Manila Developer Documentation
Release 12.1.3.dev46

Manila contributors

Feb 09, 2024

3

CONTENTS

1 What is Manila? 1
2 For end users 3
2.1 ToolsforusingManila 3
2010 USer . . oo e e e e e 3
Create and manage shares, 3

Create and manage share networks oL L. 31

Create and manage share network subnets 44
Troubleshooting asynchronous failures 47

22 Usingthe Manila APL e 57
For operators 59
3.1 InstallingManila e 59
3.1.1 Inmstallation Tutorial 59
Service OVErview o o vt e e e 59

Install and configure controllernode 60

Install and configure asharenode 81

Verify operation e e e 116

Creating and using shared file systems 116

NEXESIEPS & v v v v v o e 126

3.2 Administrating Manila oL o 127
32,1 AdminGuide 127
Keyconcepts o e 127

Share management L. 130

Share types« . . e e 157

Share group types v v v i e e e e e e e e e e e e 162

Share groups L 165

Share snapshots 172

Share Servers e e e e e e 175

Share server management e e e e e 175

Share server limits (Since Wallaby release) 178

Security SErviCes v v i i e e e e e e e e 178

Share migration e e e e e e e e e e 181

Share replication 186
Multi-storage configurationo . 197

Networking o e 199
Troubleshoot Shared File Systems service 207

Profiling the Shared File Systems service 209

Upgrading the Shared File System service 212

Share reverttosnapshot 215

Share server migrationol e 215
Manila share features support mapping 221
Capabilities and Extra-Specs Lo oL 225

Group Capabilities and group-specs v v v v v i e 229
Export Location Metadata, 229
Supported share backends 230

33 Reference L e 363
33,1 Configuration o e e e e e e e 363
Introduction to the Shared File Systems service 363
Shared File Systems API configuration 364

Share drivers e 366

Log files used by Shared File Systems 453
Additional options e 453
Shared File Systems service sample configuration files 460

3.3.2 Command Line Interface, 463
Shared File Systems service (manila) command-line client 463
manila-manage 510
manila-status L L e e e e 513

3.4 Additional reSOUICeso e e e e e e 514
4 For contributors 515
4.1 Contributor/Developer Guide e 515
4.1.1 BasicInformation L 515
So You Want to Contributeo 515

4.1.2 Programming HowTos and Tutorials 519
Setting Up a Development Environment 519
Setting up a development environment with devstack 522
Running manila APl withawebserver 526
UnitTests o o o e e 528
Tempest Tests o o o e e e e e e e 529
Adding a Method to the OpenStack Manila API 532
Documenting your work L. 533
Release Notes o o o e 536

Using Commit Message TagsinManila 540

Guru Meditation Reports 540

UsSer MESSAZES « .« v v v v v e e e e e e e e e e e e e e e e e e 542
GaneshaLibrary e 545

4.1.3 Background Concepts formanila 550
Manila System Architecture 550
Threadingmodel 552
Internationalization 553
AMQPandmanila e 553
Manila minimum requirements and features 559
Manila optional requirements and features since Mitaka 562
Manila experimental features since Mitaka 563
Pool-Aware Scheduler Support 565

4.1.4 OtherResources. ittt 569
Project hosting with Launchpad 569

Code Reviews with Gerrit 570
Manila team code review policy 570

Manila Project Team Lead guide 572

4.1.5 APIReference 575
API Microversions i e 575

REST API Version History, 581
Experimental APIs 589

4.1.6 Module Reference 590
Introduction to the Shared File Systems service 590
Services, Managers and Drivers L 0oL, 591

The Database Layer it 594
Shared Filesystems L 628
Manila share driver hooks L oL 675
Authentication and Authorization 000 677
Scheduler 688
Scheduler Filters 695
Scheduler Weighers L 698

Fake Drivers o e e e e e e 700
Common and Misc Libraries 707

Share Replication i e 735
Configure and use driver filter and weighing for scheduler 753

Share Migration v v it e e e e e e e 758

Share Server Migration 767

4.2 Additional reference 776
421 Reference e 776
Glossary e e e e e 776

CHAPTER
ONE

WHAT IS MANILA?

Manila is the OpenStack Shared Filesystems service for providing Shared Filesystems as a service.
Some of the goals of Manila are to be/have:

* Component based architecture: Quickly add new behaviors

* Highly available: Scale to very serious workloads

* Fault-Tolerant: Isolated processes avoid cascading failures

* Recoverable: Failures should be easy to diagnose, debug, and rectify

* Open Standards: Be a reference implementation for a community-driven api

Manila Developer Documentation, Release 12.1.3.dev46

2 Chapter 1. What is Manila?

CHAPTER
TWO

FOR END USERS

As an end user of Manila, youll use Manila to create a remote file system with either tools or the API
directly: python-manilaclient, or by directly using the REST API.

2.1 Tools for using Manila

Contents:

2.1.1 User

Create and manage shares

* General Concepts

* Usage and Limits

* Share types

» Share networks

* Create a share

* Allow read-write access

* Allow read-only access

* Update access rules metadata
* Deny access

* Create snapshot

* Create share from snapshot
* Delete share

* Delete snapshot

» Extend share

» Shrink share

e Share metadata

Share revert to snapshot

https://docs.openstack.org/python-manilaclient/latest/
https://docs.openstack.org/api-ref/shared-file-system/

Manila Developer Documentation, Release 12.1.3.dev46

.

General Concepts

A share is filesystem storage that you can create with manila. You can pick a network protocol for
the underlying storage, manage access and perform lifecycle operations on the share via the manila
command line tool.

Before we review the operations possible, lets take a look at certain important terms:

* share network: This is a network that your shares can be exported to. Exporting shares to
your own self-service isolated networks allows manila to provide hard network path data
isolation guarantees in a multi-tenant cloud. To do so, under the hood, manila creates isolated
share servers, and plugs them into your network. These share servers manage exports of
your shares, and can connect to authentication domains that you determine. Manila performs
all the lifecycle operations necessary on share servers, and you neednt worry about them. The
important thing to note is that your cloud administrator must have made a share type with extra-
spec driver_handles_share_servers=True for you to be able to use share networks
and create shares on them. See Create and manage share networks and Create and manage share
network subnets for more details.

* share type: A share type is a template made available by your administrator. You must always
specify a share type when creating a share, unless you would like to use the default share type. Its
possible that your cloud administrator has not made a default share type accessible to you. Share
types specify some capabilities for your use:

Capability Possible values Consequence
driver_handles_share_setvaesor false you can or cannot use share networks to create
shares
snapshot_support true or false you can or cannot create snapshots of shares
cre- true or false you can or cannot create clones of share snapshots
ate_share_from_snapshot_support
re- true or false you can or cannot revert your shares in-place to the
vert_to_snapshot_support most recent snapshot
mount_snapshot_supparttrue or false you can or cannot export your snapshots and
mount them
replication_type dr you can create replicas for disaster recovery, only
one active export allowed at a time
readable you can create read-only replicas, only one
writable active export allowed at a time
writable you can create read/write replicas, any number of
active exports per share
availability_zones a list of one or more | shares are limited to these availability zones
availability zones

Note:

* When replication_type extra specification is not present in the share type, you cannot
create share replicas

4 Chapter 2. For end users

Manila Developer Documentation, Release 12.1.3.dev46

* When the availability_zones extra specification is not present in the share type, the share
type can be used in all availability zones of the cloud.

* status of resources: Resources that you create or modify with manila may not be available
immediately. The API service is designed to respond immediately and the resource being created
or modified is worked upon by the rest of the service stack. To indicate the readiness of resources,
there are several attributes on the resources themselves and the user can watch these fields to
know the state of the resource. For example, the status attribute in shares can convey some
busy states such as creating, extending, shrinking, migrating. These -ing states end in a available
state if everything goes well. They may end up in an error state in case there is an issue. See
Troubleshooting asynchronous failures to determine if you can rectify these errors by yourself. If
you cannot, consulting a more privileged user, usually a cloud administrator, might be useful.

* snapshot: This is a point-in-time copy of a share. In manila, snapshots are meant to be crash
consistent, however, you may need to quiesce any applications using the share to ensure that the
snapshots are application consistent. Cloud administrators can enable or disable snapshots via
share type extra specifications.

* security service: This is an authentication domain that you define and associate with your
share networks. It could be an Active Directory server, a Lightweight Directory Access Proto-
col server, or Kerberos. When used, access to shares can be controlled via these authentication
domains. You may even combine multiple authentication domains.

Usage and Limits

* List the resource limits and usages that apply to your project

manila absolute-limits

2.1. Tools for using Manila 5

Manila Developer Documentation, Release 12.1.3.dev46

Share types

* List share types

manila type-list

!

!

!

!

!

!

!

I

!

!

!

!

!

!

!

!

!

!

)

!

!

!

!

!

!

!

!

I

!

—

—

!

—

(continues on next page)

6 Chapter 2. For end users

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

!

!

!

!

!

!

!

!

Share networks

¢ Create a share network.

manila share—-network-create

el

!

R A el

A A

R A

—

[

(continues on next page)

N

—

[

2.1. T&ols for using Manila 7

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

el R

!

el !

!

Ll

L A

Note: This Manila API does not validate the subnet information you supply right away. The
validation is performed when creating a share with the share network. This is why, you do not
see some subnet information populated on the share network resource until at least one share is
created with it.

e List share networks.

manila share—-network-1list

8 Chapter 2. For end users

Manila Developer Documentation, Release 12.1.3.dev46

Create a share

¢ Create a share

Note: If you wuse a share type that has the extra specification
driver_handles_share_servers=False, you cannot use a share network to cre-
ate your shares.

manila create NFS 1

[

(continues on next page)

2.1. Tools for using Manila 9

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

[

¢ Show a share.

manila show myshare

!

!

!

!

!

!

!

!

!

!

!

!

!

!

[

(continues on next page)

!

10 Chapter 2. For end users

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

I

!

!

!

!

!

!

[

!

—

!

(continues on next page)

2.1. Tools for using Manila 11

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

!

!

!

!

!

!

!

!

!

!

!

e List shares.

manila list

!

!

!

!

!

!

!

!

List share export locations.

manila share-export-location-list myshare

!

!

!

!

(continues on next page)

12 Chapter 2. For end users

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

!

!

!

!

Allow read-write access

e Allow access.

manila access-allow myshare ip 10.0.0.0/24 --metadata valuel

Note: Since API version 2.38, access rules of type IP supports IPv6 addresses and subnets in
CIDR notation.

Note: Since API version 2.45, metadata can be added, removed and updated for share access
rules in a form of key=value pairs. Metadata can help you identify and filter access rules.

e List access.

manila access-1list myshare

!

!

!

!

!

!

—

!

(continues on next page)

!

2.1. Tools for using Manila 13

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

!

!

An access rule is created.

Allow read-only access

e Allow access.

manila access—-allow myshare ip fd31l:7ee0:3ded:adlb::/64 —--access-—
—~level ro

e List access.

manila access-1list myshare

!

!

!

!

!

!

!

Another access rule is created.

14 Chapter 2. For end users

Manila Developer Documentation, Release 12.1.3.dev46

Update access rules metadata

1. Add a new metadata.

manila access-metadata 0c8470ca-0d77-490c-9e71-29el1£453b£f97 set |
[value?2
manila access—-show 0c8470ca-0d77-490c—-9e71-29e1£453bf97

2. Remove a metadata key value.

manila access-metadata 0c8470ca-0d77-490c-9e71-29e1f453bf97 unset
<—>key
manila access—-show 0c8470ca-0d77-490c-9e71-29e1£453bf97

Deny access

* Deny access.

manila access-deny myshare 45b0a030-306a-4305-9e2a-36aeffb2d5b7
manila access—-deny myshare e30bde96-9217-4£f90-afdc-27c092aflc77

List access.

manila access-1list myshare

(continues on next page)

2.1. Tools for using Manila 15

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

The access rules are removed.

Create snapshot

* Create a snapshot.

Note: To create a snapshot, the share type of the share must contain the capability extra-spec
snapshot_support=True.

manila snapshot-create —--name mysnapshot —--description
< myshare

List snapshots.

manila snapshot-list

16 Chapter 2. For end users

Manila Developer Documentation, Release 12.1.3.dev46

Create share from snapshot

* Create a share from a snapshot.

Note: To create a share from a snapshot, the share type of the parent share must contain the
capability extra-spec create_share_from_snapshot_support=True.

manila create NFS 1

—

(continues on next page)

2.1. Tools for using Manila 17

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

[

e List shares.

manila list

!

!

!

!

!

!

!

!

!

* Show the share created from snapshot.

manila show mysharefromsnap

!

!

!

!

!

!

—

(continues on next page)

18 Chapter 2. For end users

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

I

!

!

!

!

!

!

[

!

—

!

(continues on next page)

2.1. Tools for using Manila 19

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

I

!

!

!

!

20 Chapter 2. For end users

Manila Developer Documentation, Release 12.1.3.dev46

Delete share

¢ Delete a share.

manila delete mysharefromsnap

List shares.

manila list

!

!

!

!

!

!

I

!

!

The share is being deleted.

Delete snhapshot

* Delete a snapshot.

manila snapshot-delete mysnapshot

* List snapshots after deleting.

manila snapshot-list

The snapshot is deleted.

2.1. Tools for using Manila 21

Manila Developer Documentation, Release 12.1.3.dev46

Extend share

¢ Extend share.

manila extend myshare 2

» Show the share while it is being extended.

manila show myshare

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

—

!

(continues on next page)

22 Chapter 2. For end users

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

I

!

!

!

!

!

!

!

—

!

(continues on next page)

2.1. Tools for using Manila 23

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

!

!

!

!

Show the share after it is extended.

manila show myshare

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

[

!

!

(continues on next page)

24

Chapter 2. For end users

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

I

!

!

!

!

!

!

[

!

—

!

(continues on next page)

2.1. Tools for using Manila 25

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

!

!

!

!

!

!

Shrink share

e Shrink a share.

manila shrink myshare 1

* Show the share while it is being shrunk.

manila show myshare

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

I

—

!

(continues on next page)

26 Chapter 2. For end users

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

I

!

!

!

!

!

!

[

!

—

!

(continues on next page)

2.1. Tools for using Manila 27

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

!

!

!

!

!

!

!

!

!

!

!

» Show the share after it is being shrunk.

manila show myshare

!

!

!

!

!

!

!

!

!

!

!

!

!

[

!

(continues on next page)

!

28 Chapter 2. For end users

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

I

!

!

!

!

!

!

[

!

—

!

(continues on next page)

2.1. Tools for using Manila 29

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

!

!

!

!

!

!

!

!

!

!

!

!

!

Share metadata

* Set metadata items on your share

manila metadata myshare set
. 2020

¢ Show share metadata

manila metadata-show myshare

* Query share list with metadata

manila list —-metadata 2020

!

!

—

(continues on next page)

30 Chapter 2. For end users

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

!

!

!

!

!

Unset share metadata

manila metadata myshare unset year_started

Share revert to shapshot

 Share revert to snapshot

Note:

— To revert a share to its snapshot, the share type of the share must contain the capability
extra-spec revert_to_snapshot_support=True.

— The revert operation can only be performed to the most recent available snapshot of the share
known to manila. If revert to an earlier snapshot is desired, later snapshots must explicitly
be deleted.

manila revert-to-snapshot mysnapshot

Create and manage share networks

* Create share networks

e List share networks

* Update share networks

* Share network show

* Add security service/s

* List share network security services

* Remove a security service from a share network

* Delete share networks

* Update share network security service check (Since API version 2.63)

* Update share network security services (Since API version 2.63)

e Add share network security service check (Since API version 2.63)

2.1. Tools for using Manila 31

Manila Developer Documentation, Release 12.1.3.dev46

A share network stores network information to create and manage shares. A share network provides a
way to designate a network to export shares upon. In the most common use case, you can create a share
network with a private OpenStack (neutron) network that you own. If the share network is an isolated
network, manila can provide hard guarantees of network and data isolation for your shared file systems
in a multi-tenant cloud. In some clouds, however, shares cannot be exported directly upon private project
networks; and the cloud may have provider networks that are designated for use with share networks.

In either case, as long as the underlying network is connected to the clients (virtual machines, containers
or bare metals), there will exist a direct path to communicate with shares exported on the share networks.

Important: In order to use share networks, the share type you choose must have the extra specification
driver handles_share_servers set to True.

Create share networks

1. Create a share network.

manila share—-network-create

2. Show the created share network.

manila share—-network-show sharenetworkl

(continues on next page)

32 Chapter 2. For end users

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

Note: Since API version 2.51, a share network is able to span multiple subnets in different
availability zones and the network information will be stored on each subnet. To accommodate
adding multiple subnets, the share network create command was updated to accept an availability
zone as parameter. This parameter will be used in the share network creation process which
also creates a new subnet. If you do not specify an availability zone, the created subnet will be
considered default by the Shared File Systems service. A default subnet is expected to be available
in all availability zones of the cloud. So when you are creating a share network, the output will be
similar to:

manila share—-network-create

!

!

Ford

il

el

!

el

ol

[

!

(continues on next page)

[

2.1. Tools for using Manila 33

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

ol ol

R A

el

List share networks

1. List share networks.

manila share-network-list

Update share networks

1. Update the share network data.

manila share-network-update sharenetworkl

(continues on next page)

34 Chapter 2. For end users

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

2. Show details of the updated share network.

manila share—-network-show sharenetworkl

Note: You cannot update the neutron_net_id and neutron_subnet_id of a share net-
work that has shares exported onto it.

Note: From API version 2.51, updating the neutron_net_id and neutron_subnet_id
is possible only for a default subnet. Non default subnets cannot be updated after they are created.
You may delete the subnet in question, and re-create it. The output will look as shown below:

manila share-network-update sharenetworkl

U

el

ol

(continues on next page)
<

2.1. Tools for using Manila 35

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

! ! oLl

A R A

R

el

R R A

L

Ll

(continues on next page)

36

Chapter 2. For end users

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

oLl

!

!

Share network show

1. Show details of a share network.

manila share—-network-show sharenetworkl

Note: Since API version 2.51, the share—-network—-show command also shows a list of
subnets contained in the share network as show below.

el

!

R

R A

(continues on next page)

—

2.1. Tools for using Manila 37

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

! ! ol

A R A

R

el

R R A

Ll

U

38

Chapter 2. For end users

Manila Developer Documentation, Release 12.1.3.dev46

Note: Since API version 2.63, the share—network—-show command also shows the status
and security_service_update_support fields.

A

R

el A R

L

el

N

—

[

[

(continues on next page)

L

—

2.1. Tools for using Manila 39

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

[}

! ! ol

el

A

R

R

Add security service/s

1. Add a pre existent security service in a given share network.

manila share-network-security-service-add

manila share-network-security-service-list sharenetworkl

40 Chapter 2. For end users

Manila Developer Documentation, Release 12.1.3.dev46

Note: Since API version 2.63, manila supports adding security services to share networks that al-
ready are in use, depending on the share networks support. The share network entity now contains
a field called security_service_update_support which holds information whether all re-
sources built within it can hold such operation. Before starting the operation to actually add the security
service to a share network that is being used, a check operation must be triggered. See subsection.

List share network security services

1. List all the security services existent in a share network.

manila share-network-security-service-list sharenetworkl

Remove a security service from a share network

1. Remove a security service from a given share network.

manila share-network-security-service-remove

manila share—-network-security-service-list sharenetworkl

Delete share networks

1. Delete a share network.

manila share—-network-delete sharenetworkl

2. List all share networks

manila share—-network-list

2.1. Tools for using Manila 41

Manila Developer Documentation, Release 12.1.3.dev46

Update share network security service check (Since API version 2.63)

1. Check if the update for security services of the same type can be performed:

manila share-network-security-service-update-check

!

!

!

!

!

!

!

2. Check the result of the operation:

manila share-network-security-service-update-check

!

!

!

!

!

!

!

!

!

Now, the request to update a share network security service should be accepted.

42 Chapter 2. For end users

Manila Developer Documentation, Release 12.1.3.dev46

Update share network security services (Since API version 2.63)

1. Replaces one security service for another of the same type.

manila share-network-security-service-update

manila share-network-security-service-list sharenetworkl

Note: The share network entity now contains a field called
security_service_update_support which holds information whether all resources built
within it can hold such operation. In order to update security services in share networks that currently
contain shares, an operation to check if the operation can be completed must be performed. See
subsection.

Add share network security service check (Since API version 2.63)

1. Check if it is possible to add a security service to a share network:

manila share-network-security-service-add-check

!

!

!

!

!

!

!

!

!

!

!

2. Check if the result of the operation:

2.1. Tools for using Manila 43

Manila Developer Documentation, Release 12.1.3.dev46

manila share-network-security-service-add-check

!

!

!

!

!

!

!

!

!

!

Create and manage share network subnets

* Create a subnet in an existing share network

e Show a share network subnet

¢ Delete a share network subnet

A share network subnet stores network information to create and manage shares. To create and manage
your share network subnets, you can use manila client commands. You can create multiple subnets
in a share network, and if you do not specify an availability zone, the subnet you are creating will be
considered default by the Shared File Systems service. The default subnet spans all availability zones.
You cannot have more than one default subnet per share network.

Important: In order to use share networks, the share type you choose must have the extra specification
driver handles_share_servers setto True.

Create a subnet in an existing share network

1. Create a subnet related to the given share network

manila share—-network-subnet-create

(continues on next page)

44 Chapter 2. For end users

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

2. Show the share network to verify if the created subnet is attached

manila share—-network-show sharenetworkl

R R A

R A R A

el

Ll

!

(continues on next page)

2.1. Tools for using Manila 45

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

el R

!

el !

!

el

L A

Show a share network subnet

1. Show an existent subnet in a given share network

manila share—-network-subnet-show

(continues on next page)

46 Chapter 2. For end users

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

Delete a share network subnet

1. Delete a specific share network subnet

manila share—-network-subnet-delete

2. Verify that it has been deleted

manila share—-network-show sharenetworkl

Troubleshooting asynchronous failures

The Shared File Systems service performs many user actions asynchronously. For example, when a new
share is created, the request is immediately acknowledged with a response containing the metadata of
the share. Users can then query the resource and check the st atus attribute of the share. Usually an .
. . 1ng status indicates that actions are performed asynchronously. For example, a new shares status
attribute is set to creating by the service. If these asynchronous operations fail, the resources status
will be set to error. More information about the error can be obtained with the help of the CLI client.

Scenario

In this example, the user wants to create a share to host software libraries on several virtual machines.
The example deliberately introduces two share creation failures to illustrate how to use the command
line to retrieve user support messages.

1. In order to create a share, you need to specify the share type that meets your requirements. Cloud
administrators create share types; see these available share types:

manila type-list

!

!

[}

J

(continues on next page)

{

2.1. Tools for using Manila 47

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

In this example, two share types are available.

2. To use a share type that specifies driver_handles_share_servers=True capability, you must create
a share network on which to export the share.

openstack subnet list

3. Create a share network from a private tenant network:

manila share-network-create —--name mynet --
—neutron-net-id 74d5cfb3-5dd0-43f7-b1lb2-5b544cb16212 —--neutron-—
—subnet-id 78cbac57-bba7-4922-ab81-16cde31c2d06

(continues on next page)

48 Chapter 2. For end users

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

manila share—-network-1list

4. Create the share:

manila create nfs 1 --name software_share —--
—share—-network mynet —--share-type dhss_true

[

< (continues on next page)

2.1. Tools for using Manila 49

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

[

5. View the status of the share:

!

!

!

!

!

!

manila list

50

Chapter 2. For end users

Manila Developer Documentation, Release 12.1.3.dev46

In this example, an error occurred during the share creation.

6. To view the generated user message, use the message-1list command. Use
——resource—id to filter messages for a specific share resource.

manila message-list

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

In User Message column, you can see that the Shared File System service failed to create the share
because of a capabilities mismatch.

7. To view more information, use the me s sage—show command, followed by the ID of the message
from the message-list command:

manila message-show 7d411c3c-46d9-433f-9e21-
—c04ca30b209c

(continues on next page)

2.1. Tools for using Manila 51

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

[

As the cloud user, you know the related specs your share type has, so you can review
the share types available. The difference between the two share types is the value of
driver_handles_share_servers:

manila type-list

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

8. Create a share with the other available share type:

manila create nfs 1 —--name software_share —-
—share-network mynet --share-type dhss_false

(continues on next page)

52 Chapter 2. For end users

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

[

(continues on next page)

2.1. Tools for using Manila 53

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

In this example, the second share creation attempt fails.

9. View the user support message:

manila list

!

!

!

!

!

!

!

!

!

manila message-list

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

You can see that the service does not expect a share network for the share type used. Without
consulting the administrator, you can discover that the administrator has not made available a
storage back end that supports exporting shares directly on to your private neutron network.

54 Chapter 2. For end users

Manila Developer Documentation, Release 12.1.3.dev46

10. Create the share without the ——share-network parameter:

manila create nfs 1 —--name software_share —-
—share-type dhss_false

[

(continues on next page)

2.1. Tools for using Manila 55

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

11. To ensure that the share was created successfully, use the manila list command:

12.

!

!

!

!

!

!

!

!

!

!

manila list

Delete shares that failed to be created and corresponding support messages:

manila delete 2d03d480-7cba-4122-ac9d-

—edc59c8df698 243£3a51-0624-4bdd-950e-7ed190b53b67

!

!

!

!

!

!

!

!

!

!

!

manila message-list

—

!

(continues on next page)

56

Chapter 2. For end users

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

!

!

!

manila message—-delete ed7e02a2-0cdb-4£f£f9-b64df-
—edd2eclef069 7d411c3c-46d9-433f-9e21-c04ca30b209c

manila message-list

2.2 Using the Manila API

All features of Manila are exposed via a REST API that can be used to build more complicated logic or
automation with Manila. This can be consumed directly or via various SDKs. The following resources
can help you get started consuming the API directly:

e Manila API

* Manila microversion history

2.2. Using the Manila API 57

https://docs.openstack.org/api-ref/shared-file-system/

Manila Developer Documentation, Release 12.1.3.dev46

58

Chapter 2. For end users

CHAPTER
THREE

FOR OPERATORS

This section has details for deploying and maintaining Manila services.

3.1 Installing Manila

Manila can be configured standalone using the configuration setting auth_strategy = noauth,
but in most cases you will want to at least have the Keystone Identity service and other OpenStack
services installed.

3.1.1 Installation Tutorial
Service Overview

The OpenStack Shared File Systems service (manila) provides file storage to a virtual machine. The
Shared File Systems service provides an abstraction for managing and provisioning of file shares. The
service also enables management of share types as well as share snapshots if a driver supports them.

The Shared File Systems service consists of the following components:
manila-api A WSGI app that authenticates and routes requests to the Shared File Systems service.

manila-data A standalone service whose purpose is to process data operations such as copying, share
migration or backup.

manila-scheduler Schedules and routes requests to the appropriate share service. The scheduler uses
configurable filters and weighers to route requests. The Filter Scheduler is the default and en-
ables filters on various attributes of back ends, such as, Capacity, Availability Zone and other
capabilities.

manila-share Manages back-end devices that provide shared file systems. A manila-share service talks
to back-end devices by using share back-end drivers as interfaces. A share driver may operate in
one of two modes, with or without handling of share servers. Share servers export file shares via
share networks. When share servers are not managed by a driver within the shared file systems
service, networking requirements should be handled out of band of the shared file systems service.

Messaging queue Routes information between the Shared File Systems processes.

For more information, see Configuration Reference Guide.

59

https://docs.openstack.org/keystone/latest/install/
https://docs.openstack.org/latest/install/
https://docs.openstack.org/latest/install/
https://docs.openstack.org/manila/latest/configuration/shared-file-systems/overview.html

Manila Developer Documentation, Release 12.1.3.dev46

Install and configure controller node

This section describes how to install and configure the Shared File Systems service, code-named manila,
on the controller node. This service requires at least one additional share node that manages file storage
back ends.

This section assumes that you already have a working OpenStack environment with at least the following
components installed: Compute, Image Service, Identity.

Note that installation and configuration vary by distribution.

Install and configure controller node on openSUSE and SUSE Linux Enterprise

This section describes how to install and configure the Shared File Systems service, code-named manila,
on the controller node that runs openSUSE and SUSE Linux Enterprise. This service requires at least
one additional share node that manages file storage back ends.

Prerequisites

Before you install and configure the Shared File Systems service, you must create a database, service
credentials, and API endpoints.

1. To create the database, complete these steps:

¢ Use the database access client to connect to the database server as the root user:

mysgl —u root -p

Create the manila database:

Grant proper access to the manila database:

Replace MANILA_DBPASS with a suitable password.
* Exit the database access client.

2. Source the admin credentials to gain access to admin CLI commands:

admin-openrc.sh

3. To create the service credentials, complete these steps:

e Create amanila user:

openstack user create —--domain default --password-prompt manila

(continues on next page)

60 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

¢ Add the admin role to the manila user:

openstack role add —--project service —--user manila admin

Note: This command provides no output.

¢ Create the manila and manilav?2 service entities:

openstack service create —--name manila

openstack service create —-—-name manilav?2

Note: The Shared File Systems services require two service entities.

4. Create the Shared File Systems service API endpoints:

openstack endpoint create —--region RegionOne

(continues on next page)

3.1. Installing Manila 61

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

openstack endpoint create —--region RegionOne
openstack endpoint create --region RegionOne
openstack endpoint create —--region RegionOne

(continues on next page)

62

Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

openstack endpoint create —--region RegionOne

openstack endpoint create —--region RegionOne

Note: The Shared File Systems services require endpoints for each service entity.

Install and configure components

1. Install the packages:

zypper install openstack-manila-api openstack-manila-scheduler
—python-manilaclient

2. Editthe /etc/manila/manila.conf file and complete the following actions:

* Inthe [database] section, configure database access:

(continues on next page)

3.1. Installing Manila 63

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

Replace MANILA_DBPASS with the password you chose for the Shared File Systems
database.

3. Complete the rest of the configuration in manila.conf:

* Inthe [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMO.

* Inthe [DEFAULT] section, set the following config values:

Important: The default_share_type option specifies the default share type to be
used when shares are created without specifying the share type in the request. The default
share type that is specified in the configuration file has to be created with the necessary
required extra-specs (such as driver_handles_share_servers) set appropriately
with reference to the driver mode used. This is further explained in the section discussing
the setup and configuration of the share node.

e In the [DEFAULT] and [keystone_authtoken] sections, configure Identity service
access:

Replace MANILA_PASS with the password you chose for the manila user in the Identity
service.

64 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

* In the [DEFAULT] section, configure the my__ip option to use the management interface
IP address of the controller node:

Inthe [oslo_concurrency] section, configure the lock path:

Finalize installation

1. Start the Shared File Systems services and configure them to start when the system boots:

systemctl enable openstack-manila-api.service openstack-manila-—
—~scheduler.service

systemctl start openstack-manila-api.service openstack-manila-
—scheduler.service

Install and configure controller node on Red Hat Enterprise Linux and CentOS

This section describes how to install and configure the Shared File Systems service, code-named manila,
on the controller node that runs Red Hat Enterprise Linux or CentOS. This service requires at least one
additional share node that manages file storage back ends.

Prerequisites

Before you install and configure the Shared File Systems service, you must create a database, service
credentials, and API endpoints.

1. To create the database, complete these steps:

¢ Use the database access client to connect to the database server as the root user:

mysgl —-u root -p

Create the manila database:

Grant proper access to the manila database:

Replace MANILA_DBPASS with a suitable password.

3.1. Installing Manila 65

Manila Developer Documentation, Release 12.1.3.dev46

» Exit the database access client.

2. Source the admin credentials to gain access to admin CLI commands:

admin-openrc.sh

3. To create the service credentials, complete these steps:

e Create amanila user:

openstack user create --domain default --password-prompt manila

¢ Add the admin role to the manila user:

openstack role add —--project service —--user manila admin

Note: This command provides no output.

¢ Create the manila and manilav?2 service entities:

openstack service create —--name manila

openstack service create —--name manilav2

66

Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Note: The Shared File Systems services require two service entities.

4. Create the Shared File Systems service API endpoints:

openstack endpoint create —--region RegionOne
openstack endpoint create —--region RegionOne
openstack endpoint create —--region RegionOne
openstack endpoint create --region RegionOne

(continues on next page)

3.1. Installing Manila 67

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

openstack endpoint create —--region RegionOne

openstack endpoint create —--region RegionOne

Note: The Shared File Systems services require endpoints for each service entity.

68

Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Install and configure components

1. Install the packages:

yum install openstack-manila python3-manilaclient

2. Editthe /etc/manila/manila.conf file and complete the following actions:

* Inthe [database] section, configure database access:

Replace MANILA_DBPASS with the password you chose for the Shared File Systems
database.

3. Complete the rest of the configuration in manila.conf:

* Inthe [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMOQ.

* Inthe [DEFAULT] section, set the following config values:

Important: The default_share_type option specifies the default share type to be
used when shares are created without specifying the share type in the request. The default
share type that is specified in the configuration file has to be created with the necessary
required extra-specs (such as driver_handles_share_servers) set appropriately
with reference to the driver mode used. This is further explained in the section discussing
the setup and configuration of the share node.

* In the [DEFAULT] and [keystone_authtoken] sections, configure Identity service
access:

(continues on next page)

3.1. Installing Manila 69

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

Replace MANILA_PASS with the password you chose for the manila user in the Identity
service.

* In the [DEFAULT] section, configure the my__ip option to use the management interface
IP address of the controller node:

* Inthe [oslo_concurrency] section, configure the lock path:

4. Populate the Shared File Systems database:

su —-s /bin/sh -c manila

Note: Ignore any deprecation messages in this output.

Finalize installation

1. Start the Shared File Systems services and configure them to start when the system boots:

systemctl enable openstack-manila-api.service openstack-manila-—
—scheduler.service

systemctl start openstack-manila-api.service openstack-manila-
—scheduler.service

70 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Install and configure controller node on Ubuntu

This section describes how to install and configure the Shared File Systems service, code-named manila,
on the controller node that runs Ubuntu. This service requires at least one additional share node that
manages file storage back ends.

Prerequisites

Before you install and configure the Shared File Systems service, you must create a database, service
credentials, and API endpoints.

1. To create the database, complete these steps:

¢ Use the database access client to connect to the database server as the root user:

mysgl —u root -p

Create the manila database:

Grant proper access to the manila database:

Replace MANILA_DBPASS with a suitable password.
* Exit the database access client.

2. Source the admin credentials to gain access to admin CLI commands:

admin-openrc.sh

3. To create the service credentials, complete these steps:

e Create amanila user:

openstack user create —--domain default --password-prompt manila

¢ Add the admin role to the manila user:

3.1. Installing Manila 71

Manila Developer Documentation, Release 12.1.3.dev46

openstack role add —--project service —--user manila admin

Note: This command provides no output.

e Create the manila and manilav?2 service entities:

openstack service create —--name manila

openstack service create —--name manilav2

Note: The Shared File Systems services require two service entities.

4. Create the Shared File Systems service API endpoints:

openstack endpoint create --region RegionOne

openstack endpoint create --region RegionOne

(continues on next page)

72 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

openstack endpoint create --region RegionOne
openstack endpoint create --region RegionOne
openstack endpoint create --region RegionOne

(continues on next page)

3.1. Installing Manila 73

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

openstack endpoint create —--region RegionOne

Note: The Shared File Systems services require endpoints for each service entity.

Install and configure components

1. Install the packages:

apt-get install manila-api manila-scheduler python3-manilaclient

2. Editthe /etc/manila/manila.conf file and complete the following actions:

* Inthe [database] section, configure database access:

Replace MANILA_DBPASS with the password you chose for the Shared File Systems
database.

3. Complete the rest of the configuration in manila.conf:

* Inthe [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

74 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

* Inthe [DEFAULT] section, set the following config values:

Important: The default_share_type option specifies the default share type to be
used when shares are created without specifying the share type in the request. The default
share type that is specified in the configuration file has to be created with the necessary
required extra-specs (such as driver_handles_share_servers) set appropriately
with reference to the driver mode used. This is further explained in the section discussing
the setup and configuration of the share node.

* In the [DEFAULT] and [keystone_authtoken] sections, configure Identity service
access:

Replace MANILA_PASS with the password you chose for the manila user in the Identity
service.

* In the [DEFAULT] section, configure the my_ ip option to use the management interface
IP address of the controller node:

* Inthe [oslo_concurrency] section, configure the lock path:

4. Populate the Shared File Systems database:

3.1. Installing Manila 75

Manila Developer Documentation, Release 12.1.3.dev46

su —-s /bin/sh -c manila

Note: Ignore any deprecation messages in this output.

Finalize installation

1. Restart the Shared File Systems services:

service manila-scheduler restart
service manila-api restart

2. By default, the Ubuntu packages create an SQLite database. Because this configuration uses an
SQL database server, you can remove the SQLite database file:

rm —-f /var/lib/manila/manila.sqglite

Install and configure controller node on Debian

This section describes how to install and configure the Shared File Systems service, code-named manila,
on the controller node that runs a Debian distribution. This service requires at least one additional share
node that manages file storage back ends.

Prerequisites

Before you install and configure the Shared File Systems service, you must create a database, service
credentials, and API endpoints.

1. To create the database, complete these steps:

¢ Use the database access client to connect to the database server as the root user:

mysgl —-u root -p

Create the manila database:

Grant proper access to the manila database:

Replace MANILA_DBPASS with a suitable password.
* Exit the database access client.

2. Source the admin credentials to gain access to admin CLI commands:

76 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

admin-openrc.sh

3. To create the service credentials, complete these steps:

e Create amanila user:

openstack user create —--domain default --password-prompt manila

¢ Add the admin role to the manila user:

openstack role add —--project service —--user manila admin

Note: This command provides no output.

¢ Create the manila and manilav?2 service entities:

openstack service create —--name manila

openstack service create —--name manilav2

Note: The Shared File Systems services require two service entities.

3.1. Installing Manila 77

Manila Developer Documentation, Release 12.1.3.dev46

4. Create the Shared File Systems service API endpoints:

openstack endpoint create —--region RegionOne
openstack endpoint create —--region RegionOne
openstack endpoint create —--region RegionOne
openstack endpoint create --region RegionOne

(continues on next page)

78

Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

openstack endpoint create —--region RegionOne

openstack endpoint create --region RegionOne

Note: The Shared File Systems services require endpoints for each service entity.

3.1. Installing Manila 79

Manila Developer Documentation, Release 12.1.3.dev46

Install and configure components

1. Install the packages:

apt-get install manila-api manila-scheduler python3-manilaclient

2. Editthe /etc/manila/manila.conf file and complete the following actions:

* Inthe [database] section, configure database access:

Replace MANILA_DBPASS with the password you chose for the Shared File Systems
database.

3. Complete the rest of the configuration in manila.conf:

* Inthe [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMOQ.

* Inthe [DEFAULT] section, set the following config values:

Important: The default_share_type option specifies the default share type to be
used when shares are created without specifying the share type in the request. The default
share type that is specified in the configuration file has to be created with the necessary
required extra-specs (such as driver_handles_share_servers) set appropriately
with reference to the driver mode used. This is further explained in the section discussing
the setup and configuration of the share node.

* In the [DEFAULT] and [keystone_authtoken] sections, configure Identity service
access:

(continues on next page)

80

Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

Replace MANILA_PASS with the password you chose for the manila user in the Identity
service.

* In the [DEFAULT] section, configure the my__ip option to use the management interface
IP address of the controller node:

[DEFAULT]

Inthe [oslo_concurrency] section, configure the lock path:

[oslo_concurrency]

4. Populate the Shared File Systems database:

su —-s /bin/sh -c manila

Note: Ignore any deprecation messages in this output.

Finalize installation

1. Restart the Shared File Systems services:

service manila-scheduler restart
service manila-api restart

Install and configure a share node

This section describes how to install and configure a share node for the Shared File Systems service.

Note: The manila-share process can run in two modes, with and without handling of share servers.
Some drivers may support either modes; while some may only support one of the two modes. See the
Configuration Reference to determine if the driver you choose supports the driver mode desired. This
tutorial describes setting up each driver mode using an example driver for the mode.

Note that installation and configuration vary by distribution.

3.1. Installing Manila 81

https://docs.openstack.org/manila/latest/configuration/shared-file-systems/overview.html

Manila Developer Documentation, Release 12.1.3.dev46

Install and configure a share node running openSUSE and SUSE Linux Enterprise

This section describes how to install and configure a share node for the Shared File Systems service.

Note that installation and configuration vary by distribution. This section describes the instructions for
a share node running openSUSE and SUSE Linux Enterprise.

Install and configure components

1. Install the packages:

zypper install openstack-manila-share python-PyMySQL

2. Editthe /etc/manila/manila.conf file and complete the following actions:

* Inthe [database] section, configure database access:

Replace MANILA_DBPASS with the password you chose for the Shared File Systems
database.

4. Complete the rest of the configuration in manila.conf.

* Inthe [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

* Inthe [DEFAULT] section, set the following config values:

Important: The default_share_type option specifies the default share type to be
used when shares are created without specifying the share type in the request. The default
share type that is specified in the configuration file has to be created with the necessary
required extra-specs (such as driver_handles_share_servers) set appropriately
with reference to the driver mode used. This is explained in further steps.

* In the [DEFAULT] and [keystone_authtoken] sections, configure Identity service
access:

82 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Replace MANILA_PASS with the password you chose for the manila user in the Identity
service.

* Inthe [DEFAULT] section, configure the my_ ip option:

Replace MANAGEMENT_INTERFACE_TIP_ADDRESS with the IP address of the manage-
ment network interface on your share node, typically 10.0.0.41 for the first node in the
example architecture shown below:

* Inthe [oslo_concurrency] section, configure the lock path:

Two driver modes

The share node can support two modes, with and without the handling of share servers. The mode
depends on driver support.

Option 1

Deploying the service without driver support for share server management. In this mode, the service
does not do anything related to networking. The operator must ensure network connectivity between
instances and the NAS protocol based server.

This tutorial demonstrates setting up the LVM driver which creates LVM volumes on the share node
and exports them with the help of an NFS server that is installed locally on the share node. It therefore
requires LVM and NFS packages as well as an additional disk for the manila-share LVM volume
group.

This driver mode may be referred to as driver_handles_share_servers = False mode, or
simply DHSS=False mode.

