Heat Documentation
Release 17.0.3.dev4

Heat Developers

Dec 15, 2024

CONTENTS

1 Heats purpose and vision 3
2 Operating Heat 5
2.1 Installing Heat e 5
2.1.1 Orchestration service overview L. 5

2.1.2 Installand configure 5
Install and configure for openSUSE and SUSE Linux Enterprise 6

Install and configure for Red Hat Enterprise Linux and CentOS 13

Install and configure for Ubuntu 20

Install and configure for Debian 0oL, 27

2.1.3 Verifyoperation e e e e e 34

2.1.4 Launchaninstance i 35
Createatemplate e e e 35
Createastack e 35

2.1.5 0 NEXESEEPS . o v v v o e e e e e e e e e e e e e e e e e e e 37

2.2 Running Heat API services in HTTP Server 38
221 mod-WSZi e e e e e e e 38

2220 UWSZL .. oL e e e e e e e e e 38
MOd_ProXy_UWSZi . . . v v v vt e e e e e e e e e e e 39

2.3 Configuring Heat e 39
2.3.1 Configuration options for the Orchestration service 39
DEFAULT e 40
auth_password L 55

cache L 55

clients oL e 60

clients_aodh 60
clients_barbican 61
clients_cinder 62
clients_designate 62
clients_glance 63

clients_heat L 64
clients_keystone L. 64
clients_magnum e e 65
clients_manila 66
clients_mistral 67

clients_ monascao e e e e e e e e e e 67
clients_neutron e e e e 68

clients_ nova. e e e 69
clients_octavia e 69

24

2.5

clients_sahara e e s 70

clients_senlin L 71
clients_swift e 71
clients_trove e e e e 72
clients_vitrage e e e e e e e 73
clients_zaqar e 73
COTS & v v e e e e e e e e e e e e e e e e e e e 74
database e e e 75
ec2authtoken L 79
eventlet_Opts e e e 80
healthcheck 80
heat_api e e e e 81
heat_api_cfn 83
heat_api_cloudwatch L 84
keystone_authtoken oL Lo L 87
noauth L L e e e e 92
oslo_messaging_amqpo 92
oslo_messaging kafka 99
oslo_messaging_notifications L L oL 101
oslo_messaging rabbit 102
oslo_middleware e 107
oslo_policy e e 107
paste_deploy 109
profiler e e 109
TEVISION o e e e e e e e e e e e e e e 112
SSL o e e 112
TTUSTEE « o . v o v o e 113
VOIUMES o o e e e 116
2.3.2 Heat Configuration Sample 116
2.3.3 Orchestrationlogfiles 116
2.3.4 HeatSamplePolicy 116
Administering Heat L 135
24.1 Introduction L e 135
2.4.2 Orchestration authorizationmodel 136
Password authorization oL oL 136
OpenStack Identity trusts authorization 136
Authorization model configuration oL oo 137
243 Stackdomainusers e e e e e e 138
Stack domain users configuration oL oo L. 138
Usageworkflow e 139
Scaling a Deployment L e 140
2.5.1 Assumptions e e e e e e e e e 140
2.52 Architecture e e e e e e e e e e e 140
Basic Architecture 140
Load Balancing e 141
Target Architecture L 141
2.5.3 Deploying Multiple APIs 141
2.5.4 Deploying Multiple Engines 142
2.5.5 Deployingthe Proxy e 142
25.6 Sample 143
Architecture e e e 144

Running the API and Engine Services 144

Setting Up HAProxy e 145

2.6 Upgrades Guideline e 146
2.6.1 Plantoupgrade L 146

2.6.2 ColdUpgrades o i i ittt e e e e e 146

2.6.3 Rolling Upgrades e 147
Prerequisites e 147

Procedure 147

2,64 References. e 148

2.7 Man pages for services and utilities oo oL 148
2.7.1 Heatservices i it e e e e e e e e 148
heat-engine 148

heat-api e e 149

heat-api-cfn 150

2772 Heatutilities 151
heat-manage e e e e 151
heat-db-setup L 152
heat-keystone-setup 153
heat-keystone-setup-domaino oL 154

heat-status L. e 155

3 Using Heat 157
3.1 Creating your first stack L 157
3.1.1 Confirming you can access a Heatendpoint 157

3.1.2 Preparingtocreateastack L oL 157

3.1.3 Launchingastack 158
Liststacks o . L 158

Liststack events i e 158

Describe the wordpress stack oo oo 159

Verify instance creation oo 159

Delete the instance whendone 159

32 Glossary e e e 159
3.3 Working with Templates e 161
33.1 Template Guide e e e e 161

Heat Orchestration Template (HOT) Guide 161

Writing a hello world HOT template 164

Guideline for features 168

Heat Orchestration Template (HOT) specification 171

Instances 208

Software configuration 216
Environments L Lo 229

Template composition 234

OpenStack Resource Types oo 237
CloudFormation Compatible Resource Types 615

Unsupported Heat Resource Types 656

Contributed Heat Resource Types 675
CloudFormation Compatible Functions 683

3.3.2 Example Templates 691
Example HOT Templates ittt 691

Example CEN Templates 692

34 Usingthe Heat Service i i i e 693

4 Developing Heat 695

4.1 HeatDeloper Guidelines e 695
4.1.1 HeatandDevStack 695
Configure DevStack toenableheat 695
Configure DevStack to enable ceilometer and aodh (if using alarms) 696
Configure DevStack to enable OSprofiler 696
Createastack L 697

4.1.2 Blueprintsand Specs oL 697
Spec from existing stories L. 697

4.1.3 Heatarchitecture 697
Detailed description e 697
Heatservices o . e 698

4.1.4 Heat Resource Plug-in Development Guide 698
Resource Plug-in Life Cycle 698
Configuring the Engine L oL, 709
Testing o e e e e e e e 709
Putting It All Together 709
Resource Contributions L 710

4.1.5 Heat Stack Lifecycle Scheduler Hints 710
Enabling the schedulerhints 710

The hints e 710
Purpose e 711

4.1.6 GuruMeditation Reports e 711
GeneratingaGMR L L 711
Structureof aGMR Lo 711
Adding support for GMRs to new executable 711
Extendingthe GMR e 712

4.1.7 Heat Support Status usage Guide L. 712
Support Status option and its parameters 0.0 ... 712

Life cycle of resource, property, attribute oL 713

Using Support Status during code writing 714
Translating mechanism for hidden properties 716

4.1.8 UsingRallyonHeatgates 717
How to run Rally for particularpatch 717
Examplesof usingRally 717
create_stack_and_show_output_old, 719
create_stack_and_show_output_new L. 719
create_stack_and_list_output_old oL, 720
create_stack_and_list_output_new oL 720

42 SourceCodelIndex e 720
421 heat e e 720
heat package 720

5 For Contributors 945
5.1 Heat Contributor Guidelines L . 945
5.1.1 ~ So You Wantto Contribute 945
Communication L e e 945
Contacting the Core Team 945

New Feature Planning, 945

Task Tracking e 945
ReportingaBug 946

Getting Your Patch Merged
Project Team Lead Duties

6 Indices and tables

Vi

Heat Documentation, Release 17.0.3.dev4

Heat is a service to orchestrate composite cloud applications using a declarative template format through
an OpenStack-native REST APL

CONTENTS 1

Heat Documentation, Release 17.0.3.dev4

2 CONTENTS

CHAPTER
ONE

HEATS PURPOSE AND VISION

Heat provides a template based orchestration for describing a cloud application by executing ap-
propriate OpenStack API calls to generate running cloud applications.

A Heat template describes the infrastructure for a cloud application in text files which are readable
and writable by humans, and can be managed by version control tools.

Templates specify the relationships between resources (e.g. this volume is connected to this server).
This enables Heat to call out to the OpenStack APIs to create all of your infrastructure in the correct
order to completely launch your application.

The software integrates other components of OpenStack. The templates allow creation of most
OpenStack resource types (such as instances, floating ips, volumes, security groups, users, etc), as
well as some more advanced functionality such as instance high availability, instance autoscaling,
and nested stacks.

Heat primarily manages infrastructure, but the templates integrate well with software configuration
management tools such as Puppet and Ansible.

Operators can customise the capabilities of Heat by installing plugins.

This documentation offers information aimed at end-users, operators and developers of Heat.

Heat Documentation, Release 17.0.3.dev4

4 Chapter 1. Heats purpose and vision

CHAPTER
TWO

OPERATING HEAT

2.1 Installing Heat

2.1.1 Orchestration service overview

The Orchestration service provides a template-based orchestration for describing a cloud application by
running OpenStack API calls to generate running cloud applications. The software integrates other core
components of OpenStack into a one-file template system. The templates allow you to create most Open-
Stack resource types such as instances, floating IPs, volumes, security groups, and users. It also provides
advanced functionality such as instance high availability, instance auto-scaling, and nested stacks. This
enables OpenStack core projects to receive a larger user base.

The service allows deployers to integrate with the Orchestration service directly or through custom plug-
ins.

The Orchestration service consists of the following components:

heat command-line client A CLI that communicates with the heat-api to run AWS CloudFormation
APIs. End developers can directly use the Orchestration REST API.

heat-api component An OpenStack-native REST API that processes API requests by sending them to
the heat-engine over Remote Procedure Call (RPC).

heat-api-cfn component An AWS Query API that is compatible with AWS CloudFormation. It pro-
cesses API requests by sending them to the heat-engine over RPC.

heat-engine Orchestrates the launching of templates and provides events back to the API consumer.

2.1.2 Install and configure
This section describes how to install and configure the Orchestration service, code-named heat, on the
controller node.

This section assumes that you already have a working OpenStack environment with at least the following
components installed: Compute, Image Service, Identity.

Note that installation and configuration vary by distribution.

Heat Documentation, Release 17.0.3.dev4

Install and configure for openSUSE and SUSE Linux Enterprise

This section describes how to install and configure the Orchestration service for openSUSE Leap 42.2
and SUSE Linux Enterprise Server 12 SP2.

Prerequisites

Before you install and configure Orchestration, you must create a database, service credentials, and API
endpoints. Orchestration also requires additional information in the Identity service.

1. To create the database, complete these steps:

» Use the database access client to connect to the database server as the root user:

mysql -u root -p

¢ Create the heat database:

* Grant proper access to the heat database:

Replace HEAT_DBPASS with a suitable password.
¢ Exit the database access client.

2. Source the admin credentials to gain access to admin-only CLI commands:

. admin-openrc

3. To create the service credentials, complete these steps:

¢ Create the heat user:

openstack user create --domain default --password-prompt heat

¢ Add the admin role to the heat user:

6 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

openstack role add --project service --user heat admin

Note: This command provides no output.

¢ Create the heat and heat-cfn service entities:

openstack service create --name heat
--description orchestration

openstack service create --name heat-cfn
--description cloudformation

4. Create the Orchestration service API endpoints:

openstack endpoint create --region RegionOne
orchestration public http://controller:8004/v1/%\ (tenant_id\)s

openstack endpoint create --region RegionOne

(continues on next page)

2.1. Installing Heat 7

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

orchestration internal http://controller:8004/v1/%\ (tenant_id\)s

openstack endpoint create --region RegionOne
orchestration admin http://controller:8004/v1/%\ (tenant_id\)s

openstack endpoint create --region RegionOne
cloudformation public http://controller:8000/v1

openstack endpoint create --region RegionOne
cloudformation internal http://controller:8000/vl

(continues on next page)

8 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

openstack endpoint create --region RegionOne
cloudformation admin http://controller:8000/v1

5. Orchestration requires additional information in the Identity service to manage stacks. To add this
information, complete these steps:

* Create the heat domain that contains projects and users for stacks:

openstack domain create --description o
—heat

* Create the heat_domain_admin user to manage projects and users in the heat domain:

openstack user create --domain heat --password-prompt heat_domain_
—admin

(continues on next page)

2.1. Installing Heat 9

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

¢ Add the admin role to the heat_domain_admin user in the heat domain to enable admin-
istrative stack management privileges by the heat_domain_admin user:

openstack role add --domain heat --user-domain heat --user heat_
—domain_admin admin

Note: This command provides no output.

¢ Create the heat_stack_owner role:

openstack role create heat_stack_owner

* Add the heat_stack_owner role to the demo project and user to enable stack management
by the demo user:

openstack role add --project demo --user demo heat_stack_owner

Note: This command provides no output.

Note: You must add the heat_stack_owner role to each user that manages stacks.

¢ Create the heat_stack_user role:

openstack role create heat_stack_user

(continues on next page)

10 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

Note: The Orchestration service automatically assigns the heat_stack_user role to users
that it creates during stack deployment. By default, this role restricts API <Application Pro-
gramming Interface (API)> operations. To avoid conflicts, do not add this role to users with
the heat_stack_owner role.

Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (. . .) in the configuration snippets
indicates potential default configuration options that you should retain.

1. Install the packages:

zypper install openstack-heat-api openstack-heat-api-cfn
openstack-heat-engine

2. Edit the /etc/heat/heat.conf file and complete the following actions:

* In the [database] section, configure database access:

Replace HEAT_DBPASS with the password you chose for the Orchestration database.

* In the [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

* In the [keystone_authtoken], [trustee] and [clients_keystone] sections, config-
ure Identity service access:

(continues on next page)

2.1. Installing Heat 11

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

Replace HEAT_PASS with the password you chose for the heat user in the Identity service.

* In the [DEFAULT] section, configure the metadata and wait condition URLs:

In the [DEFAULT] section, configure the stack domain and administrative credentials:

Replace HEAT_DOMAIN_PASS with the password you chose for the heat_domain_admin
user in the Identity service.

Finalize installation

* Start the Orchestration services and configure them to start when the system boots:

systemctl enable openstack-heat-api.service
openstack-heat-api-cfn.service openstack-heat-engine.service
systemctl start openstack-heat-api.service
openstack-heat-api-cfn.service openstack-heat-engine.service

12 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

Install and configure for Red Hat Enterprise Linux and CentOS

This section describes how to install and configure the Orchestration service for Red Hat Enterprise Linux
7 and CentOS 7.

Prerequisites

Before you install and configure Orchestration, you must create a database, service credentials, and API
endpoints. Orchestration also requires additional information in the Identity service.

1. To create the database, complete these steps:

» Use the database access client to connect to the database server as the root user:

mysql -u root -p

¢ Create the heat database:

* Grant proper access to the heat database:

Replace HEAT_DBPASS with a suitable password.
¢ Exit the database access client.

2. Source the admin credentials to gain access to admin-only CLI commands:

admin-openrc

3. To create the service credentials, complete these steps:

¢ Create the heat user:

openstack user create --domain default --password-prompt heat

¢ Add the admin role to the heat user:

2.1. Installing Heat 13

Heat Documentation, Release 17.0.3.dev4

openstack role add --project service --user heat admin

Note: If installing OpenStack manually following the Keystone install guide, the name of
the services project is service as given above. However, traditional methods of installing
RDO (such as PackStack and TripleO) use services as the name of the service project. If
you installed RDO using a Puppet-based method, substitute services as the project name.

Note: This command provides no output.

¢ Create the heat and heat-cfn service entities:

openstack service create --name heat
--description orchestration

openstack service create --name heat-cfn
--description cloudformation

4. Create the Orchestration service API endpoints:

openstack endpoint create --region RegionOne
orchestration public http://controller:8004/v1/%\ (tenant_id\)s

(continues on next page)

14 Chapter 2. Operating Heat

https://docs.openstack.org/keystone/xena/install/keystone-users-rdo.html

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

openstack endpoint create --region RegionOne
orchestration internal http://controller:8004/v1/%\ (tenant_id\)s

openstack endpoint create --region RegionOne
orchestration admin http://controller:8004/v1/%\ (tenant_id\)s

openstack endpoint create --region RegionOne
cloudformation public http://controller:8000/v1

(continues on next page)

2.1. Installing Heat 15

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

openstack endpoint create --region RegionOne
cloudformation internal http://controller:8000/vl

openstack endpoint create --region RegionOne
cloudformation admin http://controller:8000/v1

5. Orchestration requires additional information in the Identity service to manage stacks. To add this
information, complete these steps:

* Create the heat domain that contains projects and users for stacks:

openstack domain create --description o
—heat

(continues on next page)

16 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

Create the heat_domain_admin user to manage projects and users in the heat domain:

openstack user create --domain heat --password-prompt heat_domain_
—admin

¢ Add the admin role to the heat_domain_admin user in the heat domain to enable admin-
istrative stack management privileges by the heat_domain_admin user:

openstack role add --domain heat --user-domain heat --user heat_
—domain_admin admin

Note: This command provides no output.

¢ Create the heat_stack_owner role:

openstack role create heat_stack_owner

* Add the heat_stack_owner role to the demo project and user to enable stack management
by the demo user:

openstack role add --project demo --user demo heat_stack_owner

Note: This command provides no output.

Note: You must add the heat_stack_owner role to each user that manages stacks.

e Create the heat_stack_user role:

2.1. Installing Heat 17

Heat Documentation, Release 17.0.3.dev4

openstack role create heat_stack_user

Note: The Orchestration service automatically assigns the heat_stack_user role to users
that it creates during stack deployment. By default, this role restricts API <Application Pro-
gramming Interface (API)> operations. To avoid conflicts, do not add this role to users with
the heat_stack_owner role.

Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (. . .) in the configuration snippets
indicates potential default configuration options that you should retain.

1. Install the packages:

yum install openstack-heat-api openstack-heat-api-cfn
openstack-heat-engine

2. Edit the /etc/heat/heat.conf file and complete the following actions:

* In the [database] section, configure database access:

Replace HEAT_DBPASS with the password you chose for the Orchestration database.

* In the [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

* Inthe [keystone_authtoken], [trustee], and [clients_keystone] sections, config-
ure Identity service access:

18 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

Replace HEAT_PASS with the password you chose for the heat user in the Identity service.

* In the [DEFAULT] section, configure the metadata and wait condition URLs:

* In the [DEFAULT] section, configure the stack domain and administrative credentials:

Replace HEAT_DOMAIN_PASS with the password you chose for the heat_domain_admin
user in the Identity service.

3. Populate the Orchestration database:

su -s /bin/sh -c heat

Note: Ignore any deprecation messages in this output.

2.1. Installing Heat 19

Heat Documentation, Release 17.0.3.dev4

Finalize installation

* Start the Orchestration services and configure them to start when the system boots:

systemctl enable openstack-heat-api.service
openstack-heat-api-cfn.service openstack-heat-engine.service
systemctl start openstack-heat-api.service
openstack-heat-api-cfn.service openstack-heat-engine.service

Install and configure for Ubuntu

This section describes how to install and configure the Orchestration service for Ubuntu 14.04 (LTS).

Prerequisites

Before you install and configure Orchestration, you must create a database, service credentials, and API
endpoints. Orchestration also requires additional information in the Identity service.

1. To create the database, complete these steps:

e Use the database access client to connect to the database server as the root user:

mysql -u root -p

¢ Create the heat database:

» Grant proper access to the heat database:

Replace HEAT_DBPASS with a suitable password.
 Exit the database access client.

2. Source the admin credentials to gain access to admin-only CLI commands:

admin-openrc

3. To create the service credentials, complete these steps:

e Create the heat user:

openstack user create --domain default --password-prompt heat

(continues on next page)

20 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

Add the admin role to the heat user:

openstack role add --project service --user heat admin

Note: This command provides no output.

¢ Create the heat and heat-cfn service entities:

openstack service create --name heat
--description orchestration

openstack service create --name heat-cfn
--description cloudformation

4. Create the Orchestration service API endpoints:

openstack endpoint create --region RegionOne
orchestration public http://controller:8004/v1/%\ (tenant_id\)s

(continues on next page)

2.1. Installing Heat 21

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

openstack endpoint create --region RegionOne
orchestration internal http://controller:8004/v1/%\ (tenant_id\)s

openstack endpoint create --region RegionOne
orchestration admin http://controller:8004/v1/%\ (tenant_id\)s

openstack endpoint create --region RegionOne
cloudformation public http://controller:8000/v1

(continues on next page)

22

Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

openstack endpoint create --region RegionOne
cloudformation internal http://controller:8000/vl

openstack endpoint create --region RegionOne
cloudformation admin http://controller:8000/v1

. Orchestration requires additional information in the Identity service to manage stacks. To add this

information, complete these steps:

* Create the heat domain that contains projects and users for stacks:

openstack domain create --description o
—heat

(continues on next page)

2.1.

Installing Heat 23

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

Create the heat_domain_admin user to manage projects and users in the heat domain:

openstack user create --domain heat --password-prompt heat_domain_
—admin

¢ Add the admin role to the heat_domain_admin user in the heat domain to enable admin-
istrative stack management privileges by the heat_domain_admin user:

openstack role add --domain heat --user-domain heat --user heat_
—domain_admin admin

Note: This command provides no output.

¢ Create the heat_stack_owner role:

openstack role create heat_stack_owner

* Add the heat_stack_owner role to the demo project and user to enable stack management
by the demo user:

openstack role add --project demo --user demo heat_stack_owner

Note: This command provides no output.

24 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

Note: You must add the heat_stack_owner role to each user that manages stacks.

¢ Create the heat_stack_user role:

openstack role create heat_stack_user

Note: The Orchestration service automatically assigns the heat_stack_user role to users
that it creates during stack deployment. By default, this role restricts API <Application Pro-
gramming Interface (API)> operations. To avoid conflicts, do not add this role to users with
the heat_stack_owner role.

Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (. . .) in the configuration snippets
indicates potential default configuration options that you should retain.

1. Install the packages:

apt-get install heat-api heat-api-cfn heat-engine

2. Edit the /etc/heat/heat.conf file and complete the following actions:

* In the [database] section, configure database access:

Replace HEAT_DBPASS with the password you chose for the Orchestration database.

* In the [DEFAULT] section, configure RabbitMQ message queue access:

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

2.1. Installing Heat 25

Heat Documentation, Release 17.0.3.dev4

* In the [keystone_authtoken], [trustee] and [clients_keystone] sections, config-
ure Identity service access:

Replace HEAT_PASS with the password you chose for the heat user in the Identity service.

* In the [DEFAULT] section, configure the metadata and wait condition URLs:

In the [DEFAULT] section, configure the stack domain and administrative credentials:

Replace HEAT_DOMAIN_PASS with the password you chose for the heat_domain_admin
user in the Identity service.

3. Populate the Orchestration database:

su -s /bin/sh -c heat

26 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

Note: Ignore any deprecation messages in this output.

Finalize installation

1. Restart the Orchestration services:

service heat-api restart
service heat-api-cfn restart
service heat-engine restart

Install and configure for Debian

This section describes how to install and configure the Orchestration service for Debian.

Prerequisites

Before you install and configure Orchestration, you must create a database, service credentials, and API
endpoints. Orchestration also requires additional information in the Identity service.

1. To create the database, complete these steps:

¢ Use the database access client to connect to the database server as the root user:

mysgl -u root -p

¢ Create the heat database:

* Grant proper access to the heat database:

Replace HEAT_DBPASS with a suitable password.
* Exit the database access client.

2. Source the admin credentials to gain access to admin-only CLI commands:

admin-openrc

3. To create the service credentials, complete these steps:

¢ Create the heat user:

2.1. Installing Heat 27

Heat Documentation, Release 17.0.3.dev4

openstack user create --domain default --password-prompt heat

¢ Add the admin role to the heat user:

openstack role add --project service --user heat admin

Note: This command provides no output.

¢ Create the heat and heat-cfn service entities:

openstack service create --name heat
--description orchestration

openstack service create --name heat-cfn
--description cloudformation

4. Create the Orchestration service API endpoints:

openstack endpoint create --region RegionOne
orchestration public http://controller:8004/v1/%\ (tenant_id\)s

(continues on next page)

28

Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

openstack endpoint create --region RegionOne
orchestration internal http://controller:8004/v1/%\ (tenant_id\)s

openstack endpoint create --region RegionOne
orchestration admin http://controller:8004/v1/%\ (tenant_id\)s

openstack endpoint create --region RegionOne
cloudformation public http://controller:8000/v1

(continues on next page)

2.1. Installing Heat 29

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

openstack endpoint create --region RegionOne
cloudformation internal http://controller:8000/v1

openstack endpoint create --region RegionOne
cloudformation admin http://controller:8000/v1

5. Orchestration requires additional information in the Identity service to manage stacks. To add this
information, complete these steps:

* Create the heat domain that contains projects and users for stacks:

openstack domain create --description o

h e
=mneat (continues on next page)

30 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

* Create the heat_domain_admin user to manage projects and users in the heat domain:

openstack user create --domain heat --password-prompt heat_domain_
—admin

* Add the admin role to the heat_domain_admin user in the heat domain to enable admin-
istrative stack management privileges by the heat_domain_admin user:

openstack role add --domain heat --user-domain heat --user heat_
—domain_admin admin

Note: This command provides no output.

¢ Create the heat_stack_owner role:

openstack role create heat_stack_owner

* Add the heat_stack_owner role to the demo project and user to enable stack management
by the demo user:

openstack role add --project demo --user demo heat_stack_owner

2.1. Installing Heat 31

Heat Documentation, Release 17.0.3.dev4

Note: This command provides no output.

Note: You must add the heat_stack_owner role to each user that manages stacks.

¢ Create the heat_stack_user role:

openstack role create heat_stack_user

Note: The Orchestration service automatically assigns the heat_stack_user role to users
that it creates during stack deployment. By default, this role restricts API <Application Pro-
gramming Interface (API)> operations. To avoid conflicts, do not add this role to users with
the heat_stack_owner role.

Install and configure components

Note: Default configuration files vary by distribution. You might need to add these sections and options
rather than modifying existing sections and options. Also, an ellipsis (. . .) in the configuration snippets
indicates potential default configuration options that you should retain.

1. Install the packages:

apt-get install heat-api heat-api-cfn heat-engine

2. Edit the /etc/heat/heat.conf file and complete the following actions:

* In the [database] section, configure database access:

[database]

Replace HEAT_DBPASS with the password you chose for the Orchestration database.

* In the [DEFAULT] section, configure RabbitMQ message queue access:

[DEFAULT]

32 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

* In the [keystone_authtoken], [trustee] and [clients_keystone] sections, config-
ure Identity service access:

Replace HEAT_PASS with the password you chose for the heat user in the Identity service.

* In the [DEFAULT] section, configure the metadata and wait condition URLs:

In the [DEFAULT] section, configure the stack domain and administrative credentials:

Replace HEAT_DOMAIN_PASS with the password you chose for the heat_domain_admin
user in the Identity service.

3. Populate the Orchestration database:

2.1. Installing Heat 33

Heat Documentation, Release 17.0.3.dev4

su -s /bin/sh -c heat

Note: Ignore any deprecation messages in this output.

Finalize installation

1. Restart the Orchestration services:

service heat-api restart
service heat-api-cfn restart
service heat-engine restart

2.1.3 Verify operation

Verify operation of the Orchestration service.

Note: Perform these commands on the controller node.

1. Source the admin tenant credentials:

admin-openrc

2. List service components to verify successful launch and registration of each process:

openstack orchestration service list

Note: This output should indicate four heat-engine components (default to 4 or number of
CPUs on the host, whichever is greater) on the controller node.

34 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

2.1.4 Launch an instance

In environments that include the Orchestration service, you can create a stack that launches an instance.

Create a template

The Orchestration service uses templates to describe stacks. To learn about the template language, see

the Template Guide.

* Create the demo-template.yml file with the following content:

heat_template_version
description

parameters
NetID
type
description

resources
server
type
properties
image
flavor
key_name
networks
network get_param

outputs
instance_name
description
value get_attr
instance_ip
description
value get_attr

Create a stack

Create a stack using the demo-template.yml template.

1. Source the demo credentials to perform the following steps as a non-administrative project:

demo-openrc

2. Determine available networks.

openstack network list

(continues on next page)

2.1. Installing Heat

35

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

—

Note: This output may differ from your environment.

3. Setthe NET_ID environment variable to reflect the ID of a network. For example, using the provider
network:

export openstack network list @ awk

—

4. Create a stack of one CirrOS instance on the provider network:

openstack stack create -t demo-template.yml --parameter o
—stack

5. After a short time, verify successful creation of the stack:

openstack stack list

6. Show the name and IP address of the instance and compare with the output of the OpenStack client:

36 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

openstack stack output show --all stack

openstack server list

7. Delete the stack.

openstack stack delete --yes stack

2.1.5 Next steps

Your OpenStack environment now includes the heat service.
To add more services, see the additional documentation on installing OpenStack.
To learn more about the heat service, read the Heat documentation.

The Orchestration service (heat) uses a Heat Orchestration Template (HOT) to create and manage cloud
resources.

This chapter assumes a working setup of OpenStack following the OpenStack Installation Tutorial.

2.1. Installing Heat 37

https://docs.openstack.org/#install-guides
https://docs.openstack.org/#install-guides

Heat Documentation, Release 17.0.3.dev4

2.2 Running Heat API services in HTTP Server

Since the Liberty release Heat has packaged a set of wsgi script entrypoints that enables users to run api
services with a real web server like Apache HTTP Server (httpd).

There are several patterns for deployment. This doc shows some common ways of deploying api services
with httpd.

2.2.1 mod-wsgi

This deployment method is possible since Liberty release.

The httpd/files directory contains sample files that can be changed and copied to the appropriate location
in your httpd server.

On Debian/Ubuntu systems it is:

On Red Hat based systems it is:

2.2.2 uwsgi

In this deployment method we use uwsgi as a web server bound to a random local port. Then we configure
apache using mod_proxy to forward all incoming requests on the specified endpoint to that local web-
server. This has the advantage of letting apache manage all inbound http connections, and uwsgi manage
running the python code. It also means when we make changes to Heat api code or configuration, we
dont need to restart all of apache (which may be running other services too) and just need to restart the
local uwsgi daemons.

The httpd/files directory contains sample files for configuring httpd to run Heat api services under uwsgi
in this configuration. To use the sample configs simply copy uwsgi-heat-api.conf and uwsgi-heat-api-
cfn.conf to the appropriate location for your web server.

On Debian/Ubuntu systems it is:

On Red Hat based systems it is:

Enable mod_proxy by running sudo a2enmod proxy

Then on Ubuntu/Debian systems enable the site by creating a symlink from the file in sites-available
to sites-enabled. (This is not required on Red Hat based systems):

38 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

Start or restart httpd to pick up the new configuration.

Now we need to configure and start the uwsgi service. Copy the following files to /etc/heat:

Update the files to match your system configuration (for example, youll want to set the number of pro-
cesses and threads).

Install uwsgi and start the heat-api server using uwsgi:

Note: In the sample configs some random ports are used, but this doesnt matter and is just a randomly
selected number. This is not a contract on the port used for the local uwsgi daemon.

mod_proxy uwsgi

Instead of running uwsgi as a webserver listening on a local port and then having Apache HTTP proxy all
the incoming requests with mod_proxy, the normally recommended way of deploying uwsgi with Apache
httpd is to use mod_proxy_uwsgi and set up a local socket file for uwsgi to listen on. Apache will send
the requests using the uwsgi protocol over this local socket file.

The dsvm jobs in heat upstream gate uses this deployment method.

For more details on using mod_proxy_uwsgi see the official docs.

2.3 Configuring Heat

2.3.1 Configuration options for the Orchestration service

The following options can be set in the /etc/heat/heat.conf config file. A sample configuration file
is also available.

2.3. Configuring Heat 39

https://uwsgi-docs.readthedocs.io/en/latest/Apache.html?highlight=mod_uwsgi_proxy#mod-proxy-uwsgi

Heat Documentation, Release 17.0.3.dev4

DEFAULT

host
Type string
Default <Hostname>

This option has a sample default set, which means that its actual default value may vary from the
one documented above.

Name of the engine node. This can be an opaque identifier. It is not necessarily a hostname, FQDN,
or IP address.

plugin_dirs
Type list

Default ['/usr/l1ib64/heat', '/usr/lib/heat', '/usr/local/lib/
heat', '/usr/local/lib64/heat']

List of directories to search for plug-ins.
environment_dir
Type string
Default /etc/heat/environment.d
The directory to search for environment files.
template_dir
Type string
Default /etc/heat/templates
The directory to search for template files.
deferred_auth_method
Type string
Default trusts
Valid Values password, trusts

Select deferred auth method, stored password or trusts.

Warning: This option is deprecated for removal since 9.0.0. Its value may be silently ignored
in the future.

Reason Stored password based deferred auth is broken when used with keystone
v3 and is not supported.

reauthentication_auth_method
Type string
Default '’

Valid Values , trusts

40 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

Allow reauthentication on token expiry, such that long-running tasks may complete. Note this
defeats the expiry of any provided user tokens.

allow_trusts_redelegation
Type boolean
Default False

Create trusts with redelegation enabled. This option is only used when reauthentica-
tion_auth_method is set to trusts. Note that enabling this option does have security implications
as all trusts created by Heat will use both impersonation and redelegation enabled. Enable it only
when there are other services that need to create trusts from tokens Heat uses to access them,
examples are Aodh and Heat in another region when configured to use trusts too.

trusts_delegated_roles
Type list
Default []

Subset of trustor roles to be delegated to heat. If left unset, all roles of a user will be delegated to
heat when creating a stack.

max_resources_per_stack
Type integer
Default 1000
Maximum resources allowed per top-level stack. -1 stands for unlimited.
max_stacks_per_tenant
Type integer
Default 512
Maximum number of stacks any one tenant may have active at one time. -1 stands for unlimited.
action_retry_limit
Type integer
Default 5
Number of times to retry to bring a resource to a non-error state. Set to 0 to disable retries.
client_retry_limit
Type integer
Default 2

Number of times to retry when a client encounters an expected intermittent error. Set to O to disable
retries.

max_server_name_length
Type integer
Default 53
Maximum Value 53

Maximum length of a server name to be used in nova.

2.3. Configuring Heat a1

Heat Documentation, Release 17.0.3.dev4

max_interface_check_attempts

Type integer

Default 10

Minimum Value 1

Number of times to check whether an interface has been attached or detached.

max_nova_api_microversion

Type floating point

Default <None>

Maximum nova API version for client plugin. With this limitation, any nova feature supported
with microversion number above max_nova_api_microversion will not be available.

max_ironic_api_microversion
Type floating point
Default <None>

Maximum ironic API version for client plugin. With this limitation, any ironic feature supported
with microversion number above max_ironic_api_microversion will not be available.

event_purge_batch_size
Type integer
Default 200
Minimum Value 1

Controls how many events will be pruned whenever a stacks events are purged. Set this lower to
keep more events at the expense of more frequent purges.

max_events_per_stack
Type integer
Default 1000

Rough number of maximum events that will be available per stack. Actual number of events can
be a bit higher since purge checks take place randomly 200/event_purge_batch_size percent of the
time. Older events are deleted when events are purged. Set to O for unlimited events per stack.

stack_action_timeout
Type integer
Default 3600
Timeout in seconds for stack action (ie. create or update).
error_wait_time
Type integer
Default 240

The amount of time in seconds after an error has occurred that tasks may continue to run before
being cancelled.

42 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

engine_life_check_timeout
Type integer
Default 2
RPC timeout for the engine liveness check that is used for stack locking.
enable_cloud_watch_lite
Type boolean
Default False
Enable the legacy OS::Heat::CWLiteAlarm resource.

Warning: This option is deprecated for removal since 10.0.0. Its value may be silently ignored
in the future.

