
Ironic Inspector Documentation
Release 12.4.0.dev8

OpenStack Foundation

Nov 29, 2024

CONTENTS

1 Introduction 3

2 Release Notes 5

3 Using Ironic Inspector 7
3.1 Install Guide . 7
3.2 Command References . 16
3.3 Configuration Guide . 17
3.4 User Guide . 94
3.5 Administrator Guide . 106

4 Contributor Docs 111
4.1 How To Contribute . 111

5 Indices and tables 179

Python Module Index 181

Index 183

i

ii

Ironic Inspector Documentation, Release 12.4.0.dev8

Warning

This project is now in the maintenance mode and new deployments of it are discouraged. Please use
built-in in-band inspection in ironic instead. For existing deployments, see the migration guide.

CONTENTS 1

https://docs.openstack.org/ironic/latest/admin/inspection/index.html
https://docs.openstack.org/ironic/latest/admin/inspection/migration.html

Ironic Inspector Documentation, Release 12.4.0.dev8

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

This is an auxiliary service for discovering hardware properties for a node managed by Ironic. Hardware
introspection or hardware properties discovery is a process of getting hardware parameters required for
scheduling from a bare metal node, given its power management credentials (e.g. IPMI address, user
name and password).

• Free software: Apache license

• Source: https://opendev.org/openstack/ironic-inspector/

• Bugs: https://bugs.launchpad.net/ironic-inspector

• Downloads: https://tarballs.openstack.org/ironic-inspector/

• Documentation: https://docs.openstack.org/ironic-inspector/latest/

• Python client library and CLI tool: python-ironic-inspector-client (documentation).

Note

ironic-inspector was called ironic-discoverd before version 2.0.0.

3

https://wiki.openstack.org/wiki/Ironic
https://opendev.org/openstack/ironic-inspector/
https://bugs.launchpad.net/ironic-inspector
https://tarballs.openstack.org/ironic-inspector/
https://docs.openstack.org/ironic-inspector/latest/
https://pypi.org/project/python-ironic-inspector-client
https://docs.openstack.org/python-ironic-inspector-client/latest/

Ironic Inspector Documentation, Release 12.4.0.dev8

4 Chapter 1. Introduction

CHAPTER

TWO

RELEASE NOTES

For information on any current or prior version, see the release notes.

5

https://docs.openstack.org/releasenotes/ironic-inspector/

Ironic Inspector Documentation, Release 12.4.0.dev8

6 Chapter 2. Release Notes

CHAPTER

THREE

USING IRONIC INSPECTOR

3.1 Install Guide
Install from PyPI (you may want to use virtualenv to isolate your environment):

pip install ironic-inspector

Also there is a DevStack plugin for ironic-inspector - see How To Contribute for the current status.

Finally, some distributions (e.g. Fedora) provide ironic-inspector packaged, some of them - under its
old name ironic-discoverd.

There are several projects you can use to set up ironic-inspector in production. puppet-ironic provides
Puppet manifests, while bifrost provides an Ansible-based standalone installer. Refer to Configuration if
you plan on installing ironic-inspector manually.

Note

Please beware of possible DNS issues when installing ironic-inspector on Ubuntu.

3.1.1 Sample Configuration Files
To generate a sample configuration file, run the following command from the top level of the code tree:

tox -egenconfig

For a pre-generated sample configuration file, see Ironic Inspector Configuration Options.

To generate a sample policy file, run the following command from the top level of the code tree:

tox -egenpolicy

For a pre-generated sample configuration file, see Ironic Inspector Policy.

3.1.2 Installation options
Starting with Train release, ironic-inspector can run in a non-standalone mode, which means ironic-
inspector API and ironic-inspector conductor are separated services, they can be installed on the same
host or different hosts.

Following are some considerations when you run ironic-inspector in non-standalone mode:

7

https://pypi.org/project/ironic-inspector
https://docs.openstack.org/devstack/latest/
https://git.openstack.org/cgit/openstack/puppet-ironic/
https://docs.openstack.org/bifrost/latest/

Ironic Inspector Documentation, Release 12.4.0.dev8

• Additional packages may be required depending on the tooz backend used in the installation.
For example, etcd3gw is required if the backend driver is configured to use etcd3+http://,
pymemcache is required to use memcached://. Some distributions may provide packages like
python3-etcd3gw or python3-memcache. Supported drivers are listed at Tooz drivers.

• For ironic-inspector running in non-standalone mode, PXE configuration is only required on the
node where ironic-inspector conductor service is deployed.

• Switch to a database backend other than sqlite.

3.1.3 Configuration
Copy the sample configuration files to some permanent place (e.g. /etc/ironic-inspector/
inspector.conf). Fill in these minimum configuration values:

• The standalone in the DEFAULT section - This determines whether ironic-inspector services are
intended to be deployed separately.

• The keystone_authtoken section - credentials to use when checking user authentication.

• The ironic section - credentials to use when accessing ironic API. When ironic is deployed
standalone with no authentication, specify the following:

[ironic]
auth_type=none

When ironic is deployed standalone with HTTP Basic authentication, valid credentials are also
required:

[ironic]
auth_type=http_basic
username=myName
password=myPassword

• connection in the database section - SQLAlchemy connection string for the database. By de-
fault ironic-inspector uses sqlite as the database backend, if you are running ironic-inspector in a
non-standalone mode, please change to other database backends.

• dnsmasq_interface in the iptables section - interface on which dnsmasq (or another DHCP
service) listens for PXE boot requests (defaults to br-ctlplanewhich is a sane default for tripleo-
based installations but is unlikely to work for other cases).

• if you wish to use the dnsmasq PXE/DHCP filter driver rather than the default iptables driver,
see the dnsmasq PXE filter description.

• store_data in the processing section defines where introspection data is stored and takes one
of three values:

none
introspection data is not stored (the default)

database
introspection data is stored in the database (recommended for standalone deployments)

swift
introspection data is stored in the Object Store service (recommended for full openstack de-
ployments)

8 Chapter 3. Using Ironic Inspector

https://docs.openstack.org/tooz/latest/user/drivers.html

Ironic Inspector Documentation, Release 12.4.0.dev8

Note

It is possible to create third party storage backends using the ironic_inspector.
introspection_data.store entry point.

See comments inside the sample configuration for other possible configuration options.

Note

Configuration file contains a password and thus should be owned by root and should have access
rights like 0600.

Here is an example inspector.conf (adapted from a gate run):

[DEFAULT]
debug = false
rootwrap_config = /etc/ironic-inspector/rootwrap.conf

[database]
connection = mysql+pymysql://root:<PASSWORD>@127.0.0.1/ironic_inspector?
↪→charset=utf8

[pxe_filter]
driver=iptables

[iptables]
dnsmasq_interface = br-ctlplane

[ironic]
os_region = RegionOne
project_name = service
password = <PASSWORD>
username = ironic-inspector
auth_url = http://127.0.0.1/identity
auth_type = password

[keystone_authtoken]
www_authenticate_uri = http://127.0.0.1/identity
project_name = service
password = <PASSWORD>
username = ironic-inspector
auth_url = http://127.0.0.1/identity_v2_admin
auth_type = password

[processing]
ramdisk_logs_dir = /var/log/ironic-inspector/ramdisk
store_data = swift

[swift]
(continues on next page)

3.1. Install Guide 9

Ironic Inspector Documentation, Release 12.4.0.dev8

(continued from previous page)

os_region = RegionOne
project_name = service
password = <PASSWORD>
username = ironic-inspector
auth_url = http://127.0.0.1/identity
auth_type = password

Note

Set debug = true if you want to see complete logs.

ironic-inspector requires root rights for managing iptables. It gets them by running
ironic-inspector-rootwrap utility with sudo. To allow it, copy file rootwrap.conf and directory
rootwrap.d to the configuration directory (e.g. /etc/ironic-inspector/) and create file /etc/
sudoers.d/ironic-inspector-rootwrap with the following content:

Defaults:stack !requiretty
stack ALL=(root) NOPASSWD: /usr/bin/ironic-inspector-rootwrap /etc/ironic-
↪→inspector/rootwrap.conf *

Danger

Be very careful about typos in /etc/sudoers.d/ironic-inspector-rootwrap as any typo will
break sudo for ALL users on the system. Especially, make sure there is a new line at the end of this
file.

Note

rootwrap.conf and all files in rootwrap.d must be writeable only by root.

Note

If you store rootwrap.d in a different location, make sure to update the filters_path option in
rootwrap.conf to reflect the change.

If your rootwrap.conf is in a different location, then you need to update the rootwrap_config option
in ironic-inspector.conf to point to that location.

Replace stack with whatever user youll be using to run ironic-inspector.

Configuring IPA

ironic-python-agent is a ramdisk developed for ironic and support for ironic-inspector was added during
the Liberty cycle. This is the default ramdisk starting with the Mitaka release.

10 Chapter 3. Using Ironic Inspector

https://docs.openstack.org/ironic-python-agent/latest/

Ironic Inspector Documentation, Release 12.4.0.dev8

Note

You need at least 2 GiB of RAM on the machines to use IPA built with diskimage-builder and at least
384 MiB to use the TinyIPA.

To build an ironic-python-agent ramdisk, use ironic-python-agent-builder. Alternatively, you can down-
load a prebuild image.

For local testing and CI purposes you can use a TinyIPA image.

Configuring PXE

For the PXE boot environment, youll need:

• TFTP server running and accessible (see below for using dnsmasq). Ensure pxelinux.0 is present
in the TFTP root.

Copy ironic-python-agent.kernel and ironic-python-agent.initramfs to the TFTP
root as well.

• Next, setup $TFTPROOT/pxelinux.cfg/default as follows:

default introspect

label introspect
kernel ironic-python-agent.kernel
append initrd=ironic-python-agent.initramfs ipa-inspection-callback-
↪→url=http://{IP}:5050/v1/continue systemd.journald.forward_to_console=yes

ipappend 3

Replace {IP}with IP of the machine (do not use loopback interface, it will be accessed by ramdisk
on a booting machine).

Note

While systemd.journald.forward_to_console=yes is not actually required, it will sub-
stantially simplify debugging if something goes wrong. You can also enable IPA debug logging
by appending ipa-debug=1.

IPA is pluggable: you can insert introspection plugins called collectors into it. For example, to
enable a very handy logs collector (sending ramdisk logs to ironic-inspector), modify the append
line in $TFTPROOT/pxelinux.cfg/default:

append initrd=ironic-python-agent.initramfs ipa-inspection-callback-
↪→url=http://{IP}:5050/v1/continue ipa-inspection-collectors=default,logs␣
↪→systemd.journald.forward_to_console=yes

Note

3.1. Install Guide 11

https://docs.openstack.org/diskimage-builder/latest/
https://docs.openstack.org/ironic-python-agent-builder/latest/admin/dib.html
https://tarballs.openstack.org/ironic-python-agent/dib/files/
https://tarballs.openstack.org/ironic-python-agent/tinyipa/files/

Ironic Inspector Documentation, Release 12.4.0.dev8

You probably want to always keep the default collector, as it provides the basic information
required for introspection.

• You need PXE boot server (e.g. dnsmasq) running on the same machine as ironic-inspector.
Dont do any firewall configuration: ironic-inspector will handle it for you. In ironic-inspector
configuration file set dnsmasq_interface to the interface your PXE boot server listens on. Here
is an example dnsmasq.conf :

port=0
interface={INTERFACE}
bind-interfaces
dhcp-range={DHCP IP RANGE, e.g. 192.168.0.50,192.168.0.150}
enable-tftp
tftp-root={TFTP ROOT, e.g. /tftpboot}
dhcp-boot=pxelinux.0
dhcp-sequential-ip

Note

dhcp-sequential-ip is used because otherwise a lot of nodes booting simultaneously cause
conflicts - the same IP address is suggested to several nodes.

Configuring iPXE

iPXE allows better scaling as it primarily uses the HTTP protocol instead of slow and unreliable TFTP.
You still need a TFTP server as a fallback for nodes not supporting iPXE. To use iPXE, youll need:

• TFTP server running and accessible (see above for using dnsmasq). Ensure undionly.kpxe is
present in the TFTP root. If any of your nodes boot with UEFI, youll also need ipxe.efi there.

• You also need an HTTP server capable of serving static files. Copy ironic-python-agent.
kernel and ironic-python-agent.initramfs there.

• Create a file called inspector.ipxe in the HTTP root (you can name and place it differently, just
dont forget to adjust the dnsmasq.conf example below):

#!ipxe

:retry_dhcp
dhcp || goto retry_dhcp

:retry_boot
imgfree
kernel --timeout 30000 http://{IP}:8088/ironic-python-agent.kernel ipa-
↪→inspection-callback-url=http://{IP}>:5050/v1/continue systemd.journald.
↪→forward_to_console=yes BOOTIF=${mac} initrd=agent.ramdisk || goto retry_
↪→boot
initrd --timeout 30000 http://{IP}:8088/ironic-python-agent.ramdisk ||␣
↪→goto retry_boot
boot

12 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

Note

Older versions of the iPXE ROM tend to misbehave on unreliable network connection, thus we
use the timeout option with retries.

Just like with PXE, you can customize the list of collectors by appending the
ipa-inspection-collectors kernel option. For example:

ipa-inspection-collectors=default,logs,extra_hardware

• Just as with PXE, youll need a PXE boot server. The configuration, however, will be different.
Here is an example dnsmasq.conf :

port=0
interface={INTERFACE}
bind-interfaces
dhcp-range={DHCP IP RANGE, e.g. 192.168.0.50,192.168.0.150}
enable-tftp
tftp-root={TFTP ROOT, e.g. /tftpboot}
dhcp-sequential-ip
dhcp-match=ipxe,175
dhcp-match=set:efi,option:client-arch,7
dhcp-match=set:efi,option:client-arch,9
dhcp-match=set:efi,option:client-arch,11
dhcpv6.option: Client System Architecture Type (61)
dhcp-match=set:efi6,option6:61,0007
dhcp-match=set:efi6,option6:61,0009
dhcp-match=set:efi6,option6:61,0011
dhcp-userclass=set:ipxe6,iPXE
Client is already running iPXE; move to next stage of chainloading
dhcp-boot=tag:ipxe,http://{IP}:8088/inspector.ipxe
Client is PXE booting over EFI without iPXE ROM,
send EFI version of iPXE chainloader
dhcp-boot=tag:efi,tag:!ipxe,ipxe.efi
dhcp-option=tag:efi6,tag:!ipxe6,option6:bootfile-url,tftp://{IP}/ipxe.efi
Client is running PXE over BIOS; send BIOS version of iPXE chainloader
dhcp-boot=undionly.kpxe,localhost.localdomain,{IP}

First, we configure the same common parameters as with PXE. Then we define ipxe and efi tags
for IPv4 and ipxe6 and efi6 for IPv6. Nodes already supporting iPXE are ordered to down-
load and execute inspector.ipxe. Nodes without iPXE booted with UEFI will get ipxe.efi
firmware to execute, while the remaining will get undionly.kpxe.

Configuring PXE for aarch64

For aarch64 Bare Metals, the PXE boot environment is basically the same as x86_64, youll need:

• TFTP server running and accessible (see below for using dnsmasq). Ensure grubaa64.efi is
present in the TFTP root. The firmware can be retrieved from the installation distributions for
aarch64.

• Copy ironic-agent.kernel and ironic-agent.initramfs to the TFTP root as well.

3.1. Install Guide 13

Ironic Inspector Documentation, Release 12.4.0.dev8

Note that the ramdisk needs to be pre-built on an aarch64 machine with tools like
ironic-python-agent-builder, see https://docs.openstack.org/ironic-python-agent-builder/
latest/admin/dib.html for how to build ramdisk for aarch64.

• Next, setup $TFTPROOT/EFI/BOOT/grub.cfg as follows:

set default="1"
set timeout=5

menuentry 'Introspection for aarch64' {
linux ironic-agent.kernel text showopts selinux=0 ipa-inspection-

↪→callback-url=http://{IP}:5050/v1/continueăipa-inspection-
↪→collectors=defaultăipa-collect-lldp=1ăsystemd.journald.forward_to_
↪→console=no

initrd ironic-agent.initramfs
}

Replace {IP}with IP of the machine (do not use loopback interface, it will be accessed by ramdisk
on a booting machine).

• Update DHCP options for aarch64, here is an example dnsmasq.conf :

port=0
interface={INTERFACE}
bind-interfaces
dhcp-range={DHCP IP RANGE, e.g. 192.168.0.50,192.168.0.150}
enable-tftp
dhcp-match=aarch64, option:client-arch, 11 # aarch64
dhcp-boot=tag:aarch64, grubaa64.efi
tftp-root={TFTP ROOT, e.g. /tftpboot}
dhcp-sequential-ip

Configuring PXE for Multi-arch

If the environment consists of bare metals with different architectures, normally different ramdisks are
required for each architecture. The grub built-in variable grub_cpu could be used to locate the correct
config file for each of them.

For example, setup $TFTPROOT/EFI/BOOT/grub.cfg as following:

set default=master
set timeout=5
set hidden_timeout_quiet=false

menuentry "master" {
configfile /tftpboot/grub-${grub_cpu}.cfg
}

Prepare specific grub config for each existing architectures, e.g. grub-arm64.cfg for ARM64 and
grub-x86_64.cfg for x86_64.

Update dnsmasq configuration to contain options for supported architectures.

14 Chapter 3. Using Ironic Inspector

https://docs.openstack.org/ironic-python-agent-builder/latest/admin/dib.html
https://docs.openstack.org/ironic-python-agent-builder/latest/admin/dib.html
https://www.gnu.org/software/grub/manual/grub/html_node/grub_005fcpu.html

Ironic Inspector Documentation, Release 12.4.0.dev8

3.1.4 Managing the ironic-inspector Database
ironic-inspector provides a command line client for managing its database. This client can be used for
upgrading, and downgrading the database using alembic migrations.

If this is your first time running ironic-inspector to migrate the database, simply run:

ironic-inspector-dbsync --config-file /etc/ironic-inspector/inspector.conf␣
↪→upgrade

If you have previously run a version of ironic-inspector earlier than 2.2.0, the safest thing is to delete the
existing SQLite database and run upgrade as shown above. However, if you want to save the existing
database, to ensure your database will work with the migrations, youll need to run an extra step before
upgrading the database. You only need to do this the first time running version 2.2.0 or later.

If you are upgrading from ironic-inspector version 2.1.0 or lower:

ironic-inspector-dbsync --config-file /etc/ironic-inspector/inspector.conf␣
↪→stamp --revision 578f84f38d
ironic-inspector-dbsync --config-file /etc/ironic-inspector/inspector.conf␣
↪→upgrade

If you are upgrading from a git master install of the ironic-inspector after rules were introduced:

ironic-inspector-dbsync --config-file /etc/ironic-inspector/inspector.conf␣
↪→stamp --revision d588418040d
ironic-inspector-dbsync --config-file /etc/ironic-inspector/inspector.conf␣
↪→upgrade

Other available commands can be discovered by running:

ironic-inspector-dbsync --help

3.1.5 Running

Running in standalone mode

Execute:

ironic-inspector --config-file /etc/ironic-inspector/inspector.conf

Running in non-standalone mode

API service can be started in development mode with:

ironic-inspector-api-wsgi -p 5050 -- --config-file /etc/ironic-inspector/
↪→inspector.conf

For production, the ironic-inspector API service should be hosted under a web service. Below is a sample
configuration for Apache with module mod_wsgi:

Listen 5050

<VirtualHost *:5050>
(continues on next page)

3.1. Install Guide 15

https://alembic.readthedocs.org/

Ironic Inspector Documentation, Release 12.4.0.dev8

(continued from previous page)

WSGIDaemonProcess ironic-inspector user=stack group=stack threads=10␣
↪→display-name=%{GROUP}

WSGIScriptAlias / /usr/local/bin/ironic-inspector-api-wsgi

SetEnv APACHE_RUN_USER stack
SetEnv APACHE_RUN_GROUP stack
WSGIProcessGroup ironic-inspector

ErrorLog /var/log/apache2/ironic_inspector_error.log
LogLevel info
CustomLog /var/log/apache2/ironic_inspector_access.log combined

<Directory /opt/stack/ironic-inspector/ironic_inspector/cmd>
WSGIProcessGroup ironic-inspector
WSGIApplicationGroup %{GLOBAL}
AllowOverride All
Require all granted

</Directory>
</VirtualHost>

You can refer to ironic installation document for more guides.

ironic-inspector conductor can be started with:

ironic-inspector-conductor --config-file /etc/ironic-inspector/inspector.conf

3.2 Command References
Here are references for commands not elsewhere documented.

3.2.1 ironic-inspector-status

Synopsis

ironic-inspector-status <category> <command> [<args>]

Description

ironic-inspector-status is a tool that provides routines for checking the status of the ironic-
inspector deployment.

Options

The standard pattern for executing a ironic-inspector-status command is:

ironic-inspector-status <category> <command> [<args>]

Run without arguments to see a list of available command categories:

ironic-inspector-status

16 Chapter 3. Using Ironic Inspector

https://docs.openstack.org/ironic/latest/install/install-rdo.html#configuring-ironic-api-behind-mod-wsgi

Ironic Inspector Documentation, Release 12.4.0.dev8

Categories are:

• upgrade

Detailed descriptions are below.

You can also run with a category argument such as upgrade to see a list of all commands in that category:

ironic-inspector-status upgrade

These sections describe the available categories and arguments for ironic-inspector-status.

Upgrade

ironic-status upgrade check
Performs a release-specific readiness check before restarting services with new code. This com-
mand expects to have complete configuration and access to databases and services.

Return Codes

Return code Description
0 All upgrade readiness checks passed successfully and there is nothing to do.
1 At least one check encountered an issue and requires further investigation.

This is considered a warning but the upgrade may be OK.
2 There was an upgrade status check failure that needs to be investigated. This

should be considered something that stops an upgrade.
255 An unexpected error occurred.

History of Checks

Wallaby

• Adds initial status check command as it was not previously needed as the database structure
and use of ironic-inspectors of ironic-inspector did not require the command previously.

• Adds a check to validate the configured policy file is not JSON based as JSON based policies
have been deprecated.

3.3 Configuration Guide
The ironic-inspector service operation is defined by a configuration file. The overview of configuration
file options follow.

3.3.1 ironic-inspector.conf

DEFAULT

debug

Type
boolean

Default
False

3.3. Configuration Guide 17

Ironic Inspector Documentation, Release 12.4.0.dev8

Mutable
This option can be changed without restarting.

If set to true, the logging level will be set to DEBUG instead of the default INFO level.

log_config_append

Type
string

Default
<None>

Mutable
This option can be changed without restarting.

The name of a logging configuration file. This file is appended to any existing logging configuration
files. For details about logging configuration files, see the Python logging module documentation.
Note that when logging configuration files are used then all logging configuration is set in the con-
figuration file and other logging configuration options are ignored (for example, log-date-format).

Table 1: Deprecated Variations

Group Name
DEFAULT log-config
DEFAULT log_config

log_date_format

Type
string

Default
%Y-%m-%d %H:%M:%S

Defines the format string for %(asctime)s in log records. Default: the value above . This option is
ignored if log_config_append is set.

log_file

Type
string

Default
<None>

(Optional) Name of log file to send logging output to. If no default is set, logging will go to stderr
as defined by use_stderr. This option is ignored if log_config_append is set.

Table 2: Deprecated Variations

Group Name
DEFAULT logfile

18 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

log_dir

Type
string

Default
<None>

(Optional) The base directory used for relative log_file paths. This option is ignored if
log_config_append is set.

Table 3: Deprecated Variations

Group Name
DEFAULT logdir

watch_log_file

Type
boolean

Default
False

Uses logging handler designed to watch file system. When log file is moved or removed this handler
will open a new log file with specified path instantaneously. It makes sense only if log_file option
is specified and Linux platform is used. This option is ignored if log_config_append is set.

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
This function is known to have bene broken for long time, and depends on
the unmaintained library

use_syslog

Type
boolean

Default
False

Use syslog for logging. Existing syslog format is DEPRECATED and will be changed later to
honor RFC5424. This option is ignored if log_config_append is set.

use_journal

Type
boolean

Default
False

3.3. Configuration Guide 19

Ironic Inspector Documentation, Release 12.4.0.dev8

Enable journald for logging. If running in a systemd environment you may wish to enable jour-
nal support. Doing so will use the journal native protocol which includes structured metadata in
addition to log messages.This option is ignored if log_config_append is set.

syslog_log_facility

Type
string

Default
LOG_USER

Syslog facility to receive log lines. This option is ignored if log_config_append is set.

use_json

Type
boolean

Default
False

Use JSON formatting for logging. This option is ignored if log_config_append is set.

use_stderr

Type
boolean

Default
False

Log output to standard error. This option is ignored if log_config_append is set.

use_eventlog

Type
boolean

Default
False

Log output to Windows Event Log.

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
Windows support is no longer maintained.

log_color

Type
boolean

Default
False

20 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

(Optional) Set the color key according to log levels. This option takes effect only when logging to
stderr or stdout is used. This option is ignored if log_config_append is set.

log_rotate_interval

Type
integer

Default
1

The amount of time before the log files are rotated. This option is ignored unless log_rotation_type
is set to interval.

log_rotate_interval_type

Type
string

Default
days

Valid Values
Seconds, Minutes, Hours, Days, Weekday, Midnight

Rotation interval type. The time of the last file change (or the time when the service was started)
is used when scheduling the next rotation.

max_logfile_count

Type
integer

Default
30

Maximum number of rotated log files.

max_logfile_size_mb

Type
integer

Default
200

Log file maximum size in MB. This option is ignored if log_rotation_type is not set to size.

log_rotation_type

Type
string

Default
none

Valid Values
interval, size, none

Log rotation type.

3.3. Configuration Guide 21

Ironic Inspector Documentation, Release 12.4.0.dev8

Possible values

interval
Rotate logs at predefined time intervals.

size
Rotate logs once they reach a predefined size.

none
Do not rotate log files.

logging_context_format_string

Type
string

Default
%(asctime)s.%(msecs)03d %(process)d %(levelname)s %(name)s
[%(global_request_id)s %(request_id)s %(user_identity)s]
%(instance)s%(message)s

Format string to use for log messages with context. Used by oslo_log.formatters.ContextFormatter

logging_default_format_string

Type
string

Default
%(asctime)s.%(msecs)03d %(process)d %(levelname)s %(name)s [-]
%(instance)s%(message)s

Format string to use for log messages when context is undefined. Used by
oslo_log.formatters.ContextFormatter

logging_debug_format_suffix

Type
string

Default
%(funcName)s %(pathname)s:%(lineno)d

Additional data to append to log message when logging level for the message is DEBUG. Used by
oslo_log.formatters.ContextFormatter

logging_exception_prefix

Type
string

Default
%(asctime)s.%(msecs)03d %(process)d ERROR %(name)s
%(instance)s

Prefix each line of exception output with this format. Used by
oslo_log.formatters.ContextFormatter

22 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

logging_user_identity_format

Type
string

Default
%(user)s %(project)s %(domain)s %(system_scope)s
%(user_domain)s %(project_domain)s

Defines the format string for %(user_identity)s that is used in logging_context_format_string.
Used by oslo_log.formatters.ContextFormatter

default_log_levels

Type
list

Default
['sqlalchemy=WARNING', 'iso8601=WARNING',
'requests=WARNING', 'urllib3.connectionpool=WARNING',
'keystonemiddleware=WARNING', 'keystoneauth=WARNING',
'ironicclient=WARNING', 'amqp=WARNING', 'amqplib=WARNING',
'stevedore=WARNING', 'oslo.messaging=WARNING',
'oslo_messaging=WARNING']

List of package logging levels in logger=LEVEL pairs. This option is ignored if log_config_append
is set.

publish_errors

Type
boolean

Default
False

Enables or disables publication of error events.

instance_format

Type
string

Default
"[instance: %(uuid)s] "

The format for an instance that is passed with the log message.

instance_uuid_format

Type
string

Default
"[instance: %(uuid)s] "

The format for an instance UUID that is passed with the log message.

3.3. Configuration Guide 23

Ironic Inspector Documentation, Release 12.4.0.dev8

rate_limit_interval

Type
integer

Default
0

Interval, number of seconds, of log rate limiting.

rate_limit_burst

Type
integer

Default
0

Maximum number of logged messages per rate_limit_interval.

rate_limit_except_level

Type
string

Default
CRITICAL

Valid Values
CRITICAL, ERROR, INFO, WARNING, DEBUG,

Log level name used by rate limiting. Logs with level greater or equal to rate_limit_except_level
are not filtered. An empty string means that all levels are filtered.

fatal_deprecations

Type
boolean

Default
False

Enables or disables fatal status of deprecations.

listen_address

Type
string

Default
::

IP to listen on.

listen_port

Type
port number

Default
5050

24 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

Minimum Value
0

Maximum Value
65535

Port to listen on.

listen_unix_socket

Type
string

Default
<None>

Unix socket to listen on. Disables listen_address and listen_port.

listen_unix_socket_mode

Type
unknown type

Default
<None>

File mode (an octal number) of the unix socket to listen on. Ignored if listen_unix_socket is not
set.

host

Type
string

Default
localhost

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

Name of this node. This can be an opaque identifier. It is not necessarily a hostname, FQDN, or
IP address. However, the node name must be valid within an AMQP key, and if using ZeroMQ, a
valid hostname, FQDN, or IP address.

auth_strategy

Type
string

Default
keystone

Valid Values
noauth, keystone, http_basic

Authentication method used on the ironic-inspector API. noauth, keystone or http_basic are valid
options. noauth will disable all authentication.

3.3. Configuration Guide 25

Ironic Inspector Documentation, Release 12.4.0.dev8

Possible values

noauth
no authentication

keystone
use the Identity service for authentication

http_basic
HTTP basic authentication

http_basic_auth_user_file

Type
string

Default
/etc/ironic-inspector/htpasswd

Path to Apache format user authentication file used when auth_strategy=http_basic

timeout

Type
integer

Default
3600

Maximum Value
315576000

Timeout after which introspection is considered failed, set to 0 to disable.

clean_up_period

Type
integer

Default
60

Minimum Value
0

Amount of time in seconds, after which repeat clean up of timed out nodes and old nodes status
information. WARNING: If set to a value of 0, then the periodic task is disabled and inspector will
not sync with ironic to complete the internal clean-up process. Not advisable if the deployment
uses a PXE filter, and will result in the ironic-inspector ceasing periodic cleanup activities.

leader_election_interval

Type
integer

Default
10

Interval (in seconds) between leader elections.

26 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

use_ssl

Type
boolean

Default
False

SSL Enabled/Disabled

max_concurrency

Type
integer

Default
1000

Minimum Value
2

The green thread pool size.

introspection_delay

Type
integer

Default
5

Delay (in seconds) between two introspections. Only applies when boot is managed by ironic-
inspector (i.e. manage_boot==True).

ipmi_address_fields

Type
list

Default
['redfish_address', 'ilo_address', 'drac_host',
'drac_address', 'ibmc_address']

Ironic driver_info fields that are equivalent to ipmi_address.

rootwrap_config

Type
string

Default
/etc/ironic-inspector/rootwrap.conf

Path to the rootwrap configuration file to use for running commands as root

api_max_limit

Type
integer

Default
1000

3.3. Configuration Guide 27

Ironic Inspector Documentation, Release 12.4.0.dev8

Minimum Value
1

Limit the number of elements an API list-call returns

can_manage_boot

Type
boolean

Default
True

Whether the current installation of ironic-inspector can manage PXE booting of nodes. If set to
False, the API will reject introspection requests with manage_boot missing or set to True.

enable_mdns

Type
boolean

Default
False

Whether to enable publishing the ironic-inspector API endpoint via multicast DNS.

standalone

Type
boolean

Default
True

Whether to run ironic-inspector as a standalone service. Its EXPERIMENTAL to set to False.

backdoor_port

Type
string

Default
<None>

Enable eventlet backdoor. Acceptable values are 0, <port>, and <start>:<end>, where 0 results in
listening on a random tcp port number; <port> results in listening on the specified port number (and
not enabling backdoor if that port is in use); and <start>:<end> results in listening on the smallest
unused port number within the specified range of port numbers. The chosen port is displayed in
the services log file.

backdoor_socket

Type
string

Default
<None>

Enable eventlet backdoor, using the provided path as a unix socket that can receive connections.
This option is mutually exclusive with backdoor_port in that only one should be provided. If both

28 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

are provided then the existence of this option overrides the usage of that option. Inside the path
{pid} will be replaced with the PID of the current process.

log_options

Type
boolean

Default
True

Enables or disables logging values of all registered options when starting a service (at DEBUG
level).

graceful_shutdown_timeout

Type
integer

Default
60

Specify a timeout after which a gracefully shutdown server will exit. Zero value means endless
wait.

api_paste_config

Type
string

Default
api-paste.ini

File name for the paste.deploy config for api service

wsgi_log_format

Type
string

Default
%(client_ip)s "%(request_line)s" status: %(status_code)s len:
%(body_length)s time: %(wall_seconds).7f

A python format string that is used as the template to generate log lines. The following values can
beformatted into it: client_ip, date_time, request_line, status_code, body_length, wall_seconds.

tcp_keepidle

Type
integer

Default
600

Sets the value of TCP_KEEPIDLE in seconds for each server socket. Not supported on OS X.

wsgi_default_pool_size

Type
integer

3.3. Configuration Guide 29

Ironic Inspector Documentation, Release 12.4.0.dev8

Default
100

Size of the pool of greenthreads used by wsgi

max_header_line

Type
integer

Default
16384

Maximum line size of message headers to be accepted. max_header_line may need to be increased
when using large tokens (typically those generated when keystone is configured to use PKI tokens
with big service catalogs).

wsgi_keep_alive

Type
boolean

Default
True

If False, closes the client socket connection explicitly.

client_socket_timeout

Type
integer

Default
900

Timeout for client connections socket operations. If an incoming connection is idle for this number
of seconds it will be closed. A value of 0 means wait forever.

wsgi_server_debug

Type
boolean

Default
False

True if the server should send exception tracebacks to the clients on 500 errors. If False, the server
will respond with empty bodies.

rpc_conn_pool_size

Type
integer

Default
30

Minimum Value
1

30 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

Size of RPC connection pool.