3.1. Installing Manila 83

Manila Developer Documentation, Release 12.1.3.dev46

Hardware Requirements

' 5
Controller Node

' ™

Compute Node 1

1
CPU

ra

8 GB
RAM

2-4+
CPU

8+ GB
RAM

100 GB
Storage

g

2
NIC
A

100+ GB
Storage

g

T e mm mm mm mm e e

i . ! . [
: Object Storage Node 1 1 | Object Storage Node 2 |
1 1
1 1
I 12 4+ GB Lo 1-2 4+ GB :
: CPU RAM | X CPU RAM I
| L :
1 ! 1
'| 100+GB 1 [100+GB 1 I
1 Storage NIC i 1l storage NIC :
1 1
1 : I :
1 ! 1
1 1 : 1
1
i\ ,-I 1 !

Jdevisdb
Idev/sdc

Fig. 1: Hardware requirements

o

_______________ -~

Block Storage Node 1

1-2 4GB
CPU RAM
1

100+ GB
Storage

fdev/sdb
fdev/sdc

NIC

84

Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Option 2

Deploying the service with driver support for share server management. In this mode, the service runs
with a back end driver that creates and manages share servers. This tutorial demonstrates setting up the
Generic driver. This driver requires Compute service (nova), Image service (glance) and Networking
service (neutron) for creating and managing share servers; and Block storage service (cinder) for creating
shares.

The information used for creating share servers is configured with the help of share networks.

This driver mode may be referred to as driver_handles_share_servers = True mode, or
simply DHSS=True mode.

Warning: When running the generic driver in DHSS=True driver mode, the share service should
be run on the same node as the networking service. However, such a service may not be able to run
the LVM driver that runs in DHSS=Fal se driver mode effectively, due to a bug in some distributions
of Linux. For more information, see LVM Driver section in the Configuration Reference Guide.

Choose one of the following options to configure the share driver:

Shared File Systems Option 1: No driver support for share servers management

For simplicity, this configuration references the same storage node configuration for the Block Storage
service. However, the LVM driver requires a separate empty local block storage device to avoid conflict
with the Block Storage service. The instructions use /dev/sdc, but you can substitute a different value
for your particular node.

Prerequisites

Note: Perform these steps on the storage node.

1. Install the supporting utility packages:
* Install LVM and NFS server packages:

zypper install lvm2 nfs—-kernel-server

2. Create the LVM physical volume /dev/sdc:

pvcreate /dev/sdc

3. Create the LVM volume group manila-volumes:

vgcreate manila-volumes /dev/sdc

The Shared File Systems service creates logical volumes in this volume group.

3.1. Installing Manila 85

https://docs.openstack.org/manila/latest/configuration/shared-file-systems/overview.html

Manila Developer Documentation, Release 12.1.3.dev46

4. Only instances can access Shared File Systems service volumes. However, the underlying op-
erating system manages the devices associated with the volumes. By default, the LVM volume
scanning tool scans the /dev directory for block storage devices that contain volumes. If projects
use LVM on their volumes, the scanning tool detects these volumes and attempts to cache them
which can cause a variety of problems with both the underlying operating system and project vol-
umes. You must reconfigure LVM to scan only the devices that contain the cinder-volume
and manila-volumes volume groups. Edit the /etc/1lvm/lvm. conf file and complete the
following actions:

* In the devices section, add a filter that accepts the /dev/sdb and /dev/sdc devices
and rejects all other devices:

Warning: If your storage nodes use LVM on the operating system disk, you must also
add the associated device to the filter. For example, if the /dev/sda device contains
the operating system:

Similarly, if your compute nodes use LVM on the operating system disk, you must also
modify the filter in the /etc/1lvm/1lvm. conft file on those nodes to include only the
operating system disk. For example, if the /dev/sda device contains the operating
system:

Configure components

1. Editthe /etc/manila/manila.conf file and complete the following actions:

* Inthe [DEFAULT] section, enable the LVM driver and the NFS protocol:

Note: Back end names are arbitrary. As an example, this guide uses the name of the driver.

* Inthe [1vm] section, configure the LVM driver:

86 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Replace MANAGEMENT_INTERFACE_IP_ADDRESS with the IP address of the manage-
ment network interface on your storage node. The value of this option can be a comma

separated string of one or more IP addresses. In the example architecture shown below, the
address would be 10.0.0.41:

Hardware Requirements
s N ™ T TTTTT T T T e m e ~

Controller Node Compute Node 1
1-2 4GB
[CPU J [RAM J

1-2 8 GB 2-4+ 8+ GB
CPU RAM CPU RAM
100 GB 2 100+ GB 2 100+ GB
Storage NIC Storage MNIC Storage
\, VAN j
1
1-2 4+ GB
CPU RAM

I
|
|
|
|
I

100+ GB 1 1

Storage NIC :
|
I
|
|
|

o

Object Storage Node

1

1-2 4+ GB

CPU RAM
100+ GB 1
Storage NIC

e o mm mm mm mm mm o mm o e o e

N £ ol

[dev/sdb

fdev/sdc

T e e mm mm mm mm o e e O

o
e e I

R —

Fig. 2: Hardware requirements.

Shared File Systems Option 2: Driver support for share servers management

For simplicity, this configuration references the same storage node as the one used for the Block Storage
service.

Note: This guide describes how to configure the Shared File Systems service to use the generic driver
with the driver handles share server mode (DHSS) enabled. This driver requires Compute service (nova),
Image service (glance) and Networking service (neutron) for creating and managing share servers; and
Block storage service (cinder) for creating shares. The information used for creating share servers
is configured as share networks. Generic driver with DHSS enabled also requires the tenants private
network (where the compute instances are running) to be attached to a public router.

3.1. Installing Manila 87

Manila Developer Documentation, Release 12.1.3.dev46

Prerequisites

Before you proceed, verify operation of the Compute, Networking, and Block Storage services. This
options requires implementation of Networking option 2 and requires installation of some Networking
service components on the storage node.

* Install the Networking service components:

zypper install —--no-recommends openstack-neutron-linuxbridge-—agent

Configure components

1. Editthe /etc/manila/manila.conf file and complete the following actions:

* Inthe [DEFAULT] section, enable the generic driver and the NFS protocol:

Note: Back end names are arbitrary. As an example, this guide uses the name of the driver.

e Inthe [neutron], [noval, [cinder] and [glance] sections, enable authentication
for those services:

(continues on next page)

88 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

[cinder]

[glance]

Inthe [generic] section, configure the generic driver:

[generic]

Note: You can also use SSH keys instead of password authentication for service instance
credentials.

Important: The service_image_name, service_instance_flavor_id,
service_instance_user and service_instance_password are with refer-
ence to the service image that is used by the driver to create share servers. A sample service
image for use with the generic driver is available in the manila-image—-elements
project. Its creation is explained in the post installation steps (See: Creating and using
shared file systems).

3.1. Installing Manila 89

Manila Developer Documentation, Release 12.1.3.dev46

Finalize installation

1. Prepare manila-share as start/stop service. Start the Shared File Systems service including its
dependencies and configure them to start when the system boots:

systemctl enable openstack-manila-share.service tgtd.service
systemctl start openstack-manila-share.service tgtd.service

Install and configure a share node running Red Hat Enterprise Linux and CentOS

This section describes how to install and configure a share node for the Shared File Systems service. For
simplicity, this configuration references one storage node with the generic driver managing the share
servers. The generic backend manages share servers using compute, networking and block services for
provisioning shares.

Note that installation and configuration vary by distribution. This section describes the instructions for
a share node running Red Hat Enterprise Linux or CentOS.

Install and configure components

1. Install the packages:

yum install openstack-manila-share python3-PyMySQL

2. Edit the /etc/manila/manila.conf file and complete the following actions:

* Inthe [database] section, configure database access:

Replace MANILA_DBPASS with the password you chose for the Shared File Systems
database.

4. Complete the rest of the configuration in manila.conf.

* Inthe [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

* Inthe [DEFAULT] section, set the following config values:

920 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Important: The default_share_type option specifies the default share type to be
used when shares are created without specifying the share type in the request. The default
share type that is specified in the configuration file has to be created with the necessary
required extra-specs (such as driver_handles_share_servers) set appropriately
with reference to the driver mode used. This is explained in further steps.

* In the [DEFAULT] and [keystone_authtoken] sections, configure Identity service
access:

Replace MANILA_PASS with the password you chose for the manila user in the Identity
service.

* Inthe [DEFAULT] section, configure the my_ ip option:

Replace MANAGEMENT_INTERFACE_IP_ADDRESS with the IP address of the manage-
ment network interface on your share node, typically 10.0.0.41 for the first node in the
example architecture shown below:

* Inthe [oslo_concurrency] section, configure the lock path:

3.1. Installing Manila 91

Manila Developer Documentation, Release 12.1.3.dev46

Hardware Requirements

' 5
Controller Node

' ™

Compute Node 1

1
CPU

ra

8 GB
RAM

2-4+
CPU

8+ GB
RAM

100 GB
Storage

g

2
NIC
A

100+ GB
Storage

g

T e mm mm mm mm e e

i . ! . [
: Object Storage Node 1 1 | Object Storage Node 2 |
1 1
1 1
I 12 4+ GB Lo 1-2 4+ GB :
: CPU RAM | X CPU RAM I
| L :
1 ! 1
'| 100+GB 1 [100+GB 1 I
1 Storage NIC i 1l storage NIC :
1 1
1 : I :
1 ! 1
1 1 : 1
1
i\ ,-I 1 !

Jdevisdb
Idev/sdc

Fig. 3: Hardware requirements

o

_______________ -~

Block Storage Node 1

1-2 4GB
CPU RAM
1

100+ GB
Storage

fdev/sdb
fdev/sdc

NIC

92

Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Two driver modes

The share node can support two modes, with and without the handling of share servers. The mode
depends on driver support.

Option 1

Deploying the service without driver support for share server management. In this mode, the service
does not do anything related to networking. The operator must ensure network connectivity between
instances and the NAS protocol based server.

This tutorial demonstrates setting up the LVM driver which creates LVM volumes on the share node
and exports them with the help of an NFS server that is installed locally on the share node. It therefore
requires LVM and NFS packages as well as an additional disk for the manila-share LVM volume
group.

This driver mode may be referred to as driver_handles_share_servers = False mode, or
simply DHSS=False mode.

Option 2

Deploying the service with driver support for share server management. In this mode, the service runs
with a back end driver that creates and manages share servers. This tutorial demonstrates setting up the
Generic driver. This driver requires Compute service (nova), Image service (glance) and Networking
service (neutron) for creating and managing share servers; and Block storage service (cinder) for creating
shares.

The information used for creating share servers is configured with the help of share networks.

This driver mode may be referred to as driver_handles_share_servers = True mode, or
simply DHSS=True mode.

Warning: When running the generic driver in DHSS=True driver mode, the share service should
be run on the same node as the networking service. However, such a service may not be able to run
the LVM driver that runs in DHSS=Fal se driver mode effectively, due to a bug in some distributions
of Linux. For more information, see LVM Driver section in the Configuration Reference Guide.

Choose one of the following options to configure the share driver:

Shared File Systems Option 1: No driver support for share servers management

For simplicity, this configuration references the same storage node configuration for the Block Storage
service. However, the LVM driver requires a separate empty local block storage device to avoid conflict
with the Block Storage service. The instructions use /dev/sdc, but you can substitute a different value
for your particular node.

3.1. Installing Manila 93

https://docs.openstack.org/manila/latest/configuration/shared-file-systems/overview.html

Manila Developer Documentation, Release 12.1.3.dev46

Prerequisites

Note: Perform these steps on the storage node.

1. Install the supporting utility packages:
* Install LVM and NFS server packages:

yum install lvm2 nfs-utils nfs4-acl-tools portmap targetcli

* Start the LVM metadata service and configure it to start when the system boots:

systemctl enable lvm2-lvmetad.service target.service
systemctl start lvm2-lvmetad.service target.service

2. Create the LVM physical volume /dev/sdc:

pvcreate /dev/sdc

3. Create the LVM volume group manila-volumes:

vgcreate manila-volumes /dev/sdc

The Shared File Systems service creates logical volumes in this volume group.

4. Only instances can access Shared File Systems service volumes. However, the underlying op-
erating system manages the devices associated with the volumes. By default, the LVM volume
scanning tool scans the /dev directory for block storage devices that contain volumes. If projects
use LVM on their volumes, the scanning tool detects these volumes and attempts to cache them
which can cause a variety of problems with both the underlying operating system and project vol-
umes. You must reconfigure LVM to scan only the devices that contain the cinder—-volume
and manila-volumes volume groups. Edit the /etc/1lvm/1lvm. conf file and complete the
following actions:

* In the devices section, add a filter that accepts the /dev/sdb and /dev/sdc devices
and rejects all other devices:

Warning: If your storage nodes use LVM on the operating system disk, you must also
add the associated device to the filter. For example, if the /dev/sda device contains
the operating system:

Similarly, if your compute nodes use LVM on the operating system disk, you must also
modify the filter in the /etc/1vm/1vm. conf file on those nodes to include only the
operating system disk. For example, if the /dev/sda device contains the operating
system:

94 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Configure components

1. Edit the /etc/manila/manila.conf file and complete the following actions:

* Inthe [DEFAULT] section, enable the LVM driver and the NFS protocol:

[DEFAULT]

Note: Back end names are arbitrary. As an example, this guide uses the name of the driver.

* Inthe [1vm] section, configure the LVM driver:

[1vm]

Replace MANAGEMENT__INTERFACE_IP_ADDRESS with the IP address of the manage-
ment network interface on your storage node. The value of this option can be a comma

separated string of one or more IP addresses. In the example architecture shown below, the
address would be 10.0.0.41:

Shared File Systems Option 2: Driver support for share servers management

For simplicity, this configuration references the same storage node as the one used for the Block Storage
service.

Note: This guide describes how to configure the Shared File Systems service to use the generic driver
with the driver handles share server mode (DHSS) enabled. This driver requires Compute service (nova),
Image service (glance) and Networking service (neutron) for creating and managing share servers; and
Block storage service (cinder) for creating shares. The information used for creating share servers
is configured as share networks. Generic driver with DHSS enabled also requires the tenants private
network (where the compute instances are running) to be attached to a public router.

3.1. Installing Manila 95

Manila Developer Documentation, Release 12.1.3.dev46

Hardware Requirements

' 5
Controller Node

' ™

Compute Node 1

1
CPU

ra

8 GB
RAM

2-4+
CPU

8+ GB
RAM

100 GB
Storage

g

2
NIC
A

100+ GB
Storage

g

T e mm mm mm mm e e

i . ! . [
: Object Storage Node 1 1 | Object Storage Node 2 |
1 1
1 1
I 12 4+ GB Lo 1-2 4+ GB :
: CPU RAM | X CPU RAM I
| L :
1 ! 1
'| 100+GB 1 [100+GB 1 I
1 Storage NIC i 1l storage NIC :
1 1
1 : I :
1 ! 1
1 1 : 1
1
i\ ,-I 1 !

Jdevisdb
Idev/sdc

Fig. 4: Hardware requirements.

o

_______________ -~

Block Storage Node 1

1-2 4GB
CPU RAM
1

100+ GB
Storage

fdev/sdb
fdev/sdc

NIC

96

Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Prerequisites

Before you proceed, verify operation of the Compute, Networking, and Block Storage services. This
options requires implementation of Networking option 2 and requires installation of some Networking
service components on the storage node.

* Install the Networking service components:

yum install openstack—-neutron openstack—-neutron-linuxbridge ebtables

Configure components

1. Editthe /etc/manila/manila.conf file and complete the following actions:

* Inthe [DEFAULT] section, enable the generic driver and the NFS protocol:

Note: Back end names are arbitrary. As an example, this guide uses the name of the driver.

e Inthe [neutron], [noval, [cinder] and [glance] sections, enable authentication
for those services:

(continues on next page)

3.1. Installing Manila 97

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

[cinder]

[glance]

Inthe [generic] section, configure the generic driver:

[generic]

Note: You can also use SSH keys instead of password authentication for service instance
credentials.

Important: The service_image_name, service_instance_flavor_id,
service_instance_user and service_instance_password are with refer-
ence to the service image that is used by the driver to create share servers. A sample service
image for use with the generic driver is available in the manila-image—-elements
project. Its creation is explained in the post installation steps (See: Creating and using
shared file systems).

98

Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Finalize installation

1. Prepare manila-share as start/stop service. Start the Shared File Systems service including its
dependencies and configure them to start when the system boots:

systemctl enable openstack-manila-share.service
systemctl start openstack-manila-share.service

Install and configure a share node running Ubuntu

This section describes how to install and configure a share node for the Shared File Systems service. For
simplicity, this configuration references one storage node with the generic driver managing the share
servers. The generic backend manages share servers using compute, networking and block services for
provisioning shares.

Note that installation and configuration vary by distribution. This section describes the instructions for
a share node running Ubuntu.

Install and configure components

1. Install the packages:

apt-get install manila-share python3-pymysqgl

2. Editthe /etc/manila/manila.conf file and complete the following actions:

* Inthe [database] section, configure database access:

Replace MANILA_DBPASS with the password you chose for the Shared File Systems
database.

4. Complete the rest of the configuration in manila.conf.

* Inthe [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

* Inthe [DEFAULT] section, set the following config values:

3.1. Installing Manila 929

Manila Developer Documentation, Release 12.1.3.dev46

Important: The default_share_type option specifies the default share type to be
used when shares are created without specifying the share type in the request. The default
share type that is specified in the configuration file has to be created with the necessary
required extra-specs (such as driver_handles_share_servers) set appropriately
with reference to the driver mode used. This is explained in further steps.

* In the [DEFAULT] and [keystone_authtoken] sections, configure Identity service
access:

Replace MANILA_PASS with the password you chose for the manila user in the Identity
service.

* Inthe [DEFAULT] section, configure the my_ ip option:

Replace MANAGEMENT_INTERFACE_IP_ADDRESS with the IP address of the manage-
ment network interface on your share node, typically 10.0.0.41 for the first node in the
example architecture shown below:

* Inthe [oslo_concurrency] section, configure the lock path:

100 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Hardware Requirements

Controller Node

7 ™

' ™

Compute Node 1

1 8 GB
CPU RAM

2-4+
CPU

8+ GB
RAM

100 GB
Storage

[
g

2
NIC
A

100+ GB
Storage

T T T T T ST T !
: Object Storage Node 1 1 | Object Storage Node 2 |
1 1
1 1
I 12 4+GB), ! 12 4+ GB :
| CPU RAM : X cPU RAM I
1 1! :
1 ! 1
'| 100+GB 1 [100+GB 1 I
1 Storage NIC i 1l storage NIC :
1 1
1 : ! :
! L .
1 ! 1
! | .
\ I i

T e mm mm mm mm e e

Fig. 5: Hardware requirements

o

Block Storage Node 1

100+ GB
Storage

fdev/sdb
fdev/sdc

NIC

1-2 4GB
CPU RAM
1

.

3.1. Installing Manila

101

Manila Developer Documentation, Release 12.1.3.dev46

Two driver modes

The share node can support two modes, with and without the handling of share servers. The mode
depends on driver support.

Option 1

Deploying the service without driver support for share server management. In this mode, the service
does not do anything related to networking. The operator must ensure network connectivity between
instances and the NAS protocol based server.

This tutorial demonstrates setting up the LVM driver which creates LVM volumes on the share node
and exports them with the help of an NFS server that is installed locally on the share node. It therefore
requires LVM and NFS packages as well as an additional disk for the manila-share LVM volume
group.

This driver mode may be referred to as driver_handles_share_servers = False mode, or
simply DHSS=False mode.

Option 2

Deploying the service with driver support for share server management. In this mode, the service runs
with a back end driver that creates and manages share servers. This tutorial demonstrates setting up the
Generic driver. This driver requires Compute service (nova), Image service (glance) and Networking
service (neutron) for creating and managing share servers; and Block storage service (cinder) for creating
shares.

The information used for creating share servers is configured with the help of share networks.

This driver mode may be referred to as driver_handles_share_servers = True mode, or
simply DHSS=True mode.

Warning: When running the generic driver in DHSS=True driver mode, the share service should
be run on the same node as the networking service. However, such a service may not be able to run
the LVM driver that runs in DHSS=Fal se driver mode effectively, due to a bug in some distributions
of Linux. For more information, see LVM Driver section in the Configuration Reference Guide.

Choose one of the following options to configure the share driver:

Shared File Systems Option 1: No driver support for share servers management

For simplicity, this configuration references the same storage node configuration for the Block Storage
service. However, the LVM driver requires a separate empty local block storage device to avoid conflict
with the Block Storage service. The instructions use /dev/sdc, but you can substitute a different value
for your particular node.

102 Chapter 3. For operators

https://docs.openstack.org/manila/latest/configuration/shared-file-systems/overview.html

Manila Developer Documentation, Release 12.1.3.dev46

Prerequisites

Note: Perform these steps on the storage node.

1. Install the supporting utility packages:
* Install LVM and NFS server packages:

apt-get install lvm2 nfs-kernel-server

2. Create the LVM physical volume /dev/sdc:

pvcreate /dev/sdc

3. Create the LVM volume group manila-volumes:

vgcreate manila-volumes /dev/sdc

The Shared File Systems service creates logical volumes in this volume group.

4. Only instances can access Shared File Systems service volumes. However, the underlying op-
erating system manages the devices associated with the volumes. By default, the LVM volume
scanning tool scans the /dewv directory for block storage devices that contain volumes. If projects
use LVM on their volumes, the scanning tool detects these volumes and attempts to cache them
which can cause a variety of problems with both the underlying operating system and project vol-
umes. You must reconfigure LVM to scan only the devices that contain the cinder-volume
and manila-volumes volume groups. Edit the /etc/1vm/lvm. conf file and complete the
following actions:

* In the devices section, add a filter that accepts the /dev/sdb and /dev/sdc devices
and rejects all other devices:

Warning: If your storage nodes use LVM on the operating system disk, you must also
add the associated device to the filter. For example, if the /dev/sda device contains
the operating system:

Similarly, if your compute nodes use LVM on the operating system disk, you must also
modify the filter in the /etc/1vm/1vm. conft file on those nodes to include only the
operating system disk. For example, if the /dev/sda device contains the operating
system:

3.1. Installing Manila 103

Manila Developer Documentation, Release 12.1.3.dev46

Configure components

1. Edit the /etc/manila/manila.conf file and complete the following actions:

* Inthe [DEFAULT] section, enable the LVM driver and the NFS protocol:

Note: Back end names are arbitrary. As an example, this guide uses the name of the driver.

* Inthe [1vm] section, configure the LVM driver:

Replace MANAGEMENT_INTERFACE_IP_ADDRESS with the IP address of the manage-
ment network interface on your storage node. The value of this option can be a comma
separated string of one or more IP addresses. In the example architecture shown below, the
address would be 10.0.0.41:

Shared File Systems Option 2: Driver support for share servers management

For simplicity, this configuration references the same storage node as the one used for the Block Storage
service.

Note: This guide describes how to configure the Shared File Systems service to use the generi c driver
with the driver handles share server mode (DHSS) enabled. This driver requires Compute service (nova),
Image service (glance) and Networking service (neutron) for creating and managing share servers; and
Block storage service (cinder) for creating shares. The information used for creating share servers
is configured as share networks. Generic driver with DHSS enabled also requires the tenants private
network (where the compute instances are running) to be attached to a public router.

Prerequisites

Before you proceed, verify operation of the Compute, Networking, and Block Storage services. This
options requires implementation of Networking option 2 and requires installation of some Networking
service components on the storage node.

* Install the Networking service components:

apt—-get install neutron-plugin-linuxbridge-agent

104 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Hardware Requirements

Controller Node

7 ™

' ™

Compute Node 1

1 8 GB
CPU RAM

2-4+
CPU

8+ GB
RAM

100 GB
Storage

[
g

2
NIC
A

100+ GB
Storage

T T T T T ST T !
: Object Storage Node 1 1 | Object Storage Node 2 |
1 1
1 1
I 12 4+GB), ! 12 4+ GB :
| CPU RAM : X cPU RAM I
1 1! :
1 ! 1
'| 100+GB 1 [100+GB 1 I
1 Storage NIC i 1l storage NIC :
1 1
1 : ! :
! L .
1 ! 1
! | .
\ I i

T e mm mm mm mm e e

Fig. 6: Hardware requirements.

o

Block Storage Node 1

100+ GB
Storage

fdev/sdb
fdev/sdc

NIC

1-2 4GB
CPU RAM
1

.

3.1. Installing Manila

105

Manila Developer Documentation, Release 12.1.3.dev46

Configure components

1. Edit the /etc/manila/manila.conf file and complete the following actions:

* Inthe [DEFAULT] section, enable the generic driver and the NFS protocol:

Note: Back end names are arbitrary. As an example, this guide uses the name of the driver.

e Inthe [neutron], [noval, [cinder] and [glance] sections, enable authentication
for those services:

(continues on next page)

106 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

In the [generic] section, configure the generic driver:

Note: You can also use SSH keys instead of password authentication for service instance
credentials.

Important: The service_image_name, service_instance_flavor_id,
service_instance_user and service_instance_password are with refer-
ence to the service image that is used by the driver to create share servers. A sample service
image for use with the generic driver is available in the manila-image—-elements
project. Its creation is explained in the post installation steps (See: Creating and using
shared file systems).

Finalize installation

1. Prepare manila-share as start/stop service. Start the Shared File Systems service including its
dependencies:

service manila-share restart

2. By default, the Ubuntu packages create an SQLite database. Because this configuration uses an
SQL database server, remove the SQLite database file:

rm —-f /var/lib/manila/manila.sqglite

3.1. Installing Manila 107

Manila Developer Documentation, Release 12.1.3.dev46

Install and configure a share node running Debian

This section describes how to install and configure a share node for the Shared File Systems service. For
simplicity, this configuration references one storage node with the generic driver managing the share
servers. The generic backend manages share servers using compute, networking and block services for
provisioning shares.

Note that installation and configuration vary by distribution. This section describes the instructions for
a share node running a Debian distribution.

Install and configure components

1. Install the packages:

apt—-get install manila-share python3-pymysqgl

2. Editthe /etc/manila/manila.conf file and complete the following actions:

* Inthe [database] section, configure database access:

Replace MANILA_DBPASS with the password you chose for the Shared File Systems
database.

4. Complete the rest of the configuration in manila.conf.

* Inthe [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

* Inthe [DEFAULT] section, set the following config values:

Important: The default_share_type option specifies the default share type to be
used when shares are created without specifying the share type in the request. The default
share type that is specified in the configuration file has to be created with the necessary
required extra-specs (such as driver_handles_share_servers) set appropriately
with reference to the driver mode used. This is explained in further steps.

* In the [DEFAULT] and [keystone_authtoken] sections, configure Identity service
access:

108 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Replace MANILA_PASS with the password you chose for the manila user in the Identity
service.

* Inthe [DEFAULT] section, configure the my_ ip option:

Replace MANAGEMENT_INTERFACE_TIP_ADDRESS with the IP address of the manage-
ment network interface on your share node, typically 10.0.0.41 for the first node in the
example architecture shown below:

* Inthe [oslo_concurrency] section, configure the lock path:

Two driver modes

The share node can support two modes, with and without the handling of share servers. The mode
depends on driver support.

Option 1

Deploying the service without driver support for share server management. In this mode, the service
does not do anything related to networking. The operator must ensure network connectivity between
instances and the NAS protocol based server.

This tutorial demonstrates setting up the LVM driver which creates LVM volumes on the share node
and exports them with the help of an NFS server that is installed locally on the share node. It therefore
requires LVM and NFS packages as well as an additional disk for the manila-share LVM volume
group.

This driver mode may be referred to as driver_handles_share_servers = False mode, or
simply DHSS=False mode.

3.1. Installing Manila 109

Manila Developer Documentation, Release 12.1.3.dev46

Hardware Requirements

' 5
Controller Node

' ™

Compute Node 1

1 8 GB
CPU RAM

2-4+
CPU

8+ GB
RAM

100 GB
Storage

[
g

2
NIC
A

100+ GB
Storage

fdevisdb
/dev/sdc

T e mm mm mm mm e e

i . ! . [
: Object Storage Node 1 1 | Object Storage Node 2 |
1 1
1 1
I 12 4+GB), ! 12 4+ GB :
| CPU RAM : X cPU RAM I
1 1! :
] 1 1 1
'| 100+GB 1 [100+GB 1 I
1 Storage NIC i 1l storage NIC :
1 1
1 : I :
1 ! 1
1 1 : 1
1
\ ;o |

Jdevisdb
Idev/sdc

Fig. 7: Hardware requirements

o

_______________ -~

Block Storage Node 1

1-2 4GB
CPU RAM
1

100+ GB
Storage

fdev/sdb
fdev/sdc

NIC

110

Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Option 2

Deploying the service with driver support for share server management. In this mode, the service runs
with a back end driver that creates and manages share servers. This tutorial demonstrates setting up the
Generic driver. This driver requires Compute service (nova), Image service (glance) and Networking
service (neutron) for creating and managing share servers; and Block storage service (cinder) for creating
shares.

The information used for creating share servers is configured with the help of share networks.

This driver mode may be referred to as driver_handles_share_servers = True mode, or
simply DHSS=True mode.

Warning: When running the generic driver in DHSS=True driver mode, the share service should
be run on the same node as the networking service. However, such a service may not be able to run
the LVM driver that runs in DHSS=Fal se driver mode effectively, due to a bug in some distributions
of Linux. For more information, see LVM Driver section in the Configuration Reference Guide.

Choose one of the following options to configure the share driver:

Shared File Systems Option 1: No driver support for share servers management

For simplicity, this configuration references the same storage node configuration for the Block Storage
service. However, the LVM driver requires a separate empty local block storage device to avoid conflict
with the Block Storage service. The instructions use /dev/sdc, but you can substitute a different value
for your particular node.

Prerequisites

Note: Perform these steps on the storage node.

1. Install the supporting utility packages:
* Install LVM and NFS server packages:

apt-get install lvm2 nfs-kernel-server

2. Create the LVM physical volume /dev/sdc:

pvcreate /dev/sdc

3. Create the LVM volume group manila-volumes:

vgcreate manila-volumes /dev/sdc

The Shared File Systems service creates logical volumes in this volume group.

3.1. Installing Manila 111

https://docs.openstack.org/manila/latest/configuration/shared-file-systems/overview.html

Manila Developer Documentation, Release 12.1.3.dev46

4. Only instances can access Shared File Systems service volumes. However, the underlying op-
erating system manages the devices associated with the volumes. By default, the LVM volume
scanning tool scans the /dev directory for block storage devices that contain volumes. If projects
use LVM on their volumes, the scanning tool detects these volumes and attempts to cache them
which can cause a variety of problems with both the underlying operating system and project vol-
umes. You must reconfigure LVM to scan only the devices that contain the cinder-volume
and manila-volumes volume groups. Edit the /etc/1lvm/lvm. conf file and complete the
following actions:

* In the devices section, add a filter that accepts the /dev/sdb and /dev/sdc devices
and rejects all other devices:

Warning: If your storage nodes use LVM on the operating system disk, you must also
add the associated device to the filter. For example, if the /dev/sda device contains
the operating system:

Similarly, if your compute nodes use LVM on the operating system disk, you must also
modify the filter in the /etc/1lvm/1lvm. conft file on those nodes to include only the
operating system disk. For example, if the /dev/sda device contains the operating
system:

Configure components

1. Editthe /etc/manila/manila.conf file and complete the following actions:

* Inthe [DEFAULT] section, enable the LVM driver and the NFS protocol:

Note: Back end names are arbitrary. As an example, this guide uses the name of the driver.

* Inthe [1vm] section, configure the LVM driver:

112 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Replace MANAGEMENT_INTERFACE_IP_ADDRESS with the IP address of the manage-
ment network interface on your storage node. The value of this option can be a comma

separated string of one or more IP addresses. In the example architecture shown below, the
address would be 10.0.0.41:

Hardware Requirements
s N ™ T TTTTT T T T e m e ~

Controller Node Compute Node 1
1-2 4GB
[CPU J [RAM J

1-2 8 GB 2-4+ 8+ GB
CPU RAM CPU RAM
100 GB 2 100+ GB 2 100+ GB
Storage NIC Storage MNIC Storage
\, VAN j
1
1-2 4+ GB
CPU RAM

I
|
|
|
|
I

100+ GB 1 1

Storage NIC :
|
I
|
|
|

o

Object Storage Node

1

1-2 4+ GB

CPU RAM
100+ GB 1
Storage NIC

e o mm mm mm mm mm o mm o e o e

N £ ol

[dev/sdb

fdev/sdc

T e e mm mm mm mm o e e O

o
e e I

R —

Fig. 8: Hardware requirements.

Shared File Systems Option 2: Driver support for share servers management

For simplicity, this configuration references the same storage node as the one used for the Block Storage
service.

Note: This guide describes how to configure the Shared File Systems service to use the generic driver
with the driver handles share server mode (DHSS) enabled. This driver requires Compute service (nova),
Image service (glance) and Networking service (neutron) for creating and managing share servers; and
Block storage service (cinder) for creating shares. The information used for creating share servers
is configured as share networks. Generic driver with DHSS enabled also requires the tenants private
network (where the compute instances are running) to be attached to a public router.

3.1. Installing Manila 113

Manila Developer Documentation, Release 12.1.3.dev46

Prerequisites

Before you proceed, verify operation of the Compute, Networking, and Block Storage services. This
options requires implementation of Networking option 2 and requires installation of some Networking
service components on the storage node.

* Install the Networking service components:

apt—-get install neutron-plugin-linuxbridge—-agent

Configure components

1. Editthe /etc/manila/manila.conf file and complete the following actions:

* Inthe [DEFAULT] section, enable the generic driver and the NFS protocol:

Note: Back end names are arbitrary. As an example, this guide uses the name of the driver.

e Inthe [neutron], [noval, [cinder] and [glance] sections, enable authentication
for those services:

(continues on next page)

114 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

[cinder]

[glance]

Inthe [generic] section, configure the generic driver:

[generic]

Note: You can also use SSH keys instead of password authentication for service instance
credentials.

Important: The service_image_name, service_instance_flavor_id,
service_instance_user and service_instance_password are with refer-
ence to the service image that is used by the driver to create share servers. A sample service
image for use with the generic driver is available in the manila-image—-elements
project. Its creation is explained in the post installation steps (See: Creating and using
shared file systems).

3.1. Installing Manila 115

Manila Developer Documentation, Release 12.1.3.dev46

Finalize installation

1. Prepare manila-share as start/stop service. Start the Shared File Systems service including its
dependencies:

service manila-share restart

Verify operation

Verify operation of the Shared File Systems service.

Note: Perform these commands on the controller node.

1. Source the admin credentials to gain access to admin-only CLI commands:

admin-openrc.sh

2. List service components to verify successful launch of each process:

manila service-list

Creating and using shared file systems

Depending on the option chosen while installing the share node (Option with share server management
and one without); the steps to create and use your shared file systems will vary. When the Shared File
Systems service handles the creation and management of share servers, you would need to specify the
share network with the request to create a share. Either modes will vary in their respective share
type definition. When using the driver mode with automatic handling of share servers, a service image
is needed as specified in your configuration. The instructions below enumerate the steps for both driver
modes. Follow what is appropriate for your installation.

116 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Creating shares with Shared File Systems Option 1 (DHSS = False)
Create a share type

Disable DHSS (driver_handles_share_servers) before creating a share using the LVM driver.

1. Source the admin credentials to gain access to admin-only CLI commands:

. admin-openrc

2. Create a default share type with DHSS disabled. A default share type will allow you to create
shares with this driver, without having to specify the share type explicitly during share creation.

manila type-create default_share_type False

Set this default share type in manila.conf under the [DEFAULT] section and restart the
manila-api service before proceeding. Unless you do so, the default share type will not be
effective.

Note: Creating and configuring a default share type is optional. If you wish to use the shared
file system service with a variety of share types, where each share creation request could specify
a type, please refer to the Share types usage documentation here.

Create a share

1. Source the demo credentials to perform the following steps as a non-administrative project:

. demo-openrc

2. Create an NFS share. Since a default share type has been created and configured, it need not be
specified in the request.

manila create NFS 1 —--name sharel

(continues on next page)

3.1. Installing Manila 117

https://docs.openstack.org/manila/latest/admin/shared-file-systems-share-types.html

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

. After some time, the share status should change from creatingto available:

manila list

!

!

!

!

!

!

!

!

4. Determine export IP address of the share:

manila show sharel

—

(continues on next page)

118

Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

[

3.1. Installing Manila 119

Manila Developer Documentation, Release 12.1.3.dev46

Allow access to the share

1. Configure access to the new share before attempting to mount it via the network. The compute
instance (whose IP address is referenced by the INSTANCE_IP below) must have network con-
nectivity to the network specified in the share network.

manila access-allow sharel ip INSTANCE_IP

Mount the share on a compute instance

1. Log into your compute instance and create a folder where the mount will be placed:

mkdir ~/test_folder

2. Mount the NFS share in the compute instance using the export location of the share:

mount —-vt nfs 10.0.0.41:/var/lib/manila/mnt/share—-8e13a98f-c310-
—41df-ac90-fc8bced910b8 ~/test_folder

Creating shares with Shared File Systems Option 2 (DHSS = True)

Before being able to create a share, manila with the generic driver and the DHSS
(driver_handles_share_servers) mode enabled requires the definition of at least an image,
a network and a share-network for being used to create a share server. For that back end configuration,
the share server is an instance where NFS shares are served.

Note: This configuration automatically creates a cinder volume for every share. The cinder volumes
are attached to share servers according to the definition of a share network.

1. Source the admin credentials to gain access to admin-only CLI commands:

admin-openrc.sh

2. Create a default share type with DHSS enabled. A default share type will allow you to create
shares with this driver, without having to specify the share type explicitly during share creation.

manila type-create default_share_type True

(continues on next page)

120 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

Set this default share type in manila.conf under the [DEFAULT] section and restart the
manila-api service before proceeding. Unless you do so, the default share type will not be
effective.

Note: Creating and configuring a default share type is optional. If you wish to use the shared
file system service with a variety of share types, where each share creation request could specify
a type, please refer to the Share types usage documentation here.

3. Create a manila share server image in the Image service. You may skip this
step and use any existing image. However, for mounting a share, the ser-
vice image must contain the NFS packages as appropriate for the operating sys-
tem. Whatever image you choose to be the service image, be sure to set the con-
figuration values service_image_name, service_instance_flavor_id,
service_instance_user and service_instance_passwordinmanila.conf.

Note: Any changes made to manila.conf while the manila-share service is running will
require a restart of the service to be effective.

Note: As an alternative to specifying a plain-text service_instance_password in
your configuration, a key-pair may be specified with options path_to_public_key and
path_to_private_key to configure and allow password-less SSH access between the share
node and the share server/s created.

curl -L

.
Total % Received % Xferd Average Speed Time Time

— Time Current
B o
N o
.
. o

(continues on next page)

3.1. Installing Manila 121

https://docs.openstack.org/manila/latest/admin/shared-file-systems-share-types.html

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

4. List available networks in order to get id and subnets of the private network:

neutron net-list

(continues on next page)

122

Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

5. Source the demo credentials to perform the following steps as a non-administrative project:

demo—-openrc.sh

manila share—-network-create —-—-name demo-share-networkl

Create a share

1. Create an NFS share using the share network. Since a default share type has been created and
configured, it need not be specified in the request.

manila create NFS 1 —-name demo-sharel —--share-network demo-share-
—networkl

(continues on next page)

3.1. Installing Manila 123

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

. After some time, the share status should change from creatingto available:

manila list

!

!

!

!

!

!

!

!

3. Determine export IP address of the share:

manila show demo-sharel

—

(continues on next page)

124

Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

[

Allow access to the share

1. Configure access to the new share before attempting to mount it via the network. The compute
instance (whose IP address is referenced by the INSTANCE_IP below) must have network con-
nectivity to the network specified in the share network.

manila access—allow demo-sharel ip INSTANCE_IP

3.1. Installing Manila 125

Manila Developer Documentation, Release 12.1.3.dev46

Mount the share on a compute instance

1. Log into your compute instance and create a folder where the mount will be placed:

mkdir ~/test_folder

2. Mount the NFS share in the compute instance using the export location of the share:

mount -vt nfs 10.254.0.6:/shares/share-0bfd69al-27f0-4ef5-afl7-
—7cd50bce6550 ~/test_folder

For more information about how to manage shares, see the OpenStack End User Guide

Next steps

Your OpenStack environment now includes the Shared File Systems service.
To add more services, see the additional documentation on installing OpenStack services

Continue to evaluate the Shared File Systems service by creating the service image and running the
service with the correct driver mode that you chose while configuring the share node.

The OpenStack Shared File Systems service (manila) provides coordinated access to shared or dis-
tributed file systems. The method in which the share is provisioned and consumed is determined by the
Shared File Systems driver, or drivers in the case of a multi-backend configuration. There are a variety
of drivers that support NFS, CIFS, HDEFS, GlusterFS, CEPHFS, MAPRFS and other protocols as well.

The Shared File Systems API and scheduler services typically run on the controller nodes. Depending
upon the drivers used, the share service can run on controllers, compute nodes, or storage nodes.

Important: For simplicity, this guide describes configuring the Shared File Systems service to use one
of either:

* the genericbackend withthe driver_handles_share_servers mode (DHSS) enabled
that uses the Compute service (nova), Image service (glance), Networking service (neutron) and
Block storage service (cinder); or,

e the LVM back end with driver_handles_share_servers mode (DHSS) disabled.

The storage protocol used and referenced in this guide is NF'S. As stated above, the Shared File System
service supports different storage protocols depending on the back end chosen.

For the generic back end, networking service configuration requires the capability of networks being
attached to a public router in order to create share networks. If using this back end, ensure that Com-
pute, Networking and Block storage services are properly working before you proceed. For networking
service, ensure that option 2 (deploying the networking service with support for self-service networks)
is properly configured.

This installation tutorial also assumes that installation and configuration of OpenStack packages, Net-
work Time Protocol, database engine and message queue has been completed as per the instructions
in the OpenStack Installation Guide.. The Identity Service (keystone) has to be pre-configured with
suggested client environment scripts.

For more information on various Shared File Systems storage back ends, see the Shared File Systems
Configuration Reference..

126 Chapter 3. For operators

https://docs.openstack.org/manila/latest/user/
https://docs.openstack.org/latest/install/
https://docs.openstack.org/latest/install/
https://docs.openstack.org/manila/latest/configuration/shared-file-systems/overview.html
https://docs.openstack.org/manila/latest/configuration/shared-file-systems/overview.html

Manila Developer Documentation, Release 12.1.3.dev46

To learn more about installation dependencies noted above, see the OpenStack Installation Guide.

3.2 Administrating Manila

Contents:

3.2.1 Admin Guide

Shared File Systems service provides a set of services for management of shared file systems in a multi-
project cloud environment. The service resembles OpenStack block-based storage management from
the OpenStack Block Storage service project. With the Shared File Systems service, you can create a
remote file system, mount the file system on your instances, and then read and write data from your
instances to and from your file system.