Reason Heat CloudWatch Service has been removed.

enable_stack_abandon
Type boolean
Default False
Enable the preview Stack Abandon feature.
enable_stack_adopt
Type boolean
Default False
Enable the preview Stack Adopt feature.
convergence_engine
Type boolean
Default True

Enables engine with convergence architecture. All stacks with this option will be created using
convergence engine.

observe_on_update
Type boolean
Default False

On update, enables heat to collect existing resource properties from reality and converge to updated
template.

default_software_config_transport
Type string
Default POLL_SERVER_CFN

Valid Values POLL_SERVER_CFN, POLL_SERVER_HEAT, POLL_TEMP_URL,
ZAQAR_MESSAGE

2.3. Configuring Heat 43

Heat Documentation, Release 17.0.3.dev4

Template default for how the server should receive the metadata required for software configura-
tion. POLL_SERVER_CFN will allow calls to the cfn API action DescribeStackResource authen-
ticated with the provided keypair (requires enabled heat-api-cfn). POLL_SERVER_HEAT will
allow calls to the Heat API resource-show using the provided keystone credentials (requires key-
stone v3 API, and configured stack_user_* config options). POLL_TEMP_URL will create and
populate a Swift TempURL with metadata for polling (requires object-store endpoint which sup-
ports TempURL).ZAQAR_MESSAGE will create a dedicated zagar queue and post the metadata
for polling.

default_deployment_signal_transport

Type string
Default CFN_SIGNAL

Valid Values CFN_SIGNAL, TEMP_URL_SIGNAL, HEAT_SIGNAL, ZA-
QAR_SIGNAL

Template default for how the server should signal to heat with the deployment output values.
CFN_SIGNAL will allow an HTTP POST to a CEN keypair signed URL (requires enabled heat-
api-cfn). TEMP_URL_SIGNAL will create a Swift TempURL to be signaled via HTTP PUT (re-
quires object-store endpoint which supports TempURL). HEAT_SIGNAL will allow calls to the
Heat API resource-signal using the provided keystone credentials. ZAQAR_SIGNAL will create
a dedicated zaqar queue to be signaled using the provided keystone credentials.

default_user_data_format

Type string
Default HEAT_CFNTOOLS
Valid Values HEAT_CFNTOOLS, RAW, SOFTWARE_CONFIG

Template default for how the user_data should be formatted for the server. For
HEAT_CFNTOOLS, the user_data is bundled as part of the heat-cfntools cloud-init boot config-
uration data. For RAW the user_data is passed to Nova unmodified. For SOFTWARE_CONFIG
user_data is bundled as part of the software config data, and metadata is derived from any
associated SoftwareDeployment resources.

hidden_stack_tags

Type list

Default ['data-processing-cluster']

Stacks containing these tag names will be hidden. Multiple tags should be given in a comma-
delimited list (eg. hidden_stack_tags=hide_me,me_to0).

onready

Type string

Default <None>

Deprecated.

stack_scheduler_hints

Type boolean
Default False

44

Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

When this feature is enabled, scheduler hints identifying the heat stack context of a server
or volume resource are passed to the configured schedulers in nova and cinder, for creates
done using heat resource types OS::Cinder::Volume, OS::Nova::Server, and AWS::EC2::Instance.
heat_root_stack_id will be set to the id of the root stack of the resource, heat_stack_id will be set to
the id of the resources parent stack, heat_stack_name will be set to the name of the resources par-
ent stack, heat_path_in_stack will be set to a list of comma delimited strings of stackresourcename
and stackname with list[0] being rootstackname, heat_resource_name will be set to the resources
name, and heat_resource_uuid will be set to the resources orchestration id.

encrypt_parameters_and_properties

Type boolean
Default False

Encrypt template parameters that were marked as hidden and also all the resource properties before
storing them in database.

periodic_interval

Type integer
Default 60

Seconds between running periodic tasks.

heat_metadata_server_url

Type string
Default <None>

URL of the Heat metadata server. NOTE: Setting this is only needed if you require instances to
use a different endpoint than in the keystone catalog

heat_waitcondition_server_url

Type string
Default <None>

URL of the Heat waitcondition server.

heat_watch_server_url

Type string
Default '’
URL of the Heat CloudWatch server.

Warning: This option is deprecated for removal since 10.0.0. Its value may be silently ignored
in the future.

Reason Heat CloudWatch Service has been removed.

instance_connection_is_secure

Type string
Default 0

2.3. Configuring Heat 45

Heat Documentation, Release 17.0.3.dev4

Instance connection to CFN/CW API via https.
instance_connection_https_validate_certificates
Type string
Default 1
Instance connection to CFN/CW API validate certs if SSL is used.
region_name_for_services
Type string
Default <None>
Default region name used to get services endpoints.
region_name_for_shared_services
Type string
Default <None>
Region name for shared services endpoints.
shared_services_types
Type list
Default ['image', 'volume', 'volumev3']

The shared services located in the other region.Needs region_name_for_shared_services option to
be set for this to take effect.

heat_stack_user_role
Type string
Default heat_stack_user
Keystone role for heat template-defined users.
stack_user_domain_id
Type string
Default <None>

Keystone domain ID which contains heat template-defined users. If this option is set,
stack_user_domain_name option will be ignored.

Table 1: Deprecated Variations

Group Name
DEFAULT | stack user_domain

stack_user_domain_name
Type string
Default <None>

Keystone domain name which contains heat template-defined users. If stack_user_domain_id op-
tion is set, this option is ignored.

46 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

stack_domain_admin
Type string
Default <None>

Keystone username, a user with roles sufficient to manage users and projects in the
stack_user_domain.

stack_domain_admin_password
Type string
Default <None>
Keystone password for stack_domain_admin user.
max_template_size
Type integer
Default 524288
Maximum raw byte size of any template.
max_nested_stack_depth
Type integer
Default 5
Maximum depth allowed when using nested stacks.
num_engine_workers
Type integer
Default <None>

Number of heat-engine processes to fork and run. Will default to either to 4 or number of CPUs
on the host, whichever is greater.

server_keystone_endpoint_type
Type string
Default '’
Valid Values , public, internal, admin

If set, is used to control which authentication endpoint is used by user-controlled servers to make
calls back to Heat. If unset www_authenticate_uri is used.

auth_encryption_key
Type string
Default notgood but just long enough i t
Key used to encrypt authentication info in the database. Length of this key must be 32 characters.
max_json_body_size
Type integer
Default 1048576

2.3. Configuring Heat 47

Heat Documentation, Release 17.0.3.dev4

Maximum raw byte size of JSON request body. Should be larger than max_template_size.
cloud_backend
Type string
Default heat.engine.clients.OpenStackClients
Fully qualified class name to use as a client backend.
keystone_backend

Type string

Default heat.engine.clients.os.keystone.heat_keystoneclient.
KsClientWrapper

Fully qualified class name to use as a keystone backend.
default_notification_level
Type string
Default INFO
Default notification level for outgoing notifications.
default_publisher_id
Type string
Default <None>
Default publisher_id for outgoing notifications.
loadbalancer_template
Type string
Default <None>
Custom template for the built-in loadbalancer nested stack.
rpc_conn_pool_size
Type integer
Default 30
Minimum Value 1

Size of RPC connection pool.

Table 2: Deprecated Variations

Group Name
DEFAULT | rpc_conn_pool_size

conn_pool_min_size
Type integer
Default 2

The pool size limit for connections expiration policy

48 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

conn_pool_ttl
Type integer
Default 1200
The time-to-live in sec of idle connections in the pool
executor_thread_pool_size
Type integer
Default 64

Size of executor thread pool when executor is threading or eventlet.

Table 3: Deprecated Variations

Group Name
DEFAULT | rpc_thread_pool_size

rpc_response_timeout
Type integer
Default 60
Seconds to wait for a response from a call.
transport_url
Type string
Default rabbit://

The network address and optional user credentials for connecting to the messaging backend, in
URL format. The expected format is:

driver://[user:pass @ Jhost:port[,[userN:passN @ JhostN:portN]/virtual_host?query
Example: rabbit://rabbitmq:password@127.0.0.1:5672//

For full details on the fields in the URL see the documentation of oslo_messaging. TransportURL
at https://docs.openstack.org/oslo.messaging/latest/reference/transport.html

control_exchange
Type string
Default openstack

The default exchange under which topics are scoped. May be overridden by an exchange name
specified in the transport_url option.

rpc_ping_enabled
Type boolean
Default False
Add an endpoint to answer to ping calls. Endpoint is named oslo_rpc_server_ping
debug
Type boolean

2.3. Configuring Heat 49

https://docs.openstack.org/oslo.messaging/latest/reference/transport.html

Heat Documentation, Release 17.0.3.dev4

Default False
Mutable This option can be changed without restarting.
If set to true, the logging level will be set to DEBUG instead of the default INFO level.
log_config_append
Type string
Default <None>
Mutable This option can be changed without restarting.

The name of a logging configuration file. This file is appended to any existing logging configuration
files. For details about logging configuration files, see the Python logging module documentation.
Note that when logging configuration files are used then all logging configuration is set in the con-
figuration file and other logging configuration options are ignored (for example, log-date-format).

Table 4: Deprecated Variations
Group Name

DEFAULT | log-config
DEFAULT | log_config

log_date_format
Type string
Default %Y-%m-%d %H:%M:%S

Defines the format string for %(asctime)s in log records. Default: the value above . This option is
ignored if log_config_append is set.

log_file
Type string
Default <None>

(Optional) Name of log file to send logging output to. If no default is set, logging will go to stderr
as defined by use_stderr. This option is ignored if log_config_append is set.

Table 5: Deprecated Variations

Group Name
DEFAULT | logfile

log_dir
Type string
Default <None>

(Optional) The base directory used for relative log_file paths. This option is ignored if
log_config_append is set.

Table 6: Deprecated Variations

Group Name
DEFAULT | logdir

50 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

watch_log_file
Type boolean
Default False

Uses logging handler designed to watch file system. When log file is moved or removed this handler
will open a new log file with specified path instantaneously. It makes sense only if log_file option
is specified and Linux platform is used. This option is ignored if log_config_append is set.

use_syslog
Type boolean
Default False

Use syslog for logging. Existing syslog format is DEPRECATED and will be changed later to
honor RFC5424. This option is ignored if log_config_append is set.

use_journal
Type boolean
Default False

Enable journald for logging. If running in a systemd environment you may wish to enable jour-
nal support. Doing so will use the journal native protocol which includes structured metadata in
addition to log messages.This option is ignored if log_config_append is set.

syslog_log_facility
Type string
Default LOG_USER
Syslog facility to receive log lines. This option is ignored if log_config_append is set.
use_json
Type boolean
Default False
Use JSON formatting for logging. This option is ignored if log_config_append is set.
use_stderr
Type boolean
Default False
Log output to standard error. This option is ignored if log_config_append is set.
use_eventlog
Type boolean
Default False
Log output to Windows Event Log.
log_rotate_interval
Type integer
Default 1

2.3. Configuring Heat 51

Heat Documentation, Release 17.0.3.dev4

The amount of time before the log files are rotated. This option is ignored unless log_rotation_type
is set to interval.

log_rotate_interval_type
Type string
Default days
Valid Values Seconds, Minutes, Hours, Days, Weekday, Midnight

Rotation interval type. The time of the last file change (or the time when the service was started)
is used when scheduling the next rotation.

max_logfile_count
Type integer
Default 30
Maximum number of rotated log files.
max_logfile_size_mb
Type integer
Default 200
Log file maximum size in MB. This option is ignored if log_rotation_type is not set to size.
log_rotation_type
Type string
Default none
Valid Values interval, size, none

Log rotation type.

Possible values

interval Rotate logs at predefined time intervals.
size Rotate logs once they reach a predefined size.

none Do not rotate log files.

logging_context_format_string
Type string

Default %(asctime)s.%(msecs)®3d %(process)d %(levelname)s %(name)s
[%(request_id)s %(user_identity)s] %(instance)s%(message)s

Format string to use for log messages with context. Used by oslo_log.formatters.ContextFormatter
logging_default_format_string
Type string

Default %(asctime)s.%(msecs)®3d %(process)d %(levelname)s %(name)s
[-]1 %(instance)s%(message)s

52 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

Format string to use for log messages when context is undefined. Used by
oslo_log.formatters.ContextFormatter

logging_debug_format_suffix
Type string
Default %(funcName)s %(pathname)s:%(lineno)d

Additional data to append to log message when logging level for the message is DEBUG. Used by
oslo_log.formatters.ContextFormatter

logging_exception_prefix

Type string
Default %(asctime)s.%(msecs)03d %(process)d ERROR %(name)s
%(instance)s
Prefix each line of exception output with this format. Used by

oslo_log.formatters.ContextFormatter
logging_user_identity_format
Type string

Default %(user)s %(tenant)s %(domain)s %(user_domain)s
%(project_domain)s

Defines the format string for %(user_identity)s that is used in logging_context_format_string.
Used by oslo_log.formatters.ContextFormatter

default_log_levels
Type list

Default ['amgp=WARN', 'amqplib=WARN', 'boto=WARN', 'qpid=WARN',
'sqlalchemy=WARN', 'suds=INFO', 'oslo.messaging=INFO',
'oslo_messaging=INFO', 'iso8601=WARN', 'requests.packages.
urllib3.connectionpool=WARN', 'urllib3.connectionpool=WARN',
'websocket=WARN', 'requests.packages.urllib3.util.retry=WARN',
'urllib3.util.retry=WARN', 'keystonemiddleware=WARN',
'routes.middleware=WARN', 'stevedore=WARN', 'taskflow=WARN',
'keystoneauth=WARN', 'oslo.cache=INFO', 'oslo_policy=INFO',
'dogpile.core.dogpile=INFO"']

List of package logging levels in logger=LEVEL pairs. This option is ignored if log_config_append
is set.

publish_errors
Type boolean
Default False
Enables or disables publication of error events.
instance_format
Type string

Default "[instance: %(uuid)s] "

2.3. Configuring Heat 53

Heat Documentation, Release 17.0.3.dev4

The format for an instance that is passed with the log message.
instance_uuid_format
Type string
Default "[instance: %(uuid)s] "
The format for an instance UUID that is passed with the log message.
rate_limit_interval
Type integer
Default 0
Interval, number of seconds, of log rate limiting.
rate_limit_burst
Type integer
Default
Maximum number of logged messages per rate_limit_interval.
rate_limit_except_level
Type string
Default CRITICAL

Log level name used by rate limiting: CRITICAL, ERROR, INFO, WARNING, DEBUG or empty
string. Logs with level greater or equal to rate_limit_except_level are not filtered. An empty string
means that all levels are filtered.

fatal_deprecations
Type boolean
Default False
Enables or disables fatal status of deprecations.
run_external_periodic_tasks
Type boolean
Default True
Some periodic tasks can be run in a separate process. Should we run them here?
backdoor_port
Type string
Default <None>

Enable eventlet backdoor. Acceptable values are 0, <port>, and <start>:<end>, where 0O results in
listening on a random tcp port number; <port> results in listening on the specified port number (and
not enabling backdoor if that port is in use); and <start>:<end> results in listening on the smallest
unused port number within the specified range of port numbers. The chosen port is displayed in
the services log file.

backdoor_socket

54 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

Type string

Default <None>

Enable eventlet backdoor, using the provided path as a unix socket that can receive connections.
This option is mutually exclusive with backdoor_port in that only one should be provided. If both
are provided then the existence of this option overrides the usage of that option. Inside the path
{pid} will be replaced with the PID of the current process.

log_options
Type boolean
Default True

Enables or disables logging values of all registered options when starting a service (at DEBUG
level).

graceful _shutdown_timeout
Type integer
Default 60

Specify a timeout after which a gracefully shutdown server will exit. Zero value means endless
wait.

auth_password

multi_cloud
Type boolean
Default False
Allow orchestration of multiple clouds.
allowed_auth_uris
Type list
Default []

Allowed keystone endpoints for auth_uri when multi_cloud is enabled. At least one endpoint needs
to be specified.

cache

config_prefix
Type string
Default cache.oslo

Prefix for building the configuration dictionary for the cache region. This should not need to be
changed unless there is another dogpile.cache region with the same configuration name.

expiration_time

Type integer

2.3. Configuring Heat 55

Heat Documentation, Release 17.0.3.dev4

Default 600

Default TTL, in seconds, for any cached item in the dogpile.cache region. This applies to any
cached method that doesnt have an explicit cache expiration time defined for it.

backend
Type string
Default dogpile.cache.null

Valid Values oslo_cache.memcache_pool, oslo_cache.dict, oslo_cache.mongo,
oslo_cache.etcd3gw, dogpile.cache.pymemcache, dogpile.cache.memcached,
dogpile.cache.pylibmc, dogpile.cache.bmemcached, dogpile.cache.dbm, dog-
pile.cache.redis, dogpile.cache.memory, dogpile.cache.memory_pickle, dog-
pile.cache.null

Cache backend module. For eventlet-based or environments with hundreds of threaded servers,
Memcache with pooling (oslo_cache.memcache_pool) is recommended. For environments
with less than 100 threaded servers, Memcached (dogpile.cache.memcached) or Redis (dog-
pile.cache.redis) is recommended. Test environments with a single instance of the server can use
the dogpile.cache.memory backend.

backend_argument
Type multi-valued
Default ''

Arguments supplied to the backend module. Specify this option once per argument to be passed
to the dogpile.cache backend. Example format: <argname>:<value>.

proxies
Type list
Default []

Proxy classes to import that will affect the way the dogpile.cache backend functions. See the
dogpile.cache documentation on changing-backend-behavior.

enabled
Type boolean
Default False
Global toggle for caching.
debug_cache_backend
Type boolean
Default False

Extra debugging from the cache backend (cache keys, get/set/delete/etc calls). This is only re-
ally useful if you need to see the specific cache-backend get/set/delete calls with the keys/values.
Typically this should be left set to false.

memcache_servers
Type list
Default ['localhost:11211"]

56 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

Memcache servers in the format of host:port. (dogpile.cache.memcached and
oslo_cache.memcache_pool backends only). If a given host refer to an IPv6 or a given do-
main refer to IPv6 then you should prefix the given address with the address family (inet6) (e.g
inet6[::1]:11211, inet6:[£fd12:3456:789a:1::1]:11211, inet6:[controller-0.
internalapi]:11211). If the address family is not given then default address family used will
be inet which correspond to IPv4

memcache_dead_retry
Type integer
Default 300

Number of seconds memcached server is considered dead before it is tried again. (dog-
pile.cache.memcache and oslo_cache.memcache_pool backends only).

memcache_socket_timeout
Type floating point
Default 1.0

Timeout in seconds for every call to a server. (dogpile.cache.memcache and
oslo_cache.memcache_pool backends only).

memcache_pool_maxsize
Type integer
Default 10

Max total number of open connections to every memcached server. (oslo_cache.memcache_pool
backend only).

memcache_pool_unused_timeout
Type integer
Default 60

Number of seconds a connection to memcached is held unused in the pool before it is closed.
(oslo_cache.memcache_pool backend only).

memcache_pool_connection_get_timeout
Type integer
Default 10
Number of seconds that an operation will wait to get a memcache client connection.
memcache_pool_flush_on_reconnect
Type boolean
Default False

Global toggle if memcache will be flushed on reconnect. (oslo_cache.memcache_pool backend
only).

tls_enabled
Type boolean
Default False

2.3. Configuring Heat 57

Heat Documentation, Release 17.0.3.dev4

Global toggle for TLS usage when comunicating with the caching servers.
tls_cafile
Type string
Default <None>

Path to a file of concatenated CA certificates in PEM format necessary to establish the caching
servers authenticity. If tls_enabled is False, this option is ignored.

tls_certfile
Type string
Default <None>

Path to a single file in PEM format containing the clients certificate as well as any number of CA
certificates needed to establish the certificates authenticity. This file is only required when client
side authentication is necessary. If tls_enabled is False, this option is ignored.

tls_keyfile
Type string
Default <None>

Path to a single file containing the clients private key in. Otherwhise the private key will be taken
from the file specified in tls_certfile. If tls_enabled is False, this option is ignored.

tls_allowed_ciphers
Type string
Default <None>

Set the available ciphers for sockets created with the TLS context. It should be a string in the
OpenSSL cipher list format. If not specified, all OpenSSL enabled ciphers will be available.

enable_socket_keepalive

Type boolean

Default False

Global toggle for the socket keepalive of dogpiles pymemcache backend

socket_keepalive_idle

Type integer

Default 1

Minimum Value 0

The time (in seconds) the connection needs to remain idle before TCP starts sending keepalive
probes. Should be a positive integer most greater than zero.

socket_keepalive_interval
Type integer
Default 1

Minimum Value 0

58 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

The time (in seconds) between individual keepalive probes. Should be a positive integer greater
than zero.

socket_keepalive_count
Type integer
Default 1
Minimum Value 0

The maximum number of keepalive probes TCP should send before dropping the connection.
Should be a positive integer greater than zero.

enable_retry_client
Type boolean
Default False

Enable retry client mechanisms to handle failure. Those mechanisms can be used to wrap all kind
of pymemcache clients. The wrapper allows you to define how many attempts to make and how
long to wait between attemots.

retry_attempts
Type integer
Default 2
Minimum Value 1
Number of times to attempt an action before failing.
retry_delay
Type floating point
Default
Number of seconds to sleep between each attempt.
hashclient_retry_attempts
Type integer
Default 2
Minimum Value 1

Amount of times a client should be tried before it is marked dead and removed from the pool in
the HashClients internal mechanisms.

hashclient_retry_delay
Type floating point
Default 1
Time in seconds that should pass between retry attempts in the HashClients internal mechanisms.
dead_timeout
Type floating point
Default 60

2.3. Configuring Heat 59

Heat Documentation, Release 17.0.3.dev4

Time in seconds before attempting to add a node back in the pool in the HashClients internal
mechanisms.

clients

endpoint_type
Type string
Default publicURL
Type of endpoint in Identity service catalog to use for communication with the OpenStack service.
ca_file
Type string
Default <None>
Optional CA cert file to use in SSL connections.
cert_file
Type string
Default <None>
Optional PEM-formatted certificate chain file.
key_file
Type string
Default <None>
Optional PEM-formatted file that contains the private key.
insecure
Type boolean
Default False

If set, then the servers certificate will not be verified.

clients_aodh

endpoint_type
Type string
Default <None>
Type of endpoint in Identity service catalog to use for communication with the OpenStack service.
ca_file
Type string
Default <None>

Optional CA cert file to use in SSL connections.

60 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

cert_file
Type string
Default <None>
Optional PEM-formatted certificate chain file.
key_file
Type string
Default <None>
Optional PEM-formatted file that contains the private key.
insecure
Type boolean
Default <None>

If set, then the servers certificate will not be verified.

clients_barbican

endpoint_type
Type string
Default <None>
Type of endpoint in Identity service catalog to use for communication with the OpenStack service.
ca_file
Type string
Default <None>
Optional CA cert file to use in SSL connections.
cert_file
Type string
Default <None>
Optional PEM-formatted certificate chain file.
key_file
Type string
Default <None>
Optional PEM-formatted file that contains the private key.
insecure
Type boolean
Default <None>

If set, then the servers certificate will not be verified.

2.3. Configuring Heat 61

Heat Documentation, Release 17.0.3.dev4

clients_cinder

endpoint_type
Type string
Default <None>
Type of endpoint in Identity service catalog to use for communication with the OpenStack service.
ca_file
Type string
Default <None>
Optional CA cert file to use in SSL connections.
cert_file
Type string
Default <None>
Optional PEM-formatted certificate chain file.
key_file
Type string
Default <None>
Optional PEM-formatted file that contains the private key.
insecure
Type boolean
Default <None>
If set, then the servers certificate will not be verified.
http_log_debug
Type boolean
Default False

Allow clients debug log output.

clients_designate

endpoint_type
Type string
Default <None>
Type of endpoint in Identity service catalog to use for communication with the OpenStack service.
ca_file
Type string

Default <None>

62 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

Optional CA cert file to use in SSL connections.
cert_file
Type string
Default <None>
Optional PEM-formatted certificate chain file.
key_file
Type string
Default <None>
Optional PEM-formatted file that contains the private key.
insecure
Type boolean
Default <None>

If set, then the servers certificate will not be verified.

clients_glance

endpoint_type

Type string

Default <None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file
Type string
Default <None>
Optional CA cert file to use in SSL connections.
cert_file
Type string
Default <None>
Optional PEM-formatted certificate chain file.
key_file
Type string

Default <None>

Optional PEM-formatted file that contains the private key.

insecure
Type boolean

Default <None>

2.3. Configuring Heat

63

Heat Documentation, Release 17.0.3.dev4

If set, then the servers certificate will not be verified.

clients_heat

endpoint_type
Type string
Default <None>
Type of endpoint in Identity service catalog to use for communication with the OpenStack service.
ca_file
Type string
Default <None>
Optional CA cert file to use in SSL connections.
cert_file
Type string
Default <None>
Optional PEM-formatted certificate chain file.
key_file
Type string
Default <None>
Optional PEM-formatted file that contains the private key.
insecure
Type boolean
Default <None>
If set, then the servers certificate will not be verified.
url
Type string
Default "'
Optional heat url in format like http://0.0.0.0:8004/v1/%(tenant_id)s.

clients_keystone

endpoint_type
Type string
Default <None>
Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file

64 Chapter 2. Operating Heat

http://0.0.0.0:8004/v1/%(tenant_id)s

Heat Documentation, Release 17.0.3.dev4

Type string

Default <None>
Optional CA cert file to use in SSL connections.
cert_file
Type string
Default <None>
Optional PEM-formatted certificate chain file.
key_file
Type string
Default <None>
Optional PEM-formatted file that contains the private key.
insecure
Type boolean
Default <None>
If set, then the servers certificate will not be verified.
auth_uri
Type string
Default "'

Unversioned keystone url in format like http://0.0.0.0:5000.

clients_magnum

endpoint_type
Type string
Default <None>
Type of endpoint in Identity service catalog to use for communication with the OpenStack service.
ca_file
Type string
Default <None>
Optional CA cert file to use in SSL connections.
cert_file
Type string
Default <None>
Optional PEM-formatted certificate chain file.

key_file

2.3. Configuring Heat 65

http://0.0.0.0:5000

Heat Documentation, Release 17.0.3.dev4

Type string

Default <None>
Optional PEM-formatted file that contains the private key.
insecure
Type boolean
Default <None>

If set, then the servers certificate will not be verified.

clients_manila

endpoint_type
Type string
Default <None>
Type of endpoint in Identity service catalog to use for communication with the OpenStack service.
ca_file
Type string
Default <None>
Optional CA cert file to use in SSL connections.
cert_file
Type string
Default <None>
Optional PEM-formatted certificate chain file.
key_file
Type string
Default <None>
Optional PEM-formatted file that contains the private key.
insecure
Type boolean
Default <None>

If set, then the servers certificate will not be verified.

66 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

clients_mistral

endpoint_type
Type string
Default <None>
Type of endpoint in Identity service catalog to use for communication with the OpenStack service.
ca_file
Type string
Default <None>
Optional CA cert file to use in SSL connections.
cert_file
Type string
Default <None>
Optional PEM-formatted certificate chain file.
key_file
Type string
Default <None>
Optional PEM-formatted file that contains the private key.
insecure
Type boolean
Default <None>

If set, then the servers certificate will not be verified.

clients_monasca

endpoint_type
Type string
Default <None>
Type of endpoint in Identity service catalog to use for communication with the OpenStack service.
ca_file
Type string
Default <None>
Optional CA cert file to use in SSL connections.
cert_file
Type string

Default <None>

2.3. Configuring Heat 67

Heat Documentation, Release 17.0.3.dev4

Optional PEM-formatted certificate chain file.
key_file
Type string
Default <None>
Optional PEM-formatted file that contains the private key.
insecure
Type boolean
Default <None>

If set, then the servers certificate will not be verified.

clients_neutron

endpoint_type
Type string
Default <None>
Type of endpoint in Identity service catalog to use for communication with the OpenStack service.
ca_file
Type string
Default <None>
Optional CA cert file to use in SSL connections.
cert_file
Type string
Default <None>
Optional PEM-formatted certificate chain file.
key_file
Type string
Default <None>
Optional PEM-formatted file that contains the private key.
insecure
Type boolean
Default <None>

If set, then the servers certificate will not be verified.

68 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

clients_nova

endpoint_type
Type string
Default <None>
Type of endpoint in Identity service catalog to use for communication with the OpenStack service.
ca_file
Type string
Default <None>
Optional CA cert file to use in SSL connections.
cert_file
Type string
Default <None>
Optional PEM-formatted certificate chain file.
key_file
Type string
Default <None>
Optional PEM-formatted file that contains the private key.
insecure
Type boolean
Default <None>
If set, then the servers certificate will not be verified.
http_log_debug
Type boolean
Default False

Allow clients debug log output.

clients_octavia

endpoint_type
Type string
Default <None>
Type of endpoint in Identity service catalog to use for communication with the OpenStack service.
ca_file
Type string

Default <None>

2.3. Configuring Heat 69

Heat Documentation, Release 17.0.3.dev4

Optional CA cert file to use in SSL connections.
cert_file
Type string
Default <None>
Optional PEM-formatted certificate chain file.
key_file
Type string

Default <None>

Optional PEM-formatted file that contains the private key.

insecure
Type boolean
Default <None>

If set, then the servers certificate will not be verified.

clients_sahara

endpoint_type

Type string

Default <None>

Type of endpoint in Identity service catalog to use for communication with the OpenStack service.

ca_file
Type string
Default <None>
Optional CA cert file to use in SSL connections.
cert_file
Type string
Default <None>
Optional PEM-formatted certificate chain file.
key_file
Type string

Default <None>

Optional PEM-formatted file that contains the private key.

insecure
Type boolean

Default <None>

70

Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

If set, then the servers certificate will not be verified.

clients_senlin

endpoint_type
Type string
Default <None>
Type of endpoint in Identity service catalog to use for communication with the OpenStack service.
ca_file
Type string
Default <None>
Optional CA cert file to use in SSL connections.
cert_file
Type string
Default <None>
Optional PEM-formatted certificate chain file.
key_file
Type string
Default <None>
Optional PEM-formatted file that contains the private key.
insecure
Type boolean
Default <None>

If set, then the servers certificate will not be verified.

clients_swift

endpoint_type
Type string
Default <None>
Type of endpoint in Identity service catalog to use for communication with the OpenStack service.
ca_file
Type string
Default <None>
Optional CA cert file to use in SSL connections.

cert_file

2.3. Configuring Heat 71

Heat Documentation, Release 17.0.3.dev4

Type string

Default <None>
Optional PEM-formatted certificate chain file.
key_file
Type string
Default <None>
Optional PEM-formatted file that contains the private key.
insecure
Type boolean
Default <None>

If set, then the servers certificate will not be verified.

clients_trove

endpoint_type
Type string
Default <None>
Type of endpoint in Identity service catalog to use for communication with the OpenStack service.
ca_file
Type string
Default <None>
Optional CA cert file to use in SSL connections.
cert_file
Type string
Default <None>
Optional PEM-formatted certificate chain file.
key_file
Type string
Default <None>
Optional PEM-formatted file that contains the private key.
insecure
Type boolean
Default <None>

If set, then the servers certificate will not be verified.

72 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

clients_vitrage

endpoint_type
Type string
Default <None>
Type of endpoint in Identity service catalog to use for communication with the OpenStack service.
ca_file
Type string
Default <None>
Optional CA cert file to use in SSL connections.
cert_file
Type string
Default <None>
Optional PEM-formatted certificate chain file.
key_file
Type string
Default <None>
Optional PEM-formatted file that contains the private key.
insecure
Type boolean
Default <None>

If set, then the servers certificate will not be verified.

clients_zaqar

endpoint_type
Type string
Default <None>
Type of endpoint in Identity service catalog to use for communication with the OpenStack service.
ca_file
Type string
Default <None>
Optional CA cert file to use in SSL connections.
cert_file
Type string

Default <None>

2.3. Configuring Heat 73

Heat Documentation, Release 17.0.3.dev4

Optional PEM-formatted certificate chain file.
key_file
Type string
Default <None>
Optional PEM-formatted file that contains the private key.
insecure
Type boolean
Default <None>

If set, then the servers certificate will not be verified.

cors

allowed_origin
Type list
Default <None>

Indicate whether this resource may be shared with the domain received in the requests ori-
gin header. Format: <protocol>://<host>[:<port>], no trailing slash. Example: https://horizon.
example.com

allow_credentials
Type boolean
Default True
Indicate that the actual request can include user credentials
expose_headers
Type list

Default ['X-Auth-Token', 'X-Subject-Token', 'X-Service-Token',
'X-OpenStack-Request-ID"']

Indicate which headers are safe to expose to the API. Defaults to HT'TP Simple Headers.
max_age
Type integer
Default 3600
Maximum cache age of CORS preflight requests.
allow_methods
Type list
Default ['GET', 'PUT', 'POST', 'DELETE', 'PATCH']
Indicate which methods can be used during the actual request.

allow_headers

74 Chapter 2. Operating Heat

https://horizon.example.com
https://horizon.example.com

Heat Documentation, Release 17.0.3.dev4

Type list

Default ['X-Auth-Token', 'X-Identity-Status', 'X-Roles',
'X-Service-Catalog', 'X-User-Id', 'X-Tenant-Id',
'X-OpenStack-Request-ID']

Indicate which header field names may be used during the actual request.

database

sqlite_synchronous
Type boolean
Default True

If True, SQLite uses synchronous mode.

Table 7: Deprecated Variations

Group Name
DEFAULT | sqlite_synchronous

backend
Type string
Default sqlalchemy

The back end to use for the database.

Table 8: Deprecated Variations

Group Name
DEFAULT | db_backend

connection

Type string

Default <None>

The SQLAIchemy connection string to use to connect to the database.

Table 9: Deprecated Variations
Group Name
DEFAULT sql_connection
DATABASE | sql_connection
sql connection

slave_connection
Type string
Default <None>

The SQLAIlchemy connection string to use to connect to the slave database.

2.3. Configuring Heat 75

Heat Documentation, Release 17.0.3.dev4

mysql_sql_mode
Type string
Default TRADITIONAL

The SQL mode to be used for MySQL sessions. This option, including the default, overrides any

server-set SQL mode. To use whatever SQL mode is set by the server configuration, set this to no
value. Example: mysql_sql_mode=

mysql_enable_ndb
Type boolean
Default False

If True, transparently enables support for handling MySQL Cluster (NDB).
connection_recycle_time

Type integer
Default 3600

Connections which have been present in the connection pool longer than this number of seconds
will be replaced with a new one the next time they are checked out from the pool.

max_pool_size
Type integer
Default 5

Maximum number of SQL connections to keep open in a pool. Setting a value of 0 indicates no
limit.

max_retries
Type integer
Default 10

Maximum number of database connection retries during startup. Set to -1 to specify an infinite
retry count.

Table 10: Deprecated Variations
Group Name

DEFAULT sql_max_retries
DATABASE | sql_max_retries

retry_interval
Type integer
Default 10

Interval between retries of opening a SQL connection.

76 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

max_overflow
Type integer
Default 50

Table 11: Deprecated Variations

Group

Name

DEFAULT

sql_retry_interval

DATABASE | reconnect_interval

If set, use this value for max_overflow with SQLAlchemy.

connection_debug
Type integer
Default 0

Minimum Value 0

Table 12: Deprecated Variations

Group Name
DEFAULT sql_max_overflow
DATABASE | sqlalchemy_max_overflow

Maximum Value 100

Verbosity of SQL debugging information: 0=None, 100=Everything.

connection_trace
Type boolean
Default False

Table 13: Deprecated Variations

Group

Name

DEFAULT

sql_connection_debug

Add Python stack traces to SQL as comment strings.

pool_timeout
Type integer

Default <None>

Table 14: Deprecated Variations

Group

Name

DEFAULT

sql_connection_trace

If set, use this value for pool_timeout with SQLAIchemy.

2.3. Configuring Heat

77

Heat Documentation, Release 17.0.3.dev4

Table 15: Deprecated Variations

Group Name
DATABASE | sqlalchemy_pool_timeout

use_db_reconnect
Type boolean
Default False
Enable the experimental use of database reconnect on connection lost.
db_retry_interval
Type integer
Default 1
Seconds between retries of a database transaction.
db_inc_retry_interval
Type boolean
Default True
If True, increases the interval between retries of a database operation up to db_max_retry_interval.
db_max_retry_interval
Type integer
Default 10
If db_inc_retry_interval is set, the maximum seconds between retries of a database operation.
db_max_retries
Type integer
Default 20

Maximum retries in case of connection error or deadlock error before error is raised. Set to -1 to
specify an infinite retry count.

connection_parameters
Type string
Default '’

Optional URL parameters to append onto the connection URL at connect time; specify as
paraml=valuel¶m2=value2&

78 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

ec2authtoken

auth_uri
Type string
Default <None>
Authentication Endpoint URL
multi_cloud
Type boolean
Default False
Allow orchestration of multiple clouds.
allowed_auth_uris
Type list
Default []

Allowed keystone endpoints for auth_uri when multi_cloud is enabled. At least one endpoint needs
to be specified.

cert_file
Type string
Default <None>
Optional PEM-formatted certificate chain file.
key_file
Type string
Default <None>
Optional PEM-formatted file that contains the private key.
ca_file
Type string
Default <None>
Optional CA cert file to use in SSL connections.
insecure
Type boolean
Default False

If set, then the servers certificate will not be verified.

2.3. Configuring Heat 79

Heat Documentation, Release 17.0.3.dev4

eventlet_opts

wsgi_keep_alive
Type boolean
Default True
If False, closes the client socket connection explicitly.
client_socket_timeout
Type integer
Default 900

Timeout for client connections socket operations. If an incoming connection is idle for this number
of seconds it will be closed. A value of 0 means wait forever.

healthcheck

path
Type string
Default /healthcheck

The path to respond to healtcheck requests on.

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

detailed
Type boolean
Default False

Show more detailed information as part of the response. Security note: Enabling this option may
expose sensitive details about the service being monitored. Be sure to verify that it will not violate
your security policies.

backends
Type list
Default []

Additional backends that can perform health checks and report that information back as part of a
request.

disable_by_file_path
Type string
Default <None>

Check the presence of a file to determine if an application is running on a port. Used by Disable-
ByFileHealthcheck plugin.

80 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

disable_by_file_paths
Type list
Default []

Check the presence of a file based on a port to determine if an application is running on a port.
Expects a port:path list of strings. Used by DisableByFilesPortsHealthcheck plugin.

heat_api

bind_host
Type ip address
Default 0.0.0.0

Address to bind the server. Useful when selecting a particular network interface.

Table 16: Deprecated Variations

Group Name
DEFAULT | bind_host

bind_port
Type port number
Default 8004
Minimum Value 0
Maximum Value 65535

The port on which the server will listen.

Table 17: Deprecated Variations

Group Name
DEFAULT | bind_port

backlog
Type integer
Default 4096

Number of backlog requests to configure the socket with.