Table 4: Deprecated Variations

Group Name
DEFAULT rpc_conn_pool_size

conn_pool_min_size

Type
integer

Default
2

The pool size limit for connections expiration policy

conn_pool_ttl

Type
integer

Default
1200

The time-to-live in sec of idle connections in the pool

executor_thread_pool_size

Type
integer

Default
64

Size of executor thread pool when executor is threading or eventlet.

Table 5: Deprecated Variations

Group Name
DEFAULT rpc_thread_pool_size

rpc_response_timeout

Type
integer

Default
60

Seconds to wait for a response from a call.

transport_url

Type
string

3.3. Configuration Guide 31

Ironic Inspector Documentation, Release 12.4.0.dev8

Default
rabbit://

The network address and optional user credentials for connecting to the messaging backend, in
URL format. The expected format is:

driver://[user:pass@]host:port[,[userN:passN@]hostN:portN]/virtual_host?query

Example: rabbit://rabbitmq:password@127.0.0.1:5672//

For full details on the fields in the URL see the documentation of oslo_messaging.TransportURL
at https://docs.openstack.org/oslo.messaging/latest/reference/transport.html

control_exchange

Type
string

Default
openstack

The default exchange under which topics are scoped. May be overridden by an exchange name
specified in the transport_url option.

rpc_ping_enabled

Type
boolean

Default
False

Add an endpoint to answer to ping calls. Endpoint is named oslo_rpc_server_ping

capabilities

boot_mode

Type
boolean

Default
False

Whether to store the boot mode (BIOS or UEFI).

cpu_flags

Type
dict

Default
{'vmx': 'cpu_vt', 'svm': 'cpu_vt', 'aes': 'cpu_aes', 'pse':
'cpu_hugepages', 'pdpe1gb': 'cpu_hugepages_1g', 'smx':
'cpu_txt'}

Mapping between a CPU flag and a capability to set if this flag is present.

32 Chapter 3. Using Ironic Inspector

https://docs.openstack.org/oslo.messaging/latest/reference/transport.html

Ironic Inspector Documentation, Release 12.4.0.dev8

coordination

backend_url

Type
string

Default
memcached://localhost:11211

The backend URL to use for distributed coordination. EXPERIMENTAL.

cors

allowed_origin

Type
list

Default
<None>

Indicate whether this resource may be shared with the domain received in the requests ori-
gin header. Format: <protocol>://<host>[:<port>], no trailing slash. Example: https://horizon.
example.com

allow_credentials

Type
boolean

Default
True

Indicate that the actual request can include user credentials

expose_headers

Type
list

Default
[]

Indicate which headers are safe to expose to the API. Defaults to HTTP Simple Headers.

max_age

Type
integer

Default
3600

Maximum cache age of CORS preflight requests.

allow_methods

Type
list

3.3. Configuration Guide 33

https://horizon.example.com
https://horizon.example.com

Ironic Inspector Documentation, Release 12.4.0.dev8

Default
['GET', 'POST', 'PUT', 'HEAD', 'PATCH', 'DELETE', 'OPTIONS']

Indicate which methods can be used during the actual request.

allow_headers

Type
list

Default
['X-Auth-Token', 'X-OpenStack-Ironic-Inspector-API-Minimum-Version',
'X-OpenStack-Ironic-Inspector-API-Maximum-Version',
'X-OpenStack-Ironic-Inspector-API-Version']

Indicate which header field names may be used during the actual request.

database

sqlite_synchronous

Type
boolean

Default
True

If True, SQLite uses synchronous mode.

backend

Type
string

Default
sqlalchemy

The back end to use for the database.

connection

Type
string

Default
<None>

The SQLAlchemy connection string to use to connect to the database.

slave_connection

Type
string

Default
<None>

The SQLAlchemy connection string to use to connect to the slave database.

34 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

mysql_sql_mode

Type
string

Default
TRADITIONAL

The SQL mode to be used for MySQL sessions. This option, including the default, overrides any
server-set SQL mode. To use whatever SQL mode is set by the server configuration, set this to no
value. Example: mysql_sql_mode=

mysql_wsrep_sync_wait

Type
integer

Default
<None>

For Galera only, configure wsrep_sync_wait causality checks on new connections. Default is None,
meaning dont configure any setting.

connection_recycle_time

Type
integer

Default
3600

Connections which have been present in the connection pool longer than this number of seconds
will be replaced with a new one the next time they are checked out from the pool.

max_pool_size

Type
integer

Default
5

Maximum number of SQL connections to keep open in a pool. Setting a value of 0 indicates no
limit.

max_retries

Type
integer

Default
10

Maximum number of database connection retries during startup. Set to -1 to specify an infinite
retry count.

retry_interval

Type
integer

3.3. Configuration Guide 35

Ironic Inspector Documentation, Release 12.4.0.dev8

Default
10

Interval between retries of opening a SQL connection.

max_overflow

Type
integer

Default
50

If set, use this value for max_overflow with SQLAlchemy.

connection_debug

Type
integer

Default
0

Minimum Value
0

Maximum Value
100

Verbosity of SQL debugging information: 0=None, 100=Everything.

connection_trace

Type
boolean

Default
False

Add Python stack traces to SQL as comment strings.

pool_timeout

Type
integer

Default
<None>

If set, use this value for pool_timeout with SQLAlchemy.

use_db_reconnect

Type
boolean

Default
False

Enable the experimental use of database reconnect on connection lost.

36 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

db_retry_interval

Type
integer

Default
1

Seconds between retries of a database transaction.

db_inc_retry_interval

Type
boolean

Default
True

If True, increases the interval between retries of a database operation up to db_max_retry_interval.

db_max_retry_interval

Type
integer

Default
10

If db_inc_retry_interval is set, the maximum seconds between retries of a database operation.

db_max_retries

Type
integer

Default
20

Maximum retries in case of connection error or deadlock error before error is raised. Set to -1 to
specify an infinite retry count.

connection_parameters

Type
string

Default
''

Optional URL parameters to append onto the connection URL at connect time; specify as
param1=value1¶m2=value2&

discovery

enroll_node_driver

Type
string

Default
fake-hardware

3.3. Configuration Guide 37

Ironic Inspector Documentation, Release 12.4.0.dev8

The name of the Ironic driver used by the enroll hook when creating a new node in Ironic.

enroll_node_fields

Type
dict

Default
{}

Additional fields to set on newly discovered nodes.

enabled_bmc_address_version

Type
list

Default
['4', '6']

IP version of BMC address that will be used when enrolling a new node in Ironic. Defaults to 4,6.
Could be 4 (use v4 address only), 4,6 (v4 address have higher priority and if both addresses found
v6 version is ignored), 6,4 (v6 is desired but fall back to v4 address for BMCs having v4 address,
opposite to 4,6), 6 (use v6 address only and ignore v4 version).

dnsmasq_pxe_filter

dhcp_hostsdir

Type
string

Default
/var/lib/ironic-inspector/dhcp-hostsdir

The MAC address cache directory, exposed to dnsmasq.This directory is expected to be in exclusive
control of the driver.

purge_dhcp_hostsdir

Type
boolean

Default
True

Purge the hostsdir upon driver initialization. Setting to false should only be performed when the
deployment of inspector is such that there are multiple processes executing inside of the same host
and namespace. In this case, the Operator is responsible for setting up a custom cleaning facility.

dnsmasq_start_command

Type
string

Default
''

A (shell) command line to start the dnsmasq service upon filter initialization. Default: dont start.

38 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

dnsmasq_stop_command

Type
string

Default
''

A (shell) command line to stop the dnsmasq service upon inspector (error) exit. Default: dont stop.

extra_hardware

strict

Type
boolean

Default
False

If True, refuse to parse extra data if at least one record is too short. Additionally, remove the
incoming data even if parsing failed.

healthcheck

path

Type
string

Default
/healthcheck

The path to respond to healtcheck requests on.

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

detailed

Type
boolean

Default
False

Show more detailed information as part of the response. Security note: Enabling this option may
expose sensitive details about the service being monitored. Be sure to verify that it will not violate
your security policies.

backends

Type
list

Default
[]

3.3. Configuration Guide 39

Ironic Inspector Documentation, Release 12.4.0.dev8

Additional backends that can perform health checks and report that information back as part of a
request.

allowed_source_ranges

Type
list

Default
[]

A list of network addresses to limit source ip allowed to access healthcheck information. Any
request from ip outside of these network addresses are ignored.

ignore_proxied_requests

Type
boolean

Default
False

Ignore requests with proxy headers.

disable_by_file_path

Type
string

Default
<None>

Check the presence of a file to determine if an application is running on a port. Used by Disable-
ByFileHealthcheck plugin.

disable_by_file_paths

Type
list

Default
[]

Check the presence of a file based on a port to determine if an application is running on a port.
Expects a port:path list of strings. Used by DisableByFilesPortsHealthcheck plugin.

enable_by_file_paths

Type
list

Default
[]

Check the presence of files. Used by EnableByFilesHealthcheck plugin.

enabled

Type
boolean

40 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

Default
False

Enable the health check endpoint at /healthcheck. Note that this is unauthenticated. More in-
formation is available at https://docs.openstack.org/oslo.middleware/latest/reference/healthcheck_
plugins.html.

iptables

dnsmasq_interface

Type
string

Default
br-ctlplane

Interface on which dnsmasq listens, the default is for VMs.

firewall_chain

Type
string

Default
ironic-inspector

iptables chain name to use.

ethoib_interfaces

Type
list

Default
[]

List of Ethernet Over InfiniBand interfaces on the Inspector host which are used for physical access
to the DHCP network. Multiple interfaces would be attached to a bond or bridge specified in
dnsmasq_interface. The MACs of the InfiniBand nodes which are not in desired state are going to
be blocked based on the list of neighbor MACs on these interfaces.

ip_version

Type
string

Default
4

Valid Values
4, 6

The IP version that will be used for iptables filter. Defaults to 4.

3.3. Configuration Guide 41

https://docs.openstack.org/oslo.middleware/latest/reference/healthcheck_plugins.html
https://docs.openstack.org/oslo.middleware/latest/reference/healthcheck_plugins.html

Ironic Inspector Documentation, Release 12.4.0.dev8

Possible values

4
IPv4

6
IPv6

ironic

auth_url

Type
unknown type

Default
<None>

Authentication URL

auth_type

Type
unknown type

Default
<None>

Authentication type to load

Table 6: Deprecated Variations

Group Name
ironic auth_plugin

cafile

Type
string

Default
<None>

PEM encoded Certificate Authority to use when verifying HTTPs connections.

certfile

Type
string

Default
<None>

PEM encoded client certificate cert file

collect_timing

Type
boolean

42 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

Default
False

Collect per-API call timing information.

connect_retries

Type
integer

Default
<None>

The maximum number of retries that should be attempted for connection errors.

connect_retry_delay

Type
floating point

Default
<None>

Delay (in seconds) between two retries for connection errors. If not set, exponential retry starting
with 0.5 seconds up to a maximum of 60 seconds is used.

default_domain_id

Type
unknown type

Default
<None>

Optional domain ID to use with v3 and v2 parameters. It will be used for both the user and project
domain in v3 and ignored in v2 authentication.

default_domain_name

Type
unknown type

Default
<None>

Optional domain name to use with v3 API and v2 parameters. It will be used for both the user and
project domain in v3 and ignored in v2 authentication.

domain_id

Type
unknown type

Default
<None>

Domain ID to scope to

domain_name

Type
unknown type

3.3. Configuration Guide 43

Ironic Inspector Documentation, Release 12.4.0.dev8

Default
<None>

Domain name to scope to

endpoint_override

Type
string

Default
<None>

Always use this endpoint URL for requests for this client. NOTE: The unversioned endpoint should
be specified here; to request a particular API version, use the version, min-version, and/or max-
version options.

insecure

Type
boolean

Default
False

Verify HTTPS connections.

keyfile

Type
string

Default
<None>

PEM encoded client certificate key file

max_version

Type
string

Default
<None>

The maximum major version of a given API, intended to be used as the upper bound of a range
with min_version. Mutually exclusive with version.

max_retries

Type
integer

Default
30

Maximum number of retries in case of conflict error (HTTP 409).

min_version

Type
string

44 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

Default
<None>

The minimum major version of a given API, intended to be used as the lower bound of a range
with max_version. Mutually exclusive with version. If min_version is given with no max_version
it is as if max version is latest.

password

Type
unknown type

Default
<None>

Users password

project_domain_id

Type
unknown type

Default
<None>

Domain ID containing project

project_domain_name

Type
unknown type

Default
<None>

Domain name containing project

project_id

Type
unknown type

Default
<None>

Project ID to scope to

Table 7: Deprecated Variations

Group Name
ironic tenant-id
ironic tenant_id

project_name

Type
unknown type

3.3. Configuration Guide 45

Ironic Inspector Documentation, Release 12.4.0.dev8

Default
<None>

Project name to scope to

Table 8: Deprecated Variations

Group Name
ironic tenant-name
ironic tenant_name

region_name

Type
string

Default
<None>

The default region_name for endpoint URL discovery.

retriable_status_codes

Type
list

Default
<None>

List of retriable HTTP status codes that should be retried. If not set default to [503]

retry_interval

Type
integer

Default
2

Interval between retries in case of conflict error (HTTP 409).

service_name

Type
string

Default
<None>

The default service_name for endpoint URL discovery.

service_type

Type
string

Default
baremetal

The default service_type for endpoint URL discovery.

46 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

split_loggers

Type
boolean

Default
False

Log requests to multiple loggers.

status_code_retries

Type
integer

Default
<None>

The maximum number of retries that should be attempted for retriable HTTP status codes.

status_code_retry_delay

Type
floating point

Default
<None>

Delay (in seconds) between two retries for retriable status codes. If not set, exponential retry
starting with 0.5 seconds up to a maximum of 60 seconds is used.

system_scope

Type
unknown type

Default
<None>

Scope for system operations

tenant_id

Type
unknown type

Default
<None>

Tenant ID

tenant_name

Type
unknown type

Default
<None>

Tenant Name

3.3. Configuration Guide 47

Ironic Inspector Documentation, Release 12.4.0.dev8

timeout

Type
integer

Default
<None>

Timeout value for http requests

trust_id

Type
unknown type

Default
<None>

ID of the trust to use as a trustee use

user_domain_id

Type
unknown type

Default
<None>

Users domain id

user_domain_name

Type
unknown type

Default
<None>

Users domain name

user_id

Type
unknown type

Default
<None>

User id

username

Type
unknown type

Default
<None>

Username

48 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

Table 9: Deprecated Variations

Group Name
ironic user-name
ironic user_name

valid_interfaces

Type
list

Default
['internal', 'public']

List of interfaces, in order of preference, for endpoint URL.

version

Type
string

Default
<None>

Minimum Major API version within a given Major API version for endpoint URL discovery. Mu-
tually exclusive with min_version and max_version

keystone_authtoken

www_authenticate_uri

Type
string

Default
<None>

Complete public Identity API endpoint. This endpoint should not be an admin endpoint, as it
should be accessible by all end users. Unauthenticated clients are redirected to this endpoint to
authenticate. Although this endpoint should ideally be unversioned, client support in the wild
varies. If youre using a versioned v2 endpoint here, then this should not be the same endpoint the
service user utilizes for validating tokens, because normal end users may not be able to reach that
endpoint.

Table 10: Deprecated Variations

Group Name
keystone_authtoken auth_uri

auth_uri

Type
string

Default
<None>

3.3. Configuration Guide 49

Ironic Inspector Documentation, Release 12.4.0.dev8

Complete public Identity API endpoint. This endpoint should not be an admin endpoint, as it
should be accessible by all end users. Unauthenticated clients are redirected to this endpoint to
authenticate. Although this endpoint should ideally be unversioned, client support in the wild
varies. If youre using a versioned v2 endpoint here, then this should not be the same endpoint the
service user utilizes for validating tokens, because normal end users may not be able to reach that
endpoint. This option is deprecated in favor of www_authenticate_uri and will be removed in the
S release.

Warning

This option is deprecated for removal since Queens. Its value may be silently ignored in the
future.

Reason
The auth_uri option is deprecated in favor of www_authenticate_uri and will
be removed in the S release.

auth_version

Type
string

Default
<None>

API version of the Identity API endpoint.

interface

Type
string

Default
internal

Interface to use for the Identity API endpoint. Valid values are public, internal (default) or admin.

delay_auth_decision

Type
boolean

Default
False

Do not handle authorization requests within the middleware, but delegate the authorization deci-
sion to downstream WSGI components.

http_connect_timeout

Type
integer

Default
<None>

Request timeout value for communicating with Identity API server.

50 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

http_request_max_retries

Type
integer

Default
3

How many times are we trying to reconnect when communicating with Identity API Server.

cache

Type
string

Default
<None>

Request environment key where the Swift cache object is stored. When auth_token middleware is
deployed with a Swift cache, use this option to have the middleware share a caching backend with
swift. Otherwise, use the memcached_servers option instead.

certfile

Type
string

Default
<None>

Required if identity server requires client certificate

keyfile

Type
string

Default
<None>

Required if identity server requires client certificate

cafile

Type
string

Default
<None>

A PEM encoded Certificate Authority to use when verifying HTTPs connections. Defaults to
system CAs.

insecure

Type
boolean

Default
False

Verify HTTPS connections.

3.3. Configuration Guide 51

Ironic Inspector Documentation, Release 12.4.0.dev8

region_name

Type
string

Default
<None>

The region in which the identity server can be found.

memcached_servers

Type
list

Default
<None>

Optionally specify a list of memcached server(s) to use for caching. If left undefined, tokens will
instead be cached in-process.

Table 11: Deprecated Variations

Group Name
keystone_authtoken memcache_servers

token_cache_time

Type
integer

Default
300

In order to prevent excessive effort spent validating tokens, the middleware caches previously-seen
tokens for a configurable duration (in seconds). Set to -1 to disable caching completely.

memcache_security_strategy

Type
string

Default
None

Valid Values
None, MAC, ENCRYPT

(Optional) If defined, indicate whether token data should be authenticated or authenticated and
encrypted. If MAC, token data is authenticated (with HMAC) in the cache. If ENCRYPT, token
data is encrypted and authenticated in the cache. If the value is not one of these options or empty,
auth_token will raise an exception on initialization.

memcache_secret_key

Type
string

52 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

Default
<None>

(Optional, mandatory if memcache_security_strategy is defined) This string is used for key deriva-
tion.

memcache_pool_dead_retry

Type
integer

Default
300

(Optional) Number of seconds memcached server is considered dead before it is tried again.

memcache_pool_maxsize

Type
integer

Default
10

(Optional) Maximum total number of open connections to every memcached server.

memcache_pool_socket_timeout

Type
integer

Default
3

(Optional) Socket timeout in seconds for communicating with a memcached server.

memcache_pool_unused_timeout

Type
integer

Default
60

(Optional) Number of seconds a connection to memcached is held unused in the pool before it is
closed.

memcache_pool_conn_get_timeout

Type
integer

Default
10

(Optional) Number of seconds that an operation will wait to get a memcached client connection
from the pool.

memcache_use_advanced_pool

Type
boolean

3.3. Configuration Guide 53

Ironic Inspector Documentation, Release 12.4.0.dev8

Default
True

(Optional) Use the advanced (eventlet safe) memcached client pool.

include_service_catalog

Type
boolean

Default
True

(Optional) Indicate whether to set the X-Service-Catalog header. If False, middleware will not ask
for service catalog on token validation and will not set the X-Service-Catalog header.

enforce_token_bind

Type
string

Default
permissive

Used to control the use and type of token binding. Can be set to: disabled to not check token
binding. permissive (default) to validate binding information if the bind type is of a form known
to the server and ignore it if not. strict like permissive but if the bind type is unknown the token
will be rejected. required any form of token binding is needed to be allowed. Finally the name of
a binding method that must be present in tokens.

service_token_roles

Type
list

Default
['service']

A choice of roles that must be present in a service token. Service tokens are allowed to request
that an expired token can be used and so this check should tightly control that only actual services
should be sending this token. Roles here are applied as an ANY check so any role in this list
must be present. For backwards compatibility reasons this currently only affects the allow_expired
check.

service_token_roles_required

Type
boolean

Default
False

For backwards compatibility reasons we must let valid service tokens pass that dont pass the ser-
vice_token_roles check as valid. Setting this true will become the default in a future release and
should be enabled if possible.

service_type

Type
string

54 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

Default
<None>

The name or type of the service as it appears in the service catalog. This is used to validate tokens
that have restricted access rules.

auth_type

Type
unknown type

Default
<None>

Authentication type to load

Table 12: Deprecated Variations

Group Name
keystone_authtoken auth_plugin

auth_section

Type
unknown type

Default
<None>

Config Section from which to load plugin specific options

mdns

registration_attempts

Type
integer

Default
5

Minimum Value
1

Number of attempts to register a service. Currently has to be larger than 1 because of race condi-
tions in the zeroconf library.

lookup_attempts

Type
integer

Default
3

Minimum Value
1

Number of attempts to lookup a service.

3.3. Configuration Guide 55

Ironic Inspector Documentation, Release 12.4.0.dev8

params

Type
unknown type

Default
{}

Additional parameters to pass for the registered service.

interfaces

Type
list

Default
<None>

List of IP addresses of interfaces to use for mDNS. Defaults to all interfaces on the system.

oslo_messaging_kafka

kafka_max_fetch_bytes

Type
integer

Default
1048576

Max fetch bytes of Kafka consumer

kafka_consumer_timeout

Type
floating point

Default
1.0

Default timeout(s) for Kafka consumers

pool_size

Type
integer

Default
10

Pool Size for Kafka Consumers

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
Driver no longer uses connection pool.

56 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

conn_pool_min_size

Type
integer

Default
2

The pool size limit for connections expiration policy

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
Driver no longer uses connection pool.

conn_pool_ttl

Type
integer

Default
1200

The time-to-live in sec of idle connections in the pool

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
Driver no longer uses connection pool.

consumer_group

Type
string

Default
oslo_messaging_consumer

Group id for Kafka consumer. Consumers in one group will coordinate message consumption

producer_batch_timeout

Type
floating point

Default
0.0

Upper bound on the delay for KafkaProducer batching in seconds

producer_batch_size

3.3. Configuration Guide 57

Ironic Inspector Documentation, Release 12.4.0.dev8

Type
integer

Default
16384

Size of batch for the producer async send

compression_codec

Type
string

Default
none

Valid Values
none, gzip, snappy, lz4, zstd

The compression codec for all data generated by the producer. If not set, compression will not be
used. Note that the allowed values of this depend on the kafka version

enable_auto_commit

Type
boolean

Default
False

Enable asynchronous consumer commits

max_poll_records

Type
integer

Default
500

The maximum number of records returned in a poll call

security_protocol

Type
string

Default
PLAINTEXT

Valid Values
PLAINTEXT, SASL_PLAINTEXT, SSL, SASL_SSL

Protocol used to communicate with brokers

sasl_mechanism

Type
string

Default
PLAIN

58 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

Mechanism when security protocol is SASL

ssl_cafile

Type
string

Default
''

CA certificate PEM file used to verify the server certificate

ssl_client_cert_file

Type
string

Default
''

Client certificate PEM file used for authentication.

ssl_client_key_file

Type
string

Default
''

Client key PEM file used for authentication.

ssl_client_key_password

Type
string

Default
''

Client key password file used for authentication.

oslo_messaging_notifications

driver

Type
multi-valued

Default
''

The Drivers(s) to handle sending notifications. Possible values are messaging, messagingv2, rout-
ing, log, test, noop

Table 13: Deprecated Variations

Group Name
DEFAULT notification_driver

3.3. Configuration Guide 59

Ironic Inspector Documentation, Release 12.4.0.dev8

transport_url

Type
string

Default
<None>

A URL representing the messaging driver to use for notifications. If not set, we fall back to the
same configuration used for RPC.

Table 14: Deprecated Variations

Group Name
DEFAULT notification_transport_url

topics

Type
list

Default
['notifications']

AMQP topic used for OpenStack notifications.

Table 15: Deprecated Variations

Group Name
rpc_notifier2 topics
DEFAULT notification_topics

retry

Type
integer

Default
-1

The maximum number of attempts to re-send a notification message which failed to be delivered
due to a recoverable error. 0 - No retry, -1 - indefinite

oslo_messaging_rabbit

amqp_durable_queues

Type
boolean

Default
False

Use durable queues in AMQP. If rabbit_quorum_queue is enabled, queues will be durable and this
value will be ignored.

60 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

amqp_auto_delete

Type
boolean

Default
False

Auto-delete queues in AMQP.

Table 16: Deprecated Variations

Group Name
DEFAULT amqp_auto_delete

ssl

Type
boolean

Default
False

Connect over SSL.

Table 17: Deprecated Variations

Group Name
oslo_messaging_rabbit rabbit_use_ssl

ssl_version

Type
string

Default
''

SSL version to use (valid only if SSL enabled). Valid values are TLSv1 and SSLv23. SSLv2,
SSLv3, TLSv1_1, and TLSv1_2 may be available on some distributions.

Table 18: Deprecated Variations

Group Name
oslo_messaging_rabbit kombu_ssl_version

ssl_key_file

Type
string

Default
''

3.3. Configuration Guide 61

Ironic Inspector Documentation, Release 12.4.0.dev8

SSL key file (valid only if SSL enabled).

Table 19: Deprecated Variations

Group Name
oslo_messaging_rabbit kombu_ssl_keyfile

ssl_cert_file

Type
string

Default
''

SSL cert file (valid only if SSL enabled).

Table 20: Deprecated Variations

Group Name
oslo_messaging_rabbit kombu_ssl_certfile

ssl_ca_file

Type
string

Default
''

SSL certification authority file (valid only if SSL enabled).

Table 21: Deprecated Variations

Group Name
oslo_messaging_rabbit kombu_ssl_ca_certs

ssl_enforce_fips_mode

Type
boolean

Default
False

Global toggle for enforcing the OpenSSL FIPS mode. This feature requires Python support. This is
available in Python 3.9 in all environments and may have been backported to older Python versions
on select environments. If the Python executable used does not support OpenSSL FIPS mode, an
exception will be raised.

heartbeat_in_pthread

Type
boolean

62 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

Default
False

(DEPRECATED) It is recommend not to use this option anymore. Run the health check heartbeat
thread through a native python thread by default. If this option is equal to False then the health
check heartbeat will inherit the execution model from the parent process. For example if the parent
process has monkey patched the stdlib by using eventlet/greenlet then the heartbeat will be run
through a green thread. This option should be set to True only for the wsgi services.

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
The option is related to Eventlet which will be removed. In addition this
has never worked as expected with services using eventlet for core service
framework.

kombu_reconnect_delay

Type
floating point

Default
1.0

Minimum Value
0.0

Maximum Value
4.5

How long to wait (in seconds) before reconnecting in response to an AMQP consumer cancel
notification.

Table 22: Deprecated Variations

Group Name
DEFAULT kombu_reconnect_delay

kombu_compression

Type
string

Default
<None>

EXPERIMENTAL: Possible values are: gzip, bz2. If not set compression will not be used. This
option may not be available in future versions.

kombu_missing_consumer_retry_timeout

Type
integer

3.3. Configuration Guide 63

Ironic Inspector Documentation, Release 12.4.0.dev8

Default
60

How long to wait a missing client before abandoning to send it its replies. This value should not
be longer than rpc_response_timeout.

Table 23: Deprecated Variations

Group Name
oslo_messaging_rabbit kombu_reconnect_timeout

kombu_failover_strategy

Type
string

Default
round-robin

Valid Values
round-robin, shuffle

Determines how the next RabbitMQ node is chosen in case the one we are currently connected to
becomes unavailable. Takes effect only if more than one RabbitMQ node is provided in config.

rabbit_login_method

Type
string

Default
AMQPLAIN

Valid Values
PLAIN, AMQPLAIN, EXTERNAL, RABBIT-CR-DEMO

The RabbitMQ login method.

Table 24: Deprecated Variations

Group Name
DEFAULT rabbit_login_method

rabbit_retry_interval

Type
integer

Default
1

How frequently to retry connecting with RabbitMQ.

rabbit_retry_backoff

Type
integer

64 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

Default
2

How long to backoff for between retries when connecting to RabbitMQ.

Table 25: Deprecated Variations

Group Name
DEFAULT rabbit_retry_backoff

rabbit_interval_max

Type
integer

Default
30

Maximum interval of RabbitMQ connection retries. Default is 30 seconds.

rabbit_ha_queues

Type
boolean

Default
False

Try to use HA queues in RabbitMQ (x-ha-policy: all). If you change this option, you must wipe the
RabbitMQ database. In RabbitMQ 3.0, queue mirroring is no longer controlled by the x-ha-policy
argument when declaring a queue. If you just want to make sure that all queues (except those with
auto-generated names) are mirrored across all nodes, run: rabbitmqctl set_policy HA ^(?!amq.).*
{ha-mode: all}

Table 26: Deprecated Variations

Group Name
DEFAULT rabbit_ha_queues

rabbit_quorum_queue

Type
boolean

Default
False

Use quorum queues in RabbitMQ (x-queue-type: quorum). The quorum queue is a modern queue
type for RabbitMQ implementing a durable, replicated FIFO queue based on the Raft consensus
algorithm. It is available as of RabbitMQ 3.8.0. If set this option will conflict with the HA queues
(rabbit_ha_queues) aka mirrored queues, in other words the HA queues should be disabled.
Quorum queues are also durable by default so the amqp_durable_queues option is ignored when
this option is enabled.

3.3. Configuration Guide 65

Ironic Inspector Documentation, Release 12.4.0.dev8

rabbit_transient_quorum_queue

Type
boolean

Default
False

Use quorum queues for transients queues in RabbitMQ. Enabling this option will then make sure
those queues are also using quorum kind of rabbit queues, which are HA by default.

rabbit_quorum_delivery_limit

Type
integer

Default
0

Each time a message is redelivered to a consumer, a counter is incremented. Once the redelivery
count exceeds the delivery limit the message gets dropped or dead-lettered (if a DLX exchange has
been configured) Used only when rabbit_quorum_queue is enabled, Default 0 which means dont
set a limit.

rabbit_quorum_max_memory_length

Type
integer

Default
0

By default all messages are maintained in memory if a quorum queue grows in length it can put
memory pressure on a cluster. This option can limit the number of messages in the quorum queue.
Used only when rabbit_quorum_queue is enabled, Default 0 which means dont set a limit.

Table 27: Deprecated Variations

Group Name
oslo_messaging_rabbit rabbit_quroum_max_memory_length

rabbit_quorum_max_memory_bytes

Type
integer

Default
0

By default all messages are maintained in memory if a quorum queue grows in length it can put
memory pressure on a cluster. This option can limit the number of memory bytes used by the
quorum queue. Used only when rabbit_quorum_queue is enabled, Default 0 which means dont set
a limit.

66 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

Table 28: Deprecated Variations

Group Name
oslo_messaging_rabbit rabbit_quroum_max_memory_bytes

rabbit_transient_queues_ttl

Type
integer

Default
1800

Minimum Value
0

Positive integer representing duration in seconds for queue TTL (x-expires). Queues which are
unused for the duration of the TTL are automatically deleted. The parameter affects only reply
and fanout queues. Setting 0 as value will disable the x-expires. If doing so, make sure you have
a rabbitmq policy to delete the queues or you deployment will create an infinite number of queue
over time.In case rabbit_stream_fanout is set to True, this option will control data retention policy
(x-max-age) for messages in the fanout queue rather then the queue duration itself. So the oldest
data in the stream queue will be discarded from it once reaching TTL Setting to 0 will disable
x-max-age for stream which make stream grow indefinitely filling up the diskspace

rabbit_qos_prefetch_count

Type
integer

Default
0

Specifies the number of messages to prefetch. Setting to zero allows unlimited messages.

heartbeat_timeout_threshold

Type
integer

Default
60

Number of seconds after which the Rabbit broker is considered down if heartbeats keep-alive fails
(0 disables heartbeat).

heartbeat_rate

Type
integer

Default
3

How often times during the heartbeat_timeout_threshold we check the heartbeat.