The Shared File Systems service serves same purpose as the Amazon Elastic File System (EFS) does.

The Shared File Systems service can run in a single-node or multiple node configuration. The Shared
File Systems service can be configured to provision shares from one or more back ends, so it is required
to declare at least one back end. Shared File System service contains several configurable components.

It is important to understand these components:
 Share networks
 Shares
* Multi-tenancy
* Back ends

The Shared File Systems service consists of four types of services, most of which are similar to those of
the Block Storage service:

* manila-api

* manila-data

* manila-scheduler
* manila-share

Installation of first three - manila—-api, manila-data, and manila—-scheduler is common for
almost all deployments. But configuration of manila-share is backend-specific and can differ from
deployment to deployment.

Key concepts

Share

In the Shared File Systems service share is the fundamental resource unit allocated by the Shared File
System service. It represents an allocation of a persistent, readable, and writable filesystems. Com-
pute instances access these filesystems. Depending on the deployment configuration, clients outside of
OpenStack can also access the filesystem.

3.2. Administrating Manila 127

https://docs.openstack.org/latest/install/

Manila Developer Documentation, Release 12.1.3.dev46

Note: A share is an abstract storage object that may or may not directly map to a share concept from
the underlying storage provider. See the description of share instance for more details.

Share instance

This concept is tied with share and represents created resource on specific back end, when share
represents abstraction between end user and back-end storages. In common cases, it is one-to-one
relation. One single share has more than one share instance intwo cases:

* When share migration is being applied
* When share replication isenabled

Therefore, each share instance stores information specific to real allocated resource on storage.
And share represents the information that is common for share instances. A user with member
role will not be able to work with it directly. Only a user with admin role has rights to perform actions
against specific share instances.

Snapshot

A snapshot is a point-in-time, read-only copy of a share. You can create Snapshots from an
existing, operational share regardless of whether a client has mounted the file system. A snapshot
can serve as the content source for a new share. Specify the Create from snapshot option when
creating a new share on the dashboard.

Storage Pools

With the Kilo release of OpenStack, Shared File Systems can use storage pools. The storage may
present one or more logical storage resource pools that the Shared File Systems service will select as a
storage location when provisioning shares.

Share Type

Share type is an abstract collection of criteria used to characterize shares. They are most com-
monly used to create a hierarchy of functional capabilities. This hierarchy represents tiered storage
services levels. For example, an administrator might define a premium share type that indicates
a greater level of performance than a basic share type. Premium represents the best performance
level.

128 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Share Access Rules

Share access rules define which users can access a particular share. For example, administra-
tors can declare rules for NFS shares by listing the valid IP networks which will access the share. List
the IP networks in CIDR notation.

Security Services

Security services allow granular client access rules for administrators. They can declare rules
for authentication or authorization to access share content. External services including LDAP, Active
Directory, and Kerberos can be declared as resources. Examine and consult these resources when making
an access decision for a particular share. You can associate Shares with multiple security services,
but only one service per one type.

Share Networks

A share network is an object that defines a relationship between a project network and subnet,
as defined in an OpenStack Networking service or Compute service. The share network is also
defined in shares created by the same project. A project may find it desirable to provision shares
such that only instances connected to a particular OpenStack-defined network have access to the share.
Also, security services can be attached to share networks, because most of auth protocols
require some interaction with network services.

The Shared File Systems service has the ability to work outside of OpenStack. That is due to the
StandaloneNetworkPlugin. The plugin is compatible with any network platform, and does not
require specific network services in OpenStack like Compute or Networking service. You can set the
network parameters in the manila.conf file.

Share Servers

A share server is a logical entity that hosts the shares created on a specific share network.
A share server may be a configuration object within the storage controller, or it may represent
logical resources provisioned within an OpenStack deployment used to support the data path used to
access shares.

Share servers interact with network services to determine the appropriate IP addresses on which
to export shares according to the related share network. The Shared File Systems service has a
pluggable network model that allows share servers to work with different implementations of the
Networking service.

3.2. Administrating Manila 129

Manila Developer Documentation, Release 12.1.3.dev46

Share management
A share is a remote, mountable file system. You can mount a share to and access a share from several
hosts by several users at a time.

You can create a share and associate it with a network, list shares, and show information for, update, and
delete a specified share. You can also create snapshots of shares. To create a snapshot, you specify the
ID of the share that you want to snapshot.

The shares are based on of the supported Shared File Systems protocols:
* NFS. Network File System (NFS).
e CIFS. Common Internet File System (CIFS).

GLUSTERFS. Gluster file system (GlusterFS).

HDFS. Hadoop Distributed File System (HDFS).
CEPHFS. Ceph File System (CephFS).
MAPRFS. MapR File System (MAPREFS).

The Shared File Systems service provides set of drivers that enable you to use various network file
storage devices, instead of the base implementation. That is the real purpose of the Shared File Systems
service in production.

Share basic operations
General concepts

To create a file share, and access it, the following general concepts are prerequisite knowledge:

1. To create a share, use manila create command and specify the required arguments: the size
of the share and the shared file system protocol. NF'S, CIFS, GlusterFS, HDFS, CephFS or
MAPREFS share file system protocols are supported.

2. You can also optionally specify the share network and the share type.

3. After the share becomes available, use the manila show command to get the share export
locations.

4. After getting the share export locations, you can create an access rule for the share, mount it and
work with files on the remote file system.

There are big number of the share drivers created by different vendors in the Shared File Systems service.
As a Python class, each share driver can be set for the back end and run in the back end to manage the
share operations.

Initially there are two driver modes for the back ends:
¢ no share servers mode
¢ share servers mode

Each share driver supports one or two of possible back end modes that can be configured in
the manila.conf file. The configuration option driver_handles_share_servers in the
manila.conf file sets the share servers mode or no share servers mode, and defines the driver mode
for share storage lifecycle management:

130 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Mode | Config option Description

no driver_handles_shareAsemhranistrator rather than a share driver manages the bare metal
share = False storage with some net interface instead of the presence of the share
servers servers.

share driver_handles_sharel'kerskase driver creates the share server and manages, or handles, the
servers | = True share server life cycle.

It is the share types which have the extra specifications that help scheduler to filter back ends and
choose the appropriate back end for the user that requested to create a share. The required extra boolean
specification for each share type is driver_handles_share_servers. As an administrator, you
can create the share types with the specifications you need. For details of managing the share types and
configuration the back ends, see Share types and Multi-storage configuration documentation.

You can create a share in two described above modes:

* in a no share servers mode without specifying the share network and specifying the share type

with driver_handles_share_servers = False parameter. See subsection Create a
share in no share servers mode.

* in a share servers mode with specifying the share network and the share type with

driver_handles_share_servers = True parameter. See subsection Create a share
in share servers mode.

Create a share in no share servers mode

To create a file share in no share servers mode, you need to:

1.

To create a share, use manila create command and specify the required arguments: the size
of the share and the shared file system protocol. NF'S, CIFS, GlusterFS, HDFS, CephFS or
MAPREF'S share file system protocols are supported.

. You should specify the share type with driver_handles_share_servers = False ex-

tra specification.

. You must not specify the share network because no share servers are created. In this mode

the Shared File Systems service expects that administrator has some bare metal storage with some
net interface.

. Themanila create command creates a share. This command does the following things:

e The manila-scheduler service will find the back end with
driver_handles_share_servers = False mode due to filtering the extra
specifications of the share type.

* The share is created using the storage that is specified in the found back end.

. After the share becomes available, use the manila show command to get the share export

locations.

In the example to create a share, the created already share type named my_type with
driver_handles_share_servers = False extra specification is used.

Check share types that exist, run:

3.2. Administrating Manila 131

Manila Developer Documentation, Release 12.1.3.dev46

manila type-list

Create a private share with my__t ype share type, NFS shared file system protocol, and size 1 GB:

manila create nfs 1 --name Sharel --description —--share-type
—my_type

New share Share?2 should have a status available:

manila show Share2

—

(continues on next page)

132 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

[

(continues on next page)

3.2. Administrating Manila 133

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

[

Create a share in share servers mode

To create a file share in share servers mode, you need to:

1.

To create a share, use manila create command and specify the required arguments: the size
of the share and the shared file system protocol. NF'S, CIFS, GlusterFS, HDFS, CephFS or
MAPREFS share file system protocols are supported.

You should specify the share type with driver_handles_share_servers = True extra
specification.

. You should specify the share network.

The manila create command creates a share. This command does the following things:

e The manila-scheduler service will find the back end with
driver_handles_share_servers = True mode due to filtering the extra
specifications of the share type.

* The share driver will create a share server with the share network. For details of creating the
resources, see the documentation of the specific share driver.

. After the share becomes available, use the manila show command to get the share export

location.

In the example to create a share, the default share type and the already existing share network are used.

Note: There is no default share type just after you started manila as the administrator. See Share types
to create the default share type. To create a share network, use Share networks.

Check share types that exist, run:

manila type-list

134

Chapter 3. For operators

http://docs.openstack.org/manila/latest/admin/shared-file-systems-multi-backend.html

Manila Developer Documentation, Release 12.1.3.dev46

Check share networks that exist, run:

manila share—-network-1list

Create a public share with my_share_net network, default share type, NFS shared file system
protocol, and size 1 GB:

manila create nfs 1

The share also can be created from a share snapshot. For details, see Share snapshots.

See the share in a share list:

manila list

[}

(continues on next page)

3.2. Administrating Manila 135

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

!

!

)

Check the share status and see the share export locations. After creating status share should have
status available:

manila show Share2

N (continues on next page)

136 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

[

is_public defines the level of visibility for the share: whether other projects can or cannot see the

share. By default, the share is private.

Update share

Update the name, or description, or level of visibility for all projects for the share if you need:

manila update Share2 --description
—public False

manila show Share2

——is-—

(continues on next page)

3.2. Administrating Manila

137

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

[

(continues on next page)

138 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

[

A share can have one of these status values:

Status Description

creating The share is being created.

deleting The share is being deleted.

error An error occurred during share creation.
error_deleting An error occurred during share deletion.
available The share is ready to use.

manage_starting

Share manage started.

manage_error

Share manage failed.

unmanage_starting

Share unmanage started.

unmanage_ error

Share cannot be unmanaged.

unmanaged

Share was unmanaged.

extending

The extend, or increase, share size request was issued success-
fully.

extending_error

Extend share failed.

shrinking

Share is being shrunk.

shrinking_error

Failed to update quota on share shrinking.

shrink-

ing_possible_data_loss_error

Shrink share failed due to possible data loss.

migrating

Share migration is in progress.

Share metadata

If you want to set the metadata key-value pairs on the share, run:

manila metadata Share2 set my_abc 01/20/16

Get all metadata key-value pairs of the share:

manila metadata-show Share?2

(continues on next page)

3.2. Administrating Manila

139

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

You can update the metadata:

manila metadata-update—-all Share?2

01/30/16

You also can unset the metadata using manila metadata <share_name> unset <metadata_key(s)>.

Reset share state

As administrator, you can reset the state of a share.

Use manila reset-state [state <state>] <share> command to reset share state, where state indi-
cates which state to assign the share. Options include available, error, creating, deleting,

error_deleting states.

manila reset-state Share2 --state deleting

manila show Share?2

(continues on next page)

140

Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

3.2. Administrating Manila 141

Manila Developer Documentation, Release 12.1.3.dev46

Delete and force-delete share

You also can force-delete a share. The shares cannot be deleted in transitional states. The transitional
states are creating, deleting, managing, unmanaging, migrating, extending, and
shrinking statuses for the shares. Force-deletion deletes an object in any state. Use the policy.
yaml file to grant permissions for this action to other roles.

Tip: The configuration file policy.yaml may be used from different places. The path /etc/
manila/policy.yaml is one of expected paths by default.

Use manila delete <share_name_or_ID> command to delete a specified share:

manila delete %share_name_or_id%

manila delete %$share_name_or_id% --consistency-group %consistency-group-
—1d%

If you try to delete the share in one of the transitional state using soft-deletion youll get an error:

manila delete Share2

A share cannot be deleted in a transitional status, that it why an error from python-manilaclient
appeared.

Print the list of all shares for all projects:

manila list —--all-tenants

!

!

{

{

!

!

Force-delete Share2 and check that it is absent in the list of shares, run:

manila force—-delete Share2

(continues on next page)

142 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

manila list

!

{

!

!

!

Manage access to share

The Shared File Systems service allows to grant or deny access to a specified share, and list the permis-
sions for a specified share.

To grant or deny access to a share, specify one of these supported share access levels:
e rw. Read and write (RW) access. This is the default value.
* ro. Read-only (RO) access.

You must also specify one of these supported authentication methods:

* ip. Authenticates an instance through its IP address. A valid format is XX .XX.XX.XX or XX.
XX .XX.XX/XX. Forexample 0.0.0.0/0.

» user. Authenticates by a specified user or group name. A valid value is an alphanumeric string
that can contain some special characters and is from 4 to 32 characters long.

* cert. Authenticates an instance through a TLS certificate. Specify the TLS identity as the IDEN-
TKEY. A valid value is any string up to 64 characters long in the common name (CN) of the
certificate. The meaning of a string depends on its interpretation.

* cephx. Ceph authentication system. Specify the Ceph auth ID that needs to be authenticated and
authorized for share access by the Ceph back end. A valid value must be non-empty, consist of
ASCII printable characters, and not contain periods.

Try to mount NFES share with export path 10.0.0.4:/shares/
manila_share_a5fblab7_0bbd_465b_acld4 05706294b6e9 on the node with IP address
10.0.0.13:

sudo mount -v -t nfs 10.0.0.4:/shares/manila_share_a5fblab7_0Obbd_465b_
—~acld_05706294b6e9 /mnt/

3.2. Administrating Manila 143

Manila Developer Documentation, Release 12.1.3.dev46

An error message Permission denied appeared, so you are not allowed to mount a share without an
access rule. Allow access to the share with ip access type and 10.0.0.13 IP address:

manila access—-allow Sharel ip 10.0.0.13 --access—-level rw

Try to mount a share again. This time it is mounted successfully:

sudo mount -v -t nfs 10.0.0.4:/shares/manila_share_a5fblab7_0Obbd_465b_
—~acld_05706294b6e9 /mnt/

Since it is allowed node on 10.0.0.13 read and write access, try to create a file on a mounted share:

cd /mnt
1s

touch my_file.txt

Connect via SSH to the 10.0.0.4 node and check new file my_file.txt in the /shares/
manila_share_ab5fblab7_0bbd_465b_acl4d_05706294b6e9 directory:

ssh 10.0.0.4
cd /shares
1s

cd manila_share_a5fblab7_0bbd_465b_acl4_05706294b6e9
1s

You have successfully created a file from instance that was given access by its IP address.

Allow access to the share with user access type:

manila access—-allow Sharel user demo —--access-level rw

Note: Different share features are supported by different share drivers. For the example, the Generic
driver with the Block Storage service as a back-end doesnt support user and cert authentications

144 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

methods. For details of supporting of features by different drivers, see Manila share features support
mapping.

To verify that the access rules (ACL) were configured correctly for a share, you list permissions for a
share:

manila access—-list Sharel

Deny access to the share and check that deleted access rule is absent in the access rule list:

manila access—-deny Sharel de715226-da00-4cfc-blab-cl11£3393745¢

manila access—-list Sharel

Manage and unmanage share

To manage a share means that an administrator, rather than a share driver, manages the storage lifecycle.
This approach is appropriate when an administrator already has the custom non-manila share with its
size, shared file system protocol, and export path, and an administrator wants to register it in the Shared
File System service.

To unmanage a share means to unregister a specified share from the Shared File Systems service.
Administrators can revert an unmanaged share to managed status if needed.

3.2. Administrating Manila 145

https://docs.openstack.org/manila/latest/admin/share_back_ends_feature_support_mapping.html
https://docs.openstack.org/manila/latest/admin/share_back_ends_feature_support_mapping.html

Manila Developer Documentation, Release 12.1.3.dev46

Unmanage a share

Note: The unmanage operation is not supported for shares that were created on top of share servers
and created with share networks until Shared File Systems API version 2 .49 (Stein/Manila 8.0.0 re-
lease).

Important: Shares that have dependent snapshots or share replicas cannot be removed from the Shared
File Systems service unless the snapshots have been removed or unmanaged and the share replicas have
been removed.

Unmanaging a share removes it from the management of the Shared File Systems service without delet-
ing the share. It is a non-disruptive operation and existing clients are not disconnected, and the function-
ality is aimed at aiding infrastructure operations and maintenance workflows. To unmanage a share, run
the manila unmanage <share> command. Then try to print the information about the share. The
returned result should indicate that Shared File Systems service wont find the share:

manila unmanage share_for_docs
manila show share_for_docs

Manage a share

Note: The manage operation is not supported for shares that are exported on share servers via share
networks until Shared File Systems API version 2 . 49 (Stein/Manila 8.0.0 release).

Note: From API version 2.53, if the requester specifies a share type containing a
replication_type extra spec while managing a share, manila quota system will reserve and
consume resources for two additional quotas: share_replicas and replica_gigabytes.
From API version 2.62, manila quota system will validate size of the share against
per_share_gigabytes quota.

To register the non-managed share in the File System service, run the manila manage command:

The positional arguments are:

* service_host. The manage-share service host in host @backend#POOL format, which consists
of the host name for the back end, the name of the back end, and the pool name for the back end.

* protocol. The Shared File Systems protocol of the share to manage. Valid values are NFS, CIFS,
GlusterFS, HDFS or MAPREFS.

146 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

* export_path. The share export path in the format appropriate for the protocol:
— NFS protocol. 10.0.0.1:/foo_path.

CIFS protocol. \\10.0.0.1\foo_name_of_cifs_share.

HDEFS protocol. hdfs://10.0.0.1:foo_port/foo_share_name.
GlusterFS. 10.0.0.1:/foo_volume.

MAPRES. maprfs:///share-0 -C -Z -N foo.
The optional arguments are:
* name. The name of the share that is being managed.

 share_type. The share type of the share that is being managed. If not specified, the service will
try to manage the share with the configured default share type.

* share_server_id. must be provided to manage shares within share networks. This argument can
only be used with File Systems API version 2 . 49 (Stein/Manila 8.0.0 release) and beyond.

* driver_options. An optional set of one or more key and value pairs that describe driver options.
As aresult, a special share type named for_managing was used in example.

To manage share, run:

manila manage

(continues on next page)

3.2. Administrating Manila 147

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

Check that the share is available:

manila show share_for_docs

—

(continues on next page)

148 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

[

Manage and unmanage share snapshot

To manage a share snapshot means that an administrator, rather than a share driver, manages the storage
lifecycle. This approach is appropriate when an administrator manages share snapshots outside of the
Shared File Systems service and wants to register it with the service.

To unmanage a share snapshot means to unregister a specified share snapshot from the Shared File
Systems service. Administrators can revert an unmanaged share snapshot to managed status if needed.

Unmanage a share snapshot

The unmanage operation is not supported for shares that were created on top of share
servers and created with share networks. The Share service should have the option
driver handles_share_servers = Falsesetinthemanila.conf file.

To unmanage managed share snapshot, run the manila snapshot-unmanage
<share_snapshot> command. Then try to print the information about the share snapshot.
The returned result should indicate that Shared File Systems service wont find the share snapshot:

manila snapshot-unmanage my_test_share_snapshot
manila snapshot-show my_test_share_snapshot

3.2. Administrating Manila 149

Manila Developer Documentation, Release 12.1.3.dev46

Manage a share snapshot

To register the non-managed share snapshot in the File System service, run the manila
snapshot-manage command:

The positional arguments are:
* share. Name or ID of the share.
* provider_location. Provider location of the share snapshot on the backend.

The driver_options is an optional set of one or more key and value pairs that describe driver
options.

To manage share snapshot, run:

manila snapshot-manage

Check that the share snapshot is available:

manila snapshot-show my_test_share_snapshot

(continues on next page)

150 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

Resize share

To change file share size, use the manila extend command and the manila shrink command.
For most drivers it is safe operation. If you want to be sure that your data is safe, you can make a share
back up by creating a snapshot of it.

You can extend and shrink the share with the manila extend and manila shrink commands
respectively, and specify the share with the new size that does not exceed the quota. For details, see
Quotas and Limits. You also cannot shrink share size to 0 or to a greater value than the current share
size.

Note: From API version 2.53, extending a replicated share, manila quota system will reserve and
consume resources for two additional quotas: share_replicas and replica_gigabytes. This
request will fail if there is no available quotas to extend the share and all of its share replicas.

While extending, the share has an extending status. This means that the increase share size request
was issued successfully.

To extend the share and check the result, run:

manila extend docs_resize 2
manila show docs_resize

—

< (continues on next page)

3.2. Administrating Manila 151

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

While shrinking, the share has a shrinking status. This means that the decrease share size request
was issued successfully. To shrink the share and check the result, run:

manila shrink docs_resize 1
manila show docs_resize

(continues on next page)

152 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

(continues on next page)

3.2. Administrating Manila 153

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

[

Quotas and limits

Limits

Limits are the resource limitations that are allowed for each project. An administrator can configure
limits in the manila.conf file.

Users can query their rate and absolute limits.

To see the absolute limits, run:

manila absolute-limits

Rate limits control the frequency at which users can issue specific API requests. Administrators use
rate limiting to configure limits on the type and number of API calls that can be made in a specific time

154 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

interval. For example, a rate limit can control the number of GET requests processed during a one-minute
period.

To set the API rate limits, modify the etc/manila/api-paste.ini file, which is a part of the
WSGI pipeline and defines the actual limits. You need to restart manila-api service after you edit
the etc/manila/api-paste.ini file.

Also, add the ratelimit to noauth, keystone, keystone_nolimit parameters in the
[composite:openstack_share_api] and [composite:openstack_share_api_v2]
groups.

To see the rate limits, run:

manila rate-limits

Quotas

Quota sets provide quota management support.

To list the quotas for a project or user, use the manila quota-show command. If you specify the
optional ——user parameter, you get the quotas for this user in the specified project. If you omit this
parameter, you get the quotas for the specified project.

Note: The Shared File Systems service does not perform mapping of usernames and project names
to IDs. Provide only ID values to get correct setup of quotas. Setting it by names you set quota for

3.2. Administrating Manila 155

Manila Developer Documentation, Release 12.1.3.dev46

nonexistent project/user. In case quota is not set explicitly by project/user ID, The Shared File Systems
service just applies default quotas.

manila quota-show —--tenant %project_id% —--user %user_id%

There are default quotas for a project that are set from the manila. conf file. To list the default quotas
for a project, use the manila quota-defaults command:

manila quota-defaults —--tenant %$project_id$%

The administrator can update the quotas for a specific project, or for a specific user by provid-
ing both the ——-tenant and —--user optional arguments. It is possible to update the shares,
snapshots, gigabytes, snapshot-gigabytes, share-networks, share_groups,
share_group_snapshots and share-type quotas.

Note: Since API version 2.53, the administrator is also able to update quotas for share replicas
and replica gigabytes by specifying share_replicas and/or replica_gigabytes. Since API
version 2.62, the administrator is also able to update quotas for per share gigabytes by specifying
per_share_gigabytes

manila quota-update %project_id% --user S%user_id% —--shares 49 —--—
—snapshots 49

As administrator, you can also permit or deny the force-update of a quota that is already used, or if the

156 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

requested value exceeds the configured quota limit. To force-update a quota, use force optional key.

manila quota-update %$project_id% --shares 51 —--snapshots 51 —--force

The administrator can also update the quotas for a specific share type. Share Type quotas cannot be set
for individual users within a project. They can only be applied across all users of a particular project.

manila quota-update %project_id% —--share-type %$share_type_id%

To revert quotas to default for a project or for a user, delete quotas:

manila quota-delete —--tenant %project_id% --user-id $%user_id%

To revert quotas to default, use the specific project or share type. Share Type quotas can not be reverted
for individual users within a project. They can only be reverted across all users of a particular project.

manila quota-delete —--tenant %$project_id% --share-type %$share_type_id$%

Share types

The Shared File System service back-end storage drivers offer a wide range of capabilities. The vari-
ation in these capabilities allows cloud administrators to provide a storage service catalog to their end
users. Share types can be used to create this storage service catalog. Cloud administrators can influence
provisioning of users shares with the help of Share types. All shares are associated with a share type.
Share types are akin to flavors in the OpenStack Compute service (nova), or volume types in
the OpenStack Block Storage service (cinder), or storage classes in Kubernetes. You can allow
a share type to be accessible to all users in your cloud if you wish. You can also create private share
types that allow only users belonging to certain OpenStack projects to access them. You can have an
unlimited number of share types in your cloud, but for practical purposes, you may want to create only
a handful of publicly accessible share types.

Each share type is an object that encompasses ext ra—specs (extra specifications). These extra-specs
can map to storage back-end capabilities, or can be directives to the service.

Consider for example, offering three share types in your cloud to map to service levels:

Type Capabilities/Instructions

Gold Allow creating snapshots, reverting to snapshots and share replication, thick provision
shares

Silver | Allow creating snapshots, thin provision shares

Bronze | Dont allow creating snapshots, thin provision shares

Capabilities or instructions such as the ones above are coded as extra-specs that your users and the
Shared File System service understand. Users in OpenStack projects can see all public share types along
with private share types that are made accessible to them. Not all extra-specs that you configure in a
share type are visible to your users. This design helps preserve the cloud abstraction. Along with the
share type names, they can see the share type descriptions and tenant-visible extra-specs.

For more details on extra-specs, see Capabilities and Extra-Specs.

The Shared File Systems service also allows using quota controls with share types. Quotas can help you
maintain your SLAs by limiting the number of consumable resources or aid in billing. See Quotas and
limits for more details.

3.2. Administrating Manila 157

Manila Developer Documentation, Release 12.1.3.dev46

Driver Handles Share Servers (DHSS)

To provide secure and hard multi-tenancy on the network data path, the Shared File Systems service
allows users to use their own share networks. When shares are created on a share network, users
can be sure they have their own isolated share servers that export their shares on the share network
that have the ability plug into user-determined authentication domains (security services). Not all
Shared File System service storage drivers support share networks. Those that do assert the capabil-
ity driver_handles_share_servers=True.

When creating a share type, you are required to set an extra-spec that matches this capability. It is visible
to end users.

Default Share Type

When you are operating a cloud where all your tenants are trusted, you may want to create a default
share type that applies to all of them. It simplifies share creation for your end users since they dont need
to worry about share types.

Use of a default share type is not recommended in a multi-tenant cloud where you may want to sep-
arate your user workloads, or offer different service capabilities. In such instances, you must always
encourage your users to specify a share type at share creation time, and not rely on the default share

type.

Important: If you do not create and configure a default share type, users must specify a valid share
type during share creation, or share creation requests will fail.

To configure the default share type, edit the manila.conf file, and set the configuration option [DE-
FAULT]/default_share_type.

You must then create a share type, using manila type-create:

where:
* name is the share type name
* is_public defines the visibility for the share type (true/false)

* description is a free form text field to describe the characteristics of the share type for your
users benefit

* extra-specs defines a comma separated set of key=value pairs of optional extra specifications

* spec_driver_handles_share_servers is the mandatory extra-spec (true/false)

158 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Share type operations

To create a new share type you need to specify the name of the new share type. You also require an extra
spec driver_handles_share_servers. The new share type can be public or private.

manila manila type-create default-shares False

manila type-list

!

)

{

!

)

!

!

)

manila type-show default-shares

You did not provide optional capabilities, so they are all assumed to be off by default. So, Non-privileged
users see some tenant-visible capabilities explicitly.

3.2. Administrating Manila 159

Manila Developer Documentation, Release 12.1.3.dev46

source demorc
manila type-list

)

!

!

!

{

!

!

!

!

manila type-show default-shares

You can set or unset extra specifications for a share type using manila type-key <share_type> set
<key=value> command.

160 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

manila type-key default-shares set True

manila type-show default-shares

Usemanila type-key <share_type> unset <key> to unset an extra specification.

A share type can be deleted with the manila type—delete <share_type> command. How-
ever, a share type can only be deleted if there are no shares, share groups or share group types associated
with the share type.

Share type access control

You can provide access, revoke access, and retrieve list of allowed projects for a specified private share.

Create a private type:

manila type-create my_typel True

Note: If you run manila type-1list only public share types appear. To see private share types,
runmanila type-list --all’.

3.2. Administrating Manila 161

Manila Developer Documentation, Release 12.1.3.dev46

Grant access to created private type for a demo and alt_demo projects by providing their IDs:

manila type-access-add my_typel d8f9%9af6915404114ae4£30668a4f5ba’
manila type-access-add my_typel e4970£57£f1824faab2701db6lee7efdf

To view information about access for a private share, type my_typel:

manila type-access-list my_typel

After granting access to the share, the users in the allowed projects can see the share type and use it to
create shares.

To deny access for a specified project, use manila type—access—remove <share_type>
<project_id> command.

Share group types

Share group types are types for share groups just like share types for shares. A group type is associated
with group specs similar to the way extra specs are associated with a share type.

A share group type aids the scheduler to filter or choose back ends when you create a share group and to
set any backend specific parameters on the share group. Any driver that can perform a group operation
in an advantaged way may report that as a group capability, such as:

* Ordered writes

* Consistent snapshots
* Group replication

* Group backup

Share group types may contain group specs corresponding to the group capabilities reported by the
backends. A group capability applies across all the shares inside the share group, for example, a backend
may support consistent_snapshot_support, and using this group type extra spec in the group type will
allow scheduling share groups onto that backend. Any time a snapshot of the group is initiated, a crash
consistent simultaneous snapshot of all the constituent shares is taken. Shares in a share group may each
have different share types because they can each be on separate pools, have different capabilities and
perhaps end users can even be billed differently for using each of them. To allow for this possibility, one
or more share types can be associated with a group type. The admin also specifies which share type(s)
a given group type may contain. At least one share type must be provided to create a share group type.
When an user creates a share group, the scheduler creates the group on one of the backends that match
the specified share type(s) and share group type.

In the Shared File Systems configuration file manila.conf, the administrator can set the share group
type used by default for the share group creation.

To create a share group type, use manila share—-group-type—create command as:

162 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Where the name is the share group type name and ——1is_public defines the level of the visibility for
the share group type. One share group can include multiple share_types. ——group-specs are
the extra specifications used to filter back ends.

Note: The extra specifications set in the share group types are explained further in Scheduling.

Administrators can create share group types with these extra specifications for the back ends filtering.
An administrator can use the policy. json file to grant permissions for share group type creation
with extra specifications to other roles.

You set a share group type to private or public and manage the access to the private share group types.
By default a share group type is created as publicly accessible. Set ——is_public to False to make
the share group type private.

Share group type operations

To create a new share group type you need to specify the name of the new share group type and existing
share types. The new share group type can also be public. One share group can include multiple share

types.

manila share-group-type-create group_type_for_cg default_share_type —--is_
—public True

manila share-group-type-list

You can set or unset extra specifications for a share group type using manila share-group-type-key
<share_group_type> set <key=value> command.

manila share-group-type-key group_type_for_cg set
— host

3.2. Administrating Manila 163

Manila Developer Documentation, Release 12.1.3.dev46

It is also possible to view a list of current share group types and extra specifications:

manila share-group-type-specs-list

Use manila share—group-type-key <share_group_type> unset <key> to unset an
extra specification.

A public or private share group type <can be deleted with the manila
share-group-type—delete <share_group_type> command.

Share group type access

You can manage access to a private share group type for different projects. Administrators can provide
access, revoke access, and retrieve information about access for a specified private share group.

Create a private group type:

manila share-group-type-create my_typel default_share_type --is_public
—False

Note: If you run manila share—-group-type-1list only public share group types appear. To
see private share group types, runmanila share—group-type-list with ——all optional argu-
ment.

Grant access to created private type for a demo and alt_demo projects by providing their IDs:

manila share-group-type-access—add my_typel, |,
—~d8f9af6915404114ae4£30668a4f5ba’

manila share-group-type—-access—-add my_typel,,
—ed4970£57£1824faab2701db6lee7efdf

To view information about access for a private share, manila type-access—-list my_typel:

manila type-access-list my_typel

(continues on next page)

164 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

After granting access to the share group type, the target project can see the share group type in the list,
and create private share groups.

To deny access for a specified project, use manila share—group-type—-access—remove
<share_group_type> <project_id> command.

manila share-group-type-access-remove my_typel |,
—~e4970£57£1824faab2701db6lee7efdf

Share groups

Share group support is available in Manila since the Ocata release. A share group is a group of shares
upon which users can perform group based operations, such as taking a snapshot together. This frame-
work is meant to allow migrating or replicating a group of shares in unison in future releases of manila.
Support currently exists for creating group types and group specs, creating groups of shares, and creating
snapshots of groups. These group operations can be performed using the command line client.

To create a share group, and access it, the following general concepts are prerequisite knowledge:
1. To create a share group, use manila share-group-create command.

2. You can specify the share-network, share group type,
source-share-group-snapshot, availability-zone, share type.

3. After the share group becomes available, use the manila create command to create a share
within the share group.

Note: A share group is limited to a single backend, i.e. all shares created within a particular share group
end up on the same backend. If the backend supports pools, the shares may be created within separate
pools. So this feature is apt for those that would like co-locality of different shares.

Actions on a share group

A few actions, such as extend & shrink, are inherently applicable only to individual shares. One could
theoretically apply extend to a group, increasing the size of each member, but this would not be a use-
case covered initially. Any actions in this category must remain available to group members, and other
actions such as taking snapshots of group members can be allowed, but actions such as migration or
replication would be available only at the group level and not on its members.

3.2. Administrating Manila 165

Manila Developer Documentation, Release 12.1.3.dev46

Share Action Share Group Action

Create (share type) Create (share types, group type)

Delete Delete (group)

Snapshot Snapshot (may or may not be a consistent group snapshot)
Create from snapshot | Create from group snapshot

Clone Clone group (and all members) (planned)

Replicate Replicate (planned)

Migrate Migrate (planned)

Extend/shrink N/A

Creating a share with share group

Creating a share group type

In this example, we will create a new share group type and specify the consistent_snapshot_support as
an group-spec within the share-group-type-create being used.

Use the manila type-list command to get a share type. Then use the share type to create a share
group type.

manila type-list

!

)

{

)
C

!

!

Use themanila share-group-type-create command to create a new share group type. Spec-
ify the name and share types.

manila share-group-type-create group_type_for_cg default_share_type

Use the manila share-group-type-key command to set a group-spec to the share group type.

166 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

manila share-group-type-key group_type_for_cg set
— host

Note: This command has no output. To verify the group-spec, use the manila
share-group-type—-specs—-1list command and specify the share group types name or ID as
a parameter.

Creating a share group

Use themanila share—group-create command to create a share group. Specify the share group
type that we created.

manila share-group-create --share-group-type group_type_for_cg

Note: One share group can include multiple share types. The share types are going to be inherited
directly from the share group type.

Use the manila share—group-show command to retrieve details of the share. Specify the share
ID or name as a parameter.

manila share-group-show ecf78d45-546a-48df-a9%969-c153e68£f0376

—

= (continues on next page)

3.2. Administrating Manila 167

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

[

Create a share with the share group

Use the manila create command to create a share. Specify the share protocol, size, share group
type and the share name.

manila create NEFS 1 --share-group ecf78d45-546a-48df-a9%969-c153e68£f0376 ——
—name test_group_share_1

(continues on next page)

168 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

[

Create another share with a same share group, and named test_group_share_2.

manila create NFS 1 —--share—group ecf78d45-546a-48df-a9%969-cl153e68£0376 -
—name test_group_share_2

[

. (continues on next page)

3.2. Administrating Manila 169

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

[

170 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Creating a share group shapshot

Create a share group sanpshot of the share group

Use the manila share—group-snapshot-create command to create a share group snapshot.
Specify the share group ID or name.

manila share-group-snapshot-create ecf78d45-546a-48df-a9%969-c153e68f0376

Show the members of the share group snapshot

Use the manila share—group—-snapshot—create command to see all share members of share
group snapshot. Specify the share group snapshot ID or name.

manila share-group-snapshot-list-members ac387240-08dc-4b23-80f6-
—ffc48leb6c87a

Show the details of the share group snapshot

manila share-group-snapshot-show ac387240-08dc-4b23-80f6-ffc48le6c87a

3.2. Administrating Manila 171

Manila Developer Documentation, Release 12.1.3.dev46

Deleting share groups

Use themanila share—group-delete <group_id> to delete share groups.

Deleting share group snapshots

Use the manila share—-group-snapshot-delete <group_snapshot_id> to delete
share a share group snapshot.

Important: Before attempting to delete a share group or a share group snapshot, make sure that all its
constituent shares and snapshots were deleted. Users will need to delete share group snapshots before
attempting to delete shares within ashare group or the group itself.

Share snapshots
The Shared File Systems service provides a snapshot mechanism to help users restore data by running
themanila snapshot-create command.

To export a snapshot, create a share from it, then mount the new share to an instance. Copy files from
the attached share into the archive.

To import a snapshot, create a new share with appropriate size, attach it to instance, and then copy a file
from the archive to the attached file system.

Note: You cannot delete a share while it has saved dependent snapshots.

Create a snapshot from the share:

manila snapshot-create Sharel —--name Snapshotl —--description

—

Update snapshot name or description if needed:

manila snapshot-rename Snapshotl Snapshot_1 —--description

—

172 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Check that status of a snapshot is available:

manila snapshot-show Snapshotl

To create a copy of your data from a snapshot, use manila create with key ——snapshot-id.
This creates a new share from an existing snapshot. Create a share from a snapshot and check whether

it is available:

manila create nfs 1 —-name Share2 —--metadata

snapshot —-

—description ——-snapshot-id 962e8126-35c3-47bb-

—8c00-f0ee37f42ddd

manila show Share2

(continues on next page)

3.2. Administrating Manila

173

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

By default, the Shared File Systems service will place the new share in the source shares pool, unless a
different destination availability zone is provided by the user, using the key ——availability-zone.

Starting from Ussuri release, a new filter and weigher were added to the scheduler to enhance the se-
lection of a destination pool when creating shares from snapshot. Drivers that support creating shares
from snapshots across back ends also need the back end configuration option replication_domain
to be specified. This option can be an arbitrary string. As an administrator, you are expected to deter-
mine which back ends are compatible to copy data between each other. Once you have identified these
back ends, configure replication_domain in their respective configuration sections to the same
string. Refer to the feature support mapping for identifying which back ends support this feature. The
use of scheduler when creating share from a snapshot must be enabled using the configuration flag
[DEFAULT] /use_scheduler_creating_share_from_snapshot. This option is disabled
by default.

Note: When combining both --snapshot-id and --availability-zone
keys, youll need to make sure that the configuration flag [DEFAULT]/
use_scheduler_creating_share_from_snapshot is enabled, or the operation will be
denied when source and destination availability zones are different.

You can soft-delete a snapshot usingmanila snapshot-delete <snapshot_name_or_ ID>.
If a snapshot is in busy state, and during the delete an error_delet ing status appeared, administrator
can force-delete it or explicitly reset the state.

Use snapshot-reset-state [-—-state <state>] <snapshot> to update the state of a
snapshot explicitly. A valid value of a status are available, error, creating, deleting,
error_deleting. If no state is provided, the available state will be used.

Use manila snapshot-force-delete <snapshot> to force-delete a specified share snap-
shot in any state.

174 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Share servers

A share server is a resource created by the Shared File Systems service when the driver is operating
in the driver_handles_share_servers = True mode. A share server exports users shares, manages their
exports and access rules.

Share servers are abstracted away from end users. Drivers operating in driver_handles_share_servers
= True mode manage the lifecycle of these share servers automatically. Administrators can however
remove the share servers from the management of the Shared File Systems service without destroying
them. They can also bring in existing share servers under the Shared File Systems service. They can list
all available share servers and update their status attribute. They can delete an specific share server if it
has no dependent shares.

Share server management

To manage a share server means that when the driver is operating in the
driver_handles_share_servers = True mode, the administrator can bring a pre-existing
share server under the management of the Shared File Systems service.

To unmanage means that the administrator is able to unregister an existing share server from the Shared
File Systems service without deleting it from the storage back end. To be unmanaged, the referred share
server cannot have any shares known to the Shared File Systems service.

Manage a share server

To bring a share server under the Shared File System service, use the manila
share-server—-manage command:

The positional arguments are:

* host. The manage-share service host in host @backend format, which consists of the host name
for the back end and the name of the back end.

¢ share_network. The share network where the share server is contained.
* identifier. The identifier of the share server on the back end storage.

The driver_options is an optional set of one or more driver-specific metadata items as key and
value pairs. The specific key-value pairs necessary vary from driver to driver. Consult the driver-specific
documentation to determine if any specific parameters must be supplied. Ensure that the share type has
the driver_handles_share_servers = True extra-spec.

The share_network_subnet is an optional parameter which was introduced in Train release. Due
to a change in the share networks structure, a share network no longer contains the following attributes:
neutron_net_id, neutron_subnet_id, gateway, mtu, network_type, ip_version,
segmentation_id. These attributes now pertain to the share network subnet entity, and a share
network can span multiple share network subnets in different availability zones. If you do not specify
a share network subnet, the Shared File Systems Service will choose the default one (which does not
pertain to any availability zone).

3.2. Administrating Manila 175

Manila Developer Documentation, Release 12.1.3.dev46

If using an OpenStack Networking (Neutron) based plugin, ensure that:
* There are some ports created, which correspond to the share server interfaces.
* The correct IP addresses are allocated to these ports.
* manila:share is set as the owner of these ports.

To manage a share server, run:

manila share-server-manage

Note: The is_auto_deletable property is used by the Shared File Systems service to identify a
share server that can be deleted by internal routines.

The service can automatically delete share servers if there are no shares asso-

ciated with them. To delete a share server when the last share 1is deleted,
set the option: delete_share_server_with_last_share. If a sched-
uled cleanup is desired instead, automatic_share_server_cleanup and

unused_share_server_cleanup_interval options can be set. Only one of the cleanup
methods can be used at one time.

Any share server that has a share unmanaged from it cannot be automatically deleted by the Shared File
Systems service. The same is true for share servers that have been managed into the service. Cloud
administrators can delete such share servers manually if desired.

Unmanage a share server

To unmanage a share server, runmanila share-server—unmanage <share-server>.

manila share-server-unmanage 441d806f-f0e0-4c90-b7e2-a553c6aa776b2
manila share-server-show 441d806f-f0e0-4c90-b7e2-a553c6aa776b2

176 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Reset the share server state

As administrator you are able to reset a share server state. To reset the state of a share server, run
manila share-server-reset—-state <share-server> —--state <state>.

