
Barbican Documentation
Release 18.0.1.dev3

OpenStack Foundation

Nov 22, 2024

CONTENTS

1 What is Barbican? 3

2 API Guide 5
2.1 Cloud Administrator Guide - Key Manager service . 5
2.2 CLI Reference . 10
2.3 Key Manager service . 12
2.4 Setting up Barbican . 34
2.5 Barbican for Developers . 125
2.6 Barbican API Documentation . 160

3 Sample Files 231
3.1 Barbican Sample Configuration File . 231
3.2 Barbican Sample Policy . 231

4 Indices and tables 249

Python Module Index 251

Index 253

i

ii

Barbican Documentation, Release 18.0.1.dev3

CONTENTS 1

Barbican Documentation, Release 18.0.1.dev3

2 CONTENTS

CHAPTER

ONE

WHAT IS BARBICAN?

Barbican is the OpenStack Key Manager service. It provides secure storage, provisioning and manage-
ment of secret data. This includes keying material such as Symmetric Keys, Asymmetric Keys, Certifi-
cates and raw binary data.

3

Barbican Documentation, Release 18.0.1.dev3

4 Chapter 1. What is Barbican?

CHAPTER

TWO

API GUIDE

If youre trying to learn how to use barbican, you can start by reading about Secrets in the Barbican API
Guide.

Once youre comfortable working with secrets you can dig into the rest of the API.

2.1 Cloud Administrator Guide - Key Manager service

The Key Manager service, code-named Barbican, is the default secret storage service for OpenStack. The
service provides secure storage, provisioning and management of secrets.

2.1.1 Access Control

Role Based Access Control (RBAC)

Like many other services, the Key Manager service supports the protection of its APIs by enforcing
policy rules defined in a policy file. The Key Manager service stores a reference to a policy JSON file
in its configuration file, /etc/barbican/barbican.conf. Typically this file is named policy.yaml
and it is stored in /etc/barbican/policy.yaml.

Each Key Manager API call has a line in the policy file that dictates which level of access applies:

API_NAME: RULE_STATEMENT or MATCH_STATEMENT

where RULE_STATEMENT can be another RULE_STATEMENT or a MATCH_STATEMENT:

RULE_STATEMENT: RULE_STATEMENT or MATCH_STATEMENT

MATCH_STATEMENT is a set of identifiers that must match between the token provided by the caller of the
API and the parameters or target entities of the API in question. For example:

"secrets:post": "role:admin or role:creator"

indicates that to create a new secret via a POST request, you must have either the admin or creator role
in your token.

Warning: The Key Manager service scopes the ownership of a secret at the project level. This
means that many calls in the API will perform an additional check to ensure that the project_id of the
token matches the project_id stored as the secret owner.

5

https://docs.openstack.org/api-guide/key-manager/secrets.html
https://docs.openstack.org/api-guide/key-manager/secrets.html

Barbican Documentation, Release 18.0.1.dev3

Default Policy

The policy engine in OpenStack is very flexible and allows for customized policies that make sense for
your particular cloud. The Key Manager service comes with a sample policy.yaml file which can be
used as the starting point for a customized policy. The sample policy defines 5 distinct roles:

key-manager:service-admin
The cloud administrator in charge of the Key Manager service. This user has access to all man-
agement APIs like the project-quotas.

admin
Project administrator. This user has full access to all resources owned by the project for which the
admin role is scoped.

creator
Users with this role are allowed to create new resources and can also delete resources which are
owned by the project for which the creator role is scoped. They are also allowed full access to
existing secrets owned by the project in scope.

observer
Users with this role are allowed to access to existing resources but are not allowed to upload new
secrets or delete existing secrets.

audit
Users with this role are only allowed access to the resource metadata. So users with this role are
unable to decrypt secrets.

Access Control List API

There are some limitations that result from scoping ownership of a secret at the project level. For example,
it is not possible to grant a user access to a single secret, as granting a role on a project would allow access
to all all secrets owned by that project.

Additionally, there is no easy way to upload a private secret (i.e. a secret that only you have access to)
without creating a new project for which only you have roles assigned on it.

To address these limitations the Key Manager service includes an Access Control List (ACL) API. For
full details see the ACL API User Guide

2.1.2 Barbican Service Management Utility

Description

barbican-manage is a utility that is used to control the barbican key manager service database and
Hardware Secure Module (HSM) plugin device. Use cases include migrating the secret database or gen-
erating a Master Key Encryption Key (MKEK) in the HSM. This command set should only be executed
by a user with admin privileges.

6 Chapter 2. API Guide

https://docs.openstack.org/api-guide/key-manager/acls.html

Barbican Documentation, Release 18.0.1.dev3

Options

The standard pattern for executing a barbican-manage command is:

barbican-manage <category> <command> [<args>]

Running barbican-managewithout arguments shows a list of available command categories. Currently,
there are 2 supported categories: db and hsm.

Running with a category argument shows a list of commands in that category:

• barbican-manage db --help

• barbican-manage hsm --help

• barbican-manage --version shows the version number of barbican service.

The following sections describe the available categories and arguments for barbican-manage.

Barbican Database

Warning: Before executing barbican-manage db commands, make sure you are familiar with
Database Migration first.

barbican-manage db revision [--db-url] [--message] [--autogenerate]

Create a new database version file.

barbican-manage db upgrade [--db-url] [--version]

Upgrade to a future version database.

barbican-manage db history [--db-url] [--verbose]

Show database changeset history.

barbican-manage db current [--db-url] [--verbose]

Show current revision of database.

barbican-manage db clean [--db-url] [--verbose] [--min-days]
[--clean-unassociated-projects] [--soft-delete-expired-secrets] [--log-file]

Clean up soft deletions in the database. More documentation can be found here: Database
Cleaning

barbican-manage db sync_secret_stores [--db-url] [--verbose] [--log-file]

Synchronize the secret_store database table with the configuration in barbican.conf. This is
useful when multiple secret stores are enabled and new secret stores have been enabled.

2.1. Cloud Administrator Guide - Key Manager service 7

https://docs.openstack.org/barbican/latest/contributor/database_migrations.html

Barbican Documentation, Release 18.0.1.dev3

Barbican PKCS11/HSM

barbican-manage hsm gen_mkek [--library-path] [--passphrase] [--slot-id]
[--label] [--length]

Create a new Master key encryption key in HSM. This MKEK will be used to encrypt all
project key encryption keys. Its label must be unique.

barbican-manage hsm gen_hmac [--library-path] [--passphrase] [--slot-id]
[--label] [--length]

Create a new Master HMAC key in HSM. This HMAC key will be used to generate an
authentication tag of encrypted project key encryption keys. Its label must be unique.

barbican-manage hsm rewrap_pkek [--dry-run]

Rewrap project key encryption keys after rotating to new MKEK and/or HMAC key(s)
in HSM. The new MKEK and HMAC key should have already been generated using the
above commands. The user will have to configure new MKEK and HMAC key labels in
/etc/barbican/barbican.conf and restart barbican server before executing this command.

2.1.3 Database Cleaning

Entries in the Barbican database are soft deleted and can build up over time. These entries can be cleaned
up with the clean up command. The command can be used with a cron job to clean the database auto-
matically on intervals.

Commands

The command `barbican-manage db clean` can be used to clean up the database. By default, it will
remove soft deletions that are at least 90 days old since deletion

`barbican-manage db clean --min-days 180` (`-m`) will go through the database and remove
soft deleted entries that are at least 90 days old since deletion. The default value is 90 days. Passing a
value of `--min-days 0` will delete all soft-deleted entries up to today.

`barbican-manage db clean --clean-unassociated-projects` (`-p`) will go through the
database and remove projects that have no associated resources. The default value is False.

`barbican-manage db clean --soft-delete-expired-secrets` (`-e`) will go through the
database and soft delete any secrets that are past their expiration date. The default value is False. If
`-e` is used along with `---min-days 0` then all the expired secrets will be hard deleted.

`barbican-manage db clean --verbose` (`-V`) will print more information out into the terminal.

`barbican-manage db clean --log-file` (`-L`) will set the log file location. The creation of the
log may fail if the user running the command does not have access to the log file location or if the target
directory does not exist. The default value for log_file can be found in `/etc/barbican/barbican.
conf` The log will contain the verbose output from the command.

8 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Cron Job

A cron job can be created on linux systems to run at a given interval to clean the barbican database.

Crontab

1. Start the crontab editor `crontab -e` with the user that runs the clean up command 2. Edit the
crontab section to run the command at a given interval. `<minute 0-59> <hour 0-23,0=midnight>
<day 1-31> <month 1-12> <weekday 0-6, 0=Sunday> clean up command`

Crontab Examples

`00 00 * * * barbican-manage db clean -p -e` -Runs a job everyday at midnight which will
remove soft deleted entries that 90 days old since soft deletion, will clean unassociated projects, and will
soft delete secrets that are expired.

`00 03 01 * * barbican-manage db clean -m 30` -Runs a job every month at 3AM which will
remove soft deleted entries that are at least 30 days old since deletion.

`05 01 07 * 6 barbican-manage db clean -m 180 -p -e -L /tmp/
barbican-clean-command.log` -Runs a job every month at 1:05AM on the 7th day of the
month and every Saturday. Entries that are 180 days old since soft deletion will be removed from the
database. Unassociated projects will be removed. Expired secrets will be soft deleted. The log file will
be saved to `/tmp/barbican-clean-command.log`

2.1.4 Key Manager Service Upgrade Guide

This document outlines several steps and notes for operators to reference when upgrading their barbican
from previous versions of OpenStack.

Plan to Upgrade

• The release notes should be read carefully before upgrading the barbican services. Starting with
the Mitaka release, specific upgrade steps and considerations are well-documented in the release
notes.

• Upgrades are only supported between sequential releases.

• When upgrading barbican, the following steps should be followed:

1. Destroy all barbican services

2. Upgrade source code to the next release

3. Upgrade barbican database to the next release

barbican-db-manage upgrade

4. Start barbican services

2.1. Cloud Administrator Guide - Key Manager service 9

https://docs.openstack.org/releasenotes/barbican/

Barbican Documentation, Release 18.0.1.dev3

Upgrade from Newton to Ocata

The barbican-api-paste.ini configuration file for the paste pipeline was updated to add the
http_proxy_to_wsgi middleware. It can be used to help barbican respond with the correct URL refs
when its put behind a TLS proxy (such as HAProxy). This middleware is disabled by default, but can be
enabled via a configuration option in the oslo_middleware group.

See Ocata release notes.

Upgrade from Mitaka to Newton

There are no extra instructions that should be noted for this upgrade.

See Newton release notes.

Upgrade from Liberty to Mitaka

The Metadata API requires an update to the Database Schema. Existing deployments that are being
upgraded to Mitaka should use the barbican-manage utility to update the schema.

If you are upgrading from previous version of barbican that uses the PKCS#11 Cryptographic Plugin
driver, you will need to run the migration script.

python barbican/cmd/pkcs11_migrate_kek_signatures.py

See Mitaka release notes.

2.2 CLI Reference

2.2.1 barbican-status

Synopsis

barbican-status <category> <command> [<args>]

Description

barbican-status is a tool that provides routines for checking the status of a Barbican deployment.

10 Chapter 2. API Guide

https://docs.openstack.org/releasenotes/barbican/ocata.html#upgrade-notes
https://docs.openstack.org/releasenotes/barbican/newton.html
https://docs.openstack.org/releasenotes/barbican/mitaka.html#upgrade-notes

Barbican Documentation, Release 18.0.1.dev3

Options

The standard pattern for executing a barbican-status command is:

barbican-status <category> <command> [<args>]

Run without arguments to see a list of available command categories:

barbican-status

Categories are:

• upgrade

Detailed descriptions are below.

You can also run with a category argument such as upgrade to see a list of all commands in that category:

barbican-status upgrade

These sections describe the available categories and arguments for barbican-status.

Upgrade

barbican-status upgrade check
Performs a release-specific readiness check before restarting services with new code. This com-
mand expects to have complete configuration and access to databases and services.

Return Codes

Return code Description
0 All upgrade readiness checks passed successfully and there is nothing to do.
1 At least one check encountered an issue and requires further investigation.

This is considered a warning but the upgrade may be OK.
2 There was an upgrade status check failure that needs to be investigated. This

should be considered something that stops an upgrade.
255 An unexpected error occurred.

History of Checks

8.0.0 (Stein)

• Placeholder to be filled in with checks as they are added in Stein.

2.2. CLI Reference 11

Barbican Documentation, Release 18.0.1.dev3

2.3 Key Manager service

2.3.1 Key Manager service overview

The Key Manager service provides secure storage, provisioning and management of secrets, such as
passwords, encryption keys, etc.

The Key Manager service consists of the following components:

barbican-api service
Provides an OpenStack-native RESTful API that supports provisioning and managing Barbican
secrets.

barbican-worker service
Provides an Openstack RPC interface that interacts with barbican-api and reads from the bar-
bican message queue. Supports the fulfillment of Barbican orders.

barbican-keystone-listener service
Listens to messages from the Keystone notification service. Used to manage the representation of
Keystone projects in the Barbican database when projects are deleted.

2.3.2 Install and configure

This section describes how to install and configure the Key Manager service, code-named barbican, on
the controller node.

This section assumes that you already have a working OpenStack environment with at least the Identity
Service (keystone) installed.

For simplicity, this configuration stores secrets on the local file system.

Note that installation and configuration vary by distribution.

Install and configure for openSUSE and SUSE Linux Enterprise

This section describes how to install and configure the Key Manager service for openSUSE Leap 42.2
and SUSE Linux Enterprise Server 12 SP2.

Prerequisites

Before you install and configure the Key Manager service, you must create a database, service credentials,
and API endpoints.

1. To create the database, complete these steps:

• Use the database access client to connect to the database server as the root user:

mysql

• Create the barbican database:

CREATE DATABASE barbican;

12 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

• Grant proper access to the barbican database:

GRANT ALL PRIVILEGES ON barbican.* TO 'barbican'@'localhost' \
IDENTIFIED BY 'BARBICAN_DBPASS';

GRANT ALL PRIVILEGES ON barbican.* TO 'barbican'@'%' \
IDENTIFIED BY 'BARBICAN_DBPASS';

Replace BARBICAN_DBPASS with a suitable password.

• Exit the database access client.

exit;

2. Source the admin credentials to gain access to admin-only CLI commands:

$ source admin-openrc

3. To create the service credentials, complete these steps:

• Create the barbican user:

$ openstack user create --domain default --password-prompt barbican

• Add the admin role to the barbican user:

$ openstack role add --project service --user barbican admin

• Create the creator role:

$ openstack role create creator

• Add the creator role to the barbican user:

$ openstack role add --project service --user barbican creator

• Create the barbican service entities:

$ openstack service create --name barbican --description "Key Manager
↪→" key-manager

4. Create the Key Manager service API endpoints:

$ openstack endpoint create --region RegionOne \
key-manager public http://controller:9311

$ openstack endpoint create --region RegionOne \
key-manager internal http://controller:9311

$ openstack endpoint create --region RegionOne \
key-manager admin http://controller:9311

2.3. Key Manager service 13

Barbican Documentation, Release 18.0.1.dev3

Install and configure components

1. Install the packages:

zypper install openstack-barbican-api openstack-barbican-keystone-
↪→listener openstack-barbican-worker

2. Edit the /etc/barbican/barbican.conf file and complete the following actions:

• In the [DEFAULT] section, configure database access:

[DEFAULT]
...
sql_connection = mysql+pymysql://barbican:BARBICAN_DBPASS@controller/
↪→barbican

Replace BARBICAN_DBPASS with the password you chose for the Key Manager service
database.