3.3. Configuration Guide 67

Ironic Inspector Documentation, Release 12.4.0.dev8

direct_mandatory_flag

Type
boolean

Default
True

(DEPRECATED) Enable/Disable the RabbitMQ mandatory flag for direct send. The direct send
is used as reply, so the MessageUndeliverable exception is raised in case the client queue does not
exist.MessageUndeliverable exception will be used to loop for a timeout to lets a chance to sender
to recover.This flag is deprecated and it will not be possible to deactivate this functionality anymore

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
Mandatory flag no longer deactivable.

enable_cancel_on_failover

Type
boolean

Default
False

Enable x-cancel-on-ha-failover flag so that rabbitmq server will cancel and notify consumerswhen
queue is down

use_queue_manager

Type
boolean

Default
False

Should we use consistant queue names or random ones

hostname

Type
string

Default
node1.example.com

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

Hostname used by queue manager. Defaults to the value returned by socket.gethostname().

processname

Type
string

68 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

Default
nova-api

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

Process name used by queue manager

rabbit_stream_fanout

Type
boolean

Default
False

Use stream queues in RabbitMQ (x-queue-type: stream). Streams are a new persistent and
replicated data structure (queue type) in RabbitMQ which models an append-only log with non-
destructive consumer semantics. It is available as of RabbitMQ 3.9.0. If set this option will replace
all fanout queues with only one stream queue.

oslo_policy

enforce_scope

Type
boolean

Default
True

This option controls whether or not to enforce scope when evaluating policies. If True, the scope
of the token used in the request is compared to the scope_types of the policy being enforced. If
the scopes do not match, an InvalidScope exception will be raised. If False, a message will be
logged informing operators that policies are being invoked with mismatching scope.

Warning

This option is deprecated for removal. Its value may be silently ignored in the future.

Reason
This configuration was added temporarily to facilitate a smooth transition to
the new RBAC. OpenStack will always enforce scope checks. This configu-
ration option is deprecated and will be removed in the 2025.2 cycle.

enforce_new_defaults

Type
boolean

Default
True

This option controls whether or not to use old deprecated defaults when evaluating policies. If
True, the old deprecated defaults are not going to be evaluated. This means if any existing token is
allowed for old defaults but is disallowed for new defaults, it will be disallowed. It is encouraged to
enable this flag along with the enforce_scope flag so that you can get the benefits of new defaults

3.3. Configuration Guide 69

Ironic Inspector Documentation, Release 12.4.0.dev8

and scope_type together. If False, the deprecated policy check string is logically ORd with the
new policy check string, allowing for a graceful upgrade experience between releases with new
policies, which is the default behavior.

policy_file

Type
string

Default
policy.yaml

The relative or absolute path of a file that maps roles to permissions for a given service. Relative
paths must be specified in relation to the configuration file setting this option.

policy_default_rule

Type
string

Default
default

Default rule. Enforced when a requested rule is not found.

policy_dirs

Type
multi-valued

Default
policy.d

Directories where policy configuration files are stored. They can be relative to any directory in
the search path defined by the config_dir option, or absolute paths. The file defined by policy_file
must exist for these directories to be searched. Missing or empty directories are ignored.

remote_content_type

Type
string

Default
application/x-www-form-urlencoded

Valid Values
application/x-www-form-urlencoded, application/json

Content Type to send and receive data for REST based policy check

remote_ssl_verify_server_crt

Type
boolean

Default
False

server identity verification for REST based policy check

70 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

remote_ssl_ca_crt_file

Type
string

Default
<None>

Absolute path to ca cert file for REST based policy check

remote_ssl_client_crt_file

Type
string

Default
<None>

Absolute path to client cert for REST based policy check

remote_ssl_client_key_file

Type
string

Default
<None>

Absolute path client key file REST based policy check

remote_timeout

Type
floating point

Default
60

Minimum Value
0

Timeout in seconds for REST based policy check

pci_devices

alias

Type
multi-valued

Default
''

An alias for PCI device identified by vendor_id and product_id fields. Format: {vendor_id: 1234,
product_id: 5678, name: pci_dev1}

3.3. Configuration Guide 71

Ironic Inspector Documentation, Release 12.4.0.dev8

port_physnet

cidr_map

Type
list

Default
10.10.10.0/24:physnet_a,2001:db8::/64:physnet_b

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

Mapping of IP subnet CIDR to physical network. When the physnet_cidr_map processing hook is
enabled the physical_network property of baremetal ports is populated based on this mapping.

processing

add_ports

Type
string

Default
pxe

Valid Values
all, active, pxe, disabled

Which MAC addresses to add as ports during introspection. Possible values: all (all MAC ad-
dresses), active (MAC addresses of NIC with IP addresses), pxe (only MAC address of NIC node
PXE booted from, falls back to active if PXE MAC is not supplied by the ramdisk).

keep_ports

Type
string

Default
all

Valid Values
all, present, added

Which ports (already present on a node) to keep after introspection. Possible values: all (do not
delete anything), present (keep ports which MACs were present in introspection data), added (keep
only MACs that we added during introspection).

overwrite_existing

Type
boolean

Default
True

Whether to overwrite existing values in node database. Disable this option to make introspection
a non-destructive operation.

72 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

default_processing_hooks

Type
string

Default
ramdisk_error,root_disk_selection,scheduler,
validate_interfaces,capabilities,pci_devices

Comma-separated list of default hooks for processing pipeline. Hook scheduler updates the node
with the minimum properties required by the Nova scheduler. Hook validate_interfaces ensures
that valid NIC data was provided by the ramdisk. Do not exclude these two unless you really know
what youre doing.

processing_hooks

Type
string

Default
$default_processing_hooks

Comma-separated list of enabled hooks for processing pipeline. The default for this is
$default_processing_hooks, hooks can be added before or after the defaults like this: pre-
hook,$default_processing_hooks,posthook.

ramdisk_logs_dir

Type
string

Default
<None>

If set, logs from ramdisk will be stored in this directory.

always_store_ramdisk_logs

Type
boolean

Default
False

Whether to store ramdisk logs even if it did not return an error message (dependent upon
ramdisk_logs_dir option being set).

node_not_found_hook

Type
string

Default
<None>

The name of the hook to run when inspector receives inspection information from a node it isnt
already aware of. This hook is ignored by default.

3.3. Configuration Guide 73

Ironic Inspector Documentation, Release 12.4.0.dev8

store_data

Type
string

Default
none

The storage backend for storing introspection data. Possible values are: none, database and swift.
If set to none, introspection data will not be stored.

disk_partitioning_spacing

Type
boolean

Default
True

Whether to leave 1 GiB of disk size untouched for partitioning. Only has effect when used with
the IPA as a ramdisk, for older ramdisk local_gb is calculated on the ramdisk side.

ramdisk_logs_filename_format

Type
string

Default
{uuid}_{dt:%Y%m%d-%H%M%S.%f}.tar.gz

File name template for storing ramdisk logs. The following replacements can be used: {uuid} -
node UUID or unknown, {bmc} - node BMC address or unknown, {dt} - current UTC date and
time, {mac} - PXE booting MAC or unknown.

power_off

Type
boolean

Default
True

Whether to power off a node after introspection. Nodes in active or rescue states which submit
introspection data will be left on if the feature is enabled via the permit_active_introspection con-
figuration option.

permit_active_introspection

Type
boolean

Default
False

Whether to process nodes that are in running states.

update_pxe_enabled

Type
boolean

74 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

Default
True

Whether to update the pxe_enabled value according to the introspection data. This option has no
effect if [processing]overwrite_existing is set to False

pxe_filter

driver

Type
string

Default
iptables

PXE boot filter driver to use, possible filters are: iptables, dnsmasq and noop. Set noop to disable
the firewall filtering.

sync_period

Type
integer

Default
15

Minimum Value
0

Amount of time in seconds, after which repeat periodic update of the filter.

deny_unknown_macs

Type
boolean

Default
False

By default inspector will open the DHCP server for any node when introspection is active. Opening
DHCP for unknown MAC addresses when introspection is active allow for users to add nodes with
no ports to ironic and have ironic-inspector enroll ports based on node introspection results. NOTE:
If this option is True, nodes must have at least one enrolled port prior to introspection.

service_catalog

auth_url

Type
unknown type

Default
<None>

Authentication URL

3.3. Configuration Guide 75

Ironic Inspector Documentation, Release 12.4.0.dev8

auth_type

Type
unknown type

Default
<None>

Authentication type to load

Table 29: Deprecated Variations

Group Name
service_catalog auth_plugin

cafile

Type
string

Default
<None>

PEM encoded Certificate Authority to use when verifying HTTPs connections.

certfile

Type
string

Default
<None>

PEM encoded client certificate cert file

collect_timing

Type
boolean

Default
False

Collect per-API call timing information.

connect_retries

Type
integer

Default
<None>

The maximum number of retries that should be attempted for connection errors.

connect_retry_delay

Type
floating point

76 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

Default
<None>

Delay (in seconds) between two retries for connection errors. If not set, exponential retry starting
with 0.5 seconds up to a maximum of 60 seconds is used.

default_domain_id

Type
unknown type

Default
<None>

Optional domain ID to use with v3 and v2 parameters. It will be used for both the user and project
domain in v3 and ignored in v2 authentication.

default_domain_name

Type
unknown type

Default
<None>

Optional domain name to use with v3 API and v2 parameters. It will be used for both the user and
project domain in v3 and ignored in v2 authentication.

domain_id

Type
unknown type

Default
<None>

Domain ID to scope to

domain_name

Type
unknown type

Default
<None>

Domain name to scope to

endpoint_override

Type
string

Default
<None>

Always use this endpoint URL for requests for this client. NOTE: The unversioned endpoint should
be specified here; to request a particular API version, use the version, min-version, and/or max-
version options.

3.3. Configuration Guide 77

Ironic Inspector Documentation, Release 12.4.0.dev8

insecure

Type
boolean

Default
False

Verify HTTPS connections.

keyfile

Type
string

Default
<None>

PEM encoded client certificate key file

max_version

Type
string

Default
<None>

The maximum major version of a given API, intended to be used as the upper bound of a range
with min_version. Mutually exclusive with version.

min_version

Type
string

Default
<None>

The minimum major version of a given API, intended to be used as the lower bound of a range
with max_version. Mutually exclusive with version. If min_version is given with no max_version
it is as if max version is latest.

password

Type
unknown type

Default
<None>

Users password

project_domain_id

Type
unknown type

Default
<None>

Domain ID containing project

78 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

project_domain_name

Type
unknown type

Default
<None>

Domain name containing project

project_id

Type
unknown type

Default
<None>

Project ID to scope to

Table 30: Deprecated Variations

Group Name
service_catalog tenant-id
service_catalog tenant_id

project_name

Type
unknown type

Default
<None>

Project name to scope to

Table 31: Deprecated Variations

Group Name
service_catalog tenant-name
service_catalog tenant_name

region_name

Type
string

Default
<None>

The default region_name for endpoint URL discovery.

retriable_status_codes

Type
list

3.3. Configuration Guide 79

Ironic Inspector Documentation, Release 12.4.0.dev8

Default
<None>

List of retriable HTTP status codes that should be retried. If not set default to [503]

service_name

Type
string

Default
<None>

The default service_name for endpoint URL discovery.

service_type

Type
string

Default
baremetal-introspection

The default service_type for endpoint URL discovery.

split_loggers

Type
boolean

Default
False

Log requests to multiple loggers.

status_code_retries

Type
integer

Default
<None>

The maximum number of retries that should be attempted for retriable HTTP status codes.

status_code_retry_delay

Type
floating point

Default
<None>

Delay (in seconds) between two retries for retriable status codes. If not set, exponential retry
starting with 0.5 seconds up to a maximum of 60 seconds is used.

system_scope

Type
unknown type

80 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

Default
<None>

Scope for system operations

tenant_id

Type
unknown type

Default
<None>

Tenant ID

tenant_name

Type
unknown type

Default
<None>

Tenant Name

timeout

Type
integer

Default
<None>

Timeout value for http requests

trust_id

Type
unknown type

Default
<None>

ID of the trust to use as a trustee use

user_domain_id

Type
unknown type

Default
<None>

Users domain id

user_domain_name

Type
unknown type

Default
<None>

3.3. Configuration Guide 81

Ironic Inspector Documentation, Release 12.4.0.dev8

Users domain name

user_id

Type
unknown type

Default
<None>

User id

username

Type
unknown type

Default
<None>

Username

Table 32: Deprecated Variations

Group Name
service_catalog user-name
service_catalog user_name

valid_interfaces

Type
list

Default
['internal', 'public']

List of interfaces, in order of preference, for endpoint URL.

version

Type
string

Default
<None>

Minimum Major API version within a given Major API version for endpoint URL discovery. Mu-
tually exclusive with min_version and max_version

ssl

ca_file

Type
string

Default
<None>

82 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

CA certificate file to use to verify connecting clients.

Table 33: Deprecated Variations

Group Name
DEFAULT ssl_ca_file

cert_file

Type
string

Default
<None>

Certificate file to use when starting the server securely.

Table 34: Deprecated Variations

Group Name
DEFAULT ssl_cert_file

key_file

Type
string

Default
<None>

Private key file to use when starting the server securely.

Table 35: Deprecated Variations

Group Name
DEFAULT ssl_key_file

version

Type
string

Default
<None>

SSL version to use (valid only if SSL enabled). Valid values are TLSv1 and SSLv23. SSLv2,
SSLv3, TLSv1_1, and TLSv1_2 may be available on some distributions.

ciphers

Type
string

Default
<None>

3.3. Configuration Guide 83

Ironic Inspector Documentation, Release 12.4.0.dev8

Sets the list of available ciphers. value should be a string in the OpenSSL cipher list format.

swift

auth_url

Type
unknown type

Default
<None>

Authentication URL

auth_type

Type
unknown type

Default
<None>

Authentication type to load

Table 36: Deprecated Variations

Group Name
swift auth_plugin

cafile

Type
string

Default
<None>

PEM encoded Certificate Authority to use when verifying HTTPs connections.

certfile

Type
string

Default
<None>

PEM encoded client certificate cert file

collect_timing

Type
boolean

Default
False

Collect per-API call timing information.

84 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

connect_retries

Type
integer

Default
<None>

The maximum number of retries that should be attempted for connection errors.

connect_retry_delay

Type
floating point

Default
<None>

Delay (in seconds) between two retries for connection errors. If not set, exponential retry starting
with 0.5 seconds up to a maximum of 60 seconds is used.

container

Type
string

Default
ironic-inspector

Default Swift container to use when creating objects.

default_domain_id

Type
unknown type

Default
<None>

Optional domain ID to use with v3 and v2 parameters. It will be used for both the user and project
domain in v3 and ignored in v2 authentication.

default_domain_name

Type
unknown type

Default
<None>

Optional domain name to use with v3 API and v2 parameters. It will be used for both the user and
project domain in v3 and ignored in v2 authentication.

delete_after

Type
integer

Default
0

3.3. Configuration Guide 85

Ironic Inspector Documentation, Release 12.4.0.dev8

Number of seconds that the Swift object will last before being deleted. (set to 0 to never delete the
object).

domain_id

Type
unknown type

Default
<None>

Domain ID to scope to

domain_name

Type
unknown type

Default
<None>

Domain name to scope to

endpoint_override

Type
string

Default
<None>

Always use this endpoint URL for requests for this client. NOTE: The unversioned endpoint should
be specified here; to request a particular API version, use the version, min-version, and/or max-
version options.

insecure

Type
boolean

Default
False

Verify HTTPS connections.

keyfile

Type
string

Default
<None>

PEM encoded client certificate key file

max_version

Type
string

Default
<None>

86 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

The maximum major version of a given API, intended to be used as the upper bound of a range
with min_version. Mutually exclusive with version.

min_version

Type
string

Default
<None>

The minimum major version of a given API, intended to be used as the lower bound of a range
with max_version. Mutually exclusive with version. If min_version is given with no max_version
it is as if max version is latest.

password

Type
unknown type

Default
<None>

Users password

project_domain_id

Type
unknown type

Default
<None>

Domain ID containing project

project_domain_name

Type
unknown type

Default
<None>

Domain name containing project

project_id

Type
unknown type

Default
<None>

Project ID to scope to

Table 37: Deprecated Variations

Group Name
swift tenant-id
swift tenant_id

3.3. Configuration Guide 87

Ironic Inspector Documentation, Release 12.4.0.dev8

project_name

Type
unknown type

Default
<None>

Project name to scope to

Table 38: Deprecated Variations

Group Name
swift tenant-name
swift tenant_name

region_name

Type
string

Default
<None>

The default region_name for endpoint URL discovery.

retriable_status_codes

Type
list

Default
<None>

List of retriable HTTP status codes that should be retried. If not set default to [503]

service_name

Type
string

Default
<None>

The default service_name for endpoint URL discovery.

service_type

Type
string

Default
object-store

The default service_type for endpoint URL discovery.

split_loggers

Type
boolean

88 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

Default
False

Log requests to multiple loggers.

status_code_retries

Type
integer

Default
<None>

The maximum number of retries that should be attempted for retriable HTTP status codes.

status_code_retry_delay

Type
floating point

Default
<None>

Delay (in seconds) between two retries for retriable status codes. If not set, exponential retry
starting with 0.5 seconds up to a maximum of 60 seconds is used.

system_scope

Type
unknown type

Default
<None>

Scope for system operations

tenant_id

Type
unknown type

Default
<None>

Tenant ID

tenant_name

Type
unknown type

Default
<None>

Tenant Name

timeout

Type
integer

3.3. Configuration Guide 89

Ironic Inspector Documentation, Release 12.4.0.dev8

Default
<None>

Timeout value for http requests

trust_id

Type
unknown type

Default
<None>

ID of the trust to use as a trustee use

user_domain_id

Type
unknown type

Default
<None>

Users domain id

user_domain_name

Type
unknown type

Default
<None>

Users domain name

user_id

Type
unknown type

Default
<None>

User id

username

Type
unknown type

Default
<None>

Username

Table 39: Deprecated Variations

Group Name
swift user-name
swift user_name

90 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

valid_interfaces

Type
list

Default
['internal', 'public']

List of interfaces, in order of preference, for endpoint URL.

version

Type
string

Default
<None>

Minimum Major API version within a given Major API version for endpoint URL discovery. Mu-
tually exclusive with min_version and max_version

3.3.2 Policies

Warning

JSON formatted policy files were deprecated in the Wallaby development cycle due to the Victoria
deprecation by the olso.policy library. Use the oslopolicy-convert-json-to-yaml tool to convert the
existing JSON to YAML formatted policy file in backward compatible way.

The following is an overview of all available policies in ironic inspector. For a sample configuration
file, refer to Ironic Inspector Policy.

ironic_inspector.api

is_admin

Default
role:admin or role:administrator or role:baremetal_admin

Full read/write API access

is_observer

Default
role:baremetal_observer

Read-only API access

public_api

Default
is_public_api:True

Internal flag for public API routes

default

Default
!

3.3. Configuration Guide 91

https://docs.openstack.org/oslo.policy/latest/cli/oslopolicy-convert-json-to-yaml.html

Ironic Inspector Documentation, Release 12.4.0.dev8

Default API access policy

introspection

Default
rule:public_api

Operations

• GET /

Access the API root for available versions information

introspection:version

Default
rule:public_api

Operations

• GET /{version}

Access the versioned API root for version information

introspection:continue

Default
rule:public_api

Operations

• POST /continue

Ramdisk callback to continue introspection

introspection:status

Default
(role:reader and system_scope:all) or (role:admin) or
(role:service)

Operations

• GET /introspection

• GET /introspection/{node_id}

Get introspection status

introspection:start

Default
(role:admin and system_scope:all) or (role:admin) or
(role:service)

Operations

• POST /introspection/{node_id}

Start introspection

introspection:abort

92 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

Default
(role:admin and system_scope:all) or (role:admin) or
(role:service)

Operations

• POST /introspection/{node_id}/abort

Abort introspection

introspection:data

Default
(role:admin and system_scope:all) or (role:admin) or
(role:service)

Operations

• GET /introspection/{node_id}/data

Get introspection data

introspection:reapply

Default
(role:admin and system_scope:all) or (role:admin) or
(role:service)

Operations

• POST /introspection/{node_id}/data/unprocessed

Reapply introspection on stored data

introspection:rule:get

Default
(role:admin and system_scope:all) or (role:admin) or
(role:service)

Operations

• GET /rules

• GET /rules/{rule_id}

Get introspection rule(s)

introspection:rule:delete

Default
(role:admin and system_scope:all) or (role:admin) or
(role:service)

Operations

• DELETE /rules

• DELETE /rules/{rule_id}

Delete introspection rule(s)

introspection:rule:create

3.3. Configuration Guide 93

Ironic Inspector Documentation, Release 12.4.0.dev8

Default
(role:admin and system_scope:all) or (role:admin) or
(role:service)

Operations

• POST /rules

Create introspection rule

3.4 User Guide

3.4.1 How Ironic Inspector Works

How Ironic Inspector Works

Workflow

Usual hardware introspection flow is as follows:

• Operator enrolls nodes into Ironic e.g. via baremetal CLI command. Power management creden-
tials should be provided to Ironic at this step.

• Nodes are put in the correct state for introspection as described in node states.

• Operator sends nodes on introspection using ironic-inspector API or CLI (see usage).

• On receiving node UUID ironic-inspector:

– validates node power credentials, current power and provisioning states,

– allows access to PXE boot service for the nodes,

– issues reboot command for the nodes, so that they boot the ramdisk.

• The ramdisk collects the required information and posts it back to ironic-inspector.

• On receiving data from the ramdisk, ironic-inspector:

– validates received data,

– finds the node in Ironic database using its BMC address (MAC address in case of SSH driver),

– fills missing node properties with received data and creates missing ports.

Note

ironic-inspector is responsible to create Ironic ports for some or all NICs found on the node.
ironic-inspector is also capable of deleting ports that should not be present. There are two
important configuration options that affect this behavior: add_ports and keep_ports (please
refer to the sample configuration file for a detailed explanation).

Default values as of ironic-inspector 1.1.0 are add_ports=pxe, keep_ports=all, which
means that only one port will be added, which is associated with NIC the ramdisk PXE booted
from. No ports will be deleted. This setting ensures that deploying on introspected nodes will
succeed despite Ironic bug 1405131.

Ironic inspection feature by default requires different settings: add_ports=all,
keep_ports=present, which means that ports will be created for all detected NICs,
and all other ports will be deleted. Refer to the Ironic inspection documentation for details.

94 Chapter 3. Using Ironic Inspector

https://wiki.openstack.org/wiki/Ironic
https://docs.openstack.org/python-ironicclient/latest/cli/index.html
https://bugs.launchpad.net/ironic/+bug/1405131
https://docs.openstack.org/ironic/latest/admin/inspection.html

Ironic Inspector Documentation, Release 12.4.0.dev8

Ironic inspector can also be configured to not create any ports. This is done by setting
add_ports=disabled. If setting add_ports to disabled the keep_ports option should be
also set to all. This will ensure no manually added ports will be deleted.

• Separate API (see usage and API reference) can be used to query introspection results for a given
node.

• Nodes are put in the correct state for deploying as described in node states.

Starting DHCP server and configuring PXE boot environment is not part of this package and should be
done separately.

State machine diagram

The diagram below shows the introspection states that an ironic-inspector FSM goes through during
the node introspection, discovery and reprocessing. The diagram also shows events that trigger state
transitions.

aborting

error

abort_end

timeout

abort

error

reapplying

reapply

starting

start

enrolling

error

timeout

processing

process

error

timeout

finished

finish

error
timeout

reapply

finish

error

timeout

waiting

wait

reapply

start

finish

abort

timeout

process

start

3.4.2 How to use Ironic Inspector

Usage

Refer to the API reference for information on the HTTP API. Refer to the client documentation for infor-
mation on how to use CLI and Python library.

Using from Ironic API

Ironic Kilo introduced support for hardware introspection under name of inspection. ironic-inspector
introspection is supported for some generic drivers, please refer to Ironic inspection documentation for
details.

Node States

• The nodes should be moved to MANAGEABLE provision state before introspection (requires python-
ironicclient of version 0.5.0 or newer):

3.4. User Guide 95

https://docs.openstack.org/api-ref/baremetal-introspection/
https://docs.openstack.org/api-ref/baremetal-introspection/
https://docs.openstack.org/python-ironic-inspector-client/latest/
https://docs.openstack.org/ironic/latest/admin/inspection.html

Ironic Inspector Documentation, Release 12.4.0.dev8

baremetal node manage <node>

• The introspection can be triggered by using the following command:

baremetal node inspect <node>

• After successful introspection and before deploying nodes should be made available to Nova, by
moving them to AVAILABLE state:

baremetal node provide <node>

Note

Due to how Nova interacts with Ironic driver, you should wait 1 minute before Nova becomes
aware of available nodes after issuing this command. Use nova hypervisor-stats com-
mand output to check it.

Introspection Rules

Inspector supports a simple JSON-based DSL to define rules to run during introspection. Inspector
provides an API to manage such rules, and will run them automatically after running all processing
hooks.

A rule consists of conditions to check, and actions to run. If conditions evaluate to true on the introspec-
tion data, then actions are run on a node.

Please refer to the command below to import introspection rule:

baremetal introspection rule import <json file>

Available conditions and actions are defined by plugins, and can be extended, see How To Contribute for
details. See the API reference for specific calls to define introspection rules.

Conditions

A condition is represented by an object with fields:

op the type of comparison operation, default available operators include:

• eq, le, ge, ne, lt, gt - basic comparison operators;

• in-net - checks that an IP address is in a given network;

• matches - requires a full match against a given regular expression;

• contains - requires a value to contain a given regular expression;

• is-empty - checks that field is an empty string, list, dict or None value.

field a JSON path to the field in the introspection data to use in comparison.

Starting with the Mitaka release, you can also apply conditions to ironic node field. Prefix field with
schema (data:// or node://) to distinguish between values from introspection data and node. Both
schemes use JSON path:

96 Chapter 3. Using Ironic Inspector

https://docs.openstack.org/api-ref/baremetal-introspection/
http://goessner.net/articles/JsonPath/

Ironic Inspector Documentation, Release 12.4.0.dev8

{"field": "node://property.path", "op": "eq", "value": "val"}
{"field": "data://introspection.path", "op": "eq", "value": "val"}

if scheme (node or data) is missing, condition compares data with introspection data.

invert boolean value, whether to invert the result of the comparison.

multiple how to treat situations where the field query returns multiple results (e.g. the field contains
a list), available options are:

• any (the default) require any to match,

• all require all to match,

• first require the first to match.

All other fields are passed to the condition plugin, e.g. numeric comparison operations require a value
field to compare against.

Scope

By default, introspection rules are applied to all nodes being inspected. In order for the rule to be applied
only to specific nodes, a matching scope variable must be set to both the rule and the node. To set the
scope for a rule include field "scope" in JSON file before importing. For example:

cat <json file>
{
"description": "...",
"actions": [...],
"conditions": [...],
"scope": "SCOPE"

}

Set the property inspection_scope on the node you want the rule to be applied to:

baremetal node set --property inspection_scope="SCOPE" <node>

Now, when inspecting, the rule will be applied only to nodes with matching scope value. It will also
ignore nodes that do not have inspection_scope property set. Note that if a rule has no scope set, it
will be applied to all nodes, regardless if they have inspection_scope set or not.

Actions

An action is represented by an object with fields:

action type of action. Possible values are defined by plugins.

All other fields are passed to the action plugin.

Default available actions include:

• fail fail introspection. Requires a message parameter for the failure message.

• set-attribute sets an attribute on an Ironic node. Requires a path field, which is the path to
the attribute as used by ironic (e.g. /properties/something), and a value to set.

3.4. User Guide 97

Ironic Inspector Documentation, Release 12.4.0.dev8

• set-capability sets a capability on an Ironic node. Requires name and value fields, which are
the name and the value for a new capability accordingly. Existing value for this same capability is
replaced.

• extend-attribute the same as set-attribute, but treats existing value as a list and appends
value to it. If optional unique parameter is set to True, nothing will be added if given value is
already in a list.

• add-trait adds a trait to an Ironic node. Requires a name field with the name of the trait to add.

• remove-trait removes a trait from an Ironic node. Requires a name field with the name of the
trait to remove.

Starting from Mitaka release, value field in actions supports fetching data from introspection, using
python string formatting notation:

{"action": "set-attribute", "path": "/driver_info/ipmi_address",
"value": "{data[inventory][bmc_address]}"}

Note that any value referenced in this way will be converted to a string.

If value is a dict or list, strings nested at any level within the structure will be formatted as well:

{"action": "set-attribute", "path": "/properties/root_device",
"value": {"serial": "{data[root_device][serial]}"}}

Plugins

ironic-inspector heavily relies on plugins for data processing. Even the standard functionality is largely
based on plugins. Set processing_hooks option in the configuration file to change the set of plugins
to be run on introspection data. Note that order does matter in this option, especially for hooks that have
dependencies on other hooks.

These are plugins that are enabled by default and should not be disabled, unless you understand what
youre doing:

scheduler
validates and updates basic hardware scheduling properties: CPU number and architecture, mem-
ory and disk size.

Note

Diskless nodes have the disk size property local_gb == 0. Always use node driver
root_device hints to prevent unexpected HW failures passing silently.

validate_interfaces
validates network interfaces information. Creates new ports, optionally deletes ports that were not
present in the introspection data. Also sets the pxe_enabled flag for the PXE-booting port and
unsets it for all the other ports to avoid nova picking a random port to boot the node.

Note

When the pxe_filter is configured to only open the DHCP server for known MAC addresses,
i.e the [pxe_filter]deny_unknown_macs configuration option is enabled, it is not possible

98 Chapter 3. Using Ironic Inspector

https://docs.python.org/2/library/string.html#formatspec

Ironic Inspector Documentation, Release 12.4.0.dev8

to rely on the validate_interfaces processing plug-in to create the PXE-booting port in
ironic. Nodes must have at least one enrolled port prior to introspection in this case.

The following plugins are enabled by default, but can be disabled if not needed:

ramdisk_error
reports error, if error field is set by the ramdisk, also optionally stores logs from logs field, see
the API reference for details.

capabilities
detect node capabilities: CPU, boot mode, etc. See Capabilities Detection for more details.

pci_devices
gathers the list of all PCI devices returned by the ramdisk and compares to those defined in alias
field(s) from pci_devices section of configuration file. The recognized PCI devices and their
count are then stored in node properties. This information can be later used in nova flavors for
node scheduling.

Here are some plugins that can be additionally enabled:

example
example plugin logging its input and output.

raid_device
gathers block devices from ramdisk and exposes root device in multiple runs.

extra_hardware
stores the value of the data key returned by the ramdisk as a JSON encoded string in a Swift object.
The plugin will also attempt to convert the data into a format usable by introspection rules. If this
is successful then the new format will be stored in the extra key. The data key is then deleted from
the introspection data, as unless converted its assumed unusable by introspection rules.

lldp_basic
Processes LLDP data returned from inspection, parses TLVs from the Basic Management
(802.1AB), 802.1Q, and 802.3 sets and stores the processed data back in the Ironic inspector
database. To enable LLDP in the inventory from IPA, ipa-collect-lldp=1 should be passed as
a kernel parameter to the IPA ramdisk.

local_link_connection
Processes LLDP data returned from inspection, specifically looking for the port ID and chassis
ID. If found, it configures the local link connection information on the Ironic ports with that data.
To enable LLDP in the inventory from IPA, ipa-collect-lldp=1 should be passed as a ker-
nel parameter to the IPA ramdisk. In order to avoid processing the raw LLDP data twice, the
lldp_basic plugin should also be installed and run prior to this plugin.

physnet_cidr_map
Configures the physical_network property of the nodes Ironic port when the IP address is in a
configured CIDR mapping. CIDR to physical network mappings is set in configuration using the
[port_physnet]/cidr_map option, for example:

[port_physnet]
cidr_map = 10.10.10.0/24:physnet_a, 2001:db8::/64:physnet_b

accelerators
Processes PCI data returned from inspection and compares with the accelerator inventory, it will

3.4. User Guide 99

https://docs.openstack.org/api-ref/baremetal-introspection/

Ironic Inspector Documentation, Release 12.4.0.dev8

update accelerator device information to the properties field of the ironic node if any accelerator
device is found, for example:

{'local_gb': '1115', 'cpus': '40', 'cpu_arch': 'x86_64', 'memory_mb':
↪→'32768',
'capabilities': 'boot_mode:bios,cpu_vt:true,cpu_aes:true,cpu_
↪→hugepages:true,cpu_hugepages_1g:true,cpu_txt:true',
'accel': [{'vendor_id': '10de', 'device_id': '1eb8', 'type': 'GPU',

'pci_address': '0000:82:00.0',
'device_info': 'NVIDIA Corporation Tesla T4'}]

}

Refer to How To Contribute for information on how to write your own plugin.

Discovery

Starting from Mitaka, ironic-inspector is able to register new nodes in Ironic.

The existing node-not-found-hook handles what happens if ironic-inspector receives inspection data
from a node it can not identify. This can happen if a node is manually booted without registering it with
Ironic first.

For discovery, the configuration file option node_not_found_hook should be set to load the hook called
enroll. This hook will enroll the unidentified node into Ironic using the fake-hardware hardware type.
This is a configurable option: set enroll_node_driver in the ironic-inspector configuration file to
the hardware type you want. You can also configure arbitrary fields to set on discovery, for example:

[discovery]
enroll_node_driver = ipmi
enroll_node_fields = management_interface:noop,resource_class:baremetal

The enroll hook will also set the ipmi_address property on the new node, if its available in the
introspection data we received, see ramdisk callback.

Once the enroll hook is finished, ironic-inspector will process the introspection data in the same way
it would for an identified node. It runs the processing plugins, and after that it runs introspection rules,
which would allow for more customisable node configuration, see rules.

