements, will be used to
send us VPN traffic (interface address value)
#dataplane_local_address = <None>

Dataplane driver. (string value)
#dataplane_driver = dummy

More dataplane configuration parameters exist depending on the driver:

Sample [DATAPLANE_DRIVER_EVPN] with driver=linux

This sample configuration can also be viewed in the raw format.

[DEFAULT]

[dataplane_driver_evpn]

#
From networking_bagpipe.dataplane.evpn.linux_vxlan
#

UDP port toward which send VXLAN traffic (defaults to standard IANA-
↪→allocated
port) (integer value)
#vxlan_dst_port = 4789

32 Chapter 4. Configuration Options

../../_static/config_samples/dataplane-evpn-linux-vxlan.conf.sample

networking-bagpipe Documentation, Release 17.0.1.dev3

Sample [DATAPLANE_DRIVER_IPVPN] with driver=linux

This sample configuration can also be viewed in the raw format.

[DEFAULT]

[dataplane_driver_ipvpn]

#
From networking_bagpipe.dataplane.ipvpn.mpls_linux
#

Interface used to send/receive MPLS traffic. Use '*gre*' to choose automatic
creation of a tunnel interface for MPLS/GRE encap (string value)
#mpls_interface = <None>

Sample [DATAPLANE_DRIVER_IPVPN] with driver=ovs

This sample configuration can also be viewed in the raw format.

[DEFAULT]

[dataplane_driver_ipvpn]

#
From networking_bagpipe.dataplane.ipvpn.mpls_ovs
#

Interface used to send/receive MPLS traffic. Use '*gre*' to choose automatic
creation of a tunnel port for MPLS/GRE encap (string value)
#mpls_interface = <None>

Options, comma-separated, passed to OVS for GRE tunnel port creation (e.g.
'packet_type=legacy_l3, ...') that will be added as OVS tunnel interface
options (e.g. 'options:packet_type=legacy_l3 options:...') (list value)
#gre_tunnel_options =

Force the use of MPLS/GRE even with mpls_interface specified (string value)
Possible values:
auto - <No description provided>
True - <No description provided>
False - <No description provided>
Advanced Option: intended for advanced users and not used
by the majority of users, and might have a significant
effect on stability and/or performance.
#mpls_over_gre = auto

Activate ARP responder per VRF for any IP address (boolean value)
(continues on next page)

4.2. Sample Configuration Files 33

../../_static/config_samples/dataplane-ipvpn-mpls-linux.conf.sample
../../_static/config_samples/dataplane-ipvpn-mpls-ovs.conf.sample

networking-bagpipe Documentation, Release 17.0.1.dev3

(continued from previous page)

Advanced Option: intended for advanced users and not used
by the majority of users, and might have a significant
effect on stability and/or performance.
#proxy_arp = false

ARP responder per VRF (boolean value)
Advanced Option: intended for advanced users and not used
by the majority of users, and might have a significant
effect on stability and/or performance.
#arp_responder = false

Be ready to receive VPN traffic as VXLAN, and to preferrably send traffic as
VXLAN when advertised by the remote end (boolean value)
Advanced Option: intended for advanced users and not used
by the majority of users, and might have a significant
effect on stability and/or performance.
#vxlan_encap = false

(string value)
Advanced Option: intended for advanced users and not used
by the majority of users, and might have a significant
effect on stability and/or performance.
#ovs_bridge = br-mpls

(integer value)
Advanced Option: intended for advanced users and not used
by the majority of users, and might have a significant
effect on stability and/or performance.
#input_table = 0

(integer value)
Advanced Option: intended for advanced users and not used
by the majority of users, and might have a significant
effect on stability and/or performance.
#ovs_table_id_start = 1

OVS interface name for MPLS/GRE encap (string value)
Advanced Option: intended for advanced users and not used
by the majority of users, and might have a significant
effect on stability and/or performance.
#gre_tunnel = mpls_gre

(integer value)
Advanced Option: intended for advanced users and not used
by the majority of users, and might have a significant
effect on stability and/or performance.
#ovsbr_interfaces_mtu = <None>

Can be used to control the OVS group bucket selection method (mapped to ovs

(continues on next page)

34 Chapter 4. Configuration Options

networking-bagpipe Documentation, Release 17.0.1.dev3

(continued from previous page)

'selection_method') (string value)
Possible values:
hash - <No description provided>
dp_hash - <No description provided>
Advanced Option: intended for advanced users and not used
by the majority of users, and might have a significant
effect on stability and/or performance.
#hash_method = dp_hash

Can be used to control the OVS group bucket selection method (mapped to ovs
'selection_method_param') (string value)
Advanced Option: intended for advanced users and not used
by the majority of users, and might have a significant
effect on stability and/or performance.
#hash_method_param = 0

Can be used to control the fields used by the OVS group bucket selection
method (mapped to ovs 'fields') (list value)
Advanced Option: intended for advanced users and not used
by the majority of users, and might have a significant
effect on stability and/or performance.
#hash_fields =

4.2. Sample Configuration Files 35

networking-bagpipe Documentation, Release 17.0.1.dev3

36 Chapter 4. Configuration Options

CHAPTER

FIVE

DEVELOPMENT

5.1 Contributing

If you would like to contribute to the development of OpenStack, you must follow the steps in this page:
https://docs.openstack.org/infra/manual/developers.html

Once those steps have been completed, changes to OpenStack should be submitted for review via the
Gerrit tool, following the workflow documented at: https://docs.openstack.org/infra/manual/developers.
html#development-workflow

Pull requests submitted through GitHub will be ignored.

Bugs should be filed on Launchpad, not GitHub: https://bugs.launchpad.net/networking-bagpipe

37

https://docs.openstack.org/infra/manual/developers.html
https://docs.openstack.org/infra/manual/developers.html#development-workflow
https://docs.openstack.org/infra/manual/developers.html#development-workflow
https://bugs.launchpad.net/networking-bagpipe

	Overview
	Using BaGPipe
	Design overview
	Applications
	Neutron networks (ML2)
	Neutron BGPVPN Interconnection
	Service Chaining (SFC)
	Work in progress and future applications

	BaGPipe-BGP
	Typical Use/deployment
	BGP and Route Reflection
	Configuration
	Dataplane driver configuration

	Usage
	BaGPipe-BGP local service
	BaGPipe Fake BGP Route Reflector
	REST API tool for interface attachments
	IP VPN example with a VM tap interface
	Another IP VPN example…
	An E-VPN example

	Looking glass

	Design overview
	Publish/Subscribe design
	Best path selection
	Multi-threading
	Non-persistency of VPN and port attachments
	BGP Implementation
	Dataplanes

	Caveats

	Installation
	Networking-bagpipe installation
	BaGPipe for Neutron L2
	Installation in a devstack test/development environment
	Deployment

	BaGPipe for BGPVPN
	BaGPipe for networking-sfc
	In a devstack

	Configuration Options
	Configuration Reference
	Neutron config
	SFC
	sfc_bagpipe

	Neutron agent config
	bagpipe
	bagpipe_ml2_extension

	bagpipe-bgp.conf
	api
	bgp
	common
	dataplane_driver_evpn
	dataplane_driver_ipvpn
	[DATAPLANE_DRIVER_EVPN] with driver=linux
	dataplane_driver_evpn

	[DATAPLANE_DRIVER_IPVPN] with driver=linux
	dataplane_driver_ipvpn

	[DATAPLANE_DRIVER_IPVPN] with driver=ovs
	dataplane_driver_ipvpn

	Sample Configuration Files
	Sample Neutron agent config
	Sample bagpipe-bgp.conf
	Sample [DATAPLANE_DRIVER_EVPN] with driver=linux
	Sample [DATAPLANE_DRIVER_IPVPN] with driver=linux
	Sample [DATAPLANE_DRIVER_IPVPN] with driver=ovs

	Development
	Contributing