• In the [DEFAULT] section, configure RabbitMQ message queue access:

[DEFAULT]
...
transport_url = rabbit://openstack:RABBIT_PASS@controller

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

• In the [keystone_authtoken] section, configure Identity service access:

[keystone_authtoken]
...
www_authenticate_uri = http://controller:5000
auth_url = http://controller:5000
memcached_servers = controller:11211
auth_type = password
project_domain_name = default
user_domain_name = default
project_name = service
username = barbican
password = BARBICAN_PASS

Replace BARBICAN_PASS with the password you chose for the barbican user in the Identity
service.

Note: Comment out or remove any other options in the [keystone_authtoken] section.

3. Populate the Key Manager service database:

If you wish the Key Manager service to automatically populate the database when the service is
first started, set db_auto_create to True in the [DEFAULT] section. By default this will not be active
and you can populate the database manually as below:

14 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

$ su -s /bin/sh -c "barbican-manage db upgrade" barbican

Note: Ignore any deprecation messages in this output.

4. Barbican has a plugin architecture which allows the deployer to store secrets in a number of different
back-end secret stores. By default, Barbican is configured to store secrets in a basic file-based
keystore. This key store is NOT safe for production use.

For a list of supported plugins and detailed instructions on how to configure them, see Configure
Secret Store Back-end

Finalize installation

1. Copy the sample Apache vhost file into place:

cp /etc/apache2/conf.d/barbican-api.conf.sample /etc/apache2/vhosts.d/
↪→barbican-api.conf

1. Start the Apache HTTP service and configure it to start when the system boots:

systemctl enable apache2.service
systemctl start apache2.service

Install and configure for Red Hat Enterprise Linux and CentOS

This section describes how to install and configure the Key Manager service for Red Hat Enterprise Linux
7 and CentOS 7.

Prerequisites

Before you install and configure the Key Manager service, you must create a database, service credentials,
and API endpoints.

1. To create the database, complete these steps:

• Use the database access client to connect to the database server as the root user:

mysql

• Create the barbican database:

CREATE DATABASE barbican;

• Grant proper access to the barbican database:

GRANT ALL PRIVILEGES ON barbican.* TO 'barbican'@'localhost' \
IDENTIFIED BY 'BARBICAN_DBPASS';

GRANT ALL PRIVILEGES ON barbican.* TO 'barbican'@'%' \
IDENTIFIED BY 'BARBICAN_DBPASS';

2.3. Key Manager service 15

Barbican Documentation, Release 18.0.1.dev3

Replace BARBICAN_DBPASS with a suitable password.

• Exit the database access client.

exit;

2. Source the admin credentials to gain access to admin-only CLI commands:

$ source admin-openrc

3. To create the service credentials, complete these steps:

• Create the barbican user:

$ openstack user create --domain default --password-prompt barbican

• Add the admin role to the barbican user:

$ openstack role add --project service --user barbican admin

• Create the creator role:

$ openstack role create creator

• Add the creator role to the barbican user:

$ openstack role add --project service --user barbican creator

• Create the barbican service entities:

$ openstack service create --name barbican --description "Key Manager
↪→" key-manager

4. Create the Key Manager service API endpoints:

$ openstack endpoint create --region RegionOne \
key-manager public http://controller:9311

$ openstack endpoint create --region RegionOne \
key-manager internal http://controller:9311

$ openstack endpoint create --region RegionOne \
key-manager admin http://controller:9311

Install and configure components

1. Install the packages:

yum install openstack-barbican-api

2. Edit the /etc/barbican/barbican.conf file and complete the following actions:

• In the [DEFAULT] section, configure database access:

16 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

[DEFAULT]
...
sql_connection = mysql+pymysql://barbican:BARBICAN_DBPASS@controller/
↪→barbican

Replace BARBICAN_DBPASS with the password you chose for the Key Manager service
database.

• In the [DEFAULT] section, configure RabbitMQ message queue access:

[DEFAULT]
...
transport_url = rabbit://openstack:RABBIT_PASS@controller

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

• In the [keystone_authtoken] section, configure Identity service access:

[keystone_authtoken]
...
www_authenticate_uri = http://controller:5000
auth_url = http://controller:5000
memcached_servers = controller:11211
auth_type = password
project_domain_name = default
user_domain_name = default
project_name = service
username = barbican
password = BARBICAN_PASS

Replace BARBICAN_PASS with the password you chose for the barbican user in the Identity
service.

Note: Comment out or remove any other options in the [keystone_authtoken] section.

3. Populate the Key Manager service database:

If you wish the Key Manager service to automatically populate the database when the service is
first started, set db_auto_create to True in the [DEFAULT] section. By default this will not be active
and you can populate the database manually as below:

$ su -s /bin/sh -c "barbican-manage db upgrade" barbican

Note: Ignore any deprecation messages in this output.

4. Barbican has a plugin architecture which allows the deployer to store secrets in a number of different
back-end secret stores. By default, Barbican is configured to store secrets in a basic file-based
keystore. This key store is NOT safe for production use.

2.3. Key Manager service 17

Barbican Documentation, Release 18.0.1.dev3

For a list of supported plugins and detailed instructions on how to configure them, see Configure
Secret Store Back-end

Finalize installation

1. Create the /etc/httpd/conf.d/wsgi-barbican.conf file with the following content:

<VirtualHost [::1]:9311>
ServerName controller

Logging
ErrorLog "/var/log/httpd/barbican_wsgi_main_error_ssl.log"
LogLevel debug
ServerSignature Off
CustomLog "/var/log/httpd/barbican_wsgi_main_access_ssl.log" combined

WSGIApplicationGroup %{GLOBAL}
WSGIDaemonProcess barbican-api display-name=barbican-api␣

↪→group=barbican processes=2 threads=8 user=barbican
WSGIProcessGroup barbican-api
WSGIScriptAlias / "/usr/lib/python2.7/site-packages/barbican/api/app.

↪→wsgi"
WSGIPassAuthorization On

</VirtualHost>

2. Start the Apache HTTP service and configure it to start when the system boots:

systemctl enable httpd.service
systemctl start httpd.service

Install and configure for Ubuntu

This section describes how to install and configure the Key Manager service for Ubuntu 14.04 (LTS).

Prerequisites

Before you install and configure the Key Manager service, you must create a database, service credentials,
and API endpoints.

1. To create the database, complete these steps:

• Use the database access client to connect to the database server as the root user:

mysql

• Create the barbican database:

CREATE DATABASE barbican;

• Grant proper access to the barbican database:

18 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

GRANT ALL PRIVILEGES ON barbican.* TO 'barbican'@'localhost' \
IDENTIFIED BY 'BARBICAN_DBPASS';

GRANT ALL PRIVILEGES ON barbican.* TO 'barbican'@'%' \
IDENTIFIED BY 'BARBICAN_DBPASS';

Replace BARBICAN_DBPASS with a suitable password.

• Exit the database access client.

exit;

2. Source the admin credentials to gain access to admin-only CLI commands:

$ source admin-openrc

3. To create the service credentials, complete these steps:

• Create the barbican user:

$ openstack user create --domain default --password-prompt barbican

• Add the admin role to the barbican user:

$ openstack role add --project service --user barbican admin

• Create the creator role:

$ openstack role create creator

• Add the creator role to the barbican user:

$ openstack role add --project service --user barbican creator

• Create the barbican service entities:

$ openstack service create --name barbican --description "Key Manager
↪→" key-manager

4. Create the Key Manager service API endpoints:

$ openstack endpoint create --region RegionOne \
key-manager public http://controller:9311

$ openstack endpoint create --region RegionOne \
key-manager internal http://controller:9311

$ openstack endpoint create --region RegionOne \
key-manager admin http://controller:9311

2.3. Key Manager service 19

Barbican Documentation, Release 18.0.1.dev3

Install and configure components

1. Install the packages:

apt-get update

apt-get install barbican-api barbican-keystone-listener barbican-worker

2. Edit the /etc/barbican/barbican.conf file and complete the following actions:

• In the [DEFAULT] section, configure database access:

[DEFAULT]
...
sql_connection = mysql+pymysql://barbican:BARBICAN_DBPASS@controller/
↪→barbican

Replace BARBICAN_DBPASS with the password you chose for the Key Manager service
database.

• In the [DEFAULT] section, configure RabbitMQ message queue access:

[DEFAULT]
...
transport_url = rabbit://openstack:RABBIT_PASS@controller

Replace RABBIT_PASS with the password you chose for the openstack account in
RabbitMQ.

• In the [keystone_authtoken] section, configure Identity service access:

[keystone_authtoken]
...
www_authenticate_uri = http://controller:5000
auth_url = http://controller:5000
memcached_servers = controller:11211
auth_type = password
project_domain_name = default
user_domain_name = default
project_name = service
username = barbican
password = BARBICAN_PASS

Replace BARBICAN_PASS with the password you chose for the barbican user in the Identity
service.

Note: Comment out or remove any other options in the [keystone_authtoken] section.

3. Populate the Key Manager service database:

If you wish the Key Manager service to automatically populate the database when the service is
first started, set db_auto_create to True in the [DEFAULT] section. By default this will not be active
and you can populate the database manually as below:

20 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

$ su -s /bin/sh -c "barbican-manage db upgrade" barbican

Note: Ignore any deprecation messages in this output.

4. Barbican has a plugin architecture which allows the deployer to store secrets in a number of different
back-end secret stores. By default, Barbican is configured to store secrets in a basic file-based
keystore. This key store is NOT safe for production use.

For a list of supported plugins and detailed instructions on how to configure them, see Configure
Secret Store Back-end

Finalize installation

Restart the Key Manager services:

service barbican-keystone-listener restart
service barbican-worker restart
service apache2 restart

Configure Secret Store Back-end

The Key Manager service has a plugin architecture that allows the deployer to store secrets in one or
more secret stores. Secret stores can be software-based such as a software-only encryption mechanism,
or hardware devices such as a hardware security module (HSM).

Secret Stores implement both the encryption mechanisms as well as the storage of the encrypted secrets.

This section compares all the plugins that are currently available and the security tradeoffs that need to
be considered when deciding which plugins to use.

Simple Crypto Plugin

This back end plugin implements encryption using only software. The encrypted secrets are stored in the
Barbican database.

This crypto plugin is configured by default in /etc/barbican/barbican.conf.

This plugin uses single symmetric key (kek - or key encryption key) - which is stored in plain text in the
/etc/barbican/barbican.conf file to encrypt and decrypt all secrets.

2.3. Key Manager service 21

Barbican Documentation, Release 18.0.1.dev3

Security Master Key (KEK) stored in the configuration file
Maturity Tested on every patch
Ease of Use

Simple to deploy
Key rotation is disruptive
(all secrets must be re-encrypted)

Scalability

Storage can be scaled in SQL DB
Failover/HA is simple, just run more
barbican-api instances
High performance - Software crypto is fast

Cost Free (as in beer)

Warning: This plugin stores its KEK in plain text in the configuration file, which will be present
in any node running the barbican-api or barbican-worker services. Extreme care should be taken
to prevent unauthorized access to these nodes. When using this plugin the KEK is the only thing
protecting the secrets stored in the database.

The configuration for this plugin in /etc/barbican/barbican.conf is as follows:

================= Secret Store Plugin ===================
[secretstore]
..
enabled_secretstore_plugins = store_crypto

================= Crypto plugin ===================
[crypto]
..
enabled_crypto_plugins = simple_crypto

[simple_crypto_plugin]
the kek should be a 32-byte value which is base64 encoded
kek = 'YWJjZGVmZ2hpamtsbW5vcHFyc3R1dnd4eXoxMjM0NTY='

Note: Setting crypto plugins has effect only when secretstore plugin is set to store_crypto unless multi-
backend storage is used. So, for example, using vault for secretstore and PKCS#11 for crypto will not
work (vault will be responsible for both storage and encryption).

22 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

PKCS#11 Crypto Plugin

This crypto plugin can be used to interface with a Hardware Security Module (HSM) using the PKCS#11
protocol.

Secrets are encrypted (and decrypted on retrieval) by a project specific Key Encryption Key (KEK),
which in its turn encrypted with Master Key (MKEK) and signed with HMAC key. Both MKEK and
HMAC resides in the HSM.

The configuration for this plugin in /etc/barbican/barbican.conf. Settings for some different
HSMs are provided below:

Thales Luna Network HSM

The PKCS#11 plugin configuration for Luna Network HSM looks like:

[secretstore]
enable_multiple_secret_stores = True
stores_lookup_suffix = luna

========== Secret Store configuration ==========
[secretstore:luna]
secret_store_plugin = store_crypto
crypto_plugin = p11_crypto

================= Crypto plugin ===================
[p11_crypto_plugin]
Path to vendor PKCS11 library
library_path = '/usr/lib/libCryptoki2_64.so'

Token serial number for the token to be used. Required
when the device has multiple tokens with the same label.
(string value)
#token_serial_number = 12345678

Token label for the token to be used. Required when
token_serial_number is not specified. (string value)
token_labels = myPCKS11Token

(Optional) HSM Slot ID that contains the token device to be used.
Required when token_serial_number and token_labels are not␣
↪→specified.
(integer value)
#slot_id = 0

Password (PIN) to login to PKCS11 session
login = 'mypassword'

Encryption algorithm used to encrypt secrets
encryption_mechanism = CKM_AES_CBC_GCM

(continues on next page)

2.3. Key Manager service 23

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

Label to identify master KEK in the HSM (must not be the same as␣
↪→HMAC label)
mkek_label = 'my_mkek_label'

Label to identify master HMAC key in the HSM (must not be the same␣
↪→as MKEK label)
hmac_label = 'my_hmac_label'

Key Type for the master HMAC key
hmac_key_type = CKK_GENERIC_SECRET

HMAC Key Generation Algorithm used to create the master HMAC Key
hmac_keygen_mechanism = CKM_GENERIC_SECRET_KEY_GEN

HMAC algorith used to sign ecnrypted data
hmac_mechanism = CKM_SHA256_HMAC

Key Wrap algorithm used to wrap Project KEKs
key_wrap_mechanism = CKM_AES_KEY_WRAP_KWP

The HMAC and MKEK keys can be generated as follows:

barbican-manage hsm gen_hmac --library-path /usr/lib/libCryptoki2_64.
↪→so \
--passphrase XXX --slot-id 1 --label my_hmac_label

barbican-manage hsm gen_mkek --library-path /usr/lib/libCryptoki2_64.
↪→so \
--passphrase XXX --slot-id 1 --label my_mkek_label

nCipher

For a nCipher nShield Connect XC, the plugin configuration looks like:

================= Secret Store Plugin ===================
[secretstore]
..
enabled_secretstore_plugins = store_crypto

================= Crypto plugin ===================
[crypto]
..
enabled_crypto_plugins = p11_crypto

[p11_crypto_plugin]
Path to vendor PKCS11 library
library_path = '/opt/nfast/toolkits/pkcs11/libcknfast.so'

(continues on next page)

24 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

Token serial number used to identify the token to be used. ␣
↪→Required
when the device has multiple tokens with the same label. (string
value)
token_serial_number = 12345678

Token label used to identify the token to be used. Required when
token_serial_number is not specified. (string value)
#token_label = <None>

Password to login to PKCS11 session
login = 'XXX'

Label to identify master KEK in the HSM (must not be the same as␣
↪→HMAC label)
mkek_label = 'thales_mkek_0'

Length in bytes of master KEK
mkek_length = 32

Label to identify HMAC key in the HSM (must not be the same as␣
↪→MKEK label)
hmac_label = 'thales_hmac_0'

(Optional) HSM Slot ID that contains the token device to be used.
(integer value)
slot_id = 1