A rule to set a nodes Ironic driver to ipmi and populate the required driver_info for that driver would
look like:

[{
"description": "Set IPMI driver_info if no credentials",
"actions": [

{"action": "set-attribute", "path": "driver", "value": "ipmi"},
{"action": "set-attribute", "path": "driver_info/ipmi_username",
"value": "username"},
{"action": "set-attribute", "path": "driver_info/ipmi_password",
"value": "password"}

],
"conditions": [

{"op": "is-empty", "field": "node://driver_info.ipmi_password"},
{"op": "is-empty", "field": "node://driver_info.ipmi_username"}

(continues on next page)

100 Chapter 3. Using Ironic Inspector

https://docs.openstack.org/api-ref/baremetal-introspection/?expanded=ramdisk-callback-detail#ramdisk-callback

Ironic Inspector Documentation, Release 12.4.0.dev8

(continued from previous page)

]
},{

"description": "Set deploy info if not already set on node",
"actions": [

{"action": "set-attribute", "path": "driver_info/deploy_kernel",
"value": "<glance uuid>"},
{"action": "set-attribute", "path": "driver_info/deploy_ramdisk",
"value": "<glance uuid>"}

],
"conditions": [

{"op": "is-empty", "field": "node://driver_info.deploy_ramdisk"},
{"op": "is-empty", "field": "node://driver_info.deploy_kernel"}

]
}]

All nodes discovered and enrolled via the enroll hook, will contain an auto_discovered flag in the
introspection data, this flag makes it possible to distinguish between manually enrolled nodes and auto-
discovered nodes in the introspection rules using the rule condition eq:

{
"description": "Enroll auto-discovered nodes with ipmi hardware type",
"actions": [

{"action": "set-attribute", "path": "driver", "value": "ipmi"}
],
"conditions": [

{"op": "eq", "field": "data://auto_discovered", "value": true}
]

}

Reapplying introspection on stored data

To allow correcting mistakes in introspection rules the API provides an entry point that triggers the intro-
spection over stored data. The data to use for processing is kept in Swift separately from the data already
processed. Reapplying introspection overwrites processed data in the store. Updating the introspection
data through the endpoint isnt supported yet. Following preconditions are checked before reapplying
introspection:

• no data is being sent along with the request

• Swift store is configured and enabled

• introspection data is stored in Swift for the node UUID

• node record is kept in database for the UUID

• introspection is not ongoing for the node UUID

Should the preconditions fail an immediate response is given to the user:

• 400 if the request contained data or in case Swift store is not enabled in configuration

• 404 in case Ironic doesnt keep track of the node UUID

• 409 if an introspection is already ongoing for the node

3.4. User Guide 101

Ironic Inspector Documentation, Release 12.4.0.dev8

If the preconditions are met a background task is executed to carry out the processing and a 202
Accepted response is returned to the endpoint user. As requested, these steps are performed in the
background task:

• preprocessing hooks

• post processing hooks, storing result in Swift

• introspection rules

These steps are avoided, based on the feature requirements:

• node_not_found_hook is skipped

• power operations

• roll-back actions done by hooks

Limitations:

• theres no way to update the unprocessed data atm.

• the unprocessed data is never cleaned from the store

• check for stored data presence is performed in background; missing data situation still results in a
202 response

Capabilities Detection

Starting with the Newton release, Ironic Inspector can optionally discover several node capabilities. A
recent (Newton or newer) IPA image is required for it to work.

Boot mode

The current boot mode (BIOS or UEFI) can be detected and recorded as boot_mode capability in Ironic.
It will make some drivers to change their behaviour to account for this capability. Set the capabilities.
boot_mode configuration option to True to enable.

CPU capabilities

Several CPU flags are detected by default and recorded as following capabilities:

• cpu_aes AES instructions.

• cpu_vt virtualization support.

• cpu_txt TXT support.

• cpu_hugepages huge pages (2 MiB) support.

• cpu_hugepages_1g huge pages (1 GiB) support.

It is possible to define your own rules for detecting CPU capabilities. Set the capabilities.cpu_flags
configuration option to a mapping between a CPU flag and a capability, for example:

cpu_flags = aes:cpu_aes,svm:cpu_vt,vmx:cpu_vt

See the default value of this option for a more detail example.

102 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

InfiniBand support

Starting with the Ocata release, Ironic Inspector supports detection of InfiniBand network interfaces.
A recent (Ocata or newer) IPA image is required for that to work. When an InfiniBand network interface
is discovered, the Ironic Inspector adds a client-id attribute to the extra attribute in the ironic port.
The Ironic Inspector should be configured with iptables.ethoib_interfaces to indicate the Eth-
ernet Over InfiniBand (EoIB) which are used for physical access to the DHCP network. For example if
Ironic Inspector DHCP server is using br-inspector and the br-inspector has EoIB port e.g. eth0,
the iptables.ethoib_interfaces should be set to eth0. The iptables.ethoib_interfaces al-
lows to map the baremetal GUID to its EoIB MAC based on the neighs files. This is needed for blocking
DHCP traffic of the nodes (MACs) which are not part of the introspection.

The format of the /sys/class/net/<ethoib>/eth/neighs file:

EMAC=<ethernet mac of the ethoib> IMAC=<qp number:lid:GUID>
For example:
IMAC=97:fe:80:00:00:00:00:00:00:7c:fe:90:03:00:29:26:52
qp number=97:fe
lid=80:00:00:00:00:00:00
GUID=7c:fe:90:03:00:29:26:52

Example of content:

EMAC=02:00:02:97:00:01 IMAC=97:fe:80:00:00:00:00:00:00:7c:fe:90:03:00:29:26:52
EMAC=02:00:00:61:00:02 IMAC=61:fe:80:00:00:00:00:00:00:7c:fe:90:03:00:29:24:4f

3.4.3 HTTP API Reference
• Bare Metal Introspection API Reference.

3.4.4 Troubleshooting

Troubleshooting

Errors when starting introspection

• Invalid provision state available

In Kilo release with python-ironicclient 0.5.0 or newer Ironic defaults to reporting provision state
AVAILABLE for newly enrolled nodes. ironic-inspector will refuse to conduct introspection in this
state, as such nodes are supposed to be used by Nova for scheduling. See node states for instructions
on how to put nodes into the correct state.

Introspection times out

There may be 3 reasons why introspection can time out after some time (defaulting to 60 minutes, altered
by timeout configuration option):

1. Fatal failure in processing chain before node was found in the local cache. See Troubleshooting
data processing for the hints.

2. Failure to load the ramdisk on the target node. See Troubleshooting PXE boot for the hints.

3. Failure during ramdisk run. See Troubleshooting ramdisk run for the hints.

3.4. User Guide 103

https://docs.openstack.org/api-ref/baremetal-introspection/

Ironic Inspector Documentation, Release 12.4.0.dev8

Troubleshooting data processing

In this case ironic-inspector logs should give a good idea what went wrong. E.g. for RDO or Fedora
the following command will output the full log:

sudo journalctl -u openstack-ironic-inspector

(use openstack-ironic-discoverd for version < 2.0.0).

Note

Service name and specific command might be different for other Linux distributions (and for old
version of ironic-inspector).

If ramdisk_error plugin is enabled and ramdisk_logs_dir configuration option is set, ironic-
inspector will store logs received from the ramdisk to the ramdisk_logs_dir directory. This depends,
however, on the ramdisk implementation.

A local cache miss during data processing would leave a message like:

ERROR ironic_python_agent.inspector [-] inspectorerror 400: {"error":{"message
↪→":"The following failures happened during running pre-processing hooks:\
↪→nLook up error: Could not find a node for attributes {'bmc_address': u'10.x.
↪→y.z', 'mac': [u'00:aa:bb:cc:dd:ee', u'00:aa:bb:cc:dd:ef']}"}}

One potential explanation for such an error is a misconfiguration in the BMC where a channel with the
wrong IP address is active (and hence detected and reported back by the Ironic Python Agent), but can
then not be matched to the IP address Ironic has in its cache for this node.

Troubleshooting PXE boot

PXE booting most often becomes a problem for bare metal environments with several physical networks.
If the hardware vendor provides a remote console (e.g. iDRAC for DELL), use it to connect to the
machine and see what is going on. You may need to restart introspection.

Another source of information is DHCP and TFTP server logs. Their location depends on how the servers
were installed and run. For RDO or Fedora use:

$ sudo journalctl -u openstack-ironic-inspector-dnsmasq

(use openstack-ironic-discoverd-dnsmasq for version < 2.0.0).

The last resort is tcpdump utility. Use something like

$ sudo tcpdump -i any port 67 or port 68 or port 69

to watch both DHCP and TFTP traffic going through your machine. Replace any with a specific network
interface to check that DHCP and TFTP requests really reach it.

If you see node not attempting PXE boot or attempting PXE boot on the wrong network, reboot the
machine into BIOS settings and make sure that only one relevant NIC is allowed to PXE boot.

If you see node attempting PXE boot using the correct NIC but failing, make sure that:

1. network switches configuration does not prevent PXE boot requests from propagating,

104 Chapter 3. Using Ironic Inspector

Ironic Inspector Documentation, Release 12.4.0.dev8

2. there is no additional firewall rules preventing access to port 67 on the machine where ironic-
inspector and its DHCP server are installed.

If you see node receiving DHCP address and then failing to get kernel and/or ramdisk or to boot them,
make sure that:

1. TFTP server is running and accessible (use tftp utility to verify),

2. no firewall rules prevent access to TFTP port,

3. SELinux is configured properly to allow external TFTP access,

If SELinux is neither permissive nor disabled, you should config tftp_home_dir in SELinux by
executing the command

$ sudo setsebool -P tftp_home_dir 1

See the man page for more details.

4. DHCP server is correctly set to point to the TFTP server,

5. pxelinux.cfg/default within TFTP root contains correct reference to the kernel and ramdisk.

Note

If using iPXE instead of PXE, check the HTTP server logs and the iPXE configuration instead.

Troubleshooting ramdisk run

First, check if the ramdisk logs were stored locally as described in the Troubleshooting data processing
section. If not, ensure that the ramdisk actually booted as described in the Troubleshooting PXE boot
section.

Finally, you can try connecting to the IPA ramdisk. If you have any remote console access to the machine,
you can check the logs as they appear on the screen. Otherwise, you can rebuild the IPA image with your
SSH key to be able to log into it. Use the dynamic-login or devuser element for a DIB-based build or put
an authorized_keys file in /usr/share/oem/ for a CoreOS-based one.

Troubleshooting DNS issues on Ubuntu

Ubuntu uses local DNS caching, so tries localhost for DNS results first before calling out to an external
DNS server. When DNSmasq is installed and configured for use with ironic-inspector, it can cause
problems by interfering with the local DNS cache. To fix this issue ensure that /etc/resolve.conf
points to your external DNS servers and not to 127.0.0.1.

On Ubuntu 14.04 this can be done by editing your /etc/resolvconf/resolv.conf.d/head and
adding your nameservers there. This will ensure they will come up first when /etc/resolv.conf
is regenerated.

Troubleshooting DnsmasqFilter

When introspection fails and the following error is in ironic-inspector.log

ERROR ironic_inspector.node_cache [-] [node: 651da5a3-4ecb-4214-a87d-
↪→139cc7778c05

(continues on next page)

3.4. User Guide 105

https://www.systutorials.com/docs/linux/man/8-tftpd_selinux/
https://docs.openstack.org/diskimage-builder/latest/elements/dynamic-login/README.html
https://docs.openstack.org/diskimage-builder/latest/elements/devuser/README.html

Ironic Inspector Documentation, Release 12.4.0.dev8

(continued from previous page)

state starting] Processing the error event because of an exception
<class 'ironic_inspector.pxe_filter.base.InvalidFilterDriverState'>:
The PXE filter driver DnsmasqFilter, state=uninitialized: my fsm encountered␣
↪→an
exception: Can not transition from state 'uninitialized' on event 'sync'
(no defined transition) raised by ironic_inspector.introspect._do_introspect:
ironic_inspector.pxe_filter.base.InvalidFilterDriverState: The PXE filter␣
↪→driver
DnsmasqFilter, state=uninitialized: my fsm encountered an exception:
Can not transition from state 'uninitialized' on event 'sync'
(no defined transition)

restart ironic-inspector.

Running Inspector in a VirtualBox environment

By default VirtualBox does not expose a DMI table to the guest. This prevents ironic-inspector from
being able to discover the properties of the a node. In order to run ironic-inspector on a VirtualBox guest
the host must be configured to expose DMI data inside the guest. To do this run the following command
on the VirtualBox host:

VBoxManage setextradata {NodeName} "VBoxInternal/Devices/pcbios/0/Config/
↪→DmiExposeMemoryTable" 1

Note

Replace {NodeName} with the name of the guest you wish to expose the DMI table on. This command
will need to be run once per host to enable this functionality.

HTTP API

See https://docs.openstack.org/api-ref/baremetal-introspection/

3.5 Administrator Guide

3.5.1 How to upgrade Ironic Inspector

Upgrade Guide

The release notes should always be read carefully when upgrading the ironic-inspector service. Starting
with the Mitaka series, specific upgrade steps and considerations are well-documented in the release
notes.

Upgrades are only supported one series at a time, or within a series. Only offline (with downtime)
upgrades are currently supported.

When upgrading ironic-inspector, the following steps should always be taken:

• Update ironic-inspector code, without restarting the service yet.

• Stop the ironic-inspector service.

106 Chapter 3. Using Ironic Inspector

https://docs.openstack.org/api-ref/baremetal-introspection/
https://docs.openstack.org/releasenotes/ironic-inspector/

Ironic Inspector Documentation, Release 12.4.0.dev8

• Run database migrations:

ironic-inspector-dbsync --config-file <PATH-TO-INSPECTOR.CONF> upgrade

• Start the ironic-inspector service.

• Upgrade the ironic-python-agent image used for introspection.

Note

There is no implicit upgrade order between ironic and ironic-inspector, unless the release notes say
otherwise.

Migrating introspection data

Starting with Stein release, ironic-inspector supports two introspection data storage backends: swift
and database. If you decide to change the backend, you can use the provided command to migrate the
data:

ironic-inspector-migrate-data --from swift --to database --config-file /etc/
↪→ironic-inspector/inspector.conf

Note

Configuration for both backends is expected to be present in the configuration file for this command
to succeed.

3.5.2 Dnsmasq PXE filter driver

dnsmasq PXE filter

An inspection PXE DHCP stack is often implemented by the dnsmasq service. The dnsmasq PXE filter
implementation relies on directly configuring the dnsmasq DHCP service to provide a caching PXE
traffic filter of node MAC addresses.

How it works

The filter works by populating the dnsmasq DHCP hosts directory with a configuration file per MAC
address. Each file is either enabling or disabling, thru the ignore directive, the DHCP service for a
particular MAC address:

$ cat /etc/dnsmasq.d/de-ad-be-ef-de-ad
de:ad:be:ef:de:ad,ignore
$

The filename is used to keep track of all MAC addresses in the cache, avoiding file parsing. The content
of the file determines the MAC address access policy.

Thanks to the inotify facility, dnsmasq is notified once a new file is created or an existing file is
modified in the DHCP hosts directory. Thus, to allow a MAC address, the filter removes the ignore
directive:

3.5. Administrator Guide 107

https://docs.openstack.org/releasenotes/ironic-inspector/

Ironic Inspector Documentation, Release 12.4.0.dev8

$ cat /etc/dnsmasq.d/de-ad-be-ef-de-ad
de:ad:be:ef:de:ad
$

The hosts directory content establishes a cached MAC addresses filter that is kept synchronized with the
ironic port list.

Note

The dnsmasq inotify facility implementation doesnt react to a file being removed or truncated.

Configuration

The inotify facility was introduced to dnsmasq in the version 2.73. This filter driver has been checked
by ironic-inspector CI with dnsmasq versions >=2.76.

To enable the dnsmasq PXE filter, update the PXE filter driver name in the ironic-inspector configura-
tion file:

[pxe_filter]
driver = dnsmasq

The DHCP hosts directory can be specified to override the default /var/lib/ironic-inspector/
dhcp-hostsdir:

[dnsmasq_pxe_filter]
dhcp_hostsdir = /etc/ironic-inspector/dhcp-hostsdir

The filter design relies on the hosts directory being in exclusive ironic-inspector control. The hosts
directory should be considered a private cache directory of ionic-inspector that dnsmasq polls configu-
ration updates from, through the inotify facility. The directory has to be writable by ironic-inspector
and readable by dnsmasq.

It is also possible to override the default (empty) dnsmasq start and stop commands to, for instance,
directly control the dnsmasq service:

[dnsmasq_pxe_filter]
dnsmasq_start_command = dnsmasq --conf-file /etc/ironic-inspector/dnsmasq.conf
dnsmasq_stop_command = kill $(cat /var/run/dnsmasq.pid)

Note

The commands support shell expansion. The default empty start command means the dnsmasq ser-
vice wont be started upon the filter initialization. Conversely, the default empty stop command means
the service wont be stopped upon an (error) exit.

Note

These commands are executed through the rootwrap facility, so overriding may require a filter file to

108 Chapter 3. Using Ironic Inspector

http://www.thekelleys.org.uk/dnsmasq/CHANGELOG
https://docs.openstack.org/oslo.rootwrap/latest/

Ironic Inspector Documentation, Release 12.4.0.dev8

be created in the rootwrap.d directory. A sample configuration to use with the systemctl facility
might be:
sudo cat > /etc/ironic-inspector/rootwrap.d/ironic-inspector-dnsmasq-
↪→systemctl.filters <<EOF
[Filters]
ironic_inspector/pxe_filter/dnsmasq.py
systemctl: CommandFilter, systemctl, root, restart, dnsmasq
systemctl: CommandFilter, systemctl, root, stop, dnsmasq
EOF

Caveats

The initial synchronization will put some load on the dnsmasq service starting based on the amount of
ports ironic keeps. The start-up can take up to a minute of full CPU load for huge amounts of MACs (tens
of thousands). Subsequent filter synchronizations will only cause the dnsmasq to parse the modified files.
Typically those are the bare metal nodes being added or phased out from the compute service, meaning
dozens of file updates per sync call.

The ironic-inspector takes over the control of the DHCP hosts directory to implement its filter cache.
Files are generated dynamically so should not be edited by hand. To minimize the interference between
the deployment and introspection, ironic-inspector has to start the dnsmasq service only after the initial
synchronization. Conversely, the dnsmasq service is stopped upon (unexpected) ironic-inspector exit.

To avoid accumulating stale DHCP host files over time, the driver cleans up the DHCP hosts directory
before the initial synchronization during the start-up.

Although the filter driver tries its best to always stop the dnsmasq service, it is recommended that the
operator configures the dnsmasq service in such a way that it terminates upon ironic-inspector (unex-
pected) exit to prevent a stale deny list from being used by the dnsmasq service.

3.5. Administrator Guide 109

Ironic Inspector Documentation, Release 12.4.0.dev8

110 Chapter 3. Using Ironic Inspector

CHAPTER

FOUR

CONTRIBUTOR DOCS

4.1 How To Contribute

4.1.1 Basics
• Our source code is hosted on OpenStack GitHub, but please do not send pull requests there.

• Please follow usual OpenStack Gerrit Workflow to submit a patch.

• Update change log in README.rst on any significant change.

• It goes without saying that any code change should by accompanied by unit tests.

• Note the branch youre proposing changes to. master is the current focus of development, use
stable/VERSION for proposing an urgent fix, where VERSION is the current stable series. E.g. at
the moment of writing the stable branch is stable/1.0.

• Please file an RFE in StoryBoard for any significant code change and a regular story for any sig-
nificant bug fix.

4.1.2 Development Environment
First of all, install tox utility. Its likely to be in your distribution repositories under name of python-tox.
Alternatively, you can install it from PyPI.

Next checkout and create environments:

git clone https://github.com/openstack/ironic-inspector.git
cd ironic-inspector
tox

Repeat tox command each time you need to run tests. If you dont have Python interpreter of one of
supported versions (currently 3.6 and 3.7), use -e flag to select only some environments, e.g.

tox -e py36

Note

This command also runs tests for database migrations. By default the sqlite backend is used. For
testing with mysql or postgresql, you need to set up a db named openstack_citest with user open-
stack_citest and password openstack_citest on localhost. Use the script tools/test_setup.sh to
set the database up the same way as done in the OpenStack CI environment.

111

https://github.com/openstack/ironic-inspector
https://docs.openstack.org/infra/manual/developers.html#development-workflow
https://storyboard.openstack.org/#!/project/944

Ironic Inspector Documentation, Release 12.4.0.dev8

Note

Users of Fedora <= 23 will need to run sudo dnf releasever=24 update python-virtualenv to run unit
tests

To run the functional tests, use:

tox -e func

Once you have added new state or transition into inspection state machine, you should regenerate State
machine diagram with:

tox -e genstates

Run the service with:

.tox/py36/bin/ironic-inspector --config-file example.conf

Of course you may have to modify example.conf to match your OpenStack environment. See the install
guide for information on generating or downloading an example configuration file.

You can develop and test ironic-inspector using DevStack - see Deploying Ironic Inspector with DevS-
tack for the current status.

4.1.3 Deploying Ironic Inspector with DevStack
DevStack provides a way to quickly build a full OpenStack development environment with requested
components. There is a plugin for installing ironic-inspector in DevStack. Installing ironic-inspector
requires a machine running Ubuntu 14.04 (or later) or Fedora 23 (or later). Make sure this machine is
fully up to date and has the latest packages installed before beginning this process.

Download DevStack:

git clone https://git.openstack.org/openstack-dev/devstack.git
cd devstack

Create local.conf file with minimal settings required to enable both the ironic and the ironic-
inspector. You can start with the Example local.conf and extend it as needed.

Example local.conf

[[local|localrc]]
Credentials
ADMIN_PASSWORD=password
DATABASE_PASSWORD=password
RABBIT_PASSWORD=password
SERVICE_PASSWORD=password
SERVICE_TOKEN=password
SWIFT_HASH=password
SWIFT_TEMPURL_KEY=password

Enable Ironic plugin
(continues on next page)

112 Chapter 4. Contributor Docs

https://docs.openstack.org/devstack/latest/

Ironic Inspector Documentation, Release 12.4.0.dev8

(continued from previous page)

enable_plugin ironic https://opendev.org/openstack/ironic
enable_plugin ironic-inspector https://opendev.org/openstack/ironic-inspector

Disable nova novnc service, ironic does not support it anyway.
disable_service n-novnc

Enable Swift for the direct deploy interface.
enable_service s-proxy
enable_service s-object
enable_service s-container
enable_service s-account

Disable Horizon
disable_service horizon

Disable Cinder
disable_service cinder c-sch c-api c-vol

Swift temp URL's are required for the direct deploy interface
SWIFT_ENABLE_TEMPURLS=True

Create 3 virtual machines to pose as Ironic's baremetal nodes.
IRONIC_VM_COUNT=3
IRONIC_BAREMETAL_BASIC_OPS=True
DEFAULT_INSTANCE_TYPE=baremetal

Enable additional hardware types, if needed.
#IRONIC_ENABLED_HARDWARE_TYPES=ipmi,fake-hardware
Don't forget that many hardware types require enabling of additional
interfaces, most often power and management:
#IRONIC_ENABLED_MANAGEMENT_INTERFACES=ipmitool,fake
#IRONIC_ENABLED_POWER_INTERFACES=ipmitool,fake
The 'ipmi' hardware type's default deploy interface is 'iscsi'.
This would change the default to 'direct':
#IRONIC_DEFAULT_DEPLOY_INTERFACE=direct

Enable inspection via ironic-inspector
IRONIC_ENABLED_INSPECT_INTERFACES=inspector,no-inspect
Make it the default for all hardware types:
IRONIC_DEFAULT_INSPECT_INTERFACE=inspector

Change this to alter the default driver for nodes created by devstack.
This driver should be in the enabled list above.
IRONIC_DEPLOY_DRIVER=ipmi

The parameters below represent the minimum possible values to create
functional nodes.
IRONIC_VM_SPECS_RAM=2048
IRONIC_VM_SPECS_DISK=10

(continues on next page)

4.1. How To Contribute 113

Ironic Inspector Documentation, Release 12.4.0.dev8

(continued from previous page)

Size of the ephemeral partition in GB. Use 0 for no ephemeral partition.
IRONIC_VM_EPHEMERAL_DISK=0

To build your own IPA ramdisk from source, set this to True
IRONIC_BUILD_DEPLOY_RAMDISK=False
IRONIC_INSPECTOR_BUILD_RAMDISK=False
VIRT_DRIVER=ironic

By default, DevStack creates a 10.0.0.0/24 network for instances.
If this overlaps with the hosts network, you may adjust with the
following.
NETWORK_GATEWAY=10.1.0.1
FIXED_RANGE=10.1.0.0/24
FIXED_NETWORK_SIZE=256

Log all output to files
LOGFILE=/opt/stack/devstack.log
LOGDIR=/opt/stack/logs
IRONIC_VM_LOG_DIR=/opt/stack/ironic-bm-logs

Notes

• Set IRONIC_INSPECTOR_BUILD_RAMDISK to True if you want to build ramdisk. Default
value is False and ramdisk will be downloaded instead of building.

• 1024 MiB of RAM is a minimum required for the default build of IPA based on CoreOS. If you plan
to use another operating system and build IPA with diskimage-builder 2048 MiB is recommended.

• Network configuration is pretty sensitive, better not to touch it without deep understanding.

• This configuration disables horizon, heat, cinder and tempest, adjust it if you need these services.

Start the install:

./stack.sh

Usage

After installation is complete, you can source openrc in your shell, and then use the OpenStack CLI to
manage your DevStack:

source openrc admin demo

Show DevStack screens:

screen -x stack

To exit screen, hit CTRL-a d.

List baremetal nodes:

114 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 12.4.0.dev8

baremetal node list

Bring the node to manageable state:

baremetal node manage <NodeID>

Inspect the node:

baremetal node inspect <NodeID>

Note

The deploy driver used must support the inspect interface. See also the Ironic Python Agent.

A node can also be inspected using the following command. However, this will not affect the provision
state of the node:

baremetal introspection start <NodeID>

Check inspection status:

baremetal introspection status <NodeID>

Optionally, get the inspection data:

baremetal introspection data save <NodeID>

4.1.4 Writing a Plugin
• ironic-inspector allows you to hook code into the data processing chain after introspection. Inherit
ProcessingHook class defined in ironic_inspector.plugins.base module and overwrite any or both
of the following methods:

before_processing(introspection_data,**)
called before any data processing, providing the raw data. Each plugin in the chain can modify
the data, so order in which plugins are loaded matters here. Returns nothing.

before_update(introspection_data,node_info,**)
called after node is found and ports are created, but before data is updated on a node. Please
refer to the docstring for details and examples.

You can optionally define the following attribute:

dependencies
a list of entry point names of the hooks this hook depends on. These hooks are expected to
be enabled before the current hook.

Make your plugin a setuptools entry point under ironic_inspector.hooks.processing
namespace and enable it in the configuration file (processing.processing_hooks option).

• ironic-inspector allows plugins to override the action when node is not found in node cache. Write
a callable with the following signature:

4.1. How To Contribute 115

https://docs.openstack.org/ironic/latest/admin/drivers/ipa.html

Ironic Inspector Documentation, Release 12.4.0.dev8

(introspection_data,**)
called when node is not found in cache, providing the processed data. Should return a
NodeInfo class instance.

Make your plugin a setuptools entry point under ironic_inspector.hooks.node_not_found
namespace and enable it in the configuration file (processing.node_not_found_hook option).

• ironic-inspector allows more condition types to be added for Introspection Rules. Inherit
RuleConditionPlugin class defined in ironic_inspector.plugins.base module and overwrite at
least the following method:

check(node_info,field,params,**)
called to check that condition holds for a given field. Field value is provided as field ar-
gument, params is a dictionary defined at the time of condition creation. Returns boolean
value.

The following methods and attributes may also be overridden:

validate(params,**)
called to validate parameters provided during condition creating. Default implementation
requires keys listed in REQUIRED_PARAMS (and only them).

REQUIRED_PARAMS
contains set of required parameters used in the default implementation of validate method,
defaults to value parameter.

ALLOW_NONE
if its set to True, missing fields will be passed as None values instead of failing the condition.
Defaults to False.

Make your plugin a setuptools entry point under ironic_inspector.rules.conditions
namespace.

• ironic-inspector allows more action types to be added for Introspection Rules. Inherit
RuleActionPlugin class defined in ironic_inspector.plugins.base module and overwrite at least
the following method:

apply(node_info,params,**)
called to apply the action.

The following methods and attributes may also be overridden:

validate(params,**)
called to validate parameters provided during actions creating. Default implementation re-
quires keys listed in REQUIRED_PARAMS (and only them).

REQUIRED_PARAMS
contains set of required parameters used in the default implementation of validate method,
defaults to no parameters.

Make your plugin a setuptools entry point under ironic_inspector.rules.conditions
namespace.

Note

** argument is needed so that we can add optional arguments without breaking out-of-tree plugins.
Please make sure to include and ignore it.

116 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 12.4.0.dev8

4.1.5 Making changes to the database
In order to make a change to the ironic-inspector database you must update the database models found in
ironic_inspector.db package and then create a migration to reflect that change.

There are two ways to create a migration which are described below, both of these generate a new migra-
tion file. In this file there is only one function:

• upgrade - The function to run when
ironic-inspector-dbsync upgrade is run, and should be populated with code to bring
the database up to its new state from the state it was in after the last migration.

For further information on creating a migration, refer to Create a Migration Script from the alembic
documentation.

Autogenerate

This is the simplest way to create a migration. Alembic will compare the models to an up to date database,
and then attempt to write a migration based on the differences. This should generate correct migrations
in most cases however there are some cases when it can not detect some changes and may require man-
ual modification, see What does Autogenerate Detect (and what does it not detect?) from the alembic
documentation.

ironic-inspector-dbsync upgrade
ironic-inspector-dbsync revision -m "A short description" --autogenerate

Manual

This will generate an empty migration file, with the correct revision information already included. How-
ever the upgrade function is left empty and must be manually populated in order to perform the correct
actions on the database:

ironic-inspector-dbsync revision -m "A short description"

4.1.6 Implementing PXE Filter Drivers

Background

inspector in-band introspection PXE-boots the Ironic Python Agent live image, to inspect the baremetal
server. ironic also PXE-boots IPA to perform tasks on a node, such as deploying an image. ironic uses
neutron to provide DHCP, however neutron does not provide DHCP for unknown MAC addresses so
inspector has to use its own DHCP/TFTP stack for discovery and inspection.

When ironic and inspector are operating in the same L2 network, there is a potential for the two DHCPs
to race, which could result in a node being deployed by ironic being PXE booted by inspector.

To prevent DHCP races between the inspector DHCP and ironic DHCP, inspector has to be able to filter
which nodes can get a DHCP lease from the inspector DHCP server. These filters can then be used to
prevent nodes enrolled in ironic inventory from being PXE-booted unless they are explicitly moved into
the inspected state.

4.1. How To Contribute 117

http://alembic.zzzcomputing.com/en/latest/tutorial.html#create-a-migration-script
http://alembic.zzzcomputing.com/en/latest/autogenerate.html#what-does-autogenerate-detect-and-what-does-it-not-detect

Ironic Inspector Documentation, Release 12.4.0.dev8

Filter Interface

The contract between inspector and a PXE filter driver is described in the FilterDriver interface. The
methods a driver has to implement are:

• init_filter() called on the service start to initialize internal driver state

• sync() called both periodically and when a node starts or finishes introspection to allow or deny
its ports MAC addresses in the driver

• tear_down_filter() called on service exit to reset the internal driver state

The driver-specific configuration is suggested to be parsed during instantiation. Theres also a con-
venience generic interface implementation BaseFilter that provides base locking and initialization
implementation. If required, a driver can opt-out from the periodic synchronization by overriding the
get_periodic_sync_task().

4.1.7 Python API

ironic_inspector

ironic_inspector package

Subpackages

ironic_inspector.cmd package

Submodules

ironic_inspector.cmd.all module

The Ironic Inspector service.

ironic_inspector.cmd.all.main(args=[’-b’, ’latex’, ’doc/source’, ’doc/build/pdf’])

ironic_inspector.cmd.conductor module

The Ironic Inspector Conductor service.

ironic_inspector.cmd.conductor.main(args=[’-b’, ’latex’, ’doc/source’, ’doc/build/pdf’])

ironic_inspector.cmd.dbsync module

ironic_inspector.cmd.dbsync.add_alembic_command(subparsers, name)

ironic_inspector.cmd.dbsync.add_command_parsers(subparsers)

ironic_inspector.cmd.dbsync.do_alembic_command(config, cmd, *args, **kwargs)

ironic_inspector.cmd.dbsync.do_revision(config, cmd, *args, **kwargs)

ironic_inspector.cmd.dbsync.main(args=[’-b’, ’latex’, ’doc/source’, ’doc/build/pdf’])

ironic_inspector.cmd.dbsync.with_revision(config, cmd, *args, **kwargs)

118 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 12.4.0.dev8

ironic_inspector.cmd.migration module

Migrate introspected data between Swift and database.

class ironic_inspector.cmd.migration.MigrationTool

Bases: object

main()

ironic_inspector.cmd.migration.main()

ironic_inspector.cmd.status module

class ironic_inspector.cmd.status.Checks

Bases: UpgradeCommands

Upgrade checks for the ironic-status upgrade check command

Upgrade checks should be added as separate methods in this class and added to _upgrade_checks
tuple.

ironic_inspector.cmd.status.main()

ironic_inspector.cmd.wsgi module

WSGI script for Ironic Inspector API, installed by pbr.

ironic_inspector.cmd.wsgi.initialize_wsgi_app()

Module contents

ironic_inspector.common package

Submodules

ironic_inspector.common.context module

class ironic_inspector.common.context.RequestContext(is_public_api=False, **kwargs)
Bases: RequestContext

Extends security contexts from the oslo.context library.

classmethod from_dict(values, **kwargs)
Construct a context object from a provided dictionary.

classmethod from_environ(environ, **kwargs)
Load a context object from a request environment.