Table 18: Deprecated Variations

Group Name
DEFAULT | backlog

cert_file
Type string

Default <None>

2.3. Configuring Heat 81

Heat Documentation, Release 17.0.3.dev4

Location of the SSL certificate file to use for SSL mode.

Table 19: Deprecated Variations

Group Name
DEFAULT | cert_file

key_file
Type string
Default <None>

Location of the SSL key file to use for enabling SSL mode.

Table 20: Deprecated Variations

Group Name
DEFAULT | key_file

workers
Type integer
Default 0
Minimum Value 0

Number of workers for Heat service. Default value 0 means, that service will start number of
workers equal number of cores on server.

Table 21: Deprecated Variations

Group Name
DEFAULT | workers

max_header_line
Type integer
Default 16384

Maximum line size of message headers to be accepted. max_header_line may need to be increased
when using large tokens (typically those generated by the Keystone v3 API with big service cata-
logs).

tcp_keepidle
Type integer
Default 600

The value for the socket option TCP_KEEPIDLE. This is the time in seconds that the connection
must be idle before TCP starts sending keepalive probes.

82 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

heat_api_cfn

bind_host
Type ip address
Default 0.0.0.0

Address to bind the server. Useful when selecting a particular network interface.

Table 22: Deprecated Variations

Group Name
DEFAULT | bind_host

bind_port
Type port number
Default 8000
Minimum Value 0
Maximum Value 65535

The port on which the server will listen.

Table 23: Deprecated Variations

Group Name
DEFAULT | bind_port

backlog
Type integer
Default 4096

Number of backlog requests to configure the socket with.

Table 24: Deprecated Variations

Group Name
DEFAULT | backlog

cert_file
Type string
Default <None>

Location of the SSL certificate file to use for SSL mode.

Table 25: Deprecated Variations

Group Name
DEFAULT | cert_file

key_file

2.3. Configuring Heat

83

Heat Documentation, Release 17.0.3.dev4

Type string

Default <None>

Location of the SSL key file to use for enabling SSL mode.

Table 26: Deprecated Variations

Group Name
DEFAULT | key_file

workers
Type integer
Default 1
Minimum Value 0

Number of workers for Heat service.

Table 27: Deprecated Variations

Group Name
DEFAULT | workers

max_header_line
Type integer
Default 16384

Maximum line size of message headers to be accepted. max_header_line may need to be increased
when using large tokens (typically those generated by the Keystone v3 API with big service cata-
logs).

tcp_keepidle
Type integer
Default 600

The value for the socket option TCP_KEEPIDLE. This is the time in seconds that the connection
must be idle before TCP starts sending keepalive probes.

heat_api_cloudwatch

bind_host
Type ip address
Default 0.0.0.0

Address to bind the server. Useful when selecting a particular network interface.

Table 28: Deprecated Variations

Group Name
DEFAULT | bind_host

84 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

Warning: This option is deprecated for removal since 10.0.0. Its value may be silently ignored
in the future.

Reason Heat CloudWatch API has been removed.

bind_port
Type port number
Default 8003
Minimum Value 0
Maximum Value 65535

The port on which the server will listen.

Table 29: Deprecated Variations

Group Name
DEFAULT | bind_port

Warning: This option is deprecated for removal since 10.0.0. Its value may be silently ignored
in the future.

Reason Heat CloudWatch API has been removed.

backlog
Type integer
Default 4096

Number of backlog requests to configure the socket with.

Table 30: Deprecated Variations

Group Name
DEFAULT | backlog

Warning: This option is deprecated for removal since 10.0.0. Its value may be silently ignored
in the future.

Reason Heat CloudWatch API has been removed.

cert_file
Type string
Default <None>

Location of the SSL certificate file to use for SSL mode.

2.3. Configuring Heat 85

Heat Documentation, Release 17.0.3.dev4

Table 31: Deprecated Variations

Group Name
DEFAULT | cert_file

Warning: This option is deprecated for removal since 10.0.0. Its value may be silently ignored
in the future.

Reason Heat CloudWatch API has been Removed.

key_file
Type string
Default <None>

Location of the SSL key file to use for enabling SSL mode.

Table 32: Deprecated Variations

Group Name
DEFAULT | key_file

Warning: This option is deprecated for removal since 10.0.0. Its value may be silently ignored
in the future.

Reason Heat CloudWatch API has been Removed.

workers
Type integer
Default 1
Minimum Value 0

Number of workers for Heat service.

Table 33: Deprecated Variations

Group Name
DEFAULT | workers

Warning: This option is deprecated for removal since 10.0.0. Its value may be silently ignored
in the future.

Reason Heat CloudWatch API has been Removed.

max_header_line

Type integer
Default 16384

86 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

Maximum line size of message headers to be accepted. max_header_line may need to be increased
when using large tokens (typically those generated by the Keystone v3 API with big service cata-
logs.)

Warning: This option is deprecated for removal since 10.0.0. Its value may be silently ignored
in the future.

Reason Heat CloudWatch API has been Removed.

tcp_keepidle
Type integer
Default 600

The value for the socket option TCP_KEEPIDLE. This is the time in seconds that the connection
must be idle before TCP starts sending keepalive probes.

Warning: This option is deprecated for removal since 10.0.0. Its value may be silently ignored
in the future.

Reason Heat CloudWatch API has been Removed.

keystone_authtoken

www_authenticate_uri

Type string

Default <None>

Complete public Identity API endpoint. This endpoint should not be an admin endpoint, as it
should be accessible by all end users. Unauthenticated clients are redirected to this endpoint to
authenticate. Although this endpoint should ideally be unversioned, client support in the wild
varies. If youre using a versioned v2 endpoint here, then this should not be the same endpoint the
service user utilizes for validating tokens, because normal end users may not be able to reach that

endpoint.
Table 34: Deprecated Variations
Group Name
keystone_authtoken | auth_uri
auth_uri

Type string
Default <None>

Complete public Identity API endpoint. This endpoint should not be an admin endpoint, as it
should be accessible by all end users. Unauthenticated clients are redirected to this endpoint to
authenticate. Although this endpoint should ideally be unversioned, client support in the wild
varies. If youre using a versioned v2 endpoint here, then this should nor be the same endpoint the
service user utilizes for validating tokens, because normal end users may not be able to reach that

2.3. Configuring Heat 87

Heat Documentation, Release 17.0.3.dev4

endpoint. This option is deprecated in favor of www_authenticate_uri and will be removed in the
S release.

Warning: This option is deprecated for removal since Queens. Its value may be silently
ignored in the future.

Reason The auth_uri option is deprecated in favor of www_authenticate_uri and
will be removed in the S release.

auth_version
Type string
Default <None>
API version of the Identity API endpoint.
interface
Type string
Default internal
Interface to use for the Identity API endpoint. Valid values are public, internal (default) or admin.
delay_auth_decision
Type boolean
Default False

Do not handle authorization requests within the middleware, but delegate the authorization deci-
sion to downstream WSGI components.

http_connect_timeout
Type integer
Default <None>
Request timeout value for communicating with Identity API server.
http_request_max_retries
Type integer
Default 3
How many times are we trying to reconnect when communicating with Identity API Server.
cache
Type string
Default <None>

Request environment key where the Swift cache object is stored. When auth_token middleware is
deployed with a Swift cache, use this option to have the middleware share a caching backend with
swift. Otherwise, use the memcached_servers option instead.

certfile

Type string

88 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

Default <None>
Required if identity server requires client certificate
keyfile
Type string
Default <None>
Required if identity server requires client certificate
cafile
Type string
Default <None>

A PEM encoded Certificate Authority to use when verifying HTTPs connections. Defaults to
system CAs.

insecure
Type boolean
Default False
Verify HTTPS connections.
region_name
Type string
Default <None>
The region in which the identity server can be found.
memcached_servers
Type list
Default <None>

Optionally specify a list of memcached server(s) to use for caching. If left undefined, tokens will
instead be cached in-process.

Table 35: Deprecated Variations

Group Name
keystone_authtoken | memcache_servers

token_cache_time
Type integer
Default 300

In order to prevent excessive effort spent validating tokens, the middleware caches previously-seen
tokens for a configurable duration (in seconds). Set to -1 to disable caching completely.

memcache_security_strategy
Type string

Default None

2.3. Configuring Heat 89

Heat Documentation, Release 17.0.3.dev4

Valid Values None, MAC, ENCRYPT

(Optional) If defined, indicate whether token data should be authenticated or authenticated and
encrypted. If MAC, token data is authenticated (with HMAC) in the cache. If ENCRYPT, token
data is encrypted and authenticated in the cache. If the value is not one of these options or empty,
auth_token will raise an exception on initialization.

memcache_secret_key
Type string
Default <None>

(Optional, mandatory if memcache_security_strategy is defined) This string is used for key deriva-
tion.

memcache_pool_dead_retry
Type integer
Default 300
(Optional) Number of seconds memcached server is considered dead before it is tried again.
memcache_pool_maxsize
Type integer
Default 10
(Optional) Maximum total number of open connections to every memcached server.
memcache_pool_socket_timeout
Type integer
Default 3
(Optional) Socket timeout in seconds for communicating with a memcached server.
memcache_pool_unused_timeout
Type integer
Default 60

(Optional) Number of seconds a connection to memcached is held unused in the pool before it is
closed.

memcache_pool_conn_get_timeout
Type integer
Default 10

(Optional) Number of seconds that an operation will wait to get a memcached client connection
from the pool.

memcache_use_advanced_pool
Type boolean
Default True

(Optional) Use the advanced (eventlet safe) memcached client pool.

90 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

include_service_catalog
Type boolean
Default True

(Optional) Indicate whether to set the X-Service-Catalog header. If False, middleware will not ask
for service catalog on token validation and will not set the X-Service-Catalog header.

enforce_token_bind
Type string
Default permissive

Used to control the use and type of token binding. Can be set to: disabled to not check token
binding. permissive (default) to validate binding information if the bind type is of a form known
to the server and ignore it if not. strict like permissive but if the bind type is unknown the token
will be rejected. required any form of token binding is needed to be allowed. Finally the name of
a binding method that must be present in tokens.

service_token_roles
Type list
Default ['service']

A choice of roles that must be present in a service token. Service tokens are allowed to request
that an expired token can be used and so this check should tightly control that only actual services
should be sending this token. Roles here are applied as an ANY check so any role in this list
must be present. For backwards compatibility reasons this currently only affects the allow_expired
check.

service_token_roles_required
Type boolean
Default False

For backwards compatibility reasons we must let valid service tokens pass that dont pass the ser-
vice_token_roles check as valid. Setting this true will become the default in a future release and
should be enabled if possible.

service_type
Type string
Default <None>

The name or type of the service as it appears in the service catalog. This is used to validate tokens
that have restricted access rules.

auth_type
Type unknown type
Default <None>

Authentication type to load

2.3. Configuring Heat 91

Heat Documentation, Release 17.0.3.dev4

Table 36: Deprecated Variations

Group Name
keystone_authtoken | auth_plugin

auth_section
Type unknown type
Default <None>

Config Section from which to load plugin specific options

noauth

token_response
Type string
Default "'

JSON file containing the content returned by the noauth middleware.

oslo_messaging_amqp

container_name
Type string
Default <None>

Name for the AMQP container. must be globally unique. Defaults to a generated UUID

Table 37: Deprecated Variations

Group | Name
amqgpl | container_name

idle_timeout
Type integer
Default 0

Timeout for inactive connections (in seconds)

Table 38: Deprecated Variations

Group | Name
amqgpl | idle_timeout

trace
Type boolean
Default False

92 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

Debug: dump AMQP frames to stdout

Table 39: Deprecated Variations

Group | Name
amqgpl | trace

ssl
Type boolean
Default False

Attempt to connect via SSL. If no other ssl-related parameters are given, it will use the systems
CA-bundle to verify the servers certificate.

ssl_ca_file
Type string
Default '’

CA certificate PEM file used to verify the servers certificate

Table 40: Deprecated Variations

Group | Name
amqpl | ssl_ca_file

ssl_cert_file
Type string
Default "'

Self-identifying certificate PEM file for client authentication

Table 41: Deprecated Variations

Group | Name
amqgpl | ssl_cert_file

ssl_key_file
Type string
Default ''

Private key PEM file used to sign ssl_cert_file certificate (optional)

Table 42: Deprecated Variations

Group | Name
amqgpl | ssl_key_file

ssl_key_password

Type string

Default <None>

2.3. Configuring Heat 93

Heat Documentation, Release 17.0.3.dev4

Password for decrypting ssl_key_file (if encrypted)

Table 43: Deprecated Variations

Group | Name
amqgpl | ssl_key_password

ssl_verify_vhost
Type boolean
Default False

By default SSL checks that the name in the servers certificate matches the hostname in the trans-
port_url. In some configurations it may be preferable to use the virtual hostname instead, for
example if the server uses the Server Name Indication TLS extension (rfc6066) to provide a cer-
tificate per virtual host. Set ssl_verify_vhost to True if the servers SSL certificate uses the virtual
host name instead of the DNS name.

sasl_mechanisms
Type string
Default '’

Space separated list of acceptable SASL mechanisms

Table 44: Deprecated Variations

Group | Name
amqgpl | sasl_mechanisms

sasl_config_dir
Type string
Default '’

Path to directory that contains the SASL configuration

Table 45: Deprecated Variations

Group | Name
amqpl | sasl_config_dir

sasl_config_name
Type string
Default ''

Name of configuration file (without .conf suffix)

Table 46: Deprecated Variations

Group | Name
amqgpl | sasl_config_name

sasl_default_realm

94 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

Type string
Default "'

SASL realm to use if no realm present in username
connection_retry_interval
Type integer
Default 1
Minimum Value 1
Seconds to pause before attempting to re-connect.
connection_retry_backoff
Type integer
Default 2
Minimum Value 0

Increase the connection_retry_interval by this many seconds after each unsuccessful failover at-
tempt.

connection_retry_interval_max
Type integer
Default 30
Minimum Value 1
Maximum limit for connection_retry_interval + connection_retry_backoff
link_retry_delay
Type integer
Default 10
Minimum Value 1
Time to pause between re-connecting an AMQP 1.0 link that failed due to a recoverable error.
default_reply_retry
Type integer
Default
Minimum Value -1

The maximum number of attempts to re-send a reply message which failed due to a recoverable
error.

default_reply_timeout
Type integer
Default 30
Minimum Value 5

The deadline for an rpc reply message delivery.

2.3. Configuring Heat 95

Heat Documentation, Release 17.0.3.dev4

default_send_timeout
Type integer
Default 30
Minimum Value 5

The deadline for an rpc cast or call message delivery. Only used when caller does not provide a
timeout expiry.

default_notify_timeout
Type integer
Default 30
Minimum Value 5

The deadline for a sent notification message delivery. Only used when caller does not provide a
timeout expiry.

default_sender_link timeout

Type integer

Default 600

Minimum Value 1

The duration to schedule a purge of idle sender links. Detach link after expiry.

addressing_mode

Type string

Default dynamic

Indicates the addressing mode used by the driver. Permitted values: legacy - use legacy non-
routable addressing routable - use routable addresses dynamic - use legacy addresses if the message
bus does not support routing otherwise use routable addressing

pseudo_vhost
Type boolean
Default True

Enable virtual host support for those message buses that do not natively support virtual hosting
(such as qpidd). When set to true the virtual host name will be added to all message bus addresses,
effectively creating a private subnet per virtual host. Set to False if the message bus supports virtual
hosting using the hostname field in the AMQP 1.0 Open performative as the name of the virtual
host.

server_request_prefix
Type string
Default exclusive

address prefix used when sending to a specific server

96 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

Table 47: Deprecated Variations

Group | Name
amqpl | server_request_prefix

broadcast_prefix
Type string
Default broadcast

address prefix used when broadcasting to all servers

Table 48: Deprecated Variations

Group | Name
amqpl | broadcast_prefix

group_request_prefix
Type string
Default unicast

address prefix when sending to any server in group

Table 49: Deprecated Variations

Group | Name
amqpl | group_request_prefix

rpc_address_prefix
Type string
Default openstack.org/om/rpc
Address prefix for all generated RPC addresses
notify_address_prefix
Type string
Default openstack.org/om/notify
Address prefix for all generated Notification addresses
multicast_address
Type string
Default multicast

Appended to the address prefix when sending a fanout message. Used by the message bus to
identify fanout messages.

unicast_address
Type string

Default unicast

2.3. Configuring Heat 97

Heat Documentation, Release 17.0.3.dev4

Appended to the address prefix when sending to a particular RPC/Notification server. Used by the
message bus to identify messages sent to a single destination.

anycast_address
Type string
Default anycast

Appended to the address prefix when sending to a group of consumers. Used by the message bus
to identify messages that should be delivered in a round-robin fashion across consumers.

default_notification_exchange
Type string
Default <None>

Exchange name used in notification addresses. Exchange name resolution precedence: Tar-
get.exchange if set else default_notification_exchange if set else control_exchange if set else notify

default_rpc_exchange
Type string
Default <None>

Exchange name used in RPC addresses. Exchange name resolution precedence: Target.exchange
if set else default_rpc_exchange if set else control_exchange if set else rpc

reply_link credit
Type integer
Default 200
Minimum Value 1
Window size for incoming RPC Reply messages.
rpc_server_credit
Type integer
Default 100
Minimum Value 1
Window size for incoming RPC Request messages
notify_server_credit
Type integer
Default 100
Minimum Value 1
Window size for incoming Notification messages
pre_settled
Type multi-valued
Default rpc-cast

Default rpc-reply

98 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

Send messages of this type pre-settled. Pre-settled messages will not receive acknowledgement
from the peer. Note well: pre-settled messages may be silently discarded if the delivery fails.
Permitted values: rpc-call - send RPC Calls pre-settled rpc-reply- send RPC Replies pre-settled
rpc-cast - Send RPC Casts pre-settled notify - Send Notifications pre-settled

oslo_messaging_kafka

kafka_max_fetch_bytes
Type integer
Default 1048576
Max fetch bytes of Kafka consumer
kafka_consumer_timeout
Type floating point
Default 1.0
Default timeout(s) for Kafka consumers
pool_size
Type integer
Default 10

Pool Size for Kafka Consumers

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

Reason Driver no longer uses connection pool.

conn_pool_min_size
Type integer
Default 2

The pool size limit for connections expiration policy

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

Reason Driver no longer uses connection pool.

conn_pool_ttl
Type integer
Default 1200

The time-to-live in sec of idle connections in the pool

2.3. Configuring Heat 99

Heat Documentation, Release 17.0.3.dev4

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

Reason Driver no longer uses connection pool.

consumer_group
Type string
Default oslo_messaging_consumer
Group id for Kafka consumer. Consumers in one group will coordinate message consumption
producer_batch_timeout
Type floating point
Default 0.0
Upper bound on the delay for KafkaProducer batching in seconds
producer_batch_size
Type integer
Default 16384
Size of batch for the producer async send
compression_codec
Type string
Default none
Valid Values none, gzip, snappy, 1z4, zstd

The compression codec for all data generated by the producer. If not set, compression will not be
used. Note that the allowed values of this depend on the kafka version

enable_auto_commit
Type boolean
Default False
Enable asynchronous consumer commits
max_poll_records
Type integer
Default 500
The maximum number of records returned in a poll call
security_protocol
Type string
Default PLAINTEXT
Valid Values PLAINTEXT, SASL_PLAINTEXT, SSL, SASL_SSL

Protocol used to communicate with brokers

100 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

sasl_mechanism
Type string
Default PLAIN
Mechanism when security protocol is SASL
ssl_cafile
Type string
Default '’
CA certificate PEM file used to verify the server certificate
ssl_client_cert_file
Type string
Default '’
Client certificate PEM file used for authentication.
ssl_client_key_file
Type string
Default "'
Client key PEM file used for authentication.
ssl_client_key_password
Type string
Default "'

Client key password file used for authentication.

oslo_messaging_notifications

driver
Type multi-valued
Default '’

The Drivers(s) to handle sending notifications. Possible values are messaging, messagingv2, rout-
ing, log, test, noop

Table 50: Deprecated Variations

Group Name
DEFAULT | notification_driver

transport_url
Type string

Default <None>

2.3. Configuring Heat 101

Heat Documentation, Release 17.0.3.dev4

A URL representing the messaging driver to use for notifications. If not set, we fall back to the
same configuration used for RPC.

Table 51: Deprecated Variations

Group Name
DEFAULT | notification_transport_url

topics
Type list
Default ['notifications']

AMAQP topic used for OpenStack notifications.

Table 52: Deprecated Variations
Group Name
rpc_notifier2 | topics
DEFAULT notification_topics

retry
Type integer
Default -1

The maximum number of attempts to re-send a notification message which failed to be delivered
due to a recoverable error. 0 - No retry, -1 - indefinite

oslo_messaging_rabbit

amgp_durable_queues
Type boolean
Default False
Use durable queues in AMQP.
amgp_auto_delete
Type boolean
Default False
Auto-delete queues in AMQP.

Table 53: Deprecated Variations

Group Name
DEFAULT | amgp_auto_delete

ssl
Type boolean
Default False

102 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

Connect over SSL.

Table 54: Deprecated Variations

Group Name
oslo_messaging_rabbit | rabbit_use_ssl

ssl_version

Type string
Default '’

SSL version to use (valid only if SSL enabled). Valid values are TLSvl and SSLv23. SSLv2,
SSLv3, TLSv1_1, and TLSv1_2 may be available on some distributions.

Table 55: Deprecated Variations

Group Name
oslo_messaging_rabbit | kombu_ssl_version

ssl_key_file
Type string
Default "'
SSL key file (valid only if SSL enabled).

Table 56: Deprecated Variations

Group Name
oslo_messaging_rabbit | kombu_ssl_keyfile

ssl_cert_file
Type string
Default "'
SSL cert file (valid only if SSL enabled).

Table 57: Deprecated Variations

Group Name
oslo_messaging_rabbit | kombu_ssl_certfile

ssl_ca_file
Type string
Default '’
SSL certification authority file (valid only if SSL enabled).

Table 58: Deprecated Variations

Group Name
oslo_messaging_rabbit | kombu_ssl_ca_certs

2.3. Configuring Heat 103

Heat Documentation, Release 17.0.3.dev4

heartbeat_in_pthread
Type boolean
Default True

Run the health check heartbeat thread through a native python thread by default. If this option
is equal to False then the health check heartbeat will inherit the execution model from the parent
process. For example if the parent process has monkey patched the stdlib by using eventlet/greenlet
then the heartbeat will be run through a green thread.

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

kombu_reconnect_delay
Type floating point
Default 1.0

How long to wait before reconnecting in response to an AMQP consumer cancel notification.

Table 59: Deprecated Variations

Group Name
DEFAULT | kombu_reconnect_delay

kombu_compression
Type string
Default <None>

EXPERIMENTAL: Possible values are: gzip, bz2. If not set compression will not be used. This
option may not be available in future versions.

kombu_missing_consumer_retry_timeout
Type integer
Default 60

How long to wait a missing client before abandoning to send it its replies. This value should not
be longer than rpc_response_timeout.

Table 60: Deprecated Variations

Group Name
oslo_messaging_rabbit | kombu_reconnect_timeout

kombu_failover_strategy
Type string
Default round-robin

Valid Values round-robin, shuffle

104 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

Determines how the next RabbitMQ node is chosen in case the one we are currently connected to
becomes unavailable. Takes effect only if more than one RabbitMQ node is provided in config.

rabbit_login_method
Type string
Default AMQPLAIN
Valid Values PLAIN, AMQPLAIN, RABBIT-CR-DEMO
The RabbitMQ login method.

Table 61: Deprecated Variations

Group Name
DEFAULT | rabbit_login_method

rabbit_retry_interval
Type integer
Default 1
How frequently to retry connecting with RabbitMQ.
rabbit_retry_backoff
Type integer
Default 2

How long to backoff for between retries when connecting to RabbitMQ.

Table 62: Deprecated Variations

Group Name
DEFAULT | rabbit_retry_backoff

rabbit_interval_max
Type integer
Default 30
Maximum interval of RabbitMQ connection retries. Default is 30 seconds.
rabbit_ha_queues
Type boolean
Default False

Try to use HA queues in RabbitMQ (x-ha-policy: all). If you change this option, you must wipe the
RabbitMQ database. In RabbitMQ 3.0, queue mirroring is no longer controlled by the x-ha-policy
argument when declaring a queue. If you just want to make sure that all queues (except those with
auto-generated names) are mirrored across all nodes, run: rabbitmqctl set_policy HA ~(?!amq.).*
{ha-mode: all}

2.3. Configuring Heat 105

Heat Documentation, Release 17.0.3.dev4

Table 63: Deprecated Variations

Group Name
DEFAULT | rabbit_ha_queues

rabbit_transient_queues_ttl
Type integer
Default 1800
Minimum Value 1

Positive integer representing duration in seconds for queue TTL (x-expires). Queues which are
unused for the duration of the TTL are automatically deleted. The parameter affects only reply and
fanout queues.

rabbit_gos_prefetch_count
Type integer
Default 0
Specifies the number of messages to prefetch. Setting to zero allows unlimited messages.
heartbeat_timeout_threshold
Type integer
Default 60

Number of seconds after which the Rabbit broker is considered down if heartbeats keep-alive fails
(0 disables heartbeat).

heartbeat_rate
Type integer
Default 2
How often times during the heartbeat_timeout_threshold we check the heartbeat.
direct_mandatory_flag
Type boolean
Default True

(DEPRECATED) Enable/Disable the RabbitMQ mandatory flag for direct send. The direct send
is used as reply, so the MessageUndeliverable exception is raised in case the client queue does not
exist.MessageUndeliverable exception will be used to loop for a timeout to lets a chance to sender
to recover.This flag is deprecated and it will not be possible to deactivate this functionality anymore

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

Reason Mandatory flag no longer deactivable.

enable_cancel_on_failover

Type boolean

106 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

Default False

Enable x-cancel-on-ha-failover flag so that rabbitmq server will cancel and notify consumerswhen
queue is down

oslo_middleware

max_request_body_size
Type integer
Default 114688

The maximum body size for each request, in bytes.

Table 64: Deprecated Variations

Group Name
DEFAULT | osapi_max_request_body_size
DEFAULT | max_request_body_size

secure_proxy_ssl_header
Type string
Default X-Forwarded-Proto

The HTTP Header that will be used to determine what the original request protocol scheme was,
even if it was hidden by a SSL termination proxy.

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

enable_proxy_headers_parsing
Type boolean
Default False

Whether the application is behind a proxy or not. This determines if the middleware should parse
the headers or not.

oslo_policy

enforce_scope
Type boolean
Default False

This option controls whether or not to enforce scope when evaluating policies. If True, the scope
of the token used in the request is compared to the scope_types of the policy being enforced. If
the scopes do not match, an InvalidScope exception will be raised. If False, a message will be
logged informing operators that policies are being invoked with mismatching scope.

enforce_new_defaults

2.3. Configuring Heat 107

Heat Documentation, Release 17.0.3.dev4

Type boolean
Default False

This option controls whether or not to use old deprecated defaults when evaluating policies. If
True, the old deprecated defaults are not going to be evaluated. This means if any existing token is
allowed for old defaults but is disallowed for new defaults, it will be disallowed. It is encouraged to
enable this flag along with the enforce_scope flag so that you can get the benefits of new defaults

and scope_type together
policy_£file
Type string
Default policy.yaml

The relative or absolute path of a file that maps roles to permissions for a given service. Relative
paths must be specified in relation to the configuration file setting this option.

Table 65: Deprecated Variations

Group Name
DEFAULT | policy_file

policy_default_rule
Type string
Default default

Default rule. Enforced when a requested rule is not found.

Table 66: Deprecated Variations

Group Name
DEFAULT | policy_default_rule

policy_dirs
Type multi-valued

Default policy.d

Directories where policy configuration files are stored. They can be relative to any directory in
the search path defined by the config_dir option, or absolute paths. The file defined by policy_file
must exist for these directories to be searched. Missing or empty directories are ignored.

Table 67: Deprecated Variations

Group Name
DEFAULT | policy_dirs

remote_content_type
Type string
Default application/x-www-form-urlencoded

Valid Values application/x-www-form-urlencoded, application/json

108 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

Content Type to send and receive data for REST based policy check
remote_ssl_verify_server_crt
Type boolean
Default False
server identity verification for REST based policy check
remote_ssl_ca_crt_file
Type string
Default <None>
Absolute path to ca cert file for REST based policy check
remote_ssl_client_crt_file
Type string
Default <None>
Absolute path to client cert for REST based policy check
remote_ssl_client_key_file
Type string
Default <None>

Absolute path client key file REST based policy check

paste_deploy

flavor
Type string
Default <None>
The flavor to use.
api_paste_config
Type string
Default api-paste.ini

The API paste config file to use.

profiler

enabled
Type boolean
Default False

2.3. Configuring Heat

109

Heat Documentation, Release 17.0.3.dev4

Enable the profiling for all services on this node.
Default value is False (fully disable the profiling feature).
Possible values:

* True: Enables the feature

* False: Disables the feature. The profiling cannot be started via this project operations. If the
profiling is triggered by another project, this project part will be empty.

Table 68: Deprecated Variations

Group | Name
profiler | profiler_enabled

trace_sqlalchemy
Type boolean
Default False
Enable SQL requests profiling in services.
Default value is False (SQL requests wont be traced).
Possible values:

* True: Enables SQL requests profiling. Each SQL query will be part of the trace and can the
be analyzed by how much time was spent for that.

» False: Disables SQL requests profiling. The spent time is only shown on a higher level of
operations. Single SQL queries cannot be analyzed this way.

hmac_keys
Type string
Default SECRET_KEY
Secret key(s) to use for encrypting context data for performance profiling.

This string value should have the following format: <keyl>[,<key2>,<keyn>], where each key is
some random string. A user who triggers the profiling via the REST API has to set one of these
keys in the headers of the REST API call to include profiling results of this node for this particular
project.

Both enabled flag and hmac_keys config options should be set to enable profiling. Also, to generate
correct profiling information across all services at least one key needs to be consistent between
OpenStack projects. This ensures it can be used from client side to generate the trace, containing
information from all possible resources.

connection_string
Type string
Default messaging://
Connection string for a notifier backend.
Default value is messaging:// which sets the notifier to oslo_messaging.

Examples of possible values:

110 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

* messaging:// - use oslo_messaging driver for sending spans.
* redis://127.0.0.1:6379 - use redis driver for sending spans.
* mongodb://127.0.0.1:27017 - use mongodb driver for sending spans.
* elasticsearch://127.0.0.1:9200 - use elasticsearch driver for sending spans.
* jaeger://127.0.0.1:6831 - use jaeger tracing as driver for sending spans.
es_doc_type
Type string
Default notification
Document type for notification indexing in elasticsearch.
es_scroll_time
Type string
Default 2m

This parameter is a time value parameter (for example: es_scroll_time=2m), indicating for how
long the nodes that participate in the search will maintain relevant resources in order to continue
and support it.

es_scroll_size
Type integer
Default 10000

Elasticsearch splits large requests in batches. This parameter defines maximum size of each batch
(for example: es_scroll_size=10000).

socket_timeout
Type floating point
Default 0.1

Redissentinel provides a timeout option on the connections. This parameter defines that timeout
(for example: socket_timeout=0.1).

sentinel_service_name
Type string
Default mymaster

Redissentinel uses a service name to identify a master redis service. This parameter defines the
name (for example: sentinal_service_name=mymaster).

filter_error_trace
Type boolean
Default False
Enable filter traces that contain error/exception to a separated place.
Default value is set to False.

Possible values:

2.3. Configuring Heat 111

Heat Documentation, Release 17.0.3.dev4

* True: Enable filter traces that contain error/exception.

¢ False: Disable the filter.

revision

heat_revision
Type string
Default unknown

Heat build revision. If you would prefer to manage your build revision separately, you can move
this section to a different file and add it as another config option.

ssl
ca_file
Type string
Default <None>
CA certificate file to use to verify connecting clients.
Table 69: Deprecated Variations
Group Name
DEFAULT | ssl_ca_file
cert_file
Type string
Default <None>
Certificate file to use when starting the server securely.
Table 70: Deprecated Variations
Group Name
DEFAULT | ssl _cert_file
key_file
Type string
Default <None>
Private key file to use when starting the server securely.
Table 71: Deprecated Variations
Group Name
DEFAULT | ssl_key_file
version

112 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

Type string

Default <None>

SSL version to use (valid only if SSL enabled). Valid values are TLSv1l and SSLv23. SSLv2,

SSLv3, TLSv1_1, and TLSv1_2 may be available on some distributions.

ciphers

Type string

Default <None>

Sets the list of available ciphers. value should be a string in the OpenSSL cipher list format.

trustee

auth_type
Type unknown type
Default <None>

Authentication type to load

auth_section
Type unknown type

Default <None>

Table 72: Deprecated Variations

Group | Name
trustee | auth_plugin

Config Section from which to load plugin specific options

auth_url
Type unknown type
Default <None>
Authentication URL
system_scope
Type unknown type
Default <None>
Scope for system operations
domain_id
Type unknown type
Default <None>
Domain ID to scope to

domain_name

2.3. Configuring Heat

113

Heat Documentation, Release 17.0.3.dev4

Type unknown type
Default <None>
Domain name to scope to
project_id
Type unknown type
Default <None>

Project ID to scope to

Table 73: Deprecated Variations

Group | Name
trustee | tenant-id
trustee | tenant_id

project_name
Type unknown type
Default <None>

Project name to scope to

Table 74: Deprecated Variations

Group

Name

trustee

tenant-name

trustee

tenant_name

project_domain_id
Type unknown type
Default <None>
Domain ID containing project
project_domain_name
Type unknown type
Default <None>
Domain name containing project
trust_id
Type unknown type
Default <None>
Trust ID
default_domain_id
Type unknown type

Default <None>

114

Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

Optional domain ID to use with v3 and v2 parameters. It will be used for both the user and project
domain in v3 and ignored in v2 authentication.

default_domain_name
Type unknown type
Default <None>

Optional domain name to use with v3 API and v2 parameters. It will be used for both the user and
project domain in v3 and ignored in v2 authentication.

user_id
Type unknown type
Default <None>
User id
username
Type unknown type
Default <None>

Username

Table 75: Deprecated Variations
Group | Name

trustee | user-name
trustee | user_name

user_domain_id
Type unknown type
Default <None>
Users domain id
user_domain_name
Type unknown type
Default <None>
Users domain name
password
Type unknown type
Default <None>

Users password

2.3. Configuring Heat 115

Heat Documentation, Release 17.0.3.dev4

volumes

backups_enabled
Type boolean
Default True

Indicate if cinder-backup service is enabled. This is a temporary workaround until cinder-backup
service becomes discoverable, see LP#1334856.

2.3.2 Heat Configuration Sample
The following is a sample heat configuration for adaptation and use. It is auto-generated from heat when

this documentation is built, so if you are having issues with an option, please compare your version of
heat with the version of this documentation.

See the online version of this documentation for the full example config file.

2.3.3 Orchestration log files

The corresponding log file of each Orchestration service is stored in the /var/log/heat/ directory of
the host on which each service runs.

Table 76: Log files used by Orchestration services

Log filename Service that logs to the file
heat-api.log Orchestration service API Service
heat-engine.log Orchestration service Engine Service
heat-manage.log Orchestration service events

2.3.4 Heat Sample Policy

Warning: JSON formatted policy file is deprecated since Heat 17.0.0 (Xena). This oslopolicy-
convert-json-to-yaml tool will migrate your existing JSON-formatted policy file to YAML in a
backward-compatible way.

The following is a sample heat policy file that has been auto-generated from default policy values in
code. If youre using the default policies, then the maintenance of this file is not necessary, and it should
not be copied into a deployment. Doing so will result in duplicate policy definitions. It is here to help
explain which policy operations protect specific heat APIs, but it is not suggested to copy and paste into a
deployment unless youre planning on providing a different policy for an operation that is not the default.

If you wish build a policy file, you can also use tox -e genpolicy to generate it.

The sample policy file can also be downloaded in file form.

(continues on next page)

116 Chapter 2. Operating Heat

https://docs.openstack.org/oslo.policy/latest/cli/oslopolicy-convert-json-to-yaml.html
https://docs.openstack.org/oslo.policy/latest/cli/oslopolicy-convert-json-to-yaml.html
../_static/heat.policy.yaml.sample

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

Default rule for project admin.
#"project_admin": "role:admin"

Default rule for deny stack user.
#"deny_stack_user": "not role:heat_stack_user"

Default rule for deny everybody.
#"deny_everybody": "I"

Default rule for allow everybody.
#"allow_everybody": ""

Performs non-1lifecycle operations on the stack (Snapshot, Resume,

Cancel update, or check stack resources). This is the default for

all actions but can be overridden by more specific policies for

individual actions.

POST /vl/{tenant_id}/stacks/{stack_name}/{stack_id}/actions
#"actions:action'": "(role:admin and system_scope:all) or (role:member and.
wproject_id:%(project_id)s)"

DEPRECATED

"actions:action":"rule:deny_stack_user" has been deprecated since W
in favor of "actions:action":'"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".

The actions API now supports system scope and default roles.