Enable Read/Write session with the HSM?
rw_session = True

Length of Project KEKs to create
pkek_length = 32

How long to cache unwrapped Project KEKs
pkek_cache_ttl = 900

Max number of items in pkek cache
pkek_cache_limit = 100

Secret encryption mechanism (string value)
Deprecated group/name - [p11_crypto_plugin]/algorithm
encryption_mechanism = CKM_AES_CBC

HMAC Key Type (string value)
hmac_key_type=CKK_SHA256_HMAC

HMAC Key Generation Mechanism (string value)
hmac_keygen_mechanism = CKM_NC_SHA256_HMAC_KEY_GEN

(continues on next page)

2.3. Key Manager service 25

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

Generate IVs for CKM_AES_GCM mechanism. (boolean value)
Deprecated group/name - [p11_crypto_plugin]/generate_iv
aes_gcm_generate_iv=True

Always set CKA_SENSITIVE=CK_TRUE including
CKA_EXTRACTABLE=CK_TRUE keys.
default true
always_set_cka_sensitive=false

The HMAC and MKEK keys can be generated as follows:

barbican-manage hsm gen_hmac \
--library-path /opt/nfast/toolkits/pkcs11/libcknfast.so \
--passphrase XXX --slot-id 1 --label thales_hmac_0 \
--key-type CKK_SHA256_HMAC \
--mechanism CKM_NC_SHA256_HMAC_KEY_GEN

barbican-manage hsm gen_mkek \
--library-path /opt/nfast/toolkits/pkcs11/libcknfast.so \
--passphrase XXX --slot-id 1 --label thales_mkek_0

ATOS Bull

For an ATOS Bull HSM, the plugin configuration looks like:

================= Secret Store Plugin ===================
[secretstore]
..
enabled_secretstore_plugins = store_crypto

================= Crypto plugin ===================
[crypto]
..
enabled_crypto_plugins = p11_crypto

[p11_crypto_plugin]
Path to vendor PKCS11 library
library_path = '/usr/lib64/libnethsm.so'

Token serial number used to identify the token to be used. ␣
↪→Required
when the device has multiple tokens with the same label. (string
value)
token_serial_number = 12345678

Token label used to identify the token to be used. Required when
token_serial_number is not specified. (string value)

(continues on next page)

26 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

#token_label = <None>

Password to login to PKCS11 session
login = 'XXX'

Label to identify master KEK in the HSM (must not be the same as␣
↪→HMAC label)
mkek_label = 'atos_mkek_0'

Length in bytes of master KEK
mkek_length = 32

Label to identify HMAC key in the HSM (must not be the same as␣
↪→MKEK label)
hmac_label = 'atos_hmac_0'

(Optional) HSM Slot ID that contains the token device to be used.
(integer value)
slot_id = 1

Enable Read/Write session with the HSM?
rw_session = True

Length of Project KEKs to create
pkek_length = 32

How long to cache unwrapped Project KEKs
pkek_cache_ttl = 900

Max number of items in pkek cache
pkek_cache_limit = 100

Secret encryption mechanism (string value)
Deprecated group/name - [p11_crypto_plugin]/algorithm
encryption_mechanism = CKM_AES_CBC

HMAC Key Type (string value)
hmac_key_type = CKK_GENERIC_SECRET

HMAC Key Generation Mechanism (string value)
hmac_keygen_mechanism = CKM_GENERIC_SECRET_KEY_GEN

Always set CKA_SENSITIVE=CK_TRUE including
CKA_EXTRACTABLE=CK_TRUE keys.
default true
always_set_cka_sensitive=false

The HMAC and MKEK keys can be generated as follows:

2.3. Key Manager service 27

Barbican Documentation, Release 18.0.1.dev3

barbican-manage hsm gen_hmac --library-path /usr/lib64/libnethsm.so \
--passphrase XXX --slot-id 1 --label atos_hmac_0 \
--key-type CKK_GENERIC_SECRET \
--mechanism CKM_GENERIC_SECRET_KEY_GEN

barbican-manage hsm gen_mkek --library-path /usr/lib64/libnethsm.so \
--passphrase XXX --slot-id 1 --label atos_mkek_0

Utimaco

The PKCS#11 plugin configuration looks like:

================= Secret Store Plugin ===================
[secretstore]
..
enabled_secretstore_plugins = store_crypto

================= Crypto plugin ===================
[crypto]
..
enabled_crypto_plugins = p11_crypto

[p11_crypto_plugin]
Path to vendor PKCS11 library (string value)
library_path = '/opt/utimaco/lib/libcs_pkcs11_R2.so'

Token serial number used to identify the token to be used. ␣
↪→Required
when the device has multiple tokens with the same label. (string
value)
token_serial_number = 12345678

Token label used to identify the token to be used. Required when
token_serial_number is not specified. (string value)
#token_label = <None>

Password to login to PKCS11 session (string value)
login = '$up3r$e<retP4ssw0rd'

Master KEK label (as stored in the HSM) (string value)
mkek_label = 'my_mkek'

Master KEK length in bytes. (integer value)
#mkek_length = <None>

Master HMAC Key label (as stored in the HSM) (string value)
hmac_label = 'my_hmac_key'

(Optional) HSM Slot ID that contains the token device to be used.
(continues on next page)

28 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

(integer value)
slot_id = 1

Flag for Read/Write Sessions (boolean value)
#rw_session = true

Project KEK length in bytes. (integer value)
#pkek_length = 32

Project KEK Cache Time To Live, in seconds (integer value)
#pkek_cache_ttl = 900

Project KEK Cache Item Limit (integer value)
#pkek_cache_limit = 100

Secret encryption mechanism (string value)
Deprecated group/name - [p11_crypto_plugin]/algorithm
encryption_mechanism = CKM_AES_CBC

HMAC Key Type (string value)
#hmac_key_type = CKK_AES

HMAC Key Generation Algorithm (string value)
#hmac_keygen_mechanism = CKM_AES_KEY_GEN

File to pull entropy for seeding RNG (string value)
#seed_file =

Amount of data to read from file for seed (integer value)
#seed_length = 32

User friendly plugin name (string value)
#plugin_name = PKCS11 HSM

Generate IVs for CKM_AES_GCM mechanism. (boolean value)
Deprecated group/name - [p11_crypto_plugin]/generate_iv
#aes_gcm_generate_iv = true

HMAC key wrap mechanism
hmac_keywrap_mechanism = CKM_AES_MAC

The HMAC and MKEK keys can be generated as follows:

barbican-manage hsm gen_mkek --library-path \
/opt/utimaco/lib/libcs_pkcs11_R2.so --passphrase XXX \
--slot-id 0 --label 'my_mkek'

barbican-manage hsm gen_hmac --library-path \
/opt/utimaco/lib/libcs_pkcs11_R2.so --passphrase XXX \
--slot-id 0 --label 'my_hmac_key'

2.3. Key Manager service 29

Barbican Documentation, Release 18.0.1.dev3

KMIP Plugin

This secret store plugin is used to communicate with a KMIP device. The secret is securely stored in the
KMIP device directly, rather than in the Barbican database. The Barbican database maintains a reference
to the secrets location for later retrieval.

The plugin can be configured to authenticate to the KMIP device using either a username and password,
or using a client certificate.

The configuration for this plugin in /etc/barbican/barbican.conf is as follows:

[secretstore]
..
enabled_secretstore_plugins = kmip_crypto

[kmip_plugin]
username = 'admin'
password = 'password'
host = localhost
port = 5696
keyfile = '/path/to/certs/cert.key'
certfile = '/path/to/certs/cert.crt'
ca_certs = '/path/to/certs/LocalCA.crt'

Dogtag Plugin

Dogtag is the upstream project corresponding to the Red Hat Certificate System, a robust, full-featured
PKI solution that contains a Certificate Manager (CA) and a Key Recovery Authority (KRA) which is
used to securely store secrets.

The KRA stores secrets as encrypted blobs in its internal database, with the master encryption keys being
stored either in a software-based NSS security database, or in a Hardware Security Module (HSM).

Note that the software-based NSS database configuration provides a secure option for those deployments
that do not require or cannot afford an HSM. This is the only current plugin to provide this option.

The KRA communicates with HSMs using PKCS#11. For a list of certified HSMs, see the latest release
notes. Dogtag and the KRA meet all the relevant Common Criteria and FIPS specifications.

The KRA is a component of FreeIPA. Therefore, it is possible to configure the plugin with a FreeIPA
server. More detailed instructions on how to set up Barbican with FreeIPA are provided here.

The plugin communicates with the KRA using a client certificate for a trusted KRA agent. That certificate
is stored in an NSS database as well as a PEM file as seen in the configuration below.

The configuration for this plugin in /etc/barbican/barbican.conf is as follows:

[secretstore]
..
enabled_secretstore_plugins = dogtag_crypto

[dogtag_plugin]
pem_path = '/etc/barbican/kra_admin_cert.pem'

(continues on next page)

30 Chapter 2. API Guide

https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/9/html/Release_Notes/
https://access.redhat.com/documentation/en-US/Red_Hat_Certificate_System/9/html/Release_Notes/
https://vakwetu.wordpress.com/2015/11/30/barbican-and-dogtagipa/

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

dogtag_host = localhost
dogtag_port = 8443
nss_db_path = '/etc/barbican/alias'
nss_password = 'password123'

Vault Plugin

Vault is a HashiCorp tool for securely accessing secrets and other objects, such as API keys, passwords,
or certificates. Vault provides a unified interface to any secret, while providing tight access control and
recording a detailed audit log.

The plugin communicates with the Vault using a Vault token.

The configuration for this plugin in /etc/barbican/barbican.conf is as follows:

[secretstore]
..
enabled_secretstore_plugins = vault_plugin

[vault_plugin]
root_token_id =
approle_role_id =
approle_secret_id =
kv_mountpoint = secret
vault_url = https://127.0.0.1:8200
use_ssl = True
ssl_ca_crt_file = /opt/vault/tls/tls-ca.crt

2.3.3 Verify operation

Verify operation of the Key Manager (barbican) service.

Note: Perform these commands on the controller node.

1. Install python-barbicanclient package:

• For openSUSE and SUSE Linux Enterprise:

$ zypper install python-barbicanclient

• For Red Hat Enterprise Linux and CentOS:

$ yum install python-barbicanclient

• For Ubuntu:

$ apt-get install python-barbicanclient

2. Source the admin credentials to be able to perform Barbican API calls:

2.3. Key Manager service 31

Barbican Documentation, Release 18.0.1.dev3

$. admin-openrc

3. Use the OpenStack CLI to store a secret:

$ openstack secret store --name mysecret --payload j4=]d21
+---------------+---
↪→--------------+
| Field | Value ␣
↪→ |
+---------------+---
↪→--------------+
| Secret href | http://10.0.2.15:9311/v1/secrets/655d7d30-c11a-49d9-
↪→a0f1-34cdf53a36fa |
| Name | mysecret ␣
↪→ |
| Created | None ␣
↪→ |
| Status | None ␣
↪→ |
| Content types | None ␣
↪→ |
| Algorithm | aes ␣
↪→ |
| Bit length | 256 ␣
↪→ |
| Secret type | opaque ␣
↪→ |
| Mode | cbc ␣
↪→ |
| Expiration | None ␣
↪→ |
+---------------+---
↪→--------------+

4. Confirm that the secret was stored by retrieving it:

$ openstack secret get http://10.0.2.15:9311/v1/secrets/655d7d30-c11a-
↪→49d9-a0f1-34cdf53a36fa
+---------------+---
↪→--------------+
| Field | Value ␣
↪→ |
+---------------+---
↪→--------------+
| Secret href | http://10.0.2.15:9311/v1/secrets/655d7d30-c11a-49d9-
↪→a0f1-34cdf53a36fa |
| Name | mysecret ␣
↪→ |
| Created | 2016-08-16 16:04:10+00:00 ␣
↪→ |

(continues on next page)

32 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

| Status | ACTIVE ␣
↪→ |
| Content types | {'default': 'application/octet-stream'} ␣
↪→ |
| Algorithm | aes ␣
↪→ |
| Bit length | 256 ␣
↪→ |
| Secret type | opaque ␣
↪→ |
| Mode | cbc ␣
↪→ |
| Expiration | None ␣
↪→ |
+---------------+---
↪→--------------+

Note: Some items are populated after the secret has been created and will only display when
retrieving it.

5. Confirm that the secret payload was stored by retrieving it:

$ openstack secret get http://10.0.2.15:9311/v1/secrets/655d7d30-c11a-
↪→49d9-a0f1-34cdf53a36fa --payload
+---------+---------+
| Field | Value |
+---------+---------+
| Payload | j4=]d21 |
+---------+---------+

2.3.4 Next steps

Your OpenStack environment now includes the barbican service.

To add additional services, see https://docs.openstack.org/install-guide .

The Key Manager service (barbican) provides secure storage, provisioning and management of secret
data. This includes keying material such as symmetric keys, asymmetric keys, certificates and raw binary
data.

This chapter assumes a working setup of OpenStack following the OpenStack Installation Tutorial.

2.3. Key Manager service 33

https://docs.openstack.org/install-guide
https://docs.openstack.org/#install-guides

Barbican Documentation, Release 18.0.1.dev3

2.4 Setting up Barbican

2.4.1 Using Keystone Middleware with Barbican

Prerequisites

To enable Keystone integration with Barbican youll need a relatively current version of Keystone. It is
sufficient if you are installing an OpenStack cloud where all services including Keystone and Barbican
are from the same release. If you dont have an instance of Keystone available, you can use one of the
following ways to setup your own.

1. Simple Dockerized Keystone

2. Installing Keystone

3. An OpenStack cloud with Keystone (Devstack in the simplest case)

Hooking up Barbican to Keystone

Assuming that youve already setup your Keystone instance, connecting Barbican to Keystone is quite
simple. When completed, Barbican should require a valid X-Auth-Token to be provided with all API
calls except the get version call.

1. Turn off any active instances of Barbican

2. Edit /etc/barbican/barbican-api-paste.ini

1. Change the pipeline /v1 value from unauthenticated barbican_api to the authenticated
barbican-api-keystone. This step will not be necessary on barbican from OpenStack
Newton or higher, since barbican will default to using Keystone authentication as of Open-
Stack Newton.

[composite:main]
use = egg:Paste#urlmap
/: barbican_version
/v1: barbican-api-keystone

2. Replace authtoken filter values to match your Keystone setup

[filter:authtoken]
paste.filter_factory = keystonemiddleware.auth_token:filter_factory
auth_plugin = password
username = {YOUR_KEYSTONE_USERNAME}
password = {YOUR_KEYSTONE_PASSWORD}
user_domain_id = {YOUR_KEYSTONE_USER_DOMAIN}
project_name = {YOUR_KEYSTONE_PROJECT}
project_domain_id = {YOUR_KEYSTONE_PROJECT_DOMAIN}
www_authenticate_uri = http://{YOUR_KEYSTONE_ENDPOINT}:5000/v3
auth_url = http://{YOUR_KEYSTONE_ENDPOINT}:5000/v3

Alternatively, you can shorten this to

34 Chapter 2. API Guide

https://registry.hub.docker.com/r/jmvrbanac/simple-keystone/
https://docs.openstack.org/keystone/latest/install/index.html

Barbican Documentation, Release 18.0.1.dev3

[filter:authtoken]
paste.filter_factory = keystonemiddleware.auth_token:filter_factory

and store Barbicans Keystone credentials in the [keystone_authtoken] section of /etc/
barbican/barbican.conf

[keystone_authtoken]
auth_plugin = password
username = {YOUR_KEYSTONE_USERNAME}
password = {YOUR_KEYSTONE_PASSWORD}
user_domain_id = {YOUR_KEYSTONE_USER_DOMAIN}
project_name = {YOUR_KEYSTONE_PROJECT}
project_domain_id = {YOUR_KEYSTONE_PROJECT_DOMAIN}
www_authenticate_uri = http://{YOUR_KEYSTONE_ENDPOINT}:5000/v3
auth_url = http://{YOUR_KEYSTONE_ENDPOINT}:5000/v3

3. Start Barbican {barbican_home}/bin/barbican.sh start

2.4.2 Troubleshooting your Barbican Setup

If you cannot find the answers youre looking for within this document, you can ask questions on the
OFTC IRC channel #openstack-barbican

Getting a Barbican HTTP 401 error after a successful authentication to Keystone

What you might see

You get a HTTP 401 Unauthorized response even with a valid token

curl -X POST -H "X-Auth-Token: $TOKEN" -H "Content-type: application/json" \
-d '{"payload": "my-secret-here", "payload_content_type": "text/plain"}' \
http://localhost:9311/v1/secrets

Caused by

Expired signing cert on the Barbican server.