If keyword arguments are provided then they override the values in the request environment.

Parameters
environ (dict) The environment dictionary associated with a request.

to_policy_values()

A dictionary of context attributes to enforce policy with.

4.1. How To Contribute 119

Ironic Inspector Documentation, Release 12.4.0.dev8

oslo.policy enforcement requires a dictionary of attributes representing the current logged
in user on which it applies policy enforcement. This dictionary defines a standard list of
attributes that should be available for enforcement across services.

It is expected that services will often have to override this method with either deprecated
values or additional attributes used by that service specific policy.

ironic_inspector.common.coordination module

class ironic_inspector.common.coordination.Coordinator(prefix=None)
Bases: object

Tooz coordination wrapper.

get_lock(uuid)
Get lock for node uuid.

get_members()

Get members in the service group.

group_name = b'ironic_inspector.service_group'

join_group()

Join service group.

leave_group()

Leave service group

lock_prefix = 'ironic_inspector.'

run_elect_coordinator()

Trigger a new leader election.

start(heartbeat=True)
Start coordinator.

Parameters
heartbeat Whether spawns a new thread to keep heartbeating with the tooz
backend. Unless there is periodic task to do heartbeat manually, it should be
always set to True.

stop()

Disconnect from coordination backend and stop heartbeat.

ironic_inspector.common.coordination.get_coordinator(prefix=None)

ironic_inspector.common.ironic module

exception ironic_inspector.common.ironic.NotFound(node_ident, code=404, *args,
**kwargs)

Bases: Error

Node not found in Ironic.

120 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 12.4.0.dev8

ironic_inspector.common.ironic.call_with_retries(func, *args, **kwargs)
Call an ironic client function retrying all errors.

If an ironic client exception is raised, try calling the func again, at most 5 times, waiting 1 sec
between each call. If on the 5th attempt the func raises again, the exception is propagated to the
caller.

ironic_inspector.common.ironic.capabilities_to_dict(caps)
Convert the Nodes capabilities into a dictionary.

ironic_inspector.common.ironic.check_provision_state(node)
Sanity checks the provision state of the node.

Parameters
node An API client returned node object describing the baremetal node according
to ironics node data model.

Returns
None if no action is to be taken, True if the power node state should not be modified.

Raises
Error on an invalid state being detected.

ironic_inspector.common.ironic.dict_to_capabilities(caps_dict)
Convert a dictionary into a string with the capabilities syntax.

ironic_inspector.common.ironic.get_client(token=None)
Get an ironic client connection.

ironic_inspector.common.ironic.get_ipmi_address(node)
Get the BMC address defined in node.driver_info dictionary

Possible names of BMC address value examined in order of list [ipmi_address] +
CONF.ipmi_address_fields. The value could be an IP address or a hostname. DNS lookup per-
formed for the first non empty value.

The first valid BMC address value returned along with its v4 and v6 IP addresses.

Parameters
node Node object with defined driver_info dictionary

Returns
tuple (ipmi_address, ipv4_address, ipv6_address)

ironic_inspector.common.ironic.get_node(node_id, ironic=None, **kwargs)
Get a node from Ironic.

Parameters

• node_id node UUID or name.

• ironic ironic client instance.

• kwargs arguments to pass to Ironic client.

Raises
Error on failure

4.1. How To Contribute 121

Ironic Inspector Documentation, Release 12.4.0.dev8

ironic_inspector.common.ironic.lookup_node(macs=None, bmc_addresses=None,
introspection_data=None, ironic=None)

Lookup a node in the ironic database.

ironic_inspector.common.ironic.lookup_node_by_bmc_addresses(addresses, introspec-
tion_data=None,
ironic=None,
fail=False)

Find a node by its BMC address.

ironic_inspector.common.ironic.lookup_node_by_macs(macs, introspection_data=None,
ironic=None, fail=False)

Find a node by its MACs.

ironic_inspector.common.ironic.reset_ironic_session()

Reset the global session variable.

Mostly useful for unit tests.

ironic_inspector.common.keystone module

ironic_inspector.common.keystone.add_auth_options(options, service_type)

ironic_inspector.common.keystone.get_adapter(group, **adapter_kwargs)

ironic_inspector.common.keystone.get_endpoint(group, **kwargs)

ironic_inspector.common.keystone.get_session(group)

ironic_inspector.common.keystone.register_auth_opts(group, service_type)

ironic_inspector.common.lldp_parsers module

Names and mapping functions used to map LLDP TLVs to name/value pairs

class ironic_inspector.common.lldp_parsers.LLDPBasicMgmtParser(nv=None)
Bases: LLDPParser

Class to handle parsing of 802.1AB Basic Management set

This class will also handle 802.1Q and 802.3 OUI TLVs.

add_capabilities(struct, name, data)
Handle LLDP_TLV_SYS_CAPABILITIES

add_mgmt_address(struct, name, data)
Handle LLDP_TLV_MGMT_ADDRESS

There can be multiple Mgmt Address TLVs, store in list.

handle_org_specific_tlv(struct, name, data)
Handle Organizationally Unique ID TLVs

This class supports 802.1Q and 802.3 OUI TLVs.

See http://www.ieee802.org/1/pages/802.1Q-2014.html, Annex D and http://standards.ieee.
org/about/get/802/802.3.html

122 Chapter 4. Contributor Docs

http://www.ieee802.org/1/pages/802.1Q-2014.html
http://standards.ieee.org/about/get/802/802.3.html
http://standards.ieee.org/about/get/802/802.3.html

Ironic Inspector Documentation, Release 12.4.0.dev8

class ironic_inspector.common.lldp_parsers.LLDPParser(node_info, nv=None)
Bases: object

Base class to handle parsing of LLDP TLVs

Each class that inherits from this base class must provide a parser map. Parser maps are used to
associate a LLDP TLV with a function handler and arguments necessary to parse the TLV and
generate one or more name/value pairs. Each LLDP TLV maps to a tuple with the following fields:

function - handler function to generate name/value pairs

construct - name of construct definition for TLV

name - user-friendly name of TLV. For TLVs that generate only one name/value pair this is the
name used

len_check - boolean indicating if length check should be done on construct

Its valid to have a function handler of None, this is for TLVs that are not mapped to a name/value
pair(e.g.LLDP_TLV_TTL).

add_dot1_link_aggregation(struct, name, data)
Add name/value pairs for TLV Dot1_LinkAggregationId

This is in base class since it can be used by both dot1 and dot3.

add_nested_value(struct, name, data)
Add a single nested name/value pair to the dict

add_single_value(struct, name, data)
Add a single name/value pair to the nv dict

append_value(name, value)
Add value to a list mapped to name

parse_tlv(tlv_type, data)
Parse TLVs from mapping table

This functions takes the TLV type and the raw data for this TLV and gets a tuple from the
parser_map. The construct field in the tuple contains the construct lib definition of the TLV
which can be parsed to access individual fields. Once the TLV is parsed, the handler function
for each TLV will store the individual fields as name/value pairs in nv_dict.

If the handler function does not exist, then no name/value pairs will be added to nv_dict, but
since the TLV was handled, True will be returned.

Param
tlv_type - type identifier for TLV

Param
data - raw TLV value

Returns
True if TLV in parser_map and data is valid, otherwise False.

set_value(name, value)
Set name value pair in dictionary

The value for a name should not be changed if it exists.

4.1. How To Contribute 123

Ironic Inspector Documentation, Release 12.4.0.dev8

class ironic_inspector.common.lldp_parsers.LLDPdot1Parser(node_info, nv=None)
Bases: LLDPParser

Class to handle parsing of 802.1Q TLVs

add_dot1_port_protocol_vlan(struct, name, data)
Handle dot1_PORT_PROTOCOL_VLANID

add_dot1_protocol_identities(struct, name, data)
Handle dot1_PROTOCOL_IDENTITY

There can be multiple protocol ids TLVs, store in list

add_dot1_vlans(struct, name, data)
Handle dot1_VLAN_NAME

There can be multiple vlan TLVs, add dictionary entry with id/vlan to list.

class ironic_inspector.common.lldp_parsers.LLDPdot3Parser(node_info, nv=None)
Bases: LLDPParser

Class to handle parsing of 802.3 TLVs

add_dot3_macphy_config(struct, name, data)
Handle dot3_MACPHY_CONFIG_STATUS

ironic_inspector.common.lldp_tlvs module

Link Layer Discovery Protocol TLVs

ironic_inspector.common.lldp_tlvs.bytes_to_int(obj)
Convert bytes to an integer

Param
obj - array of bytes

ironic_inspector.common.lldp_tlvs.get_autoneg_cap(pmd)
Get autonegotiated capability strings

This returns a list of capability strings from the Physical Media Dependent (PMD) capability bits.

Parameters
pmd PMD bits

Returns
Sorted list containing capability strings

ironic_inspector.common.lldp_tlvs.mapping_for_enum(mapping)
Return tuple used for keys as a dict

Param
mapping - dict with tuple as keys

ironic_inspector.common.lldp_tlvs.mapping_for_switch(mapping)
Return dict from values

Param
mapping - dict with tuple as keys

124 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 12.4.0.dev8

ironic_inspector.common.locking module

class ironic_inspector.common.locking.BaseLock

Bases: object

abstract acquire(blocking=True)
Acquire lock.

abstract is_locked()

Return lock status

abstract release()

Release lock.

class ironic_inspector.common.locking.InternalLock(uuid)
Bases: BaseLock

Locking mechanism based on threading.Semaphore.

acquire(blocking=True)
Acquire lock.

is_locked()

Return lock status

release()

Release lock.

class ironic_inspector.common.locking.ToozLock(lock)
Bases: BaseLock

Wrapper on tooz locks.

acquire(blocking=True)
Acquire lock.

is_locked()

Return lock status

release()

Release lock.

ironic_inspector.common.locking.get_lock(uuid)

ironic_inspector.common.rpc module

ironic_inspector.common.rpc.get_client(topic=None)
Get a RPC client instance.

Parameters
topic The topic of the message will be delivered to. This argument is ignored if
CONF.standalone is True.

ironic_inspector.common.rpc.get_server(endpoints)
Get a RPC server instance.

ironic_inspector.common.rpc.init()

4.1. How To Contribute 125

Ironic Inspector Documentation, Release 12.4.0.dev8

ironic_inspector.common.rpc_service module

class ironic_inspector.common.rpc_service.RPCService(host)
Bases: Service

start()

Start a service.

stop()

Stop a service.

Parameters
graceful indicates whether to wait for all threads to finish or terminate them
instantly

ironic_inspector.common.service_utils module

ironic_inspector.common.service_utils.prepare_service(args=None)

ironic_inspector.common.swift module

class ironic_inspector.common.swift.SwiftAPI

Bases: object

API for communicating with Swift.

create_object(object, data, container=None, headers=None)
Uploads a given string to Swift.

Parameters

• object The name of the object in Swift

• data string data to put in the object

• container The name of the container for the object. Defaults to the value
set in the configuration options.

• headers the headers for the object to pass to Swift

Returns
The Swift UUID of the object

Raises
utils.Error, if any operation with Swift fails.

get_object(object, container=None)
Downloads a given object from Swift.

Parameters

• object The name of the object in Swift

• container The name of the container for the object. Defaults to the value
set in the configuration options.

Returns
Swift object

126 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 12.4.0.dev8

Raises
utils.Error, if the Swift operation fails.

ironic_inspector.common.swift.get_introspection_data(uuid, suffix=None)
Downloads introspection data from Swift.

Parameters

• uuid UUID of the Ironic node that the data came from

• suffix optional suffix to add to the underlying swift object name

Returns
Swift object with the introspection data

ironic_inspector.common.swift.reset_swift_session()

Reset the global session variable.

Mostly useful for unit tests.

ironic_inspector.common.swift.store_introspection_data(data, uuid, suffix=None)
Uploads introspection data to Swift.

Parameters

• data data to store in Swift

• uuid UUID of the Ironic node that the data came from

• suffix optional suffix to add to the underlying swift object name

Returns
name of the Swift object that the data is stored in

Module contents

ironic_inspector.conductor package

Submodules

ironic_inspector.conductor.manager module

class ironic_inspector.conductor.manager.ConductorManager

Bases: object

ironic inspector conductor manager

RPC_API_VERSION = '1.3'

del_host()

Shutdown the ironic inspector conductor service.

do_abort(**kwargs)

do_continue(**kwargs)

do_introspection(**kwargs)

do_reapply(**kwargs)

4.1. How To Contribute 127

Ironic Inspector Documentation, Release 12.4.0.dev8

init_host()

Initialize Worker host

Init db connection, load and validate processing hooks, runs periodic tasks.

:returns None

target = <Target version=1.3>

ironic_inspector.conductor.manager.periodic_clean_up()

ironic_inspector.conductor.manager.periodic_leader_election(conductor)

ironic_inspector.conductor.manager.sync_with_ironic(conductor)

Module contents

ironic_inspector.conf package

Submodules

ironic_inspector.conf.accelerators module

ironic_inspector.conf.accelerators.list_opts()

ironic_inspector.conf.accelerators.register_opts(conf)

ironic_inspector.conf.capabilities module

ironic_inspector.conf.capabilities.list_opts()

ironic_inspector.conf.capabilities.register_opts(conf)

ironic_inspector.conf.coordination module

ironic_inspector.conf.coordination.list_opts()

ironic_inspector.conf.coordination.register_opts(conf)

ironic_inspector.conf.default module

class ironic_inspector.conf.default.Octal(min=None, max=None, type_name=’integer
value’, choices=None)

Bases: Integer

ironic_inspector.conf.default.list_opts()

ironic_inspector.conf.default.register_opts(conf)

ironic_inspector.conf.discovery module

ironic_inspector.conf.discovery.list_opts()

ironic_inspector.conf.discovery.register_opts(conf)

128 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 12.4.0.dev8

ironic_inspector.conf.dnsmasq_pxe_filter module

ironic_inspector.conf.dnsmasq_pxe_filter.list_opts()

ironic_inspector.conf.dnsmasq_pxe_filter.register_opts(conf)

ironic_inspector.conf.extra_hardware module

ironic_inspector.conf.extra_hardware.list_opts()

ironic_inspector.conf.extra_hardware.register_opts(conf)

ironic_inspector.conf.healthcheck module

ironic_inspector.conf.healthcheck.list_opts()

ironic_inspector.conf.healthcheck.register_opts(conf)

ironic_inspector.conf.iptables module

ironic_inspector.conf.iptables.list_opts()

ironic_inspector.conf.iptables.register_opts(conf)

ironic_inspector.conf.ironic module

ironic_inspector.conf.ironic.list_opts()

ironic_inspector.conf.ironic.register_opts(conf)

ironic_inspector.conf.opts module

ironic_inspector.conf.opts.list_opts()

ironic_inspector.conf.opts.parse_args(args, default_config_files=None)

ironic_inspector.conf.opts.set_config_defaults()

Return a list of oslo.config options available in Inspector code.

ironic_inspector.conf.opts.set_cors_middleware_defaults()

Update default configuration options for oslo.middleware.

ironic_inspector.conf.pci_devices module

ironic_inspector.conf.pci_devices.list_opts()

ironic_inspector.conf.pci_devices.register_opts(conf)

ironic_inspector.conf.port_physnet module

ironic_inspector.conf.port_physnet.list_opts()

ironic_inspector.conf.port_physnet.register_opts(conf)

4.1. How To Contribute 129

Ironic Inspector Documentation, Release 12.4.0.dev8

ironic_inspector.conf.processing module

ironic_inspector.conf.processing.list_opts()

ironic_inspector.conf.processing.register_opts(conf)

ironic_inspector.conf.pxe_filter module

ironic_inspector.conf.pxe_filter.list_opts()

ironic_inspector.conf.pxe_filter.register_opts(conf)

ironic_inspector.conf.service_catalog module

ironic_inspector.conf.service_catalog.list_opts()

ironic_inspector.conf.service_catalog.register_opts(conf)

ironic_inspector.conf.swift module

ironic_inspector.conf.swift.list_opts()

ironic_inspector.conf.swift.register_opts(conf)

Module contents

ironic_inspector.db package

Submodules

ironic_inspector.db.api module

DB models API for inspection data and shared database code.

ironic_inspector.db.api.add_node(uuid, state, started_at=None, finished_at=None,
error=None, manage_boot=None)

Add new node

Before creating new node with certain uuid clean ups all existing node info.

Parameters

• uuid node uuid

• state initial node state

• started_at node caching datetime

• finished_at introspection finished datetime

• error introspection error

• manage_boot whether to manage boot for this node

Returns
created node object

130 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 12.4.0.dev8

ironic_inspector.db.api.create_node(uuid, state, started_at=None, finished_at=None,
error=None, manage_boot=None)

Create new node

Parameters

• uuid node uuid

• state initial node state

• started_at node caching datetime

• finished_at introspection finished datetime

• error introspection error

Returns
created node object

ironic_inspector.db.api.create_rule(uuid, conditions, actions, description=None,
scope=None)

Create new rule

Parameters

• uuid rule uuid

• conditions list of (field, op, multiple, invert, params) tuple, which repre-
sents condition object

• actions list of (action, params) pair, which represents action object

• description rule description

• scope rule scope

Returns
created rule

ironic_inspector.db.api.delete_all_rules()

Delete all rules

Returns
None

ironic_inspector.db.api.delete_attributes(uuid)
Delete all attributes

Parameters
uuid the UUID of the node whose attributes you wish tod elete

Returns
None

ironic_inspector.db.api.delete_node(uuid)
Delete node and its attributes

Parameters
uuid node uuid

Returns
None

4.1. How To Contribute 131

Ironic Inspector Documentation, Release 12.4.0.dev8

ironic_inspector.db.api.delete_nodes(finished_until=None)
Delete all nodes

Parameters
finished_until datetime object, delete nodes are introspected before fin-
ished_until time

Returns
None

ironic_inspector.db.api.delete_options(**filters)
Delete all options

Parameters
filters deletion filter criteria

Returns
None

ironic_inspector.db.api.delete_rule(uuid)
Delete the rule by uuid

Parameters
uuid rule uuid

Raises
RuleNotFoundError in case rule not found

Returns
None

ironic_inspector.db.api.get_active_nodes(started_before=None)
Get list of nodes on introspection

Parameters
started_before datetime object, returns nodes, started before provided time

Returns
list of nodes, could be empty

ironic_inspector.db.api.get_attributes(order_by=None, **fields)
Get all attributes

Parameters

• order_by ordering criterion

• fields filter criteria fields

Returns
list of attributes

ironic_inspector.db.api.get_introspection_data(node_id, processed=True)
Get introspection data for this node.

Parameters

• node_id node UUID.

• processed Specify the type of introspected data, set to False indicates re-
trieving the unprocessed data.

132 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 12.4.0.dev8

Returns
A dictionary representation of intropsected data

ironic_inspector.db.api.get_node(uuid, **fields)
Get all cached nodes

Parameters

• uuid node uuid

• fields fields are used as filtering criterion

Returns
get node object

Raises
NodeNotFoundInDBError in case node not found or node version differ from
passed in fields.

ironic_inspector.db.api.get_nodes()

Get list of cached nodes

Returns
list of nodes, could be empty

ironic_inspector.db.api.get_options(**fields)
Get all options

Parameters
fields filter criteria fields

Returns
list of options

ironic_inspector.db.api.get_rule(uuid)
Get rule by uuid

Parameters
uuid rule uuid

Returns
rule object

ironic_inspector.db.api.get_rules(**fields)
List all rules.

ironic_inspector.db.api.get_rules_actions(**fields)
Get all rule actions

Parameters
fields field filter criteria

Returns
list of actions

ironic_inspector.db.api.get_rules_conditions(**fields)
Get all rule conditions

Parameters
fields field filter criteria

4.1. How To Contribute 133

Ironic Inspector Documentation, Release 12.4.0.dev8

Returns
list of conditions

ironic_inspector.db.api.get_writer_session()

Help method to get writer session.

Returns
The writer session.

ironic_inspector.db.api.init()

Initialize the database.

Method called on service start up, initialize transaction context manager and try to create db ses-
sion.

ironic_inspector.db.api.list_nodes_by_attributes(attributes)
Get list of nodes with certain attributes

Parameters
attributes list of attributes as (name, value) pair

Returns
list of nodes, could be empty

ironic_inspector.db.api.list_nodes_options_by_uuid(uuid)
Get list of node options

Parameters
uuid node uuid

Returns
list of node options, could be empty

ironic_inspector.db.api.model_query(model, *args, **kwargs)
Query helper for simpler session usage.

Parameters
session if present, the session to use

ironic_inspector.db.api.session_for_read()

Create read session within context manager

ironic_inspector.db.api.session_for_write()

Create write session within context manager

ironic_inspector.db.api.set_attribute(node_uuid, name, values)
Set lookup attributes for node

Parameters

• node_uuid node uuid

• name option name

• values list of attribute values

Returns
None

134 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 12.4.0.dev8

ironic_inspector.db.api.set_option(node_uuid, name, value)
Set option for node

Parameters

• node_uuid node uuid

• name option name

• value option value

Returns
None

ironic_inspector.db.api.store_introspection_data(node_id, introspection_data,
processed=True)

Store introspection data for this node.

Parameters

• node_id node UUID.

• introspection_data A dictionary of introspection data

• processed Specify the type of introspected data, set to False indicates the
data is unprocessed.

ironic_inspector.db.api.update_node(uuid, **values)
Update node by uuid

Updates node fields with provided values, also bump node version.

Parameters

• uuid node uuid

• values node fields with values to be updated

Raises
NodeNotFoundInDBError in case node not found or node version differ from
passed in values.

ironic_inspector.db.migration module

ironic_inspector.db.migration.create_schema(config=None, engine=None)
Create database schema from models description.

Can be used for initial installation instead of upgrade(head).

ironic_inspector.db.migration.downgrade(revision, config=None)
Used for downgrading database.

Parameters
version (string) Desired database version

ironic_inspector.db.migration.revision(message=None, autogenerate=False, config=None)
Creates template for migration.

Parameters

• message (string) Text that will be used for migration title

4.1. How To Contribute 135

Ironic Inspector Documentation, Release 12.4.0.dev8

• autogenerate (bool) If True - generates diff based on current database state

ironic_inspector.db.migration.stamp(revision, config=None)
Stamps database with provided revision.

Dont run any migrations.

Parameters
revision (string) Should match one from repository or head - to stamp database
with most recent revision

ironic_inspector.db.migration.upgrade(revision, config=None)
Used for upgrading database.

Parameters
version (string) Desired database version

ironic_inspector.db.migration.version(config=None, engine=None)
Current database version.

Returns
Database version

Return type
string

ironic_inspector.db.model module

SQLAlchemy models for inspection data and shared database code.

class ironic_inspector.db.model.Attribute(**kwargs)
Bases: Base

name

node_uuid

uuid

value

class ironic_inspector.db.model.IntrospectionData(**kwargs)
Bases: Base

data

processed

uuid

class ironic_inspector.db.model.ModelBase

Bases: ModelBase

class ironic_inspector.db.model.Node(**kwargs)
Bases: Base

error

136 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 12.4.0.dev8

finished_at

manage_boot

started_at

state

uuid

version_id

class ironic_inspector.db.model.Option(**kwargs)
Bases: Base

name

uuid

value

class ironic_inspector.db.model.Rule(**kwargs)
Bases: Base

actions

conditions

created_at

description

disabled

scope

uuid

class ironic_inspector.db.model.RuleAction(**kwargs)
Bases: Base

action

as_dict()

id

params

rule

class ironic_inspector.db.model.RuleCondition(**kwargs)
Bases: Base

as_dict()

field

4.1. How To Contribute 137

Ironic Inspector Documentation, Release 12.4.0.dev8

id

invert

multiple

op

params

rule

Module contents

ironic_inspector.plugins package

Submodules

ironic_inspector.plugins.accel_device module

Gather and distinguish Accelerator PCI devices from inventory.

class ironic_inspector.plugins.accel_device.AccelDevicesHook

Bases: ProcessingHook

Processing hook for distinguishing accelerator devices.

before_update(introspection_data, node_info, **kwargs)
Hook to run before Ironic node update.

This hook is run after node is found and ports are created, just before the node is updated
with the data.

Parameters

• introspection_data processed data from the ramdisk.

• node_info NodeInfo instance.

• kwargs used for extensibility without breaking existing hooks.

Returns
nothing.

[RFC 6902] - http://tools.ietf.org/html/rfc6902

ironic_inspector.plugins.base module

Base code for plugins support.

class ironic_inspector.plugins.base.ProcessingHook

Bases: object

Abstract base class for introspection data processing hooks.

before_processing(introspection_data, **kwargs)
Hook to run before any other data processing.

This hook is run even before sanity checks.

138 Chapter 4. Contributor Docs

http://tools.ietf.org/html/rfc6902

Ironic Inspector Documentation, Release 12.4.0.dev8

Parameters

• introspection_data raw information sent by the ramdisk, may be mod-
ified by the hook.

• kwargs used for extensibility without breaking existing hooks

Returns
nothing.

before_update(introspection_data, node_info, **kwargs)
Hook to run before Ironic node update.

This hook is run after node is found and ports are created, just before the node is updated
with the data.

Parameters

• introspection_data processed data from the ramdisk.

• node_info NodeInfo instance.

• kwargs used for extensibility without breaking existing hooks.

Returns
nothing.

[RFC 6902] - http://tools.ietf.org/html/rfc6902

dependencies = []

An ordered list of hooks that must be enabled before this one.

The items here should be entry point names, not classes.

class ironic_inspector.plugins.base.RuleActionPlugin

Bases: WithValidation

Abstract base class for rule action plugins.

FORMATTED_PARAMS = []

List of params will be formatted with python format.

abstract apply(node_info, params, **kwargs)
Run action on successful rule match.

Parameters

• node_info NodeInfo object

• params parameters as a dictionary

• kwargs used for extensibility without breaking existing plugins

Raises
utils.Error on failure

class ironic_inspector.plugins.base.RuleConditionPlugin

Bases: WithValidation

Abstract base class for rule condition plugins.

4.1. How To Contribute 139

http://tools.ietf.org/html/rfc6902

Ironic Inspector Documentation, Release 12.4.0.dev8

ALLOW_NONE = False

Whether this condition accepts None when field is not found.

REQUIRED_PARAMS = {'value'}

Set with names of required parameters.

abstract check(node_info, field, params, **kwargs)
Check if condition holds for a given field.

Parameters

• node_info NodeInfo object

• field field value

• params parameters as a dictionary, changing it here will change what will
be stored in database

• kwargs used for extensibility without breaking existing plugins

Raises
ValueError on unacceptable field value

Returns
True if check succeeded, otherwise False

class ironic_inspector.plugins.base.WithValidation

Bases: object

OPTIONAL_PARAMS = {}

Set with names of optional parameters.

REQUIRED_PARAMS = {}

Set with names of required parameters.

validate(params, **kwargs)
Validate params passed during creation.

Default implementation checks for presence of fields from REQUIRED_PARAMS and fails
for unexpected fields (not from REQUIRED_PARAMS + OPTIONAL_PARAMS).

Parameters

• params params as a dictionary

• kwargs used for extensibility without breaking existing plugins

Raises
ValueError on validation failure

ironic_inspector.plugins.base.introspection_data_manager()

ironic_inspector.plugins.base.missing_entrypoints_callback(names)
Raise MissingHookError with comma-separated list of missing hooks

ironic_inspector.plugins.base.node_not_found_hook_manager(*args)

140 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 12.4.0.dev8

ironic_inspector.plugins.base.processing_hooks_manager(*args)
Create a Stevedore extension manager for processing hooks.

Parameters
args arguments to pass to the hooks constructor.

ironic_inspector.plugins.base.reset()

Reset cached managers.

ironic_inspector.plugins.base.rule_actions_manager()

Create a Stevedore extension manager for actions in rules.

ironic_inspector.plugins.base.rule_conditions_manager()

Create a Stevedore extension manager for conditions in rules.

ironic_inspector.plugins.base.validate_processing_hooks()

Validate the enabled processing hooks.

Raises
MissingHookError on missing or failed to load hooks

Raises
RuntimeError on validation failure

Returns
the list of hooks passed validation

ironic_inspector.plugins.base_physnet module

class ironic_inspector.plugins.base_physnet.BasePhysnetHook

Bases: ProcessingHook

Base class for plugins that assign a physical network to ports.

The mechanism for mapping a port to a physical network should be provided by a subclass via the
get_physnet() method.

before_update(introspection_data, node_info, **kwargs)
Process introspection data and patch port physical network.

abstract get_physnet(port, iface_name, introspection_data)
Return a physical network to apply to a port.

Subclasses should implement this method to determine how to map a port to a physical net-
work.

Parameters

• port The ironic port to patch.

• iface_name Name of the interface.

• introspection_data Introspection data.

Returns
The physical network to set, or None.

4.1. How To Contribute 141

Ironic Inspector Documentation, Release 12.4.0.dev8

ironic_inspector.plugins.capabilities module

Gather capabilities from inventory.

class ironic_inspector.plugins.capabilities.CapabilitiesHook

Bases: ProcessingHook

Processing hook for detecting capabilities.

before_update(introspection_data, node_info, **kwargs)
Hook to run before Ironic node update.

This hook is run after node is found and ports are created, just before the node is updated
with the data.

Parameters

• introspection_data processed data from the ramdisk.

• node_info NodeInfo instance.

• kwargs used for extensibility without breaking existing hooks.

Returns
nothing.

[RFC 6902] - http://tools.ietf.org/html/rfc6902

ironic_inspector.plugins.discovery module

Enroll node not found hook hook.

ironic_inspector.plugins.discovery.enroll_node_not_found_hook(introspection_data,
**kwargs)

ironic_inspector.plugins.example module

Example plugin.

class ironic_inspector.plugins.example.ExampleProcessingHook

Bases: ProcessingHook

before_processing(introspection_data, **kwargs)
Hook to run before any other data processing.

This hook is run even before sanity checks.

Parameters

• introspection_data raw information sent by the ramdisk, may be mod-
ified by the hook.

• kwargs used for extensibility without breaking existing hooks

Returns
nothing.

142 Chapter 4. Contributor Docs

http://tools.ietf.org/html/rfc6902

Ironic Inspector Documentation, Release 12.4.0.dev8

before_update(introspection_data, node_info, **kwargs)
Hook to run before Ironic node update.

This hook is run after node is found and ports are created, just before the node is updated
with the data.

Parameters

• introspection_data processed data from the ramdisk.

• node_info NodeInfo instance.

• kwargs used for extensibility without breaking existing hooks.

Returns
nothing.

[RFC 6902] - http://tools.ietf.org/html/rfc6902

class ironic_inspector.plugins.example.ExampleRuleAction

Bases: RuleActionPlugin

apply(node_info, params, **kwargs)
Run action on successful rule match.

Parameters

• node_info NodeInfo object

• params parameters as a dictionary

• kwargs used for extensibility without breaking existing plugins

Raises
utils.Error on failure

ironic_inspector.plugins.example.example_not_found_hook(introspection_data,
**kwargs)

ironic_inspector.plugins.extra_hardware module

Plugin to store extra hardware information in Swift.

Stores the value of the data key returned by the ramdisk as a JSON encoded string in a Swift object. The
object is named extra_hardware-<node uuid> and is stored in the inspector container.

class ironic_inspector.plugins.extra_hardware.ExtraHardwareHook

Bases: ProcessingHook

Processing hook for saving extra hardware information in Swift.

before_update(introspection_data, node_info, **kwargs)
Stores the data key from introspection_data in Swift.

If the data key exists, updates Ironic extra column hardware_swift_object key to the name of
the Swift object, and stores the data in the inspector container in Swift.

Otherwise, it does nothing.

4.1. How To Contribute 143

http://tools.ietf.org/html/rfc6902

Ironic Inspector Documentation, Release 12.4.0.dev8

ironic_inspector.plugins.introspection_data module

Backends for storing introspection data.

class ironic_inspector.plugins.introspection_data.BaseStorageBackend

Bases: object

abstract get(node_uuid, processed=True, get_json=False)
Get introspected data from storage backend.

Parameters

• node_uuid node UUID.

• processed Specify whether the data to be retrieved is processed or not.

• get_json Specify whether return the introspection data in json format,
string value is returned if False.

Returns
the introspection data.

Raises
IntrospectionDataStoreDisabled if storage backend is disabled.

abstract save(node_uuid, data, processed=True)
Save introspected data to storage backend.

Parameters

• node_uuid node UUID.

• data the introspected data to be saved, in dict format.

• processed Specify whether the data to be saved is processed or not.

Raises
IntrospectionDataStoreDisabled if storage backend is disabled.

class ironic_inspector.plugins.introspection_data.DatabaseStore

Bases: object

get(node_uuid, processed=True, get_json=False)

save(node_uuid, data, processed=True)

class ironic_inspector.plugins.introspection_data.NoStore

Bases: BaseStorageBackend

get(node_uuid, processed=True, get_json=False)
Get introspected data from storage backend.

Parameters

• node_uuid node UUID.

• processed Specify whether the data to be retrieved is processed or not.

• get_json Specify whether return the introspection data in json format,
string value is returned if False.

144 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 12.4.0.dev8

Returns
the introspection data.

Raises
IntrospectionDataStoreDisabled if storage backend is disabled.

save(node_uuid, data, processed=True)
Save introspected data to storage backend.