The positional arguments are:

¢ share-server. The share server name or id.

« state. The state to be assigned to the share server. The options are:

active

error

deleting
creating
managing
unmanaging
unmanage_error

manage_error

List share servers

To list share servers, run manila share-server-list command:

All the arguments above are optional. They can ben used to filter share servers. The options to filter:

* host. Shows all the share servers pertaining to the specified host.

* status. Shows all the share servers that are in the specified status.

* share_network. Shows all the share servers that pertain in the same share network.

* project_id. Shows all the share servers pertaining to the same project.

* columns. The administrator specifies which columns to display in the result of the list operation.

manila share-server-1list

3.2. Administrating Manila

177

Manila Developer Documentation, Release 12.1.3.dev46

Share server limits (Since Wallaby release)

Since Wallaby release, it is possible to specify limits for share servers size and amount of instances. It
helps administrators to provision their resources in the cloud system and balance the share servers size.
If a value is not configured, there is no behavioral change and manila will consider it as unlimited. Then,
will reuse share servers regardless their size and amount of built instances.

* max_share_server_size: Maximum sum of gigabytes a share server can have considering
all its share instances and snapshots.

* max_shares_per_share_server: Maximum number of share instances created in a share
server.

Note: If one of these limits is reached during a request that requires a share server to be provided,
manila will create a new share server to place such request.

Security services

A security service stores client configuration information used for authentication and authorization (Au-
thN/AuthZ). For example, a share server will be the client for an existing service such as LDAP, Ker-
beros, or Microsoft Active Directory.

You can associate a share with one to three security service types:

* ldap: LDAP.

* kerberos: Kerberos.

* active_directory: Microsoft Active Directory.
You can configure a security service with these options:

* A DNS IP address.

* An IP address or host name.

* A domain.

* A user or group name.

* The password for the user, if you specify a user name.
You can add the security service to the share network.

To create a security service, specify the security service type, a description of a security service, DNS IP
address used inside projects network, security service IP address or host name, domain, security service
user or group used by project, and a password for the user. The share name is optional.

Create a 1dap security service:

manila security-service-create ldap --dns-ip 8.8.8.8 —-—-server 10.254.0.3_
——-name my_ldap_security_service

(continues on next page)

178 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

To create kerberos security service, run:

manila security-service-create kerberos —--server 10.254.0.3 —--user demo -
—-password secret —--name my_kerberos_security_service --description

—>

To see the list of created security service use manila security-service-list:

manila security-service-list

You can add a security service to the existing share network, which is not yet used (a share network
not associated with a share).

Add a security service to the share network with share-network—-security-service-add

3.2. Administrating Manila 179

Manila Developer Documentation, Release 12.1.3.dev46

specifying share network and security service. The command returns information about the security
service. You can see view new attributes and share_networks using the associated share network
ID.

manila share-network-security-service-add share_net2 my_ldap_security_
—service

manila security-service-show my_ldap_security_service

It is possible to see the list of security services associated with a given share network. List security
services for share_net 2 share network with:

manila share—-network-security-service-list share_net2

You also can dissociate a security service from the share network and confirm that the security service
now has an empty list of share networks:

manila share—-network-security-service-remove share_net2 my_ldap_security__
—service

manila security-service-show my_ldap_security_service

(continues on next page)

180 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

The Shared File Systems service allows you to update a security service field using manila
security-service—update command with optional arguments such as ——dns—-ip, ——server,
-—domain, -—user, ——password, ——name, or ——description.

To remove a security service not associated with any share networks run:

manila security-service-delete my_ldap_security_service

Share migration

Share migration is the feature that migrates a share between different storage pools.

Use cases

As an administrator, you may want to migrate your share from one storage pool to another for several
reasons. Examples include:

* Maintenance or evacuation
— Evacuate a back end for hardware or software upgrades
— Evacuate a back end experiencing failures
— Evacuate a back end which is tagged end-of-life
* Optimization
— Defragment back ends to empty and be taken offline to conserve power
— Rebalance back ends to maximize available performance

— Move data and compute closer together to reduce network utilization and decrease latency
or increase bandwidth

* Moving shares
— Migrate from old hardware generation to a newer generation

— Migrate from one vendor to another

3.2. Administrating Manila 181

Manila Developer Documentation, Release 12.1.3.dev46

Migration workflows

Moving shares across different storage pools is generally expected to be a disruptive operation that
disconnects existing clients when the source ceases to exist. For this reason, share migration is imple-
mented in a 2-phase approach that allows the administrator to control the timing of the disruption. The
first phase performs data copy while users retain access to the share. When copying is complete, the
second phase may be triggered to perform a switchover that may include a last sync and deleting the
source, generally requiring users to reconnect to continue accessing the share.

In order to migrate a share, one of two possible mechanisms may be employed, which provide different
capabilities and affect how the disruption occurs with regards to user access during data copy phase and
disconnection during switchover phase. Those two mechanisms are:

* Driver-assisted migration: This mechanism is intended to make use of driver optimizations to
migrate shares between pools of the same storage vendor. This mechanism allows migrating
shares nondisruptively while the source remains writable, preserving all filesystem metadata and
snapshots. The migration workload is performed in the storage back end.

* Host-assisted migration: This mechanism is intended to migrate shares in an agnostic manner
between two different pools, regardless of storage vendor. The implementation for this mechanism
does not offer the same properties found in driver-assisted migration. In host-assisted migration,
the source remains readable, snapshots must be deleted prior to starting the migration, filesystem
metadata may be lost, and the clients will get disconnected by the end of migration. The migration
workload is performed by the Data Service, which is a dedicated manila service for intensive data
operations.

When starting a migration, driver-assisted migration is attempted first. If the shared file system service
detects it is not possible to perform the driver-assisted migration, it proceeds to attempt host-assisted
migration.

Using the migration APIs

The commands to interact with the share migration API are:

* migration_start: starts a migration while retaining access to the share. Migration is paused
and waits for migration_complete invocation when it has copied all data and is ready to
take down the source share.

manila migration-start share_1 ubuntu@generic2#GENERIC2 --writable
—False ——preserve-snapshots False —--preserve-metadata False ——
—nondisruptive False

Note: This command has no output.

* migration_complete: completes a migration, removing the source share and setting the
destination share instance to available.

manila migration-complete share_1

Note: This command has no output.

182 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

* migration_get_progress: obtains migration progress information of a share.

manila migration-get-progress share_1

migration_cancel: cancels an in-progress migration of a share.

manila migration-cancel share_1

Note: This command has no output.

The parameters

To start a migration, an administrator should specify several parameters. Among those, two of them are
key for the migration.

* share: The share that will be migrated.

* destination_pool: The destination pool to which the share should be migrated to, in format
host@backend#pool.

Several other parameters, referred to here as driver—-assisted parameters, must be specified
inthe migration_start APIL They are:

* preserve_metadata: whether preservation of filesystem metadata should be enforced for
this migration.

* preserve_snapshots: whether preservation of snapshots should be enforced for this migra-
tion.

* writable: whether the source share remaining writable should be enforced for this migration.

* nondisruptive: whether it should be enforced to keep clients connected throughout the mi-
gration.

Specifying any of the boolean parameters above as True will disallow a host-assisted migration.

In order to appropriately move a share to a different storage pool, it may be required to change one or
more share properties, such as the share type, share network, or availability zone. To accomplish this,
use the optional parameters:

* new_share_type_id: Specify the ID of the share type that should be set in the migrated
share.

* new_share_network_id: Specify the ID of the share network that should be set in the mi-
grated share.

If driver-assisted migration should not be attempted, you may provide the optional parameter:

3.2. Administrating Manila 183

mailto:host@backend#pool

Manila Developer Documentation, Release 12.1.3.dev46

* force_host_assisted_migration: whether driver-assisted migration attempt should be
skipped. If this option is set to True, all driver-assisted options must be set to False.

Configuration

For share migration to work in the cloud, there are several configuration requirements that need to be
met:

For driver-assisted migration: it is necessary that the configuration of all back end stanzas is present in
the file manila.conf of all manila-share nodes. Also, network connectivity between the nodes running
manila-share service and their respective storage back ends is required.

For host-assisted migration: it is necessary that the Data Service (manila-data) is installed and configured
in a node connected to the clouds administrator network. The drivers pertaining to the source back end
and destination back end involved in the migration should be able to provide shares that can be accessed
from the administrator network. This can easily be accomplished if the driver supports admin_only
export locations, else it is up to the administrator to set up means of connectivity.

In order for the Data Service to mount the source and destination instances, it must use manila share
access APIs to grant access to mount the instances. The access rule type varies according to the share
protocol, so there are a few config options to set the access value for each type:

* data_node_access_ips: For IP-based access type, provide one or more administrator net-
work IP addresses of the host running the Data Service. For NFS shares, drivers should always
add rules with the no_root_squash property.

* data_node_access_cert: For certificate-based access type, provide the value of the certifi-
cate name that grants access to the Data Service.

* data_node_access_admin_user: For user-based access type, provide the value of a user-
name that grants access and administrator privileges to the files in the share.

* data_node_mount_options: Provide the value of a mapping of protocol name to respective
mount options. The Data Service makes use of mount command templates that by default have
a dedicated field to inserting mount options parameter. The default value for this config option
already includes the username and password parameters for CIFS shares and NFS v3 enforcing
parameter for NFS shares.

* mount_tmp_location: Provide the value of a string representing the path where the share
instances used in migration should be temporarily mounted. The default value is /tmp/.

* check_hash: This boolean config option value determines whether the hash of all files copied
in migration should be validated. Setting this option increases the time it takes to migrate files,
and is recommended for ultra-dependable systems. It defaults to disabled.

The configuration options above are respective to the Data Service only and should be defined the
DEFAULT group of the manila.conf configuration file. Also, the Data Service node must have
all the protocol-related libraries pre-installed to be able to run the mount commands for each protocol.

You may need to change some driver-specific configuration options from their default value to work with
specific drivers. If so, they must be set under the driver configuration stanza in manila.conf. See a
detailed description for each one below:

* migration_ignore_files: Provide value as a list containing the names of files or folders
to be ignored during migration for a specific driver. The default value is a list containing only
lost+found folder.

184 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

share_mount_template: Provide a string that defines the template for the mount command
for a specific driver. The template should contain the following entries to be formatted by the
code:

— proto: The share protocol. Automatically formatted by the Data Service.

— options: The mount options to be formatted by the Data Service according to the
data_node_mount_options config option.

— export: The export path of the share. Automatically formatted by the Data Service with the
shares admin_only export location.

— path: The path to mount the share. Automatically formatted by the Data Service according
to the mount_tmp_location config option.

The default value for this config option is:

share_unmount_template: Provide the value of a string that defines the template for the
unmount command for a specific driver. The template should contain the path of where the shares
are mounted, according to the mount_tmp_location config option, to be formatted automat-
ically by the Data Service. The default value for this config option is:

protocol_access_mapping: Provide the value of a mapping of access rule type to protocols
supported. The default value specifies IP and user based access types mapped to NFS and CIFS
respectively, which are the combinations supported by manila. If a certain driver uses a different
protocol for IP or user access types, or is not included in the default mapping, it should be specified
in this configuration option.

Other remarks

There is no need to manually add any of the previously existing access rules after a migration is
complete, they will be persisted on the destination after the migration.

Once migration of a share has started, the user will see the status migrating and it will block
other share actions, such as adding or removing access rules, creating or deleting snapshots, resiz-
ing, among others.

The destination share instance export locations, although it may exist from the beginning of a
host-assisted migration, are not visible nor accessible as access rules cannot be added.

During a host-assisted migration, an access rule granting access to the Data Service will be added
and displayed by querying the access—11st API This access rule should not be tampered with,
it will otherwise cause migration to fail.

Resources allocated are cleaned up automatically when a migration fails, except if this failure
occurs during the 2nd phase of a driver-assisted migration. Each step in migration is saved to
the field task_state present in the Share model. If for any reason the state is not set to
migration_error during a failure, it will need to be reset using the reset-task-state
APL.

It is advised that the node running the Data Service is well secured, since it will be mounting
shares with highest privileges, temporarily exposing user data to whoever has access to this node.

3.2

Administrating Manila 185

Manila Developer Documentation, Release 12.1.3.dev46

* The two mechanisms of migration are affected differently by service restarts:

— If performing a host-assisted migration, all services may be restarted except for the
manila-data service when performing the copy (the task_state field value starts with
data_copying_). In other steps of the host-assisted migration, both the source and des-
tination manila-share services should not be restarted.

— If performing a driver-assisted migration, the migration is affected minimally by driver
restarts if the task_state is migration_driver_in_progress, while the copy
is being done in the back end. Otherwise, the source and destination manila-share services
should not be restarted.

Share replication

Replication of data has a number of use cases in the cloud. One use case is High Availability of the data
in a shared file system, used for example, to support a production database. Another use case is ensuring
Data Protection; i.e being prepared for a disaster by having a replication location that will be ready to
back up your primary data source.

The Shared File System service supports user facing APIs that allow users to create shares that support
replication, add and remove share replicas and manage their snapshots and access rules. Three replica-
tion types are currently supported and they vary in the semantics associated with the primary share and
the secondary copies.

Important: Share replication is an experimental Shared File Systems API in the Mitaka re-
lease. Contributors can change or remove the experimental part of the Shared File Systems
API in further releases without maintaining backward compatibility. Experimental APIs have an
X-OpenStack-Manila-API-Experimental: true header in their HTTP requests.

Replication types supported

Before using share replication, make sure the Shared File System driver that you are running
supports this feature. You can check it in the manila-scheduler service reports. The
replication_type capability reported can have one of the following values:

writable The driver supports creating writable share replicas. All share replicas can be accorded
read/write access and would be synchronously mirrored.

readable The driver supports creating read—only share replicas. All secondary share replicas can be
accorded read access. Only the primary (or act ive share replica) can be written into.

dr The driver supports creating dr (abbreviated from Disaster Recovery) share replicas. A secondary
share replica is inaccessible until after a promotion.

None The driver does not support Share Replication.

Note: The term active share replica refers to the primary share. In writable style of repli-
cation, all share replicas are active, and there could be no distinction of a primary share. In
readable and dr styles of replication, a secondary share replica may be referred to as passive,
non-active or simply, replica.

186 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Configuration

Two new configuration options have been introduced to support Share Replication.

replica_state_update_interval Specify this option in the DEFAULT section of your manila.conf.
The Shared File Systems service requests periodic update of the replica_state of all non—active
share replicas. The update occurs with respect to an interval corresponding to this option. If it is
not specified, it defaults to 300 seconds.

replication_domain Specify this option in the backend stanza when using a multi-backend style config-
uration. The value can be any ASCII string. Two backends that can replicate between each other
would have the same replication_domain. This comes from the premise that the Shared
File Systems service expects Share Replication to be performed between symmetric backends.
This option is required for using the Share Replication feature.

Health of a share replica

Apart from the status attribute, share replicas have the replica_state attribute to denote the
state of data replication on the storage backend. The primary share replica will have its replica_state
attribute set to active. The secondary share replicas may have one of the following as their
replica_state:

in_sync The share replica is up to date with the active share replica (possibly within a backend-
specific recovery point objective).

out_of_sync The share replica is out of date (all new share replicas start out in this replica_state).

error When the scheduler fails to schedule this share replica or some potentially irrecoverable error
occurred with regard to updating data for this replica.

Promotion or failover

For readable and dr types of replication, we refer to the task of switching a non-active share replica
with the active replica as promotion. For the writable style of replication, promotion does not
make sense since all share replicas are act ive (or writable) at all times.

The status attribute of the non-active replica being promoted will be set to replication_change
during its promotion. This has been classified as a busy state and thus API interactions with the share
are restricted while one of its share replicas is in this state.

Share replication workflows

The following examples have been implemented with the ZFSonLinux driver that
is a reference implementation in the Shared File Systems service. It operates in
driver_handles_share_servers=False mode and supports the readable type of replica-
tion. In the example, we assume a configuration of two Availability Zones', called availability_zone_1

! When running in a multi-backend configuration, until the Stein release, deployers could only configure one Availability
Zone per manila configuration file. This is achieved with the option storage_availability_zone defined under the
[DEFAULT] section.
Beyond the Stein release, the option backend_availability_zone can be specified in each back end stanza.
The value of this configuration option will override any configuration of the storage_availability_zone from the
[DEFAULT] section.

3.2. Administrating Manila 187

Manila Developer Documentation, Release 12.1.3.dev46

and availability_zone_2.

Since the Train release, some drivers operating in driver_handles_share_server=True mode
support share replication.

Multiple availability zones are not necessary to use the replication feature. However, the use of an
availability zone as a failure domain is encouraged.

Pay attention to the network configuration for the ZFS driver. Here, we assume a configuration of
zfs_service_ipand zfs_share_export_ip from two separate networks. The service network
is reachable from the host where the manila-share service is running. The share export IP is from a
network that allows user access.

See Configuring the ZFSonLinux driver for information on how to set up the ZFSonLinux driver.

Creating a share that supports replication

Create a new share type and specify the replication_type as an extra-spec within the share-type being
used.

Use themanila type-create command to create a new share type. Specify the name and the value
for the extra-spec driver_handles_share_servers.

manila type-create readable_type_replication False

Use the manila type-key command to set an extra-spec to the share type.

manila type-key readable_type_replication set readable

Note: This command has no output. To verify the extra-spec, use themanila extra-specs-list
command and specify the share types name or ID as a parameter.

Create a share with the share type

Use the manila create command to create a share. Specify the share protocol, size and the avail-
ability zone.

manila create NFS 1 —--share_type readable_type_replication —-—-name my_
—share —--description —-—az availability_
—zone_1

(continues on next page)

188 Chapter 3. For operators

https://docs.openstack.org/manila/latest/configuration/shared-file-systems/drivers/zfs-on-linux-driver.html

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

Note: If you are creating a share with the share type specification
driver_handles_share_servers=True, the share network parameter is required for the
operation to be performed.

Use the manila show command to retrieve details of the share. Specify the share ID or name as a
parameter.

manila show my_share

(continues on next page)

3.2. Administrating Manila 189

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

[

(continues on next page)

190 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

Note: When you create a share that supports replication, an active replica is created for you. You
can verify this with the manila share-replica-list command.

From API version 2.53, when creating a replicated share, the manila quota system will reserve and
consume resources for two additional quotas: share_replicas and replica_gigabytes.

Creating and promoting share replicas

Create a share replica

Use the manila share-replica-create command to create a share replica. Specify the share
ID or name as a parameter. You may optionally provide the availability_zone.

manila share-replica-create my_share —--az availability_zone_2

See details of the newly created share replica

Note: Since API version 2.51 (Train release), a share network is able to span multi-
ple subnets in different availability zones. So, when using a share type with specification
driver_handles_share_servers=True, users must ensure that the share network has a subnet
in the availability zone that they desire the share replica to be created in.

Usethemanila share-replica-showcommand to see details of the newly created share replica.
Specify the share replicas ID as a parameter.

manila share-replica-show 78a5ef96-6c36-42e0-b50b-44efe7c1807e

(continues on next page)

3.2. Administrating Manila 191

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

See all replicas of the share

Use the manila share-replica-1list command to see all the replicas of the share. Specify the
share ID or name as an optional parameter.

manila share-replica-list —--share-id my_share

)

!

)

)

Promote the secondary share replica to be the new active replica

Use the manila share-replica-promote command to promote a non-active share replica to
become the act ive replica. Specify the non-active replicas ID as a parameter.

manila share-replica-promote 78a5ef96-6c36-42e0-b50b-44efe7cl807e

Note: This command has no output.

The promotion may take time. During the promotion, the replica_state attribute of the share
replica being promoted will be set to replication_change.

manila share-replica-list ——-share-id my_share

!

!

{

)

(continues on next page)

192 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

[

{

[}

!

!

Once the promotion is complete, the replica_state will be setto active.

manila share-replica-list —--share-id my_share

!

!

!

!

)

)

Access rules

Create an IP access rule for the share

Use the manila access—allow command to add an access rule. Specify the share ID or name,
protocol and the target as parameters.

manila access-allow my_share ip 0.0.0.0/0 —--access-level rw

Note: Access rules are not meant to be different across the replicas of the share. However, as per the
type of replication, drivers may choose to modify the access level prescribed. In the above example,

3.2. Administrating Manila 193

Manila Developer Documentation, Release 12.1.3.dev46

even though read/write access was requested for the share, the driver will provide read-only access to
the non-active replica to the same target, because of the semantics of the replication type: readable.
However, the target will have read/write access to the (currently) non-active replica when it is promoted
to become the act ive replica.

The manila access-deny command can be used to remove a previously applied access rule.
List the export locations of the share

Use the manila share-export-locations-1list command to list the export locations of a
share.

manila share-export-location-list my_share

Identify the export location corresponding to the share replica on the user accessible network and you
may mount it on the target node.

Note: As an administrator, you can list the export locations for a particular share replica by using
the manila share-instance-export-location-list command and specifying the share
replicas ID as a parameter.

Snapshots

Create a snapshot of the share

Use the manila snapshot-create command to create a snapshot of the share. Specify the share
ID or name as a parameter.

manila snapshot-create my_share ——-name

(continues on next page)

194 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

Show the details of the snapshot

Use themanila snapshot—show to view details of a snapshot. Specify the snapshot ID or name as
a parameter.

manila snapshot-show my_snapshot

Note: The status attribute of a snapshot will transition from creating to available only
when it is present on all the share replicas that have their replica_state attribute setto active or
in_sync.

Likewise, the replica_state attribute of a share replica will transition from out_of_sync to
in_sync only when all available snapshots are present on it.

Planned failovers

As an administrator, you can use the manila share-replica-resync command to attempt to
sync data between active and non—active share replicas of a share before promotion. This will
ensure that share replicas have the most up-to-date data and their relationships can be safely switched.

manila share-replica-resync 38efc042-50c2-4825-a6d8-cba2a8277b28

Note: This command has no output.

3.2. Administrating Manila 195

Manila Developer Documentation, Release 12.1.3.dev46

Updating attributes

If an error occurs while updating data or replication relationships (during a promotion), the Shared
File Systems service may not be able to determine the consistency or health of a share replica. It may
require administrator intervention to make any fixes on the storage backend as necessary. In such a
situation, state correction within the Shared File Systems service is possible.

As an administrator, you can:
Reset the status attribute of a share replica

Use themanila share-replica-reset-state command to reset the status attribute. Spec-
ify the share replicas ID as a parameter and use the ——state option to specify the state intended.

manila share-replica-reset-state 38efc042-50c2-4825-a6d8-cba2a8277b28 —-
—state available

Note: This command has no output.

Reset the replica_state attribute

Use the manila share-replica-reset-replica-state command to reset the
replica_state attribute. Specify the share replicas ID and use the —-—-state option to
specify the state intended.

manila share-replica-reset-replica-state 38efc042-50c2-4825-a6d8-
—cbaz2a8277b28 —--state out_of_sync

Note: This command has no output.

Force delete a specified share replica in any state

Use the manila share-replica-delete command with the force key to remove the share
replica, regardless of the state it is in.

manila share-replica-show 9513de5d-0384-4528-89fb-957dd9b57680

manila share-replica-delete ——force 38efc042-50c2-4825-a6d8-cba2a8277b28

196 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Note: This command has no output.

Use the policy.yaml file to grant permissions for these actions to other roles.

Deleting share replicas

Use the manila share-replica-delete command with the share replicas ID to delete a share
replica.

manila share-replica-delete 38efc042-50c2-4825-a6d8-cba2a8277b28

Note: This command has no output.

Note: You cannot delete the last active replica with this command. You should use the manila
delete command to remove the share.

Multi-storage configuration

The Shared File Systems service can provide access to one or more file storage back ends. In general,
the workflow with multiple back ends looks similar to the Block Storage service one.

Using manila.conf, you can spawn multiple share services. To do it, you should set the en-
abled_share_backends flag in the manila. conf file. This flag defines the comma-separated names of
the configuration stanzas for the different back ends. One name is associated to one configuration group
for a back end.

The following example runs three configured share services:

[DEFAULT]

[backendGenericl]

[backendEMC1]

(continues on next page)

3.2. Administrating Manila 197

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

To spawn separate groups of share services, you can use separate configuration files. If it is necessary
to control each back end in a separate way, you should provide a single configuration file per each back
end.

Scheduling

The Shared File Systems service uses a scheduler to provide unified access for a variety of different types
of shared file systems. The scheduler collects information from the active shared services, and makes
decisions such as what shared services will be used to create a new share. To manage this process, the
Shared File Systems service provides Share types APIL.

A share type is a list from key-value pairs called extra-specs. The scheduler uses required and un-scoped
extra-specs to look up the shared service most suitable for a new share with the specified share type. For
more information about extra-specs and their type, see Capabilities and Extra-Specs section in developer
documentation.

The general scheduler workflow:

1. Share services report information about their existing pool number, their capacities, and their
capabilities.

2. When a request on share creation arrives, the scheduler picks a service and pool that best serves the
request, using share type filters and back end capabilities. If back end capabilities pass through,
all filters request the selected back end where the target pool resides.

3. The share driver receives a reply on the request status, and lets the target pool serve the request
as the scheduler instructs. The scoped and un-scoped share types are available for the driver
implementation to use as needed.

Manage shares services

The Shared File Systems service provides API that allows to manage running share services (Share
services API). Using the manila service-1list command, it is possible to get a list of all kinds
of running services. To select only share services, you can pick items that have field binary equal to
manila-share. Also, you can enable or disable share services using raw API requests. Disabling
means that share services are excluded from the scheduler cycle and new shares will not be placed on
the disabled back end. However, shares from this service stay available.

198 Chapter 3. For operators

https://docs.openstack.org/manila/latest/admin/capabilities_and_extra_specs.html
https://docs.openstack.org/api-ref/shared-file-system/
https://docs.openstack.org/api-ref/shared-file-system/

Manila Developer Documentation, Release 12.1.3.dev46

Networking

Unlike the OpenStack Block Storage service, the Shared File Systems service must connect to the Net-
working service. The share service requires the option to self-manage share servers. For client authen-
tication and authorization, you can configure the Shared File Systems service to work with different
network authentication services, like LDAP, Kerberos protocols, or Microsoft Active Directory.

Share networks

Share networks are essential to allow end users a path to hard multi-tenancy. When backed by isolated
networks, the Shared File Systems service can guarantee hard network path isolation for the users shares.
Users can be allowed to designate their project networks as share networks. When a share network is
provided during share creation, the share driver sets up a virtual share server (NAS server) on the share
network and exports shares using this NAS server. The share server itself is abstracted away from the
user. You must ensure that the storage system can connect the share servers it provisions to the networks
users can use as their share networks.

Note: Not all shared file systems storage backends support share networks. Share
networks can only be wused when wusing a share type that has the specification
driver_handles_share_servers=True. To see what storage back ends support this
specification, refer to the Manila share features support mapping.

How to create share network

To list networks in a project, run:

openstack network list

A share network stores network information that share servers can use where shares are hosted.
You can associate a share with a single share network. You must always specify a share net-
work when creating a share with a share type that requests hard multi-tenancy, i.e., has extra-spec
driver_handles_share_servers=True.

For more information about supported plug-ins for share networks, see Network plug-ins.
A share network has these attributes:

* The IP block in Classless Inter-Domain Routing (CIDR) notation from which to allocate the net-
work.

e The IP version of the network.

* The network type, which is vlan, vxlan, gre, or flat.

3.2. Administrating Manila 199

Manila Developer Documentation, Release 12.1.3.dev46

If the network uses segmentation, a segmentation identifier. For example, VLAN, VXLAN, and GRE
networks use segmentation.

To create a share network with private network and subnetwork, run:

manila share—-network—-create —-—-neutron—-net—-id 5ed5a854-21dc-4ed3-870a—
—~117b7064eb21

The segmentation_id, cidr, ip_version, and network_type share network attributes are
automatically set to the values determined by the network provider.

Note: You are able to specify the parameter availability_zone only with API versions >=
2.51. From the version 2.51, a share network is able to span multiple subnets in different availability
zones. The network parameters neutron_net_id, neutron_subnet_id, segmentation_id,
cidr, ip_version, network_type, gateway and mtu were moved to the share network subnet
and no longer pertain to the share network. If you do not specify an availability zone during the share
network creation, the created subnet will be considered default by the Shared File Systems Service. A
default subnet is expected to be reachable from all availability zones in the cloud.

Note: Since API version 2.63, the share network will have two additional fields: status and
security_service_update_support. The former indicates the current status of a share net-
work, and the latter informs if all the share networks resources can hold updating or adding security
services after they are already deployed.

To check the network list, run:

manila share—-network-1list

If you configured the generic driver with driver_handles_share_servers = True (with the

200 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

share servers) and already had previous operations in the Shared File Systems service, you can see
manila_service_network in the neutron list of networks. This network was created by the
generic driver for internal use.

openstack network list

You also can see detailed information about the share network including network_type, and
segmentation_id fields:

openstack network show manila_service_network

You also can add and remove the security services from the share network. For more detail, see Security
services.

3.2. Administrating Manila 201

Manila Developer Documentation, Release 12.1.3.dev46

How to reset the state of a share network (Since API version 2.63)

To reset the state of a given share network, run:

manila share—-network-reset-state manila_service_network —--state active

Share network subnets (Since API version 2.51)

Share network subnet is an entity that stores network data from the OpenStack Networking service. A
share network can span multiple share network subnets in different availability zones.

How to create share network subnet

When you create a share network, a primary share network subnet is automatically created. The share
network subnet stores network information that share servers can use where shares are hosted. If a share
network subnet is not assigned to a specific availability zone, it is considered to be available across all
availability zones. Such a subnet is referred to as default subnet. A share network can have only one
default subnet. However, having a default subnet is not necessary. A share can be associated with only
one share network. To list share networks in a project, run:

manila share—-network-list

You can attach any number of share network subnets into a share network. However, only one share
network subnet is allowed per availability zone in a given share network. If you try to create another
subnet in a share network that already contains a subnet in a specific availability zone, the operation will
be denied.

To create a share network subnet in a specific share network, run:

manila share—-network-subnet-create sharenetworkl

(continues on next page)

202 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

To list all the share network subnets of a given share network, you need to show the share network, and
then all subnets will be displayed, as shown below:

manila share—-network-show sharenetworkl

Ll N e

Ll

e

(continues on next page)

.2. Administrating Manila 203

Il FA

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

A

A A

e !

N

il

N

(continues on next page)

Srleglr oo

Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

l |

To show a specific share network subnet, run:

manila share—-network-subnet-show sharenetworkl 20f3cd2c-0faa-4b4b-al0a-
—4f188eblcf38

To delete a share network subnet, run:

manila share—-network-subnet-delete sharenetworkl 20f3cd2c-0faa-4b4b-a00a-
—~4f188eblcf38

If you want to remove a share network subnet, make sure that no other resource is using the subnet,
otherwise the Shared File Systems Service will deny the operation.

Network plug-ins

The Shared File Systems service architecture defines an abstraction layer for network resource provi-
sioning and allowing administrators to choose from a different options for how network resources are
assigned to their projects networked storage. There are a set of network plug-ins that provide a variety
of integration approaches with the network services that are available with OpenStack.

What is a network plugin in Manila?

A network plugin is a python class that uses a specific facility (e.g. Neutron network) to provide network
resources to the manila-share service.

3.2. Administrating Manila 205

Manila Developer Documentation, Release 12.1.3.dev46

When to use a network plugin?

A Manila share driver may be configured in one of two modes, where it is managing the lifecycle of
share servers on its own or where it is merely providing storage resources on a pre-configured share
server. This mode is defined using the boolean option driver_handles_share_servers in the Manila
configuration file. A network plugin is only useful when a driver is handling its own share servers.

Note: Not all share drivers support both modes. Each driver must report which mode(s) it supports to
the manila-share service.

When driver_handles_share_servers is set to True, a share driver will be called to create share servers
for shares using information provided within a share network. This information will be provided to one
of the enabled network plugins that will handle reservation, creation and deletion of network resources
including IP addresses and network interfaces.

The Shared File Systems service may need a network resource provisioning if share service with spec-
ified driver works in mode, when a share driver manages lifecycle of share servers on its own. This
behavior is defined by a flag driver_handles_share_servers in share service configuration.
When driver_handles_share_ servers is set to True, a share driver will be called to create
share servers for shares using information provided within a share network. This information will be
provided to one of the enabled network plug-ins that will handle reservation, creation and deletion of
network resources including IP addresses and network interfaces.

What network plug-ins are available?

There are two network plug-ins and three python classes in the Shared File Systems service:

1. Network plug-in for using the OpenStack Networking service. It allows to use any network seg-
mentation that the Networking service supports. It is up to each share driver to support at least
one network segmentation type.

a) manila.network.neutron.neutron_network_plugin.
NeutronNetworkPlugin. This is a default network plug-in. It requires the
neutron_net_id and the neutron_subnet_id to be provided when defining the
share network that will be used for the creation of share servers. The user may define any
number of share networks corresponding to the various physical network segments in a
project environment.

b) manila.network.neutron.neutron_network_plugin.
NeutronSingleNetworkPlugin. This is a simplification of the previous case.
It accepts values for neut ron_net_idand neutron_subnet_id fromthe manila.
conf configuration file and uses one network for all shares.

When only a single network is needed, the NeutronSingleNetworkPlugin (1.b) is a simple solution.
Otherwise NeutronNetworkPlugin (1.a) should be chosen.

2. Network plug-in for specifying networks independently from OpenStack networking services.

a) manila.network.standalone_network_plugin.
StandaloneNetworkPlugin. This plug-in uses a pre-existing network that is
available to the manila-share host. This network may be handled either by OpenStack or be
created independently by any other means. The plug-in supports any type of network - flat

206 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

and segmented. As above, it is completely up to the share driver to support the network type
for which the network plug-in is configured.

Note: The 1ip version of the share network is defined by the flags of
network_plugin_ipv4_enabled and network_plugin_ipvé_enabled in the
manila.conf configuration since Pike. The network_plugin_ipv4_enabled de-
fault value is set to True. The network_plugin_ipvé6_enabled default value
is set to False. If network_plugin_ipv6_enabled option is True, the value of
network_plugin_ipv4_enabled will be ignored, it means to support both IPv4 and IPv6
share network.

Troubleshoot Shared File Systems service

Failures in Share File Systems service during a share creation

Problem

New shares can enter error state during the creation process.

Solution

1. Make sure, that share services are running in debug mode. If the debug mode is not set, you will
not get any tips from logs how to fix your issue.

2. Find what share service holds a specified share. To do that, run command manila show
<share_id_or_name> and find a share host in the output. Host uniquely identifies what
share service holds the broken share.

3. Look thought logs of this share service. Usually, it can be found at /etc/var/log/
manila-share.log. This log should contain kind of traceback with extra information to
help you to find the origin of issues.

No valid host was found

Problem

If a share type contains invalid extra specs, the scheduler will not be able to locate a valid host for the
shares.

3.2. Administrating Manila 207

Manila Developer Documentation, Release 12.1.3.dev46

Solution

To diagnose this issue, make sure that scheduler service is running in debug mode. Try to create a
new share and look for message Failed to schedule create_share: No valid host
was found. in /etc/var/log/manila—-scheduler. log.

To solve this issue look carefully through the list of extra specs in the share type, and the list of share
services reported capabilities. Make sure that extra specs are pointed in the right way.

Created share is unreachable

Problem

By default, a new share does not have any active access rules.

Solution

To provide access to new share, you need to create appropriate access rule with the right value. The
value must defines access.

Service becomes unavailable after upgrade

Problem

After upgrading the Shared File Systems service from version v1 to version v2.X, you must update the
service endpoint in the OpenStack Identity service. Otherwise, the service may become unavailable.

Solution

1. To get the service type related to the Shared File Systems service, run:

openstack endpoint list

openstack endpoint show <share-service-type>

You will get the endpoints expected from running the Shared File Systems service.

2. Make sure that these endpoints are updated. Otherwise, delete the outdated endpoints and create
new ones.

208 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Failures during management of internal resources
Problem

The Shared File System service manages internal resources effectively. Administrators may need to
manually adjust internal resources to handle failures.

Solution

Some drivers in the Shared File Systems service can create service entities, like servers and networks. If
it is necessary, you can log in to project service and take manual control over it.

Profiling the Shared File Systems service

Profiler

The detailed description of the profiler and its config options is available at Profiler docs.

Using Profiler

To start profiling Manila code, the following steps have to be taken:

1. Add the following lines to the /etc/manila/manila.conf file (the profiling is disabled by
default).

Examples of possible values for connection_string option:
* messaging:// - use oslo_messaging driver for sending spans.
* redis://127.0.0.1:6379 - use redis driver for sending spans.
* mongodb://127.0.0.1:27017 - use mongodb driver for sending spans.
* elasticsearch://127.0.0.1:9200 - use elasticsearch driver for sending spans.
* jaeger://127.0.0.1:6831 - use jaeger tracing as driver for sending spans.
2. Restart all manila services and keystone service.

3. To verify profiler with manilaclient, run any command with ——profile <key>. The key (e.g.
SECRET_KEY) should be one of the hmac_keys mentioned in manila.conf. To generate correct
profiling information across all services at least one key needs to be consistent between OpenStack
projects.

3.2. Administrating Manila 209

https://docs.openstack.org/osprofiler/latest/user/index.html

Manila Developer Documentation, Release 12.1.3.dev46

manila —--profile SECRET_KEY create NFS 1 --name Sharel --share-
—network testNetwork —--share-type dhss_true

(continues on next page)

210 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

[

4. To verify profiler with openstackclient, run any command with ——os-profile <key>.

openstack —--os-profile SECRET_KEY share create NFS 1 —-name Share2 -
——share—-network testNetwork --share-type dhss_true

(continues on next page)

3.2. Administrating Manila 211

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

[

5. To display the trace date in HTML format, run below command.

osprofiler trace show —--html Oca7ce01-36a9-481c-8b3d-263a3b5caa35 —-
—connection-string redis://localhost:6379 —--out /opt/stack/output.

Upgrading the Shared File System service

This document outlines steps and notes for operators for reference when upgrading their Shared File
System service (manila) from previous versions of OpenStack. The service aims to provide a minimal
downtime upgrade experience. Since the service does not operate in the data plane, the accessibility of
any provisioned resources such as shares, share snapshots, share groups, share replicas, share servers,
security services and share networks will not be affected during an upgrade. Clients can continue to
actively use these resources while the service control plane is being upgraded.

212 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Plan the upgrade

It is highly recommended that you:

update the Shared File System service to the latest code from the release you are currently using.

read the Shared File System service release notes for the release that you intended to upgrade to.
Pay special attention to the deprecations and upgrade notes.

consider the impact of the service control plane upgrade to your clouds users. The upgrade pro-
cess interrupts provisioning of new shared file systems and associated resources. It also prevents
management operations on existing shared file systems and associated resources. Data path access
to shared file systems will remain uninterrupted.

take a backup of the shared file system service database so you can rollback any failed upgrades to
a previous version of the software. Although the manila-manage command offers a database
downgrade command, it is not supported for production use. The only way to recover from a
failed update is to restore the database from a backup.

identify your Shared File System service back end storage systems/solutions and their drivers.
Ensure that the version of each storage system is supported by the respective driver in the target
release. If youre using a storage solution from a third party vendor, consult their product pages to
determine if the solution is supported by the release of OpenStack that you are upgrading to. Many
vendors publish a support matrix either within this service administration guide, or on their own
websites. If you find an incompatibility, stop, and determine if you have to upgrade the storage
solution first.

develop an upgrade procedure and assess it thoroughly by using a test environment similar to your
production environment.

Graceful service shutdown

Shared File System service components (scheduler, share-manager, data-manager) are python processes
listening for messages on a AMQP queue. When the operator sends SIGTERM signal to the process,
they stop getting new work from the queue, complete any outstanding work and then terminate.

Database Migration

The Shared File System service only supports cold upgrades, meaning that the service plane is expected
to be down during the database upgrade. Database upgrades include schema changes as well as data
migrations to accommodate newer versions of the schema. Once upgraded, downgrading the database
is not supported. When the database has been upgraded, older services may misbehave when accessing
database objects, so ensure all manila—« services are down before you upgrade the database.

3.2. Administrating Manila 213

https://docs.openstack.org/releasenotes/manila/

Manila Developer Documentation, Release 12.1.3.dev46

Prune deleted database rows

Shared File System service resources are soft deleted in the database, so users are able to track instances
in the DB that are created and destroyed in production. Soft-deletion also helps cloud operators adhere
to data retention policies. Not purging soft-deleted entries affects DB performance as indices grow very
large and data migrations take longer as there is more data to migrate. It is recommended that you prune
the service database before upgrading to prevent unnecessary data migrations. Pruning permanently
deletes soft deleted database records.

Upgrade procedure

1. Ensure youre running the latest Shared File System service packages for the OpenStack release
that you currently use.

2. Run the manila-status upgrade check command to validate that the service is ready
for upgrade.

3. Backup the manila database

4. Gracefully stop all Shared File System service processes. We recommend in this order: manila-
api, manila-scheduler, manila-share and manila-data.

Note: The manila-data service may be processing time consuming data migrations. Shutting
it down will interrupt any ongoing migrations, and these will not be automatically started when
the service comes back up. You can check the status on ongoing migrations with manila
migration-get-progress command; issue manila migration-complete for any ongo-
ing migrations that have completed their data copy phase.

1. Upgrade all the service packages. If upgrading from distribution packages, your system package
manager is expected to handle this automatically.

Fix any deprecated configuration options used.
Fix any deprecated api policies used.
Runmanila-manage db sync from any node with the latest manila packages.

Start all the Shared File System service processes.

A O T

Inspect the services by running manila service-list. If there are any orphaned
records, run manila-manage service cleanup to delete them.

214 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Upgrade testing

The Shared File System service code is continually tested for upgrade from a previous release to the
current release using Grenade. Grenade is an OpenStack test harness project that validates upgrade sce-
narios between releases. It uses DevStack to initially perform a base OpenStack install and then upgrade
to a target version. Tests include the creation of a variety of Shared File System service resources on the
prior release, and verification for their existence and functionality after the upgrade.

Share revert to shapshot

To revert a share to the latest available snapshot, use the manila revert-to-snapshot.

Note:

* In order to use this feature, the available backend in your deployment must have support for it. The
list of backends that support this feature in the manila can be found in the Manila share features
support mapping.

* This feature is only available in API version 2.27 and beyond. To create shares that are revert-
ible, the share type used must contain the extra-spec revert_to_snapshot_support set to
True. The default value for this is False.

* The revert operation can only be performed to the most recent available snapshot of the share
known to manila. If revert to an earlier snapshot is desired, later snapshots must explicitly be
deleted. In order to determine the most recent snapshot, the created_at field on the snapshot
object is used.