O W R W%

Create stack snapshot

POST /vl/{tenant_id}/stacks/{stack_name}/{stack_id}/actions

Intended scope(s): system, project

#"actions:snapshot": "(role:admin and system_scope:all) or (role:member and.
wproject_id:%(project_id)s)"

DEPRECATED

"actions:snapshot":'"rule:deny_stack_user" has been deprecated since
W in favor of "actions:snapshot":"(role:admin and system_scope:all)
or (role:member and project_id:%(project_id)s)".

The actions API now supports system scope and default roles.

Suspend a stack.

POST /vl/{tenant_id}/stacks/{stack_name}/{stack_id}/actions

Intended scope(s): system, project

#"actions:suspend": "(role:admin and system_scope:all) or (role:member and.
wproject_id:%(project_id)s)"

DEPRECATED

"actions:suspend":"rule:deny_stack_user" has been deprecated since W
in favor of "actions:suspend":"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".

(continues on next page)

2.3. Configuring Heat 117

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

The actions API now supports system scope and default roles.

Resume a suspended stack.

POST /vl1/{tenant_id}/stacks/{stack_name}/{stack_id}/actions

Intended scope(s): system, project

#"actions:resume': "(role:admin and system_scope:all) or (role:member and.
~project_id:%(project_id)s)"

DEPRECATED

"actions:resume":"rule:deny_stack_user" has been deprecated since W
in favor of "actions:resume":'"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".

The actions API now supports system scope and default roles.

HOH W R W%

Check stack resources.

POST /vl/{tenant_id}/stacks/{stack_name}/{stack_id}/actions

Intended scope(s): system, project

#"actions:check": "(role:reader and system_scope:all) or (role:reader and.
wproject_id:%(project_id)s)"

DEPRECATED

"actions:check'":"rule:deny_stack_user" has been deprecated since W
in favor of "actions:check":'"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s)".

The actions API now supports system scope and default roles.

Cancel stack operation and roll back.

POST /vl/{tenant_id}/stacks/{stack_name}/{stack_id}/actions

Intended scope(s): system, project

#"actions:cancel_update": "(role:admin and system_scope:all) or (role:member.
—and project_id:%(project_id)s)"

DEPRECATED

"actions:cancel_update":"rule:deny_stack_user'" has been deprecated
since W in favor of "actions:cancel_update'":"(role:admin and
system_scope:all) or (role:member and project_id:%(project_id)s)".

The actions API now supports system scope and default roles.

R W R W%

Cancel stack operation without rolling back.

POST /vl/{tenant_id}/stacks/{stack_name}/{stack_id}/actions

Intended scope(s): system, project

#"actions:cancel_without_rollback": "(role:admin and system_scope:all) or.
— (role:member and project_id:%(project_id)s)"

DEPRECATED

"actions:cancel_without_rollback":"rule:deny_stack_user" has been

deprecated since W in favor of

"actions:cancel_without_rollback":"(role:admin and system_scope:all)
or (role:member and project_id:%(project_id)s)".

(continues on next page)

118 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

The actions API now supports system scope and default roles.

Show build information.

GET /v1/{tenant_id}/build_info

Intended scope(s): system, project

#"build_info:build_info": "(role:reader and system_scope:all) or (role:reader.
—and project_id:%(project_id)s)"

DEPRECATED

"build_info:build_info":"rule:deny_stack_user" has been deprecated
since W in favor of "build_info:build_info":"(role:reader and
system_scope:all) or (role:reader and project_id:%(project_id)s)".

The build API now supports system scope and default roles.

HOH W R W%

Intended scope(s): system, project
#"cloudformation:ListStacks": "(role:reader and system_scope:all) or.
—(role:reader and project_id:%(project_id)s)"

DEPRECATED

"cloudformation:ListStacks":"rule:deny_stack user" has been

deprecated since W in favor of

"cloudformation:ListStacks":"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s)".

The cloud formation API now supports system scope and default roles.

Intended scope(s): system, project
#"cloudformation:CreateStack": "(role:admin and system_scope:all) or.
— (role:member and project_id:%(project_id)s)"

DEPRECATED

"cloudformation:CreateStack":"rule:deny_stack_user" has been

deprecated since W in favor of

"cloudformation:CreateStack":"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".

The cloud formation API now supports system scope and default roles.

Intended scope(s): system, project
#"cloudformation:DescribeStacks": "(role:reader and system_scope:all) or.
—(role:reader and project_id:%(project_id)s)"

DEPRECATED

"cloudformation:DescribeStacks":"rule:deny_stack_user" has been

deprecated since W in favor of

"cloudformation:DescribeStacks":"(role:reader and system_scope:all)
or (role:reader and project_id:%(project_id)s)".

The cloud formation API now supports system scope and default roles.

Intended scope(s): system, project
#"cloudformation:DeleteStack": "(role:admin and system_scope:all) or.

(role:member and project id:%(project_id)s)"
7 7 (continues on next page)

2.3. Configuring Heat 119

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

DEPRECATED

"cloudformation:DeleteStack":"rule:deny_stack_user'" has been

deprecated since W in favor of

"cloudformation:DeleteStack":"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".

The cloud formation API now supports system scope and default roles.

Intended scope(s): system, project
#"cloudformation:UpdateStack": "(role:admin and system_scope:all) or.
— (role:member and project_id:%(project_id)s)"

DEPRECATED

"cloudformation:UpdateStack":"rule:deny_stack_user'" has been

deprecated since W in favor of

"cloudformation:UpdateStack":"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".

The cloud formation API now supports system scope and default roles.

Intended scope(s): system, project
#"cloudformation:CancelUpdateStack": "(role:admin and system_scope:all) or.
— (role:member and project_id:%(project_id)s)"

DEPRECATED

"cloudformation:CancelUpdateStack":"rule:deny_stack_user" has been
deprecated since W in favor of

"cloudformation:CancelUpdateStack":"(role:admin and

system_scope:all) or (role:member and project_id:%(project_id)s)".
The cloud formation API now supports system scope and default roles.

Intended scope(s): system, project
#"cloudformation:DescribeStackEvents": "(role:reader and system_scope:all) or.
—(role:reader and project_id:%(project_id)s)"

DEPRECATED

"cloudformation:DescribeStackEvents":"rule:deny_stack_user'" has been
deprecated since W in favor of

"cloudformation:DescribeStackEvents":"(role:reader and

system_scope:all) or (role:reader and project_id:%(project_id)s)".

The cloud formation API now supports system scope and default roles.

Intended scope(s): system, project
#"cloudformation:ValidateTemplate": "(role:reader and system_scope:all) or.
—(role:reader and project_id:%(project_id)s)"

DEPRECATED

"cloudformation:ValidateTemplate'":"rule:deny_stack_user" has been
deprecated since W in favor of

"cloudformation:ValidateTemplate":"(role:reader and

(continues on next page)

120 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

system_scope:all) or (role:reader and project_id:%(project_id)s)".
The cloud formation API now supports system scope and default roles.

Intended scope(s): system, project
#"cloudformation:GetTemplate": "(role:reader and system_scope:all) or.
—(role:reader and project_id:%(project_id)s)"

DEPRECATED

"cloudformation:GetTemplate":"rule:deny_stack_user" has been

deprecated since W in favor of

"cloudformation:GetTemplate'":"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s)".

The cloud formation API now supports system scope and default roles.

Intended scope(s): system, project
#"cloudformation:EstimateTemplateCost": "(role:reader and system_scope:all).
—or (role:reader and project_id:%(project_id)s)"

DEPRECATED

"cloudformation:EstimateTemplateCost":"rule:deny_stack_user" has

been deprecated since W in favor of

"cloudformation:EstimateTemplateCost":"(role:reader and

system_scope:all) or (role:reader and project_id:%(project_id)s)".
The cloud formation API now supports system scope and default roles.

Intended scope(s): system, project

#"cloudformation:DescribeStackResource': "(role:reader and system_scope:all).
—or (role:reader and project_id:%(project_id)s) or (role:heat_stack user and.
wproject_id:%(project_id)s)"

DEPRECATED

"cloudformation:DescribeStackResource":"rule:allow_everybody" has

been deprecated since W in favor of

"cloudformation:DescribeStackResource":"(role:reader and

system_scope:all) or (role:reader and project_id:%(project_id)s) or
(role:heat_stack user and project_id:%(project_id)s)".

The cloud formation API now supports system scope and default roles.

Intended scope(s): system, project
#"cloudformation:DescribeStackResources": "(role:reader and system_scope:all).
—or (role:reader and project_id:%(project_id)s)"

DEPRECATED

"cloudformation:DescribeStackResources":"rule:deny_stack_user" has
been deprecated since W in favor of

"cloudformation:DescribeStackResources":"(role:reader and

system_scope:all) or (role:reader and project_id:%(project_id)s)".
The cloud formation API now supports system scope and default roles.

(continues on next page)

2.3. Configuring Heat 121

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

Intended scope(s): system, project
#"cloudformation:ListStackResources": "(role:reader and system_scope:all) or.
—(role:reader and project_id:%(project_id)s)"

DEPRECATED

"cloudformation:ListStackResources":'"rule:deny_stack_user" has been
deprecated since W in favor of

"cloudformation:ListStackResources":"(role:reader and

system_scope:all) or (role:reader and project_id:%(project_id)s)".
The cloud formation API now supports system scope and default roles.

List events.

GET /vl/{tenant_id}/stacks/{stack_name}/{stack_id}/events

Intended scope(s): system, project

#"events:index": "(role:reader and system_scope:all) or (role:reader and.
wproject_id:%(project_id)s)"

DEPRECATED

"events:index":"rule:deny_stack_user'" has been deprecated since W in
favor of "events:index":"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s)".

The events API now supports system scope and default roles.

FH R W R W

H*

Show event.

GET /vl/{tenant_id}/stacks/{stack_name}/{stack_id}/resources/{resource_
<name}/events/{event_id}

Intended scope(s): system, project

#"events:show": "(role:reader and system_scope:all) or (role:reader and,
wproject_id:%(project_id)s)"

DEPRECATED

"events:show":"rule:deny_stack_user" has been deprecated since W in
favor of "events:show":"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s)".

The events API now supports system scope and default roles.

HOH W R W

List resources.

GET /vl/{tenant_id}/stacks/{stack_name}/{stack_id}/resources

Intended scope(s): system, project

#"resource:index": "(role:reader and system_scope:all) or (role:reader and.
wproject_id:%(project_id)s)"

DEPRECATED

"resource:index":"rule:deny_stack_user" has been deprecated since W
in favor of "resource:index'":"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s)".

The resources API now supports system scope and default roles.

H*

Show resource metadata.

(continues on next page)

122 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

GET /vl/{tenant_id}/stacks/{stack_name}/{stack_id}/resources/{resource_
—name}/metadata

Intended scope(s): system, project

#"resource:metadata": "(role:reader and system_scope:all) or (role:reader and,
wproject_id:%(project_id)s) or (role:heat_stack_user and project_id:
~%(project_id)s)"

DEPRECATED

"resource:metadata"”:"rule:allow_everybody'" has been deprecated since
W in favor of "resource:metadata'":'"(role:reader and
system_scope:all) or (role:reader and project_id:%(project_id)s) or
(role:heat_stack_user and project_id:%(project_id)s)".

The resources API now supports system scope and default roles.

FHORH W R R R

Signal resource.

POST /vl/{tenant_id}/stacks/{stack_name}/{stack_id}/resources/{resource_
—name}/signal

Intended scope(s): system, project

#"resource:signal": "(role:reader and system_scope:all) or (role:reader and.

wproject_id:%(project_id)s) or (role:heat_stack_user and project_id:
~%(project_id)s)"

DEPRECATED

"resource:signal":"rule:allow_everybody" has been deprecated since W
in favor of "resource:signal':"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s) or (role:heat_stack_user
and project_id:%(project_id)s)".

The resources API now supports system scope and default roles.

H

Mark resource as unhealthy.

PATCH /vl/{tenant_id}/stacks/{stack_name}/{stack_id}/resources/{resource_
—sname_or_physical_id}

Intended scope(s): system, project

#"resource:mark_unhealthy'": "(role:admin and system_scope:all) or.

« (role:member and project_id:%(project_id)s)"

DEPRECATED

"resource:mark_unhealthy":"rule:deny_stack_user" has been deprecated
since W in favor of "resource:mark_unhealthy'":"(role:admin and
system_scope:all) or (role:member and project_id:%(project_id)s)".

The resources API now supports system scope and default roles.

oW W R W%

H

Show resource.

GET /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/resources/{resource_
—name}

Intended scope(s): system, project

#"resource:show": "(role:reader and system_scope:all) or (role:reader and.
wproject_id:%(project_id)s)"

(continues on next page)

2.3. Configuring Heat 123

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

DEPRECATED

"resource:show'":"rule:deny_stack_user" has been deprecated since W
in favor of "resource:show":'"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s)".

The resources API now supports system scope and default roles.

#"resource_types:0S: :Nova::Flavor": "rule:project_admin"
#"resource_types:0S: :Cinder: :EncryptedVolumeType": "rule:project_admin"
#"resource_types:0S::Cinder: :VolumeType": "rule:project_admin"
#"resource_types:0S::Cinder: :Quota"”: "rule:project_admin"
#"resource_types:0S: :Neutron: :Quota": "rule:project_admin"
#"resource_types:0S::Nova: :Quota": "rule:project_admin"
#"resource_types:0S::0ctavia::Quota": "rule:project_admin"
#"resource_types:0S::Manila: :ShareType": "rule:project_admin"
#"resource_types:0S: :Neutron: :ProviderNet": "rule:project_admin"
#"resource_types:0S: :Neutron: :QoSPolicy": "rule:project_admin"
#"resource_types:0S: :Neutron: :QoSBandwidthLimitRule": "rule:project_admin"
#"resource_types:0S: :Neutron: :QoSDscpMarkingRule": "rule:project_admin"
#"resource_types:0S: :Neutron: :QoSMinimumBandwidthRule": "rule:project_admin"
#"resource_types:0S: :Neutron: :Segment": "rule:project_admin"
#'"resource_types:0S: :Nova: :HostAggregate': "rule:project_admin"
#"resource_types:0S::Cinder: :QoSSpecs": "rule:project_admin"
#"resource_types:0S: :Cinder: :QoSAssociation": "rule:project_admin"
#"resource_types:0S: :Keystone::*": "rule:project_admin"
#"resource_types:0S::Blazar::Host": "rule:project_admin"
#"resource_types:0S::0ctavia::Flavor": "rule:project_admin"
#"resource_types:0S::0Octavia: :FlavorProfile": "rule:project_admin"
#"service:index": "role:reader and system_scope:all”

(continues on next page)

124 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

DEPRECATED

"service:index":"rule:context_is_admin" has been deprecated since W

#
#
in favor of "service:index":'"role:reader and system_scope:all"”.
The service API now supports system scope and default roles.

List configs globally.

GET /vl/{tenant_id}/software_configs

Intended scope(s): system, project
#"software_configs:global_index": "role:reader and system_scope:all"”

DEPRECATED

"software_configs:global_index":"rule:deny_everybody" has been

deprecated since W in favor of

"software_configs:global_index":"role:reader and system_scope:all".
The software configuration API now support system scope and default
#

roles.

List configs.

GET /vl/{tenant_id}/software_configs

Intended scope(s): system, project

#"software_configs:index": "(role:reader and system_scope:all) or.
—(role:reader and project_id:%(project_id)s)"

DEPRECATED

"software_configs:index":"rule:deny_stack _user" has been deprecated
since W in favor of "software_configs:index":"(role:reader and
system_scope:all) or (role:reader and project_id:%(project_id)s)".
The software configuration API now support system scope and default

roles.

O W KR R W

Create config.

POST /vl/{tenant_id}/software_configs

Intended scope(s): system, project

#"software_configs:create": "(role:reader and system_scope:all) or.
—(role:reader and project_id:%(project_id)s)"

DEPRECATED

"software_configs:create":"rule:deny_stack_user" has been deprecated
since W in favor of "software_configs:create':"(role:reader and
system_scope:all) or (role:reader and project_id:%(project_id)s)".
The software configuration API now support system scope and default

roles.

oW W KR R W

Show config details.

GET /vl/{tenant_id}/software_configs/{config_id}

Intended scope(s): system, project

#"software_configs:show": "(role:reader and system_scope:all) or (role:reader.
—and project_id:%(project_id)s)"

(continues on next page)

2.3. Configuring Heat 125

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

DEPRECATED

"software_configs:show":"rule:deny_stack_user'" has been deprecated
since W in favor of "software_configs:show":'"(role:reader and
system_scope:all) or (role:reader and project_id:%(project_id)s)".
The software configuration API now support system scope and default

roles.

oW W R W W

Delete config.

DELETE /vl/{tenant_id}/software_configs/{config_id}

Intended scope(s): system, project

#"software_configs:delete": "(role:admin and system_scope:all) or.
— (role:member and project_id:%(project_id)s)"

DEPRECATED

"software_configs:delete":"rule:deny_stack_user" has been deprecated
since W in favor of "software_configs:delete'":"(role:admin and
system_scope:all) or (role:member and project_id:%(project_id)s)".
The software configuration API now support system scope and default

roles.

HOoRH W R R %

List deployments.

GET /vl/{tenant_id}/software_deployments

Intended scope(s): system, project

#"software_deployments:index": "(role:reader and system_scope:all) or.
—(role:reader and project_id:%(project_id)s)"

DEPRECATED

"software_deployments:index":"rule:deny_stack_user" has been

deprecated since W in favor of

"software_deployments:index":"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s)".

The software deployment API now supports system scope and default

roles.

Create deployment.

POST /vl/{tenant_id}/software_deployments

Intended scope(s): system, project

#"software_deployments:create': "(role:admin and system_scope:all) or.
— (role:member and project_id:%(project_id)s)"

DEPRECATED

"software_deployments:create':"rule:deny_stack_user" has been

deprecated since W in favor of

"software_deployments:create":"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".

The software deployment API now supports system scope and default

roles.

(continues on next page)

126 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

Show deployment details.

GET /vl/{tenant_id}/software_deployments/{deployment_id}

Intended scope(s): system, project

#"software_deployments:show": "(role:reader and system_scope:all) or.
—(role:reader and project_id:%(project_id)s)"

DEPRECATED

"software_deployments:show":"rule:deny_stack_user" has been

deprecated since W in favor of

"software_deployments:show":"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s)".

The software deployment API now supports system scope and default
roles.

Update deployment.

PUT /vl/{tenant_id}/software_deployments/{deployment_id}

Intended scope(s): system, project

#"software_deployments:update": "(role:admin and system_scope:all) or.
— (role:member and project_id:%(project_id)s)"

DEPRECATED

"software_deployments:update":"rule:deny_stack_user" has been

deprecated since W in favor of

"software_deployments:update':"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".

The software deployment API now supports system scope and default

roles.

Delete deployment.

DELETE /v1/{tenant_id}/software_deployments/{deployment_id}

Intended scope(s): system, project

#"software_deployments:delete": "(role:admin and system_scope:all) or.
— (role:member and project_id:%(project_id)s)"

DEPRECATED

"software_deployments:delete":"rule:deny_stack_user" has been

deprecated since W in favor of

"software_deployments:delete':"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".

The software deployment API now supports system scope and default

roles.

Show server configuration metadata.

GET /vl/{tenant_id}/software_deployments/metadata/{server_id}

Intended scope(s): system, project

#"software_deployments:metadata": "(role:reader and system_scope:all) or.
— (role:reader and project_id:%(project_id)s) or (role:heat_stack_user and.
wproject_id:%(project_id)s)"

(continues on next page)

2.3. Configuring Heat 127

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

Abandon stack.

DELETE /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/abandon

Intended scope(s): system, project

#"stacks:abandon": "(role:admin and system_scope:all) or (role:member and.
wproject_id:%(project_id)s)"

DEPRECATED

"stacks:abandon":"rule:deny_stack_user" has been deprecated since W
in favor of "stacks:abandon'":'"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".

The stack API now supports system scope and default roles.

Create stack.

POST /vl/{tenant_id}/stacks

Intended scope(s): system, project

#"stacks:create": "(role:admin and system_scope:all) or (role:member and.
wproject_id:%(project_id)s)"

DEPRECATED

"stacks:create':"rule:deny_stack_user" has been deprecated since W
in favor of "stacks:create":'"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".

The stack API now supports system scope and default roles.

Delete stack.

DELETE /v1/{tenant_id}/stacks/{stack_name}/{stack_id}

Intended scope(s): system, project

#"stacks:delete": "(role:admin and system_scope:all) or (role:member and.,
wproject_id:%(project_id)s)"

DEPRECATED

"stacks:delete'":"rule:deny_stack_user" has been deprecated since W
in favor of "stacks:delete":'"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".

The stack API now supports system scope and default roles.

List stacks in detail.

GET /vl/{tenant_id}/stacks

Intended scope(s): system, project

#"stacks:detail": "(role:reader and system_scope:all) or (role:reader and.
wproject_id:%(project_id)s)"

DEPRECATED

"stacks:detail'":"rule:deny_stack_user" has been deprecated since W
in favor of "stacks:detail'":'"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s)".

The stack API now supports system scope and default roles.

H*

Export stack.

(continues on next page)

128 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

GET /vl/{tenant_id}/stacks/{stack_name}/{stack_id}/export

Intended scope(s): system, project

#"stacks:export": "(role:admin and system_scope:all) or (role:member and.
wproject_id:%(project_id)s)"

DEPRECATED

"stacks:export':"rule:deny_stack_user" has been deprecated since W
in favor of "stacks:export":'"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".

The stack API now supports system scope and default roles.

Generate stack template.

GET /vl/{tenant_id}/stacks/{stack_name}/{stack_id}/template

Intended scope(s): system, project

#"stacks:generate_template": "(role:admin and system_scope:all) or.
— (role:member and project_id:%(project_id)s)"

DEPRECATED

"stacks:generate_template":'"rule:deny_stack _user'" has been

deprecated since W in favor of

"stacks:generate_template":'"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".

#

The stack API now supports system scope and default roles.

List stacks globally.

GET /vl/{tenant_id}/stacks

Intended scope(s): system, project
#"stacks:global_index": "role:reader and system_scope:all"

DEPRECATED

o,

#
"stacks:global_index":"rule:deny_everybody" has been deprecated
since W in favor of "stacks:global_index":'"role:reader and

system_scope:all"”.

#

The stack API now supports system scope and default roles.

List stacks.

GET /vl/{tenant_id}/stacks

Intended scope(s): system, project

#"stacks:index": "(role:reader and system_scope:all) or (role:reader and,
wproject_id:%(project_id)s)"

DEPRECATED

"stacks:index":"rule:deny_stack_user'" has been deprecated since W in
favor of "stacks:index":"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s)".

The stack API now supports system scope and default roles.

HOH W R W%

H

List resource types.
GET /vl/{tenant_id}/resource_types

(continues on next page)

2.3. Configuring Heat 129

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

Intended scope(s): system, project
#"stacks:1ist_resource_types": "(role:reader and system_scope:all) or.
—(role:reader and project_id:%(project_id)s)"

DEPRECATED

"stacks:list_resource_types'":"rule:deny_stack_user'" has been

deprecated since W in favor of

"stacks:list_resource_types'":"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s)".

The stack API now supports system scope and default roles.

List template versions.

GET /vl/{tenant_id}/template_versions

Intended scope(s): system, project

#"stacks:1list_template_versions': "(role:reader and system_scope:all) or.
—(role:reader and project_id:%(project_id)s)"

DEPRECATED

"stacks:list_template_versions":'"rule:deny_stack_user" has been

deprecated since W in favor of

"stacks:list_template_versions":'"(role:reader and system_scope:all)
or (role:reader and project_id:%(project_id)s)".

The stack API now supports system scope and default roles.

List template functions.

GET /vl/{tenant_id}/template_versions/{template_version}/functions

Intended scope(s): system, project

#"stacks:1list_template_functions": "(role:reader and system_scope:all) or.
—(role:reader and project_id:%(project_id)s)"

DEPRECATED

"stacks:list_template_functions'":"rule:deny_stack_user" has been

deprecated since W in favor of

"stacks:list_template_functions":"(role:reader and system_scope:all)
or (role:reader and project_id:%(project_id)s)".

The stack API now supports system scope and default roles.

Find stack.

GET /vl/{tenant_id}/stacks/{stack_identity}

Intended scope(s): system, project

#"stacks:lookup": "(role:reader and system_scope:all) or (role:reader and.
wproject_id:%(project_id)s) or (role:heat_stack_user and project_id:
~%(project_id)s)"

DEPRECATED

"stacks:lookup'":"rule:allow_everybody" has been deprecated since W
in favor of "stacks:lookup":'"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s) or (role:heat_stack_user

and project_id:%(project_id)s)".

(continues on next page)

130 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

The stack API now supports system scope and default roles.

Preview stack.

POST /v1/{tenant_id}/stacks/preview

Intended scope(s): system, project

#"stacks:preview'": "(role:reader and system_scope:all) or (role:reader and.
~project_id:%(project_id)s)"

DEPRECATED

"stacks:preview":"rule:deny_stack_user" has been deprecated since W
in favor of "stacks:preview'":'"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s)".

The stack API now supports system scope and default roles.

Show resource type schema.

GET /vl/{tenant_id}/resource_types/{type_name}

Intended scope(s): system, project

#"stacks:resource_schema": "(role:reader and system_scope:all) or.
—(role:reader and project_id:%(project_id)s)"

DEPRECATED

"stacks:resource_schema":"rule:deny_stack_user" has been deprecated
since W in favor of "stacks:resource_schema'":'"(role:reader and
system_scope:all) or (role:reader and project_id:%(project_id)s)".

The stack API now supports system scope and default roles.

SR S

Show stack.

GET /vl/{tenant_id}/stacks/{stack_identity}

Intended scope(s): system, project

#"stacks:show": "(role:reader and system_scope:all) or (role:reader and,
wproject_id:%(project_id)s)"

DEPRECATED

"stacks:show":"rule:deny_stack _user" has been deprecated since W in
favor of "stacks:show":"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s)".

The stack API now supports system scope and default roles.

R W R W%

Get stack template.

GET /vl/{tenant_id}/stacks/{stack _name}/{stack_id}/template

Intended scope(s): system, project

#"stacks:template": "(role:reader and system_scope:all) or (role:reader and.
wproject_id:%(project_id)s)"

DEPRECATED

"stacks:template":"rule:deny_stack user" has been deprecated since W
in favor of "stacks:template':"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s)".

The stack API now supports system scope and default roles.

(continues on next page)

2.3. Configuring Heat 131

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

Get stack environment.

GET /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/environment

Intended scope(s): system, project

#"stacks:environment": "(role:reader and system_scope:all) or (role:reader.
—and project_id:%(project_id)s)"

DEPRECATED

"stacks:environment':"rule:deny_stack_user" has been deprecated
since W in favor of "stacks:environment":"(role:reader and
system_scope:all) or (role:reader and project_id:%(project_id)s)".

The stack API now supports system scope and default roles.

FH W KR R R

Get stack files.

GET /vl1/{tenant_id}/stacks/{stack_name}/{stack_id}/files

Intended scope(s): system, project

#"stacks:files": "(role:reader and system_scope:all) or (role:reader and,
wproject_id:%(project_id)s)"

DEPRECATED

"stacks:files":"rule:deny_stack_user'" has been deprecated since W in
favor of "stacks:files":"(role:reader and system_scope:all) or
(role:reader and project_id:%(project_id)s)".

The stack API now supports system scope and default roles.

HOH W R W

Update stack.

PUT /vl/{tenant_id}/stacks/{stack_name}/{stack_id}

Intended scope(s): system, project

#"stacks:update": "(role:admin and system_scope:all) or (role:member and.
wproject_id:%(project_id)s)"

DEPRECATED

"stacks:update':"rule:deny_stack_user" has been deprecated since W
in favor of "stacks:update":'"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".

The stack API now supports system scope and default roles.

Update stack (PATCH).

PATCH /vl/{tenant_id}/stacks/{stack_name}/{stack_id}

Intended scope(s): system, project

#"stacks:update_patch": "(role:admin and system_scope:all) or (role:member.
—and project_id:%(project_id)s)"

DEPRECATED

"stacks:update_patch":"rule:deny_stack_user" has been deprecated
since W in favor of "stacks:update_patch":"(role:admin and

system_scope:all) or (role:member and project_id:%(project_id)s)".
The stack API now supports system scope and default roles.

(continues on next page)

132 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

Update stack (PATCH) with no changes.

PATCH /v1/{tenant_id}/stacks/{stack_name}/{stack_id}
Intended scope(s): system, project
#"stacks:update_no_change": "rule:stacks:update_patch"

Preview update stack.

PUT /vl/{tenant_id}/stacks/{stack_name}/{stack_id}/preview

Intended scope(s): system, project

#"stacks:preview_update": "(role:admin and system_scope:all) or (role:member.
—and project_id:%(project_id)s)"

DEPRECATED

"stacks:preview_update":"rule:deny_stack_user'" has been deprecated
since W in favor of "stacks:preview_update":'"(role:admin and
system_scope:all) or (role:member and project_id:%(project_id)s)".

The stack API now supports system scope and default roles.

H R W R R

Preview update stack (PATCH).

PATCH /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/preview

Intended scope(s): system, project

#"stacks:preview_update_patch": "(role:admin and system_scope:all) or.
— (role:member and project_id:%(project_id)s)"

DEPRECATED

"stacks:preview_update_patch'":"rule:deny_stack_user" has been

deprecated since W in favor of

"stacks:preview_update_patch":"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".

The stack API now supports system scope and default roles.

Validate template.

POST /vl/{tenant_id}/validate

Intended scope(s): system, project

#"stacks:validate_template": "(role:admin and system_scope:all) or.
« (role:member and project_id:%(project_id)s)"

DEPRECATED

"stacks:validate_template":"rule:deny_stack user" has been

deprecated since W in favor of

"stacks:validate_template":"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".

The stack API now supports system scope and default roles.

Snapshot Stack.

POST /vl1/{tenant_id}/stacks/{stack_name}/{stack_id}/snapshots

Intended scope(s): system, project

#"stacks:snapshot": "(role:admin and system_scope:all) or (role:member and.
wproject_id:%(project_id)s)"

(continues on next page)

2.3. Configuring Heat 133

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

DEPRECATED

"stacks:snapshot":"rule:deny_stack_user" has been deprecated since W
in favor of "stacks:snapshot':"(role:admin and system_scope:all) or
(role:member and project_id:%(project_id)s)".

The stack API now supports system scope and default roles.

Show snapshot.

GET /vl/{tenant_id}/stacks/{stack_name}/{stack_id}/snapshots/{snapshot_id}
Intended scope(s): system, project

#"stacks:show_snapshot": "(role:reader and system_scope:all) or (role:reader.
—and project_id:%(project_id)s)"

DEPRECATED

"stacks:show_snapshot":"rule:deny_stack user" has been deprecated
since W in favor of "stacks:show_snapshot":"(role:reader and
system_scope:all) or (role:reader and project_id:%(project_id)s)".

The stack API now supports system scope and default roles.

W W R W%

H

Delete snapshot.

DELETE /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/snapshots/{snapshot_
—id}

Intended scope(s): system, project

#"stacks:delete_snapshot": "(role:admin and system_scope:all) or (role:member.,
—and project_id:%(project_id)s)"

DEPRECATED

"stacks:delete_snapshot":"rule:deny_stack_user'" has been deprecated
since W in favor of "stacks:delete_snapshot":"(role:admin and
system_scope:all) or (role:member and project_id:%(project_id)s)".

The stack API now supports system scope and default roles.

oW W R R

List snapshots.

GET /vl/{tenant_id}/stacks/{stack _name}/{stack_id}/snapshots

Intended scope(s): system, project

#"stacks:1ist_snapshots": "(role:reader and system_scope:all) or (role:reader.,
—and project_id:%(project_id)s)"

DEPRECATED

"stacks:1ist_snapshots":"rule:deny_stack_user" has been deprecated
since W in favor of "stacks:list_snapshots'":'"(role:reader and
system_scope:all) or (role:reader and project_id:%(project_id)s)".

The stack API now supports system scope and default roles.

H R W R W%

H*

Restore snapshot.

POST /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/snapshots/{snapshot_id}
«/restore

Intended scope(s): system, project

#"stacks:restore_snapshot": "(role:admin and system_scope:all) or.

— (role:member and project_id:%(project_id)s)"

(continues on next page)

134 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

DEPRECATED

"stacks:restore_snapshot":"rule:deny_stack_user" has been deprecated
since W in favor of "stacks:restore_snapshot":"(role:admin and
system_scope:all) or (role:member and project_id:%(project_id)s)".

The stack API now supports system scope and default roles.

W W KR W%

List outputs.

GET /v1/{tenant_id}/stacks/{stack_name}/{stack_id}/outputs

Intended scope(s): system, project

#"stacks:1list_outputs': "(role:reader and system_scope:all) or (role:reader.
—and project_id:%(project_id)s)"

DEPRECATED

"stacks:1list_outputs':"rule:deny_stack_user" has been deprecated
since W in favor of "stacks:list_outputs':"(role:reader and
system_scope:all) or (role:reader and project_id:%(project_id)s)".

The stack API now supports system scope and default roles.

H R W R R

Show outputs.

GET /vl/{tenant_id}/stacks/{stack_name}/{stack_id}/outputs/{output_key}
Intended scope(s): system, project

#"stacks:show_output": "(role:reader and system_scope:all) or (role:reader.
—and project_id:%(project_id)s)"

DEPRECATED

"stacks:show_output':"rule:deny_stack_user" has been deprecated
since W in favor of "stacks:show_output":"(role:reader and
system_scope:all) or (role:reader and project_id:%(project_id)s)".

The stack API now supports system scope and default roles.

R W WH W

2.4 Administering Heat

2.4.1 Introduction

The OpenStack Orchestration service, a tool for orchestrating clouds, automatically configures and de-
ploys resources in stacks. The deployments can be simple, such as deploying WordPress on Ubuntu with
an SQL back end, or complex, such as starting a server group that auto scales by starting and stopping
using real-time CPU loading information from the Telemetry service.

Orchestration stacks are defined with templates, which are non-procedural documents. Templates de-
scribe tasks in terms of resources, parameters, inputs, constraints, and dependencies. When the Orches-
tration service was originally introduced, it worked with AWS CloudFormation templates, which are in
the JSON format.

The Orchestration service also runs Heat Orchestration Template (HOT) templates that are written in
YAML. YAML is a terse notation that loosely follows structural conventions (colons, returns, indentation)
that are similar to Python or Ruby. Therefore, it is easier to write, parse, grep, generate with tools, and

2.4. Administering Heat 135

Heat Documentation, Release 17.0.3.dev4

maintain source-code management systems.

Orchestration can be accessed through a CLI and RESTful queries. The Orchestration service provides
both an OpenStack-native REST API and a CloudFormation-compatible Query API. The Orchestration
service is also integrated with the OpenStack dashboard to perform stack functions through a web inter-
face.

For more information about using the Orchestration service through the command line, see the Heat
Command-Line Interface reference.

2.4.2 Orchestration authorization model

The Orchestration authorization model defines the authorization process for requests during deferred
operations. A common example is an auto-scaling group update. During the auto-scaling update oper-
ation, the Orchestration service requests resources of other components (such as servers from Compute
or networks from Networking) to extend or reduce the capacity of an auto-scaling group.

The Orchestration service provides the following authorization models:
* Password authorization

* OpenStack Identity trusts authorization

Password authorization

The Orchestration service supports password authorization. Password authorization requires that a user
pass a username and password to the Orchestration service. Encrypted password are stored in the
database, and used for deferred operations.

Password authorization involves the following steps:

1. A user requests stack creation, by providing a token and username and password. The Dashboard
or python-heatclient requests the token on the users behalf.

2. If the stack contains any resources that require deferred operations, then the orchestration engine
fails its validation checks if the user did not provide a valid username/password.

3. The username/password are encrypted and stored in the Orchestration database.
4. Orchestration creates a stack.

5. Later, the Orchestration service retrieves the credentials and requests another token on behalf of
the user. The token is not limited in scope and provides access to all the roles of the stack owner.

OpenStack Identity trusts authorization

A trust is an OpenStack Identity extension that enables delegation, and optionally impersonation through
the OpenStack Identity service. The key terminology is trustor (the user delegating) and trustee (the user
being delegated to).

To create a trust, the trustor (in this case, the user creating the stack in the Orchestration service) provides
the OpenStack Identity service with the following information:

* The ID of the trustee (who you want to delegate to, in this case, the Orchestration service user).

136 Chapter 2. Operating Heat

https://docs.openstack.org/python-heatclient/xena/#openstackclient-command-line
https://docs.openstack.org/python-heatclient/xena/#openstackclient-command-line

Heat Documentation, Release 17.0.3.dev4

* The roles to be delegated. Configure roles through the heat.conf file. Ensure the configuration
contains whatever roles are required to perform the deferred operations on the users behalf. For
example, launching an OpenStack Compute instance in response to an auto-scaling event.

* Whether to enable impersonation.

The OpenStack Identity service provides a trust ID, which is consumed by only the trustee to obtain a
trust scoped token. This token is limited in scope, such that the trustee has limited access to those roles
delegated. In addition, the trustee has effective impersonation of the trustor user if it was selected when
creating the trust. For more information, see Identity management trusts.