Parameters

• node_uuid node UUID.

• data the introspected data to be saved, in dict format.

• processed Specify whether the data to be saved is processed or not.

Raises
IntrospectionDataStoreDisabled if storage backend is disabled.

class ironic_inspector.plugins.introspection_data.SwiftStore

Bases: object

get(node_uuid, processed=True, get_json=False)

save(node_uuid, data, processed=True)

ironic_inspector.plugins.lldp_basic module

LLDP Processing Hook for basic TLVs

class ironic_inspector.plugins.lldp_basic.LLDPBasicProcessingHook

Bases: ProcessingHook

Process mandatory and optional LLDP packet fields

Loop through raw LLDP TLVs and parse those from the basic management, 802.1, and 802.3 TLV
sets. Store parsed data back to the ironic-inspector database.

before_update(introspection_data, node_info, **kwargs)
Process LLDP data and update all_interfaces with processed data

ironic_inspector.plugins.local_link_connection module

Generic LLDP Processing Hook

class
ironic_inspector.plugins.local_link_connection.GenericLocalLinkConnectionHook

Bases: ProcessingHook

Process mandatory LLDP packet fields

Non-vendor specific LLDP packet fields processed for each NIC found for a baremetal node, port
ID and chassis ID. These fields if found and if valid will be saved into the local link connection
info port id and switch id fields on the Ironic port that represents that NIC.

before_update(introspection_data, node_info, **kwargs)
Process LLDP data and patch Ironic port local link connection

4.1. How To Contribute 145

Ironic Inspector Documentation, Release 12.4.0.dev8

ironic_inspector.plugins.pci_devices module

Gather and distinguish PCI devices from inventory.

class ironic_inspector.plugins.pci_devices.PciDevicesHook

Bases: ProcessingHook

Processing hook for counting and distinguishing various PCI devices.

That information can be later used by nova for node scheduling.

aliases = {}

before_update(introspection_data, node_info, **kwargs)
Hook to run before Ironic node update.

This hook is run after node is found and ports are created, just before the node is updated
with the data.

Parameters

• introspection_data processed data from the ramdisk.

• node_info NodeInfo instance.

• kwargs used for extensibility without breaking existing hooks.

Returns
nothing.

[RFC 6902] - http://tools.ietf.org/html/rfc6902

ironic_inspector.plugins.physnet_cidr_map module

Port Physical Network Hook

class ironic_inspector.plugins.physnet_cidr_map.PhysnetCidrMapHook

Bases: BasePhysnetHook

Process port physical network

Set the physical_network field of baremetal ports based on a cidr to physical network mapping in
the configuration.

get_physnet(port, iface_name, introspection_data)
Return a physical network to apply to a port.

Parameters

• port The ironic port to patch.

• iface_name Name of the interface.

• introspection_data Introspection data.

Returns
The physical network to set, or None.

146 Chapter 4. Contributor Docs

http://tools.ietf.org/html/rfc6902

Ironic Inspector Documentation, Release 12.4.0.dev8

ironic_inspector.plugins.raid_device module

Gather root device hint from recognized block devices.

class ironic_inspector.plugins.raid_device.RaidDeviceDetection

Bases: ProcessingHook

Processing hook for learning the root device after RAID creation.

The plugin can figure out the root device in 2 runs. First, it saves the discovered block device
serials in node.extra. The second run will check the difference between the recently discovered
block devices and the previously saved ones. After saving the root device in node.properties, it
will delete the temporarily saved block device serials in node.extra.

This way, it helps to figure out the root device hint in cases when otherwise Ironic doesnt have
enough information to do so. Such a usecase is DRAC RAID configuration where the BMC doesnt
provide any useful information about the created RAID disks. Using this plugin immediately before
and after creating the root RAID device will solve the issue of root device hints.

In cases where theres no RAID volume on the node, the standard plugin will fail due to the missing
local_gb value. This plugin fakes the missing value, until its corrected during later runs. Note,
that for this to work the plugin needs to take precedence over the standard plugin.

before_processing(introspection_data, **kwargs)
Adds fake local_gb value if its missing from introspection_data.

before_update(introspection_data, node_info, **kwargs)
Hook to run before Ironic node update.

This hook is run after node is found and ports are created, just before the node is updated
with the data.

Parameters

• introspection_data processed data from the ramdisk.

• node_info NodeInfo instance.

• kwargs used for extensibility without breaking existing hooks.

Returns
nothing.

[RFC 6902] - http://tools.ietf.org/html/rfc6902

ironic_inspector.plugins.rules module

Standard plugins for rules API.

class ironic_inspector.plugins.rules.AddTraitAction

Bases: RuleActionPlugin

REQUIRED_PARAMS = {'name'}

Set with names of required parameters.

apply(node_info, params, **kwargs)
Run action on successful rule match.

Parameters

4.1. How To Contribute 147

http://tools.ietf.org/html/rfc6902

Ironic Inspector Documentation, Release 12.4.0.dev8

• node_info NodeInfo object

• params parameters as a dictionary

• kwargs used for extensibility without breaking existing plugins

Raises
utils.Error on failure

class ironic_inspector.plugins.rules.ContainsCondition

Bases: ReCondition

check(node_info, field, params, **kwargs)
Check if condition holds for a given field.

Parameters

• node_info NodeInfo object

• field field value

• params parameters as a dictionary, changing it here will change what will
be stored in database

• kwargs used for extensibility without breaking existing plugins

Raises
ValueError on unacceptable field value

Returns
True if check succeeded, otherwise False

class ironic_inspector.plugins.rules.EmptyCondition

Bases: RuleConditionPlugin

ALLOW_NONE = True

Whether this condition accepts None when field is not found.

REQUIRED_PARAMS = {}

Set with names of required parameters.

check(node_info, field, params, **kwargs)
Check if condition holds for a given field.

Parameters

• node_info NodeInfo object

• field field value

• params parameters as a dictionary, changing it here will change what will
be stored in database

• kwargs used for extensibility without breaking existing plugins

Raises
ValueError on unacceptable field value

Returns
True if check succeeded, otherwise False

148 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 12.4.0.dev8

class ironic_inspector.plugins.rules.EqCondition

Bases: SimpleCondition

op(b, /)
Same as a == b.

class ironic_inspector.plugins.rules.ExtendAttributeAction

Bases: RuleActionPlugin

FORMATTED_PARAMS = ['value']

List of params will be formatted with python format.

OPTIONAL_PARAMS = {'unique'}

Set with names of optional parameters.

REQUIRED_PARAMS = {'path', 'value'}

Set with names of required parameters.

apply(node_info, params, **kwargs)
Run action on successful rule match.

Parameters

• node_info NodeInfo object

• params parameters as a dictionary

• kwargs used for extensibility without breaking existing plugins

Raises
utils.Error on failure

class ironic_inspector.plugins.rules.FailAction

Bases: RuleActionPlugin

REQUIRED_PARAMS = {'message'}

Set with names of required parameters.

apply(node_info, params, **kwargs)
Run action on successful rule match.

Parameters

• node_info NodeInfo object

• params parameters as a dictionary

• kwargs used for extensibility without breaking existing plugins

Raises
utils.Error on failure

class ironic_inspector.plugins.rules.GeCondition

Bases: SimpleCondition

op(b, /)
Same as a >= b.

4.1. How To Contribute 149

Ironic Inspector Documentation, Release 12.4.0.dev8

class ironic_inspector.plugins.rules.GtCondition

Bases: SimpleCondition

op(b, /)
Same as a > b.

class ironic_inspector.plugins.rules.LeCondition

Bases: SimpleCondition

op(b, /)
Same as a <= b.

class ironic_inspector.plugins.rules.LtCondition

Bases: SimpleCondition

op(b, /)
Same as a < b.

class ironic_inspector.plugins.rules.MatchesCondition

Bases: ReCondition

check(node_info, field, params, **kwargs)
Check if condition holds for a given field.

Parameters

• node_info NodeInfo object

• field field value

• params parameters as a dictionary, changing it here will change what will
be stored in database

• kwargs used for extensibility without breaking existing plugins

Raises
ValueError on unacceptable field value

Returns
True if check succeeded, otherwise False

class ironic_inspector.plugins.rules.NeCondition

Bases: SimpleCondition

op(b, /)
Same as a != b.

class ironic_inspector.plugins.rules.NetCondition

Bases: RuleConditionPlugin

check(node_info, field, params, **kwargs)
Check if condition holds for a given field.

Parameters

• node_info NodeInfo object

• field field value

150 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 12.4.0.dev8

• params parameters as a dictionary, changing it here will change what will
be stored in database

• kwargs used for extensibility without breaking existing plugins

Raises
ValueError on unacceptable field value

Returns
True if check succeeded, otherwise False

validate(params, **kwargs)
Validate params passed during creation.

Default implementation checks for presence of fields from REQUIRED_PARAMS and fails
for unexpected fields (not from REQUIRED_PARAMS + OPTIONAL_PARAMS).

Parameters

• params params as a dictionary

• kwargs used for extensibility without breaking existing plugins

Raises
ValueError on validation failure

class ironic_inspector.plugins.rules.ReCondition

Bases: RuleConditionPlugin

validate(params, **kwargs)
Validate params passed during creation.

Default implementation checks for presence of fields from REQUIRED_PARAMS and fails
for unexpected fields (not from REQUIRED_PARAMS + OPTIONAL_PARAMS).

Parameters

• params params as a dictionary

• kwargs used for extensibility without breaking existing plugins

Raises
ValueError on validation failure

class ironic_inspector.plugins.rules.RemoveTraitAction

Bases: RuleActionPlugin

REQUIRED_PARAMS = {'name'}

Set with names of required parameters.

apply(node_info, params, **kwargs)
Run action on successful rule match.

Parameters

• node_info NodeInfo object

• params parameters as a dictionary

• kwargs used for extensibility without breaking existing plugins

4.1. How To Contribute 151

Ironic Inspector Documentation, Release 12.4.0.dev8

Raises
utils.Error on failure

class ironic_inspector.plugins.rules.SetAttributeAction

Bases: RuleActionPlugin

FORMATTED_PARAMS = ['value']

List of params will be formatted with python format.

OPTIONAL_PARAMS = {'reset_interfaces', 'value'}

Set with names of optional parameters.

REQUIRED_PARAMS = {'path'}

Set with names of required parameters.

apply(node_info, params, **kwargs)
Run action on successful rule match.

Parameters

• node_info NodeInfo object

• params parameters as a dictionary

• kwargs used for extensibility without breaking existing plugins

Raises
utils.Error on failure

validate(params, **kwargs)
Validate params passed during creation.

Default implementation checks for presence of fields from REQUIRED_PARAMS and fails
for unexpected fields (not from REQUIRED_PARAMS + OPTIONAL_PARAMS).

Parameters

• params params as a dictionary

• kwargs used for extensibility without breaking existing plugins

Raises
ValueError on validation failure

class ironic_inspector.plugins.rules.SetCapabilityAction

Bases: RuleActionPlugin

FORMATTED_PARAMS = ['value']

List of params will be formatted with python format.

OPTIONAL_PARAMS = {'value'}

Set with names of optional parameters.

REQUIRED_PARAMS = {'name'}

Set with names of required parameters.

apply(node_info, params, **kwargs)
Run action on successful rule match.

Parameters

152 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 12.4.0.dev8

• node_info NodeInfo object

• params parameters as a dictionary

• kwargs used for extensibility without breaking existing plugins

Raises
utils.Error on failure

class ironic_inspector.plugins.rules.SimpleCondition

Bases: RuleConditionPlugin

check(node_info, field, params, **kwargs)
Check if condition holds for a given field.

Parameters

• node_info NodeInfo object

• field field value

• params parameters as a dictionary, changing it here will change what will
be stored in database

• kwargs used for extensibility without breaking existing plugins

Raises
ValueError on unacceptable field value

Returns
True if check succeeded, otherwise False

op = None

ironic_inspector.plugins.rules.coerce(value, expected)

ironic_inspector.plugins.standard module

Standard set of plugins.

class ironic_inspector.plugins.standard.RamdiskErrorHook

Bases: ProcessingHook

Hook to process error send from the ramdisk.

before_processing(introspection_data, **kwargs)
Hook to run before any other data processing.

This hook is run even before sanity checks.

Parameters

• introspection_data raw information sent by the ramdisk, may be mod-
ified by the hook.

• kwargs used for extensibility without breaking existing hooks

Returns
nothing.

4.1. How To Contribute 153

Ironic Inspector Documentation, Release 12.4.0.dev8

class ironic_inspector.plugins.standard.RootDiskSelectionHook

Bases: ProcessingHook

Smarter root disk selection using Ironic root device hints.

This hook must always go before SchedulerHook, otherwise root_disk field might not be updated.

before_update(introspection_data, node_info, **kwargs)
Process root disk information.

class ironic_inspector.plugins.standard.SchedulerHook

Bases: ProcessingHook

Nova scheduler required properties.

KEYS = ('cpus', 'cpu_arch', 'memory_mb')

before_update(introspection_data, node_info, **kwargs)
Update node with scheduler properties.

class ironic_inspector.plugins.standard.ValidateInterfacesHook

Bases: ProcessingHook

Hook to validate network interfaces.

before_processing(introspection_data, **kwargs)
Validate information about network interfaces.

before_update(introspection_data, node_info, **kwargs)
Create new ports and drop ports that are not present in the data.

Module contents

ironic_inspector.pxe_filter package

Submodules

ironic_inspector.pxe_filter.base module

Base code for PXE boot filtering.

class ironic_inspector.pxe_filter.base.BaseFilter

Bases: FilterDriver

The generic PXE boot filtering interface implementation.

This driver doesnt do anything but provides a basic synchronization and initialization logic for
some drivers to reuse. Subclasses have to provide a custom sync() method.

fsm = <automaton.machines.FiniteMachine object>

fsm_reset_on_error()

Reset the filter driver upon generic exception.

The context is self.fsm. The automaton.exceptions.NotFound error is cast to the InvalidFil-
terDriverState error. Other exceptions trigger self.reset()

154 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 12.4.0.dev8

Raises
InvalidFilterDriverState

Returns
nothing.

get_periodic_sync_task()

Get periodic sync task for the filter.

The periodic task returned is casting the InvalidFilterDriverState to the periodics.NeverAgain
exception to quit looping.

Raises
periodics.NeverAgain

Returns
a periodic task to be run in the background.

init_filter()

Base driver initialization logic. Locked.

Raises
InvalidFilterDriverState

Returns
nothing.

reset()

Reset internal driver state.

This method is called by the fsm_context manager upon exception as well as by the
tear_down_filter method. A subclass might wish to override as necessary, though must not
lock the driver. The overriding subclass should up-call.

Returns
nothing.

property state

Current driver state.

sync(ironic)
Base driver sync logic. Locked.

Parameters
ironic obligatory ironic client instance

Returns
nothing.

tear_down_filter()

Base driver tear down logic. Locked.

Returns
nothing.

class ironic_inspector.pxe_filter.base.Events

Bases: object

PXE filter driver transitions.

4.1. How To Contribute 155

Ironic Inspector Documentation, Release 12.4.0.dev8

initialize = 'initialize'

reset = 'reset'

sync = 'sync'

exception ironic_inspector.pxe_filter.base.InvalidFilterDriverState

Bases: RuntimeError

The fsm of the filter driver raised an error.

class ironic_inspector.pxe_filter.base.NoopFilter

Bases: BaseFilter

A trivial PXE boot filter.

get_periodic_sync_task()

Get periodic sync task for the filter.

The periodic task returned is casting the InvalidFilterDriverState to the periodics.NeverAgain
exception to quit looping.

Raises
periodics.NeverAgain

Returns
a periodic task to be run in the background.

class ironic_inspector.pxe_filter.base.States

Bases: object

PXE filter driver states.

initialized = 'initialized'

uninitialized = 'uninitialized'

ironic_inspector.pxe_filter.base.driver()

Get the driver for the PXE filter.

Returns
the singleton PXE filter driver object.

ironic_inspector.pxe_filter.base.get_active_macs(ironic)

ironic_inspector.pxe_filter.base.get_inactive_macs(ironic)

ironic_inspector.pxe_filter.base.get_ironic_macs(ironic)

ironic_inspector.pxe_filter.base.locked_driver_event(event)
Call driver method having processed the fsm event.

ironic_inspector.pxe_filter.dnsmasq module

class ironic_inspector.pxe_filter.dnsmasq.DnsmasqFilter

Bases: BaseFilter

The dnsmasq PXE filter driver.

156 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 12.4.0.dev8

A pxe filter driver implementation that controls access to dnsmasq through amending its configu-
ration.

init_filter()

Performs an initial sync with ironic and starts dnsmasq.

The initial _sync() call reduces the chances dnsmasq might lose some inotify deny list events
by prefetching the list before dnsmasq is started.

Raises
OSError, IOError.

Returns
None.

reset()

Stop dnsmasq and upcall reset.

sync(ironic)
Sync dnsmasq configuration with current Ironic&Inspector state.

Polls all ironic ports. Those being inspected, the active ones, are added to the allow list while
the rest are added to the deny list in the dnsmasq configuration.

Parameters
ironic an ironic client instance.

Raises
OSError, IOError.

Returns
None.

ironic_inspector.pxe_filter.interface module

The code of the PXE boot filtering interface.

class ironic_inspector.pxe_filter.interface.FilterDriver

Bases: object

The PXE boot filtering interface.

abstract get_periodic_sync_task()

Get periodic sync task for the filter.

Returns
a periodic task to be run in the background.

abstract init_filter()

Initialize the internal driver state.

This method should be idempotent and may perform system-wide filter state changes. Can
be synchronous.

Returns
nothing.

4.1. How To Contribute 157

Ironic Inspector Documentation, Release 12.4.0.dev8

abstract sync(ironic)
Synchronize the filter with ironic and inspector.

To be called both periodically and as needed by inspector. The filter should tear down its
internal state if the sync method raises in order to propagate filtering exception between pe-
riodic and on-demand sync call. To this end, a driver should raise from the sync call if its
internal state isnt properly initialized.

Parameters
ironic an ironic client instance.

Returns
nothing.

abstract tear_down_filter()

Reset the filter.

This method should be idempotent and may perform system-wide filter state changes. Can
be synchronous.

Returns
nothing.

ironic_inspector.pxe_filter.iptables module

class ironic_inspector.pxe_filter.iptables.IptablesFilter

Bases: BaseFilter

A PXE boot filtering interface implementation.

init_filter()

Base driver initialization logic. Locked.

Raises
InvalidFilterDriverState

Returns
nothing.

reset()

Reset internal driver state.

This method is called by the fsm_context manager upon exception as well as by the
tear_down_filter method. A subclass might wish to override as necessary, though must not
lock the driver. The overriding subclass should up-call.

Returns
nothing.

sync(ironic)
Sync firewall filter rules for introspection.

Gives access to PXE boot port for any machine, except for those, whose MAC is registered
in Ironic and is not on introspection right now.

This function is called from both introspection initialization code and from periodic task.
This function is supposed to be resistant to unexpected iptables state.

158 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 12.4.0.dev8

init() function must be called once before any call to this function. This function is using
eventlet semaphore to serialize access from different green threads.

Parameters
ironic an ironic client instance.

Returns
nothing.

Module contents

Submodules

ironic_inspector.api_tools module

Generic Rest Api tools.

ironic_inspector.api_tools.limit_field(value)
Fetch the pagination limit field from flask.request.args.

Returns
the limit

ironic_inspector.api_tools.marker_field(value)
Fetch the pagination marker field from flask.request.args.

Returns
an uuid

ironic_inspector.api_tools.raises_coercion_exceptions(fn)
Convert coercion function exceptions to utils.Error.

Raises
utils.Error when the coercion function raises an AssertionError or a ValueError

ironic_inspector.api_tools.request_field(field_name)
Decorate a function that coerces the specified field.

Parameters
field_name name of the field to fetch

Returns
a decorator

ironic_inspector.api_tools.state_field(value)
Fetch the pagination state field from flask.request.args.

Returns
list of the state(s)

ironic_inspector.introspect module

Handling introspection request.

ironic_inspector.introspect.abort(node_id, token=None)
Abort running introspection.

Parameters

4.1. How To Contribute 159

Ironic Inspector Documentation, Release 12.4.0.dev8

• node_id node UUID or name

• token authentication token

Raises
Error

ironic_inspector.introspect.introspect(node_id, manage_boot=True, token=None)
Initiate hardware properties introspection for a given node.

Parameters

• node_id node UUID or name

• manage_boot whether to manage boot for this node

• token authentication token

Raises
Error

ironic_inspector.introspection_state module

Introspection state.

class ironic_inspector.introspection_state.Events

Bases: object

Events that change introspection state.

abort = 'abort'

abort_end = 'abort_end'

classmethod all()

Return a list of all events.

error = 'error'

finish = 'finish'

process = 'process'

reapply = 'reapply'

start = 'start'

timeout = 'timeout'

wait = 'wait'

class ironic_inspector.introspection_state.States

Bases: object

States of an introspection.

aborting = 'aborting'

classmethod all()

Return a list of all states.

160 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 12.4.0.dev8

enrolling = 'enrolling'

error = 'error'

finished = 'finished'

processing = 'processing'

reapplying = 'reapplying'

starting = 'starting'

waiting = 'waiting'

ironic_inspector.main module

ironic_inspector.main.add_version_headers(res)

ironic_inspector.main.api(path, is_public_api=False, rule=None, verb_to_rule_map=None,
**flask_kwargs)

Decorator to wrap api methods.

Performs flask routing, exception conversion, generation of oslo context for request and API access
policy enforcement.

Parameters

• path flask app route path

• is_public_api whether this API path should be treated as public, with min-
imal access enforcement

• rule API access policy rule to enforce. If rule is None, the default policy rule
will be enforced, which is deny all if not overridden in policy config file.

• verb_to_rule_map if both rule and this are given, defines mapping between
http verbs (uppercase) and strings to format the rule string with

• kwargs all the rest kwargs are passed to flask app.route

ironic_inspector.main.api_continue()

ironic_inspector.main.api_introspection(node_id)

ironic_inspector.main.api_introspection_abort(node_id)

ironic_inspector.main.api_introspection_data(node_id)

ironic_inspector.main.api_introspection_reapply(node_id)

ironic_inspector.main.api_introspection_statuses()

ironic_inspector.main.api_introspection_unprocessed_data(node_id)

ironic_inspector.main.api_root()

ironic_inspector.main.api_rule(uuid)

ironic_inspector.main.api_rules()

4.1. How To Contribute 161

Ironic Inspector Documentation, Release 12.4.0.dev8

ironic_inspector.main.check_api_version()

ironic_inspector.main.convert_exceptions(func)

ironic_inspector.main.create_link_object(urls)

ironic_inspector.main.error_response(exc, code=500)

ironic_inspector.main.generate_introspection_status(node)
Return a dict representing current node status.

Parameters
node a NodeInfo instance

Returns
dictionary

ironic_inspector.main.generate_resource_data(resources)

ironic_inspector.main.get_app()

Get the flask instance.

ironic_inspector.main.get_client_compat()

ironic_inspector.main.get_random_topic()

ironic_inspector.main.handle_404(error)

ironic_inspector.main.rule_repr(rule, short)

ironic_inspector.main.start_coordinator()

Create a coordinator instance for non-standalone case.

ironic_inspector.main.version_root(version)

ironic_inspector.node_cache module

Cache for nodes currently under introspection.

class ironic_inspector.node_cache.NodeInfo(uuid, version_id=None, state=None,
started_at=None, finished_at=None,
error=None, node=None, ports=None,
ironic=None, manage_boot=True)

Bases: object

Record about a node in the cache.

This class optionally allows to acquire a lock on a node. Note that the class instance itself is NOT
thread-safe, you need to create a new instance for every thread.

acquire_lock(blocking=True)
Acquire a lock on the associated node.

Exits with success if a lock is already acquired using this NodeInfo object.

Parameters
blocking if True, wait for lock to be acquired, otherwise return immediately.

162 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 12.4.0.dev8

Returns
boolean value, whether lock was acquired successfully

add_attribute(name, value)
Store look up attribute for a node in the database.

Parameters

• name attribute name

• value attribute value or list of possible values

add_trait(trait, ironic=None)
Add a trait to the node.

Parameters

• trait trait to add

• ironic Ironic client to use instead of self.ironic

property attributes

Node look up attributes as a dict.

commit()

Commit current node status into the database.

create_ports(ports, ironic=None)
Create one or several ports for this node.

Parameters

• ports List of ports with all their attributes e.g [{mac: xx, ip: xx, client_id:
None}, {mac: xx, ip: None, client_id: None}] It also support the old style
of list of macs. A warning is issued if port already exists on a node.

• ironic Ironic client to use instead of self.ironic

delete_port(port, ironic=None)
Delete port.

Parameters

• port port object or its MAC

• ironic Ironic client to use instead of self.ironic

finished(event, error=None)
Record status for this node and process a terminal transition.

Also deletes look up attributes from the cache.

Parameters

• event the event to process

• error error message

classmethod from_row(row, ironic=None, node=None)
Construct NodeInfo from a database row.

4.1. How To Contribute 163

Ironic Inspector Documentation, Release 12.4.0.dev8

fsm_event(event, strict=False)
Update node_info.state based on a fsm.process_event(event) call.

An AutomatonException triggers an error event. If strict,
node_info.finished(istate.Events.error, error=str(exc)) is called with the AutomatonEx-
ception instance and a EventError raised.

Parameters
event an event to process by the fsm

Strict
whether to fail the introspection upon an invalid event

Raises
NodeStateInvalidEvent

get_by_path(path)
Get field value by ironic-style path (e.g. /extra/foo).

Parameters
path path to a field

Returns
field value

Raises
KeyError if field was not found

invalidate_cache()

Clear all cached info, so that its reloaded next time.

property ironic

Ironic client instance.

property manage_boot

Whether to manage boot for this node.

node(ironic=None)
Get Ironic node object associated with the cached node record.

property options

Node introspection options as a dict.

patch(patches, ironic=None, **kwargs)
Apply JSON patches to a node.

Refreshes cached node instance.

Parameters

• patches JSON patches to apply

• ironic Ironic client to use instead of self.ironic

• kwargs Arguments to pass to ironicclient.

Raises
openstacksdk exceptions

164 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 12.4.0.dev8

patch_port(port, patches, ironic=None)
Apply JSON patches to a port.

Parameters

• port port object or its MAC

• patches JSON patches to apply

• ironic Ironic client to use instead of self.ironic

ports(ironic=None)
Get Ironic port objects associated with the cached node record.

This value is cached as well, use invalidate_cache() to clean.

Returns
dict MAC -> port object

release_lock()

Release a lock on a node.

Does nothing if lock was not acquired using this NodeInfo object.

remove_trait(trait, ironic=None)
Remove a trait from the node.

Parameters

• trait trait to add

• ironic Ironic client to use instead of self.ironic

replace_field(path, func, **kwargs)
Replace a field on ironic node.

Parameters

• path path to a field as used by the ironic client

• func function accepting an old value and returning a new one

• kwargs if default value is passed here, it will be used when no existing value
is found.

Raises
KeyError if value is not found and default is not set

Raises
everything that patch() may raise

set_option(name, value)
Set an option for a node.

property state

State of the node_info object.

update_capabilities(ironic=None, **caps)
Update capabilities on a node.

Parameters

4.1. How To Contribute 165

Ironic Inspector Documentation, Release 12.4.0.dev8

• caps capabilities to update

• ironic Ironic client to use instead of self.ironic

update_properties(ironic=None, **props)
Update properties on a node.

Parameters

• props properties to update

• ironic Ironic client to use instead of self.ironic

property version_id

Deprecated - Get the version id

ironic_inspector.node_cache.active_macs()

List all MACs that are on introspection right now.

ironic_inspector.node_cache.add_node(uuid, state, manage_boot=True, **attributes)
Store information about a node under introspection.

All existing information about this node is dropped. Empty values are skipped.

Parameters

• uuid Ironic node UUID

• state The initial state of the node

• manage_boot whether to manage boot for this node

• attributes attributes known about this node (like macs, BMC etc); also
ironic client instance may be passed under ironic

Returns
NodeInfo

ironic_inspector.node_cache.clean_up()

Clean up the cache.

Finish introspection for timed out nodes.

Returns
list of timed out node UUIDs

ironic_inspector.node_cache.create_node(driver, ironic=None, **attributes)
Create ironic node and cache it.

• Create new node in ironic.

• Cache it in inspector.

• Sets node_info state to enrolling.

Parameters

• driver driver for Ironic node.

• ironic ironic client instance.

• attributes dict, additional keyword arguments to pass to the ironic client
on node creation.

166 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 12.4.0.dev8

Returns
NodeInfo, or None in case error happened.

ironic_inspector.node_cache.delete_nodes_not_in_list(uuids)
Delete nodes which dont exist in Ironic node UUIDs.

Parameters
uuids Ironic node UUIDs

ironic_inspector.node_cache.find_node(**attributes)
Find node in cache.

Looks up a node based on attributes in a best-match fashion. This function acquires a lock on a
node.

Parameters
attributes attributes known about this node (like macs, BMC etc) also ironic
client instance may be passed under ironic

Returns
structure NodeInfo with attributes uuid and created_at

Raises
Error if node is not found or multiple nodes match the attributes

ironic_inspector.node_cache.fsm_event_after(event, strict=False)
Trigger an fsm event after the function execution.

It is assumed the first function arg of the decorated function is always a NodeInfo instance.

Parameters

• event the event to process after the function call

• strict make an invalid fsm event trigger an error event

ironic_inspector.node_cache.fsm_event_before(event, strict=False)
Trigger an fsm event before the function execution.

It is assumed the first function arg of the decorated function is always a NodeInfo instance.

Parameters

• event the event to process before the function call

• strict make an invalid fsm event trigger an error event

ironic_inspector.node_cache.fsm_transition(event, reentrant=True, **exc_kwargs)
Decorate a function to perform a (non-)reentrant transition.

If True, reentrant transition will be performed at the end of a function call. If False, the tran-
sition will be performed before the function call. The function is decorated with the trig-
gers_fsm_error_transition decorator as well.

Parameters

• event the event to bind the transition to.

• reentrant whether the transition is reentrant.

• exc_kwargs passed on to the triggers_fsm_error_transition decorator

4.1. How To Contribute 167

Ironic Inspector Documentation, Release 12.4.0.dev8

ironic_inspector.node_cache.get_introspection_data(node_id, processed=True)
Get introspection data for this node.

Parameters

• node_id node UUID.

• processed Specify the type of introspected data, set to False indicates re-
trieving the unprocessed data.

Returns
A dictionary representation of intropsected data

ironic_inspector.node_cache.get_node(node_id, ironic=None)
Get node from cache.

Parameters

• node_id node UUID or name.

• ironic optional ironic client instance

Returns
structure NodeInfo.

ironic_inspector.node_cache.get_node_list(ironic=None, marker=None, limit=None,
state=None)

Get node list from the cache.

The list of the nodes is ordered based on the (started_at, uuid) attribute pair, newer items first.

Parameters

• ironic optional ironic client instance

• marker pagination marker (an UUID or None)

• limit pagination limit; None for default CONF.api_max_limit

• state list of states for the filter; None for no state filter

Returns
a list of NodeInfo instances.

ironic_inspector.node_cache.introspection_active()

Check if introspection is active for at least one node.

ironic_inspector.node_cache.record_node(ironic=None, bmc_addresses=None, macs=None)
Create a cache record for a known active node.

Parameters

• ironic ironic client instance.

• bmc_addresses list of BMC addresses.

• macs list of MAC addresses.

Returns
NodeInfo

168 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 12.4.0.dev8

ironic_inspector.node_cache.release_lock(func)
Decorate a node_info-function to release the node_info lock.

Assumes the first parameter of the function func is always a NodeInfo instance.

ironic_inspector.node_cache.start_introspection(uuid, **kwargs)
Start the introspection of a node.

If a node_info record exists in the DB, a start transition is used rather than dropping the record in
order to check for the start transition validity in particular node state.

Parameters

• uuid Ironic node UUID

• kwargs passed on to add_node()

Raises
NodeStateInvalidEvent in case the start transition is invalid in the current node state

Raises
NodeStateRaceCondition if a mismatch was detected between the node_info cache
and the DB

Returns
NodeInfo

ironic_inspector.node_cache.store_introspection_data(node_id, introspection_data,
processed=True)

Store introspection data for this node.

Parameters

• node_id node UUID.

• introspection_data A dictionary of introspection data

• processed Specify the type of introspected data, set to False indicates the
data is unprocessed.

ironic_inspector.node_cache.triggers_fsm_error_transition(errors=(<class
’Exception’>,),
no_errors=(<class
’ironic_inspector.utils.NodeStateInvalidEvent’>,
<class
’ironic_inspector.utils.NodeStateRaceCondition’>))

Trigger an fsm error transition upon certain errors.

It is assumed the first function arg of the decorated function is always a NodeInfo instance.

Parameters

• errors a tuple of exceptions upon which an error event is triggered. Re-
raised.

• no_errors a tuple of exceptions that wont trigger the error event.

4.1. How To Contribute 169

Ironic Inspector Documentation, Release 12.4.0.dev8

ironic_inspector.policy module

ironic_inspector.policy.authorize(rule, target, creds, *args, **kwargs)
A shortcut for policy.Enforcer.authorize()

Checks authorization of a rule against the target and credentials, and raises an exception if the
rule is not defined. args and kwargs are passed directly to oslo.policy Enforcer.authorize Always
returns True if CONF.auth_strategy != keystone.