How to avoid

Check for an expired Keystone signing certificate on your Barbican server. Look at the expiration date
in /tmp/barbican/cache/signing_cert.pem. If it is expired then follow these steps.

1. On your Keystone server, verify that signing_cert.pem has the same expiration date as the one on
your Barbican machine. You can normally find signing_cert.pem on your Keystone server in
/etc/keystone/ssl/certs.

2. If the cert matches then follow these steps to create a new one

1. Delete it from both your Barbican and Keystone servers.

2.4. Setting up Barbican 35

Barbican Documentation, Release 18.0.1.dev3

2. Edit /etc/keystone/ssl/certs/index.txt.attr and set unique_subject to no.

3. Run keystone-manage pki_setup to create a new signing_cert.pem

4. The updated cert will be downloaded to your Barbican server the next time you hit the Bar-
bican API.

3. If the cert doesnt match then delete the signing_cert.pem from your Barbican server. Do not
delete from Keystone. The cert from Keystone will be downloaded to your machine the next time
you hit the Barbican API.

Returned refs use localhost instead of the correct hostname

What you might see

curl -X POST -H "X-Auth-Token: $TOKEN" -H "Content-type: application/json" \
-d '{"payload": "my-secret-here", "payload_content_type": "text/plain"}' \
http://myhostname.com/v1/secrets

Response:
{

"secret_ref": "http://localhost:9311/v1/secrets/UUID_HERE"
}

Caused by

The default configuration on the response host name is not modified to the endpoints host name (typically
the load balancers DNS name and port).

How to avoid

Change your barbican.conf files host_href setting from localhost:9311 to the correct host name
(myhostname.com in the example above).

Barbicans tox tests fail to run on my Mac

What you might see

clang: error: unknown argument: '-mno-fused-madd'

36 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

How to avoid

There is a great blog article that provides more details on the error and how to work around it. This link
provides more details on the error and how to work around it.

Barbicans tox tests fail to find ffi.h on my Mac

What you might see

c/_cffi_backend.c:13:10: fatal error: 'ffi.h' file not found
...
ERROR: could not install deps [...]; v = InvocationError('...', 1)

How to avoid

Be sure that xcode and cmd line tools are up to date. Easiest way is to run xcode-select --install
from an OS X command line. Be sure to say yes when asked if you want to install the command line
tools. Now ls /usr/include/ffi/ffi.h should show that missing file exists, and the tox tests should
run.

Barbicans tox tests fail with ImportError: No module named _bsddb

What you might see

ImportError: No module named _bsddb

How to avoid

Running tests via tox (which uses testr) will create a .testrepository directory containing, among other
things, data files. Those datafiles may be created with bsddb, if it is available in the environment. This
can cause problems if you run in an environment that does not have bsddb. To resolve this, delete your
.testrepository directory and run tox again.

uWSGI logs OOPS ! failed loading app

What you might see

...
spawned uWSGI master process (pid: 59190)
spawned uWSGI worker 1 (pid: 59191, cores: 1)
spawned uWSGI worker 1 (pid: 59192, cores: 1)
Loading paste environment: config:/etc/barbican/barbican-api-paste.ini
WSGI app 0 (mountpoint='') ready in 0 seconds on interpreter \

0x7fd098c08520 pid: 59191 (default app)
(continues on next page)

2.4. Setting up Barbican 37

https://langui.sh/2014/03/10/wunused-command-line-argument-hard-error-in-future-is-a-harsh-mistress/

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

OOPS ! failed loading app in worker 1 (pid 59192) :(trying again...
Respawned uWSGI worker 1 (new pid: 59193)
Loading paste environment: config:/etc/barbican/barbican-api-paste.ini
OOPS ! failed loading app in worker 1 (pid 59193) :(trying again...
worker respawning too fast !!! i have to sleep a bit (2 seconds)...
...

Note: You will not see any useful logs or stack traces with this error!

Caused by

The vassal (worker) processes are not able to access the datastore.

How to avoid

Check the sql_connection in your barbican.conf file, to make sure that it references a valid reach-
able database.

Cannot register CLI option error when importing logging

What you might see

...
File ".../oslo_config/cfg.py", line 1275, in register_cli_opt
raise ArgsAlreadyParsedError("cannot register CLI option")

ArgsAlreadyParsedError: arguments already parsed: cannot register CLI option

Caused by

An attempt to call the olso.configs register_cli_opt() function after the configuration arguments
were parsed (see the comments and method in the oslo.config projects cfg.py file for details.

How to avoid

Instead of calling import barbican.openstack.common.log as logging to get a logger, call from
barbican.common import configwith this to get a logger to use in your source file: LOG = config.
getLogger(__name__).

38 Chapter 2. API Guide

https://opendev.org/openstack/oslo.config/src/branch/master/oslo_config/cfg.py

Barbican Documentation, Release 18.0.1.dev3

Responder raised TypeError: 'NoneType' object has no attribute '__getitem__'

What you might see

...
2013-04-14 14:17:56 [FALCON] [ERROR] POST \
/da71dfbc-a959-4ad3-bdab-5ee190ce7515/csrs? => Responder raised \
TypeError: 'NoneType' object has no attribute '__getitem__'

Caused by

Forgetting to set your non-nullable FKs in entities you create via XxxxResource classes.

How to avoid

Dont forget to set any FKs defined on an entity prior to using the repository to create it.

uWSGI config issue: ImportError: No module named site

What you might see

...
uwsgi socket 0 bound to TCP address :9311 fd 3
Python version: 2.7.3 (...) [...]
Set PythonHome to ./.venv
ImportError: No module named site

Caused by

• Cant locate the Python virtualenv for the Barbican project.

• Either the broker setting above is incorrect, or else you havent started a queue process yet (such as
RabbitMQ)

How to avoid

Make sure the uWSGI config file at etc/barbican/barbican-api-paste.ini is configured correctly
(see installation steps above), esp. if the virtualenv folder is named differently than the .ini file has.

2.4. Setting up Barbican 39

Barbican Documentation, Release 18.0.1.dev3

REST Request Fails with JSON error

What you might see

{
"title": "Malformed JSON"

}

Caused by

Barbican REST server cannot parse the incoming JSON message from your REST client.

How to avoid

Make sure you are submitting properly formed JSON. For example, are there commas after all but the
last name/value pair in a list? Are there quotes around all name/values that are text-based? Are the types
of values matching what is expected (i.e. integer and boolean types instead of quoted text)?

If you are using the Advanced REST Client with Chrome, and you tried to upload a file to the secrets
PUT call, not only will this fail due to the multi-part format it uses, but it will also try to submit this file
for every REST request you make thereafter, causing this error. Close the tab/window with the client,
and restart it again.

Crypto Mime Type Not Supported when I try to run tests or hit the API

What you might see

A stack trace that has this in it (for example):

CryptoMimeTypeNotSupportedException: Crypto Mime Type of 'text/plain' not␣
↪→supported

Caused by

The Barbican plugins are not installed into a place where the Python plugin manager can find them.

How to avoid

Make sure you run the pip install -e ..

40 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Python cant find module errors with the uWSGI scripts

What you might see

*** has_emperor mode detected (fd: 6) ***
...
!!! UNABLE to load uWSGI plugin: dlopen(./python_plugin.so, 10): image not␣
↪→found !!!
...

File "./site-packages/paste/deploy/loadwsgi.py", line 22, in import_string
return pkg_resources.EntryPoint.parse("x=" + s).load(False)

File "./site-packages/distribute-0.6.35-py2.7.egg/pkg_resources.py", line␣
↪→2015, in load

entry = __import__(self.module_name, globals(),globals(), ['__name__'])
ImportError: No module named barbican.api.app
...
*** Starting uWSGI 1.9.13 (64bit) on [Fri Jul 5 09:59:29 2013] ***

Caused by

The Barbican source modules are not found in the Python path of applications such as uwsgi.

How to avoid

Make sure you are running from your virtual env, and that pip was executed after you activated your
virtual environment. This especially includes the pip install -e command. Also, it is possible that
your virtual env gets corrupted, so you might need to rebuild it.

unable to open database file None None errors running scripts

What you might see

...
File "./site-packages/sqlalchemy/engine/strategies.py", line 80, in connect
return dialect.connect(*cargs, **cparams)

File "./site-packages/sqlalchemy/engine/default.py", line 283, in connect
return self.dbapi.connect(*cargs, **cparams)

OperationalError: (OperationalError) unable to open database file None None
[emperor] removed uwsgi instance barbican-api.ini
...

2.4. Setting up Barbican 41

Barbican Documentation, Release 18.0.1.dev3

Caused by

Destination folder for the sqlite database is not found, or is not writable.

How to avoid

Make sure the /var/lib/barbican/ folder exists and is writable by the user that is running the Barbican
API process.

ValueError: No JSON object could be decoded with Keystoneclient middleware

What you might see

...
2013-08-15 16:55:15.759 2445 DEBUG keystoneclient.middleware.auth_token \
[-] Token validation failure. _validate_user_token \
./site-packages/keystoneclient/middleware/auth_token.py:711
...
2013-08-15 16:55:15.759 2445 TRACE keystoneclient.middleware.auth_token \
raise ValueError("No JSON object could be decoded")
2013-08-15 16:55:15.759 24458 TRACE keystoneclient.middleware.auth_token \
ValueError: No JSON object could be decoded
...
2013-08-15 16:55:15.766 2445 WARNING keystoneclient.middleware.auth_token \
[-] Authorization failed for token ...
2013-08-15 16:55:15.766 2445 INFO keystoneclient.middleware.auth_token \
[-] Invalid user token - rejecting request...

Caused by

The keystoneclient middleware component is looking for a cms command in openssl that wasnt
available before version 1.0.1.

How to avoid

Update openssl.

42 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

accept-encoding of gzip,deflate,sdch not supported

What you might see

Secret retrieval issue seen - accept-encoding of 'gzip,deflate,sdch' not␣
↪→supported

Caused by

This might be an issue with the browser you are using, as performing the request via curl doesnt seem to
be affected.

How to avoid

Other than using an command such as curl to make the REST request you may not have many other
options.

2.4.3 No Auth barbican

As of OpenStack Newton, barbican will default to using Keystone like every other OpenStack service
for identity and access control. Nonetheless, sometimes it may be useful to run barbican without any
authentication service for development purposes.

To this end, barbican-api-paste.ini contains a filter pipeline without any authentication (no auth
mode):

Use this pipeline for barbican API - DEFAULT no authentication
[pipeline:barbican_api]
pipeline = unauthenticated-context apiapp

To enable this pipeline proceed as follows:

1. Turn off any active instances of barbican

2. Edit /etc/barbican/barbican-api-paste.ini

Change the pipeline /v1 value from authenticated barbican-api-keystone to the unauthenti-
cated barbican_api

[composite:main]
use = egg:Paste#urlmap
/: barbican_version
/v1: barbican_api

With every OpenStack service integrated with keystone, its API requires access token to retireve certain
information and validate users information and privileges. If you are running barbican in no auth mode,
you have to specify project_id instead of an access token which was retrieved from the token instead. In
case of API, replace 'X-Auth-Token: $TOKEN'with 'X-Project-Id: {project_id}' for every
API request in Barbican API Documentation.

2.4. Setting up Barbican 43

Barbican Documentation, Release 18.0.1.dev3

You can also find detailed explanation to run barbican client with an unauthenticated context here and
run barbican CLI in no auth mode here.

2.4.4 Using Audit Middleware with Barbican

Background

Audit middleware is a python middleware logic which is added in service request processing pipeline via
paste deploy filters. Audit middleware constructs audit event data in CADF format.

Audit middleware supports delivery of CADF audit events via Oslo messaging notifier capability. Based
on notification_driver configuration, audit events can be routed to messaging infrastructure (notifica-
tion_driver = messagingv2) or can be routed to a log file (notification_driver = log).

Audit middleware creates two events per REST API interaction. First event has information extracted
from request data and the second one has request outcome (response).

Enabling Audit for API Requests

Audit middleware is available as part of keystonemiddleware (>= 1.6) library. Assuming a barbican
deployment is already using keystone for token validation, auditing support requires only configuration
changes. It has Oslo messaging library dependency as it uses this for audit event delivery. pyCADF
library is used for creating events in CADF format.

• Enable Middleware : Enabling Middleware Link . Change is primarily in service paste deploy
configuration.

• Configure Middleware : Configuring Middleware Link . Can use provided audit mapping file. If
there are no custom mapping for actions or path, then related mapping values are derived from
taxonomy defined in pyCADF library.

Note: Audit middleware filter should be included after Keystone middlewares keystone_authtoken mid-
dleware in request pipeline. This is needed so that audit middleware can utilize environment variables
set by keystone_authtoken middleware.

Steps

1. Turn off any active instances of Barbican.

2. Copy api_audit_map.conf to /etc/barbican directory.

3. Edit /etc/barbican/barbican-api-paste.ini

Replace the /v1 app pipeline from barbican_api to barbican-api-keystone-audit pipeline:

[pipeline:barbican-api-keystone-audit]
pipeline = authtoken context audit apiapp

4. Edit barbican.conf to update notification_driver value.

5. Start Barbican {barbican_home}/bin/barbican.sh start

44 Chapter 2. API Guide

https://docs.openstack.org/python-barbicanclient/latest/cli/authentication.html#unauthenticated-context
https://docs.openstack.org/python-barbicanclient/latest/cli/authentication.html#no-auth-mode
https://docs.openstack.org/keystonemiddleware/latest/audit.html
http://www.dmtf.org/sites/default/files/standards/documents/DSP2038_1.0.0.pdf
https://github.com/openstack/keystonemiddleware/blob/master/keystonemiddleware/audit
https://docs.openstack.org/keystonemiddleware/latest/audit.html#enabling-audit-middleware
https://docs.openstack.org/keystonemiddleware/latest/audit.html#configure-audit-middleware

Barbican Documentation, Release 18.0.1.dev3

Sample Audit Event

Following is the sample of audit event for symmetric key create request

{
"priority":"INFO",
"event_type":"audit.http.request",
"timestamp":"2015-12-11 00:44:26.412076",
"publisher_id":"uwsgi",
"payload":{
"typeURI":"http://schemas.dmtf.org/cloud/audit/1.0/event",
"eventTime":"2015-12-11T00:44:26.410768+0000",
"target":{
"typeURI":"service/security/keymanager/secrets",
"addresses":[

{
"url":"http://{barbican_admin_host}:9311",
"name":"admin"

},
{
"url":"http://{barbican_internal_host}:9311",
"name":"private"

},
{
"url":"https://{barbican_public_host}:9311",
"name":"public"

}
],
"name":"barbican_service_user",
"id":"barbican"

},
"observer":{
"id":"target"

},
"tags":[

"correlation_id?value=openstack:7e0fe4a6-e258-477e-a1c9-0fd0921a8435"
],
"eventType":"activity",
"initiator":{
"typeURI":"service/security/account/user",
"name":"cinder_user",
"credential":{
"token":"***",
"identity_status":"Confirmed"

},
"host":{
"agent":"curl/7.38.0",
"address":"192.168.245.2"

},
"project_id":"8eabee0a4c4e40f882df8efbce695526",
"id":"513e8682f23446ceb598b6b0f5c4482b"

(continues on next page)

2.4. Setting up Barbican 45

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

},
"action":"create",
"outcome":"pending",
"id":"openstack:3a6a961c-9ada-4b81-9095-90968d896c41",
"requestPath":"/v1/secrets"

},
"message_id":"afc3fd93-51e9-4c80-b330-983e66962265"

}

Ceilometer audit wiki can be referred to identify meaning of different fields in audit event to 7 Ws of
Audit and Compliance.