Trusts authorization involves the following steps:
1. A user creates a stack through an API request (only the token is required).

2. The Orchestration service uses the token to create a trust between the stack owner (trustor) and the
Orchestration service user (trustee). The service delegates a special role (or roles) as defined in the
trusts_delegated_roles list in the Orchestration configuration file. By default, the Orchestration
service sets all the roles from trustor available for trustee. Deployers might modify this list to
reflect a local RBAC policy. For example, to ensure that the heat process can access only those
services that are expected while impersonating a stack owner.

3. Orchestration stores the encrypted trust ID in the Orchestration database.

4. When a deferred operation is required, the Orchestration service retrieves the trust ID and requests
a trust scoped token which enables the service user to impersonate the stack owner during the
deferred operation. Impersonation is helpful, for example, so the service user can launch Compute
instances on behalf of the stack owner in response to an auto-scaling event.

Authorization model configuration

Initially, the password authorization model was the default authorization model. Since the Kilo release,
the Identity trusts authorization model is enabled for the Orchestration service by default.

To enable the password authorization model, change the following parameter in the heat . conf file:

To enable the trusts authorization model, change the following two parameters in the heat . conf file.

Specify the authentication method for the deferred Orchestration actions. This parameter triggers creating
trust ID and stores it in the Orchestration database:

Allow reauthentication with the trust scoped token issued by using the stored trust ID for long running
tasks:

To specify the trustor roles that it delegates to trustee during authorization, specify the
trusts_delegated_roles parameter in the heat.conf file. If trusts_delegated_roles is not
defined, then all the trustor roles are delegated to trustee.

2.4. Administering Heat 137

https://docs.openstack.org/keystone/xena/user/trusts.html

Heat Documentation, Release 17.0.3.dev4

Note: The trustor delegated roles must be pre-configured in the OpenStack Identity service before using
them in the Orchestration service.

2.4.3 Stack domain users

Stack domain users allow the Orchestration service to authorize and start the following operations within
booted virtual machines:

* Provide metadata to agents inside instances. Agents poll for changes and apply the configuration
that is expressed in the metadata to the instance.

* Detect when an action is complete. Typically, software configuration on a virtual machine after it is
booted. Compute moves the VM state to Active as soon as it creates it, not when the Orchestration
service has fully configured it.

* Provide application level status or meters from inside the instance. For example, allow auto-scaling
actions to be performed in response to some measure of performance or quality of service.

The Orchestration service provides APIs that enable all of these operations, but all of those APIs require
authentication. For example, credentials to access the instance that the agent is running upon. The heat-
cfntools agents use signed requests, which require an ec2 key pair created through Identity. The key pair
is then used to sign requests to the Orchestration CloudFormation and CloudWatch compatible APIs,
which are authenticated through signature validation. Signature validation uses the Identity ec2tokens
extension.

Stack domain users encapsulate all stack-defined users (users who are created as a result of data that is
contained in an Orchestration template) in a separate domain. The separate domain is created specifically
to contain data related to the Orchestration stacks only. A user is created, which is the domain admin,
and Orchestration uses the domain admin to manage the lifecycle of the users in the stack user domain.

Stack domain users configuration

To configure stack domain user, the Orchestration service completes the following tasks:

1. A special OpenStack Identity service domain is created. For example, a domain that is called heat
and the ID is set with the stack_user_domain option in the heat . conf file.

2. A user with sufficient permissions to create and delete projects and users in the heat domain is
created.

3. The username and password for the domain admin user is set in the heat.conf file
(stack_domain_admin and stack_domain_admin_password). This user administers stack do-
main users on behalf of stack owners, so they no longer need to be administrators themselves. The
risk of this escalation path is limited because the heat_domain_admin is only given administra-
tive permission for the heat domain.

To set up stack domain users, complete the following steps:
1. Create the domain:

$OS_TOKEN refers to a token. For example, the service admin token or some other valid token
for a user with sufficient roles to create users and domains. $KS_ENDPOINT_V3 refers to the v3
OpenStack Identity endpoint (for example, http://keystone_address:5000/v3 where key-
stone_address is the IP address or resolvable name for the Identity service).

138 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

openstack --os-token --os-url --0s-
identity-api-version 3 domain create heat --description

The domain ID is returned by this command, and is referred to as $SHEAT_DOMAIN_ID below.

2. Create the user:

openstack --os-token --os-url --0S-
identity-api-version 3 user create --password --domain
HEAT_DOMAIN_ID heat_domain_admin --description

The user ID is returned by this command and is referred to as $DOMAIN_ADMIN_ID below.

3. Make the user a domain admin:

openstack --os-token --os-url --0S-
identity-api-version 3 role add --user --domain
HEAT_DOMAIN_ID admin

Then you must add the domain ID, username and password from these steps to the heat.conf
file:

Usage workflow

The following steps are run during stack creation:

1. Orchestration creates a new stack domain project in the heat domain if the stack contains any
resources that require creation of a stack domain user.

2. For any resources that require a user, the Orchestration service creates the user in the stack domain
project. The stack domain project is associated with the Orchestration stack in the Orchestration
database, but is separate and unrelated (from an authentication perspective) to the stack owners
project. The users who are created in the stack domain are still assigned the heat_stack_user
role, so the API surface they can access is limited through the policy.yaml file. For more infor-
mation, see OpenStack Identity documentation.

3. When API requests are processed, the Orchestration service performs an internal lookup, and al-
lows stack details for a given stack to be retrieved. Details are retrieved from the database for both
the stack owners project (the default API path to the stack) and the stack domain project, subject
to the policy.yaml restrictions.

This means there are now two paths that can result in the same data being retrieved through the Orches-
tration API. The following example is for resource-metadata:

GET vl1/{stack_owner_project_id}/stacks/{stack_name}/\
{stack_id}/resources/{resource_name}/metadata

or:

2.4. Administering Heat 139

https://docs.openstack.org/keystone/xena/

Heat Documentation, Release 17.0.3.dev4

GET v1/{stack_domain_project_id}/stacks/{stack_name}/\
{stack_id}/resources/{resource_name}/metadata

The stack owner uses the former (via openstack stack resource metadata STACK RESOURCE),
and any agents in the instance use the latter.

2.5 Scaling a Deployment

When deploying in an environment where a large number of incoming requests need to be handled, the
API and engine services can be overloaded. In those scenarios, in order to increase the system perfor-
mance, it can be helpful to run multiple load-balanced APIs and engines.

This guide details how to scale out the REST API, the CFN API, and the engine, also known as the
heat-api, heat-api-cfn, and heat-engine services, respectively.

2.5.1 Assumptions

This guide, using a devstack installation of OpenStack, assumes that:
1. You have configured devstack from Single Machine Installation Guide;
2. You have set up heat on devstack, as defined at heat and DevStack;

3. You have installed HAProxy on the devstack server.

2.5.2 Architecture

This section shows the basic heat architecture, the load balancing mechanism used and the target scaled
out architecture.

Basic Architecture

The heat architecture is as defined at heat architecture and shown in the diagram below, where we have
a CLI that sends HTTP requests to the REST and CFN APIs, which in turn make calls using AMQP to
the heat-engine:

140 Chapter 2. Operating Heat

https://docs.openstack.org/devstack/xena/guides/single-machine.html
https://www.haproxy.org/

Heat Documentation, Release 17.0.3.dev4

Load Balancing
As there is a need to use a load balancer mechanism between the multiple APIs and the CLI, a proxy has
to be deployed.

Because the heat CLI and APIs communicate by exchanging HTTP requests and responses, a HAProxy
HTTP load balancer server will be deployed between them.

This way, the proxy will take the CLIs requests to the APIs and act on their behalf. Once the proxy
receives a response, it will be redirected to the caller CLI.

A round-robin distribution of messages from the AMQP queue will act as the load balancer for multiple
engines. Check that your AMQP service is configured to distribute messages round-robin (RabbitMQ
does this by default).

Target Architecture

A scaled out heat architecture is represented in the diagram below:

Thus, a request sent from the CLI looks like:
1. CLI contacts the proxy;
2. The HAProxy server, acting as a load balancer, redirects the call to an API instance;

3. The API server sends messages to the AMQP queue, and the engines pick up messages in round-
robin fashion.

2.5.3 Deploying Multiple APls
In order to run a heat component separately, you have to execute one of the python scripts located at the
bin directory of your heat repository.

These scripts take as argument a configuration file. When using devstack, the configuration file is located
at /etc/heat/heat.conf. For instance, to start new REST and CFN API services, you must run:

bin
bin

Each API service must have a unique address to listen. This address have to be defined in the configuration
file. For REST and CFN APIs, modify the [heat_api] and [heat_api_cfn] blocks, respectively.

(continues on next page)

2.5. Scaling a Deployment 141

https://www.haproxy.org/

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

If you wish to run multiple API processes on the same machine, you must create multiple copies of the
heat.conf file, each containing a unique port number.

In addition, if you want to run some API services in different machines than the devstack server, you have
to update the loopback addresses found at the sql_connection and rabbit_host properties to the devstack
servers IP, which must be reachable from the remote machine.

2.5.4 Deploying Multiple Engines

All engines must be configured to use the same AMQP service. Ensure that all of the rabbit_* and
kombu_* configuration options in the [DEFAULT] section of /etc/heat/heat.conf match across each ma-
chine that will be running an engine. By using the same AMQP configuration, each engine will subscribe
to the same AMQP engine queue and pick up work in round-robin fashion with the other engines.

One or more engines can be deployed per host. Depending on the hosts CPU architecture, it may be
beneficial to deploy several engines on a single machine.

To start multiple engines on the same machine, simply start multiple heat-engine processes:

bin
bin

2.5.5 Deploying the Proxy

In order to simplify the deployment of the HAProxy server, we will replace the REST and CFN APIs
deployed when installing devstack by the HAProxy server. This way, there is no need to update, on the
CLlI, the addresses where it should look for the APIs. In this case, when it makes a call to any APL, it
will find the proxy, acting on their behalf.

Note that the addresses that the HAProxy will be listening to are the pairs API_HOST:API-PORT and
API_CFN_HOST-API_CFN_PORT, found at the [heat_api] and [heat_api_cfn] blocks on the devstack
servers configuration file. In addition, the original heat-api and heat-api-cfn processes running in these
ports have to be killed, because these addresses must be free to be used by the proxy.

To deploy the HAProxy server on the devstack server, run haproxy -f apis-proxy.conf, where this config-
uration file looks like:

4000

(continues on next page)

142 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

8000
3
10
1
10
1
1
10

The values required below are the original ones that were in
/etc/heat/heat.conf on the devstack server.

The values required below are the different addresses supplied when
running the REST API instances.

%

The values required below are the original ones that were in
/etc/heat/heat.conf on the devstack server.

H*

The values required below are the different addresses supplied when
running the CFN API instances.

2.5.6 Sample

This section aims to clarify some aspects of the scaling out solution, as well as to show more details of
the configuration by describing a concrete sample.

2.5. Scaling a Deployment 143

Heat Documentation, Release 17.0.3.dev4

Architecture

This section shows a basic OpenStack architecture and the target one that will be used for testing of the
scaled-out heat services.

Basic Architecture

For this sample, consider that:

1. We have an architecture composed by 3 machines configured in a LAN, with the addresses A:
10.0.0.1; B: 10.0.0.2; and C: 10.0.0.3;

2. The OpenStack devstack installation, including the heat module, has been done in the machine A,
as shown in the Assumptions section.

Target Architecture

At this moment, everything is running in a single devstack server. The next subsections show how to
deploy a scaling out heat architecture by:

1. Running one REST and one CFN API on the machines B and C;

2. Setting up the HAProxy server on the machine A.

Running the API and Engine Services

For each machine, B and C, you must do the following steps:
1. Clone the heat repository https://opendev.org/openstack/heat, run:
:: git clone https://opendev.org/openstack/heat
2. Create a local copy of the configuration file /etc/heat/heat.conf from the machine A;
3. Make required changes on the configuration file;

4. Enter the heat local repository and run:

bin
bin

5. Start as many heat-engine processes as you want running on that machine:

bin
bin

144 Chapter 2. Operating Heat

https://opendev.org/openstack/heat
https://opendev.org/openstack/heat

Heat Documentation, Release 17.0.3.dev4

Changes On Configuration

The original file from A looks like:

[DEFAULT]

sql_connection = mysql+pymysql://root:admin@127.0.0.1/heat?charset=utf8
rabbit_host = localhost

[heat_api]

bind_port = 8004
bind_host = 10.0.0.1

[heat_api_cfn]
bind_port = 8000
bind_host = 10.0.0.1

After the changes for B, it looks like:

[DEFAULT]

sql_connection = mysql+pymysql://root:admin@10.0.0.1/heat?charset=utf8
rabbit_host = 10.0.0.1

[heat_api]
bind_port = 8004
bind_host = 10.0.0.2

[heat_api_cfn]
bind_port = 8000
bind_host = 10.0.0.2

Setting Up HAProxy

On the machine A, kill the heat-api and heat-api-cfn processes by running pkill heat-api and pkill heat-
api-cfn. After, run haproxy -f apis-proxy.conf with the following configuration:

4000

8000

10

10

(continues on next page)

2.5. Scaling a Deployment 145

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

10

10.0.0.1:8004

10.0.0.1:8000

2.6 Upgrades Guideline

This document outlines several steps and notes for operators to reference when upgrading their heat from
previous versions of OpenStack.

Note: This document is only tested in the case of upgrading between sequential releases.

2.6.1 Plan to upgrade

* Read and ensure you understand the release notes for the next release.
* Make a backup of your database.

» Upgrades are only supported one series at a time, or within a series.

2.6.2 Cold Upgrades

Heat already supports cold-upgrades, where the heat services have to be down during the upgrade. For
time-consuming upgrades, it may be unacceptable for the services to be unavailable for a long period of
time. This type of upgrade is quite simple, follow the bellow steps:

1. Stop all heat-api and heat-engine services.
2. Uninstall old code.

3. Install new code.

4. Update configurations.

5

. Do Database sync (most time-consuming step)

146 Chapter 2. Operating Heat

https://docs.openstack.org/releasenotes/heat/
https://governance.openstack.org/tc/reference/tags/assert_supports-upgrade.html

Heat Documentation, Release 17.0.3.dev4

6. Start all heat-api and heat-engine services.

2.6.3 Rolling Upgrades

Note: Rolling Upgrade is supported since Pike, which means operators can rolling upgrade Heat services
from Ocata to Pike release with minimal downtime.

A rolling upgrade would provide a better experience for the users and operators of the cloud. A rolling
upgrade would allow individual heat-api and heat-engine services to be upgraded one at a time, with the
rest of the services still available. This upgrade would have minimal downtime. Please check spec about
rolling upgrades.

Prerequisites

* Multiple Heat nodes.

* A load balancer or some other type of redirection device is being used in front of nodes that run
heat-api services in such a way that a node can be dropped out of rotation. That node continues
running the Heat services (heat-api or heat-engine) but is no longer having requests routed to it.

Procedure

These following steps are the process to upgrade Heat with minimal downtime:

1. Install the code for the next version of Heat either in a virtual environment or a separate control
plane node, including all the python dependencies.

2. Using the newly installed heat code, run the following command to sync the database up to the most
recent version. These schema change operations should have minimal or no effect on performance,
and should not cause any operations to fail.

heat-manage db_sync

3. At this point, new columns and tables may exist in the database. These DB schema changes are
done in a way that both the N and N+1 release can perform operations against the same schema.

4. Create a new rabbitmq vhost for the new release and change the transport_url configuration in
heat.conf file to be:

transport_url = rabbit://<user>:<password>@<host>:5672/<new_vhost>
for all upgrade services.

5. Stop heat-engine gracefully, Heat has supported graceful shutdown features (see the spec about
rolling upgrades). Then start new heat-engine with new code (and corresponding configuration).

Note: Remember to do Step 4, this would ensure that the existing engines would not communicate
with the new engine.

2.6. Upgrades Guideline 147

https://review.opendev.org/#/c/407989/
https://review.opendev.org/#/c/407989/
https://review.opendev.org/#/c/407989/
https://review.opendev.org/#/c/407989/

Heat Documentation, Release 17.0.3.dev4

6. A heat-api service is then upgraded and started with the new rabbitmq vhost.

Note: The second way to do this step is switch heat-api service to use new vhost first (but remem-
ber not to shut down heat-api) and upgrade it.

7. The above process can be followed till all heat-api and heat-engine services are upgraded.

Note: Make sure that all heat-api services has been upgraded before you start to upgrade the last
heat-engine service.

Warning: With the convergence architecture, whenever a resource completes the engine will
send RPC messages to another (or the same) engine to start work on the next resource(s) to
be processed. If the last engine is going to be shut down gracefully, it will finish what it
is working on, which may post more messages to queues. It means the graceful shutdown
does not wait for queues to drain. The shutdown leaves some messages unprocessed and any
IN_PROGRESS stacks would get stuck without any forward progress. The operator must be
careful when shutting down the last engine, make sure queues have no unprocessed messages
before doing it. The operator can check the queues directly with RabbitMQs management
plugin.

8. Once all services are upgraded, double check the DB and services
2.6.4 References
2.7 Man pages for services and utilities

2.7.1 Heat services
heat-engine

SYNOPSIS

heat-engine [options]

DESCRIPTION

heat-engine is the heat project server with an internal RPC api called by the heat-api server.

148 Chapter 2. Operating Heat

http://www.rabbitmq.com/management.html

Heat Documentation, Release 17.0.3.dev4

INVENTORY

The heat-engine does all the orchestration work and is the layer in which the resource integration is
implemented.

OPTIONS

--config-file
Path to a config file to use. Multiple config files can be specified, with values in later files taking
precedence.

--config-dir
Path to a config directory to pull .conf files from. This file set is sorted, so as to provide a predictable
parse order if individual options are over-ridden. The set is parsed after the file(s), if any, specified
via config-file, hence over-ridden options in the directory take precedence.

--version
Show programs version number and exit. The output could be empty if the distribution didnt
specify any version information.

FILES

* /etc/heat/heat.conf

heat-api

SYNOPSIS
heat-api [options]

DESCRIPTION

heat-api provides an external REST API to the heat project.

INVENTORY

heat-api is a service that exposes an external REST based api to the heat-engine service. The communi-
cation between the heat-api and heat-engine uses message queue based RPC.

2.7. Man pages for services and utilities 149

Heat Documentation, Release 17.0.3.dev4

OPTIONS

--config-file
Path to a config file to use. Multiple config files can be specified, with values in later files taking
precedence.

--config-dir
Path to a config directory to pull .conf files from. This file setis sorted, so as to provide a predictable
parse order if individual options are over-ridden. The set is parsed after the file(s), if any, specified
via config-file, hence over-ridden options in the directory take precedence.

--version
Show programs version number and exit. The output could be empty if the distribution didnt
specify any version information.

FILES

¢ /etc/heat/heat.conf

heat-api-cfn

SYNOPSIS

heat-api-cfn [options]

DESCRIPTION

heat-api-cfn is a CloudFormation compatible API service to the heat project.

INVENTORY

heat-api-cfn is a service that exposes an external REST based api to the heat-engine service. The com-
munication between the heat-api-cfn and heat-engine uses message queue based RPC.

OPTIONS

--config-file
Path to a config file to use. Multiple config files can be specified, with values in later files taking
precedence.

--config-dir
Path to a config directory to pull .conf files from. This file setis sorted, so as to provide a predictable
parse order if individual options are over-ridden. The set is parsed after the file(s), if any, specified
via config-file, hence over-ridden options in the directory take precedence.

--version
Show programs version number and exit. The output could be empty if the distribution didnt
specify any version information.

150 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

FILES

 /etc/heat/heat.conf

2.7.2 Heat utilities

heat-manage

SYNOPSIS

heat-manage <action> [options]

DESCRIPTION

heat-manage helps manage heat specific database operations.

OPTIONS

The standard pattern for executing a heat-manage command is: heat-manage <command> [<args>]
Run with -h to see a list of available commands: heat-manage -h

Commands are db_version, db_sync, purge_deleted, migrate_convergence_1,
migrate_properties_data, and service. Detailed descriptions are below.

heat-manage db_version
Print out the db schema version.
heat-manage db_sync
Sync the database up to the most recent version.

heat-manage purge_deleted [-g {days,hours,minutes,seconds}] [-p project_id]
[age]

Purge db entries marked as deleted and older than [age]. When project_id argument is pro-
vided, only entries belonging to this project will be purged.

heat-manage migrate_properties_data

Migrates properties data from the legacy locations in the db (resource.properties_data and
event.resource_properties) to the modern location, the resource_properties_data table.

heat-manage migrate_convergence_1 [stack_id]

Migrates [stack_id] from non-convergence to convergence. This requires running conver-
gence enabled heat engine(s) and cant be done when they are offline.

heat-manage service list
Shows details for all currently running heat-engines.
heat-manage service clean

Clean dead engine records.

2.7. Man pages for services and utilities 151

Heat Documentation, Release 17.0.3.dev4

heat-manage --version

Shows programs version number and exit. The output could be empty if the distribution
didnt specify any version information.

FILES

The /etc/heat/heat.conf file contains global options which can be used to configure some aspects of heat-
manage, for example the DB connection and logging.

BUGS

Heat bugs are managed through StoryBoard OpenStack Heat Stories

heat-db-setup

SYNOPSIS

heat-db-setup [COMMANDS] [OPTIONS]

DESCRIPTION

heat-db-setup is a tool which configures the local MySQL database for heat. Typically distro-specific
tools would provide this functionality so please read the distro-specific documentation for configuring
heat.

COMMANDS

rpm
Indicate the distribution is a RPM packaging based distribution.
deb

Indicate the distribution is a DEB packaging based distribution.

OPTIONS

-h, --help
Print usage information.

-p, --password
Specify the password for the heat MySQL user that the script will use to connect to the heat MySQL
database. By default, the password heat will be used.

-r, --rootpw
Specify the root MySQL password. If the script installs the MySQL server, it will set the root pass-
word to this value instead of prompting for a password. If the MySQL server is already installed,
this password will be used to connect to the database instead of having to prompt for it.

152 Chapter 2. Operating Heat

https://storyboard.openstack.org/#!/project/989

Heat Documentation, Release 17.0.3.dev4

-y, --yes
In cases where the script would normally ask for confirmation before doing something, such as in-
stalling mysql-server, just assume yes. This is useful if you want to run the script non-interactively.

EXAMPLES

heat-db-setup rpm -p heat_password -r mysql_pwd -y
heat-db-setup deb -p heat_password -r mysql_pwd -y

heat-db-setup rpm

BUGS

Heat bugs are managed through StoryBoard OpenStack Heat Stories

heat-keystone-setup

SYNOPSIS

heat-keystone-setup

DESCRIPTION

Warning: This script is deprecated, please use other tool to setup keystone for heat.

The heat-keystone-setup tool configures keystone for use with heat. This script requires admin
keystone credentials to be available in the shell environment and write access to /etc/keystone.

Distributions may provide other tools to setup keystone for use with Heat, so check the distro documen-
tation first.

EXAMPLES

heat-keystone-setup

BUGS

Heat bugs are managed through StoryBoard OpenStack Heat Stories

2.7. Man pages for services and utilities 153

https://storyboard.openstack.org/#!/project/989
https://storyboard.openstack.org/#!/project/989

Heat Documentation, Release 17.0.3.dev4

heat-keystone-setup-domain

SYNOPSIS

heat-keystone-setup-domain [OPTIONS]

DESCRIPTION

The heat-keystone-setup-domain tool configures keystone by creating a stack user domain and the user
credential used to manage this domain. A stack user domain can be treated as a namespace for projects,
groups and users created by heat. The domain will have an admin user that manages other users, groups
and projects in the domain.

This script requires admin keystone credentials to be available in the shell environment by setting
OS_USERNAME and OS_PASSWORD.

After running this script, a user needs to take actions to check or modify the heat configuration file (e.g.
/etc/heat/heat.conf). The tool is NOT performing these updates on behalf of the user.

Distributions may provide other tools to setup stack user domain for use with heat, so check the dis-
tro documentation first. Other tools are available to set up the stack user domain, for example python-
openstackclient, which is preferred to this tool where it is available.

OPTIONS

-h, --help
Print usage information.

--config-dir <DIR>
Path to a config directory from which to read the heat.conf file(s). This file set is sorted, so as
to provide a predictable parse order if individual options are over-ridden. The set is parsed after
the file(s) specified via previous config-file, arguments hence over-ridden options in the directory
take precedence.

--config-file <PATH>
Path to a config file to use. Multiple config files can be specified, with values in later files taking
precedence. The default files used is /etc/heat/heat.conf.

--stack-domain-admin <USERNAME>
Name of a user for Keystone to create, which has roles sufficient to manage users (i.e. stack domain
users) and projects (i.e. stack domain projects) in the stack user domain.

Another way to specify the admin user name is by setting an environment variable
STACK_DOMAIN_ADMIN before running this tool. If both command line arguments and en-
vironment variable are specified, the command line arguments take precedence.

--stack-domain-admin-password <PASSWORD>
Password for the stack-domain-admin user.

The password can be instead specified wusing an environment variable
STACK_DOMAIN_ADMIN_PASSWORD before invoking this tool. If both command line
arguments and environment variable are specified, the command line arguments take precedence.

154 Chapter 2. Operating Heat

Heat Documentation, Release 17.0.3.dev4

--stack-user-domain-name <DOMAIN>
Name of domain to create for stack users.

The domain name can be instead specified using an environment variable
STACK_USER_DOMAIN_NAME before invoking this tool. If both command line arguments and
environment variable are specified, the command line argument take precedence.

--version
Show programs version number and exit. The output could be empty if the distribution didnt
specify any version information.

EXAMPLES

heat-keystone-setup-domain

heat-keystone-setup-domain stack-user-domain-name heat_user_domain stack-
domain-admin heat_domain_admin stack-domain-admin-password verysecrete

BUGS

Heat bugs are managed through StoryBoard OpenStack Heat Stories

heat-status

Synopsis

Description

heat-status is a tool that provides routines for checking the status of a Heat deployment.

Options

The standard pattern for executing a heat-status command is:

Run without arguments to see a list of available command categories:

Categories are:
e upgrade
Detailed descriptions are below.

You can also run with a category argument such as upgrade to see a list of all commands in that category:

2.7. Man pages for services and utilities 155

https://storyboard.openstack.org/#!/project/989

Heat Documentation, Release 17.0.3.dev4

These sections describe the available categories and arguments for heat-status.

Upgrade

heat-status upgrade check Performs a release-specific readiness check before restarting services
with new code. This command expects to have complete configuration and access to databases and
services.

Return Codes

Return code Description
0 All upgrade readiness checks passed successfully and there is nothing to do.
1 At least one check encountered an issue and requires further investigation.
This is considered a warning but the upgrade may be OK.
2 There was an upgrade status check failure that needs to be investigated. This
should be considered something that stops an upgrade.
255 An unexpected error occurred.
History of Checks
12.0.0 (Stein)

* Placeholder to be filled in with checks as they are added in Stein.

156 Chapter 2. Operating Heat

CHAPTER
THREE

USING HEAT

3.1 Creating your first stack

3.1.1 Confirming you can access a Heat endpoint

Before any Heat commands can be run, your cloud credentials need to be sourced:

§ source openrc

You can confirm that Heat is available with this command:

$ openstack stack list

This should return an empty line

3.1.2 Preparing to create a stack

Download and register the image:

$ wget http://cloud. fedoraproject.org/fedora-20.x86_64.qcow2
$ openstack image create \
--disk-format=qcow2 \
--container-format=bare \
--file=fedora-20.x86_64.qcow2 \
fedora-20.x86_64

Your cloud will have different flavors and images available for launching instances, you can discover what
is available by running:

$ openstack flavor list
$ openstack image list

To allow you to SSH into instances launched by Heat, a keypair will be generated:

$ openstack keypair create heat_key > heat_key.priv
§ chmod 600 heat_key.priv

157

Heat Documentation, Release 17.0.3.dev4

3.1.3 Launching a stack

Now lets launch a stack, using an example template from the heat-templates repository:

$ openstack stack create -t https://opendev.org/openstack/heat-templates/raw/
—src/branch/master/hot/F20/WordPress_Native.yaml --parameter key_name=heat_
—key --parameter image_id=my-fedora-image --parameter instance_type=ml.small.
—teststack

Which will respond:
718 2571-4 426 o

—2017-04-11 06:24

Note: Link on Heat template presented in command above should reference on RAW template. In case
if it be a html page with template, Heat will return an error.

Note: You cannot rename a stack after it has been launched.

List stacks

List the stacks in your tenant:

$ openstack stack list

List stack events

List the events related to a particular stack:

$ openstack stack event list teststack

158 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

Describe the wordpress stack

Show detailed state of a stack:

$ openstack stack show teststack

Note: After a few seconds, the stack_status should change from IN_PROGRESS to CREATE_COMPLETE.

Verify instance creation
Because the software takes some time to install from the repository, it may be a few minutes before the
Wordpress instance is in a running state.

Point a web browser at the location given by the WebsiteURL output as shown by openstack stack
output show:

$ WebsiteURL=$(openstack stack output show teststack WebsiteURL -c output_
—value -f value)
§$ curl $WebsiteURL

Delete the instance when done

Note: The list operation will show no running stack.:

$ openstack stack delete teststack
$ openstack stack list

You can explore other heat commands by referring to the Heat command reference for the OpenStack
Command-Line Interface; then read the Template Guide and start authoring your own templates.

3.2 Glossary

API server HTTP REST API service for heat.
CFN An abbreviated form of AWS CloudFormation.
constraint Defines valid input parameters for a template.

dependency When a resource must wait for another resource to finish creation before being created
itself. Heat adds an implicit dependency when a resource references another resource or one of its
attributes. An explicit dependency can also be created by the user in the template definition.

environment Used to affect the run-time behavior of the template. Provides a way to override the default
resource implementation and parameters passed to Heat. See Environments.

Heat Orchestration Template A particular femplate format that is native to Heat. Heat Orchestration
Templates are expressed in YAML and are not backwards-compatible with CloudFormation tem-
plates.

HOT An acronym for Heat Orchestration Template.

input parameters See parameters.

3.2. Glossary 159

https://docs.openstack.org/python-heatclient/xena/cli/
https://docs.openstack.org/python-openstackclient/xena/
https://docs.openstack.org/python-openstackclient/xena/

Heat Documentation, Release 17.0.3.dev4

Metadata May refer to Resource Metadata, Nova Instance metadata, or the Metadata service.

Metadata service A Compute service that enables virtual machine instances to retrieve instance-specific
data. See Nova Metadata service documentation.

multi-region A feature of Heat that supports deployment to multiple regions.
nested resource A resource instantiated as part of a nested stack.

nested stack A remplate referenced by URL inside of another template. Used to reduce redundant re-
source definitions and group complex architectures into logical groups.

Nova Instance metadata User-provided key:value pairs associated with a Compute Instance. See
Instance-specific data (OpenStack Operations Guide).

OpenStack Open source software for building private and public clouds.
orchestrate Arrange or direct the elements of a situation to produce a desired effect.

outputs A top-level block in a femplate that defines what data will be returned by a stack after instanti-
ation.

parameters A top-level block in a remplate that defines what data can be passed to customise a template
when it is used to create or update a stack.

provider resource A resource implemented by a provider template. The parent resources properties
become the nested stacks parameters.

provider template Allows user-definable resource providers to be specified via nested stacks. The
nested stacks outputs become the parent stacks artributes.

resource An element of OpenStack infrastructure instantiated from a particular resource provider. See
also nested resource.

resource attribute Data that can be obtained from a resource, e.g. a servers public IP or name. Usually
passed to another resources properties or added to the stacks outputs.

resource group A resource provider that creates one or more identically configured resources or nested
resources.

Resource Metadata A resource property that contains CFN-style template metadata. See
AWS::CloudFormation::Init (AWS CloudFormation User Guide)

resource plugin Python code that understands how to instantiate and manage a resource. See Heat
Resource Plugins (OpenStack wiki).

resource property Data utilized for the instantiation of a resource. Can be defined statically in a tem-
plate or passed in as input parameters.

resource provider The implementation of a particular resource type. May be a resource plugin or a
provider template.

stack A collection of instantiated resources that are defined in a single remplate.

stack resource A resource provider that allows the management of a nested stack as a resource in a
parent stack.

template An orchestration document that details everything needed to carry out an orchestration.
template resource See provider resource.

user data A resource property that contains a user-provided data blob. User data gets passed to cloud-
init to automatically configure instances at boot time. See also Nova User data documentation.

160 Chapter 3. Using Heat

https://docs.openstack.org/nova/xena/user/metadata.html#metadata-service
https://wiki.openstack.org/wiki/OpsGuide/User-Facing_Operations#using-instance-specific-data
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-init.html
https://wiki.openstack.org/wiki/Heat/Plugins#Heat_Resource_Plugins
https://wiki.openstack.org/wiki/Heat/Plugins#Heat_Resource_Plugins
https://cloudinit.readthedocs.io/
https://cloudinit.readthedocs.io/
https://docs.openstack.org/nova/xena/user/metadata.html#user-provided-data

Heat Documentation, Release 17.0.3.dev4

wait condition A resource provider that provides a way to communicate data or events from servers
back to the orchestration engine. Most commonly used to pause the creation of the stack while the
server is being configured.

3.3 Working with Templates

3.3.1 Template Guide
Heat Orchestration Template (HOT) Guide

HOT is a template format supported by the heat, along with the other template format, i.e. the Heat
CloudFormation-compatible format (CFN). This guide is targeted towards template authors and explains
how to write HOT templates based on examples. A detailed specification of HOT can be found at Hear
Orchestration Template (HOT) specification.

Status

HOT is in the process of surpassing the functionality of the CFN. This guide will be updated periodically
whenever new features get implemented for HOT.

Writing a hello world HOT template

This section gives an introduction on how to write HOT templates, starting from very basic steps and
then going into more and more detail by means of examples.

A most basic template

The most basic template you can think of may contain only a single resource definition using only prede-
fined properties (along with the mandatory Heat template version tag). For example, the template below
could be used to simply deploy a single compute instance.

heat_template_version
description

resources
my_instance
type
properties
key_name
image
flavor

Each HOT template has to include the heat_template_version key with a valid version of HOT, e.g. 2015-
10-15 (see Heat template version for a list of all versions). While the description is optional, it is good
practice to include some useful text that describes what users can do with the template. In case you want

3.3. Working with Templates 161

Heat Documentation, Release 17.0.3.dev4

to provide a longer description that does not fit on a single line, you can provide multi-line text in YAML,
for example:

description

The resources section is required and must contain at least one resource definition. In the example above,
a compute instance is defined with fixed values for the key_name, image and flavor parameters.

Note that all those elements, i.e. a key-pair with the given name, the image and the flavor have to exist
in the OpenStack environment where the template is used. Typically a template is made more easily
reusable, though, by defining a set of input parameters instead of hard-coding such values.

Template input parameters

Input parameters defined in the parameters section of a HOT template (see also Parameters section) allow
users to customize a template during deployment. For example, this allows for providing custom key-pair
names or image IDs to be used for a deployment. From a template authors perspective, this helps to make
a template more easily reusable by avoiding hardcoded assumptions.

Sticking to the example used above, it makes sense to allow users to provide their custom key-pairs,
provide their own image, and to select a flavor for the compute instance. This can be achieved by extending
the initial template as follows:

heat_template_version
description

parameters
key_name
type
label
description
image_id
type
label
description
instance_type
type
label
description

resources
my_instance
type
properties
key_name get_param
image get_param
flavor get_param

In the example above, three input parameters have been defined that have to be provided by the user upon

162 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

deployment. The fixed values for the respective resource properties have been replaced by references to
the corresponding input parameters by means of the ger_param function (see also Intrinsic functions).

You can also define default values for input parameters which will be used in case the user does not provide
the respective parameter during deployment. For example, the following definition for the instance_type
parameter would select the m1.small flavor unless specified otherwise by the user.

parameters
instance_type
type
label
description
default

Another option that can be specified for a parameter is to hide its value when users request information
about a stack deployed from a template. This is achieved by the hidden attribute and useful, for example
when requesting passwords as user input:

parameters
database_password
type
label
description
hidden

Restricting user input

In some cases you might want to restrict the values of input parameters that users can supply. For example,
you might know that the software running in a compute instance needs a certain amount of resources so
you might want to restrict the instance_type parameter introduced above. Parameters in HOT templates
can be restricted by adding a constraints section (see also Parameter Constraints). For example, the
following would allow only three values to be provided as input for the instance_type parameter:

parameters
instance_type

type

label

description

constraints
allowed_values
description

The constraints section allows for defining a list of constraints that must all be fulfilled by user input.
For example, the following list of constraints could be used to clearly specify format requirements on a
password to be provided by users:

parameters
database_password
type
label
description

(continues on next page)

3.3. Working with Templates 163

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

hidden

constraints
length min max
description
allowed_pattern
description
allowed_pattern
description

Note that you can define multiple constraints of the same type. Especially in the case of allowed patterns
this not only allows for keeping regular expressions simple and maintainable, but also for keeping error
messages to be presented to users precise.