While reverting, the share is in reverting status and the snapshot is in restoring status. After a
successful restoration, the share and snapshot states will again be set to available. If the restoration
fails the share will be set to reverting_error state and the snapshot will be set to available.

When a replicated share is reverted, the share becomes ready to be used only when all act ive replicas
have been reverted. All secondary replicas will remain in out —~of-sync state until they are consistent
with the act ive replicas.

To revert a share to a snapshot, run:

manila revert-to-snapshot 14ee8575-aac2-44af-8392-d9c9d344£392

Share server migration

Share server migration is a functionality that lets administrators migrate a share server, and all its shares
and snapshots, to a new destination.

As with share migration, a 2-phase approach was implemented for share server migration, which allows
to control the right time to complete the operation, that usually ends on clients disruption.

The process of migrating a share server involves different operations over the share server, but can
be achieved by invoking two main operations: start and complete. Youll need to begin with the start
operation and wait until the service has completed the first phase of the migration to call the complete
operation. When a share server is undergoing the first phase, its possible to choose to cancel it, or get a
report of the progress.

3.2. Administrating Manila 215

https://docs.openstack.org/grenade/latest/

Manila Developer Documentation, Release 12.1.3.dev46

A new operation called migration check is available to assist on a pre-migration phase, by validating
within the destination host if the migration can or not be completed, providing an output with the com-
patible capabilities supported by the driver.

Share server migration is driven by share drivers, which means that both source and destination backends
must support this functionality, and the driver must provide such operation in an efficient way.

Server migration workflows

Before actually starting the migration, you can use the operation migration_check to verify if the des-
tination host and the requested capabilities are supported by the driver. If the answer is compatible
equal to True, you can proceed with the migration process, otherwise youll need to identify the
conflicting parameters or, in more complex scenarios, search for messages directly in the manila
logs. The available capabilities are: writable, nondisruptive, preserve_snapshots and
new_share_network_1id, which are detailed in Migration check and migration start parameters.

The migration process starts by invoking the migration_start operation for a given share server. This
operation will start the first phase of the migration that copies all data, from source to destination,
including all shares, their access rules and even snapshots if supported by the driver controlling the
destination host.

For all ongoing migrations, you can optionally request the current status of a share server migration
using migration_get_progress operation to retrieve the total progress of the data copy and its current
task state. If supported by the driver, you can also cancel this operation by issuing migration_cancel and
wait until all status become active and available again.

After completing the data copy, the first phase is completed and the next operation, migration_complete,
can be initiated to finish the migration. The migration_complete operation usually disrupts clients ac-
cess, since the export locations of the shares will change. The new export locations will be derived from
the new share server that is provisioned at the destination, which is instantiated with distinct network
allocations.

A new field task_state is available in the share server model to help track which operation is being
executed during this process. The following tables show, for each phase, the expected task_state,
along with their order of execution and a brief description of the actions that are being executed in the
back end.

Table 1: Share server migration states - 1st phase

Se- task_state Description

guence

1 migra- All initial validations passed, all shares and snapshots cant be modified
tion_starting until the end of the migration.

2 migra- The destination host started the process of migration. If the driver doesnt
tion_in_progress| support remain writable, all access rules are modified to read only.

3 migra- The driver was called to initiate the process of migrating the share server.
tion_driver_starting/lanila will wait for drivers answer.

4 migra- The driver accepted the request and started copying the data to the new
tion_driver_in_proghass server. It will remain in this state until the end of the data copy.

5 migra- Driver finished copying the data and its ready to complete the migration.
tion_driver_phasel_done

Along with the share server migration progress (in percentage) and the the current task state, the

216 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

API also provides the destination share server ID. Alternatively, you may check the destination share
server ID by querying the share server for a source_share_server_id set to the ID of the
share server being migrated. During the entire migration process, the source source share server
will remain with server_migrating status while the destination share server will remain with
server_migrating_to status.

If an error occurs during the 1st phase of the migration, the source share server has its status reverted
to active again, while the destination server has its status set to error. Both share servers will
have their task_state updated to migration_error. All shares and snapshots are updated to
available and any read-only rules are reset to allow writing into the shares.

Table 2: Share server migration states - 2nd phase

Se- task_state Description

guence

1 migra- The destination host started processing the operation and the driver is
tion_completing called to complete the share server migration.

2 migra- The migration was completed with success. All shares and snapshots are
tion_success available again.

After finishing the share server migration, all shares and snapshots have their status updated to
available. The source share server status is set to inactive and the destination share server
toactive.

If an error occurs during the 2nd phase of the migration, both source and destination share servers will
have their status updated to error, along with their shares and snapshots, since its not possible to infer
if they are working properly and the current status of the migration. In this scenario, you will need to
manually verify the health of all share servers resources and manually fix their statuses. Both share
servers will have their task_state settomigration_error.

Table 3: Share server migration states - migration cancel

Se- task_state Description

quence

1 migra- The destination host started the cancel process. It will remain in this
tion_cancel_in_progtass until the driver finishes all tasks that are in progress.

2 migra- The migration was successfully cancelled.
tion_cancelled

If an error occurs during the migration cancel operation, the source share server has its status reverted
to active again, while the destination server has its status updated to error. Both share servers
will have their task_state settomigration_error. All shares and snapshots have their statuses
updated to available.

3.2. Administrating Manila 217

Manila Developer Documentation, Release 12.1.3.dev46

Using share server migration CLI

The available commands to interact with the share server migration API are the following:

* migration_check: call a migration check operation to validate if the provided destination

host is compatible with the requested operation and its parameters. The output shows if the desti-
nation host is compatible or not and the migration capabilities supported by the back end.

manila share-server-migration-check £3089d4f-89e8-4730-b6eb—
—T7cab553df071 stack@dummy2 --nondisruptive False —--writable True -—-
—preserve_snapshots True

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

!

The share_network_id attribute in the supported_capabilities will correspond
to the value ——new_share_network option if provided, otherwise it will be the same as
the source share network. In the output it is possible to identify if the destination host sup-
ports the migration_cancel and migration_get_progress operations before start-
ing the migration. The request parameters are the same for both migration_check and
migration_start operations and are detailed in the following section.

Note: Back ends might use this operation to do many other validations with regards of storage
compatibility, free space checks, share-type extra-specs validations, and so on. A compatible
equal to False answer may not carry the actual conflict. You must check the manila-share
logs for more details.

* migration_start: starts a share server migration to the provided destination host. This com-

218

Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

mand starts the 1st phase of the migration that is an asynchronous operation and can take long to
finish, depending on the size of the share server and the efficiency of the storage on copying all
the data.

manila share-server-migration-start £3089d4f-89e8-4730-b6eb-
—7cab553df071 stack@dummy2 —--nondisruptive False —-writable True —-—
—preserve_snapshots True

The parameters description is detailed in the following section.

Note: This operation doesnt support migrating share servers with shares that have replicas or that
belong to share groups.

Note: The current migration state and progress can be retrieve using the
migration—-get—-progress command.

Note: This command has no output.

* migration_complete: completes a migration that already finished the 1st phase. This oper-
ation cant be cancelled and might end up on disrupting clients access after all shares migrate to
the new share server.

manila share-server-migration—-complete £3089d4f-89e8-4730-b6eb—
—7cab553df071

* migration_cancel: cancels an in-progress share server migration. This operation can only
be started while the migration is still on the 1st phase of the migration.

manila share-server-migration-cancel £3089d4f-89e8-4730-b6eb—
—7cab553df071

Note: This command has no output.

* migration_get_progress: obtains the current progress information of a share server mi-
gration.

manila share-server-migration-get-progress f£3089d4f-89e8-4730-bbeb—
—7cab553df071

(continues on next page)

3.2. Administrating Manila 219

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

Migration check and migration start parameters

Share server migration_check and migration_start operations have specific parameters that have the
semantic detailed below. From these, only new_share_network stands as an optional parameter.

* share_server_id: The ID of the share server that will be migrated.

* destination_host: The destination host to which the share server should be migrated to, in

format host@backend.

preserve_snapshots: enforces when the preservation of snapshots is mandatory for the
requested migration. If the destination host doesnt support it, the operation will be denied. If
this parameter is set to False, it will be the drivers supported capability that will define if the
snapshots will be preserved or not.

Note: If the driver doesnt support preserving snapshots but at least one share has a snapshot,
the operation will fail and the you will need to manually remove the remaining snapshots before
proceeding.

writable: enforces whether the source share server should remain writable for the requested
migration. If the destination host doesnt support it, the operation will be denied. If this parameter
is set to False, it will be the drivers supported capability that will define if all shares will remain
writable or not.

nondisruptive: enforces whether the migration should keep clients connected throughout the
migration process. If the destination host doesnt support it, the operation will be denied. If this
parameter is set to False, it will be the drivers supported capability that will define if all clients
will remain connected or not.

In order to appropriately move a share server to a different host, it may be required to change the
destination share network to be used by the new share server. In this case, a new share network can be
provided using the following optional parameter:

* new_share_network_id: specifies the ID of the share network that should be used when

setting up the new share server.

Note: It is not possible to choose the destination share network subnet since it will be automati-
cally selected according to the destination hosts availability zone. If the new share network doesnt
have a share network subnet in the destination hosts availability zone or doesnt have a default
subnet, the operation will fail.

220

Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Configuration

For share server migration to work it is necessary to have compatible back end stanzas present in the

manila configuration of all manila-share nodes.

Some drivers may provide some driver-specific configuration options that can be changed to adapt to

specific workload. Check Share drivers documentation for more details.

Important notes

Once the migration of a share server has started, the user will see that the status of all associated
resources change to server_migrating and this will block any other share actions, such as
adding or removing access rules, creating or deleting snapshots, resizing, among others.

Since this is a driver-assisted migration, there is no guarantee that the destination share server will
be cleaned up after a migration failure. For this reason, the destination share server will be always
updated to error if any failure occurs. The same assumption is made for a source share server
after a successful migration, where manila updates its status to inactive to avoid being reused
for new shares.

If a failure occurs during the 2nd phase of the migration, you will need to manually identify the
current status of the source share server in order to revert it back to active again. If the share
server and all its resources remain healthy, you will need to reset the status using reset_status
API for each affected resource.

Each step in the migration process is saved to the field task_state present in the share server
model. If for any reason the state is not set to migration_error after a failure, it will need to
be reset using the reset_task_state APIL to unlock new share actions.

After a failure occurs, the destination share server will have its status updated to error and will
continue pointing to the original source share server. This can help you to identify the failed share
servers when running multiple migrations in parallel.

Manila share features support mapping

Here we provide information on support of different share features by different share drivers.

Column values contain the OpenStack release letter when a feature was added to the driver. Column
value 7 means that this field requires an update with current information. Column value - means that

this feature is not currently supported.

Mapping of share drivers and share features support

EMC VMAX

EMC VNX

Driver name create delete share | manage unmanage share | extend share shrin
ZFSonLinux M N M M
Container N - N -
Generic (Cinder as back-end) J K L L
NetApp Clustered Data ONTAP | J L L L

0] 0]

J

3.2. Administrating Manila

221

Manila Developer Documentation, Release 12.1.3.dev46

Driver name create delete share | manage unmanage share | extend share shrin
EMC Unity N U N S
EMC Isilon K - M -
GlusterFS J - directory layout (T) | direct
GlusterFS-Native J - - -
HDFS K - M -
Hitachi HNAS L L L M
Hitachi HSP N N N N
HPE 3PAR K - - -
Huawei K L L L
IBM GPFS K 0 L -
INFINIDAT Q - Q -
INSPUR AS13000 R - R -
INSPUR InStorage T - T -
Infortrend T T T T
LVM M - M -
Quobyte K - M M
Windows SMB L L L L
Oracle ZFSSA K N M M
CephFS M - M M
Tegile M - M M
NexentaStor4 N - N -
NexentaStor5 N T N N
MapRFS O O o o
QNAP 0] O O -
Mapping of share drivers and share access rules support
Driver Read & Write
name IPv4 IPv6 USER Cert
ZFSonLinux NEFS (M) - - -
Container - - CIFS (N) -
Generic (Cinder as back-end) NES,CIFS (J) - - -
NetApp Clustered Data ONTAP | NFS (J) NFS (Q) CIFS (J) -
EMC VMAX NFS (O) NFS (R) CIFS (O) -
EMC VNX NFS (J) NFS (Q) CIFS (J) -
EMC Unity NFS (N) NFS (Q) CIFS (N) -
EMC Isilon NFS,CIFS (K) - CIFS (M) -
GlusterFS NES () - - -
GlusterFS-Native - - - J
HDFS - - HDFS(K) -
Hitachi HNAS NFS (L) - CIFS (N) -
Hitachi HSP NFS (N) - - -
HPE 3PAR NFS,CIFS (K) - CIFS (K) -
Huawei NFS (K) - NFS M),CIFS (K) | -
LVM NFS (M) NES (P) CIFS (M) -
222 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Table 5 — continued f

Driver Read & Write

name IPv4 IPv6 USER Cert
Quobyte NFS (K) - - -
Windows SMB - - CIFS (L) -
IBM GPFS NFS (K) - - -
INFINIDAT NFS (Q) - - -
INSPUR AS13000 NFS (R) - CIFS (R) -
INSPUR InStorage NES (T) - CIFS (T) -
Infortrend NFS (T) - CIFS (T) -
Oracle ZFSSA NEFES,CIFS(K) - - -
CephFS NFS (P) NES (T) - -
Tegile NFS (M) - NFS (M),CIFS (M) | -
NexentaStor4 NFS (N) - - -
NexentaStor5 NFS (N) T - -
MapRFS - - MapRFS(O) -
QNAP NFS (0) - - -

Mapping of share drivers and security services support

Driver name Active Directory | LDAP | Kerberos
ZFSonLinux - - -
Container - - -
Generic (Cinder as back-end)
NetApp Clustered Data ONTAP
EMC VMAX
EMC VNX
EMC Unity
EMC Isilon - - -
GlusterFS
GlusterFS-Native - - -
HDFS - - -
Hitachi HNAS - - -
Hitachi HSP - - -
HPE 3PAR - - -
Huawei M M -
LVM - - -
Quobyte - - -
Windows SMB L - -
IBM GPFS - - -
INFINIDAT - - -
INSPUR AS13000 - - -
INSPUR InStorage - - -
Infortrend - - -
Oracle ZFSSA - - -
CephFS - - -
Tegile - - -
continues on next page

z|=|o|—|"

3.2. Administrating Manila 223

Manila Developer Documentation, Release 12.1.3.dev46

Table 6 — continued from previous page

Driver name

Active Directory

LDAP

Kerberos

NexentaStor4

NexentaStor5

MapRFS

QNAP

Mapping of share drivers and common capabilities

More information: Capabilities and Extra-Specs

Driver name

DHSS=True

DHSS=False

compression

thin_provisioning

ZFSonLinux

M

Container

Generic (Cinder as back-end)

NetApp Clustered Data ONTAP

~A|

EMC VMAX

EMC VNX

EMC Unity

ZHOHHZI

EMC Isilon

GlusterFS

GlusterFS-Native

HDFS

Hitachi HNAS

Hitachi HSP

HPE 3PAR

Huawei

INFINIDAT

Infortrend

ooz o

LVM

Quobyte

Windows SMB

IBM GPFS

Oracle ZFSSA

CephFS

Tegile

NexentaStor4

NexentaStor5

z|z|z|"

z|z|z|"

MapRFS

QNAP

INSPUR AS13000

e

Aol

INSPUR InStorage

A= ol z| z| z| 2| 2| | == ®| 2| 8o = ®| Z| o | == ==

Note: The common capability reported by back ends differs from some names seen in the above table:

* DHSS is reported as driver_handles_share_servers (See details for DHSS)

* create share from snapshot is reported as create_share_from_snapshot_support

224

Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Capabilities and Extra-Specs

Cloud Administrators create Share types with extra-specs to:
* influence the schedulers decision to place new shares, and

* instruct the Shared File System service or its storage driver/s to perform certain special actions
with respect to the users shares.

As an administrator, you can choose a descriptive name or provide good descriptions for your share types
to convey the share type capabilities to end users. End users can view standard tenant-visible
extra-specs that can let them seek required behavior and automate their applications accordingly. By
design, however, all other extra-specs of a share type are not exposed to non-privileged users.

Types of Extra-Specs

The Shared File Systems service back-end storage drivers offer a wide range of capabilities. The vari-
ation in these capabilities allows cloud administrators to provide a storage service catalog to their end
users. Share type extra-specs tie-in with these capabilities.

Some back-end capabilities are very specific to a storage system, and are opaque to the Shared File
System service or the end users. These capabilities are invoked with the help of scoped extra-specs.
Using scoped extra-specs is a way to provide programmatic directives to the concerned storage driver to
do something during share creation or share manipulation. You can learn about the opaque capabilities
through driver documentation and configure these capabilities within share types as scoped extra-specs
(e.g.: hpe3par:nfs_options). The Shared File System service scheduler ignores scoped extra-specs dur-
ing its quest to find the right back end to provision shares.

There are some back-end capabilities in manila that do matter to the scheduler. For our understanding,
lets call these non-scoped or non-opaque capabilities. All non-scoped capabilities can be directly used
as share types extra-specs. They are considered by the schedulers capabilities filter (and any custom
filter defined by deployers).

You can get a list of non-scoped capabilities from the scheduler by using:

manila pool-list —--detail

The non-scoped capabilities can be of three types:

» Capabilities pertaining to a specific back end storage system driver: For example,
huawei_smartcache. No Shared File System service API relies on non-opaque back end specific
capabilities.

* Common capabilities that are not visible to end users: The manila community has standardized
some cross-platform capabilities like thin_provisioning, dedupe, compression, qos, ipv6_support
and ipv4_support. Values of these options do not matter to any Shared File System service APIs;
however, they can signify something to the manila services themselves. For example when a
back end supports thin_provisioning, the scheduler service performs over-provisioning, and if a
back end does not report ipv6_support as True, the share-manager service drops IPv6 access rules
before invoking the storage driver to update access rules.

* Common capabilities that are visible to end users: Some capabilities affect functionality ex-
posed via the Shared File System service API. For example, not all back ends support snapshots,
and even if they do, they may not support all of the snapshot operations. For example, cloning
snapshots into new shares, reverting shares in-place to snapshots, etc.

3.2. Administrating Manila 225

Manila Developer Documentation, Release 12.1.3.dev46

The support for these capabilities determines whether users would be able to perform cer-
tain control-plane operations with manila. For example, a back end driver may report snap-
shot_support=True allowing end users to create share snapshots, however, the driver can report
create_share_from_snapshot_support=False. This reporting allows cloud administrators to create
share types that support snapshots but not creating shares from snapshots. When a user uses such
a share type, they will not be able to clone snapshots into new shares. Tenant-visible capabilities
aid manila in validating requests and failing fast on requests it cannot accommodate. They also
help level set the user expectations on some failures. For example, if snapshot_support is set to
False on the share type, since users can see this, they will not invoke the create snapshot API, and
even if they do, they will understand the HTTP 400 (and error message) in better context.

Important: All extra-specs are optional, except one: driver_handles_share_servers.

Schedulers treatment of non-scoped extra specs

The CapabilitiesFilter in the Shared File System scheduler uses the following for matching operators:

No operator This defaults to doing a python ==. Additionally it will match boolean values.
<=, >=, ==, I=

This does a float conversion and then uses the python operators as expected.

<in>

This either chooses a host that has partially matching string in the capability or chooses a host if
it matches any value in a list. For example, if <in> sse4 is used, it will match a host that reports
capability of sse4_1 or ssed_2.

<or>

This chooses a host that has one of the items specified. If the first word in the string is <or>,
another <or> and value pair can be concatenated. Examples are <or> 3, <or> 3 <or> 5, and <or>
1 <or> 3 <or> 7. This is for string values only.

<is>

This chooses a host that matches a boolean capability. An example extra-spec value would be
<is> True.

This does a float conversion and chooses a host that has equal to or greater than the resource
specified. This operator behaves this way for historical reasons.

s==, sl=, s>=, s>, s<=, s<

The s indicates it is a string comparison. These choose a host that satisfies the comparison of
strings in capability and specification. For example, if capabilities:replication_type s== dr, a host
that reports replication_type of dr will be chosen. If share_backend_name s!= cephfs is used, any
host not named cephfs can be chosen.

For vendor-specific non-scoped capabilities (which need to be visible to the scheduler), drivers are rec-
ommended to use the vendor prefix followed by an underscore. This is not a strict requirement, but
can provide a consistent look along-side the scoped extra-specs and will be a clear indicator of vendor
capabilities vs. common capabilities.

226

Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Common Capabilities

Common capabilities apply to multiple backends. Like all other backend reported capabilities, these
capabilities can be used verbatim as extra_specs in share types used to create shares.

Share type common capability extra-specs that are visible to end users:

* driver_handles_share_servers is a special, required common capability. When set to True, the
scheduler matches requests with back ends that can isolate user workloads with dedicated share
servers exporting shares on user provided share networks.

» snapshot_support indicates whether snapshots are supported for shares created on the
pool/backend. When administrators do not set this capability as an extra-spec in a share type,
the scheduler can place new shares of that type in pools without regard for whether snapshots are
supported, and those shares will not support snapshots.

* create_share_from_snapshot_support indicates whether a backend can create a new share from
a snapshot. When administrators do not set this capability as an extra-spec in a share type, the
scheduler can place new shares of that type in pools without regard for whether creating shares
from snapshots is supported, and those shares will not support creating shares from snapshots.

* revert_to_snapshot_support indicates that a driver is capable of reverting a share in place to its
most recent snapshot. When administrators do not set this capability as an extra-spec in a share
type, the scheduler can place new shares of that type in pools without regard for whether reverting
shares to snapshots is supported, and those shares will not support reverting shares to snapshots.

* mount_snapshot_support indicates that a driver is capable of exporting share snapshots for
mounting. Users can provide and revoke access to mountable snapshots just like they can with
their shares.

* replication_type indicates the style of replication supported for the backend/pool. This ex-
tra_spec will have a string value and could be one of writable, readable or dr. writable replication
type involves synchronously replicated shares where all replicas are writable. Promotion is not
supported and not needed. readable and dr replication types involve a single active or primary
replica and one or more non-active or secondary replicas per share. In readable type of replica-
tion, non-active replicas have one or more export_locations and can thus be mounted and read
while the active replica is the only one that can be written into. In dr style of replication, only the
active replica can be mounted, read from and written into.

* availability_zones indicates a comma separated list of availability zones that can be used for
provisioning. Users can always provide a specific availability zone during share creation, and
they will receive a synchronous failure message if they attempt to create a share in an availability
zone that the share type does not permit. If you do not set this extra-spec, the share type is assumed
to be serviceable in all availability zones known to the Shared File Systems service.

3.2. Administrating Manila 227

Manila Developer Documentation, Release 12.1.3.dev46

Share type common capability extra-specs that are not visible to end users:

dedupe indicates that a backend/pool can provide shares using some deduplication technology.
The default value of the dedupe capability (if a driver doesnt report it) is False. Drivers can support
both dedupe and non-deduped shares in a single storage pool by reporting dedupe=[True,
False]. You can make a share type use deduplication by setting this extra-spec to <is> True, or
prevent it by setting this extra-spec to <is> False.

compression indicates that a backend/pool can provide shares using some compression tech-
nology. The default value of the compression capability (if a driver doesnt report it) is False.
Drivers can support compressed and non-compressed shares in a single storage pool by reporting
compression=[True, False]. Youcan make a share type use compression by setting this
extra-spec to <is> True, or prevent it by setting this extra-spec to <is> False.

thin_provisioning can be enabled where shares will not be guaranteed space allocations and over-
provisioning will be enabled. This capability defaults to False. Back ends/pools that support thin
provisioning report True for this capability. Administrators can make a share type use thin provi-
sioned shares by setting this extra-spec to <is> True. If a driver reports thin_provisioning=False
(the default) then its assumed that the driver is doing thick provisioning and overprovisioning is
turned off. A driver can support thin provisioned and thick provisioned shares in the same pool
by reporting thin_provisioning=[True, False].

To provision a thick share on a back end that supports both thin and thick provisioning, set one of
the following in extra specs:

qos indicates that a backend/pool can provide shares using some QoS (Quality of Service) spec-
ification. The default value of the qos capability (if a driver doesnt report it) is False. You can
make a share type use QoS by setting this extra-spec to <is> True and also setting the relevant
QoS-related extra specs for the drivers being used. Administrators can prevent a share type from
using QoS by setting this extra-spec to <is> False. Different drivers have different ways of speci-
fying QoS limits (or guarantees) and this extra spec merely allows the scheduler to filter by pools
that either have or dont have QoS support enabled.

ipv4_support indicates whether a back end can create a share that can be accessed via IPv4
protocol. If administrators do not set this capability as an extra-spec in a share type, the scheduler
can place new shares of that type in pools without regard for whether IPv4 is supported.

ipv6_support - indicates whether a back end can create a share that can be accessed via IPv6
protocol. If administrators do not set this capability as an extra-spec in a share type, the scheduler
can place new shares of that type in pools without regard for whether IPv6 is supported.

provisioning:max_share_size can set the max size of share, the value must be an integer and
greater than 0. If administrators set this capability as an extra-spec in a share type, the size of
share created with the share type can not be greater than the specified value.

provisioning:min_share_size can set the min size of share, the value must be an integer and
greater than 0. If administrators set this capability as an extra-spec in a share type, the size of
share created with the share type can not be less than the specified value.

228

Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Group Capabilities and group-specs

Manila Administrators create share group types with Share types and group-specs to allow users to
request a group type of share group to create. The Administrator chooses a name for the share group
type and decides how to communicate the significance of the different share group types in terms that
the users should understand or need to know. By design, most of the details of a share group type (the
extra- specs) are not exposed to users only Administrators.

Share group Types

Refer to the manila client command-line help for information on how to create a share group type and
set share types, group-spec key/value pairs for a share group type.

Group-Specs

The group specs contains the group capabilities, similar to snapshot_support in share types. Users know
what a group can do from group specs.

The group specs is an exact match requirement in share group filter (such as ConsistentSnapshotFilter).
When the ConsistentSnapshotFilter is enabled (it is enabled by default), the scheduler will only create a
share group on a backend that reports capabilities that match the share group types group-spec keys.

Common Group Capabilities

For group capabilities that apply to multiple backends a common capability can be created. Like all
other backend reported group capabilities, these group capabilities can be used verbatim as group_specs
in share group types used to create share groups.

* consistent_snapshot_support - indicates that a backend can enable you to create snapshots
at the exact same point in time from multiple shares. The default value of the consis-
tent_snapshot_support capability (if a driver doesnt report it) is None. Administrators can make a
share group type use consistent snapshot support by setting this group-spec to host.

Export Location Metadata

Manila shares can have one or more export locations. The exact number depends on the driver and the
storage controller, and there is no preference for more or fewer export locations. Usually drivers create
an export location for each physical network interface through which the share can be accessed.

Because not all export locations have the same qualities, Manila allows drivers to add additional keys
to the dict returned for each export location when a share is created. The share manager stores these
extra keys and values in the database and they are available to the API service, which may expose them
through the REST API or use them for filtering.

3.2. Administrating Manila 229

Manila Developer Documentation, Release 12.1.3.dev46

Metadata Keys

Only keys defined in this document are valid. Arbitrary driver-defined keys are not allowed. The fol-
lowing keys are defined:

* is_admin_only - May be True or False. Defaults to False. Indicates that the export location exists
for administrative purposes. If is_admin_only=True, then the export location is hidden from non-
admin users calling the REST API. Also, these export locations are assumed to be reachable
directly from the admin network, which is important for drivers that support share servers and
which have some export locations only accessible to tenants.

* preferred - May be True or False. Defaults to False. Indicates that clients should prefer to mount
this export location over other export locations that are not preferred. This may be used by drivers
which have fast/slow paths to indicate to clients which paths are faster. It could be used to indicate
a path is preferred for another reason, as long as the reason isnt one that changes over the life of
the manila-share service. This key is always visible through the REST API.

Supported share back ends

The manila share service must be configured to use drivers for one or more storage back ends, as de-
scribed in general terms below. See the drivers section in the Configuration Reference for detailed
configuration options for each back end.

Container Driver

The Container driver provides a lightweight solution for share servers management. It allows to use
Docker containers for hosting userspace shared file systems services.

Supported operations

¢ Create CIFS share;

Delete CIFS share;
¢ Allow user access to CIFS share;

* Deny user access to CIFS share;

Extend CIFS share.

Restrictions

e Current implementation has been tested only on Ubuntu. Devstack plugin wont work on other
distributions however it should be possible to install prerequisites and set the driver up manually;

* The only supported protocol is CIFS;

* The following features are not implemented: * Manage/unmanage share; * Shrink share; * Cre-
ate/delete snapshots; * Create a share from a snapshot; * Manage/unmanage snapshots.

230 Chapter 3. For operators

https://docs.openstack.org/manila/latest/configuration/shared-file-systems/drivers.html

Manila Developer Documentation, Release 12.1.3.dev46

Known problems

* May demonstrate unstable behaviour when running concurrently. It is strongly suggested that the
driver should be used with extreme care in cases other than building lightweight development and
testing environments.

Setting up container driver with devstack

The driver could be set up via devstack. This requires the following update to local.conf:

where <ref> is change reference, which could be copied from gerrit web-interface, <hostname> is the
name of the host with running neutron

Setting Container Driver Up Manually

This section describes steps needed to be performed to set the driver up manually. The driver has been
tested on Ubuntu 14.04, thus in case of any other distribution package names might differ. The following
packages must be installed:

¢ docker.io

One can verify if the package is installed by issuing sudo docker info command. In case of
normal operation it should return docker usage statistics. In case it fails complaining on inaccessible
socket try installing apparmor. Please note that docker usage requires superuser privileges.

After docker is successfully installed a docker image containing necessary packages must be
provided. Currently such image could be downloaded from https://github.com/a-ovchinnikov/
manila-image-elements-1xd-images/releases/download/0.1.0/manila-docker-container.tar.gz The image
has to be unpacked but not untarred. This could be achieved by running gzip -d <imagename> command.
Resulting tar-archive of the image could be uploaded to docker via

If the previous command finished successfully you will be able to see the image in the image list:

The driver expects to find a folder /tmp/shares on the host where it is running as well as a logical volume
group manila_docker_volumes.

When installing the driver manually one must make sure that brctl and docker commands are present in
the /etc/manila/rootwrap.d/share.filters and could be executed as root.

Finally to use the driver one must add a backend to the config file containing the following settings:

3.2. Administrating Manila 231

https://github.com/a-ovchinnikov/manila-image-elements-lxd-images/releases/download/0.1.0/manila-docker-container.tar.gz
https://github.com/a-ovchinnikov/manila-image-elements-lxd-images/releases/download/0.1.0/manila-docker-container.tar.gz

Manila Developer Documentation, Release 12.1.3.dev46

where <hostname> is the name of the host running neutron. (In case of single VM devstack it is VMs
name).

After restarting manila services you should be able to use the driver.

ZFS (on Linux) Driver

Manila ZFSonLinux share driver uses ZFS filesystem for exporting NFS shares. Written and tested
using Linux version of ZFS.

Requirements

* NFS daemon that can be handled via exportfs app.

ZFS filesystem packages, either Kernel or FUSE versions.

* ZFS zpools that are going to be used by Manila should exist and be configured as desired. Manila
will not change zpool configuration.

* For remote ZFS hosts according to manila-share service host SSH should be installed.

For ZFS hosts that support replication:
— SSH access for each other should be passwordless.

— Service IP addresses should be available by ZFS hosts for each other.

Supported Operations

The following operations are supported:

* Create NFS Share

* Delete NFS Share

* Manage NFS Share

* Unmanage NFS Share

* Allow NFS Share access
— Only IP access type is supported for NFS
— Both access levels are supported - RW and RO

* Deny NFS Share access

* Create snapshot

* Delete snapshot

* Manage snapshot

* Unmanage snapshot

232 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Create share from snapshot
Extend share
Shrink share
Replication (experimental):
— Create/update/delete/promote replica operations are supported

Share migration (experimental)

Possibilities

Any amount of ZFS zpools can be used by share driver.

Allowed to configure default options for ZFS datasets that are used for share creation.
Any amount of nested datasets is allowed to be used.

All share replicas are read-only, only active one is RW.

All share replicas are synchronized periodically, not continuously. So, status in_sync means
latest sync was successful. Time range between syncs equals to value of config global opt
replica_state_update_interval.

Driver is able to use qualified extra spec zfsonlinux:compression. It can contain any value that is
supported by used ZFS app. But if it is disabled via config option with value compression=off,
then it will not be used.

Restrictions

The ZFSonLinux share driver has the following restrictions:

Only IP access type is supported for NFS.
Only FLAT network is supported.

Promote share replica operation will switch roles of current secondary replica and active. It does
not make more than one active replica available.

SaMBa based sharing is not yet implemented.

Thick provisioning is not yet implemented.

Known problems

Promote share replica operation will make ZFS filesystem that became secondary as RO only on
NFS level. On ZFS level system will stay mounted as was - RW.

3.2. Administrating Manila 233

Manila Developer Documentation, Release 12.1.3.dev46

Backend Configuration

The following parameters need to be configured in the manila configuration file for the ZFSonLinux
driver:

share_driver = manila.share.drivers.zfsonlinux.driver.ZFSonLinuxShareDriver
driver_handles_share_servers = False
replication_domain = custom_str_value_as_domain_name

— if empty, then replication will be disabled

— if set then will be able to be used as replication peer for other backend with same value.
zfs_share_export_ip = <user_facing IP address of ZFS host>
zfs_service_ip = <IP address of service network interface of ZFS host>
zfs_zpool_list = zpoolnamel,zpoolname2/nested_dataset_for_zpool2

— can be one or more zpools

— can contain nested datasets
zfs_dataset_creation_options = <list of ZFS dataset options>

— readonly,quota,sharenfs and sharesmb options will be ignored
zfs_dataset_name_prefix = <prefix>

— Prefix to be used in each dataset name.
zfs_dataset_snapshot_name_prefix = <prefix>

— Prefix to be used in each dataset snapshot name.
zfs_use_ssh = <boolean_value>

— set False if ZFS located on the same host as manila-share service

— set True if manila-share service should use SSH for ZFS configuration
zfs_ssh_username = <ssh_username>

— required for replication operations

— required for SSHing to ZFS host if zfs_use_ssh is set to True
zfs_ssh_user_password = <ssh_user_password>

— password for zfs_ssh_username of ZFS host.

— used only if zfs_use_ssh is set to True
zfs_ssh_private_key_path = <path_to_private_ssh_key>

— used only if zfs_use_ssh is set to True
zfs_share_helpers = NFS=manila.share.drivers.zfsonlinux.utils. NFSviaZFSHelper

— Approach for setting up helpers is similar to various other share driver

— At least one helper should be used.

zfs_replica_snapshot_prefix = <prefix>

234

Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

— Prefix to be used in dataset snapshot names that are created by update replica operation.
 zfs_migration_snapshot_prefix = <prefix>
— Prefix to be used in dataset snapshot names that are created for migration operation.

Restart of manila-share service is needed for the configuration changes to take effect.

The manila.share.drivers.zfsonlinux.driver Module

Module with ZFSonLinux share driver that utilizes ZFS filesystem resources and exports them as shares.

class ZFSonLinuxShareDriver (*args, **kwargs)
Bases: manila.share.drivers.zfsonlinux.utils.ExecuteMixin, manila.

share.driver.ShareDriver

create_replica (context, *args, **kwargs)
Replicate the active replica to a new replica on this backend.

Note: This call is made on the host that the new replica is being created upon.

Parameters
e context Current context

* replica_list List of all replicas for a particular share. This list
also contains the replica to be created. The active replica will have its
replica_state attr set to active.

Example:

(continues on next page)

3.2. Administrating Manila 235

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

Parameters new_replica The share replica dictionary.

Example:

2015, 8, 10, 0, 5, 58
2015, 8, 10, 0, 5, 58

Parameters access_rules A list of access rules. These are rules that other
instances of the share already obey. Drivers are expected to apply access rules
to the new replica or disregard access rules that dont apply.

Example:

Parameters replica_snapshots List of dictionaries of snapshot instances.
This includes snapshot instances of every snapshot of the share whose ag-
gregate_status property was reported to be available when the share manager
initiated this request. Each list member will have two sub dictionaries: ac-
tive_replica_snapshot and share_replica_snapshot. The active replica snapshot
corresponds to the instance of the snapshot on any of the active replicas of the
share while share_replica_snapshot corresponds to the snapshot instance for

236 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

the specific replica that will need to exist on the new share replica that is being
created. The driver needs to ensure that this snapshot instance is truly avail-
able before transitioning the replica from out_of_sync to in_sync. Snapshots
instances for snapshots that have an aggregate_status of creating or deleting
will be polled for in the update_replicated_snapshot method.

Example:

Parameters share server <models.ShareServer> or None Share server of
the replica being created.

Returns None or a dictionary. The dictionary can contain export_locations
replica_state and access_rules_status. export_locations is a list of paths and
replica_state is one of active, in_sync, out_of_sync or error.

Important: A backend supporting writable type replication should return active as the
replica_state.

Export locations should be in the same format as returned during the create_share call.

Example:

3.2. Administrating Manila 237

Manila Developer Documentation, Release 12.1.3.dev46

create_replicated_snapshot (context, *args, **kwargs)
Create a snapshot on active instance and update across the replicas.

Note: This call is made on the active replicas host. Drivers are expected to transfer the
snapshot created to the respective replicas.

The driver is expected to return model updates to the share manager. If it was able to confirm
the creation of any number of the snapshot instances passed in this interface, it can set their
status to available as a cue for the share manager to set the progress attr to 100%.

Parameters
e context Current context

* replica_list Listofall replicas for a particular share The active replica
will have its replica_state attr set to active.

Example:

Parameters replica_snapshots List of dictionaries of snapshot instances.
These snapshot instances track the snapshot across the replicas. All the in-
stances will have their status attribute set to creating.

Example:

(continues on next page)

238 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

Parameters share_server <models.ShareServer> or None

Returns List of dictionaries of snapshot instances. The dictionaries can contain
values that need to be updated on the database for the snapshot instances being
created.

Raises Exception. Any exception in this method will set all instances to error.

create_share (context, *args, **kwargs)
Is called to create share.

create_share_from_snapshot (context, *args, **kwargs)
Is called to create share from snapshot.

Creating a share from snapshot can take longer than a simple clone operation if data copy is
required from one host to another. For this reason driver will be able complete this creation
asynchronously, by providing a creating_from_snapshot status in the model update.

When answering asynchronously, drivers must implement the call get_share_status in order
to provide updates for shares with creating_from_snapshot status.

It is expected that the driver returns a model update to the share manager that contains: share
status and a list of export_locations. A list of export_locations is mandatory only for share
in available status. The current supported status are available and creating_from_snapshot.

Parameters
* context Current context
* share Share instance model with share data.
* snapshot Snapshot instance model .
* share_server Share server model or None.

* parent_share Share model from parent snapshot with share data and
share server model.

Returns

a dictionary of updates containing current share status and its export_location
(if available).

Example:

3.2. Administrating Manila 239

Manila Developer Documentation, Release 12.1.3.dev46

Raises ShareBackendException. A ShareBackendException in this method will
set the instance to error and the operation will end.

create_snapshot (context, *args, **kwargs)
Is called to create snapshot.

Parameters
e context Current context

* snapshot Snapshot model. Share model could be retrieved through snap-
shot[share].

e share_ server Share server model or None.

Returns None or a dictionary with key export_locations containing a list of export
locations, if snapshots can be mounted.

delete_replica (context, *args, **kwargs)
Delete a replica.

Note: This call is made on the host that hosts the replica being deleted.

Parameters
e context Current context

* replica_list Listof all replicas for a particular share This list also con-
tains the replica to be deleted. The active replica will have its replica_state
attr set to active.

Example:

(continues on next page)

240 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

Parameters replica Dictionary of the share replica being deleted.

Example:

2015, 8, 10, 0, 5, 58
2015, 8, 10, 0, 5, 58

Parameters replica_snapshots List of dictionaries of snapshot instances.
The dict contains snapshot instances that are associated with the share replica
being deleted. No model updates to snapshot instances are possible in this
method. The driver should return when the cleanup is completed on the back-
end for both, the snapshots and the replica itself. Drivers must handle situations
where the snapshot may not yet have finished creating on this replica.

Example:

(continues on next page)

3.2. Administrating Manila 241

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

Parameters share server <models.ShareServer> or None Share server of
the replica to be deleted.

Returns None.

Raises Exception. Any exception raised will set the share replicas status and
replica_state attributes to error_deleting. It will not affect snapshots belong-
ing to this replica.

delete_replicated_snapshot (context, *args, **kwargs)
Delete a snapshot by deleting its instances across the replicas.

Note: This call is made on the active replicas host, since drivers may not be able to delete
the snapshot from an individual replica.

The driver is expected to return model updates to the share manager. If it was able to confirm
the removal of any number of the snapshot instances passed in this interface, it can set their
status to deleted as a cue for the share manager to clean up that instance from the database.

Parameters

e context Current context

* replica_list Listofall replicas for a particular share The active replica
will have its replica_state attr set to active.

Example:

Parameters replica_snapshots List of dictionaries of snapshot instances.

242 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

These snapshot instances track the snapshot across the replicas. All the in-
stances will have their status attribute set to deleting.

Example:

Parameters share server <models.ShareServer> or None

Returns List of dictionaries of snapshot instances. The dictionaries can contain
values that need to be updated on the database for the snapshot instances being
deleted. To confirm the deletion of the snapshot instance, set the status attribute
of the instance to deleted (constants. STATUS_DELETED)

Raises Exception. Any exception in this method will set the status attribute of all
snapshot instances to error_deleting.

delete_share (context, *args, **kwargs)
Is called to remove share.

delete_snapshot (context, *args, **kwargs)
Is called to remove snapshot.

Parameters
e context Current context

* snapshot Snapshot model. Share model could be retrieved through snap-
shot[share].

e share_server Share server model or None.

do_setup (context)
Perform basic setup and checks.

ensure_share (context, *args, **kwargs)
Invoked to ensure that share is exported.

Driver can use this method to update the list of export locations of the share if it changes. To
do that, you should return list with export locations.

Returns None or list with export locations

3.2. Administrating Manila 243

Manila Developer Documentation, Release 12.1.3.dev46

extend_share (context, *args, **kwargs)
Extends size of existing share.

Parameters
* share Share model
* new_size New size of share (new_size > share[size])
* share_server Optional Share server model

get_network_allocations_number ()
ZFS does not handle networking. Return 0.

get_pool (share)
Return pool name where the share resides on.