2.4.5 Using Secret Store Plugins in Barbican

Summary

By default, Barbican is configured to use one active secret store plugin in a deployment. This means that
all of the new secrets are going to be stored via same plugin mechanism (i.e. same storage backend).

In Newton OpenStack release, support for configuring multiple secret store plugin backends is added
(Spec Link). As part of this change, client can choose to select preferred plugin backend for storing their
secret at a project level.

Enabling Multiple Barbican Backends

Multiple backends support may be needed in specific deployment/ use-case scenarios and can be enabled
via configuration.

For this, a Barbican deployment may have more than one secret storage backend added in service con-
figuration. Project administrators will have choice of pre-selecting one backend as the preferred choice
for secrets created under that project. Any new secret created under that project will use the preferred
backend to store its key material. When there is no project level storage backend selected, then new secret
will use the global secret storage backend.

Multiple plugin configuration can be defined as follows.

[secretstore]
Set to True when multiple plugin backends support is needed
enable_multiple_secret_stores = True
stores_lookup_suffix = software, kmip, pkcs11, dogtag, vault

[secretstore:software]
secret_store_plugin = store_crypto
crypto_plugin = simple_crypto

[secretstore:kmip]
secret_store_plugin = kmip_plugin
global_default = True

[secretstore:dogtag]
(continues on next page)

46 Chapter 2. API Guide

https://wiki.openstack.org/wiki/Ceilometer/blueprints/support-standard-audit-formats#CADF_Model_is_designed_to_answer_all_Audit_and_Compliance_Questions
https://review.opendev.org/#/c/263972

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

secret_store_plugin = dogtag_plugin

[secretstore:pkcs11]
secret_store_plugin = store_crypto
crypto_plugin = p11_crypto

[secretstore:vault]
secret_store_plugin = vault_plugin

When enable_multiple_secret_stores is enabled (True), then list property stores_lookup_suffix is used
for looking up supported plugin names in configuration section. This section name is constructed using
pattern secretstore:{one_of_suffix}. One of the plugin must be explicitly identified as global default i.e.
global_default = True. Ordering of suffix and label used does not matter as long as there is a matching
section defined in service configuration.

Note: For existing Barbican deployment case, its recommended to keep existing secretstore and crypto
plugin (if applicable) name combination to be used as global default secret store. This is needed to be
consistent with existing behavior.

Warning: When multiple plugins support is enabled, then enabled_secretstore_plugins and en-
abled_crypto_plugins values are not used to instantiate relevant plugins. Only above mentioned
mechanism is used to identify and instantiate store and crypto plugins.

Multiple backend can be useful in following type of usage scenarios.

• In a deployment, a deployer may be okay in storing their dev/test resources using a low-security
secret store, such as one backend using software-only crypto, but may want to use an HSM-backed
secret store for production resources.

• In a deployment, for certain use cases where a client requires high concurrent access of stored
keys, HSM might not be a good storage backend. Also scaling them horizontally to provide higher
scalability is a costly approach with respect to database.

• HSM devices generally have limited storage capacity so a deployment will have to watch its stored
keys size proactively to remain under the limit constraint. This is more applicable in KMIP back-
end than with PKCS11 backend because of plugins different storage approach. This aspect can
also result from above use case scenario where deployment is storing non-sensitive (from dev/test
environment) encryption keys in HSM.

• Barbican running as IaaS service or platform component where some class of client services have
strict compliance requirements (e.g. FIPS) so will use HSM backed plugins whereas others may
be okay storing keys in software-only crypto plugin.

2.4. Setting up Barbican 47

Barbican Documentation, Release 18.0.1.dev3

2.4.6 barbican.conf

DEFAULT

admin_role

Type
string

Default
admin

Role used to identify an authenticated user as administrator.

allow_anonymous_access

Type
boolean

Default
False

Allow unauthenticated users to access the API with read-only privileges. This only applies when
using ContextMiddleware.

max_allowed_request_size_in_bytes

Type
integer

Default
25000

Maximum allowed http request size against the barbican-api.

max_allowed_secret_in_bytes

Type
integer

Default
20000

Maximum allowed secret size in bytes.

host_href

Type
string

Default
http://localhost:9311

Host name, for use in HATEOAS-style references Note: Typically this would be the load balanced
endpoint that clients would use to communicate back with this service. If a deployment wants to
derive host from wsgi request instead then make this blank. Blank is needed to override default
config value which is http://localhost:9311

48 Chapter 2. API Guide

http://localhost:9311

Barbican Documentation, Release 18.0.1.dev3

db_auto_create

Type
boolean

Default
False

Create the Barbican database on service startup.

max_limit_paging

Type
integer

Default
100

Maximum page size for the limit paging URL parameter.

default_limit_paging

Type
integer

Default
10

Default page size for the limit paging URL parameter.

sql_pool_class

Type
string

Default
QueuePool

Accepts a class imported from the sqlalchemy.pool module, and handles the details of build-
ing the pool for you. If commented out, SQLAlchemy will select based on the database di-
alect. Other options are QueuePool (for SQLAlchemy-managed connections) and NullPool (to dis-
abled SQLAlchemy management of connections). See http://docs.sqlalchemy.org/en/latest/core/
pooling.html for more details

sql_pool_logging

Type
boolean

Default
False

Show SQLAlchemy pool-related debugging output in logs (sets DEBUG log level output) if spec-
ified.

backdoor_port

Type
string

2.4. Setting up Barbican 49

http://docs.sqlalchemy.org/en/latest/core/pooling.html
http://docs.sqlalchemy.org/en/latest/core/pooling.html

Barbican Documentation, Release 18.0.1.dev3

Default
<None>

Enable eventlet backdoor. Acceptable values are 0, <port>, and <start>:<end>, where 0 results in
listening on a random tcp port number; <port> results in listening on the specified port number (and
not enabling backdoor if that port is in use); and <start>:<end> results in listening on the smallest
unused port number within the specified range of port numbers. The chosen port is displayed in
the services log file.

backdoor_socket

Type
string

Default
<None>

Enable eventlet backdoor, using the provided path as a unix socket that can receive connections.
This option is mutually exclusive with backdoor_port in that only one should be provided. If both
are provided then the existence of this option overrides the usage of that option. Inside the path
{pid} will be replaced with the PID of the current process.

log_options

Type
boolean

Default
True

Enables or disables logging values of all registered options when starting a service (at DEBUG
level).

graceful_shutdown_timeout

Type
integer

Default
60

Specify a timeout after which a gracefully shutdown server will exit. Zero value means endless
wait.

debug

Type
boolean

Default
False

Mutable
This option can be changed without restarting.

If set to true, the logging level will be set to DEBUG instead of the default INFO level.

log_config_append

50 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Type
string

Default
<None>

Mutable
This option can be changed without restarting.

The name of a logging configuration file. This file is appended to any existing logging configuration
files. For details about logging configuration files, see the Python logging module documentation.
Note that when logging configuration files are used then all logging configuration is set in the con-
figuration file and other logging configuration options are ignored (for example, log-date-format).

Table 1: Deprecated Variations

Group Name
DEFAULT log-config
DEFAULT log_config

log_date_format

Type
string

Default
%Y-%m-%d %H:%M:%S

Defines the format string for %(asctime)s in log records. Default: the value above . This option is
ignored if log_config_append is set.

log_file

Type
string

Default
<None>

(Optional) Name of log file to send logging output to. If no default is set, logging will go to stderr
as defined by use_stderr. This option is ignored if log_config_append is set.

Table 2: Deprecated Variations

Group Name
DEFAULT logfile

log_dir

Type
string

Default
<None>

2.4. Setting up Barbican 51

Barbican Documentation, Release 18.0.1.dev3

(Optional) The base directory used for relative log_file paths. This option is ignored if
log_config_append is set.

Table 3: Deprecated Variations

Group Name
DEFAULT logdir

watch_log_file

Type
boolean

Default
False

Uses logging handler designed to watch file system. When log file is moved or removed this handler
will open a new log file with specified path instantaneously. It makes sense only if log_file option
is specified and Linux platform is used. This option is ignored if log_config_append is set.

use_syslog

Type
boolean

Default
False

Use syslog for logging. Existing syslog format is DEPRECATED and will be changed later to
honor RFC5424. This option is ignored if log_config_append is set.

use_journal

Type
boolean

Default
False

Enable journald for logging. If running in a systemd environment you may wish to enable jour-
nal support. Doing so will use the journal native protocol which includes structured metadata in
addition to log messages.This option is ignored if log_config_append is set.

syslog_log_facility

Type
string

Default
LOG_USER

Syslog facility to receive log lines. This option is ignored if log_config_append is set.

use_json

Type
boolean

52 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Default
False

Use JSON formatting for logging. This option is ignored if log_config_append is set.

use_stderr

Type
boolean

Default
False

Log output to standard error. This option is ignored if log_config_append is set.

use_eventlog

Type
boolean

Default
False

Log output to Windows Event Log.

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

Reason
Windows support is no longer maintained.

log_rotate_interval

Type
integer

Default
1

The amount of time before the log files are rotated. This option is ignored unless log_rotation_type
is set to interval.

log_rotate_interval_type

Type
string

Default
days

Valid Values
Seconds, Minutes, Hours, Days, Weekday, Midnight

Rotation interval type. The time of the last file change (or the time when the service was started)
is used when scheduling the next rotation.

max_logfile_count

2.4. Setting up Barbican 53

Barbican Documentation, Release 18.0.1.dev3

Type
integer

Default
30

Maximum number of rotated log files.

max_logfile_size_mb

Type
integer

Default
200

Log file maximum size in MB. This option is ignored if log_rotation_type is not set to size.

log_rotation_type

Type
string

Default
none

Valid Values
interval, size, none

Log rotation type.

Possible values

interval
Rotate logs at predefined time intervals.

size
Rotate logs once they reach a predefined size.

none
Do not rotate log files.

logging_context_format_string

Type
string

Default
%(asctime)s.%(msecs)03d %(process)d %(levelname)s %(name)s
[%(global_request_id)s %(request_id)s %(user_identity)s]
%(instance)s%(message)s

Format string to use for log messages with context. Used by oslo_log.formatters.ContextFormatter

logging_default_format_string

Type
string

54 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Default
%(asctime)s.%(msecs)03d %(process)d %(levelname)s %(name)s [-]
%(instance)s%(message)s

Format string to use for log messages when context is undefined. Used by
oslo_log.formatters.ContextFormatter

logging_debug_format_suffix

Type
string

Default
%(funcName)s %(pathname)s:%(lineno)d

Additional data to append to log message when logging level for the message is DEBUG. Used by
oslo_log.formatters.ContextFormatter

logging_exception_prefix

Type
string

Default
%(asctime)s.%(msecs)03d %(process)d ERROR %(name)s
%(instance)s

Prefix each line of exception output with this format. Used by
oslo_log.formatters.ContextFormatter

logging_user_identity_format

Type
string

Default
%(user)s %(project)s %(domain)s %(system_scope)s
%(user_domain)s %(project_domain)s

Defines the format string for %(user_identity)s that is used in logging_context_format_string.
Used by oslo_log.formatters.ContextFormatter

default_log_levels

Type
list

Default
['amqp=WARN', 'amqplib=WARN', 'boto=WARN', 'qpid=WARN',
'sqlalchemy=WARN', 'suds=INFO', 'oslo.messaging=INFO',
'oslo_messaging=INFO', 'iso8601=WARN', 'requests.packages.
urllib3.connectionpool=WARN', 'urllib3.connectionpool=WARN',
'websocket=WARN', 'requests.packages.urllib3.util.retry=WARN',
'urllib3.util.retry=WARN', 'keystonemiddleware=WARN',
'routes.middleware=WARN', 'stevedore=WARN', 'taskflow=WARN',
'keystoneauth=WARN', 'oslo.cache=INFO', 'oslo_policy=INFO',
'dogpile.core.dogpile=INFO']

2.4. Setting up Barbican 55

Barbican Documentation, Release 18.0.1.dev3

List of package logging levels in logger=LEVEL pairs. This option is ignored if log_config_append
is set.

publish_errors

Type
boolean

Default
False

Enables or disables publication of error events.

instance_format

Type
string

Default
"[instance: %(uuid)s] "

The format for an instance that is passed with the log message.

instance_uuid_format

Type
string

Default
"[instance: %(uuid)s] "

The format for an instance UUID that is passed with the log message.

rate_limit_interval

Type
integer

Default
0

Interval, number of seconds, of log rate limiting.

rate_limit_burst

Type
integer

Default
0

Maximum number of logged messages per rate_limit_interval.

rate_limit_except_level

Type
string

Default
CRITICAL

56 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Log level name used by rate limiting: CRITICAL, ERROR, INFO, WARNING, DEBUG or empty
string. Logs with level greater or equal to rate_limit_except_level are not filtered. An empty string
means that all levels are filtered.

fatal_deprecations

Type
boolean

Default
False

Enables or disables fatal status of deprecations.

rpc_conn_pool_size

Type
integer

Default
30

Minimum Value
1

Size of RPC connection pool.

Table 4: Deprecated Variations

Group Name
DEFAULT rpc_conn_pool_size

conn_pool_min_size

Type
integer

Default
2

The pool size limit for connections expiration policy

conn_pool_ttl

Type
integer

Default
1200

The time-to-live in sec of idle connections in the pool

executor_thread_pool_size

Type
integer

Default
64

2.4. Setting up Barbican 57

Barbican Documentation, Release 18.0.1.dev3

Size of executor thread pool when executor is threading or eventlet.