Providing template outputs

In addition to template customization through input parameters, you will typically want to provide outputs
to users, which can be done in the outputs section of a template (see also Outputs section). For example,
the IP address by which the instance defined in the example above can be accessed should be provided to
users. Otherwise, users would have to look it up themselves. The definition for providing the IP address
of the compute instance as an output is shown in the following snippet:

outputs
instance_ip
description
value get_attr

Output values are typically resolved using intrinsic function such as the get_attr function in the example
above (see also Intrinsic functions).

Writing a hello world HOT template

HOT is a new template format meant to replace the CloudFormation-compatible format (CFN) as the
native format supported by the Orchestration module over time. This guide is targeted towards template
authors and explains how to write HOT templates based on examples. A detailed specification of HOT
can be found at Heat Orchestration Template (HOT) specification.

This section gives an introduction on how to write HOT templates, starting from very basic steps and
then going into more and more detail by means of examples.

A most basic template

The most basic template you can think of contains only a single resource definition using only predefined
properties. For example, the template below could be used to deploy a single compute instance:

heat_template_version

description

(continues on next page)

164 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

resources
my_instance
type
properties
key_name
image
flavor

Each HOT template must include the heat_template_version key with the HOT version value, for
example, 2013-05-23. Consult the Heat template version list for allowed values and their features.

The description key is optional, however it is good practice to include some useful text that describes
what users can do with the template. In case you want to provide a longer description that does not fit on
a single line, you can provide multi-line text in YAML, for example:

description

The resources section is required and must contain at least one resource definition. In the above exam-
ple, a compute instance is defined with fixed values for the key_name, image and flavor properties.

Note: All the defined elements (key pair, image, flavor) have to exist in the OpenStack environment
where the template is used.

Input parameters

Input parameters defined in the parameters section of a template allow users to customize a template
during deployment. For example, this allows for providing custom key pair names or image IDs to be
used for a deployment. From a template authors perspective, this helps to make a template more easily
reusable by avoiding hardcoded assumptions.

The following example extends the previous template to provide parameters for the key pair, image and
flavor properties of the resource:

heat_template_version
description

parameters
key_name
type
label
description
image_id
type
label
description

(continues on next page)

3.3. Working with Templates 165

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

flavor
type
label
description

resources
my_instance
type
properties
key_name get_param
image get_param
flavor get_param

Values for the three parameters must be defined by the template user during the deployment of a stack.
The get_param intrinsic function retrieves a user-specified value for a given parameter and uses this
value for the associated resource property.

For more information about intrinsic functions, see Intrinsic functions.

Providing default values

You can provide default values for parameters. If a user doesnt define a value for a parameter, the default
value is used during the stack deployment. The following example defines a default value m1.small for
the flavor property:

parameters
flavor
type
label
description
default

Note: If a template doesnt define a default value for a parameter, then the user must define the value,
otherwise the stack creation will fail.

Hiding parameters values

The values that a user provides when deploying a stack are available in the stack details and can be
accessed by any user in the same tenant. To hide the value of a parameter, use the hidden boolean
attribute of the parameter:

parameters
database_password
type
label
description
hidden

166 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

Restricting user input

You can restrict the values of an input parameter to make sure that the user defines valid data for this
parameter. The constraints property of an input parameter defines a list of constraints to apply for the
parameter. The following example restricts the flavor parameter to a list of three possible values:

parameters
flavor

type

label

description

constraints
allowed_values
description

The following example defines multiple constraints for a password definition:

parameters
database_password
type
label
description
hidden
constraints
length min max
description
allowed_pattern
description
allowed_pattern
description

The list of supported constraints is available in the Parameter Constraints section.

Note: You can define multiple constraints of the same type. Especially in the case of allowed patterns
this not only allows for keeping regular expressions simple and maintainable, but also for keeping error
messages to be presented to users precise.

Template outputs

In addition to template customization through input parameters, you can provide information about the
resources created during the stack deployment to the users in the outputs section of a template. In the
following example the output section provides the IP address of the my_instance resource:

outputs
instance_ip
description
value get_attr

3.3. Working with Templates 167

Heat Documentation, Release 17.0.3.dev4

Note: Output values are typically resolved using intrinsic function such as the get_attr. See Intrinsic
Jfunctions for more information about intrinsic functions..

See Outputs section for more information about the outputs section.

Guideline for features

Here are guideline for features:

Multi-Clouds support

Start from Stein release (version 12.0.0), Heat support multi-clouds orchestration. This document means
to provide guideline for how to use multi-clouds features, and whats the environment requirement.

Note:

If you like to create a stack in multi-region environment, you dont need this feature at all. all

you need to do is provide region_name under context property for OS::Heat::Stack. If you like to see
information on how to provide SSL support for your multi-region environment, you can jump to Use CA
cert (Optional) .

Requirements

* Barbican service - For better security concerns, multi-cloud orchestration feature depends on

Barbican service. So you have to make sure Barbican service is ready in your environment before
you use this feature.

Access to remote Orchestration service - Before you run your multi-cloud template. Make sure
youre able to access to remote Orchestration service with correct endpoint information, legal access
right, and ability to access to the remote site KeyStone, and Orchestration service API endpoint
from local site. You need to make sure local Orchestration service is able to trigger and complete
necessary API calls from local site to remote site. So we can complete stack actions without facing
any access error.

Template complete resources/functions compatibility - In your Orchestration template, you
might want to use all kind of template functions or resource types as your template version and
your Orchestration service allows. But please aware that once you plan to use Orchestration ser-
vices across multiple OpenStack clouds, you have to also consider the compatibility. Make sure
the template version and resource types are ready to use before you ask remote site to run it. If
you accidentally provide wrong template version (which not provided in remote site), you will get
error message from remote site which prevent you from actually create remote resources. But its
even better if we can just find such an error earlier.

168

Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

Prepare

First of all, you need to put your remote cloud credential in a Barbican secret. To build your own multi-
clouds stack, you need to build a Barbican secret first with most information for remote endpoint infor-
mation.

Gathering credential information

Before we start generating secret, lets talk about what credential format we need. credential is a JSON
format string contains two keys auth_type, and auth. auth_type, and auth following auth plugin
loader rules from Keystone. You can find plugin options and authentication plugins in keystoneauth
documents.

* auth_type - auth_type is a string for plugin name. Allows value like v3applicationcredential,
password, v3oidcclientcredentials, etc. You need to provide available plugins <plugin-
options.html#available-plugins>.

* auth - auth is a dictionary contains all parameters for plugins to perform authentication. You can
find all valid parameter references from available plugins or get to all class path from plugin names
for more detail allowed value or trace plugin class from there.

As you can tell, all allowed authentication plugins for credentials follows plugins keystoneauth rules.
So once new change in keystoneauth, it will also directly reflect credentials too. Actually we just call
keystoneauth to get plugin loader for remote authentication plugins. So keep an eye on keystoneauth if
youre using this feature.

Validate your credential

Now you have all your credential information ready, try to validate first if you can. You can either directly
test them via config, via CLI, or via keystoneauth sessions.

build credential secret

Once youre sure its valid, we can start building the secret out. To build a secret you just have to follow
the standard Barbican CLI or API to store your secret.

The local site will read this secret to perform stack actions in remote site. Lets give a quick example here:
Said you have two OpenStack cloud site A and site B. If you need to control site B from site A, make
sure you have a secret with site Bs access information in site A. If you also like to control site A from
site B, make sure you have a secret with site As access information in site B.

openstack secret store -n appcred --payload
—
.

—

Note: One common error for JSON format is to use single quote() instead of double quote () inner your
JSON schema.

3.3. Working with Templates 169

https://docs.openstack.org/keystoneauth/xena/plugin-options.html
https://docs.openstack.org/keystoneauth/xena/authentication-plugins.html#loading-plugins-by-name
https://docs.openstack.org/keystoneauth/xena/plugin-options.html#available-plugins
https://docs.openstack.org/keystoneauth/xena/authentication-plugins.html#loading-plugins-by-name
https://docs.openstack.org/keystoneauth/xena/plugin-options.html#using-plugins-via-config-file
https://docs.openstack.org/keystoneauth/xena/plugin-options.html#using-plugins-via-cli
https://docs.openstack.org/keystoneauth/xena/using-sessions.html
https://docs.openstack.org/python-barbicanclient/xena/cli/cli_usage.html#secret-create

Heat Documentation, Release 17.0.3.dev4

Create remote stacks

Now, you have a secret id generated for your Barbican secret. Use that id as input for template.
To create a remote stack, you can simply use an OS::Heat::Stack resource in your template.

In resource properties, provide credential_secret_id (Barbican secret ID from the secret we just builded
for credential) under context property.

Here is an template example for you:

heat_template_version

resources
stack_in_remote_cloud
type
properties
context
credential_secret_id
template get_file

And thats all you need to do. The rest looks the same as usual.

Local Heat will read that secret, parse the credential information out, replace current authentication
plugin in context, and make remote calls.

Heat will not store your credential information anywhere. so your secret security will remains within
Barbican. That means if you wish to change your credential or make sure other people cant access to it.
All you need to do is to update your Barbican secret or strong the security for it. But aware of this. If
you plan to switch the credential content, make sure that wont affect resources/stacks in remote site. So
do such actions with super care.

Use CA cert (Optional)

For production clouds, its very important to have SSL support. Here we provide CA cert method for your
SSL access. If you wish to use that, use ca_cert under context property. Which ca_cert is the contents
of a CA Certificate file that can be used to verify a remote cloud or regions server certificate. Or you
can use insecure (a boolean option) under context property if you like to use insecure mode (For security
concerns, dont do it!) and you dont want to use CA cert.

Here is an example for you:

heat_template_version

resources
stack_in_remote_cloud
type
properties
context
credential_secret_id
ca_cert
template get_file

170 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

Note: If insecure flag is on, ca_cert will be ignored.

Heat Orchestration Template (HOT) specification

HOT is a new template format meant to replace the Heat CloudFormation-compatible format (CFN) as
the native format supported by the Heat over time. This specification explains in detail all elements of
the HOT template format. An example driven guide to writing HOT templates can be found at Hear
Orchestration Template (HOT) Guide.

Status

HOT is considered reliable, supported, and standardized as of our Icehouse (April 2014) release. The
Heat core team may make improvements to the standard, which very likely would be backward compati-
ble. The template format is also versioned. Since Juno release, Heat supports multiple different versions
of the HOT specification.

Template structure

HOT templates are defined in YAML and follow the structure outlined below.

heat_template_version

description

parameter_groups

parameters

resources

outputs

conditions

heat_template_version This key with value 2013-05-23 (or a later date) indicates that the YAML
document is a HOT template of the specified version.

description This optional key allows for giving a description of the template, or the workload that can
be deployed using the template.

parameter_groups This section allows for specifying how the input parameters should be grouped and
the order to provide the parameters in. This section is optional and can be omitted when necessary.

3.3. Working with Templates 171

Heat Documentation, Release 17.0.3.dev4

parameters This section allows for specifying input parameters that have to be provided when instanti-
ating the template. The section is optional and can be omitted when no input is required.

resources This section contains the declaration of the single resources of the template. This section with
at least one resource should be defined in any HOT template, or the template would not really do
anything when being instantiated.

outputs This section allows for specifying output parameters available to users once the template has
been instantiated. This section is optional and can be omitted when no output values are required.

conditions This optional section includes statements which can be used to restrict when a resource is
created or when a property is defined. They can be associated with resources and resource prop-
erties in the resources section, also can be associated with outputs in the outputs sections of a
template.

Note: Support for this section is added in the Newton version.

Heat template version

The value of heat_template_version tells Heat not only the format of the template but also features
that will be validated and supported. Beginning with the Newton release, the version can be either the
date of the Heat release or the code name of the Heat release. Heat currently supports the following
values for the heat_template_version key:

2013-05-23

The key with value 2013-05-23 indicates that the YAML document is a HOT template and it may
contain features implemented until the Icehouse release. This version supports the following functions
(some are back ported to this version):

172 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

2014-10-16

The key with value 2014-10-16 indicates that the YAML document is a HOT template and it may contain
features added and/or removed up until the Juno release. This version removes most CFN functions that
were supported in the Icehouse release, i.e. the 2013-05-23 version. So the supported functions now
are:

2015-04-30

The key with value 2015-04-30 indicates that the YAML document is a HOT template and it may
contain features added and/or removed up until the Kilo release. This version adds the repeat function.
So the complete list of supported functions is:

2015-10-15

The key with value 2015-10-15 indicates that the YAML document is a HOT template and it may
contain features added and/or removed up until the Liberty release. This version removes the Fn::Select
function, path based get_attr/get_param references should be used instead. Moreover get_attr
since this version returns dict of all attributes for the given resource excluding show attribute, if theres
no <attribute name> specified, e.g. { get_attr: [<resource name>]}. This version also adds the
str_split function and support for passing multiple lists to the existing list_join function. The complete
list of supported functions is:

(continues on next page)

3.3. Working with Templates 173

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

2016-04-08

The key with value 2016-04-08 indicates that the YAML document is a HOT template and it may
contain features added and/or removed up until the Mitaka release. This version also adds the map_merge
function which can be used to merge the contents of maps. The complete list of supported functions is:

2016-10-14 | newton

The key with value 2016-10-14 or newton indicates that the YAML document is a HOT template and
it may contain features added and/or removed up until the Newton release. This version adds the yaql
function which can be used for evaluation of complex expressions, the map_replace function that can
do key/value replacements on a mapping, and the if function which can be used to return corresponding
value based on condition evaluation. The complete list of supported functions is:

174 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

This version adds equals condition function which can be used to compare whether two values are equal,
the not condition function which acts as a NOT operator, the and condition function which acts as an
AND operator to evaluate all the specified conditions, the or condition function which acts as an OR
operator to evaluate all the specified conditions. The complete list of supported condition functions is:

2017-02-24 | ocata

The key with value 2017-02-24 or ocata indicates that the YAML document is a HOT template
and it may contain features added and/or removed up until the Ocata release. This version adds the
str_replace_strict function which raises errors for missing params and the £ilter function which
filters out values from lists. The complete list of supported functions is:

filter

The complete list of supported condition functions is:

3.3. Working with Templates 175

Heat Documentation, Release 17.0.3.dev4

2017-09-01 | pike

The key with value 2017-09-01 or pike indicates that the YAML document is a HOT template
and it may contain features added and/or removed up until the Pike release. This version adds
the make_url function for assembling URLs, the list_concat function for combining multiple
lists, the 1ist_concat_unique function for combining multiple lists without repeating items, the
string_replace_vstrict function which raises errors for missing and empty params, and the
contains function which checks whether specific value is in a sequence. The complete list of supported
functions is:

filter

We support yaql and contains as condition functions in this version. The complete list of supported
condition functions is:

176 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

2018-03-02 | queens

The key with value 2018-03-02 or queens indicates that the YAML document is a HOT template and it
may contain features added and/or removed up until the Queens release. The complete list of supported
functions is:

filter

The complete list of supported condition functions is:

2018-08-31 | rocky

The key with value 2018-08-31 or rocky indicates that the YAML document is a HOT template and it
may contain features added and/or removed up until the Rocky release. The complete list of supported
functions is:

filter

(continues on next page)

3.3. Working with Templates 177

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

The complete list of supported condition functions is:

2021-04-16 | wallaby

The key with value 2021-04-16 or wallaby indicates that the YAML document is a HOT template and
it may contain features added and/or removed up until the Wallaby release.

This version adds a 2-argument variant of the if function. When the condition is false and no third
argument is supplied, the entire enclosing item (which may be e.g. a list item, a key-value pair in a dict,
or a property value) will be elided. This allows for e.g. conditional definition of properties while keeping
the default value when the condition is false.

The complete list of supported functions is:

filter

(continues on next page)

178 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

The complete list of supported condition functions is:

Parameter groups section

The parameter_groups section allows for specifying how the input parameters should be grouped and
the order to provide the parameters in. These groups are typically used to describe expected behavior for
downstream user interfaces.

These groups are specified in a list with each group containing a list of associated parameters. The lists
are used to denote the expected order of the parameters. Each parameter should be associated to a specific
group only once using the parameter name to bind it to a defined parameter in the parameters section.

label A human-readable label that defines the associated group of parameters.
description This attribute allows for giving a human-readable description of the parameter group.
parameters A list of parameters associated with this parameter group.

param name The name of the parameter that is defined in the associated parameters section.

3.3. Working with Templates 179

Heat Documentation, Release 17.0.3.dev4

Parameters section

The parameters section allows for specifying input parameters that have to be provided when instan-
tiating the template. Such parameters are typically used to customize each deployment (e.g. by setting
custom user names or passwords) or for binding to environment-specifics like certain images.

Each parameter is specified in a separated nested block with the name of the parameters defined in the
first line and additional attributes such as type or default value defined as nested elements.

param name The name of the parameter.

type The type of the parameter. Supported types are string, number, comma_delimited_list, json
and boolean. This attribute is required.

label A human readable name for the parameter. This attribute is optional.
description A human readable description for the parameter. This attribute is optional.

default A default value for the parameter. This value is used if the user doesnt specify his own value
during deployment. This attribute is optional.

hidden Defines whether the parameters should be hidden when a user requests information about a stack
created from the template. This attribute can be used to hide passwords specified as parameters.

This attribute is optional and defaults to false.

constraints A list of constraints to apply. The constraints are validated by the Orchestration engine
when a user deploys a stack. The stack creation fails if the parameter value doesnt comply to the
constraints. This attribute is optional.

immutable Defines whether the parameter is updatable. Stack update fails, if this is set to true and the
parameter value is changed. This attribute is optional and defaults to false.

tags A list of strings to specify the category of a parameter. This value is used to categorize a parameter
so that users can group the parameters. This attribute is optional.

The table below describes all currently supported types with examples:

180 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

Type Description Examples
string A literal string. String param
number An integer or float. 2;0.2

comma_deliiteatriigtof literal strings that are separated by commas. The | [one, two]; one, two;
total number of strings should be one more than the total num- | Note: one, two returns
ber of commas. [one, two]

json A JSON-formatted map or list. {key: value}

boolean Boolean type value, which can be equal t, true, on, y, yes, or | on; n

1 for true value and f, false, off, n, no, or O for false value.

The following example shows a minimalistic definition of two parameters

Note: The description and the label are optional, but defining these attributes is good practice to provide
useful information about the role of the parameter to the user.

Parameter Constraints

The constraints block of a parameter definition defines additional validation constraints that apply to
the value of the parameter. The parameter values provided by a user are validated against the constraints
at instantiation time. The constraints are defined as a list with the following syntax

constraint type Type of constraint to apply. The set of currently supported constraints is given below.

constraint definition The actual constraint, depending on the constraint type. The concrete syntax for
each constraint type is given below.

description A description of the constraint. The text is presented to the user when the value he defines
violates the constraint. If omitted, a default validation message is presented to the user. This
attribute is optional.

The following example shows the definition of a string parameter with two constraints. Note that while
the descriptions for each constraint are optional, it is good practice to provide concrete descriptions to
present useful messages to the user at deployment time.

3.3. Working with Templates 181

Heat Documentation, Release 17.0.3.dev4

parameters
user_name
type
label
description
constraints
length min max
description
allowed_pattern
description

Note: While the descriptions for each constraint are optional, it is good practice to provide concrete
descriptions so useful messages can be presented to the user at deployment time.

The following sections list the supported types of parameter constraints, along with the concrete syntax
for each type.

length

The length constraint applies to parameters of type string, comma_delimited_list and json.
It defines a lower and upper limit for the length of the string value or list/map collection.

The syntax of the 1length constraint is

length min max

It is possible to define a length constraint with only a lower limit or an upper limit. However, at least one
of min or max must be specified.

range

The range constraint applies to parameters of type number. It defines a lower and upper limit for the
numeric value of the parameter.

The syntax of the range constraint is

range min max

It is possible to define a range constraint with only a lower limit or an upper limit. However, at least one
of min or max must be specified.

The minimum and maximum boundaries are included in the range. For example, the following range
constraint would allow for all numeric values between 0 and 10

range min max

182 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

modulo

The modulo constraint applies to parameters of type number. The value is valid if it is a multiple of
step, starting with offset.

The syntax of the modulo constraint is

Both step and offset must be specified.

For example, the following modulo constraint would only allow for odd numbers

allowed_values

The allowed_values constraint applies to parameters of type string or number. It specifies a set of
possible values for a parameter. At deployment time, the user-provided value for the respective parameter
must match one of the elements of the list.

The syntax of the allowed_values constraint is

Alternatively, the following YAML list notation can be used

For example

3.3. Working with Templates 183

Heat Documentation, Release 17.0.3.dev4

allowed_pattern

The allowed_pattern constraint applies to parameters of type string. It specifies a regular expression
against which a user-provided parameter value must evaluate at deployment.

The syntax of the allowed_pattern constraint is

allowed_pattern

For example

parameters
user_name

type

label

description

constraints
allowed_pattern
description

custom_constraint

The custom_constraint constraint adds an extra step of validation, generally to check that the specified
resource exists in the backend. Custom constraints get implemented by plug-ins and can provide any kind
of advanced constraint validation logic.

The syntax of the custom_constraint constraint is

custom_constraint

The name attribute specifies the concrete type of custom constraint. It corresponds to the name under
which the respective validation plugin has been registered in the Orchestration engine.

For example

parameters

custom_constraint

The following section lists the custom constraints and the plug-ins that support them.

Name

Plug-in

barbican.container

heat.engine.clients.os.barbican:ContainerConstraint

barbican.secret

heat.engine.clients.os.barbican:SecretConstraint

blazar.reservation

heat.engine.clients.os.blazar:ReservationConstraint

cinder.backup

heat.engine.clients.os.cinder: VolumeBackupConstraint

cinder.qos_specs

heat.engine.clients.os.cinder:QoSSpecsConstraint

cinder.snapshot

heat.engine.clients.os.cinder: VolumeSnapshotConstraint

continues on next page

184

Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

Table 1 — continued from previous page

Name Plug-in
cinder.volume heat.engine.clients.os.cinder: VolumeConstraint
cinder.vtype heat.engine.clients.os.cinder: VolumeTypeConstraint

CI'OI]_CXpI'CSSiOIl

heat.engine.constraint.common_constraints: CRONExpressionConstraint

designate.zone

heat.engine.clients.os.designate:DesignateZoneConstraint

dns_domain

heat.engine.constraint.common_constraints:DNSDomainConstraint

dns_name heat.engine.constraint.common_constraints: DNSNameConstraint
expiration heat.engine.constraint.common_constraints: ExpirationConstraint
glance.image heat.engine.clients.os.glance:ImageConstraint

ip_addr heat.engine.constraint.common_constraints:IPConstraint
ip_or_cidr heat.engine.constraint.common_constraints:IPCIDRConstraint

ironic.node

heat.engine.clients.os.ironic:NodeConstraint

ironic.portgroup

heat.engine.clients.os.ironic:PortGroupConstraint

iso_8601

heat.engine.constraint.common_constraints:ISO8601Constraint

keystone.domain

heat.engine.clients.os.keystone.keystone_constraints:KeystoneDomainConstraint

keystone.group

heat.engine.clients.os.keystone.keystone_constraints:KeystoneGroupConstraint

keystone.project

heat.engine.clients.os.keystone.keystone_constraints: KeystoneProjectConstraint

keystone.region

heat.engine.clients.os.keystone.keystone_constraints: KeystoneRegionConstraint

keystone.role

heat.engine.clients.os.keystone.keystone_constraints: KeystoneRoleConstraint

keystone.service

heat.engine.clients.os.keystone.keystone_constraints: KeystoneServiceConstraint

keystone.user

heat.engine.clients.os.keystone.keystone_constraints: KeystoneUserConstraint

mac_addr

heat.engine.constraint.common_constraints: MACConstraint

magnum.baymodel

heat.engine.clients.os.magnum:BaymodelConstraint

magnum.cluster_template

heat.engine.clients.os.magnum:ClusterTemplateConstraint

manila.share_network

heat.engine.clients.os.manila:ManilaShareNetworkConstraint

manila.share_snapshot

heat.engine.clients.os.manila:ManilaShareSnapshotConstraint

manila.share_type

heat.engine.clients.os.manila:ManilaShareTypeConstraint

mistral.workflow

heat.engine.clients.os.mistral: WorkflowConstraint

monasca.notification

heat.engine.clients.os.monasca:MonascaNotificationConstraint

net_cidr

heat.engine.constraint.common_constraints:CIDRConstraint

neutron.address_scope

heat.engine.clients.os.neutron.neutron_constraints: AddressScopeConstraint

neutron.flow_classifier

heat.engine.clients.os.neutron.neutron_constraints: FlowClassifierConstraint

neutron.lb.provider

heat.engine.clients.os.neutron.neutron_constraints:LBaasV 1ProviderConstraint

neutron.lbaas.listener

heat.engine.clients.os.neutron.lbaas_constraints:ListenerConstraint

neutron.lbaas.loadbalancer

heat.engine.clients.os.neutron.lbaas_constraints:LoadbalancerConstraint

neutron.lbaas.pool

heat.engine.clients.os.neutron.lbaas_constraints:PoolConstraint

neutron.lbaas.provider

heat.engine.clients.os.neutron.lbaas_constraints:LBaasV2ProviderConstraint

neutron.network

heat.engine.clients.os.neutron.neutron_constraints:NetworkConstraint

neutron.port

heat.engine.clients.os.neutron.neutron_constraints:PortConstraint

neutron.port_pair

heat.engine.clients.os.neutron.neutron_constraints:PortPairConstraint

neutron.port_pair_group

heat.engine.clients.os.neutron.neutron_constraints:PortPairGroupConstraint

neutron.qos_policy

heat.engine.clients.os.neutron.neutron_constraints:QoSPolicyConstraint

neutron.router

heat.engine.clients.os.neutron.neutron_constraints:RouterConstraint

neutron.security_group

heat.engine.clients.os.neutron.neutron_constraints:SecurityGroupConstraint

neutron.segment

heat.engine.clients.os.openstacksdk:SegmentConstraint

neutron.subnet

heat.engine.clients.os.neutron.neutron_constraints:SubnetConstraint

neutron.subnetpool

heat.engine.clients.os.neutron.neutron_constraints:SubnetPoolConstraint

neutron.taas.tap_flow

heat.engine.clients.os.neutron.taas_constraints: TapFlowConstraint

continues on next page

3.3. Working with Templates

185

Heat Documentation, Release 17.0.3.dev4

Table 1 — continued from previous page

Name

Plug-in

neutron.taas.tap_service

heat.engine.clients.os.neutron.taas_constraints: TapServiceConstraint

nova.flavor

heat.engine.clients.os.nova:FlavorConstraint

nova.host

heat.engine.clients.os.nova:HostConstraint

nova.keypair

heat.engine.clients.os.nova:KeypairConstraint

nova.network

heat.engine.constraint.common_constraints: TestConstraintDelay

nova.server

heat.engine.clients.os.nova:ServerConstraint

octavia.flavor

heat.engine.clients.os.octavia:FlavorConstraint

octavia.flavorprofile

heat.engine.clients.os.octavia:FlavorProfileConstraint

octavia.l7policy

heat.engine.clients.os.octavia:L.7PolicyConstraint

octavia.listener

heat.engine.clients.os.octavia:ListenerConstraint

octavia.loadbalancer

heat.engine.clients.os.octavia:LoadbalancerConstraint

octavia.pool

heat.engine.clients.os.octavia:PoolConstraint

rel_dns_name

heat.engine.constraint.common_constraints:Relative DNSNameConstraint

sahara.cluster

heat.engine.clients.os.sahara:ClusterConstraint

sahara.cluster_template

heat.engine.clients.os.sahara:ClusterTemplateConstraint

sahara.data_source

heat.engine.clients.os.sahara:DataSourceConstraint

sahara.image

heat.engine.clients.os.sahara:ImageConstraint

sahara.job_binary

heat.engine.clients.os.sahara:JobBinaryConstraint

sahara.job_type

heat.engine.clients.os.sahara:JobTypeConstraint

sahara.plugin

heat.engine.clients.os.sahara:PluginConstraint

senlin.cluster

heat.engine.clients.os.senlin:ClusterConstraint

senlin.policy

heat.engine.clients.os.senlin:PolicyConstraint

senlin.policy_type

heat.engine.clients.os.senlin:Policy TypeConstraint

senlin.profile

heat.engine.clients.os.senlin:ProfileConstraint

senlin.profile_type

heat.engine.clients.os.senlin:Profile TypeConstraint

test_constr

heat.engine.constraint.common_constraints: TestConstraintDelay

timezone

heat.engine.constraint.common_constraints: TimezoneConstraint

trove.flavor

heat.engine.clients.os.trove:FlavorConstraint

zaqar.queue

heat.engine.clients.os.zagar:QueueConstraint

Pseudo parameters

In addition to parameters defined by a template author, Heat also creates three parameters for every
stack that allow referential access to the stacks name, stacks identifier and projects identifier. These
parameters are named OS: : stack_name for the stack name, OS: : stack_id for the stack identifier and
0S::project_id for the project identifier. These values are accessible via the ger_param intrinsic func-
tion, just like user-defined parameters.

Note: 0S::project_id is available since 2015.1 (Kilo).

186 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

Resources section

The resources section defines actual resources that make up a stack deployed from the HOT template
(for instance compute instances, networks, storage volumes).

Each resource is defined as a separate block in the resources section with the following syntax

resource ID A resource ID which must be unique within the resources section of the template.

type The resource type, such as 0S: :Nova::Server or OS: :Neutron: :Port. This attribute is re-
quired.

properties A list of resource-specific properties. The property value can be provided in place, or via a
function (see Intrinsic functions). This section is optional.

metadata Resource-specific metadata. This section is optional.

depends_on Dependencies of the resource on one or more resources of the template. See Resource
dependencies for details. This attribute is optional.

update_policy Update policy for the resource, in the form of a nested dictionary. Whether update poli-
cies are supported and what the exact semantics are depends on the type of the current resource.
This attribute is optional.

deletion_policy Deletion policy for the resource. The allowed deletion policies are Delete, Retain,
and Snapshot. Beginning with heat_template_version 2016-10-14, the lowercase equiv-
alents delete, retain, and snapshot are also allowed. This attribute is optional; the default
policy is to delete the physical resource when deleting a resource from the stack.

external_id Allows for specifying the resource_id for an existing external (to the stack) resource. Exter-
nal resources can not depend on other resources, but we allow other resources depend on external
resource. This attribute is optional. Note: when this is specified, properties will not be used for
building the resource and the resource is not managed by Heat. This is not possible to update that
attribute. Also resource wont be deleted by heat when stack is deleted.

condition Condition for the resource. Which decides whether to create the resource or not. This attribute
is optional.

Note: Support condition for resource is added in the Newton version.
Depending on the type of resource, the resource block might include more resource specific data.

All resource types that can be used in CEN templates can also be used in HOT templates, adapted to the
YAML structure as outlined above.

3.3. Working with Templates 187

Heat Documentation, Release 17.0.3.dev4

The following example demonstrates the definition of a simple compute resource with some fixed prop-
erty values

resources
my_instance
type
properties
flavor
image

Resource dependencies

The depends_on attribute of a resource defines a dependency between this resource and one or more
other resources.

If a resource depends on just one other resource, the ID of the other resource is specified as string of the
depends_on attribute, as shown in the following example

resources
serverl
type
depends_on

server?
type

If aresource depends on more than one other resources, the value of the depends_on attribute is specified
as a list of resource IDs, as shown in the following example

resources
serverl

type
depends_on

server2
type

server3
type

Outputs section

The outputs section defines output parameters that should be available to the user after a stack has been
created. This would be, for example, parameters such as IP addresses of deployed instances, or URLs of
web applications deployed as part of a stack.

Each output parameter is defined as a separate block within the outputs section according to the following
syntax

188 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

parameter name The output parameter name, which must be unique within the outputs section of a
template.

description A short description of the output parameter. This attribute is optional.

parameter value The value of the output parameter. This value is usually resolved by means of a func-
tion. See Intrinsic functions for details about the functions. This attribute is required.

condition To conditionally define an output value. None value will be shown if the condition is False.
This attribute is optional.

Note: Support condition for output is added in the Newton version.

The example below shows how the IP address of a compute resource can be defined as an output parameter

Conditions section

The conditions section defines one or more conditions which are evaluated based on input parameter
values provided when a user creates or updates a stack. The condition can be associated with resources,
resource properties and outputs. For example, based on the result of a condition, user can conditionally
create resources, user can conditionally set different values of properties, and user can conditionally give
outputs of a stack.

The conditions section is defined with the following syntax

condition name The condition name, which must be unique within the conditions section of a tem-
plate.

expression The expression which is expected to return True or False. Usually, the condition functions
can be used as expression to define conditions:

3.3. Working with Templates 189

Heat Documentation, Release 17.0.3.dev4

Note: In condition functions, you can reference a value from an input parameter, but you cannot
reference resource or its attribute. We support referencing other conditions (by condition name) in
condition functions. We support yaql as condition function in the Pike version.

An example of conditions section definition

conditions
cdl
cd2
get_param
cd3
equals
get_param

cd4
not
equals
get_param

cd5
and
equals
get_param

not
equals
get_param

cdé6
or
equals
get_param

equals
get_param

cd7
not

cd8
and

cd9
yaql
expression
data
services
get_param
cd1e
contains
'neutron’

(continues on next page)

190

Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

get_param

The example below shows how to associate condition with resources

parameters
env_type
default
type
conditions
create_prod_res equals get_param
resources
volume
type
condition
properties
size

The create_prod_res condition evaluates to true if the env_type parameter is equal to prod. In the above
sample template, the volume resource is associated with the create_prod_res condition. Therefore, the
volume resource is created only if the env_type is equal to prod.

The example below shows how to conditionally define an output

outputs
vol_size
value: {get_attr
condition

In the above sample template, the vol_size output is associated with the create_prod_res condition. There-
fore, the vol_size output is given corresponding value only if the env_type is equal to prod, otherwise the
value of the output is None.

Intrinsic functions

HOT provides a set of intrinsic functions that can be used inside templates to perform specific tasks,
such as getting the value of a resource attribute at runtime. The following section describes the role and
syntax of the intrinsic functions.

Note: these functions can only be used within the properties section of each resource or in the outputs
section.

3.3. Working with Templates 191

Heat Documentation, Release 17.0.3.dev4

get_attr

The get_attr function references an attribute of a resource. The attribute value is resolved at runtime
using the resource instance created from the respective resource definition.

Path based attribute referencing using keys or indexes requires heat_template_version 2014-10-16
or higher.

The syntax of the get_attr function is

resource name The resource name for which the attribute needs to be resolved.
The resource name must exist in the resources section of the template.

attribute name The attribute name to be resolved. If the attribute returns a complex data structure such
as a list or a map, then subsequent keys or indexes can be specified. These additional parameters
are used to navigate the data structure to return the desired value.

The following example demonstrates how to use the get_attr function:

In this example, if the networks attribute contained the following data:

then the value of get_attr function would resolve to 10.0.0. 1 (first item of the private entry in the
networks map).

From heat_template_version: 2015-10-15 <attribute_name> is optional and if <attribute_name> is
not specified, get_attr returns dict of all attributes for the given resource excluding show attribute. In
this case syntax would be next:

192 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

get_file

The get_file function returns the content of a file into the template. It is generally used as a file
inclusion mechanism for files containing scripts or configuration files.

The syntax of get_file function is

The content key is used to look up the files dictionary that is provided in the REST API call. The
Orchestration client command (heat) is get_file aware and populates the files dictionary with the
actual content of fetched paths and URLs. The Orchestration client command supports relative paths and
transforms these to the absolute URLSs required by the Orchestration APIL.

Note: The get_file argument must be a static path or URL and not rely on intrinsic functions like
get_param. the Orchestration client does not process intrinsic functions (they are only processed by the
Orchestration engine).

The example below demonstrates the get_£file function usage with both relative and absolute URLSs

The f£iles dictionary generated by the Orchestration client during instantiation of the stack would contain
the following keys:

e file:///path/to/my_instance_user_data.sh

e http://example.com/my_other_instance_user_data.sh

get_param

The get_param function references an input parameter of a template. It resolves to the value provided
for this input parameter at runtime.

The syntax of the get_param function is

(continues on next page)

3.3. Working with Templates 193

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

parameter name The parameter name to be resolved. If the parameters returns a complex data struc-
ture such as a list or a map, then subsequent keys or indexes can be specified. These additional
parameters are used to navigate the data structure to return the desired value.

The following example demonstrates the use of the get_param function

In this example, if the instance_type and server_data parameters contained the following data:

then the value of the property flavor would resolve toml.tiny, metadata would resolve to {"foo":
"bar"} and key_name would resolve to a_key.

get_resource

The get_resource function references another resource within the same template. At runtime, it is
resolved to reference the ID of the referenced resource, which is resource type specific. For example,
a reference to a floating IP resource returns the respective IP address at runtime. The syntax of the
get_resource function is

The resource ID of the referenced resource is given as single parameter to the get_resource function.

For example

(continues on next page)

194 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

list_join

The 1ist_join function joins a list of strings with the given delimiter.

The syntax of the 1ist_join function is

For example

This resolve to the string one, two, and three.