Parameters share The share hosted by the driver.

manage_existing (share, driver_options)
Manage existing ZFS dataset as manila share.

ZFSonLinux driver accepts only one driver_option size. If an administrator provides this
option, then such quota will be set to dataset and used as share size. Otherwise, driver
will set quota equal to nearest bigger rounded integer of usage size. Driver does not expect
mountpoint to be changed (should be equal to default that is /%(dataset_name)s).

Parameters

* share share data

* driver_options Empty dict or dict with size option.
Returns dict with share size and its export locations.

manage_existing snapshot (snapshot_instance, driver_options)
Manage existing share snapshot with manila.

Parameters

* snapshot_instance Snapshotlnstance data

* driver_options expects only one optional key size.
Returns

dict with share snapshot instance fields for update, example:

size: 1, provider_location: path/to/some/dataset@some_snapshot_tag,

}

migration_cancel (context, *args, **kwargs)
Cancels migration of a given share to another host.

Note: Is called in source shares backend to cancel migration.

If possible, driver can implement a way to cancel an in-progress migration.

244 Chapter 3. For operators

mailto:'path/to/some/dataset@some_snapshot_tag

Manila Developer Documentation, Release 12.1.3.dev46

Parameters
* context The context.RequestContext object for the request.
* source_share Reference to the original share model.

* destination_share Reference to the share model to be used by mi-
grated share.

* source_snapshots List of snapshots owned by the source share.

* snapshot_mappings Mapping of source snapshot IDs to destination
snapshot models.

e share server Share server model or None.

e destination_share server Destination Share server model or
None.

migration_check_compatibility (context, *args, **kwargs)
Checks destination compatibility for migration of a given share.

Note: Is called to test compatibility with destination backend.

Driver should check if it is compatible with destination backend so driver-assisted migration
can proceed.

Parameters
* context The context.RequestContext object for the request.
* source_share Reference to the share to be migrated.

* destination_share Reference to the share model to be used by mi-
grated share.

e share server Share server model or None.

e destination_share server Destination Share server model or
None.

Returns

A dictionary containing values indicating if destination backend is compatible,
if share can remain writable during migration, if it can preserve all file metadata
and if it can perform migration of given share non-disruptively.

Example:

migration_complete (context, *args, **kwargs)
Completes migration of a given share to another host.

3.2. Administrating Manila 245

Manila Developer Documentation, Release 12.1.3.dev46

Note: Is called in source shares backend to complete migration.

If driver is implementing 2-phase migration, this method should perform the disruptive tasks
related to the 2nd phase of migration, thus completing it. Driver should also delete all
original share data from source backend.

Parameters
* context The context.RequestContext object for the request.
* source_share Reference to the original share model.

* destination_share Reference to the share model to be used by mi-
grated share.

* source_snapshots List of snapshots owned by the source share.

* snapshot_mappings Mapping of source snapshot IDs to destination
snapshot models.

e share server Share server model or None.

e destination_share server Destination Share server model or
None.

Returns

If the migration changes the share export locations, snapshot provider locations
or snapshot export locations, this method should return a dictionary with the
relevant info. In such case, a dictionary containing a list of export locations
and a list of model updates for each snapshot indexed by their IDs.

Example:

(continues on next page)

246 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

migration_continue (context, *args, **kwargs)
Continues migration of a given share to another host.

Note: Is called in source shares backend to continue migration.

Driver should implement this method to continue monitor the migration progress in storage
and perform following steps until 1st phase is completed.

Parameters
* context The context.RequestContext object for the request.
* source_share Reference to the original share model.

* destination_share Reference to the share model to be used by mi-
grated share.

* source_snapshots List of snapshots owned by the source share.

* snapshot_mappings Mapping of source snapshot IDs to destination
snapshot models.

e share_ server Share server model or None.

e destination_share server Destination Share server model or
None.

Returns Boolean value to indicate if 1st phase is finished.

migration_start (context, *args, **kwargs)
Starts migration of a given share to another host.

3.2

Administrating Manila 247

Manila Developer Documentation, Release 12.1.3.dev46

Note: Is called in source shares backend to start migration.

Driver should implement this method if willing to perform migration in a driver-assisted
way, useful for when source shares backend driver is compatible with destination backend
driver. This method should start the migration procedure in the backend and end. Following
steps should be done in migration_continue.

Parameters
* context The context.RequestContext object for the request.
* source_share Reference to the original share model.

* destination_share Reference to the share model to be used by mi-
grated share.

* source_snapshots List of snapshots owned by the source share.

* snapshot_mappings Mapping of source snapshot IDs to destination
snapshot models.

e share_ server Share server model or None.

e destination share server Destination Share server model or
None.

promote_replica (context, *args, **kwargs)
Promote a replica to active replica state.

Note: This call is made on the host that hosts the replica being promoted.

Parameters
e context Current context

* replica_list Listofall replicas for a particular share This list also con-
tains the replica to be promoted. The active replica will have its replica_state
attr set to active.

Example:

(continues on next page)

248 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

Parameters replica Dictionary of the replica to be promoted.

Example:

2015, 8, 10, 0, 5, 58
2015, 8, 10, 0, 5, 58

Parameters access_rules A list of access rules These access rules are
obeyed by other instances of the share

Example:

3.2. Administrating Manila 249

Manila Developer Documentation, Release 12.1.3.dev46

Parameters share server <models.ShareServer> or None Share server of
the replica to be promoted.

Returns updated_replica_list or None. The driver can return the updated list as
in the request parameter. Changes that will be updated to the Database are:
export_locations, access_rules_status and replica_state.

Raises Exception. This can be any exception derived from BaseException. This is
re-raised by the manager after some necessary cleanup. If the driver raises an
exception during promotion, it is assumed that all of the replicas of the share
are in an inconsistent state. Recovery is only possible through the periodic
update call and/or administrator intervention to correct the status of the affected
replicas if they become healthy again.

shrink_share (context, *args, **kwargs)

Shrinks size of existing share.

If consumed space on share larger than new_size driver should raise ShareShrinkingPossi-
bleDatal.oss exception: raise ShareShrinkingPossibleDatal.oss(share_id=share[id])

Parameters
* share Share model
* new_size New size of share (new_size < share[size])
* share_server Optional Share server model

:raises ShareShrinkingPossibleDatalLoss, NotImplementedError

unmanage (share)

Removes the specified share from Manila management.

unmanage_snapshot (snapshot_instance)

Unmanage dataset snapshot.

update_access (context, *args, **kwargs)

Update access rules for given share.

access_rules contains all access_rules that need to be on the share. If the driver can
make bulk access rule updates, it can safely ignore the add_rules and delete_rules
parameters.

If the driver cannot make bulk access rule changes, it can rely on new rules to be present in
add_rules and rules that need to be removed to be present in delete_rules.

When arule in delete_rules was never applied, drivers must not raise an exception, or
attempt to set the rule to error state.

add_rules and delete_rules can be empty lists, in this situation, drivers should en-
sure that the rules present in access_rules are the same as those on the back end. One
scenario where this situation is forced is when the access_level is changed for all existing
rules (share migration and for readable replicas).

Drivers must be mindful of this call for share replicas. When update_access is called on one
of the replicas, the call is likely propagated to all replicas belonging to the share, especially
when individual rules are added or removed. If a particular access rule does not make sense
to the driver in the context of a given replica, the driver should be careful to report a correct
behavior, and take meaningful action. For example, if R/W access is requested on a replica
that is part of a readable type replication; R/O access may be added by the driver instead

250

Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

of R/W. Note that raising an exception will result in the access_rules_status on the replica,
and the share itself being out_of_sync. Drivers can sync on the valid access rules that are
provided on the create_replica and promote_replica calls.

Parameters
* context Current context
* share Share model with share data.
* access_rules A list of access rules for given share

* add_rules Empty List or List of access rules which should be added.
access_rules already contains these rules.

* delete_rules Empty List or List of access rules which should be re-
moved. access_rules doesnt contain these rules.

e share_server None or Share server model
Returns

None, or a dictionary of updates in the format:

09960614-8574-4e03-89cf-7cf267b0bd08: {

access_key: alice31493e5441b8171d2310d80e37e, state: error,
),
28f6eabb-4342-486a-a7f4-45688f0c0295: {

access_key: bob0078aa042d5a7325480£fd13228b, state: active,

)
}

The top level keys are access_id fields of the access rules that need to be updated.
access_key 's are credentials (str) of the entities granted
access. Any rule in the " “access_rules parameter can be updated.

Important: Raising an exception in this method will force all rules in applying and denying
states to error.

An access rule can be set to error state, either explicitly via this return parameter or because
of an exception raised in this method. Such an access rule will no longer be sent to the driver
on subsequent access rule updates. When users deny that rule however, the driver will be
asked to deny access to the client/s represented by the rule. We expect that a rule that was
error-ed at the driver should never exist on the back end. So, do not fail the deletion request.

Also, it is possible that the driver may receive a request to add a rule that is already present
on the back end. This can happen if the share manager service goes down while the driver is
committing access rule changes. Since we cannot determine if the rule was applied success-
fully by the driver before the disruption, we will treat all applying transitional rules as new
rules and repeat the request.

3.2. Administrating Manila 251

Manila Developer Documentation, Release 12.1.3.dev46

update_replica_state (context, *args, **kwargs)
Update the replica_state of a replica.

Note: This call is made on the host which hosts the replica being updated.

Drivers should fix replication relationships that were broken if possible inside this method.

This method is called periodically by the share manager; and whenever requested by the
administrator through the resync API.

Parameters
e context Current context

* replica_list Listofall replicas for a particular share This list also con-
tains the replica to be updated. The active replica will have its replica_state
attr set to active.

Example:

Parameters replica Dictionary of the replica being updated Replica state will
always be in_sync, out_of_sync, or error. Replicas in active state will not be
passed via this parameter.

Example:

252 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

2015, 8, 10, 0, 5, 58
2015, 8, 10, 0, 5, 58

Parameters access_rules A list of access rules These access rules are
obeyed by other instances of the share. The driver could attempt to sync on
any un-applied access_rules.

Example:

Parameters replica_snapshots List of dictionaries of snapshot instances.
This includes snapshot instances of every snapshot of the share whose ag-
gregate_status property was reported to be available when the share manager
initiated this request. Each list member will have two sub dictionaries: ac-
tive_replica_snapshot and share_replica_snapshot. The active replica snapshot
corresponds to the instance of the snapshot on any of the active replicas of the
share while share_replica_snapshot corresponds to the snapshot instance for
the specific replica being updated. The driver needs to ensure that this snapshot
instance is truly available before transitioning from out_of_sync to in_sync.
Snapshots instances for snapshots that have an aggregate_status of creating or
deleting will be polled for in the update_replicated_snapshot method.

Example:

(continues on next page)

3.2. Administrating Manila 253

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

Parameters share_server <models.ShareServer> or None

Returns replica_state: a str value denoting the replica_state. Valid values are
in_sync and out_of_sync or None (to leave the current replica_state un-
changed).

update_replicated_snapshot (context, *args, **kwargs)
Update the status of a snapshot instance that lives on a replica.

Note: For DR and Readable styles of replication, this call is made on the replicas host and
not the active replicas host.

This method is called periodically by the share manager. It will query for snapshot instances
that track the parent snapshot across non-active replicas. Drivers can expect the status of
the instance to be creating or deleting. If the driver sees that a snapshot instance has been
removed from the replicas backend and the instance status was set to deleting, it is expected
to raise a SnapshotResourceNotFound exception. All other exceptions will set the snapshot
instance status to error. If the instance was not in deleting state, raising a SnapshotRe-
sourceNotFound will set the instance status to error.

Parameters
e context Current context

* replica_list Listofall replicas for a particular share The active replica
will have its replica_state attr set to active.

Example:

(continues on next page)

254 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

Parameters share_replica Share replica dictionary. This replica is asso-
ciated with the snapshot instance whose status is being updated. Replicas in
active replica_state will not be passed via this parameter.

Example:

2015, 8, 10, 0, 5, 58
2015, 8, 10, 0, 5, 58

Parameters replica_snapshots List of dictionaries of snapshot instances.
These snapshot instances track the snapshot across the replicas. This will in-
clude the snapshot instance being updated as well.

Example:

(continues on next page)

3.2. Administrating Manila 255

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

Parameters replica_snapshot Dictionary of the snapshot instance. This is
the instance to be updated. It will be in creating or deleting state when sent via

this parameter.

Example:

2016, 8, 3, 0, 5

2016, 8, 3, 0, 5

58

58

Parameters share_server <models.ShareServer> or None

Returns replica_snapshot_model_update: a dictionary. The dictionary must con-
tain values that need to be updated on the database for the snapshot instance
that represents the snapshot on the replica.

Raises exception.SnapshotResourceNotFound Raise this exception for snapshots

that are not found on the backend and their status was deleting.
ensure_share_server_not_provided (f)

get_backend_configuration (backend_name)

The manila.share.drivers.zfsonlinux.utils Module

Module for storing ZFSonLinux driver utility stuff such as:
* Common ZFS code
* Share helpers

class ExecuteMixin
Bases: manila.share.driver.ExecuteMixin

execute (*cmd, **kwargs)
Common interface for running shell commands.

256

Chapter 3.

For operators

Manila Developer Documentation, Release 12.1.3.dev46

execute_with_retry (*cmd, **kwargs)
Retry wrapper over common shell interface.

get_zfs_option (dataset_name, option_name, **kwargs)
Returns value of requested zfs dataset option.

get_zpool_option (zpool_name, option_name, **kwargs)
Returns value of requested zpool option.

init_execute_mixin (*args, **kwargs)
Init method for mixin called in the end of drivers __init__ ().

parse_zfs_answer (string)
Returns list of dicts with data returned by ZFS shell commands.

zfs (*cmd, **kwargs)
ZFS shell commands executor.

zfs_with_retry (*cmd, **kwargs)
ZFS shell commands executor.

class NASHelperBase (configuration)
Bases: object

Base class for share helpers of ZFS on Linux driver.

abstract create_exports (dataset_name, executor)
Creates share exports.

abstract get_exports (dataset_name, service, executor)
Gets/reads share exports.

abstract remove_exports (dataset_name, executor)
Removes share exports.

abstract update_access (dataset_name, access_rules, add_rules, delete_rules, ex-

ecutor)
Update access rules for specified ZFS dataset.

abstract verify_ setup ()
Performs checks for required stuff.

class NFSviaZFSHelper (configuration)
Bases: manila.share.drivers.zfsonlinux.utils.ExecuteMixin, manila.
share.drivers.zfsonlinux.utils.NASHelperBase

Helper class for handling ZFS datasets as NFS shares.

Kernel and Fuse versions of ZFS have different syntax for setting up access rules, and this Helper
designed to satisfy both making autodetection.

create_exports (dataset_name, executor=None)
Creates NFS share exports for given ZFS dataset.

get_exports (dataset_name, executor=None)
Gets/reads NFS share export for given ZFS dataset.

property is_kernel_ version
Says whether Kernel version of ZFS is used or not.

3.2. Administrating Manila 257

Manila Developer Documentation, Release 12.1.3.dev46

remove_exports (*args, **kwargs)
Removes share exports.

update_access (*args, **kwargs)
Update access rules for specified ZFS dataset.

verify setup ()
Performs checks for required stuff.

get_remote_shell_executor (ip, port, conn_timeout, login=None, password=None, pri-

vatekey=None, max_size=10)

zfs_dataset_synchronized (f)

NetApp Clustered Data ONTAP

The Shared File Systems service can be configured to use NetApp Clustered Data ONTAP (cDOT)
version 8.2 and later.

Supported Operations

The following operations are supported on Clustered Data ONTAP:

Create CIFS/NFES Share
Delete CIFS/NFES Share
Allow NFS Share access

— IP access type is supported for NFS.

— Read/write and read-only access are supported for NFS.

Allow CIFS Share access
— User access type is supported for CIFS.
— Read/write access is supported for CIFS.

Deny CIFS/NFS Share access

Create snapshot

Delete snapshot

Create share from snapshot

Extend share

Shrink share

Manage share

Unmanage share

Create consistency group

Delete consistency group

Create consistency group from CG snapshot

Create CG snapshot

258

Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Delete CG snapshot

Create a replica (DHSS=False)

Promote a replica (DHSS=False)

Delete a replica (DHSS=False)

Update a replica (DHSS=False)

Create a replicated snapshot (DHSS=False)
Delete a replicated snapshot (DHSS=False)
Update a replicated snapshot (DHSS=False)

Note:

DHSS is abbreviated from driver_handles_share_servers.

Supported Operating Modes

The ¢cDOT driver supports both driver_handles_share_servers (DHSS) modes.

If driver_handles_share_servers is True, the driver will create a storage virtual machine (SVM, previ-
ously known as vServers) for each unique tenant network and provision each of a tenants shares into
that SVM. This requires the user to specify both a share network as well as a share type with the DHSS
extra spec set to True when creating shares.

If driver_handles_share_servers is False, the manila admin must configure a single SVM, along with
associated LIFs and protocol services, that will be used for provisioning shares. The SVM is specified
in the manila config file.

Network approach

L3 connectivity between the storage cluster and manila host must exist, and VLAN segmentation may

be configured. All of manilas network plug-ins are supported with the cDOT driver.

Supported shared filesystems

NFS (access by IP address or subnet)

CIFS (authentication by user)

Required licenses

NFS
CIFS
FlexClone

3.2. Administrating Manila

259

Manila Developer Documentation, Release 12.1.3.dev46

Known restrictions

* For CIFS shares an external Active Directory (AD) service is required. The AD details should be
provided via a manila security service that is attached to the specified share network.

» Share access rules for CIFS shares may be created only for existing users in Active Directory.

* The time on external security services and storage must be synchronized. The maximum allowed
clock skew is 5 minutes.

* c¢DOT supports only flat and VLAN network segmentation types.

The manila.share.drivers.netapp.common.py Module

Unified driver for NetApp storage systems.
Supports multiple storage systems of different families and driver modes.

class NetAppDriver (*args, **kwargs)
Bases: object

NetApp unified share storage driver.

Acts as a factory to create NetApp storage drivers based on the storage family and driver mode
configured.

REQUIRED_FLAGS = ['netapp_storage_family', 'driver_handles_share_servers']

Isilon Driver

The EMC manila driver framework (EMCShareDriver) utilizes EMC storage products to provide shared
filesystems to OpenStack. The EMC manila driver is a plugin based driver which is designed to use
different plugins to manage different EMC storage products.

The Isilon manila driver is a plugin for the EMC manila driver framework which allows manila to
interface with an Isilon backend to provide a shared filesystem. The EMC driver framework with the
Isilon plugin is referred to as the Isilon Driver in this document.

This Isilon Driver interfaces with an Isilon cluster via the REST Isilon Platform API (PAPI) and the
RESTful Access to Namespace API (RAN).

Requirements

* Isilon cluster running OneFS 7.2 or higher

260 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Supported Operations

The following operations are supported on an Isilon cluster:
* Create CIFS/NFS Share

Delete CIFS/NFS Share

Allow CIFS/NFS Share access

— Only IP access type is supported for NFS and CIFS
— Only RW access supported

Deny CIFS/NFS Share access
* Create snapshot

* Delete snapshot

* Create share from snapshot

¢ Extend share

Backend Configuration

The following parameters need to be configured in the manila configuration file for the Isilon driver:
e share_driver = manila.share.drivers.dell_emc.driver. EMCShareDriver
e driver_handles_share_servers = False
* emc_share_backend = isilon
e emc_nas_server = <IP address of Isilon cluster>
* emc_nas_server_port = <port to use for Isilon cluster (optional)>
* emc_nas_login = <username>
* emc_nas_password = <password>
* emc_nas_root_dir = <root directory path to create shares (e.g./ifs/manila)>

Restart of manila-share service is needed for the configuration changes to take effect.

Restrictions

The Isilon driver has the following restrictions:
* Only IP access type is supported for NFS and CIFS.
* Only FLAT network is supported.

3.2. Administrating Manila 261

Manila Developer Documentation, Release 12.1.3.dev46

The manila.share.drivers.dell emc.driver Module

EMC specific NAS storage driver. This driver is a pluggable driver that allows specific EMC
NAS devices to be plugged-in as the underlying backend. Use the Manila configuration variable
share_backend_name to specify, which backend plugins to use.

class EMCShareDriver (*args, **kwargs)
Bases: manila.share.driver.ShareDriver

EMC specific NAS driver. Allows for NFS and CIFS NAS storage usage.

allow_ access (context, share, access, share_server=None)
Allow access to the share.

check_for_setup_error ()
Check for setup error.

create_share (context, share, share_server=None)
Is called to create share.

create_share_from_snapshot (context, share, snapshot, share_server=None, par-

ent_share=None)
Is called to create share from snapshot.

create_snapshot (context, snapshot, share_server=None)
Is called to create snapshot.

delete_share (context, share, share_server=None)
Is called to remove share.

delete_snapshot (context, snapshot, share_server=None)
Is called to remove snapshot.

deny_access (context, share, access, share_server=None)
Deny access to the share.

do_setup (context)
Any initialization the share driver does while starting.

ensure_share (context, share, share_server=None)
Invoked to sure that share is exported.

extend_share (share, new_size, share_server=None)
Is called to extend share.

get_configured_ ip_versions ()
Get allowed IP versions.

The supported versions are returned with list, possible values are: [4], [6], or [4, 6]

Drivers that assert ipv6_implemented = True must override this method. If the returned list
includes 4, then shares created by this driver must have an IPv4 export location. If the list
includes 6, then shares created by the driver must have an IPv6 export location.

Drivers should check that their storage controller actually has IPv4/IPv6 enabled and con-
figured properly.

get_default_filter function()
Get the default filter_function string.

Each driver could overwrite the method to return a well-known default string if it is available.

262 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Returns None

get_network_allocations_number ()
Returns number of network allocations for creating VIFs.

get_share_server_ network_info (context, share_server, identifier,

driver_options)
Obtain network allocations used by share server.

Parameters
* context Current context.
e share_server Share server model.
* identifier A driver-specific share server identifier

* driver_options Dictionary of driver options to assist managing the
share server

Returns A list containing IP addresses allocated in the backend.

Example:

manage_existing (share, driver_options)
manage an existing share

manage_existing snapshot (snapshot, driver_options)
manage an existing share snapshot

manage_existing snapshot_with_server (snapshot, driver_options,

o share_server=None)
manage an existing share snapshot

manage_existing with_server (share, driver_options, share_server=None)
manage an existing share

manage_server (context, share_server, identifier, driver_options)
Manage the share server and return compiled back end details.

Parameters
e context Current context.
e share server Share server model.
* identifier A driver-specific share server identifier

* driver_options Dictionary of driver options to assist managing the
share server

Returns Identifier and dictionary with back end details to be saved in the database.

Example:

revert_to_snapshot (context, snapshot, share_access_rules, snapshot_access_rules,

share_server=None)
Reverts a share (in place) to the specified snapshot.

3.2. Administrating Manila 263

Manila Developer Documentation, Release 12.1.3.dev46

Does not delete the share snapshot. The share and snapshot must both be available for the
restore to be attempted. The snapshot must be the most recent one taken by Manila; the API
layer performs this check so the driver doesnt have to.

The share must be reverted in place to the contents of the snapshot. Application admins
should quiesce or otherwise prepare the application for the shared file system contents to
change suddenly.

Parameters
* context Current context
* snapshot The snapshot to be restored
e share access_rules List of all access rules for the affected share

* snapshot_access_rules Listof all access rules for the affected snap-
shot

* share_server Optional Share server model or None

shrink_ share (share, new_size, share_server=None)

Is called to shrink share.

unmanage (share)

Removes the specified share from Manila management.
Does not delete the underlying backend share.

For most drivers, this will not need to do anything. However, some drivers might use this
call as an opportunity to clean up any Manila-specific configuration that they have associated
with the backend share.

If provided share cannot be unmanaged, then raise an UnmanagelnvalidShare exception,
specifying a reason for the failure.

This method is invoked when the share is being unmanaged with a share type that has
driver_handles_share_servers extra-spec set to False.

unmanage_server (server_details, security_services=None)

Unmanages the share server.

If a driver supports unmanaging of share servers, the driver must override this method and
return successfully.

Parameters
e server_details share server backend details.

* security_ services list of security services configured with this share
server.

unmanage_snapshot (snapshot)

Removes the specified snapshot from Manila management.
Does not delete the underlying backend share snapshot.

For most drivers, this will not need to do anything. However, some drivers might use this
call as an opportunity to clean up any Manila-specific configuration that they have associated
with the backend share snapshot.

264

Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

If provided share snapshot cannot be unmanaged, then raise an UnmanagelnvalidShareSnap-
shot exception, specifying a reason for the failure.

This method is invoked when the snapshot that is being unmanaged belongs to a share that
has its share type with driver_handles_share_servers extra-spec set to False.

unmanage_snapshot_with_server (snapshot, share_server=None)
Removes the specified snapshot from Manila management.

Does not delete the underlying backend share snapshot.

For most drivers, this will not need to do anything. However, some drivers might use this
call as an opportunity to clean up any Manila-specific configuration that they have associated
with the backend share snapshot.

If provided share snapshot cannot be unmanaged, then raise an UnmanagelnvalidShareSnap-
shot exception, specifying a reason for the failure.

This method is invoked when the snapshot that is being unmanaged belongs to a share that
has its share type with driver_handles_share_servers extra-spec set to True.

unmanage_with_server (share, share_server=None)
Removes the specified share from Manila management.

Does not delete the underlying backend share.

For most drivers, this will not need to do anything. However, some drivers might use this
call as an opportunity to clean up any Manila-specific configuration that they have associated
with the backend share.

If provided share cannot be unmanaged, then raise an UnmanagelnvalidShare exception,
specifying a reason for the failure.

This method is invoked when the share is being unmanaged with a share type that has
driver_handles_share_servers extra-spec set to True.

update_access (context, share, access_rules, add_rules, delete_rules,

share_server=None)
Update access to the share.

The manila.share.drivers.dell_emc.plugins.isilon.isilon Module

Isilon specific NAS backend plugin.

class IsilonStorageConnection (*args, **kwargs)
Bases: manila.share.drivers.dell_emc.plugins.base.
StorageConnection

Implements Isilon specific functionality for EMC Manila driver.

allow_access (context, share, access, share_server)
Allow access to the share.

check_for_setup_error ()
Check for setup error.

connect (emc_share_driver, context)
Connect to an Isilon cluster.

3.2. Administrating Manila 265

Manila Developer Documentation, Release 12.1.3.dev46

create_share (context, share, share_server)
Is called to create share.

create_share_ from_snapshot (context, share, snapshot, share_server)
Creates a share from the snapshot.

create_snapshot (context, snapshot, share_server)
Is called to create snapshot.

delete_share (context, share, share_server)
Is called to remove share.

delete_snapshot (context, snapshot, share_server)
Is called to remove snapshot.

deny_access (context, share, access, share_server)
Deny access to the share.

ensure_share (context, share, share_server)
Invoked to ensure that share is exported.

extend_share (share, new_size, share_server=None)
Extends a share.

get_network_allocations_number ()
Returns number of network allocations for creating VIFs.

setup_server (network_info, metadata=None)
Set up and configures share server with given network parameters.

teardown_server (server_details, security_services=None)
Teardown share server.

update_access (context, share, access_rules, add_rules, delete_rules,

share_server=None)
Update share access.

update_share_stats (stats_dict)
TODO.

VNX Driver

EMC manila driver framework (EMCShareDriver) utilizes the EMC storage products to provide the
shared filesystems to OpenStack. The EMC manila driver is a plugin based driver which is designed to
use different plugins to manage different EMC storage products.

VNX plugin is the plugin which manages the VNX to provide shared filesystems. EMC driver frame-
work with VNX plugin is referred to as VNX driver in this document.

This driver performs the operations on VNX by XMLAPI and the File command line. Each backend
manages one Data Mover of VNX. Multiple manila backends need to be configured to manage multiple
Data Movers.

266 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Requirements

* VNX OE for File version 7.1 or higher.
* VNX Unified, File only, or Gateway system with single storage backend.

* The following licenses should be activated on VNX for File: * CIFS * NFS * SnapSure (for
snapshot) * ReplicationV2 (for create share from snapshot)

Supported Operations

The following operations will be supported on VNX array:
* Create CIFS/NFS Share
* Delete CIFS/NFS Share

* Allow CIFS/NFS Share access * Only IP access type is supported for NFS. * Only user access
type is supported for CIFS.

* Deny CIFS/NFS Share access
* Create snapshot

* Delete snapshot

* Create share from snapshot

While the generic driver creates shared filesystems based on Cinder volumes attached to Nova VMs, the
VNX driver performs similar operations using the Data Movers on the array.

Pre-Configurations on VNX

1. Enable Unicode on Data mover
VNX driver requires that the Unicode is enabled on Data Mover.

CAUTION: After enabling Unicode, you cannot disable it. If there are some filesystems created before
Unicode is enabled on the VNX, consult the storage administrator before enabling Unicode.

To check the Unicode status on Data Mover, use the following VNX File command on VNX control
station:

server_cifs <mover_name> | head where: mover_name = <name of the Data Mover>
Check the value of 118N mode field. UNICODE mode is shown as 118N mode = UNICODE
To enable the Unicode for Data Mover:

uc_config -on -mover <mover_name> where: mover_name = <name of the Data Mover>

Refer to the document Using International Character Sets on VNX for File on [EMC support site](https:
/[support.emc.com) for more information.

2. Enable CIFS service on Data Mover
Ensure the CIFS service is enabled on the Data Mover which is going to be managed by VNX driver.

To start the CIFS service, use the following command:

3.2. Administrating Manila 267

https://support.emc.com
https://support.emc.com

Manila Developer Documentation, Release 12.1.3.dev46

server_setup <mover_name> -Protocol cifs -option start [=<n>] where: <mover_name> =
<name of the Data Mover> [=<n>] = <number of threads for CIFS users>

Note: If there is 1 GB of memory on the Data Mover, the default is 96 threads; however, if there is over
1 GB of memory, the default number of threads is 256.

To check the CIFS service status, use this command:
server_cifs <mover_name> | head where: <mover_name> = <name of the Data Mover>
The command output will show the number of CIFS threads started.
3. NTP settings on Data Mover

VNX driver only supports CIFS share creation with share network which has an Active Directory
security-service associated.

Creating CIFS share requires that the time on the Data Mover is in sync with the Active Directory domain
so that the CIFS server can join the domain. Otherwise, the domain join will fail when creating share
with this security service. There is a limitation that the time of the domains used by security-services
even for different tenants and different share networks should be in sync. Time difference should be less
than 10 minutes.

It is recommended to set the NTP server to the same public NTP server on both the Data Mover and
domains used in security services to ensure the time is in sync everywhere.

Check the date and time on Data Mover:
server_date <mover_name> where: mover_name = <name of the Data Mover>
Set the NTP server for Data Mover:

server_date <mover_name> timesvc start ntp <host> [<host>] where: mover_name =
<name of the Data Mover> host = <IP address of the time server host>

Note: The host must be running the NTP protocol. Only 4 host entries are allowed.
4. Configure User Mapping on the Data Mover

Before creating CIFS share using VNX driver, you must select a method of mapping Windows SIDs to
UIDs and GIDs. EMC recommends using usermapper in single protocol (CIFS) environment which is
enabled on VNX by default.

To check usermapper status, use this command syntax:
server_usermapper <movername> where: <movername> = <name of the Data Mover>
If usermapper is not started, the following command can be used to start the usermapper:

server_usermapper <movername> -enable where: <movername> = <name of the Data
Mover>

For multiple protocol environment, refer to Configuring VNX User Mapping on [EMC support
site](https://support.emc.com) for additional information.

5. Network Connection

In the current release, the share created by VNX driver uses the first network device (physical port on
NIC) of Data Mover to access the network.

Go to Unisphere to check the device list: Settings -> Network -> Settings for File (Unified system only)
-> Device.

268 Chapter 3. For operators

https://support.emc.com

Manila Developer Documentation, Release 12.1.3.dev46

Backend Configuration

The following parameters need to be configured in /etc/manila/manila.conf for the VNX driver:

emc_share_backend = vnx emc_nas_server = <IP address> emc_nas_password =
<password> emc_nas_login = <user> emc_nas_server_container = <Data Mover
name> emc_nas_pool_name = <pool name> emc_interface_ports = <Comma sepa-
rated ports list> share_driver = manila.share.drivers.dell_emc.driver. EMCShareDriver
driver_handles_share_servers = True

* emc_share_backend is the plugin name. Set it to vnx for the VNX driver.
* emc_nas_server is the control station IP address of the VNX system to be managed.

* emc_nas_password and emc_nas_login fields are used to provide credentials to the VNX system.
Only local users of VNX File is supported.

e emc_nas_server_container field is the name of the Data Mover to serve the share service.

* emc_nas_pool_name is the pool name user wants to create volume from. The pools can be created
using Unisphere for VNX.

* emc_interface_ports is comma separated list specifying the ports(devices) of Data Mover that
can be used for share server interface. Members of the list can be Unix-style glob expressions
(supports Unix shell-style wildcards). This list is optional. In the absence of this option, any of
the ports on the Data Mover can be used.

* driver_handles_share_servers must be True, the driver will choose a port from port list which
configured in emc_interface_ports.

Restart of manila-share service is needed for the configuration changes to take effect.

IPv6 support

IPv6 support for VNX driver is introduced in Queens release. The feature is divided into two parts:
1. The driver is able to manage share or snapshot in the Neutron IPv6 network.

2. The driver is able to connect VNX management interface using its IPv6 address.

Pre-Configurations for IPv6 support

The following parameters need to be configured in /etc/manila/manila.conf for the VNX driver:
network_plugin_ipv6_enabled = True
* network_plugin_ipv6_enabled indicates IPv6 is enabled.

If you want to connect VNX using IPv6 address, you should configure IPv6 address by nas_cs command
for VNX and specify the address in /etc/manila/manila.conf:

emc_nas_server = <IPv6 address>

3.2. Administrating Manila 269

Manila Developer Documentation, Release 12.1.3.dev46

Snapshot support

In the Mitaka and Newton release of OpenStack, Snapshot support is enabled by default for a newly
created share type. Starting with the Ocata release, the snapshot_support extra spec must be set to True
in order to allow snapshots for a share type. If the snapshot_support extra_spec is omitted or if it is set
to False, users would not be able to create snapshots on shares of this share type. The feature is divided
into two parts:

1. The driver is able to create/delete snapshot of share.

2. The driver is able to create share from snapshot.

Pre-Configurations for Snapshot support

The following extra specifications need to be configured with share type.
* snapshot_support = True
* create_share_from_snapshot_support = True

For new share type, these extra specifications can be set directly when creating share type:

Or you can update already existing share type with command:

To snapshot a share and create share from the snapshot

Firstly, you need create a share from share type that has extra specifications(snapshot_support=True,
create_share_from_snapshot_support=True). Then snapshot the share with command:

After creating the snapshot from previous step, you can create share from that snapshot. Use command:

270 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Restrictions

The VNX driver has the following restrictions:

Only IP access type is supported for NFS.
Only user access type is supported for CIFS.
Only FLAT network and VLAN network are supported.

VLAN network is supported with limitations. The Neutron subnets in different VLANS that are
used to create share networks cannot have overlapped address spaces. Otherwise, VNX may have
a problem to communicate with the hosts in the VLANs. To create shares for different VLANs
with same subnet address, use different Data Movers.

The Active Directory security service is the only supported security service type and it is required
to create CIFS shares.

Only one security service can be configured for each share network.

Active Directory domain name of the active_directory security service should be unique even for
different tenants.

The time on Data Mover and the Active Directory domains used in security services should be in
sync (time difference should be less than 10 minutes). It is recommended to use same NTP server
on both the Data Mover and Active Directory domains.

On VNX the snapshot is stored in the SavVols. VNX system allows the space used by SavVol to
be created and extended until the sum of the space consumed by all SavVols on the system exceeds
the default 20% of the total space available on the system. If the 20% threshold value is reached,
an alert will be generated on VNX. Continuing to create snapshot will cause the old snapshot to be
inactivated (and the snapshot data to be abandoned). The limit percentage value can be changed
manually by storage administrator based on the storage needs. Administrator is recommended to
configure the notification on the SavVol usage. Refer to Using VNX SnapSure document on [EMC
support site](https://support.emc.com) for more information.

VNX has limitations on the overall numbers of Virtual Data Movers, filesystems, shares, check-
points, and etc. Virtual Data Mover(VDM) is created by the VNX driver on the VNX to serve
as the manila share server. Similarly, filesystem is created, mounted, and exported from the
VDM over CIFS or NFS protocol to serve as the manila share. The VNX checkpoint serves
as the manila share snapshot. Refer to the NAS Support Matrix document on [EMC support
site](https://support.emc.com) for the limitations and configure the quotas accordingly.

The manila.share.drivers.dell emc.driver Module

EMC specific NAS storage driver. This driver is a pluggable driver that allows specific EMC
NAS devices to be plugged-in as the underlying backend. Use the Manila configuration variable
share_backend_name to specify, which backend plugins to use.

class EMCShareDriver (*args, **kwargs)

Bases: manila.share.driver.ShareDriver
EMC specific NAS driver. Allows for NFS and CIFS NAS storage usage.

allow_access (context, share, access, share_server=None)
Allow access to the share.

3.2. Administrating Manila 271

https://support.emc.com
https://support.emc.com

Manila Developer Documentation, Release 12.1.3.dev46

check_for_setup_error ()
Check for setup error.

create_share (context, share, share_server=None)
Is called to create share.

create_share_from_snapshot (context, share, snapshot, share_server=None, par-

ent_share=None)
Is called to create share from snapshot.

create_snapshot (context, snapshot, share_server=None)
Is called to create snapshot.

delete_share (context, share, share_server=None)
Is called to remove share.

delete_snapshot (context, snapshot, share_server=None)
Is called to remove snapshot.

deny_access (context, share, access, share_server=None)
Deny access to the share.

do_setup (context)
Any initialization the share driver does while starting.

ensure_share (context, share, share_server=None)
Invoked to sure that share is exported.

extend_ share (share, new_size, share_server=None)
Is called to extend share.

get_configured_ip_ versions ()
Get allowed IP versions.

The supported versions are returned with list, possible values are: [4], [6], or [4, 6]

Drivers that assert ipv6_implemented = True must override this method. If the returned list
includes 4, then shares created by this driver must have an IPv4 export location. If the list
includes 6, then shares created by the driver must have an IPv6 export location.

Drivers should check that their storage controller actually has IPv4/IPv6 enabled and con-
figured properly.

get_default_filter function()
Get the default filter_function string.

Each driver could overwrite the method to return a well-known default string if it is available.
Returns None

get_network_allocations_number ()
Returns number of network allocations for creating VIFs.

get_share_server_network_info (context, share_server, identifier,

driver_options)
Obtain network allocations used by share server.

Parameters
e context Current context.

e share server Share server model.

272 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

* identifier A driver-specific share server identifier

* driver_options Dictionary of driver options to assist managing the
share server

Returns A list containing IP addresses allocated in the backend.

Example:

manage_existing (share, driver_options)
manage an existing share

manage_existing snapshot (snapshot, driver_options)
manage an existing share snapshot

manage_existing snapshot_with_server (snapshot, driver_options,

o share_server=None)
manage an existing share snapshot

manage_existing with_server (share, driver_options, share_server=None)
manage an existing share

manage_server (context, share_server, identifier, driver_options)
Manage the share server and return compiled back end details.

Parameters
* context Current context.
e share server Share server model.
* identifier A driver-specific share server identifier

* driver_options Dictionary of driver options to assist managing the
share server

Returns Identifier and dictionary with back end details to be saved in the database.

Example:

revert_to_snapshot (context, snapshot, share_access_rules, snapshot_access_rules,

share_server=None)
Reverts a share (in place) to the specified snapshot.

Does not delete the share snapshot. The share and snapshot must both be available for the
restore to be attempted. The snapshot must be the most recent one taken by Manila; the API
layer performs this check so the driver doesnt have to.

The share must be reverted in place to the contents of the snapshot. Application admins
should quiesce or otherwise prepare the application for the shared file system contents to
change suddenly.

Parameters
e context Current context

* snapshot The snapshot to be restored

3.2. Administrating Manila 273

Manila Developer Documentation, Release 12.1.3.dev46

e share access_rules List of all access rules for the affected share

* snapshot_access_rules List of all access rules for the affected snap-
shot

* share_server Optional Share server model or None

shrink_ share (share, new_size, share_server=None)

Is called to shrink share.

unmanage (share)

Removes the specified share from Manila management.
Does not delete the underlying backend share.

For most drivers, this will not need to do anything. However, some drivers might use this
call as an opportunity to clean up any Manila-specific configuration that they have associated
with the backend share.

If provided share cannot be unmanaged, then raise an UnmanagelnvalidShare exception,
specifying a reason for the failure.

This method is invoked when the share is being unmanaged with a share type that has
driver_handles_share_servers extra-spec set to False.

unmanage_server (server_details, security_services=None)

Unmanages the share server.

If a driver supports unmanaging of share servers, the driver must override this method and
return successfully.

Parameters
e server details share server backend details.

* security_services list of security services configured with this share
server.

unmanage_snapshot (snapshot)

Removes the specified snapshot from Manila management.
Does not delete the underlying backend share snapshot.

For most drivers, this will not need to do anything. However, some drivers might use this
call as an opportunity to clean up any Manila-specific configuration that they have associated
with the backend share snapshot.

If provided share snapshot cannot be unmanaged, then raise an UnmanagelnvalidShareSnap-
shot exception, specifying a reason for the failure.

This method is invoked when the snapshot that is being unmanaged belongs to a share that
has its share type with driver_handles_share_servers extra-spec set to False.

unmanage_snapshot_with_server (snapshot, share_server=None)

Removes the specified snapshot from Manila management.
Does not delete the underlying backend share snapshot.

For most drivers, this will not need to do anything. However, some drivers might use this
call as an opportunity to clean up any Manila-specific configuration that they have associated
with the backend share snapshot.

274

Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

If provided share snapshot cannot be unmanaged, then raise an UnmanagelnvalidShareSnap-
shot exception, specifying a reason for the failure.

This method is invoked when the snapshot that is being unmanaged belongs to a share that
has its share type with driver_handles_share_servers extra-spec set to True.

unmanage_with_server (share, share_server=None)
Removes the specified share from Manila management.

Does not delete the underlying backend share.

For most drivers, this will not need to do anything. However, some drivers might use this
call as an opportunity to clean up any Manila-specific configuration that they have associated
with the backend share.

If provided share cannot be unmanaged, then raise an UnmanagelnvalidShare exception,
specifying a reason for the failure.