Table 5: Deprecated Variations

Group Name
DEFAULT rpc_thread_pool_size

rpc_response_timeout

Type
integer

Default
60

Seconds to wait for a response from a call.

transport_url

Type
string

Default
rabbit://

The network address and optional user credentials for connecting to the messaging backend, in
URL format. The expected format is:

driver://[user:pass@]host:port[,[userN:passN@]hostN:portN]/virtual_host?query

Example: rabbit://rabbitmq:password@127.0.0.1:5672//

For full details on the fields in the URL see the documentation of oslo_messaging.TransportURL
at https://docs.openstack.org/oslo.messaging/latest/reference/transport.html

control_exchange

Type
string

Default
openstack

The default exchange under which topics are scoped. May be overridden by an exchange name
specified in the transport_url option.

rpc_ping_enabled

Type
boolean

Default
False

Add an endpoint to answer to ping calls. Endpoint is named oslo_rpc_server_ping

58 Chapter 2. API Guide

https://docs.openstack.org/oslo.messaging/latest/reference/transport.html

Barbican Documentation, Release 18.0.1.dev3

audit_middleware_notifications

use_oslo_messaging

Type
boolean

Default
True

Indicate whether to use oslo_messaging as the notifier. If set to False, the local logger will be used
as the notifier. If set to True, the oslo_messaging package must also be present. Otherwise, the
local will be used instead.

driver

Type
string

Default
<None>

The Driver to handle sending notifications. Possible values are messaging, messagingv2, routing,
log, test, noop. If not specified, then value from oslo_messaging_notifications conf section is used.

topics

Type
list

Default
<None>

List of AMQP topics used for OpenStack notifications. If not specified, then value from
oslo_messaging_notifications conf section is used.

transport_url

Type
string

Default
<None>

A URL representing messaging driver to use for notification. If not specified, we fall back to the
same configuration used for RPC.

cors

allowed_origin

Type
list

Default
<None>

2.4. Setting up Barbican 59

Barbican Documentation, Release 18.0.1.dev3

Indicate whether this resource may be shared with the domain received in the requests ori-
gin header. Format: <protocol>://<host>[:<port>], no trailing slash. Example: https://horizon.
example.com

allow_credentials

Type
boolean

Default
True

Indicate that the actual request can include user credentials

expose_headers

Type
list

Default
['X-Auth-Token', 'X-Openstack-Request-Id', 'X-Project-Id',
'X-Identity-Status', 'X-User-Id', 'X-Storage-Token',
'X-Domain-Id', 'X-User-Domain-Id', 'X-Project-Domain-Id',
'X-Roles']

Indicate which headers are safe to expose to the API. Defaults to HTTP Simple Headers.

max_age

Type
integer

Default
3600

Maximum cache age of CORS preflight requests.

allow_methods

Type
list

Default
['GET', 'PUT', 'POST', 'DELETE', 'PATCH']

Indicate which methods can be used during the actual request.

allow_headers

Type
list

Default
['X-Auth-Token', 'X-Openstack-Request-Id', 'X-Project-Id',
'X-Identity-Status', 'X-User-Id', 'X-Storage-Token',
'X-Domain-Id', 'X-User-Domain-Id', 'X-Project-Domain-Id',
'X-Roles']

Indicate which header field names may be used during the actual request.

60 Chapter 2. API Guide

https://horizon.example.com
https://horizon.example.com

Barbican Documentation, Release 18.0.1.dev3

crypto

namespace

Type
string

Default
barbican.crypto.plugin

Extension namespace to search for plugins.

enabled_crypto_plugins

Type
multi-valued

Default
simple_crypto

List of crypto plugins to load.

database

connection

Type
string

Default
sqlite:///barbican.sqlite

SQLAlchemy connection string for the reference implementation registry server. Any valid
SQLAlchemy connection string is fine. See: http://www.sqlalchemy.org/docs/05/reference/
sqlalchemy/connections.html#sqlalchemy.create_engine. Note: For absolute addresses, use ////
slashes after sqlite:.

Table 6: Deprecated Variations

Group Name
DEFAULT sql_connection

connection_recycle_time

Type
integer

Default
3600

Period in seconds after which SQLAlchemy should reestablish its connection to the database.
MySQL uses a default wait_timeout of 8 hours, after which it will drop idle connections. This
can result in MySQL Gone Away exceptions. If you notice this, you can lower this value to ensure
that SQLAlchemy reconnects before MySQL can drop the connection.

2.4. Setting up Barbican 61

http://www.sqlalchemy.org/docs/05/reference/sqlalchemy/connections.html#sqlalchemy.create_engine
http://www.sqlalchemy.org/docs/05/reference/sqlalchemy/connections.html#sqlalchemy.create_engine

Barbican Documentation, Release 18.0.1.dev3

Table 7: Deprecated Variations

Group Name
DEFAULT sql_idle_timeout

max_retries

Type
integer

Default
60

Maximum number of database connection retries during startup. Set to -1 to specify an infinite
retry count.

Table 8: Deprecated Variations

Group Name
DEFAULT sql_max_retries

retry_interval

Type
integer

Default
1

Interval between retries of opening a SQL connection.

Table 9: Deprecated Variations

Group Name
DEFAULT sql_retry_interval

max_pool_size

Type
integer

Default
5

Size of pool used by SQLAlchemy. This is the largest number of connections that will be kept
persistently in the pool. Can be set to 0 to indicate no size limit. To disable pooling, use a NullPool
with sql_pool_class instead. Comment out to allow SQLAlchemy to select the default.

Table 10: Deprecated Variations

Group Name
DEFAULT sql_pool_size

62 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

max_overflow

Type
integer

Default
10

The maximum overflow size of the pool used by SQLAlchemy. When the number of checked-out
connections reaches the size set in max_pool_size, additional connections will be returned up to
this limit. It follows then that the total number of simultaneous connections the pool will allow
is max_pool_size + max_overflow. Can be set to -1 to indicate no overflow limit, so no limit will
be placed on the total number of concurrent connections. Comment out to allow SQLAlchemy to
select the default.

Table 11: Deprecated Variations

Group Name
DEFAULT sql_pool_max_overflow

dogtag_plugin

pem_path

Type
string

Default
/etc/barbican/kra_admin_cert.pem

Path to PEM file for authentication

dogtag_host

Type
string

Default
localhost

Hostname for the Dogtag instance

dogtag_port

Type
port number

Default
8443

Minimum Value
0

Maximum Value
65535

Port for the Dogtag instance

2.4. Setting up Barbican 63

Barbican Documentation, Release 18.0.1.dev3

nss_db_path

Type
string

Default
/etc/barbican/alias

Path to the NSS certificate database

nss_password

Type
string

Default
<None>

Password for the NSS certificate databases

plugin_name

Type
string

Default
Dogtag KRA

User friendly plugin name

retries

Type
integer

Default
3

Retries when storing or generating secrets

healthcheck

path

Type
string

Default
/healthcheck

The path to respond to healtcheck requests on.

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

64 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

detailed

Type
boolean

Default
False

Show more detailed information as part of the response. Security note: Enabling this option may
expose sensitive details about the service being monitored. Be sure to verify that it will not violate
your security policies.

backends

Type
list

Default
[]

Additional backends that can perform health checks and report that information back as part of a
request.

allowed_source_ranges

Type
list

Default
[]

A list of network addresses to limit source ip allowed to access healthcheck information. Any
request from ip outside of these network addresses are ignored.

ignore_proxied_requests

Type
boolean

Default
False

Ignore requests with proxy headers.

disable_by_file_path

Type
string

Default
<None>

Check the presence of a file to determine if an application is running on a port. Used by Disable-
ByFileHealthcheck plugin.

disable_by_file_paths

Type
list

2.4. Setting up Barbican 65

Barbican Documentation, Release 18.0.1.dev3

Default
[]

Check the presence of a file based on a port to determine if an application is running on a port.
Expects a port:path list of strings. Used by DisableByFilesPortsHealthcheck plugin.

keystone_authtoken

www_authenticate_uri

Type
string

Default
<None>

Complete public Identity API endpoint. This endpoint should not be an admin endpoint, as it
should be accessible by all end users. Unauthenticated clients are redirected to this endpoint to
authenticate. Although this endpoint should ideally be unversioned, client support in the wild
varies. If youre using a versioned v2 endpoint here, then this should not be the same endpoint the
service user utilizes for validating tokens, because normal end users may not be able to reach that
endpoint.

Table 12: Deprecated Variations

Group Name
keystone_authtoken auth_uri

auth_uri

Type
string

Default
<None>

Complete public Identity API endpoint. This endpoint should not be an admin endpoint, as it
should be accessible by all end users. Unauthenticated clients are redirected to this endpoint to
authenticate. Although this endpoint should ideally be unversioned, client support in the wild
varies. If youre using a versioned v2 endpoint here, then this should not be the same endpoint the
service user utilizes for validating tokens, because normal end users may not be able to reach that
endpoint. This option is deprecated in favor of www_authenticate_uri and will be removed in the
S release.

Warning: This option is deprecated for removal since Queens. Its value may be silently
ignored in the future.

Reason
The auth_uri option is deprecated in favor of www_authenticate_uri and will
be removed in the S release.

66 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

auth_version

Type
string

Default
<None>

API version of the Identity API endpoint.

interface

Type
string

Default
internal

Interface to use for the Identity API endpoint. Valid values are public, internal (default) or admin.

delay_auth_decision

Type
boolean

Default
False

Do not handle authorization requests within the middleware, but delegate the authorization deci-
sion to downstream WSGI components.

http_connect_timeout

Type
integer

Default
<None>

Request timeout value for communicating with Identity API server.

http_request_max_retries

Type
integer

Default
3

How many times are we trying to reconnect when communicating with Identity API Server.

cache

Type
string

Default
<None>

Request environment key where the Swift cache object is stored. When auth_token middleware is
deployed with a Swift cache, use this option to have the middleware share a caching backend with
swift. Otherwise, use the memcached_servers option instead.

2.4. Setting up Barbican 67

Barbican Documentation, Release 18.0.1.dev3

certfile

Type
string

Default
<None>

Required if identity server requires client certificate

keyfile

Type
string

Default
<None>

Required if identity server requires client certificate

cafile

Type
string

Default
<None>

A PEM encoded Certificate Authority to use when verifying HTTPs connections. Defaults to
system CAs.

insecure

Type
boolean

Default
False

Verify HTTPS connections.

region_name

Type
string

Default
<None>

The region in which the identity server can be found.

memcached_servers

Type
list

Default
<None>

Optionally specify a list of memcached server(s) to use for caching. If left undefined, tokens will
instead be cached in-process.

68 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Table 13: Deprecated Variations

Group Name
keystone_authtoken memcache_servers

token_cache_time

Type
integer

Default
300

In order to prevent excessive effort spent validating tokens, the middleware caches previously-seen
tokens for a configurable duration (in seconds). Set to -1 to disable caching completely.

memcache_security_strategy

Type
string

Default
None

Valid Values
None, MAC, ENCRYPT

(Optional) If defined, indicate whether token data should be authenticated or authenticated and
encrypted. If MAC, token data is authenticated (with HMAC) in the cache. If ENCRYPT, token
data is encrypted and authenticated in the cache. If the value is not one of these options or empty,
auth_token will raise an exception on initialization.

memcache_secret_key

Type
string

Default
<None>

(Optional, mandatory if memcache_security_strategy is defined) This string is used for key deriva-
tion.

memcache_pool_dead_retry

Type
integer

Default
300

(Optional) Number of seconds memcached server is considered dead before it is tried again.

memcache_pool_maxsize

Type
integer

2.4. Setting up Barbican 69

Barbican Documentation, Release 18.0.1.dev3

Default
10

(Optional) Maximum total number of open connections to every memcached server.

memcache_pool_socket_timeout

Type
integer

Default
3

(Optional) Socket timeout in seconds for communicating with a memcached server.

memcache_pool_unused_timeout

Type
integer

Default
60

(Optional) Number of seconds a connection to memcached is held unused in the pool before it is
closed.

memcache_pool_conn_get_timeout

Type
integer

Default
10

(Optional) Number of seconds that an operation will wait to get a memcached client connection
from the pool.

memcache_use_advanced_pool

Type
boolean

Default
True

(Optional) Use the advanced (eventlet safe) memcached client pool.

include_service_catalog

Type
boolean

Default
True

(Optional) Indicate whether to set the X-Service-Catalog header. If False, middleware will not ask
for service catalog on token validation and will not set the X-Service-Catalog header.

enforce_token_bind

Type
string

70 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Default
permissive

Used to control the use and type of token binding. Can be set to: disabled to not check token
binding. permissive (default) to validate binding information if the bind type is of a form known
to the server and ignore it if not. strict like permissive but if the bind type is unknown the token
will be rejected. required any form of token binding is needed to be allowed. Finally the name of
a binding method that must be present in tokens.

service_token_roles

Type
list

Default
['service']

A choice of roles that must be present in a service token. Service tokens are allowed to request
that an expired token can be used and so this check should tightly control that only actual services
should be sending this token. Roles here are applied as an ANY check so any role in this list
must be present. For backwards compatibility reasons this currently only affects the allow_expired
check.

service_token_roles_required

Type
boolean

Default
False

For backwards compatibility reasons we must let valid service tokens pass that dont pass the ser-
vice_token_roles check as valid. Setting this true will become the default in a future release and
should be enabled if possible.

service_type

Type
string

Default
<None>

The name or type of the service as it appears in the service catalog. This is used to validate tokens
that have restricted access rules.

auth_type

Type
unknown type

Default
<None>

Authentication type to load

2.4. Setting up Barbican 71

Barbican Documentation, Release 18.0.1.dev3

Table 14: Deprecated Variations

Group Name
keystone_authtoken auth_plugin

auth_section

Type
unknown type

Default
<None>

Config Section from which to load plugin specific options

keystone_notifications

enable

Type
boolean

Default
False

True enables keystone notification listener functionality.

control_exchange

Type
string

Default
keystone

The default exchange under which topics are scoped. May be overridden by an exchange name
specified in the transport_url option.

topic

Type
string

Default
notifications

Keystone notification queue topic name. This name needs to match one of values mentioned in Key-
stone deployments notification_topics configuration e.g. notification_topics=notifications, barbi-
can_notificationsMultiple servers may listen on a topic and messages will be dispatched to one
of the servers in a round-robin fashion. Thats why Barbican service should have its own dedi-
cated notification queue so that it receives all of Keystone notifications. Alternatively if the chosen
oslo.messaging backend supports listener pooling (for example rabbitmq), setting a non-default
pool_name option should be preferred.

72 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

pool_name

Type
string

Default
<None>

Pool name for notifications listener. Setting this to a distinctive value will allow barbican notifica-
tions listener to receive its own copy of all messages from the topic without without interfering with
other services listening on the same topic. This feature is supported only by some oslo.messaging
backends (in particilar by rabbitmq) and for those it is preferrable to use it instead of separate
notification topic for barbican.

allow_requeue

Type
boolean

Default
False

True enables requeue feature in case of notification processing error. Enable this only when un-
derlying transport supports this feature.

version

Type
string

Default
1.0

Version of tasks invoked via notifications

thread_pool_size

Type
integer

Default
10

Define the number of max threads to be used for notification server processing functionality.

kmip_plugin

username

Type
string

Default
<None>

Username for authenticating with KMIP server

2.4. Setting up Barbican 73

Barbican Documentation, Release 18.0.1.dev3

password

Type
string

Default
<None>

Password for authenticating with KMIP server

host

Type
string

Default
localhost

Address of the KMIP server

port

Type
port number

Default
5696

Minimum Value
0

Maximum Value
65535

Port for the KMIP server

ssl_version

Type
string

Default
PROTOCOL_TLSv1_2

SSL version, maps to the module ssls constants

ca_certs

Type
string

Default
<None>

File path to concatenated certification authority certificates

certfile

Type
string

74 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Default
<None>

File path to local client certificate

keyfile

Type
string

Default
<None>

File path to local client certificate keyfile

pkcs1_only

Type
boolean

Default
False

Only support PKCS#1 encoding of asymmetric keys

plugin_name

Type
string

Default
KMIP HSM

User friendly plugin name

oslo_messaging_amqp

container_name

Type
string

Default
<None>

Name for the AMQP container. must be globally unique. Defaults to a generated UUID

Table 15: Deprecated Variations

Group Name
amqp1 container_name

idle_timeout

Type
integer

2.4. Setting up Barbican 75

Barbican Documentation, Release 18.0.1.dev3

Default
0

Timeout for inactive connections (in seconds)

Table 16: Deprecated Variations

Group Name
amqp1 idle_timeout

trace

Type
boolean

Default
False

Debug: dump AMQP frames to stdout

Table 17: Deprecated Variations

Group Name
amqp1 trace

ssl

Type
boolean

Default
False

Attempt to connect via SSL. If no other ssl-related parameters are given, it will use the systems
CA-bundle to verify the servers certificate.

ssl_ca_file

Type
string

Default
''

CA certificate PEM file used to verify the servers certificate

Table 18: Deprecated Variations

Group Name
amqp1 ssl_ca_file

ssl_cert_file

Type
string

76 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Default
''

Self-identifying certificate PEM file for client authentication

Table 19: Deprecated Variations

Group Name
amqp1 ssl_cert_file

ssl_key_file

Type
string

Default
''

Private key PEM file used to sign ssl_cert_file certificate (optional)

Table 20: Deprecated Variations

Group Name
amqp1 ssl_key_file

ssl_key_password

Type
string

Default
<None>

Password for decrypting ssl_key_file (if encrypted)

Table 21: Deprecated Variations

Group Name
amqp1 ssl_key_password

ssl_verify_vhost

Type
boolean

Default
False

By default SSL checks that the name in the servers certificate matches the hostname in the trans-
port_url. In some configurations it may be preferable to use the virtual hostname instead, for
example if the server uses the Server Name Indication TLS extension (rfc6066) to provide a cer-
tificate per virtual host. Set ssl_verify_vhost to True if the servers SSL certificate uses the virtual
host name instead of the DNS name.