From HOT version 2015-10-15 you may optionally pass additional lists, which will be appended to the
previous lists to join.

For example:

This resolve to the string one, two, three, four.

From HOT version 2015-10-15 you may optionally also pass non-string list items (e.g json/map/list
parameters or attributes) and they will be serialized as json before joining.

digest

The digest function allows for performing digest operations on a given value. This function has been
introduced in the Kilo release and is usable with HOT versions later than 2015-04-30.

The syntax of the digest function is

algorithm The digest algorithm. Valid algorithms are the ones provided natively by hashlib (md5, shal,
sha224, sha256, sha384, and sha512) or any one provided by OpenSSL.

value The value to digest. This function will resolve to the corresponding hash of the value.

3.3. Working with Templates 195

Heat Documentation, Release 17.0.3.dev4

For example

The value of the digest function would resolve to the corresponding hash of the value of raw_password.

repeat

The repeat function allows for dynamically transforming lists by iterating over the contents of one or
more source lists and replacing the list elements into a template. The result of this function is a new list,
where the elements are set to the template, rendered for each list item.

The syntax of the repeat function is

template The template argument defines the content generated for each iteration, with placeholders
for the elements that need to be replaced at runtime. This argument can be of any supported type.

for_each The for_each argument is a dictionary that defines how to generate the repetitions of the
template and perform substitutions. In this dictionary the keys are the placeholder names that will
be replaced in the template, and the values are the lists to iterate on. On each iteration, the function
will render the template by performing substitution with elements of the given lists. If a single
key/value pair is given in this argument, the template will be rendered once for each element in
the list. When more than one key/value pairs are given, the iterations will be performed on all
the permutations of values between the given lists. The values in this dictionary can be given as
functions such as get_attr or get_param.

The following example shows how a security group resource can be defined to include a list of ports
given as a parameter

(continues on next page)

196 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

protocol
port_range_min
port_range_max

The following example demonstrates how the use of multiple lists enables the security group to also
include parameterized protocols

parameters

ports
type
label
default

protocols
type
label
default

resources
security_group
type
properties
name
rules
repeat
for_each
<¥%port¥> get_param
<%protocol%> get_param
template
protocol
port_range_min

Note how multiple entries in the for_each argument are equivalent to nested for-loops in most program-
ming languages.

From HOT version 2016-10-14 you may also pass a map as value for the for_each key, in which case
the list of map keys will be used as value.

From HOT version 2017-09-01 (or pike) you may specify a argument permutations to decide whether
to iterate nested the over all the permutations of the elements in the given lists. If permutations is not
specified, we set the default value to true to compatible with before behavior. The args have to be lists
instead of dicts if permutations is False because keys in a dict are unordered, and the list args all have to
be of the same length.

parameters

subnets
type
label
default

networks
type
label

(continues on next page)

3.3. Working with Templates 197

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

After resolved, we will get the networks of server like: [{subnet: subl, network: netl}, {subnet: sub2,
network: net2}]

resource_facade

The resource_facade function retrieves data in a parent provider template.

A provider template provides a custom definition of a resource, called its facade. For more information
about custom templates, see Template composition. The syntax of the resource_facade function is

data type can be one of metadata, deletion_policy or update_policy.

str_replace

The str_replace function dynamically constructs strings by providing a template string with place-
holders and a list of mappings to assign values to those placeholders at runtime. The placeholders are
replaced with mapping values wherever a mapping key exactly matches a placeholder.

The syntax of the str_replace function is

template Defines the template string that contains placeholders which will be substituted at runtime.

params Provides parameter mappings in the form of dictionary. Each key refers to a placeholder used
in the template attribute. From HOT version 2015-10-15 you may optionally pass non-string
parameter values (e.g json/map/list parameters or attributes) and they will be serialized as json
before replacing, prior heat/HOT versions require string values.

The following example shows a simple use of the str_replace function in the outputs section of a
template to build a URL for logging into a deployed application

198 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

resources
my_instance
type
general metadata and properties ...

outputs
Login_URL
description
value
str_replace
template
params
host get_attr

The following examples show the use of the str_replace function to build an instance initialization
script

parameters
DBRootPassword
type
label
description
hidden

resources
my_instance
type
properties
general properties ...
user_data
str_replace
template

params
$db_rootpassword get_param

In the example above, one can imagine that MySQL is being configured on a compute instance and the
root password is going to be set based on a user provided parameter. The script for doing this is provided
as userdata to the compute instance, leveraging the str_replace function.

3.3. Working with Templates 199

Heat Documentation, Release 17.0.3.dev4

str_replace_strict

str_replace_strict behaves identically to the str_replace function, only an error is raised if any
of the params are not present in the template. This may help catch typos or other issues sooner rather
than later when processing a template.

str_replace_vstrict

str_replace_vstrict behaves identically to the str_replace_strict function, only an error is
raised if any of the params are empty. This may help catch issues (i.e., prevent resources from being
created with bogus values) sooner rather than later if it is known that all the params should be non-empty.

str_split

The str_split function allows for splitting a string into a list by providing an arbitrary delimiter, the
opposite of 1ist_join.

The syntax of the str_split function is as follows:

The result of which is:

Optionally, an index may be provided to select a specific entry from the resulting list, similar to
get_attr/get_param:

The result of which is:

Note: The index starts at zero, and any value outside the maximum (e.g the length of the list minus one)
will cause an error.

200 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

map_merge

The map_merge function merges maps together. Values in the latter maps override any values in earlier
ones. Can be very useful when composing maps that contain configuration data into a single consolidated
map.

The syntax of the map_merge function is

For example

This resolves to a map containing { 'k1': 'v2', 'k2': 'v2'}

Maps containing no items resolve to { }.

map_replace

The map_replace function does key/value replacements on an existing mapping. An input mapping is
processed by iterating over all keys/values and performing a replacement if an exact match is found in
either of the optional keys/values mappings.

The syntax of the map_replace function is

For example

This resolves to a map containing { 'K1': ‘'v1', 'k2': 'V2'}
The keys/values mappings are optional, either or both may be specified.

Note that an error is raised if a replacement defined in keys results in a collision with an existing keys in
the input or output map.

Also note that while unhashable values (e.g lists) in the input map are valid, they will be ignored by the
values replacement, because no key can be defined in the values mapping to define their replacement.

3.3. Working with Templates 201

Heat Documentation, Release 17.0.3.dev4

yaql

The yaql evaluates yaql expression on a given data.

The syntax of the yaql function is

yaql
expression
data

For example

parameters
list_param
type
default

outputs
max_elem
value
yaql
expression
data
list_param: {get_param

max_elem output will be evaluated to 3

equals

The equals function compares whether two values are equal.

The syntax of the equals function is

equals

The value can be any type that you want to compare. This function returns true if the two values are equal

or false if they arent.

For example

equals get_param

If param env_type equals to prod, this function returns true, otherwise returns false.

202

Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

The if function returns the corresponding value based on the evaluation of a condition.

The syntax of the if function is

For example

The name property is set to s_prod if the condition create_prod_res evaluates to true (if parameter
env_type is prod), and is set to s_test if the condition create_prod_res evaluates to false (if parameter
env_type isnt prod).

Note: You define all conditions in the conditions section of a template except for if conditions. You
can use the if condition in the property values in the resources section and outputs sections of a
template.

Beginning with the wallaby template version, the third argument is optional. If only two arguments are
passed, the entire enclosing item is removed when the condition is false.

For example:

In this example, the default name for the server (which is generated by Heat when the property value is
not specified) would be used when the server_name parameter value is an empty string.

3.3. Working with Templates 203

Heat Documentation, Release 17.0.3.dev4

not

The not function acts as a NOT operator.

The syntax of the not function is

Note: A condition can be an expression such as equals, or and and that evaluates to true or false, can
be a boolean, and can be other condition name defined in conditions section of template.

Returns true for a condition that evaluates to false or returns false for a condition that evaluates to true.

For example

If param env_type equals to prod, this function returns false, otherwise returns true.

Another example with boolean value definition

This function returns false.

Another example reference other condition name

This function returns false if my_other_condition evaluates to true, otherwise returns true.

and

The and function acts as an AND operator to evaluate all the specified conditions.

The syntax of the and function is

Note: A condition can be an expression such as equals, or and not that evaluates to true or false, can
be a boolean, and can be other condition names defined in conditions section of template.

Returns true if all the specified conditions evaluate to true, or returns false if any one of the conditions
evaluates to false.

For example

(continues on next page)

204 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

If param env_type equals to prod, and param zone is not equal to beijing, this function returns true,
otherwise returns false.

Another example reference with other conditions

This function returns true if other_condition_1 and other_condition_2 evaluate to true both, otherwise
returns false.

or

The or function acts as an OR operator to evaluate all the specified conditions.

The syntax of the or function is

Note: A condition can be an expression such as equals, and and not that evaluates to true or false, can
be a boolean, and can be other condition names defined in conditions section of template.

Returns true if any one of the specified conditions evaluate to true, or returns false if all of the conditions
evaluates to false.

For example

If param env_type equals to prod, or the param zone is not equal to beijing, this function returns true,
otherwise returns false.

Another example reference other conditions

This function returns true if any one of other_condition_1 or other_condition_2 evaluate to true, other-
wise returns false.

3.3. Working with Templates 205

Heat Documentation, Release 17.0.3.dev4

filter

The filter function removes values from lists.

The syntax of the filter function is

filter

For example

parameters
list_param
type
default

outputs
output_list
value
filter

get_param

output_list will be evaluated to [1, 2].

make_url

The make_url function builds URLs.

The syntax of the make_url function is

make_url
scheme
username
password
host
port
path
query
<keyl>
<key2>
fragment

All parameters are optional.

For example

outputs
server_url
value
make_url
(continues on next page)
206 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

server_url will be evaluated to a URL in the form:

http://[<server IP>]:8080/hello?recipient=world#greeting

list_concat

The 1ist_concat function concatenates lists together.

The syntax of the 1ist_concat function is

For example

Will resolve to the list ['v1l', 'v2', 'v3', 'v4'].

Null values will be ignored.

list_concat_unique

The 1list_concat_unique function behaves identically to the function list_concat, only removes
the repeating items of lists.

For example

Will resolve to the list ['v1l', 'v2', 'v3'].

3.3. Working with Templates 207

Heat Documentation, Release 17.0.3.dev4

contains

The contains function checks whether the specific value is in a sequence.

The syntax of the contains function is

This function returns true if value is in sequence or false if it isnt.

For example

Will resolve to boolean true.

Instances

Manage instances

Create an instance

Use the OS::Nova::Server resource to create a Compute instance. The flavor property is the only
mandatory one, but you need to define a boot source using one of the image or block_device_mapping
properties.

You also need to define the networks property to indicate to which networks your instance must connect
if multiple networks are available in your tenant.

The following example creates a simple instance, booted from an image, and connecting to the private
network:

Connect an instance to a network

Use the networks property of an OS::Nova::Server resource to define which networks an instance should
connect to. Define each network as a YAML map, containing one of the following keys:

port The ID of an existing Networking port. You usually create this port in the same template using an
OS::Neutron::Port resource. You will be able to associate a floating IP to this port, and the port
to your Compute instance.

208 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

network The name or ID of an existing network. You dont need to create an OS.:Neutron::Port resource
if you use this property. But you will not be able to use neutron floating IP association for this
instance because there will be no specified port for server.

The following example demonstrates the use of the port and network properties:

resources
instance_port
type
properties
network
fixed_ips
subnet_id

instancel
type
properties
flavor
image
networks
port get_resource

instance2
type
properties
flavor
image
networks
network

Create and associate security groups to an instance

Use the OS::Neutron::SecurityGroup resource to create security groups.

Define the security_groups property of the OS::Neutron::Port resource to associate security groups
to a port, then associate the port to an instance.

The following example creates a security group allowing inbound connections on ports 80 and 443 (web
server) and associates this security group to an instance port:

resources
web_secgroup
type
properties
rules

protocol
remote_ip_prefix
port_range_min
port_range_max
protocol
remote_ip_prefix

(continues on next page)

3.3. Working with Templates 209

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

port_range_min
port_range_max

instance_port
type
properties
network
security_groups

get_resource
fixed_ips
subnet_id

instance
type
properties
flavor
image
networks
port get_resource

Create and associate a floating IP to an instance

Use the OS::Neutron::FloatinglP resource to create a floating IP, and the
OS::Neutron::Floatingl PAssociation resource to associate the floating IP to a port:

parameters
net
description
type
default

resources
instl
type
properties
flavor
image
networks
network: {get_param

floating_ip
type
properties
floating_network

association
type

(continues on next page)

210 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

properties
floatingip_id get_resource
port_id: {get_attr get_param

You can also create an OS::Neutron::Port and associate that with the server and the floating IP. However
the approach mentioned above will work better with stack updates.

resources
instance_port
type
properties
network
fixed_ips
subnet_id: "private-subnet"

floating_ip
type
properties
floating_network

association
type
properties
floatingip_id get_resource
port_id get_resource

Enable remote access to an instance

The key_name attribute of the OS::Nova::Server resource defines the key pair to use to enable SSH

remote access:

resources
my_instance
type
properties
flavor
image
key_name

Note: For more information about key pairs, see Configure access and security for instances.

3.3. Working with Templates 211

https://docs.openstack.org/ocata/user-guide/cli-nova-configure-access-security-for-instances.html

Heat Documentation, Release 17.0.3.dev4

Create a key pair

You can create new key pairs with the OS::Nova::KeyPair resource. Key pairs can be imported or created
during the stack creation.

If the public_key property is not specified, the Orchestration module creates a new key pair. If the
save_private_key property is set to true, the private_key attribute of the resource holds the private
key.

The following example creates a new key pair and uses it as authentication key for an instance:

resources
my_key
type
properties
save_private_key
name

my_instance
type
properties
flavor
image
key_name get_resource

outputs
private_key
description
value get_attr

Manage networks

Create a network and a subnet

Note: The Networking service (neutron) must be enabled on your OpenStack deployment to create and
manage networks and subnets. Networks and subnets cannot be created if your deployment uses legacy
networking (nova-network).

Use the OS::Neutron::Net resource to create a network, and the OS::Neutron::Subnet resource to provide
a subnet for this network:

resources
new_net

type

new_subnet

type
properties

(continues on next page)

212 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

network_id get_resource
cidr: "10.8.1.0/24"
dns_nameservers "8.8.8.8", "8.8.4.4"

ip_version

Create and manage a router

Use the OS::Neutron::Router resource to create a router. You can define its gateway with the
external_gateway_info property:

resources
routerl
type
properties
external_gateway_info network

You can connect subnets to routers with the OS::Neutron::RouterInterface resource:

resources
subnetl_interface
type
properties
router_id get_resource
subnet

Complete network example

The following example creates a network stack:
* A network and an associated subnet.
* A router with an external gateway.
* An interface to the new subnet for the new router.

In this example, the public network is an existing shared network:

resources
internal_net
type

internal_subnet

type
properties
network_id get_resource
cidr: "10.8.1.0/24"
dns_nameservers "8.8.8.8", "8.8.4.4"

ip_version

(continues on next page)

3.3. Working with Templates 213

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

internal_router
type
properties
external_gateway_info network

internal_interface

type

properties
router_id get_resource
subnet get_resource

Manage volumes

Create a volume

Use the OS::Cinder::Volume resource to create a new Block Storage volume.

For example:

resources
my_new_volume
type
properties
size

The volumes that you create are empty by default. Use the image property to create a bootable volume
from an existing image:

resources
my_new_bootable_volume
type
properties
size
image

You can also create new volumes from another volume, a volume snapshot, or a volume backup. Use
the source_volid, snapshot_id or backup_id properties to create a new volume from an existing
source.

For example, to create a new volume from a backup:

resources
another_volume
type
properties
backup_id

In this example the size property is not defined because the Block Storage service uses the size of the
backup to define the size of the new volume.

214 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

Attach a volume to an instance

Use the OS::Cinder::VolumeAttachment resource to attach a volume to an instance.

The following example creates a volume and an instance, and attaches the volume to the instance:

resources
new_volume
type
properties
size

new_instance
type
properties
flavor
image

volume_attachment

type

properties
volume_id get_resource
instance_uuid get_resource

Boot an instance from a volume

Use the block_device_mapping property of the OS::Nova::Server resource to define a volume used
to boot the instance. This property is a list of volumes to attach to the instance before its boot.

The following example creates a bootable volume from an image, and uses it to boot an instance:

resources
bootable_volume
type
properties
size
image

instance
type
properties
flavor
networks
network
block_device_mapping
device_name
volume_id get_resource
delete_on_termination

3.3. Working with Templates 215

Heat Documentation, Release 17.0.3.dev4

Software configuration
There are a variety of options to configure the software which runs on the servers in your stack. These
can be broadly divided into the following:

* Custom image building

» User-data boot scripts and cloud-init

* Software deployment resources

This section will describe each of these options and provide examples for using them together in your
stacks.

Image building

The first opportunity to influence what software is configured on your servers is by booting them with a
custom-built image. There are a number of reasons you might want to do this, including:

* Boot speed - since the required software is already on the image there is no need to download and
install anything at boot time.

* Boot reliability - software downloads can fail for a number of reasons including transient network
failures and inconsistent software repositories.

* Test verification - custom built images can be verified in test environments before being promoted
to production.

* Configuration dependencies - post-boot configuration may depend on agents already being in-
stalled and enabled

A number of tools are available for building custom images, including:
* diskimage-builder image building tools for OpenStack
* imagefactory builds images for a variety of operating system/cloud combinations

Examples in this guide that require custom images will use diskimage-builder.

User-data boot scripts and cloud-init

When booting a server it is possible to specify the contents of the user-data to be passed to that server.
This user-data is made available either from configured config-drive or from the Metadata service

How this user-data is consumed depends on the image being booted, but the most commonly used tool
for default cloud images is cloud-init.

Whether the image is using cloud-init or not, it should be possible to specify a shell script in the
user_data property and have it be executed by the server during boot:

(continues on next page)

216 Chapter 3. Using Heat

https://docs.openstack.org/diskimage-builder/xena/
https://imgfac.org/
https://docs.openstack.org/diskimage-builder/xena/
https://docs.openstack.org/nova/xena/user/metadata.html#metadata-service
https://cloudinit.readthedocs.io/
https://cloudinit.readthedocs.io/

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

user_data

Note: Debugging these scripts it is often useful to view the boot log using nova console-log
<server-id> to view the progress of boot script execution.

Often there is a need to set variable values based on parameters or resources in the stack. This can be
done with the str_replace intrinsic function:

parameters
foo
default

resources

the_server

type
properties

user_data
str_replace
template

params
$F00: {get_param

Warning: If a stack-update is performed and there are any changes at all to the content of user_data
then the server will be replaced (deleted and recreated) so that the modified boot configuration can
be run on a new server.

When these scripts grow it can become difficult to maintain them inside the template, so the get_file
intrinsic function can be used to maintain the script in a separate file:

parameters
foo
default

resources
the_server

type
properties

(continues on next page)

3.3. Working with Templates 217

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

user_data
str_replace
template: {get_file
params
$F00: {get_param

Note: str_replace can replace any strings, not just strings starting with $. However doing this for
the above example is useful because the script file can be executed for testing by passing in environment
variables.

Choosing the user_data_format

The OS::Nova::Server user_data_format property determines how the user_data should be for-
matted for the server. For the default value HEAT_CFNTOOLS, the user_data is bundled as part
of the heat-cfntools cloud-init boot configuration data. While HEAT_CFNTOOLS is the default for
user_data_format, it is considered legacy and RAW or SOFTWARE_CONFIG will generally be more ap-
propriate.

For RAW the user_data is passed to Nova unmodified. For a cloud-init enabled image, the following are
both valid RAW user-data:

resources

server_with_boot_script
type
properties
flavor, image etc
user_data_format
user_data

server_with_cloud_config
type
properties
flavor, image etc
user_data_format
user_data

For SOFTWARE_CONFIG user_data is bundled as part of the software config data, and metadata is de-
rived from any associated Software deployment resources.

218 Chapter 3. Using Heat

https://cloudinit.readthedocs.io/

Heat Documentation, Release 17.0.3.dev4

Signals and wait conditions

Often it is necessary to pause further creation of stack resources until the boot configuration script
has notified that it has reached a certain state. This is usually either to notify that a service is now
active, or to pass out some generated data which is needed by another resource. The resources
OS::Heat::WaitCondition and OS::Heat::SwiftSignal both perform this function using different tech-
niques and tradeoffs.

OS::Heat::WaitCondition is implemented as a call to the Orchestration API resource signal. The token
is created using credentials for a user account which is scoped only to the wait condition handle resource.
This user is created when the handle is created, and is associated to a project which belongs to the stack,
in an identity domain which is dedicated to the orchestration service.

Sending the signal is a simple HTTP request, as with this example using curl:

curl -i -X POST -H
-H -H
--data-binary

The JSON containing the signal data is expected to be of the following format:

All of these values are optional, and if not specified will be set to the following defaults:

If status is set to FAILURE then the resource (and the stack) will go into a FAILED state using the
reason as failure reason.

The following template example uses the convenience attribute curl_cli which builds a curl command
with a valid token:

(continues on next page)

3.3. Working with Templates 219

https://docs.openstack.org/api-ref/orchestration/v1/
https://curl.haxx.se/

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

type

the_server
type
properties
flavor, image etc
user_data_format
user_data
str_replace
template

params
wc_notify get_attr

outputs
wc_data
value get_attr
this would return the following json
{"1": null, "2": null, "3": "data3", "id4": "data4", "id5": null}

wc_data_4
value '"Fn::Select' 'id4' get_attr
this would return "data4"

OS::Heat::SwiftSignal is implemented by creating an Object Storage API temporary URL which is pop-

220 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

ulated with signal data with an HTTP PUT. The orchestration service will poll this object until the signal
data is available. Object versioning is used to store multiple signals.

Sending the signal is a simple HTTP request, as with this example using curl:

curl -i -X PUT --data-binary

The above template example only needs to have the type changed to the swift signal resources:

resources
signal
type
properties
handle: {get_resource
timeout

signal_handle
type

The decision to use OS::Heat::WaitCondition or OS::Heat::SwiftSignal will depend on a few factors:
* OS::Heat::SwiftSignal depends on the availability of an Object Storage API

* OS::Heat::WaitCondition depends on whether the orchestration service has been configured with
a dedicated stack domain (which may depend on the availability of an Identity V3 API).

* The preference to protect signal URLs with token authentication or a secret webhook URL.

Software config resources

Boot configuration scripts can also be managed as their own resources. This allows configuration to
be defined once and run on multiple server resources. These software-config resources are stored and
retrieved via dedicated calls to the Orchestration API. It is not possible to modify the contents of an
existing software-config resource, so a stack-update which changes any existing software-config resource
will result in API calls to create a new config and delete the old one.

The resource OS::Heat::SoftwareConfig is used for storing configs represented by text scripts, for exam-
ple:

resources
boot_script
type
properties
group
config

server_with_boot_script

type
properties

(continues on next page)

3.3. Working with Templates 221

https://curl.haxx.se/
https://docs.openstack.org/api-ref/orchestration/v1/

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

flavor, image etc
user_data_format
user_data: {get_resource

The resource OS::Heat::CloudConfig allows cloud-init cloud-config to be represented as template YAML
rather than a block string. This allows intrinsic functions to be included when building the cloud-config.
This also ensures that the cloud-config is valid YAML, although no further checks for valid cloud-config
are done.

parameters
file_content
type
description

resources
boot_config
type
properties
cloud_config
write_files
path
content: {get_param

server_with_cloud_config
type
properties
flavor, image etc
user_data_format
user_data: {get_resource

The resource OS::Heat::MultipartMime allows multiple OS::Heat::SoftwareConfig and
0S::Heat::CloudConfig resources to be combined into a single cloud-init multi-part message:

parameters
file_content
type
description

other_config

type
description

resources
boot_config
type
properties
cloud_config
write_files
path
content: {get_param

(continues on next page)

222 Chapter 3. Using Heat

https://cloudinit.readthedocs.io/
https://cloudinit.readthedocs.io/

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

boot_script
type
properties
group
config

server_init

type
properties
parts
config: {get_resource
config: {get_resource
config: {get_param
server
type
properties

flavor, image etc
user_data_format
user_data: {get_resource

Software deployment resources

There are many situations where it is not desirable to replace the server whenever there is a configuration
change. The OS::Heat::SoftwareDeployment resource allows any number of software configurations to
be added or removed from a server throughout its life-cycle.

Building custom image for software deployments

OS::Heat::SoftwareConfig resources are used to store software configuration, and a
OS::Heat::SoftwareDeployment resource is used to associate a config resource with one server.
The group attribute on OS::Heat::SoftwareConfig specifies what tool will consume the config content.

OS::Heat::SoftwareConfig has the ability to define a schema of inputs and which the configuration
script supports. Inputs are mapped to whatever concept the configuration tool has for assigning vari-
ables/parameters.

Likewise, outputs are mapped to the tools capability to export structured data after configuration exe-
cution. For tools which do not support this, outputs can always be written to a known file path for the
hook to read.

The OS::Heat::SoftwareDeployment resource allows values to be assigned to the config inputs, and the
resource remains in an IN_PROGRESS state until the server signals to heat what (if any) output values
were generated by the config script.

3.3. Working with Templates 223

Heat Documentation, Release 17.0.3.dev4

Custom image script

Each of the following examples requires that the servers be booted with a custom image. The following
script uses diskimage-builder to create an image required in later examples:

Clone the required repositories. Some of these are also available
via pypl or as distro packages.

git clone https://opendev.org/openstack/tripleo-image-elements

git clone https://opendev.org/openstack/heat-agents

Install diskimage-builder from source
sudo pip install git+https://opendev.org/openstack/diskimage-builder

Required by diskimage-builder to discover element collections
export tripleo-image-elements/elements:heat-agents/

The base operating system element(s) provided by the diskimage-builder

elements collection. Other values which may work include:

centos’7, debian, opensuse, rhel, rhel7, or ubuntu

export "fedora selinux-permissive"

Install and configure the os-collect-config agent to poll the metadata

server (heat service or zaqar message queue and so on) for configuration
changes to execute

export "os-collect-config os-refresh-config os-apply-config"

heat-config installs an os-refresh-config script which will invoke the

appropriate hook to perform configuration. The element heat-config-script
installs a hook to perform configuration with shell scripts

export "heat-config heat-config-script"

Install a hook for any other chosen configuration tool(s).

Elements which install hooks include:

heat-config-cfn-init, heat-config-puppet, or heat-config-salt
export "

The name of the qcow2 image to create, and the name of the image
uploaded to the OpenStack image registry.
export fedora-software-config

Create the image
disk-image-create vm \
-0 .qcow2

Upload the image, assuming valid credentials are already sourced
openstack image create --disk-format qcow2 --container-format bare \
< .qcow2

Note: Above script uses diskimage-builder, make sure the environment already fulfill all requirements

224 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

in requirements.txt of diskimage-builder.

Configuring with scripts

The Custom image script already includes the heat-config-script element so the built image will
already have the ability to configure using shell scripts.

Config inputs are mapped to shell environment variables. The script can communicate outputs to heat by
writing to the $heat_outputs_path.output name file. See the following example for a script which
expects inputs foo, bar and generates an output result.

resources
config
type
properties
group
inputs
name
name
outputs
name
config

deployment
type
properties
config
get_resource
server
get_resource
input_values
foo
bar

server
type
properties
flavor, image etc
user_data_format

outputs
result

(continues on next page)

3.3. Working with Templates 225

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

value
get_attr
stdout
value
get_attr
stderr
value
get_attr
status_code
value
get_attr

Note: A config resource can be associated with multiple deployment resources, and each deployment
can specify the same or different values for the server and input_values properties.

As can be seen in the outputs section of the above template, the result config output value is available
as an attribute on the deployment resource. Likewise the captured stdout, stderr and status_code are
also available as attributes.

Configuring with os-apply-config

The agent toolchain of os-collect-config, os-refresh-configand os-apply-config can actu-
ally be used on their own to inject heat stack configuration data into a server running a custom image.

The custom image needs to have the following to use this approach:
* All software dependencies installed
* os-refresh-config scripts to be executed on configuration changes

* os-apply-config templates to transform the heat-provided config data into service configuration
files

The projects tripleo-image-elements and tripleo-heat-templates demonstrate this approach.

Configuring with cfn-init

Likely the only reason to use the cfn-init hook is to migrate templates which contain
AWS::CloudFormation::Init metadata without needing a complete rewrite of the config metadata. It
is included here as it introduces a number of new concepts.

To use the cfn-init tool the heat-config-cfn-init element is required to be on the built image, so
Custom image script needs to be modified with the following:

export

Configuration data which used to be included in the AWS: : CloudFormation: : Init section of resource
metadata is instead moved to the config property of the config resource, as in the following example:

226 Chapter 3. Using Heat

https://opendev.org/openstack/os-refresh-config
https://opendev.org/openstack/os-apply-config
https://opendev.org/openstack/tripleo-image-elements
https://opendev.org/openstack/tripleo-heat-templates
http://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-resource-init.html

Heat Documentation, Release 17.0.3.dev4

resources

config
type
properties
group
inputs
name
config
config
files
/tmp/foo
content
get_input
mode: '000644'

deployment
type
properties
name
signal_transport
config
get_resource
server
get_resource
input_values
bar

other_deployment
type
properties
name
signal_transport
config
get_resource
server
get_resource
input_values
bar

server
type
properties
image: {get_param
flavor: {get_param
key_name: {get_param
user_data_format

There are a number of things to note about this template example:

e OS::Heat::StructuredConfig is like OS::Heat::SoftwareConfig except that the config property

3.3. Working with Templates

227

Heat Documentation, Release 17.0.3.dev4

contains structured YAML instead of text script. This is useful for a number of other configuration
tools including ansible, salt and os-apply-config.

cfn-init has no concept of inputs, so {get_input: bar} acts as a placeholder which gets
replaced with the OS::Heat::StructuredDeployment input_values value when the deployment
resource is created.

cfn-init hasno concept of outputs, so specifying signal_transport: NO_SIGNAL will mean
that the deployment resource will immediately go into the CREATED state instead of waiting for a
completed signal from the server.

The template has 2 deployment resources deploying the same config with different input_values.
The order these are deployed in on the server is determined by sorting the values of the name
property for each resource (10_deployment, 20_other_deployment)

Configuring with puppet

The puppet hook makes it possible to write configuration as puppet manifests which are deployed and

run in a masterless environment.

To specify configuration as puppet manifests the heat-config-puppet element is required to be on the

built image, so Custom image script needs to be modified with the following:

export

resources

config
type
properties
group
inputs
name
name
outputs
name
config
get_file

deployment
type
properties
config
get_resource
server
get_resource
input_values
foo
bar

server
type

(continues on next page)

228

Chapter 3. Using Heat

https://puppet.com/

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

properties
image: {get_param
flavor: {get_param
key_name: {get_param
user_data_format

outputs
result
value
get_attr
stdout
value
get_attr

This demonstrates the use of the get_file function, which will attach the contents of the file
example-puppet-manifest.pp, containing:

file
file

file
file

Environments
The environment affects the runtime behavior of a template. It provides a way to override the resource
implementations and a mechanism to place parameters that the service needs.

To fully understand the runtime behavior you have to consider what plug-ins are installed on the cloud
youre using.

Environment file format

The environment is a yaml text file that contains two main sections:
parameters A list of key/value pairs.

resource_registry Definition of custom resources.

It also can contain some other sections:

parameter_defaults Default parameters passed to all template resources.

3.3. Working with Templates 229

Heat Documentation, Release 17.0.3.dev4

encrypted_parameters List of encrypted parameters.
event_sinks List of endpoints that would receive stack events.

parameter_merge_strategies Merge strategies for merging parameters and parameter defaults from
the environment file.

Use the -¢ option of the openstack stack create command to create a stack using the environment
defined in such a file.

You can also provide environment parameters as a list of key/value pairs using the parameter option of
the openstack stack create command.

In the following example the environment is read from the my_env.yaml file and an extra parameter is
provided using the parameter option:

$ openstack stack create my_stack -e my_env.yaml --parameter "paraml=vall;
—param2=val2" -t my_tmpl.yaml

Environment Merging

Parameters and their defaults (parameter_defaults) are merged based on merge strategies in an envi-
ronment file.

There are three merge strategy types:
overwrite Overwrites a parameter, existing parameter values are replaced.

merge Merges the existing parameter value and the new value. String values are concatenated, comma
delimited lists are extended and json values are updated.

deep_merge Json values are deep merged. Not useful for other types like comma delimited lists and
strings. If specified for them, it falls back to merge.

You can provide a default merge strategy and/or parameter specific merge strategies per environ-
ment file. Parameter specific merge strategy is only used for that parameter. An example of
parameter_merge_strategies section in an environment file:

If no merge strategy is provided in an environment file, overwrite becomes the default merge strategy
for all parameters and parameter_defaults in that environment file.

230 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

Global and effective environments

The environment used for a stack is the combination of the environment you use with the template for the
stack, and a global environment that is determined by your cloud operator. An entry in the user environ-
ment takes precedence over the global environment. OpenStack includes a default global environment,
but your cloud operator can add additional environment entries.

The cloud operator can add to the global environment by putting environment files in a configurable di-
rectory wherever the Orchestration engine runs. The configuration variable is named environment_dir
and is found in the [DEFAULT] section of /etc/heat/heat.conf. The default for that directory is /
etc/heat/environment.d. Its contents are combined in whatever order the shell delivers them when
the service starts up, which is the time when these files are read. If the my_env.yaml file from the
example above had been put in the environment_dir then the users command line could be this:

Global templates

A global template directory allows files to be pre-loaded in the global environment. A global template
is determined by your cloud operator. An entry in the user template takes precedence over the global
environment. OpenStack includes a default global template, but your cloud operator can add additional
template entries.

The cloud operator can add new global templates by putting template files in a configurable directory
wherever the Orchestration engine runs. The configuration variable is named template_dir and is
found in the [DEFAULT] section of /etc/heat/heat.conf. The default for that directory is /etc/
heat/templates. Its contents are combined in whatever order the shell delivers them when the service
starts up, which is the time when these files are read. If the my_tmpl.yaml file from the example be-
low has been put in the template_dir, other templates which we used to create stacks could contain
following way to include my_tmpl.yaml in it:

type

Usage examples

Define values for template arguments

You can define values for the template arguments in the parameters section of an environment file:

3.3. Working with Templates 231

Heat Documentation, Release 17.0.3.dev4

Define defaults to parameters

You can define default values for all template arguments in the parameter_defaults section of an
environment file. These defaults are passed into all template resources:

Mapping resources

You can map one resource to another in the resource_registry section of an environment file. The
resource you provide in this manner must have an identifier, and must reference either another resources
ID or the URL of an existing template file.

The following example maps a new OS::Networking::FloatingIP resource to an existing
0S::Neutron: :FloatingIP resource:

You can use wildcards to map multiple resources, for example to map all 0S: :Neutron resources to
0S: :Network:

Override a resource with a custom resource

To create or override a resource with a custom resource, create a template file to define this resource, and
provide the URL to the template file in the environment file:

The supported URL schemes are file, http and https.

Note: The template file extension must be .yaml or .template, or it will not be treated as a custom
template resource.

You can limit the usage of a custom resource to a specific resource of the template:

232 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

Pause stack creation, update or deletion on a given resource

If you want to debug your stack as its being created, updated or deleted, or if you want to run it in phases,
you can set pre-create, pre-update, pre-delete, post-create, post-update and post-delete
hooks in the resources section of resource_registry.

To set a hook, add either hooks: $hook_name (for example hooks: pre-update) to the resources
dictionary. You can also use a list (hooks: [pre-create, pre-update]) to stop on several actions.

You can combine hooks with other resources properties such as provider templates or type mapping:

When heat encounters a resource that has a hook, it pauses the resource action until the hook clears. Any
resources that depend on the paused action wait as well. Non-dependent resources are created in parallel
unless they have their own hooks.

It is possible to perform a wild card match using an asterisk (*) in the resource name. For example,
the following entry pauses while creating app_server and database_server, but not server or
app_network:

Clear hooks by signaling the resource with {unset_hook: $hook name} (for example
{unset_hook: pre-update}).

Retrieving events

By default events are stored in the database and can be retrieved via the API. Using the environment, you
can register an endpoint which will receive events produced by your stack, so that you dont have to poll
Heat.

You can specify endpoints using the event_sinks property:

type

1200

3.3. Working with Templates 233

Heat Documentation, Release 17.0.3.dev4

Restrict update or replace of a given resource

If you want to restrict update or replace of a resource when your stack is being updated, you can set
restricted_actions in the resources section of resource_registry.

To restrict update or replace, add restricted_actions: wupdate or restricted_actions:
replace to the resource dictionary. You can also use [update, replace] to restrict both actions.

You can combine restricted actions with other resources properties such as provider templates or type
mapping or hooks:

It is possible to perform a wild card match using an asterisk (*) in the resource name. For exam-
ple, the following entry restricts replace for app_server and database_server, but not server or
app_network:

Template composition

When writing complex templates you are encouraged to break up your template into separate smaller
templates. These can then be brought together using template resources. This is a mechanism to define
a resource using a template, thus composing one logical stack with multiple templates.