This method is invoked when the share is being unmanaged with a share type that has
driver_handles_share_servers extra-spec set to True.

update_access (context, share, access_rules, add_rules, delete_rules,

share_server=None)
Update access to the share.

The manila.share.drivers.dell_emc.plugins.vnx.connection Module

VNX backend for the EMC Manila driver.

class VNXStorageConnection (*args, **kwargs)
Bases: manila.share.drivers.dell_emc.plugins.base.
StorageConnection

Implements VNX specific functionality for EMC Manila driver.

allow_access (context, share, access, share_server=None)
Allow access to a share.

check_for_setup_error ()
Check for setup error.

clear access (share, share_server, white_list)

connect (emc_share_driver, context)
Connect to VNX NAS server.

create_share (context, share, share_server=None)
Create a share and export it based on protocol used.

create_share_from_snapshot (context, share, snapshot, share_server=None, par-

ent_share=None)
Create a share from a snapshot - clone a snapshot.

create_snapshot (context, snapshot, share_server=None)
Create snapshot from share.

delete_share (context, share, share_server=None)
Delete a share.

3.2. Administrating Manila 275

Manila Developer Documentation, Release 12.1.3.dev46

delete_snapshot (context, snapshot, share_server=None)
Delete a snapshot.

deny_access (context, share, access, share_server=None)
Deny access to a share.

ensure_share (context, share, share_server=None)
Ensure that the share is exported.

extend_ share (share, new_size, share_server=None)
Invoked to extend share.

get_managed_ports ()

get_network_allocations_number ()
Returns number of network allocations for creating VIFs.

get_pool (share)
Get the pool name of the share.

setup_server (network_info, metadata=None)
Set up and configures share server with given network parameters.

teardown_server (server_details, security_services=None)
Teardown share server.

update_access (context, share, access_rules, add_rules, delete_rules,

share_server=None)
Update access rules for given share.

update_share_stats (stats_dict)
Communicate with EMCNASClient to get the stats.

Dell EMC Unity driver

The EMC Shared File Systems service driver framework (EMCShareDriver) utilizes the EMC storage
products to provide the shared file systems to OpenStack. The EMC driver is a plug-in based driver
which is designed to use different plug-ins to manage different EMC storage products.

The Unity plug-in manages the Unity system to provide shared filesystems. The EMC driver framework
with the Unity plug-in is referred to as the Unity driver in this document.

This driver performs the operations on Unity through RESTful APIs. Each backend manages one Stor-
age Processor of Unity. Configure multiple Shared File Systems service backends to manage multiple
Unity systems.

Requirements

¢ Unity OE 4.1.x or higher.
* StorOps 1.1.0 or higher is installed on Manila node.
» Following licenses are activated on Unity:

— CIFS/SMB Support

— Network File System (NFS)

276 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

— Thin Provisioning
— Fiber Channel (FC)

— Internet Small Computer System Interface (iSCSI)

Supported shared filesystems and operations

In detail, users are allowed to do following operation with EMC Unity Storage Systems.

Create/delete a NFS share.

Create/delete a CIFS share.

Extend the size of a share.

Shrink the size of a share.

Modify the host access privilege of a NFS share.
Modify the user access privilege of a CIFS share.
Create/Delete snapshot of a share.

Create a new share from snapshot.

Revert a share to a snapshot.
Manage/Unmanage a share server.
Manage/Unmanage a share.

Manage/Unmanage a snapshot.

Supported Network Topologies

Flat

This type is fully supported by Unity share driver, however flat networks are restricted due to the
limited number of tenant networks that can be created from them.

VLAN

We recommend this type of network topology in Manila. In most use cases, VLAN is used to
isolate the different tenants and provide an isolated network for each tenant. To support this
function, an administrator needs to set a slot connected with Unity Ethernet port in Trunk mode
or allow multiple VLANS from the slot.

VXLAN

Unity native VXLAN is still unavailable. However, with the HPB (Hierarchical Port Binding)
in Networking and Shared file system services, it is possible that Unity co-exists with VXLAN
enabled network environment.

3.2. Administrating Manila 277

http://specs.openstack.org/openstack/neutron-specs/specs/kilo/ml2-hierarchical-port-binding.html

Manila Developer Documentation, Release 12.1.3.dev46

Pre-Configurations
On Manila Node

Python library storops is required to run Unity driver. Install it with the pip command. You may
need root privilege to install python libraries.

pip install storops

On Unity System

1. Configure system level NTP server.

Open Unisphere of your Unity system and navigate to:

Select Enable NTP synchronization and add your NTP server(s).

The time on the Unity system and the Active Directory domains used in security services should
be in sync. We recommend using the same NTP server on both the Unity system and Active
Directory domains.

2. Configure system level DNS server.

Open Unisphere of your Unity system and navigate to:

Select Configure DNS server address manually and add your DNS server(s).

Backend configurations

Following configurations need to be configured in /etc/manila/manila.conf for the Unity driver.

* emc_share_backend The plugin name. Set it to unity for the Unity driver.
* emc_nas_server The management IP for Unity.

* unity_server_meta_pool The name of the pool to persist the meta-data of NAS server. This option
is required.

278 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

* unity_share_data_pools Comma separated list specifying the name of the pools to be used by
this backend. Do not set this option if all storage pools on the system can be used. Wild card
character is supported.

Examples:

* unity_ethernet_ports Comma separated list specifying the ethernet ports of Unity system that can
be used for share. Do not set this option if all ethernet ports can be used. Wild card character
is supported. Both the normal ethernet port and link aggregation port can be used by Unity
share driver.

Examples:

* driver_handles_share_servers Unity driver requires this option to be as True or False. Need to
set unity_share_server when the value is False.

* unity_share_server One of NAS server names in Unity, it is used for share creation when the
driver is in DHSS=False mode.

* report_default_filter_function Whether or not report default filter function. Default value is
False. However, this value will be changed to True in a future release to ensure compli-
ance with design expectations in Manila. So we recommend always setting this option in
your deployment to True or False per your desired behavior.

Restart of manila-share service is needed for the configuration changes to take effect.

Supported MTU size

Unity currently only supports 1500 and 9000 as the mtu size, the user can change the above mtu size
from Unity Unisphere:

1. In the Unisphere, go to Settings, Access, and then Ethernet.
2. Double click the ethernet port.
3. Select the MTU size from the drop down list.

The Unity driver will select the port where mtu is equal to the mtu of share network during share server
creation.

3.2. Administrating Manila 279

Manila Developer Documentation, Release 12.1.3.dev46

IPv6 support

IPv6 support for Unity driver is introduced in Queens release. The feature is divided into two parts:
1. The driver is able to manage share or snapshot in the Neutron IPv6 network.

2. The driver is able to connect Unity management interface using its IPv6 address.

Pre-Configurations for IPv6 support

The following parameters need to be configured in /etc/manila/manila.conf for the Unity driver:
network_plugin_ipv6_enabled = True
* network_plugin_ipv6_enabled indicates IPv6 is enabled.

If you want to connect Unity using IPv6 address, you should configure IPv6 address by /net/if/mgmt
uemcli command, mgmtinterfaceSettings RESTful api or the system settings of Unity GUI for Unity
and specify the address in /etc/manila/manila.conf:

emc_nas_server = <IPv6 address>

Supported share creation in mode that driver does not create and destroy share servers
(DHSS=False)

To create a file share in this mode, you need to:
1. Create NAS server with network interface in Unity system.

2. Set driver_handles_share_servers=False and unity_share_server in /etc/manila/manila.
conft:

3. Specify the share type with driver_handles_share_servers = False extra specification:

manila type-create False

4. Create share.

manila create ——name
< ——share-type

Note: Do not specify the share network in share creation command because no share servers will be
created. Driver will use the unity_share_server specified for share creation.

280 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Snapshot support

In the Mitaka and Newton release of OpenStack, Snapshot support is enabled by default for a newly
created share type. Starting with the Ocata release, the snapshot_support extra spec must be set to True
in order to allow snapshots for a share type. If the snapshot_support extra_spec is omitted or if it is set
to False, users would not be able to create snapshots on shares of this share type. The feature is divided
into two parts:

1. The driver is able to create/delete snapshot of share.

2. The driver is able to create share from snapshot.

Pre-Configurations for Snapshot support

The following extra specifications need to be configured with share type.
* snapshot_support = True
* create_share_from_snapshot_support = True

For new share type, these extra specifications can be set directly when creating share type:

manila type-create —--snapshot_support True —--create_share_from_snapshot_
—support True True

Or you can update already existing share type with command:

manila type-key set True
manila type-key set
— True

To snapshot a share and create share from the snapshot

Firstly, you need create a share from share type that has extra specifications (snapshot_support=True,
create_share_from_snapshot_support=True). Then snapshot the share with command:

manila snapshot-create ——name
— ——description

After creating the snapshot from previous step, you can create share from that snapshot. Use command:

manila create nfs 1 —-—-name —-—-metadata,
— snapshot —--description —-—-snapshot-id

3.2. Administrating Manila 281

Manila Developer Documentation, Release 12.1.3.dev46

To manage an existing share server

To manage a share server existing in Unity System, you need to:

1. Create network, subnet, port (ip address of nas server in Unity system) and share network in

OpenStack.

openstack network create —-provider-network-
—type

openstack subnet create —-—network
— ——subnet-range

openstack port create —--network -—fixed-ip,,
[, ip—address

port_name --device-owner manila:share

manila share—-network-create ——name -

—neutron-net-id

2. Manage the share server in OpenStack:

manila share-server-manage

—

Note: ${identifier} is the nas server name in Unity system.

To un-manage a Manila share server

To unmanage a share server existing in OpenStack:

manila share-server-unmanage

To manage an existing share

To manage a share existing in Unity System:
* In DHSS=True mode

Need make sure the related share server is existing in OpenStack, otherwise need to manage share
server first (check the step of Supported Manage share server).

manila manage -
——name —-—driver_options

Note: ${share_server_id} is the id of share server in OpenStack. ${share_type}
should have the property driver_handles_share_servers=True.

¢ In DHSS=False mode

282 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

manila manage -
—-—name ——driver_options

Note: ${share_type} should have the property driver_handles_share_servers=False.

To un-manage a Manila share

To unmanage a share existing in OpenStack:

manila unmanage

To manage an existing share snapshot

To manage a snapshot existing in Unity System, you need make sure the related share instance is existing
in OpenStack, otherwise need to manage share first (check the step of Supported Manage share).

manila snapshot-manage —-name
< ——driver_options

Note: ${provider_location} is the snapshot name in Unity system. ${share_name} is the
share name or id in OpenStack.

To un-manage a Manila share snapshot

To unmanage a snapshot existing in OpenStack:

manila snapshot-unmanage

Supported security services

Unity share driver provides IP based authentication method support for NF'S shares and user based
authentication method for CIFS shares respectively. For CIF S share, Microsoft Active Directory is the
only supported security service.

3.2. Administrating Manila 283

Manila Developer Documentation, Release 12.1.3.dev46

10 Load balance

The Unity driver automatically distributes the file interfaces per storage processor based on the op-
tion unity_ethernet_ports. This balances IO traffic. The recommended configuration for
unity_ethernet_ports specifies balanced ports per storage processor. For example:

Default filter function

Unity does not support the file system creation with size smaller than 3GB, if the size of share user
create is smaller than 3GB, Unity driver will supplement the size to 3GB in Unity.

Unity driver implemented the get_default_filter_function API to report the default filter function, if the
share size is smaller than 3GB, Manila will not schedule the share creation to Unity backend.

Unity driver provides an option report_default_filter_ function to disable or enable the
filter function reporting, the default value is disabled.

Restrictions

The Unity driver has following restrictions.
* EMC Unity does not support the same IP in different VLANS.
* Only IP access type is supported for NFS.

* Only user access type is supported for CIFS.

API Implementations

Following driver features are implemented in the plugin.
* create_share: Create a share and export it based on the protocol used (NFS or CIFS).
 create_share_from_snapshot: Create a share from a snapshot - clone a snapshot.
* delete_share: Delete a share.
¢ extend_share: Extend the maximum size of a share.
e shrink_share: Shrink the minimum size of a share.
* create_snapshot: Create a snapshot for the specified share.
* delete_snapshot: Delete the snapshot of the share.
» update_access: recover, add or delete user/host access to a share.

* allow_access: Allow access (read write/read only) of a user to a CIFS share. Allow access (read
write/read only) of a host to a NFS share.

* deny_access: Remove access (read write/read only) of a user from a CIFS share. Remove access
(read write/read only) of a host from a NFS share.

284 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

* ensure_share: Check whether share exists or not.

* update_share_stats: Retrieve share related statistics from Unity.

» get_network_allocations_number: Returns number of network allocations for creating VIFs.
* setup_server: Set up and configures share server with given network parameters.

* teardown_server: Tear down the share server.

* revert_to_snapshot: Revert a share to a snapshot.

» get_default_filter_function: Report a default filter function.

Driver options
Configuration options specific to this driver:

Table 8: Description of Dell EMC Unity share driver configuration
options

Configuration option | Description

= Default value

[DEFAULT]

unity_ethernet_ppdrtist) Comma separated list of ports that can be used for share server inter-
=None faces. Members of the list can be Unix-style glob expressions.
unity_server_meta($taog) Pool to persist the meta-data of NAS server.

= None

unity_share_data| dast) €omma separated list of pools that can be used to persist share data.
= None

unity_share_serve©One of NAS server names in Unity, it is used for share creation when the
=None driver is in DHSS=False mode..

Generic approach for share provisioning

The Shared File Systems service can be configured to use Nova VMs and Cinder volumes. There
are two modules that handle them in manila: 1) service_instance module creates VMs in Nova with
predefined image called service image. This module can be used by any backend driver for provisioning
of service VMs to be able to separate share resources among tenants. 2) generic module operates with
Cinder volumes and VMs created by service_instance module, then creates shared filesystems based on
volumes attached to VMs.

Network configurations

Each backend driver can handle networking in its own way, see: https://wiki.openstack.org/wiki/Manila/
Networking

One of two possible configurations can be chosen for share provisioning using service_instance
module:

* Service VM has one net interface from net that is connected to public router. For successful
creation of share, user network should be connected to public router too.

3.2. Administrating Manila 285

https://wiki.openstack.org/wiki/Manila/Networking
https://wiki.openstack.org/wiki/Manila/Networking

Manila Developer Documentation, Release 12.1.3.dev46

¢ Service VM has two net interfaces, first one connected to service network, second one connected

directly to users network.

Requirements for service image

Linux based distro

NFS server

Samba server >=3.2.0, that can be configured by data stored in registry
SSH server

Two net interfaces configured to DHCP (see network approaches)
exportfs and net conf libraries used for share actions

Following files will be used, so if their paths differ one needs to create at least symlinks for
them:

— /etc/exports (permanent file with NFS exports)
— /var/lib/nfs/etab (temporary file with NFS exports used by exportfs)
— /etc/fstab (permanent file with mounted filesystems)

— /etc/mtab (temporary file with mounted filesystems used by mount)

Supported shared filesystems

* NFS (access by IP)
* CIFS (access by IP)

Known restrictions

One of Novas configurations only allows 26 shares per server. This limit comes from the max-
imum number of virtual PCI interfaces that are used for block device attaching. There are 28
virtual PCI interfaces, in this configuration, two of them are used for server needs and other 26
are used for attaching block devices that are used for shares.

Juno version works only with Neutron. Each share should be created with neutron-net and
neutron-subnet IDs provided via share-network entity.

Juno version handles security group, flavor, image, keypair for Nova VM and also creates service
networks, but does not use availability zones for Nova VMs and volume types for Cinder block
devices.

Juno version does not use security services data provided with share-network. These data will be
just ignored.

Liberty version adds a share extend capability. Share access will be briefly interrupted during an
extend operation.

Liberty version adds a share shrink capability, but this capability is not effective because generic
driver shrinks only filesystem size and doesnt shrink the size of Cinder volume.

286

Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

* Modifying network-related configuration options, such as service_network_cidr or
service_network_division_mask, after manila has already created some shares using
those options is not supported.

Using Windows instances

While the generic driver only supports Linux instances, you may use the Windows SMB driver when
Windows VMs are preferred.

For more details, please check out the following page: Windows SMB driver.

The manila.share.drivers.generic Module

Generic Driver for shares.

class GenericShareDriver (*args, **kwargs)
Bases: manila.share.driver.ExecuteMixin, manila.share.driver.
ShareDriver

Executes commands relating to Shares.

check_for_setup_error ()
Returns an error if prerequisites arent met.

create_share (context, *args, **kwargs)
Is called to create share.

create_share_from_snapshot (context, *args, **kwargs)
Is called to create share from snapshot.

Creating a share from snapshot can take longer than a simple clone operation if data copy is
required from one host to another. For this reason driver will be able complete this creation
asynchronously, by providing a creating_from_snapshot status in the model update.

When answering asynchronously, drivers must implement the call get_share_status in order
to provide updates for shares with creating_from_snapshot status.

It is expected that the driver returns a model update to the share manager that contains: share
status and a list of export_locations. A list of export_locations is mandatory only for share
in available status. The current supported status are available and creating_from_snapshot.

Parameters
* context Current context
* share Share instance model with share data.
* snapshot Snapshot instance model .
* share_server Share server model or None.

* parent_share Share model from parent snapshot with share data and
share server model.

Returns

a dictionary of updates containing current share status and its export_location
(if available).

3.2. Administrating Manila 287

Manila Developer Documentation, Release 12.1.3.dev46

Example:

Raises ShareBackendException. A ShareBackendException in this method will
set the instance to error and the operation will end.

create_snapshot (context, snapshot, share_server=None)
Creates a snapshot.

delete_share (context, share, share_server=None)
Deletes share.

delete_snapshot (context, snapshot, share_server=None)
Deletes a snapshot.

do_setup (context)
Any initialization the generic driver does while starting.

ensure_share (context, *args, **kwargs)
Invoked to ensure that share is exported.

Driver can use this method to update the list of export locations of the share if it changes. To
do that, you should return list with export locations.

Returns None or list with export locations

extend_share (context, *args, **kwargs)
Extends size of existing share.

Parameters
* share Share model
* new_size New size of share (new_size > share[size])
* share_server Optional Share server model

get_network_allocations_number ()
Get number of network interfaces to be created.

manage_existing (share, driver_options)
Manage existing share to manila.

Generic driver accepts only one driver_option volume_id. If an administrator provides this
option, then appropriate Cinder volume will be managed by Manila as well.

Parameters

* share share data

* driver_options Empty dict or dict with volume_id option.
Returns dict with share size, example: {size: 1}

manage_existing_ snapshot (snapshot, driver_options)
Manage existing share snapshot with manila.

Parameters

288 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

* snapshot Snapshot data
* driver_options Not used by the Generic driver currently
Returns dict with share snapshot size, example: {size: 1}

shrink_share (context, *args, **kwargs)
Shrinks size of existing share.

If consumed space on share larger than new_size driver should raise ShareShrinkingPossi-
bleDatalLoss exception: raise ShareShrinkingPossibleDatalLoss(share_id=share[id])

Parameters
* share Share model
* new_size New size of share (new_size < share[size])
* share_server Optional Share server model
:raises ShareShrinkingPossibleDatal.oss, NotImplementedError

unmanage_snapshot (snapshot)
Unmanage share snapshot with manila.

update_access (context, *args, **kwargs)
Update access rules for given share.

access_rules contains all access_rules that need to be on the share. If the driver can
make bulk access rule updates, it can safely ignore the add_rules and delete_rules
parameters.

If the driver cannot make bulk access rule changes, it can rely on new rules to be present in
add_rules and rules that need to be removed to be present in delete_rules.

When arule in delete_rules was never applied, drivers must not raise an exception, or
attempt to set the rule to error state.

add_rules and delete_rules can be empty lists, in this situation, drivers should en-
sure that the rules present in access_rules are the same as those on the back end. One
scenario where this situation is forced is when the access_level is changed for all existing
rules (share migration and for readable replicas).

Drivers must be mindful of this call for share replicas. When update_access is called on one
of the replicas, the call is likely propagated to all replicas belonging to the share, especially
when individual rules are added or removed. If a particular access rule does not make sense
to the driver in the context of a given replica, the driver should be careful to report a correct
behavior, and take meaningful action. For example, if R/W access is requested on a replica
that is part of a readable type replication; R/O access may be added by the driver instead
of R/W. Note that raising an exception will result in the access_rules_status on the replica,
and the share itself being out_of _sync. Drivers can sync on the valid access rules that are
provided on the create_replica and promote_replica calls.

Parameters
e context Current context
e share Share model with share data.

* access_rules A list of access rules for given share

3.2. Administrating Manila 289

Manila Developer Documentation, Release 12.1.3.dev46

* add_rules Empty List or List of access rules which should be added.
access_rules already contains these rules.

* delete_rules Empty List or List of access rules which should be re-
moved. access_rules doesnt contain these rules.

e share server None or Share server model
Returns

None, or a dictionary of updates in the format:

09960614-8574-4e03-89cf-7cf267b0bd08: {

access_key: alice31493e5441b8171d2310d80e37e, state: error,
),
28f6eabb-4342-486a-a7f4-45688f0c0295: {

access_key: bob0078aa042d5a7325480£fd13228b, state: active,

b,
}

The top level keys are access_id fields of the access rules that need to be updated.
access_key ‘s are credentials (str) of the entities granted
access. Any rule in the "“access_rules parameter can be updated.

Important: Raising an exception in this method will force all rules in applying and denying
states to error.

An access rule can be set to error state, either explicitly via this return parameter or because
of an exception raised in this method. Such an access rule will no longer be sent to the driver
on subsequent access rule updates. When users deny that rule however, the driver will be
asked to deny access to the client/s represented by the rule. We expect that a rule that was
error-ed at the driver should never exist on the back end. So, do not fail the deletion request.

Also, it is possible that the driver may receive a request to add a rule that is already present
on the back end. This can happen if the share manager service goes down while the driver is
committing access rule changes. Since we cannot determine if the rule was applied success-
fully by the driver before the disruption, we will treat all applying transitional rules as new
rules and repeat the request.

ensure_server (f)

290

Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

The manila.share.drivers.service_instance Module

Module for managing nova instances for share drivers.

class BaseNetworkhelper (service_instance_manager)
Bases: object

abstract property NAME
Returns code name of network helper.

abstract get_network_name (network_info)
Returns name of network for service instance.

abstract setup_connectivity with_service_instances ()
Sets up connectivity between Manila host and service instances.

abstract setup_network (network_info)
Sets up network for service instance.

abstract teardown_ network (server_details)
Teardowns network resources provided for service instance.

class NeutronNetworkHelper (service_instance_manager)
Bases: manila.share.drivers.service_instance.BaseNetworkhelper

property NAME
Returns code name of network helper.

property admin_project_id

get_network_name (network_info)
Returns name of network for service instance.

property neutron_api
property service_network_id

setup_connectivity_ with_service_instances ()
Sets up connectivity with service instances.

Creates host port in service network and/or admin network, creating and setting up required
network devices.

setup_network (network_info)
Sets up network for service instance.

teardown_network (server_details)
Teardowns network resources provided for service instance.

class ServicelInstanceManager (driver_config=None)
Bases: object

Manages nova instances for various share drivers.

This class provides following external methods:
1. set_up_service_instance: creates instance and sets up share infrastructure.
2. ensure_service_instance: ensure service instance is available.

3. delete_service_instance: removes service instance and network infrastructure.

3.2. Administrating Manila 291

Manila Developer Documentation, Release 12.1.3.dev46

delete_service_ instance (context, server_details)
Removes share infrastructure.

Deletes service vm and subnet, associated to share network.

ensure_service_instance (context, server)
Ensures that server exists and active.

get_common_server ()

get_config option (key)
Returns value of config option.

Parameters key key of config option.

Returns str value of configs option. first priority is drivers config, second priority
is global config.

property network_helper
reboot_server (server, soft_reboot=False)

set_up_service_instance (context, network_info)
Finds or creates and sets up service vm.

Parameters

* context defines context, that should be used

* network_info network info for getting allocations
Returns dict with service instance details
Raises exception.ServicelnstanceException

wait_for_ instance_ to_be_ active (instance_id, timeout)

GlusterFS driver

GlusterFS driver uses GlusterFS, an open source distributed file system, as the storage backend for
serving file shares to manila clients.

Supported shared filesystems

* NFS (access by 1P)

Supported Operations

* Create share

* Delete share

¢ Allow share access (rw)
* Deny share access

* With volume layout:

292 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

— Create snapshot
— Delete snapshot

— Create share from snapshot

Requirements

* Install glusterfs-server package, version >= 3.5.x, on the storage backend.

Install NFS-Ganesha, version >=2.1, if using NFS-Ganesha as the NFS server for the GlusterFS
backend.

* Install glusterfs and glusterfs-fuse package, version >=3.5.x, on the manila host.

Establish network connection between the manila host and the storage backend.

Manila driver configuration setting

The following parameters in the manilas configuration file need to be set:
* share_driver = manila.share.drivers.glusterfs.GlusterfsShareDriver
The following configuration parameters are optional:

o glusterfs_nfs_server_type = <NFS server type used by the GlusterFS backend, Gluster or
Ganesha. Gluster is the default type>

* glusterfs_share_layout = <share layout used>; cf. Layouts
* glusterfs_path_to_private_key = <path to manila hosts private key file>
* glusterfs_server_password = <password of remote GlusterFS server machine>

If Ganesha NFS server is used (glusterfs_nfs_server_type = Ganesha), then by default
the Ganesha server is supposed to run on the manila host and is managed by local commands. If its de-
ployed somewhere else, then its managed via ssh, which can be configured by the following parameters:

* glusterfs_ganesha_server_ip
* glusterfs_ganesha_server_username
* glusterfs_ganesha_server_password

In lack of glusterfs_ganesha_server_password ssh access will fall back to key based au-
thentication, using the key specified by glusterfs_path_to_private_key, or, inlack of that, a
key at one of the OpenSSH-style default key locations (~/.ssh/id_{r,d,ecd}sa).

Layouts have also their set of parameters, see Layouts about that.

3.2. Administrating Manila 293

Manila Developer Documentation, Release 12.1.3.dev46

Layouts

New in Liberty, multiple share layouts can be used with glusterfs driver. A layout is a strategy of
allocating storage from GlusterFS backends for shares. Currently there are two layouts implemented:

* directory mapped layout (or directory layout, or dir layout for short): a share is backed by top-
level subdirectories of a given GlusterFS volume.

Directory mapped layout is the default and backward compatible with Kilo. The following set-
ting explicitly specifies its usage: glusterfs_share_layout = layout_directory.
GlusterfsDirectoryMappedLayout.

Options:

— glusterfs_target: address of the volume that hosts the directories. If its of the format <glus-
tervolserver>:/<glustervolid>, then the manila host is expected to be part of the Glus-
terES cluster of the volume and GlusterFS management happens through locally calling the
gluster utility. If its of the format <username>@ <glustervolserver>:/<glustervolid>,
then we ssh to <username> @ <glustervolserver> to execute gluster (<username> is
supposed to have administrative privileges on <glustervolserver>).

— glusterfs_mount_point_base = <base path of GlusterFS volume mounted on manila
host> (optional; defaults to $state_path/mnt, where $state_path defaults to /var/
lib/manila)

Limitations:
— directory layout does not support snapshot operations.

* volume mapped layout (or volume layout, or vol layout for short): a share is backed by a whole
GlusterFS volume.

Volume mapped layout is new in Liberty. It <can be cho-
sen by setting glusterfs_share_layout = layout_volume.
GlusterfsVolumeMappedLayout.

Options (required):
— glusterfs_servers
— glusterfs_volume_pattern

Volume mapped layout is implemented as a common backend of the glusterfs and glusterfs-native
drivers; see the description of these options in GlusterF'S Native driver: Manila driver configura-
tion setting.

Gluster NFS with volume mapped layout

A special configuration choice is

that is, Gluster NFS used to export whole volumes.

All other GlusterFS backend configurations (including GlusterFS set up with glusterfs-native) require the
nfs.export-volumes = off GlusterFS setting. Gluster NFS with volume layout requires nfs .
export-volumes = on.nfs.export-volumes is a cluster-wide setting, so a given GlusterFS

294 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

cluster cannot host a share backend with Gluster NFS + volume layout and other share backend config-
urations at the same time.

There is another caveat with nfs.export—-volumes: setting it to on without enough care is a se-
curity risk, as the default access control for the volume exports is allow all. For this reason, while the
nfs.export-volumes = off setting is automatically set by manila for all other share backend
configurations, nfs.export-volumes = on is not set by manila in case of a Gluster NFS with
volume layout setup. Its left to the GlusterFS admin to make this setting in conjunction with the associ-
ated safeguards (that is, for those volumes of the cluster which are not used by manila, access restrictions
have to be manually configured through the nfs.rpc-auth-{allow, reject} options).

Known Restrictions

* The driver does not support network segmented multi-tenancy model, but instead works over a
flat network, where the tenants share a network.

* If NFS Ganesha is the NFS server used by the GlusterFS backend, then the shares can be accessed
by NFSv3 and v4 protocols. However, if Gluster NFS is used by the GlusterFS backend, then the
shares can only be accessed by NFSv3 protocol.

* All manila shares, which map to subdirectories within a GlusterFS volume, are currently created
within a single GlusterFS volume of a GlusterFS storage pool.

* The driver does not provide read-only access level for shares.

* Assume that share S is exported through Gluster NFS, and tenant machine T has mounted S. If
at this point access of T to S is revoked through access-deny, the pre-existing mount will be still
usable and T will still be able to access the data in S as long as that mount is in place. (This
violates the principle Access deny should always result in immediate loss of access to the share,
see http://lists.openstack.org/pipermail/openstack-dev/2015-July/069109.html.)

The manila.share.drivers.glusterfs Module

Flat network GlusterFS Driver.

Manila shares are subdirectories within a GlusterFS volume. The backend, a GlusterFS cluster, uses
one of the two NFS servers, Gluster-NFS or NFS-Ganesha, based on a configuration option, to mediate
access to the shares. NFS-Ganesha server supports NFSv3 and v4 protocols, while Gluster-NFS server
supports only NFSv3 protocol.

TODO(rraja): support SMB protocol.

class GaneshaNFSHelper (execute, config_object, **kwargs)
Bases: manila.share.drivers.ganesha.GaneshaNASHelper

get_export (share)

init_helper ()
Initializes protocol-specific NAS drivers.

shared_data = {}

class GlusterNFSHelper (execute, config_object, **kwargs)
Bases: manila.share.drivers.ganesha.NASHelperBase

Manage shares with Gluster-NFES server.

3.2. Administrating Manila 295

http://lists.openstack.org/pipermail/openstack-dev/2015-July/069109.html

Manila Developer Documentation, Release 12.1.3.dev46

get_export (share)
supported_access_levels = ('rw',)
supported_access_types = ('ip',)

update_access (base_path, share, add_rules, delete_rules, recovery=False)
Update access rules.

class GlusterNFSVolHelper (execute, config_object, **kwargs)
Bases: manila.share.drivers.glusterfs.GlusterNFSHelper

Manage shares with Gluster-NFS server, volume mapped variant.

update_access (base_path, share, add_rules, delete_rules, recovery=False)
Update access rules.

class GlusterfsShareDriver (*args, **kwargs)
Bases: manila.share.driver.ExecuteMixin, manila.share.
driver.GaneshaMixin, manila.share.drivers.glusterfs.layout.
GlusterfsShareDriverBase

Execute commands relating to Shares.
GLUSTERFS_VERSION_ MIN = (3, 5)

check_for_setup_error ()
Check for setup error.

do_setup (context)
Any initialization the share driver does while starting.

get_network_allocations_number ()
Returns number of network allocations for creating VIFs.

Drivers that use Nova for share servers should return zero (0) here same as Generic driver
does. Because Nova will handle network resources allocation. Drivers that handle network-
ing itself should calculate it according to their own requirements. It can have 1+ network
interfaces.

property supported_access_levels

property supported_access_types

supported_layouts = ('layout_directory.GlusterfsDirectoryMappedLayout',

supported_protocols = ('NFS',)

GlusterFS Native driver

GlusterFS Native driver uses GlusterFS, an open source distributed file system, as the storage backend
for serving file shares to manila clients.

A manila share is a GlusterFS volume. This driver uses flat-network (share-server-less) model. Instances
directly talk with the GlusterFS backend storage pool. The instances use glusterfs protocol to mount the
GlusterFS shares. Access to each share is allowed via TLS Certificates. Only the instance which has the
TLS trust established with the GlusterFS backend can mount and hence use the share. Currently only
rw access is supported.

296 Chapter 3. For operators

'lay

Manila Developer Documentation, Release 12.1.3.dev46

Network Approach

L3 connectivity between the storage backend and the host running the manila share service should exist.

Supported shared filesystems

* GlusterFS (share protocol: glusterfs, access by TLS certificates (cert access type))

Multi-tenancy model

The driver does not support network segmented multi-tenancy model. Instead multi-tenancy is supported
using tenant specific TLS certificates.

Supported Operations

* Create share

* Delete share

* Allow share access (rw)
* Deny share access

* Create snapshot

* Delete snapshot

* Create share from snapshot

Requirements

* Install glusterfs-server package, version >= 3.6.x, on the storage backend.
* Install glusterfs and glusterfs-fuse package, version >=3.6.X, on the manila host.

* Establish network connection between the manila host and the storage backend.

Manila driver configuration setting

The following parameters in manilas configuration file need to be set:
* share_driver = manila.share.drivers.glusterfs.glusterfs_native.GlusterfsNativeShareDriver

o glusterfs_servers = List of GlusterFS servers which provide volumes that can be used to
create shares. The servers are expected to be of distinct Gluster -clusters
(ie. should not be gluster peers). Each server should be of the form
[<remoteuser>@]<glustervolserver>.

The optional <remoteuser>@ part of the server URI indicates SSH access for cluster
management (see related optional parameters below). If it is not given, direct command line
management is performed (ie. manila host is assumed to be part of the GlusterFS cluster the
server belongs to).

3.2. Administrating Manila 297

Manila Developer Documentation, Release 12.1.3.dev46

o glusterfs_volume_pattern = Regular expression template used to filter GlusterFS volumes for

share creation. The regex template can contain the #{size} parameter which matches a num-
ber (sequence of digits) and the value shall be interpreted as size of the volume in GB. Ex-
amples: manila-share-volume-\d+$, manila-share-volume-#{size}G-\
d+$; with matching volume names, respectively: manila-share-volume-12, manila-share-
volume-3G-13. In latter example, the number that matches # { size}, thatis, 3, is an indi-
cation that the size of volume is 3G.

The following configuration parameters are optional:

o glusterfs_mount_point_base = <base path of GlusterFS volume mounted on manila host>

* glusterfs_path_to_private_key = <path to manila hosts private key file>

* glusterfs_server_password = <password of remote GlusterFS server machine>

Host and backend configuration

* SSL/TLS should be enabled on the I/O path for GlusterFS servers and volumes involved (ie.

ones specified in glusterfs_servers), as described in https://docs.gluster.org/en/latest/
Administrator%20Guide/SSL/. (Enabling SSL/TLS for the management path is also possible but
not recommended currently.)

The manila host should be also configured for GlusterFS SSL/TLS (e.
Jetc/ssl/glusterfs.{pem key,ca} files has to be deployed as the above document specifies).

There is a further requirement for the CA-s used: the set of CA-s involved should be consensual,
ie. Jetc/ssl/glusterfs.ca should be identical across all the servers and the manila host.

There is a further requirement for the common names (CN-s) of the certificates used: the certifi-
cates of the servers should have a common name starting with glusterfs-server, and the certificate
of the host should have common name starting with manila-host.

To support snapshots, bricks that consist the GlusterFS volumes used by manila should be thinly
provisioned LVM ones (cf. https://gluster.readthedocs.org/en/latest/ Administrator%20Guide/
Managing%?20Snapshots/).

Known Restrictions

* GlusterFS volumes are not created on demand. A pre-existing set of GlusterFS volumes should

be supplied by the GlusterFS cluster(s), conforming to the naming convention encoded by
glusterfs_volume_pattern. However, the GlusterFS endpoint is allowed to extend
this set any time (so manila and GlusterFS endpoints are expected to communicate volume
supply/demand out-of-band). glusterfs_volume_pattern can include a size hint (with
#{size} syntax), which, if present, requires the GlusterFS end to indicate the size of the shares
in GB in the name. (On share creation, manila picks volumes at least as big as the requested one.)

Certificate setup (aka trust setup) between instance and storage backend is out of band of manila.

For manila to use GlusterFS volumes, the name of the trashcan directory in GlusterFS volumes
must not be changed from the default.

298

Chapter 3. For operators

https://docs.gluster.org/en/latest/Administrator%20Guide/SSL/
https://docs.gluster.org/en/latest/Administrator%20Guide/SSL/
https://gluster.readthedocs.org/en/latest/Administrator%20Guide/Managing%20Snapshots/
https://gluster.readthedocs.org/en/latest/Administrator%20Guide/Managing%20Snapshots/

Manila Developer Documentation, Release 12.1.3.dev46

The manila.share.drivers.glusterfs.glusterfs_native.
GlusterfsNativeShareDriver Module

GlusterFS native protocol (glusterfs) driver for shares.

Manila share is a GlusterFS volume. Unlike the generic driver, this does not use service VM approach.
Instances directly talk with the GlusterFS backend storage pool. Instance use the glusterfs protocol to
mount the GlusterFS share. Access to the share is allowed via SSL Certificates. Only the instance which
has the SSL trust established with the GlusterFS backend can mount and hence use the share.

Supports working with multiple glusterfs volumes.

class GlusterfsNativeShareDriver (*args, **kwargs)
Bases: manila.share.driver.ExecuteMixin, manila.share.drivers.
glusterfs.layout.GlusterfsShareDriverBase

GlusterFS native protocol (glusterfs) share driver.
Executes commands relating to Shares. Supports working with multiple glusterfs volumes.
API version history:

1.0 - Initial version. 1.1 - Support for working with multiple gluster volumes.
GLUSTERFS_VERSION_ MIN = (3, 6)

get_network_allocations_number ()
Returns number of network allocations for creating VIFs.

Drivers that use Nova for share servers should return zero (0) here same as Generic driver
does. Because Nova will handle network resources allocation. Drivers that handle network-
ing itself should calculate it according to their own requirements. It can have 1+ network
interfaces.

supported_layouts = ('layout_volume.GlusterfsVolumeMappedLayout',)

supported_protocols = ('GLUSTERFS',)

CephFS driver

The CephFS driver enables manila to export shared filesystems backed by Cephs File System (CephFS)
using either the Ceph network protocol or NFS protocol. Guests require a native Ceph client or an NFS
client in order to mount the filesystem.

When guests access CephFS using the native Ceph protocol, access is controlled via Cephs cephx au-
thentication system. If a user requests share access for an ID, Ceph creates a corresponding Ceph auth
ID and a secret key if they do not already exist, and authorizes the ID to access the share. The client can
then mount the share using the ID and the secret key. To learn more about configuring Ceph clients to
access the shares created using this driver, please see the Ceph documentation

And when guests access CephFS through NFS, an NFS-Ganesha server mediates access to CephFS. The
driver enables access control by managing the NFS-Ganesha servers exports.

3.2. Administrating Manila 299

https://docs.ceph.com/docs/nautilus/cephfs/

Manila Developer Documentation, Release 12.1.3.dev46

Supported Operations

The following operations are supported with CephFS backend:
* Create/delete share
* Allow/deny access to share
— Only cephx access type is supported for CephFS native protocol.
— Only ip access type is supported for NFS protocol.
— read-only and read-write access levels are supported.

¢ Extend/shrink share

Create/delete snapshot
* Create/delete share groups

* Create/delete share group snapshots

Prerequisites

Important: A manila share backed by CephFS is only as good as the underlying filesystem. Take care
when configuring your Ceph cluster, and consult the latest guidance on the use of CephFS in the Ceph
documentation.

Ceph testing matrix

As Ceph and Manila continue to grow, it is essential to test and support combinations of releases sup-
ported by both projects. However, there is little community bandwidth to cover all of them. For simplic-
ity sake, we are focused on testing (and therefore supporting) the current Ceph active releases. Check
out the list of Ceph active releases here.

Below is the current state of testing for Ceph releases with this project. Adjacent components such
as devstack-plugin-ceph and tripleo are added to the table below. Contributors to those projects can
determine what versions of ceph are tested and supported with manila by those components; however,
their state is presented here for ease of access.

Important: From the Victoria cycle, the Manila CephFS driver is not tested or supported with Ceph
clusters older than Nautilus. Future releases of Manila may be incompatible with Nautilus too! We
suggest always running the latest version of Manila with the latest release of Ceph.

300 Chapter 3. For operators

https://docs.ceph.com/docs/nautilus/cephfs/
https://docs.ceph.com/docs/nautilus/cephfs/
https://docs.ceph.com/en/latest/releases/general/
https://opendev.org/openstack/devstack-plugin-ceph
https://opendev.org/openstack/tripleo-heat-templates

Manila Developer Documentation, Release 12.1.3.dev46

OpenStack release | manila devstack-plugin-ceph | tripleo
Queens Luminous | Luminous Luminous
Rocky Luminous | Luminous Luminous
Stein Nautilus Luminous, Nautilus Nautilus
Train Nautilus Luminous, Nautilus Nautilus
Ussuri Nautilus Luminous, Nautilus Nautilus
Victoria Nautilus Nautilus, Octopus Nautilus
Wallaby Octopus Nautilus, Octopus Pacific

Additionally, it is expected that the version of the Ceph client available to manila is aligned with the

Ceph server version. Mixing server and client versions is strongly unadvised.

In case of using the NFS Ganesha driver, its also a good practice to use the versions that align with the

Ceph version of choice.

Important:
release. See, Ceph releases

Its recommended to install the latest stable version of Ceph Nautilus/Octopus/Pacific

Prior to upgrading to Wallaby, please ensure that youre running at least the following versions of Ceph:

Release | Minimum version
Nautilus | 14.2.20

Octopus | 15.2.11

Pacific 16.2.1

Common Prerequisites

* A Ceph cluster with a filesystem configured (See Create ceph filesystem on how to create a filesys-

tem.)

* python3-rados and python3—-ceph—-argparse packages installed in the servers running

the manila-share service.

» Network connectivity between your Ceph clusters public network and the servers running the

manila-share service.

For CephFS native shares

* Ceph client installed in the guest

* Network connectivity between your Ceph clusters public network and guests. See Security with

CephF'S native share backend.