Parameters

• rule name of a registered oslo.policy rule

• target dict-like structure to check rule against

• creds dict of policy values from request

Returns
True if request is authorized against given policy, False otherwise

Raises
oslo_policy.policy.PolicyNotRegistered if supplied policy is not registered in
oslo_policy

ironic_inspector.policy.get_enforcer()

Provides access to the single instance of Policy enforcer.

ironic_inspector.policy.get_oslo_policy_enforcer()

Get the enforcer instance to generate policy files.

This method is for use by oslopolicy CLI scripts. Those scripts need the output-file and namespace
options, but having those in sys.argv means loading the inspector config options will fail as those
are not expected to be present. So we pass in an arg list with those stripped out.

ironic_inspector.policy.init_enforcer(policy_file=None, rules=None, default_rule=None,
use_conf=True)

Synchronously initializes the policy enforcer

Parameters

• policy_file Custom policy file to use, if none is specified,
CONF.oslo_policy.policy_file will be used.

• rules Default dictionary / Rules to use. It will be considered just in the first
instantiation.

• default_rule Default rule to use, CONF.oslo_policy.policy_default_rule
will be used if none is specified.

• use_conf Whether to load rules from config file.

ironic_inspector.policy.list_policies()

Get list of all policies defined in code.

Used to register them all at runtime, and by oslo-config-generator to generate sample policy files.

170 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 12.4.0.dev8

ironic_inspector.process module

Handling introspection data from the ramdisk.

ironic_inspector.process.get_introspection_data(uuid, processed=True, get_json=False)
Get introspection data from the storage backend.

Parameters

• uuid node UUID

• processed Indicates the type of introspection data to be read, set True to
request processed introspection data.

• get_json Specify whether return the introspection data in json format, string
value is returned if False.

Raises
utils.Error

ironic_inspector.process.process(introspection_data)
Process data from the ramdisk.

This function heavily relies on the hooks to do the actual data processing.

ironic_inspector.process.reapply(node_uuid, data=None)
Re-apply introspection steps.

Re-apply preprocessing, postprocessing and introspection rules on stored data.

Parameters

• node_uuid node UUID

• data unprocessed introspection data to be reapplied

Raises
utils.Error

ironic_inspector.process.store_introspection_data(node_uuid, data, processed=True)
Store introspection data to the storage backend.

Parameters

• node_uuid node UUID

• data Introspection data to be saved

• processed The type of introspection data, set to True means the introspection
data is processed, otherwise unprocessed.

Raises
utils.Error

ironic_inspector.rules module

Support for introspection rules.

class ironic_inspector.rules.IntrospectionRule(uuid, conditions, actions, description,
scope=None)

4.1. How To Contribute 171

Ironic Inspector Documentation, Release 12.4.0.dev8

Bases: object

High-level class representing an introspection rule.

apply_actions(node_info, data=None)
Run actions on a node.

Parameters

• node_info NodeInfo instance

• data introspection data

as_dict(short=False)

check_conditions(node_info, data)
Check if conditions are true for a given node.

Parameters

• node_info a NodeInfo object

• data introspection data

Returns
True if conditions match, otherwise False

check_scope(node_info)
Check if nodes scope falls under rule._scope and rule is applicable

Parameters
node_info a NodeInfo object

Returns
True if conditions match, otherwise False

property description

ironic_inspector.rules.actions_schema()

ironic_inspector.rules.apply(node_info, data)
Apply rules to a node.

ironic_inspector.rules.conditions_schema()

ironic_inspector.rules.create(conditions_json, actions_json, uuid=None, description=None,
scope=None)

Create a new rule in database.

Parameters

• conditions_json list of dicts with the following keys: * op - operator * field
- JSON path to field to compare Other keys are stored as is.

• actions_json list of dicts with the following keys: * action - action type
Other keys are stored as is.

• uuid rule UUID, will be generated if empty

• description human-readable rule description

172 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 12.4.0.dev8

• scope if scope on node and rule matches, rule applies; if its empty, rule applies
to all nodes.

Returns
new IntrospectionRule object

Raises
utils.Error on failure

ironic_inspector.rules.delete(uuid)
Delete a rule by its UUID.

ironic_inspector.rules.delete_all()

Delete all rules.

ironic_inspector.rules.get(uuid)
Get a rule by its UUID.

ironic_inspector.rules.get_all()

List all rules.

ironic_inspector.utils module

class ironic_inspector.utils.DeferredBasicAuthMiddleware(app, auth_file)
Bases: object

Middleware which sets X-Identity-Status header based on authentication

exception ironic_inspector.utils.Error(msg, code=400, log_level=’error’, **kwargs)
Bases: Exception

Inspector exception.

exception ironic_inspector.utils.IntrospectionDataNotFound(msg, code=404,
**kwargs)

Bases: NotFoundInCacheError

Introspection data not found.

exception ironic_inspector.utils.IntrospectionDataStoreDisabled(msg, code=400,
log_level=’error’,
**kwargs)

Bases: Error

Introspection data store is disabled.

exception ironic_inspector.utils.NoAvailableConductor(msg, **kwargs)
Bases: Error

No available conductor in the service group.

exception ironic_inspector.utils.NodeNotFoundInDBError(**kwargs)
Bases: Error

The node was not found in the database.

4.1. How To Contribute 173

Ironic Inspector Documentation, Release 12.4.0.dev8

exception ironic_inspector.utils.NodeStateInvalidEvent(msg, code=400,
log_level=’error’, **kwargs)

Bases: Error

Invalid event attempted.

exception ironic_inspector.utils.NodeStateRaceCondition(*args, **kwargs)
Bases: Error

State mismatch between the DB and a node_info.

exception ironic_inspector.utils.NotFoundInCacheError(msg, code=404, **kwargs)
Bases: Error

Exception when node was not found in cache during processing.

class ironic_inspector.utils.ProcessingLoggerAdapter(logger, extra=None)
Bases: KeywordArgumentAdapter

process(msg, kwargs)
Process the logging message and keyword arguments passed in to a logging call to insert
contextual information. You can either manipulate the message itself, the keyword args or
both. Return the message and kwargs modified (or not) to suit your needs.

Normally, youll only need to override this one method in a LoggerAdapter subclass for your
specific needs.

exception ironic_inspector.utils.RuleNotFoundError(uuid, *args, **kwargs)
Bases: Error

The requested rule was not found.

exception ironic_inspector.utils.RuleUUIDExistError(uuid, *args, **kwargs)
Bases: Error

Rule requested already exists in the database.

ironic_inspector.utils.add_auth_middleware(app)
Add authentication middleware to Flask application.

Parameters
app application.

ironic_inspector.utils.add_basic_auth_middleware(app)
Add HTTP Basic authentication middleware to Flask application.

Parameters
app application.

ironic_inspector.utils.add_cors_middleware(app)
Create a CORS wrapper

Attach ironic-inspector-specific defaults that must be included in all CORS responses.

Parameters
app application

174 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 12.4.0.dev8

ironic_inspector.utils.add_healthcheck_middleware(app)
Add healthcheck middleware

Parameters
app application

ironic_inspector.utils.check_auth(request, rule=None, target=None)
Check authentication on request.

Parameters

• request Flask request

• rule policy rule to check the request against

• target dict-like structure to check rule against

Raises
utils.Error if access is denied

ironic_inspector.utils.executor()

Return the current futures executor.

ironic_inspector.utils.getProcessingLogger(name)

ironic_inspector.utils.get_inventory(data, node_info=None)
Get and validate the hardware inventory from introspection data.

ironic_inspector.utils.get_ipmi_address_from_data(introspection_data)

ironic_inspector.utils.get_ipmi_v6address_from_data(introspection_data)

ironic_inspector.utils.get_pxe_mac(introspection_data)

ironic_inspector.utils.get_valid_macs(data)
Get a list of valid MACs from the introspection data.

ironic_inspector.utils.iso_timestamp(timestamp=None, tz=datetime.timezone.utc)
Return an ISO8601-formatted timestamp (tz: UTC) or None.

Parameters

• timestamp such as time.time() or None

• tz timezone

Returns
an ISO8601-formatted timestamp, or None

ironic_inspector.utils.processing_logger_prefix(data=None, node_info=None)
Calculate prefix for logging.

Tries to use: * node UUID, node._state * node PXE MAC, * node BMC address

Parameters

• data introspection data

• node_info NodeInfo or ironic node object

Returns
logging prefix as a string

4.1. How To Contribute 175

Ironic Inspector Documentation, Release 12.4.0.dev8

ironic_inspector.version module

ironic_inspector.wsgi_service module

class ironic_inspector.wsgi_service.WSGIService

Bases: Service

Provides ability to launch API from wsgi app.

reset()

Reset server greenpool size to default.

Returns
None

start()

Start serving this service using loaded configuration.

Returns
None

stop()

Stop serving this API.

Returns
None

wait()

Wait for the service to stop serving this API.

Returns
None

Module contents

4.1.8 Ironic Inspector CI
Its important to understand the role of each job in the CI. To facilitate that, we have created the docu-
mentation below.

Jobs description

The description of each jobs that runs in the CI when you submit a patch for openstack/ironic-inspector
is shown in the following table.

Note

All jobs are configured to use a pre-build tinyipa ramdisk, a wholedisk image that is downloaded from
a Swift temporary url, pxe boot and ipmi driver.

176 Chapter 4. Contributor Docs

Ironic Inspector Documentation, Release 12.4.0.dev8

Table 1: Table. OpenStack Ironic Inspector CI jobs description

Job name Description
ironic-inspector-grenade Deploys Ironic and Ironic Inspector in DevStack and

runs upgrade for all enabled services.
ironic-inspector-tempest Deploys Ironic and Ironic Inspector in DevStack. Runs

tempest tests that match the regex InspectorBasicTest
and deploys 1 virtual baremetal.

ironic-inspector-tempest-discovery Deploys Ironic and Ironic Inspector in DevStack. Runs
tempest tests that match the regex InspectorDiscovery-
Test and deploys 1 virtual baremetal.

ironic-inspector-tempest-python3 Deploys Ironic and Ironic Inspector in DevStack under
Python3. Runs tempest tests that match the regex In-
spector and deploys 1 virtual baremetal.

openstack-tox-functional-py36 Run tox-based functional tests for Ironic Inspector un-
der Python3.6

bifrost-integration-tinyipa-ubuntu-xenial Tests the integration between Ironic Inspector and
Bifrost.

ironic-inspector-tox-bandit Runs bandit security tests in a tox environment to find
known issues in the Ironic Inspector code.

4.1. How To Contribute 177

Ironic Inspector Documentation, Release 12.4.0.dev8

178 Chapter 4. Contributor Docs

CHAPTER

FIVE

INDICES AND TABLES

• genindex

• modindex

• search

179

Ironic Inspector Documentation, Release 12.4.0.dev8

180 Chapter 5. Indices and tables

PYTHON MODULE INDEX

i
ironic_inspector, 176
ironic_inspector.api_tools, 159
ironic_inspector.cmd, 119
ironic_inspector.cmd.all, 118
ironic_inspector.cmd.conductor, 118
ironic_inspector.cmd.dbsync, 118
ironic_inspector.cmd.migration, 119
ironic_inspector.cmd.status, 119
ironic_inspector.cmd.wsgi, 119
ironic_inspector.common, 127
ironic_inspector.common.context, 119
ironic_inspector.common.coordination,

120
ironic_inspector.common.ironic, 120
ironic_inspector.common.keystone, 122
ironic_inspector.common.lldp_parsers,

122
ironic_inspector.common.lldp_tlvs, 124
ironic_inspector.common.locking, 125
ironic_inspector.common.rpc, 125
ironic_inspector.common.rpc_service,

126
ironic_inspector.common.service_utils,

126
ironic_inspector.common.swift, 126
ironic_inspector.conductor, 128
ironic_inspector.conductor.manager, 127
ironic_inspector.conf, 130
ironic_inspector.conf.accelerators, 128
ironic_inspector.conf.capabilities, 128
ironic_inspector.conf.coordination, 128
ironic_inspector.conf.default, 128
ironic_inspector.conf.discovery, 128
ironic_inspector.conf.dnsmasq_pxe_filter,

129
ironic_inspector.conf.extra_hardware,

129
ironic_inspector.conf.healthcheck, 129
ironic_inspector.conf.iptables, 129
ironic_inspector.conf.ironic, 129

ironic_inspector.conf.opts, 129
ironic_inspector.conf.pci_devices, 129
ironic_inspector.conf.port_physnet, 129
ironic_inspector.conf.processing, 130
ironic_inspector.conf.pxe_filter, 130
ironic_inspector.conf.service_catalog,

130
ironic_inspector.conf.swift, 130
ironic_inspector.db, 138
ironic_inspector.db.api, 130
ironic_inspector.db.migration, 135
ironic_inspector.db.model, 136
ironic_inspector.introspect, 159
ironic_inspector.introspection_state,

160
ironic_inspector.main, 161
ironic_inspector.node_cache, 162
ironic_inspector.plugins, 154
ironic_inspector.plugins.accel_device,

138
ironic_inspector.plugins.base, 138
ironic_inspector.plugins.base_physnet,

141
ironic_inspector.plugins.capabilities,

142
ironic_inspector.plugins.discovery, 142
ironic_inspector.plugins.example, 142
ironic_inspector.plugins.extra_hardware,

143
ironic_inspector.plugins.introspection_data,

144
ironic_inspector.plugins.lldp_basic,

145
ironic_inspector.plugins.local_link_connection,

145
ironic_inspector.plugins.pci_devices,

146
ironic_inspector.plugins.physnet_cidr_map,

146
ironic_inspector.plugins.raid_device,

147

181

Ironic Inspector Documentation, Release 12.4.0.dev8

ironic_inspector.plugins.rules, 147
ironic_inspector.plugins.standard, 153
ironic_inspector.policy, 170
ironic_inspector.process, 171
ironic_inspector.pxe_filter, 159
ironic_inspector.pxe_filter.base, 154
ironic_inspector.pxe_filter.dnsmasq,

156
ironic_inspector.pxe_filter.interface,

157
ironic_inspector.pxe_filter.iptables,

158
ironic_inspector.rules, 171
ironic_inspector.utils, 173
ironic_inspector.version, 176
ironic_inspector.wsgi_service, 176

182 Python Module Index

INDEX

A
abort (ironic_inspector.introspection_state.Events

attribute), 160
abort() (in module ironic_inspector.introspect),

159
abort_end (ironic_inspector.introspection_state.Events

attribute), 160
aborting (ironic_inspector.introspection_state.States

attribute), 160
AccelDevicesHook (class in

ironic_inspector.plugins.accel_device),
138

acquire() (ironic_inspector.common.locking.BaseLock
method), 125

acquire() (ironic_inspector.common.locking.InternalLock
method), 125

acquire() (ironic_inspector.common.locking.ToozLock
method), 125

acquire_lock()
(ironic_inspector.node_cache.NodeInfo
method), 162

action (ironic_inspector.db.model.RuleAction at-
tribute), 137

actions (ironic_inspector.db.model.Rule at-
tribute), 137

actions_schema() (in module
ironic_inspector.rules), 172

active_macs() (in module
ironic_inspector.node_cache), 166

add_alembic_command() (in module
ironic_inspector.cmd.dbsync), 118

add_attribute()
(ironic_inspector.node_cache.NodeInfo
method), 163

add_auth_middleware() (in module
ironic_inspector.utils), 174

add_auth_options() (in module
ironic_inspector.common.keystone),
122

add_basic_auth_middleware() (in module
ironic_inspector.utils), 174

add_capabilities()
(ironic_inspector.common.lldp_parsers.LLDPBasicMgmtParser
method), 122

add_command_parsers() (in module
ironic_inspector.cmd.dbsync), 118

add_cors_middleware() (in module
ironic_inspector.utils), 174

add_dot1_link_aggregation()
(ironic_inspector.common.lldp_parsers.LLDPParser
method), 123

add_dot1_port_protocol_vlan()
(ironic_inspector.common.lldp_parsers.LLDPdot1Parser
method), 124

add_dot1_protocol_identities()
(ironic_inspector.common.lldp_parsers.LLDPdot1Parser
method), 124

add_dot1_vlans()
(ironic_inspector.common.lldp_parsers.LLDPdot1Parser
method), 124

add_dot3_macphy_config()
(ironic_inspector.common.lldp_parsers.LLDPdot3Parser
method), 124

add_healthcheck_middleware() (in module
ironic_inspector.utils), 174

add_mgmt_address()
(ironic_inspector.common.lldp_parsers.LLDPBasicMgmtParser
method), 122

add_nested_value()
(ironic_inspector.common.lldp_parsers.LLDPParser
method), 123

add_node() (in module ironic_inspector.db.api),
130

add_node() (in module
ironic_inspector.node_cache), 166

add_single_value()
(ironic_inspector.common.lldp_parsers.LLDPParser
method), 123

add_trait() (ironic_inspector.node_cache.NodeInfo
method), 163

add_version_headers() (in module
ironic_inspector.main), 161

183

Ironic Inspector Documentation, Release 12.4.0.dev8

AddTraitAction (class in
ironic_inspector.plugins.rules), 147

aliases (ironic_inspector.plugins.pci_devices.PciDevicesHook
attribute), 146

all() (ironic_inspector.introspection_state.Events
class method), 160

all() (ironic_inspector.introspection_state.States
class method), 160

ALLOW_NONE (ironic_inspector.plugins.base.RuleConditionPlugin
attribute), 139

ALLOW_NONE (ironic_inspector.plugins.rules.EmptyCondition
attribute), 148

api() (in module ironic_inspector.main), 161
api_continue() (in module

ironic_inspector.main), 161
api_introspection() (in module

ironic_inspector.main), 161
api_introspection_abort() (in module

ironic_inspector.main), 161
api_introspection_data() (in module

ironic_inspector.main), 161
api_introspection_reapply() (in module

ironic_inspector.main), 161
api_introspection_statuses() (in module

ironic_inspector.main), 161
api_introspection_unprocessed_data() (in

module ironic_inspector.main), 161
api_root() (in module ironic_inspector.main),

161
api_rule() (in module ironic_inspector.main),

161
api_rules() (in module ironic_inspector.main),

161
append_value()

(ironic_inspector.common.lldp_parsers.LLDPParser
method), 123

apply() (in module ironic_inspector.rules), 172
apply() (ironic_inspector.plugins.base.RuleActionPlugin

method), 139
apply() (ironic_inspector.plugins.example.ExampleRuleAction

method), 143
apply() (ironic_inspector.plugins.rules.AddTraitAction

method), 147
apply() (ironic_inspector.plugins.rules.ExtendAttributeAction

method), 149
apply() (ironic_inspector.plugins.rules.FailAction

method), 149
apply() (ironic_inspector.plugins.rules.RemoveTraitAction

method), 151
apply() (ironic_inspector.plugins.rules.SetAttributeAction

method), 152

apply() (ironic_inspector.plugins.rules.SetCapabilityAction
method), 152

apply_actions()
(ironic_inspector.rules.IntrospectionRule
method), 172

as_dict() (ironic_inspector.db.model.RuleAction
method), 137

as_dict() (ironic_inspector.db.model.RuleCondition
method), 137

as_dict() (ironic_inspector.rules.IntrospectionRule
method), 172

Attribute (class in ironic_inspector.db.model),
136

attributes (ironic_inspector.node_cache.NodeInfo
property), 163

authorize() (in module ironic_inspector.policy),
170

B
BaseFilter (class in

ironic_inspector.pxe_filter.base), 154
BaseLock (class in

ironic_inspector.common.locking),
125

BasePhysnetHook (class in
ironic_inspector.plugins.base_physnet),
141

BaseStorageBackend (class in
ironic_inspector.plugins.introspection_data),
144

before_processing()
(ironic_inspector.plugins.base.ProcessingHook
method), 138

before_processing()
(ironic_inspector.plugins.example.ExampleProcessingHook
method), 142

before_processing()
(ironic_inspector.plugins.raid_device.RaidDeviceDetection
method), 147

before_processing()
(ironic_inspector.plugins.standard.RamdiskErrorHook
method), 153

before_processing()
(ironic_inspector.plugins.standard.ValidateInterfacesHook
method), 154

before_update()
(ironic_inspector.plugins.accel_device.AccelDevicesHook
method), 138

before_update()
(ironic_inspector.plugins.base.ProcessingHook
method), 139

184 Index

Ironic Inspector Documentation, Release 12.4.0.dev8

before_update()
(ironic_inspector.plugins.base_physnet.BasePhysnetHook
method), 141

before_update()
(ironic_inspector.plugins.capabilities.CapabilitiesHook
method), 142

before_update()
(ironic_inspector.plugins.example.ExampleProcessingHook
method), 142

before_update()
(ironic_inspector.plugins.extra_hardware.ExtraHardwareHook
method), 143

before_update()
(ironic_inspector.plugins.lldp_basic.LLDPBasicProcessingHook
method), 145

before_update()
(ironic_inspector.plugins.local_link_connection.GenericLocalLinkConnectionHook
method), 145

before_update()
(ironic_inspector.plugins.pci_devices.PciDevicesHook
method), 146

before_update()
(ironic_inspector.plugins.raid_device.RaidDeviceDetection
method), 147

before_update()
(ironic_inspector.plugins.standard.RootDiskSelectionHook
method), 154

before_update()
(ironic_inspector.plugins.standard.SchedulerHook
method), 154

before_update()
(ironic_inspector.plugins.standard.ValidateInterfacesHook
method), 154

bytes_to_int() (in module
ironic_inspector.common.lldp_tlvs),
124

C
call_with_retries() (in module

ironic_inspector.common.ironic), 120
capabilities_to_dict() (in module

ironic_inspector.common.ironic), 121
CapabilitiesHook (class in

ironic_inspector.plugins.capabilities),
142

check() (ironic_inspector.plugins.base.RuleConditionPlugin
method), 140

check() (ironic_inspector.plugins.rules.ContainsCondition
method), 148

check() (ironic_inspector.plugins.rules.EmptyCondition
method), 148

check() (ironic_inspector.plugins.rules.MatchesCondition
method), 150

check() (ironic_inspector.plugins.rules.NetCondition
method), 150

check() (ironic_inspector.plugins.rules.SimpleCondition
method), 153

check_api_version() (in module
ironic_inspector.main), 161

check_auth() (in module ironic_inspector.utils),
175

check_conditions()
(ironic_inspector.rules.IntrospectionRule
method), 172

check_provision_state() (in module
ironic_inspector.common.ironic), 121

check_scope() (ironic_inspector.rules.IntrospectionRule
method), 172

Checks (class in ironic_inspector.cmd.status), 119
clean_up() (in module

ironic_inspector.node_cache), 166
coerce() (in module

ironic_inspector.plugins.rules), 153
commit() (ironic_inspector.node_cache.NodeInfo

method), 163
conditions (ironic_inspector.db.model.Rule at-

tribute), 137
conditions_schema() (in module

ironic_inspector.rules), 172
ConductorManager (class in

ironic_inspector.conductor.manager),
127

ContainsCondition (class in
ironic_inspector.plugins.rules), 148

convert_exceptions() (in module
ironic_inspector.main), 162

Coordinator (class in
ironic_inspector.common.coordination),
120

create() (in module ironic_inspector.rules), 172
create_link_object() (in module

ironic_inspector.main), 162
create_node() (in module

ironic_inspector.db.api), 130
create_node() (in module

ironic_inspector.node_cache), 166
create_object()

(ironic_inspector.common.swift.SwiftAPI
method), 126

create_ports()
(ironic_inspector.node_cache.NodeInfo
method), 163

Index 185

Ironic Inspector Documentation, Release 12.4.0.dev8

create_rule() (in module
ironic_inspector.db.api), 131

create_schema() (in module
ironic_inspector.db.migration), 135

created_at (ironic_inspector.db.model.Rule at-
tribute), 137

D
data (ironic_inspector.db.model.IntrospectionData

attribute), 136
DatabaseStore (class in

ironic_inspector.plugins.introspection_data),
144

DeferredBasicAuthMiddleware (class in
ironic_inspector.utils), 173

del_host() (ironic_inspector.conductor.manager.ConductorManager
method), 127

delete() (in module ironic_inspector.rules), 173
delete_all() (in module ironic_inspector.rules),

173
delete_all_rules() (in module

ironic_inspector.db.api), 131
delete_attributes() (in module

ironic_inspector.db.api), 131
delete_node() (in module

ironic_inspector.db.api), 131
delete_nodes() (in module

ironic_inspector.db.api), 131
delete_nodes_not_in_list() (in module

ironic_inspector.node_cache), 167
delete_options() (in module

ironic_inspector.db.api), 132
delete_port() (ironic_inspector.node_cache.NodeInfo

method), 163
delete_rule() (in module

ironic_inspector.db.api), 132
dependencies (ironic_inspector.plugins.base.ProcessingHook

attribute), 139
description (ironic_inspector.db.model.Rule at-

tribute), 137
description (ironic_inspector.rules.IntrospectionRule

property), 172
dict_to_capabilities() (in module

ironic_inspector.common.ironic), 121
disabled (ironic_inspector.db.model.Rule at-

tribute), 137
DnsmasqFilter (class in

ironic_inspector.pxe_filter.dnsmasq),
156

do_abort() (ironic_inspector.conductor.manager.ConductorManager
method), 127

do_alembic_command() (in module
ironic_inspector.cmd.dbsync), 118

do_continue() (ironic_inspector.conductor.manager.ConductorManager
method), 127

do_introspection()
(ironic_inspector.conductor.manager.ConductorManager
method), 127

do_reapply() (ironic_inspector.conductor.manager.ConductorManager
method), 127

do_revision() (in module
ironic_inspector.cmd.dbsync), 118

downgrade() (in module
ironic_inspector.db.migration), 135

driver() (in module
ironic_inspector.pxe_filter.base), 156

E
EmptyCondition (class in

ironic_inspector.plugins.rules), 148
enroll_node_not_found_hook() (in module

ironic_inspector.plugins.discovery), 142
enrolling (ironic_inspector.introspection_state.States

attribute), 160
EqCondition (class in

ironic_inspector.plugins.rules), 148
Error, 173
error (ironic_inspector.db.model.Node attribute),

136
error (ironic_inspector.introspection_state.Events

attribute), 160
error (ironic_inspector.introspection_state.States

attribute), 161
error_response() (in module

ironic_inspector.main), 162
Events (class in

ironic_inspector.introspection_state),
160

Events (class in ironic_inspector.pxe_filter.base),
155

example_not_found_hook() (in module
ironic_inspector.plugins.example), 143

ExampleProcessingHook (class in
ironic_inspector.plugins.example),
142

ExampleRuleAction (class in
ironic_inspector.plugins.example),
143

executor() (in module ironic_inspector.utils),
175

ExtendAttributeAction (class in
ironic_inspector.plugins.rules), 149

186 Index

Ironic Inspector Documentation, Release 12.4.0.dev8

ExtraHardwareHook (class in
ironic_inspector.plugins.extra_hardware),
143

F
FailAction (class in

ironic_inspector.plugins.rules), 149
field (ironic_inspector.db.model.RuleCondition

attribute), 137
FilterDriver (class in

ironic_inspector.pxe_filter.interface),
157

find_node() (in module
ironic_inspector.node_cache), 167

finish (ironic_inspector.introspection_state.Events
attribute), 160

finished (ironic_inspector.introspection_state.States
attribute), 161

finished() (ironic_inspector.node_cache.NodeInfo
method), 163

finished_at (ironic_inspector.db.model.Node
attribute), 136

FORMATTED_PARAMS
(ironic_inspector.plugins.base.RuleActionPlugin
attribute), 139

FORMATTED_PARAMS
(ironic_inspector.plugins.rules.ExtendAttributeAction
attribute), 149

FORMATTED_PARAMS
(ironic_inspector.plugins.rules.SetAttributeAction
attribute), 152

FORMATTED_PARAMS
(ironic_inspector.plugins.rules.SetCapabilityAction
attribute), 152

from_dict() (ironic_inspector.common.context.RequestContext
class method), 119

from_environ()
(ironic_inspector.common.context.RequestContext
class method), 119

from_row() (ironic_inspector.node_cache.NodeInfo
class method), 163

fsm (ironic_inspector.pxe_filter.base.BaseFilter
attribute), 154

fsm_event() (ironic_inspector.node_cache.NodeInfo
method), 163

fsm_event_after() (in module
ironic_inspector.node_cache), 167

fsm_event_before() (in module
ironic_inspector.node_cache), 167

fsm_reset_on_error()
(ironic_inspector.pxe_filter.base.BaseFilter

method), 154
fsm_transition() (in module

ironic_inspector.node_cache), 167

G
GeCondition (class in

ironic_inspector.plugins.rules), 149
generate_introspection_status() (in mod-

ule ironic_inspector.main), 162
generate_resource_data() (in module

ironic_inspector.main), 162
GenericLocalLinkConnectionHook (class in

ironic_inspector.plugins.local_link_connection),
145

get() (in module ironic_inspector.rules), 173
get() (ironic_inspector.plugins.introspection_data.BaseStorageBackend

method), 144
get() (ironic_inspector.plugins.introspection_data.DatabaseStore

method), 144
get() (ironic_inspector.plugins.introspection_data.NoStore

method), 144
get() (ironic_inspector.plugins.introspection_data.SwiftStore

method), 145
get_active_macs() (in module

ironic_inspector.pxe_filter.base), 156
get_active_nodes() (in module

ironic_inspector.db.api), 132
get_adapter() (in module

ironic_inspector.common.keystone),
122

get_all() (in module ironic_inspector.rules),
173

get_app() (in module ironic_inspector.main),
162

get_attributes() (in module
ironic_inspector.db.api), 132

get_autoneg_cap() (in module
ironic_inspector.common.lldp_tlvs),
124

get_by_path() (ironic_inspector.node_cache.NodeInfo
method), 164

get_client() (in module
ironic_inspector.common.ironic), 121

get_client() (in module
ironic_inspector.common.rpc), 125

get_client_compat() (in module
ironic_inspector.main), 162

get_coordinator() (in module
ironic_inspector.common.coordination),
120

get_endpoint() (in module

Index 187

Ironic Inspector Documentation, Release 12.4.0.dev8

ironic_inspector.common.keystone),
122

get_enforcer() (in module
ironic_inspector.policy), 170

get_inactive_macs() (in module
ironic_inspector.pxe_filter.base), 156

get_introspection_data() (in module
ironic_inspector.common.swift), 127

get_introspection_data() (in module
ironic_inspector.db.api), 132

get_introspection_data() (in module
ironic_inspector.node_cache), 167

get_introspection_data() (in module
ironic_inspector.process), 171

get_inventory() (in module
ironic_inspector.utils), 175

get_ipmi_address() (in module
ironic_inspector.common.ironic), 121

get_ipmi_address_from_data() (in module
ironic_inspector.utils), 175

get_ipmi_v6address_from_data() (in module
ironic_inspector.utils), 175

get_ironic_macs() (in module
ironic_inspector.pxe_filter.base), 156

get_lock() (in module
ironic_inspector.common.locking),
125

get_lock() (ironic_inspector.common.coordination.Coordinator
method), 120

get_members() (ironic_inspector.common.coordination.Coordinator
method), 120

get_node() (in module
ironic_inspector.common.ironic), 121

get_node() (in module ironic_inspector.db.api),
133

get_node() (in module
ironic_inspector.node_cache), 168

get_node_list() (in module
ironic_inspector.node_cache), 168

get_nodes() (in module ironic_inspector.db.api),
133

get_object() (ironic_inspector.common.swift.SwiftAPI
method), 126

get_options() (in module
ironic_inspector.db.api), 133

get_oslo_policy_enforcer() (in module
ironic_inspector.policy), 170

get_periodic_sync_task()
(ironic_inspector.pxe_filter.base.BaseFilter
method), 155

get_periodic_sync_task()

(ironic_inspector.pxe_filter.base.NoopFilter
method), 156

get_periodic_sync_task()
(ironic_inspector.pxe_filter.interface.FilterDriver
method), 157

get_physnet() (ironic_inspector.plugins.base_physnet.BasePhysnetHook
method), 141

get_physnet() (ironic_inspector.plugins.physnet_cidr_map.PhysnetCidrMapHook
method), 146

get_pxe_mac() (in module
ironic_inspector.utils), 175

get_random_topic() (in module
ironic_inspector.main), 162

get_rule() (in module ironic_inspector.db.api),
133

get_rules() (in module ironic_inspector.db.api),
133

get_rules_actions() (in module
ironic_inspector.db.api), 133

get_rules_conditions() (in module
ironic_inspector.db.api), 133

get_server() (in module
ironic_inspector.common.rpc), 125

get_session() (in module
ironic_inspector.common.keystone),
122

get_valid_macs() (in module
ironic_inspector.utils), 175

get_writer_session() (in module
ironic_inspector.db.api), 134

getProcessingLogger() (in module
ironic_inspector.utils), 175

group_name (ironic_inspector.common.coordination.Coordinator
attribute), 120

GtCondition (class in
ironic_inspector.plugins.rules), 149

H
handle_404() (in module ironic_inspector.main),

162
handle_org_specific_tlv()

(ironic_inspector.common.lldp_parsers.LLDPBasicMgmtParser
method), 122

I
id (ironic_inspector.db.model.RuleAction at-

tribute), 137
id (ironic_inspector.db.model.RuleCondition at-

tribute), 137
init() (in module ironic_inspector.common.rpc),

125
init() (in module ironic_inspector.db.api), 134

188 Index

Ironic Inspector Documentation, Release 12.4.0.dev8

init_enforcer() (in module
ironic_inspector.policy), 170

init_filter() (ironic_inspector.pxe_filter.base.BaseFilter
method), 155

init_filter() (ironic_inspector.pxe_filter.dnsmasq.DnsmasqFilter
method), 157

init_filter() (ironic_inspector.pxe_filter.interface.FilterDriver
method), 157

init_filter() (ironic_inspector.pxe_filter.iptables.IptablesFilter
method), 158

init_host() (ironic_inspector.conductor.manager.ConductorManager
method), 127

initialize (ironic_inspector.pxe_filter.base.Events
attribute), 155

initialize_wsgi_app() (in module
ironic_inspector.cmd.wsgi), 119

initialized (ironic_inspector.pxe_filter.base.States
attribute), 156

InternalLock (class in
ironic_inspector.common.locking),
125

introspect() (in module
ironic_inspector.introspect), 160

introspection_active() (in module
ironic_inspector.node_cache), 168

introspection_data_manager() (in module
ironic_inspector.plugins.base), 140

IntrospectionData (class in
ironic_inspector.db.model), 136

IntrospectionDataNotFound, 173
IntrospectionDataStoreDisabled, 173
IntrospectionRule (class in

ironic_inspector.rules), 171
invalidate_cache()

(ironic_inspector.node_cache.NodeInfo
method), 164

InvalidFilterDriverState, 156
invert (ironic_inspector.db.model.RuleCondition

attribute), 138
IptablesFilter (class in

ironic_inspector.pxe_filter.iptables),
158

ironic (ironic_inspector.node_cache.NodeInfo
property), 164

ironic_inspector
module, 176

ironic_inspector.api_tools
module, 159

ironic_inspector.cmd
module, 119

ironic_inspector.cmd.all

module, 118
ironic_inspector.cmd.conductor

module, 118
ironic_inspector.cmd.dbsync

module, 118
ironic_inspector.cmd.migration

module, 119
ironic_inspector.cmd.status

module, 119
ironic_inspector.cmd.wsgi

module, 119
ironic_inspector.common

module, 127
ironic_inspector.common.context

module, 119
ironic_inspector.common.coordination

module, 120
ironic_inspector.common.ironic

module, 120
ironic_inspector.common.keystone

module, 122
ironic_inspector.common.lldp_parsers

module, 122
ironic_inspector.common.lldp_tlvs

module, 124
ironic_inspector.common.locking

module, 125
ironic_inspector.common.rpc

module, 125
ironic_inspector.common.rpc_service

module, 126
ironic_inspector.common.service_utils

module, 126
ironic_inspector.common.swift

module, 126
ironic_inspector.conductor

module, 128
ironic_inspector.conductor.manager

module, 127
ironic_inspector.conf

module, 130
ironic_inspector.conf.accelerators

module, 128
ironic_inspector.conf.capabilities

module, 128
ironic_inspector.conf.coordination

module, 128
ironic_inspector.conf.default

module, 128
ironic_inspector.conf.discovery

module, 128

Index 189

Ironic Inspector Documentation, Release 12.4.0.dev8

ironic_inspector.conf.dnsmasq_pxe_filter
module, 129

ironic_inspector.conf.extra_hardware
module, 129

ironic_inspector.conf.healthcheck
module, 129

ironic_inspector.conf.iptables
module, 129

ironic_inspector.conf.ironic
module, 129

ironic_inspector.conf.opts
module, 129

ironic_inspector.conf.pci_devices
module, 129

ironic_inspector.conf.port_physnet
module, 129

ironic_inspector.conf.processing
module, 130

ironic_inspector.conf.pxe_filter
module, 130

ironic_inspector.conf.service_catalog
module, 130

ironic_inspector.conf.swift
module, 130

ironic_inspector.db
module, 138

ironic_inspector.db.api
module, 130

ironic_inspector.db.migration
module, 135

ironic_inspector.db.model
module, 136

ironic_inspector.introspect
module, 159

ironic_inspector.introspection_state
module, 160

ironic_inspector.main
module, 161

ironic_inspector.node_cache
module, 162

ironic_inspector.plugins
module, 154

ironic_inspector.plugins.accel_device
module, 138

ironic_inspector.plugins.base
module, 138

ironic_inspector.plugins.base_physnet
module, 141

ironic_inspector.plugins.capabilities
module, 142

ironic_inspector.plugins.discovery

module, 142
ironic_inspector.plugins.example

module, 142
ironic_inspector.plugins.extra_hardware

module, 143
ironic_inspector.plugins.introspection_data

module, 144
ironic_inspector.plugins.lldp_basic

module, 145
ironic_inspector.plugins.local_link_connection

module, 145
ironic_inspector.plugins.pci_devices

module, 146
ironic_inspector.plugins.physnet_cidr_map

module, 146
ironic_inspector.plugins.raid_device

module, 147
ironic_inspector.plugins.rules

module, 147
ironic_inspector.plugins.standard

module, 153
ironic_inspector.policy

module, 170
ironic_inspector.process

module, 171
ironic_inspector.pxe_filter

module, 159
ironic_inspector.pxe_filter.base

module, 154
ironic_inspector.pxe_filter.dnsmasq

module, 156
ironic_inspector.pxe_filter.interface

module, 157
ironic_inspector.pxe_filter.iptables

module, 158
ironic_inspector.rules

module, 171
ironic_inspector.utils

module, 173
ironic_inspector.version

module, 176
ironic_inspector.wsgi_service

module, 176
is_locked() (ironic_inspector.common.locking.BaseLock

method), 125
is_locked() (ironic_inspector.common.locking.InternalLock

method), 125
is_locked() (ironic_inspector.common.locking.ToozLock

method), 125
iso_timestamp() (in module

ironic_inspector.utils), 175

190 Index

Ironic Inspector Documentation, Release 12.4.0.dev8

J
join_group() (ironic_inspector.common.coordination.Coordinator

method), 120

K
KEYS (ironic_inspector.plugins.standard.SchedulerHook

attribute), 154

L
leave_group() (ironic_inspector.common.coordination.Coordinator

method), 120
LeCondition (class in

ironic_inspector.plugins.rules), 150
limit_field() (in module

ironic_inspector.api_tools), 159
list_nodes_by_attributes() (in module

ironic_inspector.db.api), 134
list_nodes_options_by_uuid() (in module

ironic_inspector.db.api), 134
list_opts() (in module

ironic_inspector.conf.accelerators),
128

list_opts() (in module
ironic_inspector.conf.capabilities),
128

list_opts() (in module
ironic_inspector.conf.coordination),
128

list_opts() (in module
ironic_inspector.conf.default), 128

list_opts() (in module
ironic_inspector.conf.discovery), 128

list_opts() (in module
ironic_inspector.conf.dnsmasq_pxe_filter),
129

list_opts() (in module
ironic_inspector.conf.extra_hardware),
129

list_opts() (in module
ironic_inspector.conf.healthcheck),
129

list_opts() (in module
ironic_inspector.conf.iptables), 129

list_opts() (in module
ironic_inspector.conf.ironic), 129

list_opts() (in module
ironic_inspector.conf.opts), 129

list_opts() (in module
ironic_inspector.conf.pci_devices),
129

list_opts() (in module

ironic_inspector.conf.port_physnet),
129

list_opts() (in module
ironic_inspector.conf.processing), 130

list_opts() (in module
ironic_inspector.conf.pxe_filter), 130

list_opts() (in module
ironic_inspector.conf.service_catalog),
130

list_opts() (in module
ironic_inspector.conf.swift), 130

list_policies() (in module
ironic_inspector.policy), 170

LLDPBasicMgmtParser (class in
ironic_inspector.common.lldp_parsers),
122

LLDPBasicProcessingHook (class in
ironic_inspector.plugins.lldp_basic),
145

LLDPdot1Parser (class in
ironic_inspector.common.lldp_parsers),
123

LLDPdot3Parser (class in
ironic_inspector.common.lldp_parsers),
124

LLDPParser (class in
ironic_inspector.common.lldp_parsers),
122

lock_prefix (ironic_inspector.common.coordination.Coordinator
attribute), 120

locked_driver_event() (in module
ironic_inspector.pxe_filter.base), 156

lookup_node() (in module
ironic_inspector.common.ironic), 121

lookup_node_by_bmc_addresses() (in module
ironic_inspector.common.ironic), 122

lookup_node_by_macs() (in module
ironic_inspector.common.ironic), 122

LtCondition (class in
ironic_inspector.plugins.rules), 150

M
main() (in module ironic_inspector.cmd.all), 118
main() (in module

ironic_inspector.cmd.conductor), 118
main() (in module ironic_inspector.cmd.dbsync),

118
main() (in module

ironic_inspector.cmd.migration), 119
main() (in module ironic_inspector.cmd.status),

119

Index 191

Ironic Inspector Documentation, Release 12.4.0.dev8

main() (ironic_inspector.cmd.migration.MigrationTool
method), 119

manage_boot (ironic_inspector.db.model.Node
attribute), 137

manage_boot (ironic_inspector.node_cache.NodeInfo
property), 164

mapping_for_enum() (in module
ironic_inspector.common.lldp_tlvs),
124

mapping_for_switch() (in module
ironic_inspector.common.lldp_tlvs),
124

marker_field() (in module
ironic_inspector.api_tools), 159

MatchesCondition (class in
ironic_inspector.plugins.rules), 150

MigrationTool (class in
ironic_inspector.cmd.migration), 119

missing_entrypoints_callback() (in module
ironic_inspector.plugins.base), 140

model_query() (in module
ironic_inspector.db.api), 134

ModelBase (class in ironic_inspector.db.model),
136

module
ironic_inspector, 176
ironic_inspector.api_tools, 159
ironic_inspector.cmd, 119
ironic_inspector.cmd.all, 118
ironic_inspector.cmd.conductor, 118
ironic_inspector.cmd.dbsync, 118
ironic_inspector.cmd.migration, 119
ironic_inspector.cmd.status, 119
ironic_inspector.cmd.wsgi, 119
ironic_inspector.common, 127
ironic_inspector.common.context, 119
ironic_inspector.common.coordination,

120
ironic_inspector.common.ironic, 120
ironic_inspector.common.keystone,

122
ironic_inspector.common.lldp_parsers,

122
ironic_inspector.common.lldp_tlvs,

124
ironic_inspector.common.locking, 125
ironic_inspector.common.rpc, 125
ironic_inspector.common.rpc_service,

126
ironic_inspector.common.service_utils,

126

ironic_inspector.common.swift, 126
ironic_inspector.conductor, 128
ironic_inspector.conductor.manager,

127
ironic_inspector.conf, 130
ironic_inspector.conf.accelerators,

128
ironic_inspector.conf.capabilities,

128
ironic_inspector.conf.coordination,

128
ironic_inspector.conf.default, 128
ironic_inspector.conf.discovery, 128
ironic_inspector.conf.dnsmasq_pxe_filter,

129
ironic_inspector.conf.extra_hardware,

129
ironic_inspector.conf.healthcheck,

129
ironic_inspector.conf.iptables, 129
ironic_inspector.conf.ironic, 129
ironic_inspector.conf.opts, 129
ironic_inspector.conf.pci_devices,

129
ironic_inspector.conf.port_physnet,

129
ironic_inspector.conf.processing,

130
ironic_inspector.conf.pxe_filter,

130
ironic_inspector.conf.service_catalog,

130
ironic_inspector.conf.swift, 130
ironic_inspector.db, 138
ironic_inspector.db.api, 130
ironic_inspector.db.migration, 135
ironic_inspector.db.model, 136
ironic_inspector.introspect, 159
ironic_inspector.introspection_state,

160
ironic_inspector.main, 161
ironic_inspector.node_cache, 162
ironic_inspector.plugins, 154
ironic_inspector.plugins.accel_device,

138
ironic_inspector.plugins.base, 138
ironic_inspector.plugins.base_physnet,

141
ironic_inspector.plugins.capabilities,

142
ironic_inspector.plugins.discovery,

192 Index

Ironic Inspector Documentation, Release 12.4.0.dev8

142
ironic_inspector.plugins.example,

142
ironic_inspector.plugins.extra_hardware,

143
ironic_inspector.plugins.introspection_data,

144
ironic_inspector.plugins.lldp_basic,

145
ironic_inspector.plugins.local_link_connection,

145
ironic_inspector.plugins.pci_devices,

146
ironic_inspector.plugins.physnet_cidr_map,

146
ironic_inspector.plugins.raid_device,

147
ironic_inspector.plugins.rules, 147
ironic_inspector.plugins.standard,

153
ironic_inspector.policy, 170
ironic_inspector.process, 171
ironic_inspector.pxe_filter, 159
ironic_inspector.pxe_filter.base,

154
ironic_inspector.pxe_filter.dnsmasq,

156
ironic_inspector.pxe_filter.interface,

157
ironic_inspector.pxe_filter.iptables,

158
ironic_inspector.rules, 171
ironic_inspector.utils, 173
ironic_inspector.version, 176
ironic_inspector.wsgi_service, 176

multiple (ironic_inspector.db.model.RuleCondition
attribute), 138

N
name (ironic_inspector.db.model.Attribute at-

tribute), 136
name (ironic_inspector.db.model.Option at-

tribute), 137
NeCondition (class in

ironic_inspector.plugins.rules), 150
NetCondition (class in

ironic_inspector.plugins.rules), 150
NoAvailableConductor, 173
Node (class in ironic_inspector.db.model), 136
node() (ironic_inspector.node_cache.NodeInfo

method), 164

node_not_found_hook_manager() (in module
ironic_inspector.plugins.base), 140

node_uuid (ironic_inspector.db.model.Attribute
attribute), 136

NodeInfo (class in ironic_inspector.node_cache),
162

NodeNotFoundInDBError, 173
NodeStateInvalidEvent, 173
NodeStateRaceCondition, 174
NoopFilter (class in

ironic_inspector.pxe_filter.base), 156
NoStore (class in

ironic_inspector.plugins.introspection_data),
144

NotFound, 120
NotFoundInCacheError, 174

O
Octal (class in ironic_inspector.conf.default), 128
op (ironic_inspector.db.model.RuleCondition at-

tribute), 138
op (ironic_inspector.plugins.rules.SimpleCondition

attribute), 153
op() (ironic_inspector.plugins.rules.EqCondition

method), 149
op() (ironic_inspector.plugins.rules.GeCondition

method), 149
op() (ironic_inspector.plugins.rules.GtCondition

method), 150
op() (ironic_inspector.plugins.rules.LeCondition

method), 150
op() (ironic_inspector.plugins.rules.LtCondition

method), 150
op() (ironic_inspector.plugins.rules.NeCondition

method), 150
Option (class in ironic_inspector.db.model), 137
OPTIONAL_PARAMS

(ironic_inspector.plugins.base.WithValidation
attribute), 140

OPTIONAL_PARAMS
(ironic_inspector.plugins.rules.ExtendAttributeAction
attribute), 149

OPTIONAL_PARAMS
(ironic_inspector.plugins.rules.SetAttributeAction
attribute), 152

OPTIONAL_PARAMS
(ironic_inspector.plugins.rules.SetCapabilityAction
attribute), 152

options (ironic_inspector.node_cache.NodeInfo
property), 164

Index 193

Ironic Inspector Documentation, Release 12.4.0.dev8

P
params (ironic_inspector.db.model.RuleAction at-

tribute), 137
params (ironic_inspector.db.model.RuleCondition

attribute), 138
parse_args() (in module

ironic_inspector.conf.opts), 129
parse_tlv() (ironic_inspector.common.lldp_parsers.LLDPParser

method), 123
patch() (ironic_inspector.node_cache.NodeInfo

method), 164
patch_port() (ironic_inspector.node_cache.NodeInfo

method), 164
PciDevicesHook (class in

ironic_inspector.plugins.pci_devices),
146

periodic_clean_up() (in module
ironic_inspector.conductor.manager),
128

periodic_leader_election() (in module
ironic_inspector.conductor.manager),
128

PhysnetCidrMapHook (class in
ironic_inspector.plugins.physnet_cidr_map),
146

ports() (ironic_inspector.node_cache.NodeInfo
method), 165

prepare_service() (in module
ironic_inspector.common.service_utils),
126

process (ironic_inspector.introspection_state.Events
attribute), 160

process() (in module ironic_inspector.process),
171

process() (ironic_inspector.utils.ProcessingLoggerAdapter
method), 174

processed (ironic_inspector.db.model.IntrospectionData
attribute), 136

processing (ironic_inspector.introspection_state.States
attribute), 161

processing_hooks_manager() (in module
ironic_inspector.plugins.base), 140

processing_logger_prefix() (in module
ironic_inspector.utils), 175

ProcessingHook (class in
ironic_inspector.plugins.base), 138

ProcessingLoggerAdapter (class in
ironic_inspector.utils), 174

R
RaidDeviceDetection (class in

ironic_inspector.plugins.raid_device),
147

raises_coercion_exceptions() (in module
ironic_inspector.api_tools), 159

RamdiskErrorHook (class in
ironic_inspector.plugins.standard),
153

reapply (ironic_inspector.introspection_state.Events
attribute), 160

reapply() (in module ironic_inspector.process),
171

reapplying (ironic_inspector.introspection_state.States
attribute), 161

ReCondition (class in
ironic_inspector.plugins.rules), 151

record_node() (in module
ironic_inspector.node_cache), 168

register_auth_opts() (in module
ironic_inspector.common.keystone),
122

register_opts() (in module
ironic_inspector.conf.accelerators),
128

register_opts() (in module
ironic_inspector.conf.capabilities),
128

register_opts() (in module
ironic_inspector.conf.coordination),
128

register_opts() (in module
ironic_inspector.conf.default), 128

register_opts() (in module
ironic_inspector.conf.discovery), 128

register_opts() (in module
ironic_inspector.conf.dnsmasq_pxe_filter),
129

register_opts() (in module
ironic_inspector.conf.extra_hardware),
129

register_opts() (in module
ironic_inspector.conf.healthcheck),
129

register_opts() (in module
ironic_inspector.conf.iptables), 129

register_opts() (in module
ironic_inspector.conf.ironic), 129

register_opts() (in module
ironic_inspector.conf.pci_devices),
129

register_opts() (in module
ironic_inspector.conf.port_physnet),

194 Index

Ironic Inspector Documentation, Release 12.4.0.dev8

129
register_opts() (in module

ironic_inspector.conf.processing), 130
register_opts() (in module

ironic_inspector.conf.pxe_filter), 130
register_opts() (in module

ironic_inspector.conf.service_catalog),
130

register_opts() (in module
ironic_inspector.conf.swift), 130

release() (ironic_inspector.common.locking.BaseLock
method), 125

release() (ironic_inspector.common.locking.InternalLock
method), 125

release() (ironic_inspector.common.locking.ToozLock
method), 125

release_lock() (in module
ironic_inspector.node_cache), 168

release_lock()
(ironic_inspector.node_cache.NodeInfo
method), 165

remove_trait()
(ironic_inspector.node_cache.NodeInfo
method), 165

RemoveTraitAction (class in
ironic_inspector.plugins.rules), 151

replace_field()
(ironic_inspector.node_cache.NodeInfo
method), 165

request_field() (in module
ironic_inspector.api_tools), 159

RequestContext (class in
ironic_inspector.common.context),
119

REQUIRED_PARAMS
(ironic_inspector.plugins.base.RuleConditionPlugin
attribute), 140

REQUIRED_PARAMS
(ironic_inspector.plugins.base.WithValidation
attribute), 140

REQUIRED_PARAMS
(ironic_inspector.plugins.rules.AddTraitAction
attribute), 147

REQUIRED_PARAMS
(ironic_inspector.plugins.rules.EmptyCondition
attribute), 148

REQUIRED_PARAMS
(ironic_inspector.plugins.rules.ExtendAttributeAction
attribute), 149

REQUIRED_PARAMS
(ironic_inspector.plugins.rules.FailAction

attribute), 149
REQUIRED_PARAMS

(ironic_inspector.plugins.rules.RemoveTraitAction
attribute), 151

REQUIRED_PARAMS
(ironic_inspector.plugins.rules.SetAttributeAction
attribute), 152

REQUIRED_PARAMS
(ironic_inspector.plugins.rules.SetCapabilityAction
attribute), 152

reset (ironic_inspector.pxe_filter.base.Events at-
tribute), 156

reset() (in module
ironic_inspector.plugins.base), 141

reset() (ironic_inspector.pxe_filter.base.BaseFilter
method), 155

reset() (ironic_inspector.pxe_filter.dnsmasq.DnsmasqFilter
method), 157

reset() (ironic_inspector.pxe_filter.iptables.IptablesFilter
method), 158

reset() (ironic_inspector.wsgi_service.WSGIService
method), 176

reset_ironic_session() (in module
ironic_inspector.common.ironic), 122

reset_swift_session() (in module
ironic_inspector.common.swift), 127

revision() (in module
ironic_inspector.db.migration), 135

RootDiskSelectionHook (class in
ironic_inspector.plugins.standard),
153

RPC_API_VERSION
(ironic_inspector.conductor.manager.ConductorManager
attribute), 127

RPCService (class in
ironic_inspector.common.rpc_service),
126

Rule (class in ironic_inspector.db.model), 137
rule (ironic_inspector.db.model.RuleAction at-

tribute), 137
rule (ironic_inspector.db.model.RuleCondition

attribute), 138
rule_actions_manager() (in module

ironic_inspector.plugins.base), 141
rule_conditions_manager() (in module

ironic_inspector.plugins.base), 141
rule_repr() (in module ironic_inspector.main),

162
RuleAction (class in ironic_inspector.db.model),

137
RuleActionPlugin (class in

Index 195

Ironic Inspector Documentation, Release 12.4.0.dev8

ironic_inspector.plugins.base), 139
RuleCondition (class in

ironic_inspector.db.model), 137
RuleConditionPlugin (class in

ironic_inspector.plugins.base), 139
RuleNotFoundError, 174
RuleUUIDExistError, 174
run_elect_coordinator()

(ironic_inspector.common.coordination.Coordinator
method), 120

S
save() (ironic_inspector.plugins.introspection_data.BaseStorageBackend

method), 144
save() (ironic_inspector.plugins.introspection_data.DatabaseStore

method), 144
save() (ironic_inspector.plugins.introspection_data.NoStore

method), 145
save() (ironic_inspector.plugins.introspection_data.SwiftStore

method), 145
SchedulerHook (class in

ironic_inspector.plugins.standard),
154

scope (ironic_inspector.db.model.Rule attribute),
137

session_for_read() (in module
ironic_inspector.db.api), 134

session_for_write() (in module
ironic_inspector.db.api), 134

set_attribute() (in module
ironic_inspector.db.api), 134

set_config_defaults() (in module
ironic_inspector.conf.opts), 129

set_cors_middleware_defaults() (in module
ironic_inspector.conf.opts), 129

set_option() (in module
ironic_inspector.db.api), 134

set_option() (ironic_inspector.node_cache.NodeInfo
method), 165

set_value() (ironic_inspector.common.lldp_parsers.LLDPParser
method), 123

SetAttributeAction (class in
ironic_inspector.plugins.rules), 152

SetCapabilityAction (class in
ironic_inspector.plugins.rules), 152

SimpleCondition (class in
ironic_inspector.plugins.rules), 153

stamp() (in module
ironic_inspector.db.migration), 136

start (ironic_inspector.introspection_state.Events
attribute), 160

start() (ironic_inspector.common.coordination.Coordinator
method), 120

start() (ironic_inspector.common.rpc_service.RPCService
method), 126

start() (ironic_inspector.wsgi_service.WSGIService
method), 176

start_coordinator() (in module
ironic_inspector.main), 162

start_introspection() (in module
ironic_inspector.node_cache), 169

started_at (ironic_inspector.db.model.Node at-
tribute), 137

starting (ironic_inspector.introspection_state.States
attribute), 161

state (ironic_inspector.db.model.Node attribute),
137

state (ironic_inspector.node_cache.NodeInfo
property), 165

state (ironic_inspector.pxe_filter.base.BaseFilter
property), 155

state_field() (in module
ironic_inspector.api_tools), 159

States (class in
ironic_inspector.introspection_state),
160

States (class in ironic_inspector.pxe_filter.base),
156

stop() (ironic_inspector.common.coordination.Coordinator
method), 120

stop() (ironic_inspector.common.rpc_service.RPCService
method), 126

stop() (ironic_inspector.wsgi_service.WSGIService
method), 176

store_introspection_data() (in module
ironic_inspector.common.swift), 127

store_introspection_data() (in module
ironic_inspector.db.api), 135

store_introspection_data() (in module
ironic_inspector.node_cache), 169

store_introspection_data() (in module
ironic_inspector.process), 171

SwiftAPI (class in
ironic_inspector.common.swift), 126

SwiftStore (class in
ironic_inspector.plugins.introspection_data),
145

sync (ironic_inspector.pxe_filter.base.Events at-
tribute), 156

sync() (ironic_inspector.pxe_filter.base.BaseFilter
method), 155

sync() (ironic_inspector.pxe_filter.dnsmasq.DnsmasqFilter

196 Index

Ironic Inspector Documentation, Release 12.4.0.dev8

method), 157
sync() (ironic_inspector.pxe_filter.interface.FilterDriver

method), 157
sync() (ironic_inspector.pxe_filter.iptables.IptablesFilter

method), 158
sync_with_ironic() (in module

ironic_inspector.conductor.manager),
128

T
target (ironic_inspector.conductor.manager.ConductorManager

attribute), 128
tear_down_filter()

(ironic_inspector.pxe_filter.base.BaseFilter
method), 155

tear_down_filter()
(ironic_inspector.pxe_filter.interface.FilterDriver
method), 158

timeout (ironic_inspector.introspection_state.Events
attribute), 160

to_policy_values()
(ironic_inspector.common.context.RequestContext
method), 119

ToozLock (class in
ironic_inspector.common.locking),
125

triggers_fsm_error_transition() (in mod-
ule ironic_inspector.node_cache), 169

U
uninitialized (ironic_inspector.pxe_filter.base.States

attribute), 156
update_capabilities()

(ironic_inspector.node_cache.NodeInfo
method), 165

update_node() (in module
ironic_inspector.db.api), 135

update_properties()
(ironic_inspector.node_cache.NodeInfo
method), 166

upgrade() (in module
ironic_inspector.db.migration), 136

uuid (ironic_inspector.db.model.Attribute at-
tribute), 136

uuid (ironic_inspector.db.model.IntrospectionData
attribute), 136

uuid (ironic_inspector.db.model.Node attribute),
137

uuid (ironic_inspector.db.model.Option at-
tribute), 137

uuid (ironic_inspector.db.model.Rule attribute),
137

V
validate() (ironic_inspector.plugins.base.WithValidation

method), 140
validate() (ironic_inspector.plugins.rules.NetCondition

method), 151
validate() (ironic_inspector.plugins.rules.ReCondition

method), 151
validate() (ironic_inspector.plugins.rules.SetAttributeAction

method), 152
validate_processing_hooks() (in module

ironic_inspector.plugins.base), 141
ValidateInterfacesHook (class in

ironic_inspector.plugins.standard),
154

value (ironic_inspector.db.model.Attribute
attribute), 136

value (ironic_inspector.db.model.Option at-
tribute), 137

version() (in module
ironic_inspector.db.migration), 136

version_id (ironic_inspector.db.model.Node at-
tribute), 137

version_id (ironic_inspector.node_cache.NodeInfo
property), 166

version_root() (in module
ironic_inspector.main), 162

W
wait (ironic_inspector.introspection_state.Events

attribute), 160
wait() (ironic_inspector.wsgi_service.WSGIService

method), 176
waiting (ironic_inspector.introspection_state.States

attribute), 161
with_revision() (in module

ironic_inspector.cmd.dbsync), 118
WithValidation (class in

ironic_inspector.plugins.base), 140
WSGIService (class in

ironic_inspector.wsgi_service), 176

Index 197

	Introduction
	Release Notes
	Using Ironic Inspector
	Install Guide
	Sample Configuration Files
	Installation options
	Configuration
	Configuring IPA
	Configuring PXE
	Configuring iPXE
	Configuring PXE for aarch64
	Configuring PXE for Multi-arch

	Managing the ironic-inspector Database
	Running
	Running in standalone mode
	Running in non-standalone mode

	Command References
	ironic-inspector-status
	Synopsis
	Description
	Options
	Upgrade

	Configuration Guide
	ironic-inspector.conf
	DEFAULT
	capabilities
	coordination
	cors
	database
	discovery
	dnsmasq_pxe_filter
	extra_hardware
	healthcheck
	iptables
	ironic
	keystone_authtoken
	mdns
	oslo_messaging_kafka
	oslo_messaging_notifications
	oslo_messaging_rabbit
	oslo_policy
	pci_devices
	port_physnet
	processing
	pxe_filter
	service_catalog
	ssl
	swift

	Policies
	ironic_inspector.api

	User Guide
	How Ironic Inspector Works
	How Ironic Inspector Works
	Workflow
	State machine diagram

	How to use Ironic Inspector
	Usage
	Using from Ironic API
	Node States
	Introspection Rules
	Conditions
	Scope
	Actions

	Plugins
	Discovery
	Reapplying introspection on stored data
	Capabilities Detection
	Boot mode
	CPU capabilities
	InfiniBand support

	HTTP API Reference
	Troubleshooting
	Troubleshooting
	Errors when starting introspection
	Introspection times out
	Troubleshooting data processing
	Troubleshooting PXE boot
	Troubleshooting ramdisk run
	Troubleshooting DNS issues on Ubuntu
	Troubleshooting DnsmasqFilter

	Running Inspector in a VirtualBox environment

	HTTP API

	Administrator Guide
	How to upgrade Ironic Inspector
	Upgrade Guide
	Migrating introspection data

	Dnsmasq PXE filter driver
	dnsmasq PXE filter
	How it works
	Configuration
	Caveats

	Contributor Docs
	How To Contribute
	Basics
	Development Environment
	Deploying Ironic Inspector with DevStack
	Example local.conf
	Notes
	Usage

	Writing a Plugin
	Making changes to the database
	Autogenerate
	Manual

	Implementing PXE Filter Drivers
	Background
	Filter Interface

	Python API
	ironic_inspector
	ironic_inspector package
	Subpackages
	ironic_inspector.cmd package
	Submodules
	ironic_inspector.cmd.all module
	ironic_inspector.cmd.conductor module
	ironic_inspector.cmd.dbsync module
	ironic_inspector.cmd.migration module
	ironic_inspector.cmd.status module
	ironic_inspector.cmd.wsgi module
	Module contents
	ironic_inspector.common package
	Submodules
	ironic_inspector.common.context module
	ironic_inspector.common.coordination module
	ironic_inspector.common.ironic module
	ironic_inspector.common.keystone module
	ironic_inspector.common.lldp_parsers module
	ironic_inspector.common.lldp_tlvs module
	ironic_inspector.common.locking module
	ironic_inspector.common.rpc module
	ironic_inspector.common.rpc_service module
	ironic_inspector.common.service_utils module
	ironic_inspector.common.swift module
	Module contents
	ironic_inspector.conductor package
	Submodules
	ironic_inspector.conductor.manager module
	Module contents
	ironic_inspector.conf package
	Submodules
	ironic_inspector.conf.accelerators module
	ironic_inspector.conf.capabilities module
	ironic_inspector.conf.coordination module
	ironic_inspector.conf.default module
	ironic_inspector.conf.discovery module
	ironic_inspector.conf.dnsmasq_pxe_filter module
	ironic_inspector.conf.extra_hardware module
	ironic_inspector.conf.healthcheck module
	ironic_inspector.conf.iptables module
	ironic_inspector.conf.ironic module
	ironic_inspector.conf.opts module
	ironic_inspector.conf.pci_devices module
	ironic_inspector.conf.port_physnet module
	ironic_inspector.conf.processing module
	ironic_inspector.conf.pxe_filter module
	ironic_inspector.conf.service_catalog module
	ironic_inspector.conf.swift module
	Module contents
	ironic_inspector.db package
	Submodules
	ironic_inspector.db.api module
	ironic_inspector.db.migration module
	ironic_inspector.db.model module
	Module contents
	ironic_inspector.plugins package
	Submodules
	ironic_inspector.plugins.accel_device module
	ironic_inspector.plugins.base module
	ironic_inspector.plugins.base_physnet module
	ironic_inspector.plugins.capabilities module
	ironic_inspector.plugins.discovery module
	ironic_inspector.plugins.example module
	ironic_inspector.plugins.extra_hardware module
	ironic_inspector.plugins.introspection_data module
	ironic_inspector.plugins.lldp_basic module
	ironic_inspector.plugins.local_link_connection module
	ironic_inspector.plugins.pci_devices module
	ironic_inspector.plugins.physnet_cidr_map module
	ironic_inspector.plugins.raid_device module
	ironic_inspector.plugins.rules module
	ironic_inspector.plugins.standard module
	Module contents
	ironic_inspector.pxe_filter package
	Submodules
	ironic_inspector.pxe_filter.base module
	ironic_inspector.pxe_filter.dnsmasq module
	ironic_inspector.pxe_filter.interface module
	ironic_inspector.pxe_filter.iptables module
	Module contents
	Submodules
	ironic_inspector.api_tools module
	ironic_inspector.introspect module
	ironic_inspector.introspection_state module
	ironic_inspector.main module
	ironic_inspector.node_cache module
	ironic_inspector.policy module
	ironic_inspector.process module
	ironic_inspector.rules module
	ironic_inspector.utils module
	ironic_inspector.version module
	ironic_inspector.wsgi_service module
	Module contents

	Ironic Inspector CI
	Jobs description

	Indices and tables
	Python Module Index
	Index