Template resources provide a feature similar to the AWS::CloudFormation::Stack resource, but also pro-
vide a way to:

* Define new resource types and build your own resource library.
* Override the default behavior of existing resource types.
To achieve this:

* The Orchestration client gets the associated template files and passes them along in the files
section of the POST stacks/ API request.

* The environment in the Orchestration engine manages the mapping of resource type to template
creation.

* The Orchestration engine translates template parameters into resource properties.

234 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

The following examples illustrate how you can use a custom template to define new types of resources.
These examples use a custom template stored in a my_nova.yaml file

heat_template_version

parameters
key_name
type
description

resources
server
type
properties
key_name: {get_param
flavor
image

Use the template filename as type

The following template defines the my_nova.yaml file as value for the type property of a resource

heat_template_version

resources
my_server
type
properties
key_name

The key_name argument of the my_nova.yaml template gets its value from the key_name property of
the new template.

Note: The above reference to my_nova.yaml assumes it is in the same directory. You can use any of
the following forms:

* Relative path (my_nova.yaml)

* Absolute path (file:///home/user/templates/my_nova.yaml)
* Http URL (http://example.com/templates/my_nova.yaml)

* Https URL (https://example.com/templates/my_nova.yaml)

To create the stack run:

$ openstack stack create -t main.yaml stackl

3.3. Working with Templates 235

Heat Documentation, Release 17.0.3.dev4

Define a new resource type

You can associate a name to the my_nova.yaml template in an environment file. If the name is already
known by the Orchestration module then your new resource will override the default one.

In the following example a new 0S: :Nova: : Server resource overrides the default resource of the same
name.

An env.yaml environment file holds the definition of the new resource

resource_registry

Note: See Environments for more detail about environment files.

You can now use the new 0S: :Nova: : Server in your new template

heat_template_version

resources
my_server
type
properties
key_name

To create the stack run:

$ openstack stack create -t main.yaml -e env.yaml example-two

Get access to nested attributes

There are implicit attributes of a template resource. Accessing nested attributes requires
heat_template_version 2014-10-16 or higher. These are accessible as follows

heat_template_version

resources
my_server

type

outputs
test_out
value: {get_attr

236 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

Making your template resource more transparent

Note: Available since 2015.1 (Kilo).

If you wish to be able to return the ID of one of the inner resources instead of the nested stacks identifier,
you can add the special reserved output 0S: : stack_id to your template resource

Now when you use get_resource from the outer template heat will use the nova server id and not the
template resource identifier.

OpenStack Resource Types

0S::Aodh::CompositeAlarm

Available since 8.0.0 (Ocata) I

A resource that implements Aodh composite alarm.

Allows to specify multiple rules when creating a composite alarm, and the rules combined with logical
operators: and, or.

Required Properties

composite_ruler
Composite threshold rules in JSON format.
Map value expected.
Can be updated without replacement.
Map properties:
operator#
Required.
The operator indicates how to combine the rules.
String value expected.

Can be updated without replacement.

3.3. Working with Templates 237

Heat Documentation, Release 17.0.3.dev4

Allowed values: or, and
rulesi

Rules list. Basic threshold/gnocchi rules and nested dict which combine threshold/gnocchi rules
by and or or are allowed. For example, the form is like: [RULE1, RULE2, {and: [RULE3,
RULEA4]}], the basic threshold/gnocchi rules must include a type field.

List value expected.
Can be updated without replacement.

The length must be at least 2.

Optional Properties

alarm_actions#/
A list of URLSs (webhooks) to invoke when state transitions to alarm.
List value expected.
Can be updated without replacement.

alarm_queues?/

Available since 8.0.0 (Ocata) I

A list of Zaqgar queues to post to when state transitions to alarm.

List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zaqar.queue
description#
Description for the alarm.
String value expected.
Can be updated without replacement.
enabledd
True if alarm evaluation/actioning is enabled.
Boolean value expected.
Can be updated without replacement.

Defaults to "true"

238 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

insufficient_data_actions#
A list of URLSs (webhooks) to invoke when state transitions to insufficient-data.
List value expected.
Can be updated without replacement.

insufficient_data_queuess/

Available since 8.0.0 (Ocata) I

A list of Zaqar queues to post to when state transitions to insufficient-data.

List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zaqar.queue
ok_actions#
A list of URLs (webhooks) to invoke when state transitions to ok.
List value expected.
Can be updated without replacement.

ok_queuest/

Available since 8.0.0 (Ocata) I

A list of Zaqar queues to post to when state transitions to ok.

List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zaqar.queue

repeat_actions#/

3.3. Working with Templates 239

Heat Documentation, Release 17.0.3.dev4

False to trigger actions when the threshold is reached AND the alarms state has changed. By default,
actions are called each time the threshold is reached.

Boolean value expected.
Can be updated without replacement.
Defaults to "true"

severity#

Available since 5.0.0 (Liberty) I

Severity of the alarm.

String value expected.

Can be updated without replacement.
Defaults to "low"

Allowed values: low, moderate, critical

time_constraintsi#

Available since 5.0.0 (Liberty) I

Describe time constraints for the alarm. Only evaluate the alarm if the time at evaluation is within this
time constraint. Start point(s) of the constraint are specified with a cron expression, whereas its
duration is given in seconds.

List value expected.
Updates cause replacement.
Defaults to []
List contents:
Map value expected.
Updates cause replacement.
Map properties:
description
Optional.
Description for the time constraint.
String value expected.
Updates cause replacement.
duration#
Required.
Duration for the time constraint.

Integer value expected.

240 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

Updates cause replacement.

The value must be at least 0.
namez/

Required.

Name for the time constraint.

String value expected.

Updates cause replacement.
starti

Required.

Start time for the time constraint. A CRON expression property.

String value expected.

Updates cause replacement.

Value must be of type cron_expression
timezone#/

Optional.

Timezone for the time constraint (eg. Asia/Taipei, Europe/Amsterdam).

String value expected.
Updates cause replacement.

Value must be of type timezone

Attributes

show#l Detailed information about resource.

HOT Syntax

heat_template_version

resources

type

properties
alarm_actions
alarm_queues
composite_rule
description
enabled
insufficient_data_actions

(continues on next page)

3.3. Working with Templates

241

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

0S::Aodh::EventAlarm

Available since 8.0.0 (Ocata) I

A resource that implements event alarms.

Allows users to define alarms which can be evaluated based on events passed from other OpenStack ser-
vices. The events can be emitted when the resources from other OpenStack services have been updated,
created or deleted, such as compute.instance.reboot.end, scheduler.select_destinations.end.

Optional Properties

alarm_actions#
A list of URLs (webhooks) to invoke when state transitions to alarm.
List value expected.
Can be updated without replacement.

alarm_queues#

Available since 8.0.0 (Ocata) I

A list of Zaqar queues to post to when state transitions to alarm.

List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zaqar.queue

descriptions/

242 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

Description for the alarm.
String value expected.
Can be updated without replacement.
enabledd
True if alarm evaluation/actioning is enabled.
Boolean value expected.
Can be updated without replacement.
Defaults to "true"
event_typet
Event type to evaluate against. If not specified will match all events.
String value expected.
Can be updated without replacement.
Defaults to "*"
insufficient_data_actions#
A list of URLs (webhooks) to invoke when state transitions to insufficient-data.
List value expected.
Can be updated without replacement.

insufficient_data_queuesi#/

Available since 8.0.0 (Ocata) I

A list of Zaqar queues to post to when state transitions to insufficient-data.

List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zaqar.queue
ok_actions#/
A list of URLs (webhooks) to invoke when state transitions to ok.
List value expected.
Can be updated without replacement.

ok_queuest/

3.3. Working with Templates 243

Heat Documentation, Release 17.0.3.dev4

Available since 8.0.0 (Ocata) I

A list of Zaqar queues to post to when state transitions to ok.

List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zaqar.queue
query#
A list for filtering events. Query conditions used to filter specific events when evaluating the alarm.
List value expected.
Can be updated without replacement.
List contents:
Map value expected.
Can be updated without replacement.
Map properties:
field#
Optional.
Name of attribute to compare.
String value expected.
Can be updated without replacement.
opl
Optional.
Comparison operator.
String value expected.
Can be updated without replacement.
Allowed values: le, ge, eq, It, gt, ne
typeti
Optional.
The type of the attribute.

String value expected.

244 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

Can be updated without replacement.
Defaults to "string"
Allowed values: integer, float, string, boolean, datetime
valuer/
Optional.
String value with which to compare.
String value expected.
Can be updated without replacement.
repeat_actions#

False to trigger actions when the threshold is reached AND the alarms state has changed. By default,
actions are called each time the threshold is reached.

Boolean value expected.
Can be updated without replacement.
Defaults to "true"

severity#

Available since 5.0.0 (Liberty) I

Severity of the alarm.

String value expected.

Can be updated without replacement.
Defaults to "low"

Allowed values: low, moderate, critical

time_constraintsi#

Available since 5.0.0 (Liberty) I

Describe time constraints for the alarm. Only evaluate the alarm if the time at evaluation is within this
time constraint. Start point(s) of the constraint are specified with a cron expression, whereas its
duration is given in seconds.

List value expected.
Updates cause replacement.
Defaults to []
List contents:
Map value expected.
Updates cause replacement.

Map properties:

3.3. Working with Templates 245

Heat Documentation, Release 17.0.3.dev4

descriptions

Optional.

Description for the time constraint.

String value expected.

Updates cause replacement.
duration/

Required.

Duration for the time constraint.

Integer value expected.

Updates cause replacement.

The value must be at least 0.
namez/

Required.

Name for the time constraint.

String value expected.

Updates cause replacement.
starts

Required.

Start time for the time constraint. A CRON expression property.

String value expected.

Updates cause replacement.

Value must be of type cron_expression

timezone

Optional.

Timezone for the time constraint (eg. Asia/Taipei, Europe/Amsterdam).

String value expected.
Updates cause replacement.

Value must be of type timezone

246

Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

Attributes

showi#i Detailed information about resource.

HOT Syntax

heat_template_version

resources

type

properties
alarm_actions
alarm_queues
description
enabled
event_type
insufficient_data_actions
insufficient_data_queues

ok_actions
ok_queues
query
.
repeat_actions
severity
time_constraints o
< o
o
.

0S::Aodh::GnocchiAggregationByMetricsAlarm

Available since 2015.1 (Kilo) I

A resource that implements alarm with specified metrics.

A resource that implements alarm which allows to use specified by user metrics in metrics list.

3.3. Working with Templates 247

Heat Documentation, Release 17.0.3.dev4

Required Properties

metrics?
A list of metric ids.
List value expected.
Can be updated without replacement.
threshold#
Threshold to evaluate against.
Number value expected.

Can be updated without replacement.

Optional Properties

aggregation_methodd
The aggregation method to compare to the threshold.
String value expected.
Can be updated without replacement.
alarm_actions#
A list of URLs (webhooks) to invoke when state transitions to alarm.
List value expected.
Can be updated without replacement.

alarm_queues#

Available since 8.0.0 (Ocata) I

A list of Zaqar queues to post to when state transitions to alarm.

List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zaqar.queue
comparison_operator#

Operator used to compare specified statistic with threshold.

248 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

String value expected.

Can be updated without replacement.

Allowed values: le, ge, eq, It, gt, ne
descriptions/

Description for the alarm.

String value expected.

Can be updated without replacement.

enabledd/

True if alarm evaluation/actioning is enabled.

Boolean value expected.

Can be updated without replacement.

Defaults to "true"
evaluation_periods#

Number of periods to evaluate over.

Integer value expected.

Can be updated without replacement.
granularitys

The time range in seconds.

Integer value expected.

Can be updated without replacement.

insufficient_data_actions#

A list of URLs (webhooks) to invoke when state transitions to insufficient-data.

List value expected.
Can be updated without replacement.

insufficient_data_queues#/

Available since 8.0.0 (Ocata) I

A list of Zaqar queues to post to when state transitions to insufficient-data.

List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.

String value expected.

3.3. Working with Templates

249

Heat Documentation, Release 17.0.3.dev4

Can be updated without replacement.
Value must be of type zaqar.queue
ok_actions#
A list of URLs (webhooks) to invoke when state transitions to ok.
List value expected.
Can be updated without replacement.

ok_queuest/

Available since 8.0.0 (Ocata) I

A list of Zaqgar queues to post to when state transitions to ok.

List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zaqar.queue
repeat_actionsi/

False to trigger actions when the threshold is reached AND the alarms state has changed. By default,
actions are called each time the threshold is reached.

Boolean value expected.
Can be updated without replacement.
Defaults to "true"

severityi

Available since 5.0.0 (Liberty) I

Severity of the alarm.

String value expected.

Can be updated without replacement.
Defaults to "low"

Allowed values: low, moderate, critical

time_constraintsi

250 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

Available since 5.0.0 (Liberty) I

Describe time constraints for the alarm. Only evaluate the alarm if the time at evaluation is within this
time constraint. Start point(s) of the constraint are specified with a cron expression, whereas its
duration is given in seconds.

List value expected.
Updates cause replacement.
Defaults to []
List contents:
Map value expected.
Updates cause replacement.
Map properties:
descriptions
Optional.
Description for the time constraint.
String value expected.
Updates cause replacement.
duration#
Required.
Duration for the time constraint.
Integer value expected.
Updates cause replacement.
The value must be at least 0.
namer/
Required.
Name for the time constraint.
String value expected.
Updates cause replacement.
startd
Required.
Start time for the time constraint. A CRON expression property.
String value expected.
Updates cause replacement.
Value must be of type cron_expression

timezone#

3.3. Working with Templates 251

Heat Documentation, Release 17.0.3.dev4

Optional.

Timezone for the time constraint (eg. Asia/Taipei, Europe/Amsterdam).

String value expected.

Updates cause replacement.

Value must be of type timezone

Attributes

showi#i Detailed information about resource.

HOT Syntax

heat_template_version

resources

type
properties

aggregation_method
alarm_actions
alarm_queues
comparison_operator
description

enabled
evaluation_periods
granularity
insufficient_data_actions
insufficient_data_queues
metrics

ok_actions

ok_queues
repeat_actions
severity
threshold
time_constraints "name" "start" "description":.,
o "duration" "timezone" "name" "start":.
. "description" "duration" "timezone"
o
252 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

0OS::Aodh::GnocchiAggregationByResourcesAlarm

Available since 2015.1 (Kilo) I

A resource that implements alarm as an aggregation of resources alarms.

A resource that implements alarm which uses aggregation of resources alarms with some condition. If
state of a system is satisfied alarm condition, alarm is activated.

Required Properties

metrici/

Metric name watched by the alarm.

String value expected.

Can be updated without replacement.
query#

The query to filter the metrics.

String value expected.

Can be updated without replacement.
resource_typet

Resource type.

String value expected.

Can be updated without replacement.
threshold#

Threshold to evaluate against.

Number value expected.

Can be updated without replacement.

Optional Properties

aggregation_method#
The aggregation method to compare to the threshold.
String value expected.
Can be updated without replacement.
alarm_actions#/
A list of URLs (webhooks) to invoke when state transitions to alarm.

List value expected.

3.3. Working with Templates 253

Heat Documentation, Release 17.0.3.dev4

Can be updated without replacement.

alarm_queues#

Available since 8.0.0 (Ocata) I

A list of Zaqar queues to post to when state transitions to alarm.

List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zaqar.queue
comparison_operator
Operator used to compare specified statistic with threshold.
String value expected.
Can be updated without replacement.
Allowed values: le, ge, eq, It, gt, ne
description
Description for the alarm.
String value expected.
Can be updated without replacement.
enabled#
True if alarm evaluation/actioning is enabled.
Boolean value expected.
Can be updated without replacement.
Defaults to "true"
evaluation_periods#
Number of periods to evaluate over.
Integer value expected.
Can be updated without replacement.
granularitys
The time range in seconds.

Integer value expected.

254 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

Can be updated without replacement.
insufficient_data_actionsi/
A list of URLs (webhooks) to invoke when state transitions to insufficient-data.
List value expected.
Can be updated without replacement.

insufficient_data_queues#/

Available since 8.0.0 (Ocata) I

A list of Zaqar queues to post to when state transitions to insufficient-data.

List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zaqar.queue
ok_actions#
A list of URLs (webhooks) to invoke when state transitions to ok.
List value expected.
Can be updated without replacement.

ok_queuest/

Available since 8.0.0 (Ocata) I

A list of Zaqar queues to post to when state transitions to ok.

List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zaqar.queue

repeat_actions#

3.3. Working with Templates 255

Heat Documentation, Release 17.0.3.dev4

False to trigger actions when the threshold is reached AND the alarms state has changed. By default,
actions are called each time the threshold is reached.

Boolean value expected.
Can be updated without replacement.
Defaults to "true"

severity#

Available since 5.0.0 (Liberty) I

Severity of the alarm.

String value expected.

Can be updated without replacement.
Defaults to "low"

Allowed values: low, moderate, critical

time_constraintsi#

Available since 5.0.0 (Liberty) I

Describe time constraints for the alarm. Only evaluate the alarm if the time at evaluation is within this
time constraint. Start point(s) of the constraint are specified with a cron expression, whereas its
duration is given in seconds.

List value expected.
Updates cause replacement.
Defaults to []
List contents:
Map value expected.
Updates cause replacement.
Map properties:
description
Optional.
Description for the time constraint.
String value expected.
Updates cause replacement.
duration#
Required.
Duration for the time constraint.

Integer value expected.

256 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

Updates cause replacement.

The value must be at least 0.
namez/

Required.

Name for the time constraint.

String value expected.

Updates cause replacement.
starti

Required.

Start time for the time constraint. A CRON expression property.

String value expected.

Updates cause replacement.

Value must be of type cron_expression
timezone#/

Optional.

Timezone for the time constraint (eg. Asia/Taipei, Europe/Amsterdam).

String value expected.
Updates cause replacement.

Value must be of type timezone

Attributes

show#l Detailed information about resource.

HOT Syntax

heat_template_version

resources

type

properties
aggregation_method
alarm_actions
alarm_queues
comparison_operator
description
enabled

(continues on next page)

3.3. Working with Templates

257

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

{

0S::Aodh::GnocchiResourcesAlarm

Available since 2015.1 (Kilo) I

A resource allowing for the watch of some specified resource.

An alarm that evaluates threshold based on some metric for the specified resource.

Required Properties

metrici/

Metric name watched by the alarm.

String value expected.

Can be updated without replacement.
resource_idd

Id of a resource.

String value expected.

Can be updated without replacement.
resource_typet

Resource type.

String value expected.

Can be updated without replacement.

threshold#

258 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

Threshold to evaluate against.
Number value expected.

Can be updated without replacement.

Optional Properties

aggregation_method#
The aggregation method to compare to the threshold.
String value expected.
Can be updated without replacement.
alarm_actions#/
A list of URLs (webhooks) to invoke when state transitions to alarm.
List value expected.
Can be updated without replacement.

alarm_queues?/

Available since 8.0.0 (Ocata) I

A list of Zaqgar queues to post to when state transitions to alarm.

List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zaqar.queue
comparison_operatori
Operator used to compare specified statistic with threshold.
String value expected.
Can be updated without replacement.
Allowed values: le, ge, eq, It, gt, ne
descriptions/
Description for the alarm.
String value expected.

Can be updated without replacement.

3.3. Working with Templates 259

Heat Documentation, Release 17.0.3.dev4

enabledd

True if alarm evaluation/actioning is enabled.

Boolean value expected.

Can be updated without replacement.

Defaults to "true"
evaluation_periods#

Number of periods to evaluate over.

Integer value expected.

Can be updated without replacement.
granularity#

The time range in seconds.

Integer value expected.

Can be updated without replacement.

insufficient_data_actions#

A list of URLs (webhooks) to invoke when state transitions to insufficient-data.

List value expected.
Can be updated without replacement.

insufficient_data_queuesi#/

Available since 8.0.0 (Ocata) I

A list of Zaqar queues to post to when state transitions to insufficient-data.

List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zaqar.queue

ok_actions#/

A list of URLs (webhooks) to invoke when state transitions to ok.

List value expected.
Can be updated without replacement.

ok_queuest/

260

Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

Available since 8.0.0 (Ocata) I

A list of Zaqar queues to post to when state transitions to ok.

List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zaqar.queue
repeat_actions#/

False to trigger actions when the threshold is reached AND the alarms state has changed. By default,
actions are called each time the threshold is reached.

Boolean value expected.
Can be updated without replacement.
Defaults to "true"

severity#/

Available since 5.0.0 (Liberty) I

Severity of the alarm.

String value expected.

Can be updated without replacement.
Defaults to "low"

Allowed values: low, moderate, critical

time_constraintsi¥

Available since 5.0.0 (Liberty) I

Describe time constraints for the alarm. Only evaluate the alarm if the time at evaluation is within this
time constraint. Start point(s) of the constraint are specified with a cron expression, whereas its
duration is given in seconds.

List value expected.
Updates cause replacement.
Defaults to []

List contents:

3.3. Working with Templates 261

Heat Documentation, Release 17.0.3.dev4

Map value expected.
Updates cause replacement.

Map properties:

descriptions/

Optional.

Description for the time constraint.

String value expected.

Updates cause replacement.
duration/

Required.

Duration for the time constraint.

Integer value expected.

Updates cause replacement.

The value must be at least 0.
namez/

Required.

Name for the time constraint.

String value expected.

Updates cause replacement.
starti

Required.

Start time for the time constraint. A CRON expression property.

String value expected.

Updates cause replacement.

Value must be of type cron_expression

timezonei

Optional.

Timezone for the time constraint (eg. Asia/Taipei, Europe/Amsterdam).

String value expected.
Updates cause replacement.

Value must be of type timezone

262

Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

Attributes

showi#i Detailed information about resource.

HOT Syntax

heat_template_version

resources

type

properties
aggregation_method
alarm_actions
alarm_queues
comparison_operator
description
enabled
evaluation_periods
granularity
insufficient_data_actions
insufficient_data_queues
metric
ok_actions
ok_queues
repeat_actions
resource_id
resource_type

severity

threshold

time_constraints o
—)
4
<

0S::Aodh::LBMemberHealthAlarm

Available since 13.0.0 (Train) I

A resource that implements a Loadbalancer Member Health Alarm.

Allows setting alarms based on the health of load balancer pool members, where the health of a member
is determined by the member reporting an operating_status of ERROR beyond an initial grace period
after creation (120 seconds by default).

3.3. Working with Templates 263

Heat Documentation, Release 17.0.3.dev4

Required Properties

autoscaling_group_id#

ID of the Heat autoscaling group that contains the loadbalancer members. Unhealthy members will be
marked as such before an update is triggered on the root stack.

String value expected.
Can be updated without replacement.
pool#
Name or ID of the loadbalancer pool for which the health of each member will be evaluated.
String value expected.
Can be updated without replacement.
stackd/

Name or ID of the root / top level Heat stack containing the loadbalancer pool and members. An update
will be triggered on the root Stack if an unhealthy member is detected in the loadbalancer pool.

String value expected.

Updates cause replacement.

Optional Properties

alarm_actions#/
A list of URLSs (webhooks) to invoke when state transitions to alarm.
List value expected.
Can be updated without replacement.

alarm_queues#

Available since 8.0.0 (Ocata) I

A list of Zaqar queues to post to when state transitions to alarm.

List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zaqar.queue

descriptions/

264 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

Description for the alarm.

String value expected.

Can be updated without replacement.
enabledd

True if alarm evaluation/actioning is enabled.

Boolean value expected.

Can be updated without replacement.

Defaults to "true"
insufficient_data_actionsi#

A list of URLs (webhooks) to invoke when state transitions to insufficient-data.

List value expected.

Can be updated without replacement.

insufficient_data_queuess#/

Available since 8.0.0 (Ocata) I

A list of Zaqar queues to post to when state transitions to insufficient-data.

List value expected.
Can be updated without replacement.
Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zagar.queue
ok_actions#
A list of URLSs (webhooks) to invoke when state transitions to ok.
List value expected.
Can be updated without replacement.

ok_queuesi/

Available since 8.0.0 (Ocata) I

A list of Zaqgar queues to post to when state transitions to ok.

List value expected.

Can be updated without replacement.

3.3. Working with Templates 265

Heat Documentation, Release 17.0.3.dev4

Defaults to []
List contents:
Optional.
String value expected.
Can be updated without replacement.
Value must be of type zaqar.queue
repeat_actions#/

False to trigger actions when the threshold is reached AND the alarms state has changed. By default,
actions are called each time the threshold is reached.

Boolean value expected.
Can be updated without replacement.
Defaults to "true"

severity#

Available since 5.0.0 (Liberty) I

Severity of the alarm.

String value expected.

Can be updated without replacement.
Defaults to "low"

Allowed values: low, moderate, critical

time_constraintsi¥

Available since 5.0.0 (Liberty) I

Describe time constraints for the alarm. Only evaluate the alarm if the time at evaluation is within this
time constraint. Start point(s) of the constraint are specified with a cron expression, whereas its

duration is given in seconds.
List value expected.
Updates cause replacement.
Defaults to []
List contents:
Map value expected.
Updates cause replacement.
Map properties:
description#/

Optional.

266 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

Description for the time constraint.
String value expected.
Updates cause replacement.
duration#
Required.
Duration for the time constraint.
Integer value expected.
Updates cause replacement.
The value must be at least 0.
namez/
Required.
Name for the time constraint.
String value expected.
Updates cause replacement.
startd
Required.
Start time for the time constraint. A CRON expression property.
String value expected.
Updates cause replacement.
Value must be of type cron_expression
timezone#/
Optional.
Timezone for the time constraint (eg. Asia/Taipei, Europe/Amsterdam).
String value expected.
Updates cause replacement.

Value must be of type timezone

Attributes

show#l Detailed information about resource.

3.3. Working with Templates 267

Heat Documentation, Release 17.0.3.dev4

HOT Syntax

heat_template_version

resources

type

properties
alarm_actions
alarm_queues
autoscaling_group_id
description
enabled
insufficient_data_actions
insufficient_data_queues
ok_actions

ok_queues

pool

repeat_actions

severity

stack

time_constraints o
— [
o
o

OS::Barbican::CertificateContainer

Available since 6.0.0 (Mitaka) I

A resource for creating barbican certificate container.

A certificate container is used for storing the secrets that are relevant to certificates.

Optional Properties

certificate_refif

Reference to certificate.

String value expected.

Updates cause replacement.

Value must be of type barbican.secret
intermediates_refi/

Reference to intermediates.

268 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

String value expected.

Updates cause replacement.

Value must be of type barbican.secret
name#/

Human-readable name for the container.

String value expected.

Updates cause replacement.
private_key_passphrase_ref#

Reference to private key passphrase.

String value expected.

Updates cause replacement.

Value must be of type barbican.secret
private_key_ref#f

Reference to private key.

String value expected.

Updates cause replacement.

Value must be of type barbican.secret

Attributes

consumers# The URIs to container consumers.

container_refii The URI to the container.

secret_refséi The URIs to secrets stored in container.

show#l Detailed information about resource.

status#é The status of the container.

HOT Syntax

(continues on next page)

3.3. Working with Templates

269

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

OS::Barbican::GenericContainer

Available since 6.0.0 (Mitaka) I

A resource for creating Barbican generic container.

A generic container is used for any type of secret that a user may wish to aggregate. There are no
restrictions on the amount of secrets that can be held within this container.

Optional Properties

namer/
Human-readable name for the container.
String value expected.
Updates cause replacement.
secretsif
References to secrets that will be stored in container.
List value expected.
Updates cause replacement.
List contents:
Map value expected.
Updates cause replacement.
Map properties:
namez/
Required.
Name of the secret.
String value expected.
Updates cause replacement.
refii
Required.
Reference to the secret.
String value expected.

Updates cause replacement.

270 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

Value must be of type barbican.secret

Attributes

consumers# The URIs to container consumers.
container_refi The URI to the container.
secret_refséi The URIs to secrets stored in container.
show#/ Detailed information about resource.

statusi The status of the container.

HOT Syntax

OS::Barbican::Order

Available since 2014.2 (Juno) I

A resource allowing for the generation secret material by Barbican.

The resource allows to generate some secret material. It can be, for example, some key or certificate. The
order encapsulates the workflow and history for the creation of a secret. The time to generate a secret
can vary depending on the type of secret.

Required Properties

typed

Available since 5.0.0 (Liberty) I

The type of the order.

String value expected.

Updates cause replacement.

3.3. Working with Templates 271

Heat Documentation, Release 17.0.3.dev4

Allowed values: key, asymmetric, certificate

Optional Properties

algorithm#
The algorithm type used to generate the secret. Required for key and asymmetric types of order.
String value expected.
Updates cause replacement.
bit_length#/
The bit-length of the secret. Required for key and asymmetric types of order.
Integer value expected.
Updates cause replacement.

ca_idd

Available since 5.0.0 (Liberty) I

The identifier of the CA to use.

String value expected.
Updates cause replacement.
expiration#/
The expiration date for the secret in ISO-8601 format.
String value expected.
Updates cause replacement.
Value must be of type expiration
moder/
The type/mode of the algorithm associated with the secret information.
String value expected.
Updates cause replacement.
name/
Human readable name for the secret.
String value expected.
Updates cause replacement.

pass_phraser/

Available since 5.0.0 (Liberty) I

The passphrase of the created key. Can be set only for asymmetric type of order.

272 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

String value expected.

Updates cause replacement.
payload_content_type#/

The type/format the secret data is provided in.

String value expected.

Updates cause replacement.

profiler/

Available since 5.0.0 (Liberty) I

The profile of certificate to use.

String value expected.
Updates cause replacement.

request_data#

Available since 5.0.0 (Liberty) I

The content of the CSR. Only for certificate orders.

String value expected.
Updates cause replacement.

request_type#/

Available since 5.0.0 (Liberty) I

The type of the certificate request.

String value expected.
Updates cause replacement.
Allowed values: stored-key, simple-cmc, custom

source_container_refi/

Available since 5.0.0 (Liberty) I

The source of certificate request.

String value expected.
Updates cause replacement.
Value must be of type barbican.container

subject_dn#

3.3. Working with Templates 273

Heat Documentation, Release 17.0.3.dev4

Available since 5.0.0 (Liberty) I

The subject of the certificate request.

String value expected.

Updates cause replacement.

Attributes

certificater/

Available since 5.0.0 (Liberty) I

The payload of the created certificate, if available.

container_refi/

Available since 5.0.0 (Liberty) I

The URI to the created container.

intermediatesi

Available since 5.0.0 (Liberty) I

The payload of the created intermediates, if available.

order_refii The URI to the order.

private_key#d

Available since 5.0.0 (Liberty) I

The payload of the created private key, if available.

public_key#/

Available since 5.0.0 (Liberty) I

The payload of the created public key, if available.

secret_refii The URI to the created secret.
show#l Detailed information about resource.

statusi The status of the order.

274 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

HOT Syntax

heat_template_version

resources

type

properties
algorithm
bit_length
ca_id
expiration
mode
name
pass_phrase
payload_content_type
profile
request_data
request_type
source_container_ref
subject_dn
type

OS::Barbican::RSAContainer

Available since 6.0.0 (Mitaka) I

A resource for creating barbican RSA container.

An RSA container is used for storing RSA public keys, private keys, and private key pass phrases.

Optional Properties

name/
Human-readable name for the container.
String value expected.
Updates cause replacement.
private_key_passphrase_ref#
Reference to private key passphrase.
String value expected.
Updates cause replacement.

Value must be of type barbican.secret

3.3. Working with Templates 275

Heat Documentation, Release 17.0.3.dev4

private_key_refi/

Reference to private key.

String value expected.

Updates cause replacement.

Value must be of type barbican.secret
public_key_refi/

Reference to public key.

String value expected.

Updates cause replacement.

Value must be of type barbican.secret

Attributes

consumers# The URIs to container consumers.

container_refii The URI to the container.

secret_refsi#f The URIs to secrets stored in container.

show#l Detailed information about resource.

statusi The status of the container.

HOT Syntax

heat_template_version

resources

type

properties
name
private_key_passphrase_ref
private_key_ref
public_key_ref

276

Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

OS::Barbican::Secret

Available since 2014.2 (Juno) I

The resource provides access to the secret/keying stored material.

A secret is a singular item that stored within Barbican. A secret is anything you want it to be; however,
the formal use case is a key that you wish to store away from prying eyes. Secret may include private
keys, passwords and so on.

Optional Properties

algorithm#
The algorithm type used to generate the secret.
String value expected.
Updates cause replacement.
bit_length#/
The bit-length of the secret.
Integer value expected.
Updates cause replacement.
The value must be at least 0.
expiration#
The expiration date for the secret in ISO-8601 format.
String value expected.
Updates cause replacement.
Value must be of type expiration
mode#/
The type/mode of the algorithm associated with the secret information.
String value expected.
Updates cause replacement.
name#/
Human readable name for the secret.
String value expected.
Updates cause replacement.
payloadd
The unencrypted plain text of the secret.

String value expected.

3.3. Working with Templates 277

Heat Documentation, Release 17.0.3.dev4

Updates cause replacement.
payload_content_encoding#/
The encoding format used to provide the payload data.
String value expected.
Updates cause replacement.
Allowed values: base64
payload_content_type#/
The type/format the secret data is provided in.
String value expected.
Updates cause replacement.
Allowed values: text/plain, application/octet-stream

secret_typet

Available since 5.0.0 (Liberty) I

The type of the secret.

String value expected.
Updates cause replacement.
Defaults to "opaque"

Allowed values: symmetric, public, private, certificate, passphrase, opaque

Attributes

decrypted_payload# The decrypted secret payload.
show# Detailed information about resource.

statusi The status of the secret.

HOT Syntax

(continues on next page)

278 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

(continued from previous page)

OS::Blazar::Host

Available since 12.0.0 (Stein) I

A resource to manage Blazar hosts.

Host resource manages the physical hosts for the lease/reservation within OpenStack.

#TODO(asmita): Based on an agreement with Blazar team, this resource class does not support updating
host resource as currently Blazar does not support to delete existing extra_capability keys while updating
host. Also, in near future, when Blazar team will come up with a new alternative API to resolve this
issue, we will need to modify this class.

Required Properties

namer
The name of the host.
String value expected.

Updates cause replacement.

Optional Properties

extra_capability#
The extra capability of the host.
Map value expected.

Updates cause replacement.

3.3. Working with Templates 279

Heat Documentation, Release 17.0.3.dev4

Attributes

cpu_info#i Information of the CPU of the host.

created_at# The date and time when the host was created. The date and time format must be CCYY-
MM-DD hh:mm.

extra_capability/ The extra capability of the host.
hypervisor_hostname#i The hypervisor name of the host.
hypervisor_type#i The hypervisor type the host.
hypervisor_version# The hypervisor version of the host.
local_gb# Gigabytes of the disk of the host.
memory_mb# Megabytes of the memory of the host.
reservabled The flag which represents whether the host is reservable or not.
service_name#/ The compute service name of the host.
show# Detailed information about resource.

status?i The status of the host.

trust_id# The UUID of the trust of the host operator.

updated_at# The date and time when the host was updated. The date and time format must be CCY Y-
MM-DD hh:mm.

vepus#d The number of the VCPUs of the host.

HOT Syntax

OS::Blazar::Lease

Available since 12.0.0 (Stein) I

A resource to manage Blazar leases.

Lease resource manages the reservations of specific type/amount of cloud resources within OpenStack.

280 Chapter 3. Using Heat

Heat Documentation, Release 17.0.3.dev4

Note: Based on an agreement with Blazar team, this resource class does not support updating, because
current Blazar lease scheme is not suitable for Heat, if you want to update a lease, you need to specify
reservations id, which is one of attribute of lease.

Required Properties

end_dated/
The end date and time of the lease The date and time format must be CCYY-MM-DD hh:mm.
String value expected.
Updates cause replacement.
Value must match pattern: \d{4}-\d{2}-\d{2}\s\d{2}:\d{2}
name/
The name of the lease.
String value expected.
Updates cause replacement.
reservations#/
The list of reservations.
List value expected.
Updates cause replacement.
List contents:
Map value expected.
Updates cause replacement.
Map properties:
affinity#
Optional.
The affinity of instances to reserve.
Boolean value expected.
Updates cause replacement.
Defaults to false
amount
Optional.
The amount of instances to reserve.
Integer value expected.
Updates cause replacement.
The value must be in the range 0 to 2147483647.

before_endd

3.3. Working with Templates 281

Heat Documentation, Release 17.0.3.dev4

Optional.

The before-end-action of the reservation.

String value expected.

Updates cause replacement.

Defaults to "default"

Allowed values: default, snapshot
disk_gb#

Optional.

Gigabytes of the local disk per the instance.

Integer value expected.

Updates cause replacement.

The value must be in the range O to 2147483647.
hypervisor_properties#

Optional.

Properties of the hypervisor to reserve.

String value expected.

Updates cause replacement.
maxi/

Optional.

The maximum number of hosts to reserve.

Integer value expected.

Updates cause replacement.

The value must be at least 1.
memory_mbi

Optional.

Megabytes of memory per the instance.

Integer value expected.

Updates cause replacement.

The value must be in the range 0 to 2147483647.