2.4. Setting up Barbican 77

Barbican Documentation, Release 18.0.1.dev3

sasl_mechanisms

Type
string

Default
''

Space separated list of acceptable SASL mechanisms

Table 22: Deprecated Variations

Group Name
amqp1 sasl_mechanisms

sasl_config_dir

Type
string

Default
''

Path to directory that contains the SASL configuration

Table 23: Deprecated Variations

Group Name
amqp1 sasl_config_dir

sasl_config_name

Type
string

Default
''

Name of configuration file (without .conf suffix)

Table 24: Deprecated Variations

Group Name
amqp1 sasl_config_name

sasl_default_realm

Type
string

Default
''

SASL realm to use if no realm present in username

78 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

connection_retry_interval

Type
integer

Default
1

Minimum Value
1

Seconds to pause before attempting to re-connect.

connection_retry_backoff

Type
integer

Default
2

Minimum Value
0

Increase the connection_retry_interval by this many seconds after each unsuccessful failover at-
tempt.

connection_retry_interval_max

Type
integer

Default
30

Minimum Value
1

Maximum limit for connection_retry_interval + connection_retry_backoff

link_retry_delay

Type
integer

Default
10

Minimum Value
1

Time to pause between re-connecting an AMQP 1.0 link that failed due to a recoverable error.

default_reply_retry

Type
integer

Default
0

2.4. Setting up Barbican 79

Barbican Documentation, Release 18.0.1.dev3

Minimum Value
-1

The maximum number of attempts to re-send a reply message which failed due to a recoverable
error.

default_reply_timeout

Type
integer

Default
30

Minimum Value
5

The deadline for an rpc reply message delivery.

default_send_timeout

Type
integer

Default
30

Minimum Value
5

The deadline for an rpc cast or call message delivery. Only used when caller does not provide a
timeout expiry.

default_notify_timeout

Type
integer

Default
30

Minimum Value
5

The deadline for a sent notification message delivery. Only used when caller does not provide a
timeout expiry.

default_sender_link_timeout

Type
integer

Default
600

Minimum Value
1

The duration to schedule a purge of idle sender links. Detach link after expiry.

80 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

addressing_mode

Type
string

Default
dynamic

Indicates the addressing mode used by the driver. Permitted values: legacy - use legacy non-
routable addressing routable - use routable addresses dynamic - use legacy addresses if the message
bus does not support routing otherwise use routable addressing

pseudo_vhost

Type
boolean

Default
True

Enable virtual host support for those message buses that do not natively support virtual hosting
(such as qpidd). When set to true the virtual host name will be added to all message bus addresses,
effectively creating a private subnet per virtual host. Set to False if the message bus supports virtual
hosting using the hostname field in the AMQP 1.0 Open performative as the name of the virtual
host.

server_request_prefix

Type
string

Default
exclusive

address prefix used when sending to a specific server

Table 25: Deprecated Variations

Group Name
amqp1 server_request_prefix

broadcast_prefix

Type
string

Default
broadcast

address prefix used when broadcasting to all servers

Table 26: Deprecated Variations

Group Name
amqp1 broadcast_prefix

2.4. Setting up Barbican 81

Barbican Documentation, Release 18.0.1.dev3

group_request_prefix

Type
string

Default
unicast

address prefix when sending to any server in group

Table 27: Deprecated Variations

Group Name
amqp1 group_request_prefix

rpc_address_prefix

Type
string

Default
openstack.org/om/rpc

Address prefix for all generated RPC addresses

notify_address_prefix

Type
string

Default
openstack.org/om/notify

Address prefix for all generated Notification addresses

multicast_address

Type
string

Default
multicast

Appended to the address prefix when sending a fanout message. Used by the message bus to
identify fanout messages.

unicast_address

Type
string

Default
unicast

Appended to the address prefix when sending to a particular RPC/Notification server. Used by the
message bus to identify messages sent to a single destination.

82 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

anycast_address

Type
string

Default
anycast

Appended to the address prefix when sending to a group of consumers. Used by the message bus
to identify messages that should be delivered in a round-robin fashion across consumers.

default_notification_exchange

Type
string

Default
<None>

Exchange name used in notification addresses. Exchange name resolution precedence: Tar-
get.exchange if set else default_notification_exchange if set else control_exchange if set else notify

default_rpc_exchange

Type
string

Default
<None>

Exchange name used in RPC addresses. Exchange name resolution precedence: Target.exchange
if set else default_rpc_exchange if set else control_exchange if set else rpc

reply_link_credit

Type
integer

Default
200

Minimum Value
1

Window size for incoming RPC Reply messages.

rpc_server_credit

Type
integer

Default
100

Minimum Value
1

Window size for incoming RPC Request messages

2.4. Setting up Barbican 83

Barbican Documentation, Release 18.0.1.dev3

notify_server_credit

Type
integer

Default
100

Minimum Value
1

Window size for incoming Notification messages

pre_settled

Type
multi-valued

Default
rpc-cast

Default
rpc-reply

Send messages of this type pre-settled. Pre-settled messages will not receive acknowledgement
from the peer. Note well: pre-settled messages may be silently discarded if the delivery fails.
Permitted values: rpc-call - send RPC Calls pre-settled rpc-reply- send RPC Replies pre-settled
rpc-cast - Send RPC Casts pre-settled notify - Send Notifications pre-settled

oslo_messaging_kafka

kafka_max_fetch_bytes

Type
integer

Default
1048576

Max fetch bytes of Kafka consumer

kafka_consumer_timeout

Type
floating point

Default
1.0

Default timeout(s) for Kafka consumers

pool_size

Type
integer

Default
10

84 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Pool Size for Kafka Consumers

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

Reason
Driver no longer uses connection pool.

conn_pool_min_size

Type
integer

Default
2

The pool size limit for connections expiration policy

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

Reason
Driver no longer uses connection pool.

conn_pool_ttl

Type
integer

Default
1200

The time-to-live in sec of idle connections in the pool

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

Reason
Driver no longer uses connection pool.

consumer_group

Type
string

Default
oslo_messaging_consumer

Group id for Kafka consumer. Consumers in one group will coordinate message consumption

producer_batch_timeout

Type
floating point

2.4. Setting up Barbican 85

Barbican Documentation, Release 18.0.1.dev3

Default
0.0

Upper bound on the delay for KafkaProducer batching in seconds

producer_batch_size

Type
integer

Default
16384

Size of batch for the producer async send

compression_codec

Type
string

Default
none

Valid Values
none, gzip, snappy, lz4, zstd

The compression codec for all data generated by the producer. If not set, compression will not be
used. Note that the allowed values of this depend on the kafka version

enable_auto_commit

Type
boolean

Default
False

Enable asynchronous consumer commits

max_poll_records

Type
integer

Default
500

The maximum number of records returned in a poll call

security_protocol

Type
string

Default
PLAINTEXT

Valid Values
PLAINTEXT, SASL_PLAINTEXT, SSL, SASL_SSL

Protocol used to communicate with brokers

86 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

sasl_mechanism

Type
string

Default
PLAIN

Mechanism when security protocol is SASL

ssl_cafile

Type
string

Default
''

CA certificate PEM file used to verify the server certificate

ssl_client_cert_file

Type
string

Default
''

Client certificate PEM file used for authentication.

ssl_client_key_file

Type
string

Default
''

Client key PEM file used for authentication.

ssl_client_key_password

Type
string

Default
''

Client key password file used for authentication.

2.4. Setting up Barbican 87

Barbican Documentation, Release 18.0.1.dev3

oslo_messaging_notifications

driver

Type
multi-valued

Default
''

The Drivers(s) to handle sending notifications. Possible values are messaging, messagingv2, rout-
ing, log, test, noop

Table 28: Deprecated Variations

Group Name
DEFAULT notification_driver

transport_url

Type
string

Default
<None>

A URL representing the messaging driver to use for notifications. If not set, we fall back to the
same configuration used for RPC.

Table 29: Deprecated Variations

Group Name
DEFAULT notification_transport_url

topics

Type
list

Default
['notifications']

AMQP topic used for OpenStack notifications.

Table 30: Deprecated Variations

Group Name
rpc_notifier2 topics
DEFAULT notification_topics

retry

Type
integer

88 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Default
-1

The maximum number of attempts to re-send a notification message which failed to be delivered
due to a recoverable error. 0 - No retry, -1 - indefinite

oslo_messaging_rabbit

amqp_durable_queues

Type
boolean

Default
False

Use durable queues in AMQP. If rabbit_quorum_queue is enabled, queues will be durable and this
value will be ignored.

amqp_auto_delete

Type
boolean

Default
False

Auto-delete queues in AMQP.

Table 31: Deprecated Variations

Group Name
DEFAULT amqp_auto_delete

ssl

Type
boolean

Default
False

Connect over SSL.

Table 32: Deprecated Variations

Group Name
oslo_messaging_rabbit rabbit_use_ssl

ssl_version

Type
string

2.4. Setting up Barbican 89

Barbican Documentation, Release 18.0.1.dev3

Default
''

SSL version to use (valid only if SSL enabled). Valid values are TLSv1 and SSLv23. SSLv2,
SSLv3, TLSv1_1, and TLSv1_2 may be available on some distributions.

Table 33: Deprecated Variations

Group Name
oslo_messaging_rabbit kombu_ssl_version

ssl_key_file

Type
string

Default
''

SSL key file (valid only if SSL enabled).

Table 34: Deprecated Variations

Group Name
oslo_messaging_rabbit kombu_ssl_keyfile

ssl_cert_file

Type
string

Default
''

SSL cert file (valid only if SSL enabled).

Table 35: Deprecated Variations

Group Name
oslo_messaging_rabbit kombu_ssl_certfile

ssl_ca_file

Type
string

Default
''

SSL certification authority file (valid only if SSL enabled).

90 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Table 36: Deprecated Variations

Group Name
oslo_messaging_rabbit kombu_ssl_ca_certs

ssl_enforce_fips_mode

Type
boolean

Default
False

Global toggle for enforcing the OpenSSL FIPS mode. This feature requires Python support. This is
available in Python 3.9 in all environments and may have been backported to older Python versions
on select environments. If the Python executable used does not support OpenSSL FIPS mode, an
exception will be raised.

heartbeat_in_pthread

Type
boolean

Default
False

Run the health check heartbeat thread through a native python thread by default. If this option
is equal to False then the health check heartbeat will inherit the execution model from the parent
process. For example if the parent process has monkey patched the stdlib by using eventlet/greenlet
then the heartbeat will be run through a green thread. This option should be set to True only for
the wsgi services.

kombu_reconnect_delay

Type
floating point

Default
1.0

Minimum Value
0.0

Maximum Value
4.5

How long to wait (in seconds) before reconnecting in response to an AMQP consumer cancel
notification.

Table 37: Deprecated Variations

Group Name
DEFAULT kombu_reconnect_delay

2.4. Setting up Barbican 91

Barbican Documentation, Release 18.0.1.dev3

kombu_compression

Type
string

Default
<None>

EXPERIMENTAL: Possible values are: gzip, bz2. If not set compression will not be used. This
option may not be available in future versions.

kombu_missing_consumer_retry_timeout

Type
integer

Default
60

How long to wait a missing client before abandoning to send it its replies. This value should not
be longer than rpc_response_timeout.

Table 38: Deprecated Variations

Group Name
oslo_messaging_rabbit kombu_reconnect_timeout

kombu_failover_strategy

Type
string

Default
round-robin

Valid Values
round-robin, shuffle

Determines how the next RabbitMQ node is chosen in case the one we are currently connected to
becomes unavailable. Takes effect only if more than one RabbitMQ node is provided in config.

rabbit_login_method

Type
string

Default
AMQPLAIN

Valid Values
PLAIN, AMQPLAIN, EXTERNAL, RABBIT-CR-DEMO

The RabbitMQ login method.

Table 39: Deprecated Variations

Group Name
DEFAULT rabbit_login_method

92 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

rabbit_retry_interval

Type
integer

Default
1

How frequently to retry connecting with RabbitMQ.

rabbit_retry_backoff

Type
integer

Default
2

How long to backoff for between retries when connecting to RabbitMQ.

Table 40: Deprecated Variations

Group Name
DEFAULT rabbit_retry_backoff

rabbit_interval_max

Type
integer

Default
30

Maximum interval of RabbitMQ connection retries. Default is 30 seconds.

rabbit_ha_queues

Type
boolean

Default
False

Try to use HA queues in RabbitMQ (x-ha-policy: all). If you change this option, you must wipe the
RabbitMQ database. In RabbitMQ 3.0, queue mirroring is no longer controlled by the x-ha-policy
argument when declaring a queue. If you just want to make sure that all queues (except those with
auto-generated names) are mirrored across all nodes, run: rabbitmqctl set_policy HA ^(?!amq.).*
{ha-mode: all}

Table 41: Deprecated Variations

Group Name
DEFAULT rabbit_ha_queues

rabbit_quorum_queue

2.4. Setting up Barbican 93

Barbican Documentation, Release 18.0.1.dev3

Type
boolean

Default
False

Use quorum queues in RabbitMQ (x-queue-type: quorum). The quorum queue is a modern queue
type for RabbitMQ implementing a durable, replicated FIFO queue based on the Raft consensus
algorithm. It is available as of RabbitMQ 3.8.0. If set this option will conflict with the HA queues
(rabbit_ha_queues) aka mirrored queues, in other words the HA queues should be disabled.
Quorum queues are also durable by default so the amqp_durable_queues option is ignored when
this option is enabled.

rabbit_transient_quorum_queue

Type
boolean

Default
False

Use quorum queues for transients queues in RabbitMQ. Enabling this option will then make sure
those queues are also using quorum kind of rabbit queues, which are HA by default.

rabbit_quorum_delivery_limit

Type
integer

Default
0

Each time a message is redelivered to a consumer, a counter is incremented. Once the redelivery
count exceeds the delivery limit the message gets dropped or dead-lettered (if a DLX exchange has
been configured) Used only when rabbit_quorum_queue is enabled, Default 0 which means dont
set a limit.

rabbit_quorum_max_memory_length

Type
integer

Default
0

By default all messages are maintained in memory if a quorum queue grows in length it can put
memory pressure on a cluster. This option can limit the number of messages in the quorum queue.
Used only when rabbit_quorum_queue is enabled, Default 0 which means dont set a limit.