3.2. Administrating Manila

301

https://docs.ceph.com/en/latest/releases/index.html
https://docs.ceph.com/docs/nautilus/cephfs/createfs/

Manila Developer Documentation, Release 12.1.3.dev46

For CephFS NFS shares

* 3.0 or later versions of NFS-Ganesha.
* NFS client installed in the guest.
» Network connectivity between your Ceph clusters public network and NFS-Ganesha server.

» Network connectivity between your NFS-Ganesha server and the manila guest.

Authorizing the driver to communicate with Ceph

Capabilities required for the Ceph manila identity have changed from the Wallaby release. The Ceph
manila identity configured no longer needs any MDS capability. The MON and OSD capabilities can be
reduced as well. However new MGR capabilities are now required. If not accorded, the driver cannot
communicate to the Ceph Cluster.

Important: The driver in the Wallaby (or later) release requires a Ceph identity with a different set of
Ceph capabilities when compared to the driver in a pre-Wallaby release.

When upgrading to Wallaby youll also have to update the capabilities of the Ceph identity used by the
driver (refer to Ceph user capabilities docs) E.g. a native driver that already uses client.manila Ceph
identity, issue command ceph auth caps client.manila mon allow r mgr allow rw

For the CephFS Native driver, the auth ID should be set as follows:

For the CephFS NFS driver, we use a specific pool to store exports (configurable with the config option
ganesha_rados_store_pool_name). We also need to specify osd caps for it. So, the auth ID should be set
as follows:

manila.keyring, along with your ceph. conf file, will then need to be placed on the server run-
ning the manila-share service.

Important: To communicate with the Ceph backend, a CephFS driver instance (represented as a
backend driver section in manila.conf) requires its own Ceph auth ID that is not used by other CephFS
driver instances running in the same controller node.

In the server running the manila-share service, you can place the ceph.conf andmanila.keyring
files in the /etc/ceph directory. Set the same owner for the manila-share process and the manila.
keyring file. Add the following section to the ceph . conf file.

302 Chapter 3. For operators

https://docs.ceph.com/en/octopus/rados/operations/user-management/#modify-user-capabilities

Manila Developer Documentation, Release 12.1.3.dev46

It is advisable to modify the Ceph clients admin socket file and log file locations so that they are co-
located with manila servicess pid files and log files respectively.

Enabling snapshot support in Ceph backend

CephFS Snapshots were experimental prior to the Nautilus release of Ceph. There may be some limita-
tions on snapshots based on the Ceph version you use.

From Ceph Nautilus, all new filesystems created on Ceph have snapshots enabled by default. If youve
upgraded your ceph cluster and want to enable snapshots on a pre-existing filesystem, you can do so:

Configuring CephFS backend in manila.conf
Configure CephFS native share backend in manila.conf

Add CephFS to enabled_share_protocols (enforced at manila api layer). In this example we
leave NFS and CIFS enabled, although you can remove these if you will only use a CephFS backend:

Create a section like this to define a CephFS native backend:

Set driver-handles-share-servers to False as the driver does not manage the lifecycle
of share-servers. For the driver backend to expose shares via the native Ceph protocol, set
cephfs_protocol_helper_ type to CEPHFS.

Then edit enabled_share_backends to point to the drivers backend section using the section
name. In this example we are also including another backend (genericl), you would include whatever
other backends you have configured.

Finally, edit cephfs_filesystem_ name with the name of the Ceph filesystem (also referred to as
a CephFS volume) you want to use. If you have more than one Ceph filesystem in the cluster, you need
to set this option.

3.2. Administrating Manila 303

https://docs.ceph.com/docs/nautilus/cephfs/experimental-features/#snapshots
https://docs.ceph.com/docs/nautilus/cephfs/experimental-features/#snapshots

Manila Developer Documentation, Release 12.1.3.dev46

Configure CephFS NFS share backend in manila.conf

Note:

Prior to configuring the Manila CephFS driver to use NFS, you must have installed and configured

NFS-Ganesha. For guidance on configuration, refer to the NFS-Ganesha setup guide.

Add NFS to enabled_share_protocols if its not already there:

Create a section to define a CephFS NFS share backend:

The following options are set in the driver backend section above:

driver-handles-share-servers to False as the driver does not manage the lifecycle
of share-servers.

cephfs_protocol_helper_type to NFS to allow NFS protocol access to the CephFS
backed shares.

ceph_auth_idtothe ceph auth ID created in Authorizing the driver to communicate with Ceph.

cephfs_ganesha_server_is_remote to False if the NFS-ganesha server is co-
located with the manila-share service. If the NFS-Ganesha server is remote, then set
the options to True, and set other options such as cephfs_ganesha_server_ip,
cephfs_ganesha_server_username, and cephfs_ganesha_server_password
(or cephfs_ganesha_path_to_private_key) to allow the driver to manage the NFS-
Ganesha export entries over SSH.

cephfs_ganesha_server_ip to the ganesha server IP address. It is recommended to set
this option even if the ganesha server is co-located with the manila-share service.

ganesha_rados_store_enable to True or False. Setting this option to True allows NFS
Ganesha to store exports and its export counter in Ceph RADOS objects. We recommend setting
this to True and using a RADOS object since it is useful for highly available NFS-Ganesha deploy-
ments to store their configuration efficiently in an already available distributed storage system.

ganesha_rados_store_pool_name to the name of the RADOS pool you
have created for use with NFS-Ganesha. Set this option only if also setting the

304

Chapter 3. For operators

../contributor/ganesha.html#nfs-ganesha-configuration

Manila Developer Documentation, Release 12.1.3.dev46

ganesha_rados_store_enable option to True. If you want to use one of the back-
end CephFSs RADOS pools, then using CephFSs data pool is preferred over using its metadata
pool.

Edit enabled_share_backends to point to the drivers backend section using the section name,
cephfsnfsl.

Finally, edit cephfs_filesystem_ name with the name of the Ceph filesystem (also referred to as
a CephFS volume) you want to use. If you have more than one Ceph filesystem in the cluster, you need
to set this option.

Space considerations

The CephFS driver reports total and free capacity available across the Ceph cluster to manila to allow
provisioning. All CephFS shares are thinly provisioned, i.e., empty shares do not consume any signif-
icant space on the cluster. The CephFS driver does not allow controlling oversubscription via manila.
So, as long as there is free space, provisioning will continue, and eventually this may cause your Ceph
cluster to be over provisioned and you may run out of space if shares are being filled to capacity. It is
advised that you use Cephs monitoring tools to monitor space usage and add more storage when required
in order to honor space requirements for provisioned manila shares. You may use the driver configu-
ration option reserved_share_percentage to prevent manila from filling up your Ceph cluster,
and allow existing shares to grow.

Creating shares
Create CephFS native share

The default share type may have driver_handles_share_servers set to True. Configure a
share type suitable for CephFS native share:

Then create a share,

Note the export location of the share:

The export location of the share contains the Ceph monitor (mon) addresses and ports, and the path to
be mounted. It is of the form, {mon ip addr:port} [, {mon ip addr:port}]:{path to
be mounted}

3.2. Administrating Manila 305

Manila Developer Documentation, Release 12.1.3.dev46

Create CephFS NFS share

Configure a share type suitable for CephFS NFS share:

Then create a share:

Note the export location of the share:

The export location of the share contains the IP address of the NFS-Ganesha server and the path to be
mounted. It is of the form, {NFS-Ganesha server address}:{path to be mounted}

Allowing access to shares
Allow access to CephFS native share

Allow Ceph auth ID alice access to the share using cephx access type.

Note the access status, and the access/secret key of alice.

Allow access to CephFS NFS share

Allow a guest access to the share using ip access type.

Mounting CephFS shares
Mounting CephFS native share using FUSE client

Using the secret key of the authorized ID alice create a keyring file, alice.keyring like:

Using the mon IP addresses from the shares export location, create a configuration file, ceph.conf
like:

306 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Finally, mount the filesystem, substituting the filenames of the keyring and configuration files you just
created, and substituting the path to be mounted from the shares export location:

Mounting CephFS native share using Kernel client

If you have the ceph—common package installed in the client host, you can use the kernel client to
mount CephFS shares.

Important: If you choose to use the kernel client rather than the FUSE client the share size limits set
in manila may not be obeyed in versions of kernel older than 4.17 and Ceph versions older than mimic.
See the quota limitations documentation to understand CephFS quotas.

The mount command is as follows:

With our earlier examples, this would be:

3.2. Administrating Manila 307

https://docs.ceph.com/docs/nautilus/cephfs/quota/#limitations

Manila Developer Documentation, Release 12.1.3.dev46

Mount CephFS NFS share using NFS client

In the guest, mount the share using the NFS client and knowing the shares export location.

Known restrictions

* A CephFS driver instance, represented as a backend driver section in manila.conf, requires a Ceph
auth ID unique to the backend Ceph Filesystem. Using a non-unique Ceph auth ID will result in
the driver unintentionally evicting other CephFS clients using the same Ceph auth ID to connect
to the backend.

* Snapshots are read-only. A wuser can read a snapshots contents from the .snap/
{manila-snapshot—-id}_{unknown-id} folder within the mounted share.

Security

* Each shares data is mapped to a distinct Ceph RADOS namespace. A guest is restricted to access
only that particular RADOS namespace. https://docs.ceph.com/docs/nautilus/cephfs/file-layouts/

* An additional level of resource isolation can be provided by mapping a shares contents to a sep-
arate RADOS pool. This layout would be preferred only for cloud deployments with a limited
number of shares needing strong resource separation. You can do this by setting a share type
specification, cephfs:data_isolated for the share type used by the cephfs driver.

Security with CephFS native share backend

As the guests need direct access to Cephs public network, CephFS native share backend is suitable only
in private clouds where guests can be trusted.

The manila.share.drivers.cephfs.driver Module

class CephFSDriver (*args, **kwargs)
Bases: manila.share.driver.ExecuteMixin, manila.share.driver.
GaneshaMixin, manila.share.driver.ShareDriver

Driver for the Ceph Filesystem.
property ceph_mon_version

check_for_setup_error ()
Returns an error if prerequisites arent met.

create_share (context, share, share_server=None)
Create a CephFS volume.

Parameters

308 Chapter 3. For operators

https://docs.ceph.com/docs/nautilus/cephfs/file-layouts/

Manila Developer Documentation, Release 12.1.3.dev46

* context A RequestContext.

* share A Share.

* share_server Always None for CephFS native.
Returns The export locations dictionary.

create_share_from_snapshot (context, share, snapshot, share_server=None, par-

ent_share=None)
Create a CephFS subvolume from a snapshot

create_share_group (context, sg_dict, share_server=None)
Create a share group.

Parameters
e context

* share_group_dict The share group details EXAMPLE: { sta-
tus: creating, project_id: 13c0be6290934bd98596cfa004650049, user_id:
a0314a441ca842019b0952224aa39192, description: None, deleted: False,
created_at: datetime.datetime(2015, 8, 10, 15, 14, 6), updated_at: None,
source_share_group_snapshot_id: some_fake uuid, share_group_type_id:
some_fake uuid, host: hostname@backend name, share network_id:
None, share_server_id: None, deleted_at: None, share_types: [<mod-
els.ShareGroupShareTypeMapping>], id: some_fake_uuid, name: None }

Returns (share_group_model_update, share_update_list)
share_group_model_update - a dict containing any values to be updated
for the SG in the database. This value may be None.

create_share_group_snapshot (context, snap_dict, share_server=None)
Create a share group snapshot.

Parameters
e context

* snap_dict The share group snapshot details EXAMPLE: .. code:

2015, 8, 10, 0, 5, 58
2015, 8, 10, 0, 5, 58

2015, 8, 10, 0, 5

2015, 8, 10, 0, 5

— D08 (continues on next page)

3.2. Administrating Manila

309

mailto:'hostname@backend_name

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

Returns

(share_group_snapshot_update, member_update_list)
share_group_snapshot_update - a dict containing any values to be updated for
the CGSnapshot in the database. This value may be None.

member_update_list - a list of dictionaries containing for every member of the
share group snapshot. Each dict should contains values to be updated for the
ShareGroupSnapshotMember in the database. This list may be empty or None.

create_snapshot (context, snapshot, share_server=None)
Is called to create snapshot.

Parameters
e context Current context

* snapshot Snapshot model. Share model could be retrieved through snap-
shot[share].

e share_ server Share server model or None.

Returns None or a dictionary with key export_locations containing a list of export
locations, if snapshots can be mounted.

delete_share (context, share, share_server=None)
Is called to remove share.

delete_share_group (context, sg_dict, share_server=None)
Delete a share group

Parameters
* context The request context

* share_group_dict The share group details EXAMPLE: .. code:

(continues on next page)

310 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

2015, 8, 10, 15, 14
—6

Returns share_group_model_update share_group_model_update - a dict contain-
ing any values to be updated for the group in the database. This value may be
None.

delete_share_group_snapshot (context, snap_dict, share_server=None)
Delete a share group snapshot

Parameters
* context

* snap_dict The share group snapshot details EXAMPLE: .. code:

2015, 8, 10, 0, 5, 58
2015, 8, 10, 0, 5, 58

2015, 8, 10, 0, 5

2015, 8, 10, 0, 5

(continues on next page)

3.2. Administrating Manila 311

Manila Developer Documentation, Release 12.1.3.dev46

(continued from previous page)

Returns (share_group_snapshot_update, member_update_list)
share_group_snapshot_update - a dict containing any values to be up-
dated for the ShareGroupSnapshot in the database. This value may be
None.

delete_snapshot (context, snapshot, share_server=None)
Is called to remove snapshot.

Parameters
e context Current context

* snapshot Snapshot model. Share model could be retrieved through snap-
shot[share].

e share server Share server model or None.

do_setup (context)
Any initialization the share driver does while starting.

ensure_share (context, share, share_server=None)
Invoked to ensure that share is exported.

Driver can use this method to update the list of export locations of the share if it changes. To
do that, you should return list with export locations.

Returns None or list with export locations

extend_share (share, new_size, share_server=None)
Extends size of existing share.

Parameters
* share Share model
* new_size New size of share (new_size > share[size])
* share_server Optional Share server model

get_configured_ip_versions ()
Get allowed IP versions.

The supported versions are returned with list, possible values are: [4], [6], or [4, 6]

Drivers that assert ipv6_implemented = True must override this method. If the returned list
includes 4, then shares created by this driver must have an IPv4 export location. If the list
includes 6, then shares created by the driver must have an IPv6 export location.

312 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Drivers should check that their storage controller actually has IPv4/IPv6 enabled and con-
figured properly.

get_share_ status (share, share_server=None)

Returns the current status for a share.
Parameters
* share a manila share.
* share_server a manila share server (not currently supported).

Returns manila share status.

property rados_client

setup_default_ceph_cmd_target ()

shrink share (share, new_size, share_server=None)

Shrinks size of existing share.

If consumed space on share larger than new_size driver should raise ShareShrinkingPossi-
bleDatal.oss exception: raise ShareShrinkingPossibleDatal.oss(share_id=share[id])

Parameters
* share Share model
* new_size New size of share (new_size < share[size])
* share_server Optional Share server model

:raises ShareShrinkingPossibleDatalLoss, NotImplementedError

update_access (context, share, access_rules, add_rules, delete_rules,

share_server=None)
Update access rules for given share.

access_rules contains all access_rules that need to be on the share. If the driver can
make bulk access rule updates, it can safely ignore the add_rules and delete_rules
parameters.

If the driver cannot make bulk access rule changes, it can rely on new rules to be present in
add_rules and rules that need to be removed to be present in delete_rules.

When arule in delete_rules was never applied, drivers must not raise an exception, or
attempt to set the rule to error state.

add_rules and delete_rules can be empty lists, in this situation, drivers should en-
sure that the rules present in access_rules are the same as those on the back end. One
scenario where this situation is forced is when the access_level is changed for all existing
rules (share migration and for readable replicas).

Drivers must be mindful of this call for share replicas. When update_access is called on one
of the replicas, the call is likely propagated to all replicas belonging to the share, especially
when individual rules are added or removed. If a particular access rule does not make sense
to the driver in the context of a given replica, the driver should be careful to report a correct
behavior, and take meaningful action. For example, if R/W access is requested on a replica
that is part of a readable type replication; R/O access may be added by the driver instead
of R/W. Note that raising an exception will result in the access_rules_status on the replica,

3.2. Administrating Manila 313

Manila Developer Documentation, Release 12.1.3.dev46

and the share itself being out_of_sync. Drivers can sync on the valid access rules that are
provided on the create_replica and promote_replica calls.

Parameters
* context Current context
* share Share model with share data.
* access_rules A list of access rules for given share

* add_rules Empty List or List of access rules which should be added.
access_rules already contains these rules.

* delete_rules Empty List or List of access rules which should be re-
moved. access_rules doesnt contain these rules.

e share server None or Share server model
Returns

None, or a dictionary of updates in the format:

09960614-8574-4e03-89cf-7cf267b0bd08: {

access_key: alice31493e5441b8171d2310d80e37e, state: error,
),
28t6eabb-4342-486a-a7t4-45688t0c0295: {

access_key: bob0078aa042d5a7325480fd13228b, state: active,

),
}

The top level keys are access_id fields of the access rules that need to be updated.
access_key ‘s are credentials (str) of the entities granted
access. Any rule in the " “access_rules parameter can be updated.

Important: Raising an exception in this method will force all rules in applying and denying
states to error.

An access rule can be set to error state, either explicitly via this return parameter or because
of an exception raised in this method. Such an access rule will no longer be sent to the driver
on subsequent access rule updates. When users deny that rule however, the driver will be
asked to deny access to the client/s represented by the rule. We expect that a rule that was
error-ed at the driver should never exist on the back end. So, do not fail the deletion request.

Also, it is possible that the driver may receive a request to add a rule that is already present
on the back end. This can happen if the share manager service goes down while the driver is
committing access rule changes. Since we cannot determine if the rule was applied success-
fully by the driver before the disruption, we will treat all applying transitional rules as new
rules and repeat the request.

property volname

314 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

class NFSProtocolHelper (execute, config_object, **kwargs)
Bases: manila.share.drivers.ganesha.GaneshaNASHelper?2

check_for_setup_error ()
Returns an error if prerequisites arent met.

get_configured_ip_ versions ()
get_export_locations (share, subvolume_path)
shared_data = {}

supported_protocols = ('NFS',)

class NativeProtocolHelper (execute, config, **kwargs)
Bases: manila.share.drivers.ganesha.NASHelperBase

Helper class for native CephFS protocol

check_for_setup_error ()
Returns an error if prerequisites arent met.

get_configured_ip_ versions ()
get_export_locations (share, subvolume_path)

get_mon_addrs ()

supported_access_levels = ('rw', 'ro')
supported_access_types = ('cephx',)
update_access (context, share, access_rules, add_rules, delete_rules,

share_server=None)
Update access rules of share.

exception RadosError
Bases: Exception

Something went wrong talking to Ceph with librados

rados_command (rados_client, prefix=None, args=None, json_obj=False, target=None)
Safer wrapper for ceph_argparse.json_command

Raises error exception instead of relying on caller to check return codes.
Error exception can result from: * Timeout * Actual legitimate errors * Malformed JSON output

return: If json_obj is True, return the decoded JSON object from ceph, or None if empty
string returned. If json is False, return a decoded string (the data returned by ceph com-
mand)

setup_json_command ()

setup_rados ()

3.2. Administrating Manila 315

Manila Developer Documentation, Release 12.1.3.dev46

GPFS Driver

GPFS driver uses IBM General Parallel File System (GPFS), a high-performance, clustered file system,
developed by IBM, as the storage backend for serving file shares to the manila clients.

Supported shared filesystems

* NFS (access by 1P)

Supported Operations

Create NFS Share
Delete NFS Share

* Create Share Snapshot
* Delete Share Snapshot

* Create Share from a Share Snapshot

Allow NFS Share access

— Currently only rw access level is supported

Deny NFS Share access

Requirements

* Install GPFS with server license, version >= 2.0, on the storage backend.
* Install Kernel NFS or Ganesha NFS server on the storage backend servers.
* If using Ganesha NFS, currently NFS Ganesha v1.5 and v2.0 are supported.

* Create a GPFS cluster and create a filesystem on the cluster, that will be used to create the manila
shares.

* Enable quotas for the GPFS file system (mmchfs -Q yes).

* Establish network connection between the manila host and the storage backend.

Manila driver configuration setting

The following parameters in the manila configuration file need to be set:
* share_driver = manila.share.drivers.ibm.gpfs.GPFSShareDriver
* gpfs_share_export_ip = <IP to be added to GPFS export string>

* If the backend GPFS server is not running on the manila host machine, the following options are
required to SSH to the remote GPFS backend server:

— gpfs_ssh_login = <GPFS server SSH login name>

and one of the following settings is required to execute commands over SSH:

316 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

— gpfs_ssh_private_key = <path to GPFS server SSH private key for login>
— gpfs_ssh_password = <GPFS server SSH login password>
The following configuration parameters are optional:
* gpfs_mount_point_base = <base folder where exported shares are located>
* gpfs_nfs_server_type = <KNFSIGNFS>
* gpfs_nfs_server_list = <list of the fully qualified NFS server names>
* gpfs_ssh_port = <ssh port number>
» knfs_export_options = <options to use when creating a share using kernel NFS server>

Restart of manila-share service is needed for the configuration changes to take effect.

Known Restrictions

* The driver does not support a segmented-network multi-tenancy model but instead works over a
flat network where the tenants share a network.

* While using remote GPFS node, with Ganesha NFS, gpfs_ssh_private_key for remote login to
the GPFS node must be specified and there must be a passwordless authentication already setup
between the manila share service and the remote GPFS node.

The manila.share.drivers.ibm.gpfs Module

GPFS Diriver for shares.

Config Requirements: GPFS file system must have quotas enabled (mmchfs -Q yes).
Notes: GPFS independent fileset is used for each share.

TODO(nileshb): add support for share server creation/deletion/handling.

Limitation: While using remote GPFS node, with Ganesha NFS, gpfs_ssh_private_key for remote lo-
gin to the GPFS node must be specified and there must be a passwordless authentication already
setup between the Manila share service and the remote GPFS node.

class CESHelper (execute, config_object)
Bases: manila.share.drivers.ibm.gpfs.NASHelperBase

Wrapper for NFS by Spectrum Scale CES

allow_access (local_path, share, access)
Allow access to the host.

deny_access (local_path, share, access, force=False)
Deny access to the host.

get_access_option (access)
Get access option string based on access level.

remove_export (local_path, share)
Remove export.

3.2. Administrating Manila 317

Manila Developer Documentation, Release 12.1.3.dev46

resync_access (local_path, share, access_rules)
Re-sync all access rules for given share.

class GPFSShareDriver (*args, **kwargs)

Bases: manila.share.driver.ExecuteMixin, manila.share.driver.
GaneshaMixin, manila.share.driver.ShareDriver

GPFS Share Driver.
Executes commands relating to Shares. Supports creation of shares on a GPES cluster.
API version history:

1.0 - Initial version. 1.1 - Added extend_share functionality 2.0 - Added CES support
for NFS Ganesha

check_for_setup_error ()
Returns an error if prerequisites arent met.

create_share (ctx, share, share_server=None)
Create GPFS directory that will be represented as share.

create_share_from_snapshot (ctx, share, snapshot, share_server=None, par-

ent_share=None)
Is called to create share from a snapshot.

create_snapshot (context, snapshot, share_server=None)
Creates a snapshot.

delete_share (ctx, share, share_server=None)
Remove and cleanup share storage.

delete_snapshot (context, snapshot, share_server=None)
Deletes a snapshot.

do_setup (context)
Any initialization the share driver does while starting.

ensure_share (ctx, share, share_server=None)
Ensure that storage are mounted and exported.

extend_share (share, new_size, share_server=None)
Extends the quota on the share fileset.

get_network_allocations_number ()
Returns number of network allocations for creating VIFs.

Drivers that use Nova for share servers should return zero (0) here same as Generic driver
does. Because Nova will handle network resources allocation. Drivers that handle network-
ing itself should calculate it according to their own requirements. It can have 1+ network
interfaces.

manage_existing (share, driver_options)

Brings an existing share under Manila management.

If the provided share is not valid, then raise a ManagelnvalidShare exception, specifying a
reason for the failure.

If the provided share is not in a state that can be managed, such as being replicated on the
backend, the driver MUST raise ManagelnvalidShare exception with an appropriate mes-
sage.

318

Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

The share has a share_type, and the driver can inspect that and compare against the proper-
ties of the referenced backend share. If they are incompatible, raise a ManageExistingShare-
TypeMismatch, specifying a reason for the failure.

This method is invoked when the share is being managed with a share type that has
driver_handles_share_servers extra-spec set to False.

Parameters
* share Share model
* driver_options Driver-specific options provided by admin.

Returns share_update dictionary with required key size, which should contain size
of the share.

update_access (context, share, access_rules, add_rules, delete_rules,

share_server=None)
Update access rules for given share.

class KNFSHelper (execute, config_object)

Bases: manila.share.drivers.ibm.gpfs.NASHelperBase
Wrapper for Kernel NFS Commands.

allow_access (local_path, share, access, error_on_exists=True)
Allow access to one or more vm instances.

deny_access (local_path, share, access)
Remove access for one or more vm instances.

get_access_option (access)
Get access option string based on access level.

remove_export (local_path, share)
Remove export.

resync_access (local_path, share, access_rules)
Re-sync all access rules for given share.

class NASHelperBase (execute, config_object)

Bases: object
Interface to work with share.

abstract allow_access (local_path, share, access)
Allow access to the host.

create_export (local_path)
Construct location of new export.

abstract deny_access (local_path, share, access)
Deny access to the host.

abstract get_access_option (access)
Get access option string based on access level.

get_export_options (share, access, helper)
Get the export options.

abstract remove_export (local_path, share)
Remove export.

3.2. Administrating Manila 319

Manila Developer Documentation, Release 12.1.3.dev46

abstract resync_access (local_path, share, access_rules)
Re-sync all access rules for given share.

Huawei Driver

Huawei NAS Driver is a plugin based the OpenStack manila service. The Huawei NAS Driver can be
used to provide functions such as the share and snapshot for virtual machines(instances) in OpenStack.
Huawei NAS Driver enables the OceanStor V3 series V300R002 storage system to provide only network
filesystems for OpenStack.

Requirements

* The OceanStor V3 series V300R002 storage system.

* The following licenses should be activated on V3 for File:
- CIFS
- NFS

— HyperSnap License (for snapshot)

Supported Operations

The following operations is supported on V3 storage:

* Create CIFS/NFS Share

* Delete CIFS/NFS Share

* Allow CIFS/NFS Share access
— IP and USER access types are supported for NES(ro/rw).
— Only USER access type is supported for CIFS(ro/rw).

* Deny CIFS/NFS Share access

* Create snapshot

* Delete snapshot

* Manage CIFS/NFS share

* Support pools in one backend

* Extend share

* Shrink share

* Support multi RestURLs(<RestURL>)

* Support multi-tenancy

* Ensure share

* Create share from snapshot

* Support QoS

320 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Pre-Configurations on Huawei

1. Create a driver configuration file. The driver configuration file name must be the same as the
manila_huawei_conf_file item in the manila_conf configuration file.

2. Configure Product. Product indicates the storage system type. For the OceanStor V3 series V300R002
storage systems, the driver configuration file is as follows:

<?xml version='l.0' encoding='UTF-8'?>
<Config>
<Storage>
<Product>V3</Product>
<LogicalPortIP>x.x.x.x</LogicalPortIP>
<Port>abc;CTEO.A.HI1</Port>
<RestURL>https://x.x.x.x:8088/deviceManager/rest/;
https://x.x.x.x:8088/deviceManager/rest/</RestURL>
<UserName>xxxxxxxxx</UserName>
<UserPassword>xxxxxxxxx</UserPassword>
</Storage>
<Filesystem>
<StoragePool>xxxxxxxxx</StoragePool>
<SectorSize>64</SectorSize>
<WaitInterval>3</WaitInterval>
<Timeout>60</Timeout>
<NFSClient>
<IP>x.X.xX.x</IP>
</NFSClient>
<CIFSClient>
<UserName>xxxxxxxxx</UserName>
<UserPassword>xxxxxxxxx</UserPassword>
</CIFSClient>
</Filesystem>
</Config>

* Product is a type of a storage product. Set it to V3.
* LogicalPortIP is an IP address of the logical port.

* Port is a port name list of bond port or ETH port, used to create vlan and logical port. Multi
Ports can be configured in <Port>(separated by ;). If <Port> is not configured, then will choose
an online port on the array.

* RestURL is an access address of the REST interface. Multi RestURLs can be configured in
<RestURL>(separated by ;). When one of the RestURL failed to connect, driver will retry an-
other automatically.

* UserName is a user name of an administrator.
* UserPassword is a password of an administrator.
* StoragePool is a name of a storage pool to be used.

» SectorSize is the size of the disk blocks, optional value can be 4, 8, 16, 32 or 64, and the units
is KB. If sectorsize is configured in both share_type and xml file, the value of sectorsize in the
share_type will be used. If sectorsize is configured in neither share_type nor xml file, huawei
storage backends will provide a default value(64) when creating a new share.

* Waitlnterval is the interval time of querying the file system status.

3.2. Administrating Manila 321

Manila Developer Documentation, Release 12.1.3.dev46

* Timeout is the timeout period for waiting command execution of a device to complete.

NFSClientlP is the backend IP in admin network to use for mounting NFS share.

CIFSClientUserName is the backend user name in admin network to use for mounting CIFS share.

CIFSClientUserPassword is the backend password in admin network to use for mounting CIFS
share.

Backend Configuration

Modify the manila.conf manila configuration file and add share_driver and manila_huawei_conf_file
items. Example for configuring a storage system:

e share_driver = manila.share.drivers.huawei.huawei_nas.HuaweiNasDriver
* manila_huawei_conf_file = /etc/manila/manila_huawei_conf.xml

e driver_handles_share_servers = True or False

Note:

» If driver_handles_share_servers is True, the driver will choose a port in <Port> to create vlan and
logical port for each tenant network. And the share type with the DHSS extra spec should be set
to True when creating shares.

* If driver_handles_share_servers is False, then will use the IP in <LogicalPortIP>. Also the share
type with the DHSS extra spec should be set to False when creating shares.

Restart of manila-share service is needed for the configuration changes to take effect.

Share Types

When creating a share, a share type can be specified to determine where and how the share will be
created. If a share type is not specified, the default _share_type set in the manila configuration file is
used.

Manila requires that the share type includes the driver_handles_share_servers extra-spec. This ensures
that the share will be created on a backend that supports the requested driver_handles_share_servers
(share networks) capability. For the Huawei driver, this must be set to False.

To create a share on a backend with a specific type of disks, include the huawei_disk_type extra-spec in
the share type. Valid values for this extra-spec are ssd, sas, nl_sas or mix. This share will be created on
a backend with a matching disk type.

Another common manila extra-spec used to determine where a share is created is share_backend_name.
When this extra-spec is defined in the share type, the share will be created on a backend with a matching
share_backend_name.

Manila share types may contain qualified extra-specs, -extra-specs that have significance for the backend
driver and the CapabilityFilter. This commit makes the Huawei driver report the following boolean
capabilities:

* capabilities:dedupe

322 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

* capabilities:compression
* capabilities:thin_provisioning
* capabilities:huawei_smartcache
— huawei_smartcache:cachename
* capabilities:huawei_smartpartition
— huawei_smartpartition:partitionname

* capabilities:qos

gos:maxIOPS

gos:minlOPS

gos:minbandwidth

gos:maxbandwidth

gos:latency

gos:iotype
* capabilities:huawei_sectorsize

The scheduler will choose a host that supports the needed capability when the CapabilityFilter is used
and a share type uses one or more of the following extra-specs:

* capabilities:dedupe=<is> True or <is> False
* capabilities:compression=<is> True or <is> False
* capabilities:thin_provisioning=<is> True or <is> False
* capabilities:huawei_smartcache=<is> True or <is> False
— huawei_smartcache:cachename=test_cache_name
* capabilities:huawei_smartpartition=<is> True or <is> False
— huawei_smartpartition:partitionname=test_partition_name
* capabilities:qos=<is> True or <is> False
gos:maxIOPS=100
gos:minlOPS=10

gos:maxbandwidth=100

gos:minbandwidth=10

gos:latency=10

qos:iotype=0
* capabilities:huawei_sectorsize=<is> True or <is> False
— huawel_sectorsize:sectorsize=4

* huawei_disk_type=ssd or sas or nl_sas or mix

3.2. Administrating Manila 323

Manila Developer Documentation, Release 12.1.3.dev46

thin_provisioning will be reported as [True, False] for Huawei backends.
dedupe will be reported as [True, False] for Huawei backends.
compression will be reported as [True, False] for Huawei backends.

huawei_smartcache will be reported as [True, False] for Huawei backends. Adds SSDs into a high-
speed cache pool and divides the pool into multiple cache partitions to cache hotspot data in random and
small read I/Os.

huawei_smartpartition will be reported as [True, False] for Huawei backends. Add share to the smartpar-
tition named test_partition_name. Allocates cache resources based on service characteristics, ensuring
the quality of critical services.

gos will be reported as True for backends that use QoS (Quality of Service) specification.
huawei_sectorsize will be reported as [True, False] for Huawei backends.

huawei_disk_type will be reported as ssd, sas, nl_sas or mix for Huawei backends.

Restrictions

The Huawei driver has the following restrictions:
* TP and USER access types are supported for NFS.
* Only LDAP domain is supported for NFS.
* Only USER access type is supported for CIFS.
* Only AD domain is supported for CIFS.

The manila.share.drivers.huawei.huawei nas Module

Huawei Nas Driver for Huawei storage arrays.

class HuaweiNasDriver (*args, **kwargs)
Bases: manila.share.driver.ShareDriver

Huawei Share Driver.

Executes commands relating to Shares. Driver version history:

1.0
1.1
1.2
snapshot.
1.3
type

324 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

allow_access (context, share, access, share_server=None)
Allow access to the share.

check_for_setup_error ()
Returns an error if prerequisites arent met.

create_replica (context, replica_list, new_replica, access_rules, replica_snapshots,

) share_server=None) _
Replicate the active replica to a new replica on this backend.

create_share (context, share, share_server=None)
Create a share.

create_share_from_snapshot (context, share, snapshot, share_server=None, par-

ent_share=None)
Create a share from snapshot.

create_snapshot (context, snapshot, share_server=None)
Create a snapshot.

delete_replica (context, replica_list, replica_snapshots, replica,

~ Sshare_server=None)
Delete a replica.

delete_share (context, share, share_server=None)
Delete a share.

delete_snapshot (context, snapshot, share_server=None)
Delete a snapshot.

deny_access (context, share, access, share_server=None)
Deny access to the share.

do_setup (context)
Any initialization the huawei nas driver does while starting.

ensure_share (context, share, share_server=None)
Ensure that share is exported.

extend share (share, new_size, share_server=None)
Extends size of existing share.

Parameters
* share Share model
* new_size New size of share (new_size > share[size])
* share_server Optional Share server model
get_backend_driver ()

get_network_allocations_number ()
Get number of network interfaces to be created.

get_pool (share)
Return pool name where the share resides on.

manage_existing (share, driver_options)
Manage existing share.

manage_existing_ snapshot (snapshot, driver_options)
Manage existing snapshot.

3.2. Administrating Manila 325

Manila Developer Documentation, Release 12.1.3.dev46

promote_replica (context, replica_list, replica, access_rules, share_server=None)
Promote a replica to active replica state..

revert_to_snapshot (context, snapshot, share_access_rules, snapshot_access_rules,

share_server=None)
Reverts a share (in place) to the specified snapshot.

Does not delete the share snapshot. The share and snapshot must both be available for the
restore to be attempted. The snapshot must be the most recent one taken by Manila; the API
layer performs this check so the driver doesnt have to.

The share must be reverted in place to the contents of the snapshot. Application admins
should quiesce or otherwise prepare the application for the shared file system contents to
change suddenly.

Parameters
* context Current context
* snapshot The snapshot to be restored
e share access_rules List of all access rules for the affected share

* snapshot_access_rules Listof all access rules for the affected snap-
shot

* share_server Optional Share server model or None

shrink_ share (share, new_size, share_server=None)
Shrinks size of existing share.

update_access (context, share, access_rules, add_rules, delete_rules,

share_server=None)
Update access rules list.

update_replica_state (context, replica_list, replica, access_rules,

replica_snapshots, share_server=None)
Update the replica_state of a replica.

HDFS native driver

HDEFS native driver is a plugin based on the OpenStack manila service, which uses Hadoop distributed
file system (HDFS), a distributed file system designed to hold very large amounts of data, and provide
high-throughput access to the data.

A manila share in this driver is a subdirectory in hdfs root directory. Instances talk directly to the HDFS
storage backend with hdfs protocol. And access to each share is allowed by user based access type,
which is aligned with HDFS ACLs to support access control of multiple users and groups.

326 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Network configuration

The storage backend and manila hosts should be in a flat network, otherwise, the L3 connectivity be-
tween them should exist.

Supported shared filesystems

* HDFS (authentication by user)

Supported Operations

* Create HDFS share

* Delete HDFS share

* Allow HDFS Share access * Only support user access type * Support level of access (ro/rw)
* Deny HDFS Share access

* Create snapshot

* Delete snapshot

* Create share from snapshot

¢ Extend share

Requirements

* Install HDFS package, version >= 2.4.x, on the storage backend
* To enable access control, the HDFS file system must have ACLs enabled

* Establish network connection between the manila host and storage backend

Manila driver configuration

e share_driver = manila.share.drivers.hdfs.hdfs_native. HDFSNativeShareDriver

* hdfs_namenode_ip = the IP address of the HDFS namenode, and only single namenode is
supported now

* hdfs_namenode_port = the port of the HDFS namenode service
* hdfs_ssh_port = HDFS namenode SSH port
* hdfs_ssh_name = HDFS namenode SSH login name

* hdfs_ssh_pw = HDFS namenode SSH login password, this parameter is not necessary, if the
following hdfs_ssh_private_key is configured

* hdfs_ssh_private_key = Path to the HDFS namenode private key to ssh login

3.2. Administrating Manila 327

Manila Developer Documentation, Release 12.1.3.dev46

Known Restrictions

* This driver does not support network segmented multi-tenancy model. Instead multi-tenancy is
supported by the tenant specific user authentication

* Only support for single HDFS namenode in Kilo release

The manila.share.drivers.hdfs.hdfs native Module

HDFS native protocol (hdfs) driver for manila shares.

Manila share is a directory in HDFS. And this share does not use service VM instance (share server).
The instance directly talks to the HDFS cluster.

The initial version only supports single namenode and flat network.
Configuration Requirements: To enable access control, HDFES file system must have ACLs enabled.

class HDFSNativeShareDriver (*args, **kwargs)
Bases: manila.share.driver.ExecuteMixin, manila.share.driver.
ShareDriver

HDEFS Share Driver.
Executes commands relating to shares. API version history:
1.0 - Initial Version

allow_access (context, share, access, share_server=None)
Allows access to the share for a given user.

check_for_setup_error ()
Return an error if the prerequisites are met.

create_share (context, share, share_server=None)
Create a HDFS directory which acted as a share.

create_share_from_snapshot (context, share, snapshot, share_server=None, par-

ent_share=None)
Creates a snapshot.

create_snapshot (context, snapshot, share_server=None)
Creates a snapshot.

delete_share (context, share, share_server=None)
Deletes share storage.

delete_snapshot (context, snapshot, share_server=None)
Deletes a snapshot.

deny_access (context, share, access, share_server=None)
Denies the access to the share for a given user.

do_setup (context)
Do initialization while the share driver starts.

ensure_share (context, share, share_server=None)
Ensure the storage are exported.

328 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

extend_share (share, new_size, share_server=None)
Extend share storage.

get_network_allocations_number ()
Returns number of network allocations for creating VIFs.

Drivers that use Nova for share servers should return zero (0) here same as Generic driver
does. Because Nova will handle network resources allocation. Drivers that handle network-
ing itself should calculate it according to their own requirements. It can have 1+ network
interfaces.

Hitachi NAS Platform File Services Driver for OpenStack
Driver Version 3.0
Hitachi NAS Platform Storage Requirements

This Hitachi NAS Platform File Services Driver for OpenStack provides support for Hitachi NAS Plat-
form (HNAS) models 3080, 3090, 4040, 4060, 4080 and 4100 with NAS OS 12.2 or higher. Before
configuring the driver, ensure the HNAS has at least:

* 1 storage pool (span) configured.
* 1 EVS configured.

* 1 file system in this EVS, created without replication target option and should be in mounted state.
It is recommended to disable auto-expansion, because the scheduler uses the current free space
reported by the file system when creating shares.

* 1 Management User configured with supervisor permission level.
* Hitachi NAS Management interface should be reachable from manila-share node.

Also, if the driver is going to create CIFS shares, either LDAP servers or domains must be configured
previously in HNAS to provide the users and groups.

Supported Operations

The following operations are supported in this version of Hitachi NAS Platform File Services Driver for
OpenStack:

¢ Create and delete CIFS and NFS shares;
» Extend and shrink shares;
* Manage rules to shares (allow/deny access);
* Allow and deny share access;
— IP access type supported for NF'S shares;
— User access type supported for CIFS shares;
— Both RW and RO access level are supported for NFS and CIFS shares;

* Manage and unmanage shares;

3.2. Administrating Manila 329

Manila Developer Documentation, Release 12.1.3.dev46

* Create and delete snapshots;

* Create shares from snapshots.

Driver Configuration

This document contains the installation and user guide of the Hitachi NAS Platform File Services Driver
for OpenStack. Although mentioning some Shared File Systems service operations and HNAS com-
mands, both are not in the scope of this document. Please refer to their own guides for details.

Before configuring the driver, make sure that the nodes running the manila-share service have access to
the HNAS management port, and compute and network nodes have access to the data ports (EVS IPs or
aggregations).

The driver configuration can be summarized in the following steps:
1. Configure HNAS parameters on manila.conf;
2. Prepare the network ensuring all OpenStack-HNAS connections mentioned above;
3. Configure/create share type;
4. Restart the services;
5

. Configure OpenStack networks.

Step 1 - HNAS Parameters Configuration

The following parameters need to be configured in the [DEFAULT] section of /etc/manila/
manila.conf:

Option Description

en- Name of the section onmanila.conf used to specify a backend. For example:
abled_share_backendsabled_share_backends = hnasl

en- Specify a list of protocols to be allowed for share creation. This driver version
abled_share_protocalspports NFS and/or CIFS.

The following parameters need to be configured in the [backend] section of /etc/manila/manila.
conft:

330 Chapter 3. For operators

Manila Developer Documentation, Release 12.1.3.dev46

Option Description
share_backendAnaamee for the backend.
share_driver | Python =~ module path. For this driver this must be: