
Bifrost Documentation
Release 10.2.2.dev3

OpenStack Foundation

Sep 06, 2023

CONTENTS

1 Bifrost 1
1.1 Useful Links . 1

2 Contents 3
2.1 Bifrost Installation . 3

2.1.1 Introduction . 3
2.1.2 Pre-install steps . 4
2.1.3 Quick start with bifrost-cli . 6
2.1.4 Advanced Topics . 8

2.2 Bifrost User Guide . 14
2.2.1 How-To . 14
2.2.2 Troubleshooting . 20
2.2.3 Using Keystone . 23

2.3 Contributor Guide . 24
2.3.1 Contributing . 24
2.3.2 Bifrost via Vagrant . 26
2.3.3 Testing Environment . 28

i

ii

CHAPTER

ONE

BIFROST

openstackopenstack community projectcommunity project cii best practicescii best practicespassingpassing

Bifrost (pronounced bye-frost) is a set of Ansible playbooks that automates the task of deploying a
base image onto a set of known hardware using ironic. It provides modular utility for one-off operating
system deployment with as few operational requirements as reasonably possible.

The mission of bifrost is to provide an easy path to deploy ironic in a stand-alone fashion, in order to
help facilitate the deployment of infrastucture, while also being a configurable project that can consume
other OpenStack components to allow users to easily customize the environment to fit their needs, and
drive forward the stand-alone perspective.

Use cases include:

• Installation of ironic in standalone/noauth mode without other OpenStack components.

• Deployment of an operating system to a known pool of hardware as a batch operation.

• Testing and development of ironic in the standalone mode.

1.1 Useful Links

Bifrosts documentation can be found at: https://docs.openstack.org/bifrost/latest

Release notes are at: https://docs.openstack.org/releasenotes/bifrost/

The project source code repository is located at: https://opendev.org/openstack/bifrost/

Bugs can be filed in storyboard: https://storyboard.openstack.org/#!/project/openstack/bifrost

1

https://governance.openstack.org/tc/reference/tags/index.html
https://docs.openstack.org/ironic/latest/
https://docs.openstack.org/bifrost/latest
https://docs.openstack.org/releasenotes/bifrost/
https://opendev.org/openstack/bifrost/
https://storyboard.openstack.org/#!/project/openstack/bifrost

Bifrost Documentation, Release 10.2.2.dev3

2 Chapter 1. Bifrost

CHAPTER

TWO

CONTENTS

2.1 Bifrost Installation

2.1.1 Introduction

This document will guide you through installing the Bare Metal Service (ironic) using Bifrost.

Supported operating systems

1st tier support (fully tested in the CI, no known or potential issues):

• CentOS Stream 8

• Ubuntu 20.04 Focal

• Debian 10 Buster

2nd tier support (limited testing or known issues):

• Ubuntu 18.04 Bionic

Tested in the Bifrost CI, but no longer tested in the ironic upstream CI.

• RHEL 8 and regular CentOS 8

Only tested indirectly via CentOS Stream 8.

• openSUSE Leap 15.2

Tested in the CI but has frequent issues.

• Fedora 32 (30 is supported but not recommended)

Only the latest Fedora is tested in the CI.

Note: Operating systems evolve and so does the support for them, even on stable branches.

3

Bifrost Documentation, Release 10.2.2.dev3

Bifrost structure

Installation and use of Bifrost is split into roughly three steps:

• install: prepare the local environment by downloading and/or building machine images, and in-
stalling and configuring the necessary services.

• enroll-dynamic: take as input a customizable hardware inventory file and enroll the listed hard-
ware with ironic, configuring each appropriately for deployment with the previously-downloaded
images.

• deploy-dynamic: instruct ironic to deploy the operating system onto each machine.

Installation of Bifrost can be done in three ways:

• Via the bifrost-cli command line tool.

This is the path recommended for those who want something that just works. It provides minimum
configuration and uses the recommended defaults.

• By directly invoking ansible-playbook on one of provided playbooks.

• By writing your own playbooks using Ansible roles provided with Bifrost.

2.1.2 Pre-install steps

Know your environment

Before you start, you need to gather certain facts about your bare metal environment (this step can be
skipped if youre testing Bifrost on virtual machines).

For the machine that hosts Bifrost youll need to figure out:

• The network interface youre going to use for communication between the bare metal machines
and the Bifrost services.

On systems using firewalld (Fedora, CentOS and RHEL currently), a new zone bifrost will be
created, and the network interface will be moved to it. DHCP, PXE and API services will only
be added to this zone. If you need any of them available in other zones, you need to configure
firewall yourself.

Warning: If you use the same NIC for bare metal nodes and external access, installing bifrost
may lock you out of SSH to the node. You have two options:

1. Pre-create the bifrost firewalld zone before installation and add the SSH service to
it.

2. Use the public zone by providing firewalld_internal_zone=public when
installing.

• Whether to use the integrated DHCP server or an external DHCP service.

• Pool of IP addresses for DHCP (must be within the network configured on the chosen network
interface).

• Whether you want the services to use authentication via Keystone.

4 Chapter 2. Contents

https://docs.openstack.org/keystone/latest/

Bifrost Documentation, Release 10.2.2.dev3

For each machine that is going to be enrolled in the Bare Metal service youll need:

• The management technology you are going to use to control the machine (IPMI, Redfish, etc).
See bare metal drivers for guidance.

• An IP address or a host name of its management controller (BMC).

• Credentials for the management controller.

• MAC address of the NIC the machine uses for PXE booting (optional for IPMI).

• Whether it boots in the UEFI or legacy (BIOS) mode.

Note: Some hardware types (like redfish) can enforce the desired boot mode, while the other
(like ipmi) require the same boot mode to be set in ironic and on the machine.

Required packages

To start with Bifrost you will need Python 3.6 or newer and the git source code management tool.

On CentOS/RHEL/Fedora:

sudo dnf install -y git python3

On Ubuntu/Debian:

sudo apt-get update
sudo apt-get install -y python3 git

On openSUSE:

sudo zipper install -y python3 git

Enable additional repositories (RHEL only)

The extras and optional dnf repositories must be enabled to satisfy bifrosts dependencies. To
check:

sudo dnf repolist | grep 'optional\|extras'

To view the status of repositories:

sudo dnf repolist all | grep 'optional\|extras'

The output will look like this:

!rhui-REGION-rhel-server-debug-extras/8Server/x86_64 Red H disabled
rhui-REGION-rhel-server-debug-optional/8Server/x86_64 Red H disabled
rhui-REGION-rhel-server-extras/8Server/x86_64 Red H disabled
rhui-REGION-rhel-server-optional/8Server/x86_64 Red H disabled
rhui-REGION-rhel-server-source-extras/8Server/x86_64 Red H disabled
rhui-REGION-rhel-server-source-optional/8Server/x86_64 Red H disabled

Use the names of the repositories (minus the version and architecture) to enable them:

2.1. Bifrost Installation 5

https://docs.openstack.org/ironic/latest/admin/drivers.html

Bifrost Documentation, Release 10.2.2.dev3

sudo dnf config-manager --enable rhui-REGION-rhel-server-optional
sudo dnf config-manager --enable rhui-REGION-rhel-server-extras

Enable the EPEL repository (RHEL and CentOS)

Building Debian or Ubuntu based images on RHEL or CentOS requires a few extra pre-install steps, in
order to have access to the additional packages contained in the EPEL repository.

Please refer to the official wiki page to install and configure them.

Note: Use of EPEL repositories may result in incompatible packages being installed by the package
manager. Care should be taken when using a system with EPEL enabled.

Clone Bifrost

Bifrost is typically installed from git:

git clone https://opendev.org/openstack/bifrost
cd bifrost

To install Bare Metal services from a specific release series (rather than the latest versions), check out
the corresponding stable branch. For example, for Ussuri:

git checkout stable/ussuri

Testing on virtual machines

If you want to try Bifrost on virtual machines instead of real hardware, you need to prepare a testing
environment. The easiest way is via bifrost-cli, available since the Victoria release series:

./bifrost-cli testenv

Then do not forget to pass --testenv flag to bifrost-cli install.

See Testing Environment for more details and for advanced ways of creating a virtual environment (also
supported on Ussuri and older).

2.1.3 Quick start with bifrost-cli

The bifrost-cli script, available since the Victoria release series, installs the Bare Metal service
with the recommended defaults. Follow Installation via playbooks if using Ussuri or older or if you
need a full control over your environment.

Using it is as simple as:

./bifrost-cli install \
--network-interface <the network interface to use> \
--dhcp-pool <DHCP start IP>-<DHCP end IP>

6 Chapter 2. Contents

https://fedoraproject.org/wiki/EPEL

Bifrost Documentation, Release 10.2.2.dev3

For example:

./bifrost-cli install --network-interface eno1 \
--dhcp-pool 10.0.0.20-10.0.0.100

Note: See Know your environment for the guidance on the two required parameters.

If installing on a virtual environment, skip these two parameters:

./bifrost-cli install --testenv

Additionally, the following parameters can be useful:

--hardware-types A comma separated list of hardware types to enable.

--enable-keystone Whether to enable authentication with Keystone.

--enable-tls Enable self-signed TLS on API endpoints.

Warning: If using Keystone, see TLS notes for important notes.

--release If using a stable version of Bifrost, the corresponding version of Ironic is usually detected
from the git checkout. If it is not possible (e.g. youre using Bifrost from a tarball), use this
argument to provide the matching version.

Note: Using Bifrost to install older versions of Ironic may work, but is not guaranteed.

--enable-prometheus-exporter Enable the Ironic Prometheus Exporter service.

--uefi Boot machines in the UEFI mode by default.

--disable-dhcp Disable the configuration of the integrated DHCP server, allowing to use an ex-
ternal DHCP service.

See the built-in documentation for more details:

./bifrost-cli install --help

Using Bifrost

After installation is done, export the following environment variable to configure the bare metal client to
use the bifrost cloud configuration from the generated clouds.yaml (see Use the baremetal CLI
for details):

export OS_CLOUD=bifrost

Now you can use Ironic directly, see the standalone guide for more details. Alternatively, you can use
the provided playbooks to automate certain common operations - see How-To.

2.1. Bifrost Installation 7

https://docs.openstack.org/keystone/latest/
https://docs.openstack.org/keystone/latest/
https://docs.openstack.org/ironic/latest/install/standalone.html

Bifrost Documentation, Release 10.2.2.dev3

2.1.4 Advanced Topics

Installation via playbooks

Countrary to Quick start with bifrost-cli, this method of installation allows full control over all parame-
ters, as well as injecting your own ansible playbooks.

Installation is split into four parts:

• Installation of Ansible

• Configuring settings for the installation

• Execution of the installation playbook

Installation of Ansible

Installation of Ansible can take place using the provided environment setup script located at scripts/
env-setup.sh which is present in the bifrost repository. This may also be used if you already have
ansible, as it will install ansible and various dependencies to a virtual environment in order to avoid
overwriting or conflicting with a system-wide Ansible installation.

Alternatively, if you have a working Ansible installation, under normal circumstances the installation
playbook can be executed, but you will need to configure the Virtual environment.

Note: All testing takes place utilizing the scripts/env-setup.sh script. Please feel free to
submit bug reports or patches to OpenStack Gerrit for any issues encountered if you choose to directly
invoke the playbooks without using env-setup.sh.

Virtual environment

To avoid conflicts between Python packages installed from source and system packages, Bifrost defaults
to installing everything to a virtual environment. scripts/env-setup.shwill automatically create
a virtual environment in /opt/stack/bifrost if it does not exist.

If you want to relocate the virtual environment, export the VENV variable before calling env-setup.
sh:

export VENV=/path/to/my/venv

If youre using the ansible playbooks directly (without the helper scripts), set the bifrost_venv_dir
variables accordingly.

Note: Because of Ansible dependencies Bifrost only supports virtual environments created with
--system-site-packages.

8 Chapter 2. Contents

https://bugs.launchpad.net/bifrost/

Bifrost Documentation, Release 10.2.2.dev3

Pre-installation settings

Before performing the installation, it is highly recommended that you edit ./playbooks/
inventory/group_vars/* to match your environment. Several files are located in this folder,
and you may wish to review and edit the settings across multiple files:

• The target file is used by roles that execute against the target node upon which you are installing
ironic and all required services.

• The baremetal file is geared for roles executed against baremetal nodes. This may be useful
if you are automating multiple steps involving deployment and configuration of nodes beyond
deployment via the same roles.

• The localhost file is similar to the target file, and likely contains identical settings. This
file is referenced if no explicit target is defined, as it defaults to the localhost.

Duplication between variable names does occur within these files, as variables are unique to the group
that the role is being executed upon.

• If MySQL is already installed, update mysql_password to match your local installation.

• Change network_interface to match the interface that will need to service DHCP requests.

• Set service_password which is used for communication between services. If unset, a ran-
dom password is generated during the initial installation and stored on the controller in ~/.
config/bifrost/service_password.

The install process, when executed will either download, or build disk images for the deployment of
nodes, and be deployed to the nodes.

If you wish to build an image, based upon the settings, you will need to set create_image_via_dib
to true.

If you are running the installation behind a proxy, export the environment variables http_proxy,
https_proxy and no_proxy so that ansible will use these proxy settings.

TLS support

Bifrost supports TLS for API services with two options:

• A self-signed certificate can be generated automatically. Set enable_tls=true and
generate_tls=true.

Note: This is equivalent to the --enable-tls flag of bifrost-cli.

• Certificate paths can be provided via:

tls_certificate_path Path to the TLS certificate (must be world-readable).

tls_private_key_path Path to the private key (must not be password protected).

tls_csr_path Path to the certificate signing request file.

Set enable_tls=true and do not set generate_tls to use this option.

2.1. Bifrost Installation 9

Bifrost Documentation, Release 10.2.2.dev3

Warning: If using Keystone, see TLS notes for important notes.

Dependencies

In order to really get started, you must install dependencies.

With the addition of ansible collections, the env-setup.sh will install the collections in the default
ansible collections_paths (according to your ansible.cfg) or you can specify the location setting
ANSIBLE_COLLECTIONS_PATHS:

$ export ANSIBLE_COLLECTIONS_PATHS=/mydir/collections

Note: If you are using a virtual environment ANSIBLE_COLLECTIONS_PATHS is automatically set.
After Ansible Collections are installed, a symbolic link to to the installation is created in the bifrost
playbook directory.

The env-setup.sh script automatically invokes install-deps.sh and creates a virtual environ-
ment for you:

$ bash ./scripts/env-setup.sh
$ source /opt/stack/bifrost/bin/activate
$ cd playbooks

Once the dependencies are in-place, you can execute the ansible playbook to perform the actual instal-
lation. The playbook will install and configure ironic in a stand-alone fashion.

A few important notes:

• The OpenStack Identity service (keystone) is NOT installed by default, and ironics API is acces-
sible without authentication. It is possible to put basic password authentication on ironics API by
changing the nginx configuration accordingly.

Note: Bifrost playbooks can leverage and optionally install keystone. See Keystone install details.

• The OpenStack Networking service (neutron) is NOT installed. Ironic performs static IP injection
via config-drive or DHCP reservation.

• Deployments are performed by the ironic python agent (IPA).

• dnsmasq is configured statically and responds to all PXE boot requests by chain-loading to iPXE,
which then fetches the Ironic Python Agent ramdisk from nginx.

• By default, installation will build an Ubuntu-based image for deployment to nodes. This image
can be easily customized if so desired.

The re-execution of the playbook will cause states to be re-asserted. If not already present, a number
of software packages including MySQL will be installed on the host. Python code will be reinstalled
regardless if it has changed.

10 Chapter 2. Contents

Bifrost Documentation, Release 10.2.2.dev3

Playbook Execution

Playbook based install provides a greater degree of visibility and control over the process and is suitable
for advanced installation scenarios.

Examples:

First, make sure that the virtual environment is active (the example below assumes that bifrost venv is
installed into the default path /opt/stack/bifrost).

$. /opt/stack/bifrost/bin/activate (bifrost) $

Verify if the ansible-playbook executable points to the one installed in the virtual environment:

(bifrost) $ which ansible-playbook /opt/stack/bifrost/bin/ansible-playbook (bifrost) $

change to the playbooks subdirectory of the cloned bifrost repository:

$ cd playbooks

If you have passwordless sudo enabled, run:

$ ansible-playbook -vvvv -i inventory/target install.yaml

Otherwise, add the -K to the ansible command line, to trigger ansible to prompt for the sudo password:

$ ansible-playbook -K -vvvv -i inventory/target install.yaml

With regard to testing, ironics node cleaning capability is enabled by default, but only metadata cleaning
is turned on, as it can be an unexpected surprise for a new user that their test node is unusable for
however long it takes for the disks to be wiped.

If you wish to enable full cleaning, you can achieve this by passing the option -e
cleaning_disk_erase=true to the command line or executing the command below:

$ ansible-playbook -K -vvvv -i inventory/target install.yaml -e cleaning_
↪→disk_erase=true

If installing a stable release, you need to set two more parameters, e.g.:

-e git_branch=stable/train -e ipa_upstream_release=stable-train

Note: Note the difference in format: git branch uses slashes, IPA release uses dashes.

After you have performed an installation, you can edit /etc/ironic/ironic.conf to enable or
disable cleaning as desired. It is highly encouraged to utilize cleaning in any production environment.

2.1. Bifrost Installation 11

Bifrost Documentation, Release 10.2.2.dev3

Additional ironic drivers

An additional collection of drivers are maintained outside of the ironic source code repository, as they
do not have Continuous Integration (CI) testing.

These drivers and information about them can be found in ironic-staging-drivers docs. If you would like
to install the ironic staging drivers, simply pass -e staging_drivers_include=true when
executing the install playbook:

$ ansible-playbook -K -vvvv -i inventory/target install.yaml -e staging_
↪→drivers_include=true

Installation with Keystone

Bifrost can now install and make use of keystone. In order to enable this as part of the installa-
tion, the enable_keystone variable must be set to true, either in playbooks/inventory/
group_vars/target or on the command line during installation. Note that enable_keystone and
noauth_mode are mutually exclusive so they should have an opposite value of oneanother. Example:

ansible-playbook -vvvv -i inventory/target install.yaml -e enable_
↪→keystone=true -e noauth_mode=false

However, prior to installation, overriding credentials should be set in order to customize the deployment
to meet your needs. At the very least, the following parameters should be changed for a production
environment:

admin_password Password for the bootstrap user (called admin by default).

default_password Password for the regular user (called bifrost_user by default).

service_password Password for communication between services (never exposed to end users).

If any of these values is not set, a random password is generated during the initial installation and stored
on the controller in an accordingly named file in the ~/.config/bifrost directory (override using
password_dir).

See the following files for more settings that can be overridden:

• playbooks/roles/bifrost-ironic-install/defaults/main.yml

• playbooks/roles/bifrost-keystone-install/defaults/main.yml

TLS notes

There are two important limitations to keep in mind when using Keystone with TLS:

• Its not possible to enable TLS on upgrade from Bifrost < 9.0 (Ussuri and early Victoria). First do
an upgrade to Bifrost >= 9.0, then enable TLS in a separate step.

• Automatically updating from a TLS environment to a non-TLS one may not be possible if using
custom TLS certificates in a non-standard location (/etc/bifrost/bifrost.crt). You
need to manually change identity endpoints in the catalog from https to http directly before
an update. The public endpoint must be updated last or you may lock yourself out of keystone.

12 Chapter 2. Contents

https://opendev.org/x/ironic-staging-drivers/

Bifrost Documentation, Release 10.2.2.dev3

Using an existing Keystone

If you choose to install bifrost using an existing keystone, this should be possible, however it has not
been tested. In this case you will need to set the appropriate defaults, via playbooks/roles/
bifrost-ironic-install/defaults/main.yml which would be a good source for the role
level defaults. Ideally, when setting new defaults, they should be set in the playbooks/inventory/
group_vars/target file.

Creation of clouds.yaml

By default, during bifrost installation, a file will be written to the users home directory that is exe-
cuting the installation. That file can be located at ~/.config/openstack/clouds.yaml. The
clouds that are written to that file are named bifrost (for regular users) and bifrost-admin (for
administrators).

Creation of openrc

Also by default, after bifrost installation and again, when keystone is enabled, a file will be written to
the users home directory that you can use to set the appropriate environment variables in your current
shell to be able to use OpenStack utilities:

. ~/openrc bifrost
openstack baremetal driver list

Offline Installation

The ansible scripts that compose Bifrost download and install software via a number of means, which
generally assumes connectivity to the internet. However, it is possible to use Bifrost without external
connectivity.

If you want or need to install Bifrost without having a dependency on a connection to the internet, there
are a number of steps that you will need to follow (many of which may have already been done in your
environment anyway).

Those steps can be broken down into two general categories; the first being steps that need to be done
in your inventory file, and the second being steps that need to be done on your target host outside of
Ansible.

Ansible Specific Steps

The script scripts/env-setup.sh will do a git clone to create /opt/stack/ansible,
if it doesnt already exist. You can use the environment variables ANSIBLE_GIT_URL and
ANSIBLE_GIT_BRANCH to override the source URL and the branch name to pull from.

Ansible uses Git submodules, which means if you are cloning from anything other than the canonical
location (GitHub), youll need to commit a patched .gitmodules to that repo so that submodules are
also cloned from an alternate location - otherwise, the submodules will still try to clone from GitHub.

2.1. Bifrost Installation 13

Bifrost Documentation, Release 10.2.2.dev3

Bifrost Specific Steps

As a general rule, any URL referenced by Bifrost scripts is configured in a playbook/roles/
<role>/defaults/main.yml file, which means that all of those can be redirected to point to a
local copy by creating a file named playbooks/host_vars/<hostname>.yml and redirecting
the appropriate variables.

As an example, the yaml files contents may look like something like this.

ipa_kernel_upstream_url: file:///vagrant/ipa-centos8-master.kernel
ipa_ramdisk_upstream_url: file:///vagrant/ipa-centos8-master.initramfs
cirros_deploy_image_upstream_url: file:///vagrant/cirros-0.5.1-x86_64-disk.
↪→img
dib_git_url: file:///vagrant/git/diskimage-builder
ironicclient_git_url: file:///vagrant/git/python-ironicclient
ironic_git_url: file:///vagrant/git/ironic

If this list becomes out of date, its simple enough to find the things that need to be fixed by looking for
any URLs in the playbook/roles/<role>/defaults/main.yml files, as noted above.

External Steps

Bifrost doesnt attempt to configure apt, yum, or pip, so if you are working in an offline mode, youll
need to make sure those work independently.

pip in particular will be sensitive; Bifrost tends to use the most recent version of python modules, so
youll want to make sure your cache isnt stale.

Virtualenv Installation Support

Virtual environments are now used by default, see Bifrost Installation.

2.2 Bifrost User Guide

As bifrost is primarilly intended to be a tool for use by administrators, this documentation serves as a
blend of both Admin and User documentation.

2.2.1 How-To

Use the baremetal CLI

If you wish to utilize the baremetal CLI in no-auth mode, there are two options for configuring the
authentication parameters.

14 Chapter 2. Contents

Bifrost Documentation, Release 10.2.2.dev3

clouds.yaml

During installation, Bifrost creates a clouds.yaml file with credentials necessary to access Ironic. A
cloud called bifrost is always available. For example:

export OS_CLOUD=bifrost
baremetal node list
baremetal introspection list

Note: Previously, a separate cloud bifrost-inspectorwas provided for introspection commands.
It is now deprecated, the main bifrost cloud should always be used.

Environment variables

The following two environment variables can be set:

• OS_AUTH_TYPE - set to none to bypass authentication.

• OS_ENDPOINT - A URL to the ironic API, such as http://localhost:6385/

For convenience, an environment file called openrc is created in the home directory of the current user
that contains default values for these variables and can be sourced to allow the CLI to connect to a local
Ironic installation. For example:

. ~/openrc bifrost
baremetal node list

This should display a table of nodes, or nothing if there are no nodes registered in Ironic.

Installing OpenStack CLI

Starting with the Victoria release, the openstack command is only installed when Keystone is en-
abled. Install the python-openstackclient Python package to get this command.

Enroll Hardware

The openstacksdk library is installed during the install process as documented in the install documenta-
tion.

In order to enroll hardware, you will naturally need an inventory of your hardware. When utilizing the
dynamic inventory module and accompanying roles the inventory can be supplied in one of three ways,
all of which ultimately translate to JSON data that Ansible parses.

The current method is to utilize a JSON or YAML document which the inventory parser will convert and
provide to Ansible.

In order to use, you will need to define the environment variable BIFROST_INVENTORY_SOURCE to
equal a file, which then allows you to execute Ansible utilizing the bifrost_inventory.py file as
the data source.

2.2. Bifrost User Guide 15

http://localhost:6385/

Bifrost Documentation, Release 10.2.2.dev3

JSON file format

The JSON format closely resembles the data structure that ironic utilizes internally. The name,
driver_info, nics, driver, and properties fields are directly mapped through to ironic. This
means that the data contained within can vary from host to host, such as drivers and their parameters
thus allowing a mixed hardware environment to be defined in a single file.

Example:

{
"testvm1": {

"uuid": "00000000-0000-0000-0000-000000000001",
"driver_info": {

"power": {
"ipmi_address": "192.168.122.1",
"ipmi_username": "admin",
"ipmi_password": "pa$$w0rd"

}
},
"nics": [

{
"mac": "52:54:00:f9:32:f6"

}
],
"driver": "ipmi",
"ansible_ssh_host": "192.168.122.2",
"ipv4_address": "192.168.122.2",
"provisioning_ipv4_address": "10.0.0.9",
"properties": {

"cpu_arch": "x86_64",
"ram": "3072",
"disk_size": "10",
"cpus": "1"

},
"name": "testvm1"

}
}

The additional power of this format is easy configuration parameter injection, which could potentially
allow a user to provision different operating system images onto different hardware chassis by defining
the appropriate settings in an instance_info variable.

Examples utilizing JSON and YAML formatting, along host specific variable injection can be found in
the playbooks/inventory/ folder.

How this works?

Starting with the Wallaby cycle, you can use bifrost-cli for enrolling:

./bifrost-cli enroll /tmp/baremetal.json

Utilizing the dynamic inventory module, enrollment is as simple as setting the
BIFROST_INVENTORY_SOURCE environment variable to your inventory data source, and then
executing the enrollment playbook.:

16 Chapter 2. Contents

Bifrost Documentation, Release 10.2.2.dev3

export BIFROST_INVENTORY_SOURCE=/tmp/baremetal.json
ansible-playbook -vvvv -i inventory/bifrost_inventory.py enroll-dynamic.
↪→yaml

When ironic is installed on remote server, a regular ansible inventory with a target server should be
added to ansible. This can be achieved by specifying a directory with files, each file in that directory
will be part of the ansible inventory. Refer to ansible documentation http://docs.ansible.com/ansible/
intro_dynamic_inventory.html#using-inventory-directories-and-multiple-inventory-sources

export BIFROST_INVENTORY_SOURCE=/tmp/baremetal.json
rm inventory/*.example
ansible-playbook -vvvv -i inventory/ enroll-dynamic.yaml

Note that enrollment is a one-time operation. The Ansible module does not synchronize data for existing
nodes. You should use the ironic CLI to do this manually at the moment.

Additionally, it is important to note that the playbooks for enrollment are split into three separate play-
books based on the ipmi_bridging setting.

Deploy Hardware

How this works?

After the nodes are enrolled, they can be deployed upon. Bifrost is geared to utilize configuration drives
to convey basic configuration information to the each host. This configuration information includes an
SSH key to allow a user to login to the system.

To utilize the newer dynamic inventory based deployment:

export BIFROST_INVENTORY_SOURCE=/tmp/baremetal.json
ansible-playbook -vvvv -i inventory/bifrost_inventory.py deploy-dynamic.
↪→yaml

When ironic is installed on remote server, a regular ansible inventory with a target server should be
added to ansible. This can be achieved by specifying a directory with files, each file in that directory
will be part of the ansible inventory. Refer to ansible documentation http://docs.ansible.com/ansible/
intro_dynamic_inventory.html#using-inventory-directories-and-multiple-inventory-sources

export BIFROST_INVENTORY_SOURCE=/tmp/baremetal.json
rm inventory/*.example
ansible-playbook -vvvv -i inventory/ deploy-dynamic.yaml

Note:

Before running the above command, ensure that the value for
`ssh_public_key_path` in ``./playbooks/inventory/group_vars/baremetal``
refers to a valid public key file, or set the ssh_public_key_path option
on the ansible-playbook command line by setting the variable.
Example: "-e ssh_public_key_path=~/.ssh/id_rsa.pub"

If the hosts need to be re-deployed, the dynamic redeploy playbook may be used:

2.2. Bifrost User Guide 17

http://docs.ansible.com/ansible/intro_dynamic_inventory.html#using-inventory-directories-and-multiple-inventory-sources
http://docs.ansible.com/ansible/intro_dynamic_inventory.html#using-inventory-directories-and-multiple-inventory-sources
http://docs.ansible.com/ansible/intro_dynamic_inventory.html#using-inventory-directories-and-multiple-inventory-sources
http://docs.ansible.com/ansible/intro_dynamic_inventory.html#using-inventory-directories-and-multiple-inventory-sources

Bifrost Documentation, Release 10.2.2.dev3

export BIFROST_INVENTORY_SOURCE=/tmp/baremetal.json
ansible-playbook -vvvv -i inventory/bifrost_inventory.py redeploy-dynamic.
↪→yaml

This playbook will undeploy the hosts, followed by a deployment, allowing a configurable timeout for
the hosts to transition in each step.

Deployment and configuration of operating systems

By default, Bifrost deploys a configuration drive which includes the user SSH public key, hostname, and
the network configuration in the form of network_data.json that can be read/parsed by the glean utility.
This allows for the deployment of Ubuntu, CentOS, or Fedora tenants on baremetal.

By default, Bifrost utilizes a utility called simple-init which leverages the previously noted glean utility
to apply network configuration. This means that by default, root file systems may not be automatically
expanded to consume the entire disk, which may, or may not be desirable depending upon operational
needs. This is dependent upon what base OS image you utilize, and if the support is included in that
image or not. At present, the standard Ubuntu cloud image includes cloud-init which will grow the root
partition, however the ubuntu-minimal image does not include cloud-init and thus will not automatically
grow the root partition.

Due to the nature of the design, it would be relatively easy for a user to import automatic growth or
reconfiguration steps either in the image to be deployed, or in post-deployment steps via custom Ansible
playbooks.

Build Custom Ironic Python Agent (IPA) images

Bifrost supports the ability for a user to build a custom IPA ramdisk utilizing diskimage-builder and
ironic-python-agent-builder. In order to utilize this feature, the download_ipa setting must be set to
false and the create_ipa_image must be set to true. By default, the install playbook will build a Debian
Buster based IPA image, if a pre-existing IPA image is not present on disk. If you wish to explicitly set
a specific release to be passed to diskimage-create, then the setting dib_os_release can be set in
addition to dib_os_element.

If you wish to include an extra element into the IPA disk image, such as a custom hardware manager,
you can pass the variable ipa_extra_dib_elements as a space-separated list of elements. This
defaults to an empty string.

Configuring the integrated DHCP server

Setting static DHCP assignments with the integrated DHCP server

You can set up a static DHCP reservation using the ipv4_address parameter and setting the
inventory_dhcp setting to a value of true. This will result in the first MAC address defined
in the list of hardware MAC addresses to receive a static address assignment in dnsmasq.

18 Chapter 2. Contents

https://opendev.org/opendev/glean

Bifrost Documentation, Release 10.2.2.dev3

Forcing DNS to resolve to ipv4_address

dnsmasq will resolve all entries to the IP assigned to each server in the leases file. However, this IP
will not always be the desired one, if you are working with multiple networks. To force DNS to always
resolve to ipv4_address please set the inventory_dns setting to a value of true. This will
result in each server to resolve to ipv4_address by explicitly using address capabilities of dnsmasq.

Extending dnsmasq configuration

Bifrost manages the dnsmasq configuration file in /etc/dnsmasq.conf. It is not recommended to
make manual modifications to this file after it has been written. dnsmasq supports the use of additional
configuration files in /etc/dnsmasq.d, allowing extension of the dnsmasq configuration provided
by bifrost. It is possible to use this mechanism provide additional DHCP options to systems managed
by ironic, or even to create a DHCP boot environment for systems not managed by ironic. For example,
create a file /etc/dnsmasq.d/example.conf with the following contents:

dhcp-match=set:<tag>,<match criteria>
dhcp-boot=tag:<tag>,<boot options>

The tag, match critera and boot options should be modified for your environment. Here we use dns-
masq tags to match against hosts that we want to manage. dnsmasq will use the last matching tagged
dhcp-boot option for a host or an untagged default dhcp-boot option if there were no matches.
These options will be inserted at the conf-dir=/etc/dnsmasq.d line of the dnsmasq configura-
tion file. Once configured, send the HUP signal to dnsmasq, which will cause it to reread its configura-
tion:

killall -HUP dnsmasq

Using Bifrost with your own DHCP server

The possibility exists that a user may already have a Dynamic Host Configuration Protocol (DHCP)
server on their network.

Currently Ironic, when configured with Bifrost in standalone mode, does not utilize a DHCP provider.
This would require a manual configuration of the DHCP server to deploy an image. Bifrost utilizes
dnsmasq for this functionality; however, any DHCP server can be utilized. This is largely intended to
function in the context of a single flat network although conceivably the nodes can be segregated.

What is required:

• DHCP server on the network segment

• Appropriate permissions to change DHCP settings

• Network access to the API and conductor. Keep in mind the iPXE image does not support ICMP
redirects.

2.2. Bifrost User Guide 19

Bifrost Documentation, Release 10.2.2.dev3

Example DHCP server configurations

In the examples below port 8080 is used. However, the port number may vary depending on the envi-
ronment configuration.

dnsmasq:

dhcp-match=set:ipxe,175 # iPXE sends a 175 option.
dhcp-boot=tag:ipxe,http://<Bifrost Host IP Address>:8080/boot.ipxe
dhcp-boot=/undionly.kpxe,<TFTP Server Hostname>,<TFTP Server IP Address>

Internet Systems Consortium DHCPd:

if exists user-class and option user-class = "iPXE" {
filename "http://<Bifrost Host IP Address>:8080/boot.ipxe";

} else {
filename "/undionly.kpxe";
next-server <TFTP Server IP Address>;

}

Architecture

It should be emphasized that Ironic in standalone mode is intended to be used only in a trusted environ-
ment.

+-------------+
| DHCP Server |
+-------------+

|
+--------Trusted-Network----------+

| |
+-------------+ +-----------+
|Ironic Server| | Server |
+-------------+ +-----------+

Use Bifrost with Keystone

Content moved, see Using Keystone.

2.2.2 Troubleshooting

Firewalling

Due to the nature of firewall settings and customizations, bifrost does not change any local firewalling
on the node. Users must ensure that their firewalling for the node running bifrost is such that the nodes
that are being booted can connect to the following ports:

67/UDP for DHCP requests to be serviced
69/UDP for TFTP file transfers (Initial iPXE binary)
6385/TCP for the ironic API
8080/TCP for HTTP File Downloads (iPXE, Ironic-Python-Agent)

20 Chapter 2. Contents

Bifrost Documentation, Release 10.2.2.dev3

If you encounter any additional issues, use of tcpdump is highly recommended while attempting to
deploy a single node in order to capture and review the traffic exchange between the two nodes.

NodeLocked Errors

This is due to node status checking thread in ironic, which is a locking action as it utilizes IPMI. The
best course of action is to retry the operation. If this is occurring with a high frequency, tuning might be
required.

Example error:

NodeLocked: Node 00000000-0000-0000-0000-046ebb96ec21 is locked by
host $HOSTNAME, please retry after the current operation is completed.

New image appears not to be deploying upon deployment

When deploying a new image with the same previous name, it is necessary to purge the contents of the
TFTP master_images folder which caches the image file for deployments. The default location for this
folder is /tftpboot/master_images.

Additionally, a playbook has been included that can be used prior to a re-installation to ensure fresh im-
ages are deployed. This playbook can be found at playbooks/cleanup-deployment-images.
yaml.

Building an IPA image

Troubleshooting issues involving IPA can be time consuming. The IPA developers HIGHLY recom-
mend that users build their own custom IPA images in order to inject things such as SSH keys, and
turn on agent debugging which must be done in a custom image as there is no mechanism to enable
debugging via the kernel command line at present.

Custom IPA images can be built a number of ways, the most generally useful mechanism is with
diskimage-builder as the distributions typically have better hardware support than Tiny Core Linux.

DIB images: https://docs.openstack.org/ironic-python-agent-builder/latest/admin/dib.html

TinyIPA: https://docs.openstack.org/ironic-python-agent-builder/latest/admin/tinyipa.html

For documentation on diskimage-builder, See:: https://docs.openstack.org/diskimage-builder/
latest/.

It should be noted that the steps for diskimage-builder installation and use to create an IPA image for
Bifrost are the same as for ironic. See: https://docs.openstack.org/ironic/latest/install/deploy-ramdisk.
html

Once your build is completed, you will need to copy the images files into the /httpboot folder.

Since you have updated the image to be deployed, you will need to purge the contents of /tftpboot/
master_images for the new image to be utilized for the deployment process.

2.2. Bifrost User Guide 21

https://docs.openstack.org/ironic-python-agent-builder/latest/admin/dib.html
https://docs.openstack.org/ironic-python-agent-builder/latest/admin/tinyipa.html
https://docs.openstack.org/diskimage-builder/latest/
https://docs.openstack.org/diskimage-builder/latest/
https://docs.openstack.org/ironic/latest/install/deploy-ramdisk.html
https://docs.openstack.org/ironic/latest/install/deploy-ramdisk.html

Bifrost Documentation, Release 10.2.2.dev3

Unexpected/Unknown failure with the IPA Agent

Many failures due to the IPA agent can be addressed by building a custom IPA Image. See Building an
IPA image for information on building your own IPA image.

Obtaining IPA logs via the console

1) By default, bifrost sets the agent journal to be logged to the system console. Due to the variation
in hardware, you may need to tune the parameters passed to the deployment ramdisk. This can be
done, as shown below in ironic.conf:

agent_pxe_append_params=nofb nomodeset vga=normal console=ttyS0
↪→systemd.journald.forward_to_console=yes

Parameters will vary by your hardware type and configuration, however the systemd.
journald.forward_to_console=yes setting is a default, and will only work for systemd
based IPA images.

The example above, effectively disables all attempts by the kernel to set the video mode, defines
the console as ttyS0 or the first serial port, and instructs systemd to direct logs to the console.

2) Once set, restart the ironic-conductor service, e.g. service ironic-conductor
restart and attempt to redeploy the node. You will want to view the system console occur-
ring. If possible, you may wish to use ipmitool and write the output to a log file.

Gaining access via SSH to the node running IPA for custom images

Custom built images will require a user to be burned into the image. Typically a user would use the
diskimage-builder devuser element to achieve this. More detail on this can be located at https://docs.
openstack.org/diskimage-builder/latest/elements/devuser/README.html.

Example:

export DIB_DEV_USER_USERNAME=customuser
export DIB_DEV_USER_PWDLESS_SUDO=yes
export DIB_DEV_USER_AUTHORIZED_KEYS=$HOME/.ssh/id_rsa.pub
ironic-python-agent-builder -o /path/to/custom-ipa -e devuser debian

ssh_public_key_path is not valid

Bifrost requires that the user who executes bifrost have an SSH key in their user home, or that the user
defines a variable to tell bifrost where to identify this file. Once this variable is defined to a valid file,
the deployment playbook can be re-run.

22 Chapter 2. Contents

https://docs.openstack.org/diskimage-builder/latest/elements/devuser/README.html
https://docs.openstack.org/diskimage-builder/latest/elements/devuser/README.html

Bifrost Documentation, Release 10.2.2.dev3

Generating a new ssh key

See the manual page for the ssh-keygen command.

Defining a specific public key file

A user can define a specific public key file by utilizing the ssh_public_key_path variable. This
can be set in the group_vars/inventory/all file, or on the ansible-playbook command
line utilizing the -e command line parameter.

Example:

ansible-playbook -i inventory/bifrost_inventory.py deploy-dynamic.yaml -e
↪→ssh_public_key_path=~/path/to/public/key/id_rsa.pub

NOTE: The matching private key will need to be utilized to login to the machine deployed.

Changing from TinyIPA to another IPA Image

With-in the Newton cycle, the default IPA image for Bifrost was changed to TinyIPA, which is based on
Tiny Core Linux. This has a greatly reduced boot time for testing, however should be expected to have
less hardware support. If on a fresh install, or a re-install, you wish to change to DIB-based or any other
IPA image, you will need to take the following steps:

1. Remove the existing IPA image ipa.kernel and ipa.initramfs.

2. Edit the playbooks/roles/bifrost-ironic-install/defaults/main.yml
file and update the ipa_kernel_upstream_url and ipa_kernel_upstream_url
settings to a new URL. For DIB-based images, these urls would be, https://tarballs.
openstack.org/ironic-python-agent/dib/files/ipa-centos8-master.
kernel and https://tarballs.openstack.org/ironic-python-agent/dib/
files/ipa-centos8-master.initramfs respectively.

3. Execute the installation playbook, and the set files will be automatically downloaded again. If the
files are not removed prior to (re)installation, then they will not be replaced. Alternatively, the
files can just be directly replaced on disk. The default where the kernel and ramdisk are located is
in /httboot/.

2.2.3 Using Keystone

Ultimately, as bifrost was designed for relatively short-lived installations to facilitate rapid hardware
deployment, the default operating mode is referred to as noauth mode. In order to leverage Keystone
authentication for the roles, Bifrost reads configuration from clouds.yaml. If clouds.yaml has
not been generated through the bifrost-keystone-client-config role, one of the following
steps need to take place:

1. Update the role defaults for each role you plan to make use. This may not make much sense for
most users, unless they are carrying such changes as downstream debt.

2. Invoke ansible-playbook with variables being set to override the default behavior. Example:

2.2. Bifrost User Guide 23

Bifrost Documentation, Release 10.2.2.dev3

-e enable_keystone=true -e noauth_mode=false -e cloud_name=bifrost

3. Set the global defaults for tagret (master/playbooks/inventory/group_vars/
target).

OpenStack Client usage

A user wishing to invoke OSC commands against the bifrost installation, should set the OS_CLOUD
environment variable. An example of setting the environment variable and then executing the OSC
command to list all baremetal nodes:

export OS_CLOUD=bifrost
openstack baremetal node list

For administration actions, use the bifrost-admin cloud:

export OS_CLOUD=bifrost-admin
openstack endpoint list

Keystone roles

Ironic, which is the underlying OpenStack component bifrost helps a user leverage, supports two differ-
ent roles in keystone that helps govern the rights a user has in keystone.

These roles are baremetal_admin and baremetal_observer and a user can learn more about
the roles from the ironic install guide.

Individual playbook use

The OpenStack Ansible modules utilize clouds.yaml file to obtain authentication details to connect
to determine details. The bifrost roles that speak with Ironic for actions such as enrollment of nodes
and deployment, automatically attempt to collect authentication data from clouds.yaml. A user can
explicitly select the cloud they wish to deploy to via the cloud_name parameter.

2.3 Contributor Guide

2.3.1 Contributing

Bifrost is a part of Ironic, which is an OpenStack project and thus follows OpenStack development
procedures.

For a full (and official) description of the development workflow, see:

https://docs.openstack.org/infra/manual/developers.html#development-workflow

For a highly abridged version, read on.

24 Chapter 2. Contents

https://docs.openstack.org/ironic/latest/install/configure-identity.html
https://docs.openstack.org/infra/manual/developers.html#development-workflow

Bifrost Documentation, Release 10.2.2.dev3

Communicating

Before you file a bug or new review set, its often helpful to chat with other developers. The #openstack-
ironic channel on OFTC IRC network (irc://irc.oftc.net/#openstack-ironic) is a good place to start, and
if you dont have IRC (or would prefer email), openstack-discuss@lists.openstack.org is the mailing list
for all OpenStack projects. As the name implies, that mailing list is for all OpenStack development, so
its often harder to get attention on your particular issue.

Filing Bugs

Bugs should be filed in StoryBoard, not GitHub:

https://storyboard.openstack.org/#!/project/941

Contributing Code

Bifrost requires a valid OpenStack contributor agreement to be signed before code can be accepted.
Details can be found in the development workflow link above.

Code isnt committed directly (so pull requests wont work); instead, the code is submitted for review
through Gerrit via git review, and once its been sufficiently reviewed it will be merged from there.

Once thats done, the development workflow is, roughly:

$ git clone https://opendev.org/openstack/bifrost
$ cd bifrost
$ git checkout -b some-branch-name
... hack hack hack ...
$ git commit
$ git review
... The configuration details for this are in .gitreview.
... When the command runs, it will add a ChangeId to your commit
... message and print out a link for your reference
...
... If you need to fix something in that commit, you can do:
$ git commit --amend
$ git review

From that point on, the link the git review command generated is the place to do final tweaks. When its
approved, the code will be merged in automatically.

If you propose a new feature and are unable to complete it, please let the community know by comment-
ing in the review set indicating that someone else is free to carry on your change. If the core reviewers
observe reviews that are not being actively worked on, we are likely to inquire with you. If a review is
untouched and the owner of the review is unreachable for a lengthy period of time, such as three to six
months, the core reviewers may abandon the change as we do not utilize auto-abandon.

2.3. Contributor Guide 25

irc://irc.oftc.net/#openstack-ironic
mailto:openstack-discuss@lists.openstack.org
https://storyboard.openstack.org/#!/project/941

Bifrost Documentation, Release 10.2.2.dev3

Code Style

Bifrost is a mix of Python, YaML, and bash thrown in for good measure.

The overall intent is to keep features, and changes simple to permit a user to easily understand and
extend bifrost to meet their operational needs as we recognize needs may vary.

With this, we have a list of things that we would like people to keep in mind when contributing code.

1. Try to limit YaML to 79 characters per row, we understand this is not always possible, but please
make an effort.

2. Try to keep change sets as short and to the point as possible.

3. Rather than pass key-value pair strings to Ansible modules, try to utilize key-value pair lists on a
module command line. Example:

- name: "Stat file for x reason"
stat:

file: '/path/to/file'
get_md5: no

4. Playbook conditionals utilizing variables intended as booleans, should make use of the | bool
casting feature. This is due to command line overrides are typically interpreted as strings instead
of booleans. Example:

- name: "Something something something"
module:

parameter: "value"
when: boolean_value | bool == true

5. Be clear and explicit with actions in playbooks and comments.

6. Simplicity is favored over magic.

7. Documentation should generally be paired with code changes as we feel that it is important for us
to be able to release the master branch at any time.

8. Documentation should always be limited to 79 characters per row.

9. If you have any questions, please ask in #openstack-ironic.

2.3.2 Bifrost via Vagrant

One of the main user audiences that weve found is for users to utilize vagrant in order to build quick
development environments, or for their environments to facilitate deployments, as the intent is for rela-
tively short lived installations.

As such, a virtual machine can be started with vagrant executing the following commands:

cd tools/vagrant_dev_env
vagrant up

This will bring up an Ubuntu based virtual machine, with bifrost installed.

Note: Virtual machine images, as well as all of the software used in bifrost can take some time to
install. Typically expect vagrant up to take at least fifteen minutes if you do not already have the

26 Chapter 2. Contents

Bifrost Documentation, Release 10.2.2.dev3

virtual machine image on your machine.

By default, the VM will have three interfaces:

• eth0 - connected to a NAT network

• eth1 - connected to Host-only network named: vboxnet1

• eth2 - bridged - adapter must be set in Vagrantfile

Walkthrough done on OS X

Setup vagrant by:

• Installing git

• Installing virtualbox

• Installing vagrant

• Installing ansible

Configure Vagrant with the correct box:

vagrant box add ubuntu/bionic64

Clone bifrost repo:

git clone https://opendev.org/openstack/bifrost

Change into the bifrost directory:

cd bifrost/tools/vagrant_dev_env

Edit the Vagrantfile:

• Change the bifrost.vm.network public_network value to a valid network interface to
allow Bare Metal connectivity

• Change public_key to correct key name

• Change network_interface to match your needs

Boot the VM with:

vagrant up

Installation Options

Ansible is installed within the VM directly from source or from the path set by ANSIBLE_GIT_URL.
You can modify the path of installation by setting ANSIBLE_INSTALL_ROOT environment variable.
The default value is /opt/stack. When set in the host, this variable will also be set as an environment
variable inside the VM for use by test scripts.

Note:

Only the ansible installation path is configurable at this point using the environment vari-
able. All other dependencies will still continue to cloned under /opt/stack.

2.3. Contributor Guide 27

https://github.com/ansible/ansible.git

Bifrost Documentation, Release 10.2.2.dev3

2.3.3 Testing Environment

Quick start with bifrost-cli

If you want to try Bifrost on virtual machines instead of real hardware, you need to prepare a testing
environment. The easiest way is via bifrost-cli, available since the Victoria release series:

./bifrost-cli testenv

Additionally, the following parameters can be useful:

--develop Install services in develop mode, so that the changes to the repositories in /opt get
immediately reflected in the virtual environment.

Note: You still need to restart services to apply any changes, e.g.:

sudo systemctl restart ironic-conductor

--driver=[ipmi|redfish] Choose the default driver for the generated nodes inventory.

Note: Both IPMI and Redfish support is configured anyway, so you can switch the drivers on fly
if needed.

IPMI support uses VirtualBMC, Redfish - sushy-tools.

--uefi Makes the testing VMs boot with UEFI.

See the built-in documentation for more details:

./bifrost-cli testenv --help

The command generates two files with node inventory in the current directory:

• baremetal-inventory.json can be used with the provided playbooks, see How-To for
details.

• baremetal-nodes.json can be used with the Ironic enrollment command:

export OS_CLOUD=bifrost
baremetal create baremetal-nodes.json

Reproduce CI testing locally

A simple scripts/test-bifrost.sh script can be utilized to install pre-requisite software pack-
ages, Ansible, and then execute the test-bifrost-create-vm.yaml and test-bifrost.
yaml playbooks in order to provide a single step testing mechanism.

playbooks/test-bifrost-create-vm.yaml creates one or more VMs for testing and saves
out a baremetal.json file which is used by playbooks/test-bifrost.yaml to execute the re-
maining roles. Two additional roles are invoked by this playbook which enables Ansible to connect to
the new nodes by adding them to the inventory, and then logging into the remote machine via the users

28 Chapter 2. Contents

https://docs.openstack.org/virtualbmc/
https://docs.openstack.org/sushy-tools/

Bifrost Documentation, Release 10.2.2.dev3

ssh host key. Once that has successfully occurred, additional roles will unprovision the host(s) and delete
them from ironic.

Command:

scripts/test-bifrost.sh

Note:

• In order to cap requirements for installation, an upper_constraints_file setting is de-
fined. This is consuming the UPPER_CONSTRAINTS_FILE or TOX_CONSTRAINTS_FILE
env var by default, to properly integrate with CI systems, and will default to /opt/stack/
requirements/upper-constraints.txt file if not present.

Manually test with Virtual Machines

Bifrost supports using virtual machines to emulate the hardware.

The VirtualBMC project is used as an IPMI proxy, so that the same ipmi hardware type can be used as
for real hardware. Redfish emulator from sushy-tools is also installed.

1. Set testing to true in the playbooks/inventory/group_vars/target file.

2. You may need to adjust the value for ssh_public_key_path.

3. Execute the ansible-playbook -vvvv -i inventory/target
test-bifrost-create-vm.yaml command to create a test virtual machine.

4. Run the install step, as documented in Bifrost Installation, however adding -e testing=true
to the Ansible command line.

5. Set the environment variable of BIFROST_INVENTORY_SOURCE to the path to the JSON file,
which by default has been written to /tmp/baremetal.json.

6. Run the enrollment step, using the JSON file you created in the previous step.

7. Run the deployment step, as documented in Deploy Hardware.

Configuring libvirt

Deploying with libvirt

In order to deploy bifrost with libvirt, in order to support managing baremetal servers from with-in that
libvirt VM, a special network configuration is required.

Two networks need to be created:

• default network, that will be a standard virtual network, using NAT.

• provisioning network, that will be used for PXE boot. As we need to setup a dhcp server on bifrost
guest, creating a virtual network will give conflicts between guest and host. So to avoid it, we can
define a network that uses macvtap interfaces, associated with the physical interface. Please note
that you will need to have macvlan enabled on your kernel.

When creating the guest, a minimum of 8GB of memory is needed in order to build disk images along
with run the services to support bifrost.

2.3. Contributor Guide 29

https://docs.openstack.org/virtualbmc/
https://docs.openstack.org/sushy-tools/

Bifrost Documentation, Release 10.2.2.dev3

When defining the interfaces for the guest, the two networks that have been created need to be attached.

These sample commands will spin up a bifrost vm based on centos:

virsh net-define --file tools/virsh_dev_env/network/default.xml
virsh net-start default
virsh net-define --file tools/virsh_dev_env/network/br_direct.xml
virsh net-start br_direct
virsh define --file tools/virsh_dev_env/vm/baremetal.xml
virsh start baremetal
virsh console baremetal

When you login into baremetal, the interface for the provisioning network will be down. You may need
to add an IP manually:

ip addr add <<provisioning_ip_address>>/<<mask>> dev <<interface>>
ip link set <<interface>> up

Where to get guest images

In order to create the guest VMs, you will need a cloud image for the distro you want to deploy. You
will need to download the guest image on a directory on the host, and then in the template for the VM,
you can specify it on the disk section, as shown in the example template.

Please see the OpenStack Image Guide for options and locations for obtaining guest images.

Add credentials to guest image

Normally guest images come without user and password, they rely on ssh to allow access. In this case, it
can be useful to enable ssh access to some user from host to guest. A way to do that, is creating a config
drive and reference it on the template for the guest VM.

A useful script to generate config drives can be found here.

Relying on this script, a config drive can be created with:

create-config-drive -k ~/.ssh/id_rsa.pub config.iso

And then this ISO can be referenced on the guest VM template.

30 Chapter 2. Contents

https://docs.openstack.org/image-guide/obtain-images.html
https://github.com/larsks/virt-utils/blob/master/create-config-drive

	Bifrost
	Useful Links

	Contents
	Bifrost Installation
	Introduction
	Pre-install steps
	Quick start with bifrost-cli
	Advanced Topics

	Bifrost User Guide
	How-To
	Troubleshooting
	Using Keystone

	Contributor Guide
	Contributing
	Bifrost via Vagrant
	Testing Environment