Table 42: Deprecated Variations

Group Name
oslo_messaging_rabbit rabbit_quroum_max_memory_length

rabbit_quorum_max_memory_bytes

Type
integer

94 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Default
0

By default all messages are maintained in memory if a quorum queue grows in length it can put
memory pressure on a cluster. This option can limit the number of memory bytes used by the
quorum queue. Used only when rabbit_quorum_queue is enabled, Default 0 which means dont set
a limit.

Table 43: Deprecated Variations

Group Name
oslo_messaging_rabbit rabbit_quroum_max_memory_bytes

rabbit_transient_queues_ttl

Type
integer

Default
1800

Minimum Value
0

Positive integer representing duration in seconds for queue TTL (x-expires). Queues which are
unused for the duration of the TTL are automatically deleted. The parameter affects only reply
and fanout queues. Setting 0 as value will disable the x-expires. If doing so, make sure you have
a rabbitmq policy to delete the queues or you deployment will create an infinite number of queue
over time.

rabbit_qos_prefetch_count

Type
integer

Default
0

Specifies the number of messages to prefetch. Setting to zero allows unlimited messages.

heartbeat_timeout_threshold

Type
integer

Default
60

Number of seconds after which the Rabbit broker is considered down if heartbeats keep-alive fails
(0 disables heartbeat).

heartbeat_rate

Type
integer

Default
3

2.4. Setting up Barbican 95

Barbican Documentation, Release 18.0.1.dev3

How often times during the heartbeat_timeout_threshold we check the heartbeat.

direct_mandatory_flag

Type
boolean

Default
True

(DEPRECATED) Enable/Disable the RabbitMQ mandatory flag for direct send. The direct send
is used as reply, so the MessageUndeliverable exception is raised in case the client queue does not
exist.MessageUndeliverable exception will be used to loop for a timeout to lets a chance to sender
to recover.This flag is deprecated and it will not be possible to deactivate this functionality anymore

Warning: This option is deprecated for removal. Its value may be silently ignored in the
future.

Reason
Mandatory flag no longer deactivable.

enable_cancel_on_failover

Type
boolean

Default
False

Enable x-cancel-on-ha-failover flag so that rabbitmq server will cancel and notify consumerswhen
queue is down

use_queue_manager

Type
boolean

Default
False

Should we use consistant queue names or random ones

hostname

Type
string

Default
np0039141029

Hostname used by queue manager

processname

Type
string

Default
sphinx-build

96 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Process name used by queue manager

rabbit_stream_fanout

Type
boolean

Default
False

Use stream queues in RabbitMQ (x-queue-type: stream). Streams are a new persistent and
replicated data structure (queue type) in RabbitMQ which models an append-only log with non-
destructive consumer semantics. It is available as of RabbitMQ 3.9.0. If set this option will replace
all fanout queues with only one stream queue.

oslo_middleware

enable_proxy_headers_parsing

Type
boolean

Default
False

Whether the application is behind a proxy or not. This determines if the middleware should parse
the headers or not.

oslo_policy

enforce_scope

Type
boolean

Default
True

This option controls whether or not to enforce scope when evaluating policies. If True, the scope
of the token used in the request is compared to the scope_types of the policy being enforced. If
the scopes do not match, an InvalidScope exception will be raised. If False, a message will be
logged informing operators that policies are being invoked with mismatching scope.

enforce_new_defaults

Type
boolean

Default
True

This option controls whether or not to use old deprecated defaults when evaluating policies. If
True, the old deprecated defaults are not going to be evaluated. This means if any existing token is
allowed for old defaults but is disallowed for new defaults, it will be disallowed. It is encouraged to
enable this flag along with the enforce_scope flag so that you can get the benefits of new defaults
and scope_type together. If False, the deprecated policy check string is logically ORd with the

2.4. Setting up Barbican 97

Barbican Documentation, Release 18.0.1.dev3

new policy check string, allowing for a graceful upgrade experience between releases with new
policies, which is the default behavior.

policy_file

Type
string

Default
policy.yaml

The relative or absolute path of a file that maps roles to permissions for a given service. Relative
paths must be specified in relation to the configuration file setting this option.

Table 44: Deprecated Variations

Group Name
DEFAULT policy_file

policy_default_rule

Type
string

Default
default

Default rule. Enforced when a requested rule is not found.

Table 45: Deprecated Variations

Group Name
DEFAULT policy_default_rule

policy_dirs

Type
multi-valued

Default
policy.d

Directories where policy configuration files are stored. They can be relative to any directory in
the search path defined by the config_dir option, or absolute paths. The file defined by policy_file
must exist for these directories to be searched. Missing or empty directories are ignored.

Table 46: Deprecated Variations

Group Name
DEFAULT policy_dirs

remote_content_type

Type
string

98 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Default
application/x-www-form-urlencoded

Valid Values
application/x-www-form-urlencoded, application/json

Content Type to send and receive data for REST based policy check

remote_ssl_verify_server_crt

Type
boolean

Default
False

server identity verification for REST based policy check

remote_ssl_ca_crt_file

Type
string

Default
<None>

Absolute path to ca cert file for REST based policy check

remote_ssl_client_crt_file

Type
string

Default
<None>

Absolute path to client cert for REST based policy check

remote_ssl_client_key_file

Type
string

Default
<None>

Absolute path client key file REST based policy check

oslo_versionedobjects

fatal_exception_format_errors

Type
boolean

Default
False

Make exception message format errors fatal

2.4. Setting up Barbican 99

Barbican Documentation, Release 18.0.1.dev3

p11_crypto_plugin

library_path

Type
string

Default
<None>

Path to vendor PKCS11 library

token_serial_number

Type
string

Default
<None>

Token serial number used to identify the token to be used.

token_labels

Type
list

Default
[]

List of labels for one or more tokens to be used. Typically this is a single label, but some HSM
devices may require more than one label for Load Balancing or High Availability configurations.

login

Type
string

Default
<None>

Password (PIN) to login to PKCS11 session

mkek_label

Type
string

Default
<None>

Master KEK label (as stored in the HSM)

mkek_length

Type
integer

Default
<None>

Master KEK length in bytes.

100 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

hmac_label

Type
string

Default
<None>

Master HMAC Key label (as stored in the HSM)

slot_id

Type
integer

Default
1

(Optional) HSM Slot ID that contains the token device to be used.

rw_session

Type
boolean

Default
True

Flag for Read/Write Sessions

pkek_length

Type
integer

Default
32

Project KEK length in bytes.

pkek_cache_ttl

Type
integer

Default
900

Project KEK Cache Time To Live, in seconds

pkek_cache_limit

Type
integer

Default
100

Project KEK Cache Item Limit

2.4. Setting up Barbican 101

Barbican Documentation, Release 18.0.1.dev3

encryption_mechanism

Type
string

Default
CKM_AES_CBC

Secret encryption mechanism

Table 47: Deprecated Variations

Group Name
p11_crypto_plugin algorithm

hmac_key_type

Type
string

Default
CKK_AES

HMAC Key Type

hmac_keygen_mechanism

Type
string

Default
CKM_AES_KEY_GEN

HMAC Key Generation Algorithm used to create the master HMAC Key.

hmac_mechanism

Type
string

Default
CKM_SHA256_HMAC

HMAC algorithm used to sign encrypted data.

Table 48: Deprecated Variations

Group Name
p11_crypto_plugin hmac_keywrap_mechanism

key_wrap_mechanism

Type
string

Default
CKM_AES_CBC_PAD

102 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Key Wrapping algorithm used to wrap Project KEKs.

key_wrap_generate_iv

Type
boolean

Default
True

Generate IVs for Key Wrapping mechanism.

seed_file

Type
string

Default
''

File to pull entropy for seeding RNG

seed_length

Type
integer

Default
32

Amount of data to read from file for seed

plugin_name

Type
string

Default
PKCS11 HSM

User friendly plugin name

aes_gcm_generate_iv

Type
boolean

Default
True

Generate IVs for CKM_AES_GCM mechanism.

Table 49: Deprecated Variations

Group Name
p11_crypto_plugin generate_iv

2.4. Setting up Barbican 103

Barbican Documentation, Release 18.0.1.dev3

always_set_cka_sensitive

Type
boolean

Default
True

Always set CKA_SENSITIVE=CK_TRUE including CKA_EXTRACTABLE=CK_TRUE keys.

os_locking_ok

Type
boolean

Default
False

Enable CKF_OS_LOCKING_OK flag when initializing the PKCS#11 client library.

queue

enable

Type
boolean

Default
False

True enables queuing, False invokes workers synchronously

namespace

Type
string

Default
barbican

Queue namespace

topic

Type
string

Default
barbican.workers

Queue topic name

version

Type
string

Default
1.1

104 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Version of tasks invoked via queue

server_name

Type
string

Default
barbican.queue

Server name for RPC task processing server

asynchronous_workers

Type
integer

Default
1

Number of asynchronous worker processes

quotas

quota_secrets

Type
integer

Default
-1

Number of secrets allowed per project

quota_orders

Type
integer

Default
-1

Number of orders allowed per project

quota_containers

Type
integer

Default
-1

Number of containers allowed per project

quota_consumers

Type
integer

2.4. Setting up Barbican 105

Barbican Documentation, Release 18.0.1.dev3

Default
-1

Number of consumers allowed per project

quota_cas

Type
integer

Default
-1

Number of CAs allowed per project

retry_scheduler

initial_delay_seconds

Type
floating point

Default
10.0

Seconds (float) to wait before starting retry scheduler

periodic_interval_max_seconds

Type
floating point

Default
10.0

Seconds (float) to wait between periodic schedule events

secretstore

namespace

Type
string

Default
barbican.secretstore.plugin

Extension namespace to search for plugins.

enabled_secretstore_plugins

Type
multi-valued

Default
store_crypto

List of secret store plugins to load.

106 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

enable_multiple_secret_stores

Type
boolean

Default
False

Flag to enable multiple secret store plugin backend support. Default is False

stores_lookup_suffix

Type
list

Default
<None>

List of suffix to use for looking up plugins which are supported with multiple backend support.

simple_crypto_plugin

kek

Type
string

Default
dGhpcnR5X3R3b19ieXRlX2tleWJsYWhibGFoYmxhaGg=

Key encryption key to be used by Simple Crypto Plugin

plugin_name

Type
string

Default
Software Only Crypto

User friendly plugin name

vault_plugin

root_token_id

Type
string

Default
<None>

root token for vault

approle_role_id

Type
string

2.4. Setting up Barbican 107

Barbican Documentation, Release 18.0.1.dev3

Default
<None>

AppRole role_id for authentication with vault

approle_secret_id

Type
string

Default
<None>

AppRole secret_id for authentication with vault

kv_mountpoint

Type
string

Default
secret

Mountpoint of KV store in Vault to use, for example: secret

vault_url

Type
string

Default
http://127.0.0.1:8200

Use this endpoint to connect to Vault, for example: http://127.0.0.1:8200

ssl_ca_crt_file

Type
string

Default
<None>

Absolute path to ca cert file

use_ssl

Type
boolean

Default
False

SSL Enabled/Disabled

namespace

Type
string

Default
<None>

108 Chapter 2. API Guide

http://127.0.0.1:8200

Barbican Documentation, Release 18.0.1.dev3

Vault Namespace to use for all requests. Namespaces is a feature available in HasiCorp Vault
Enterprise only.

2.4.7 Policy configuration

Warning: JSON formatted policy file is deprecated since Barbican 12.0.0 (Wallaby). This
oslopolicy-convert-json-to-yaml tool will migrate your existing JSON-formatted policy file to YAML
in a backward-compatible way.

Configuration

The following is an overview of all available policies in Barbican. For a sample configuration file.

barbican

secret_project_match

Default
project_id:%(target.secret.project_id)s

(no description provided)

secret_project_reader

Default
role:reader and rule:secret_project_match

(no description provided)

secret_project_member

Default
role:member and rule:secret_project_match

(no description provided)

secret_project_admin

Default
role:admin and rule:secret_project_match

(no description provided)

secret_owner

Default
user_id:%(target.secret.creator_id)s

(no description provided)

secret_is_not_private

Default
True:%(target.secret.read_project_access)s

(no description provided)

2.4. Setting up Barbican 109

https://docs.openstack.org/oslo.policy/latest/cli/oslopolicy-convert-json-to-yaml.html

Barbican Documentation, Release 18.0.1.dev3

secret_acl_read

Default
'read':%(target.secret.read)s

(no description provided)

container_project_match

Default
project_id:%(target.container.project_id)s

(no description provided)

container_project_member

Default
role:member and rule:container_project_match

(no description provided)

container_project_admin

Default
role:admin and rule:container_project_match

(no description provided)

container_owner

Default
user_id:%(target.container.creator_id)s

(no description provided)

container_is_not_private

Default
True:%(target.container.read_project_access)s

(no description provided)

container_acl_read

Default
'read':%(target.container.read)s

(no description provided)

order_project_match

Default
project_id:%(target.order.project_id)s

(no description provided)

order_project_member

Default
role:member and rule:order_project_match

(no description provided)

audit

110 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Default
role:audit

(no description provided)

observer

Default
role:observer

(no description provided)

creator

Default
role:creator

(no description provided)

admin

Default
role:admin

(no description provided)

service_admin

Default
role:key-manager:service-admin

(no description provided)

all_users

Default
rule:admin or rule:observer or rule:creator or rule:audit or
rule:service_admin

(no description provided)

all_but_audit

Default
rule:admin or rule:observer or rule:creator

(no description provided)

admin_or_creator

Default
rule:admin or rule:creator

(no description provided)

secret_creator_user

Default
user_id:%(target.secret.creator_id)s

(no description provided)

secret_private_read

2.4. Setting up Barbican 111

Barbican Documentation, Release 18.0.1.dev3

Default
'False':%(target.secret.read_project_access)s

(no description provided)

secret_non_private_read

Default
rule:all_users and rule:secret_project_match and not
rule:secret_private_read

(no description provided)

secret_decrypt_non_private_read

Default
rule:all_but_audit and rule:secret_project_match and not
rule:secret_private_read

(no description provided)

secret_project_creator

Default
rule:creator and rule:secret_project_match and
rule:secret_creator_user

(no description provided)

secret_project_creator_role

Default
rule:creator and rule:secret_project_match

(no description provided)

container_private_read

Default
'False':%(target.container.read_project_access)s

(no description provided)

container_creator_user

Default
user_id:%(target.container.creator_id)s

(no description provided)

container_non_private_read

Default
rule:all_users and rule:container_project_match and not
rule:container_private_read

(no description provided)

container_project_creator

Default
rule:creator and rule:container_project_match and
rule:container_creator_user

112 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

(no description provided)

container_project_creator_role

Default
rule:creator and rule:container_project_match

(no description provided)

secret_acls:get

Default
True:%(enforce_new_defaults)s and (rule:secret_project_admin
or (rule:secret_project_member and rule:secret_owner) or
(rule:secret_project_member and rule:secret_is_not_private))

Operations

• GET /v1/secrets/{secret-id}/acl

Scope Types

• project

Retrieve the ACL settings for a given secret.If no ACL is defined for that secret, then Default ACL
is returned.

secret_acls:delete

Default
True:%(enforce_new_defaults)s and (rule:secret_project_admin
or (rule:secret_project_member and rule:secret_owner) or
(rule:secret_project_member and rule:secret_is_not_private))

Operations

• DELETE /v1/secrets/{secret-id}/acl

Scope Types

• project

Delete the ACL settings for a given secret.

secret_acls:put_patch

Default
True:%(enforce_new_defaults)s and (rule:secret_project_admin
or (rule:secret_project_member and rule:secret_owner) or
(rule:secret_project_member and rule:secret_is_not_private))

Operations

• PUT /v1/secrets/{secret-id}/acl

• PATCH /v1/secrets/{secret-id}/acl

Scope Types

• project

Create new, replaces, or updates existing ACL for a given secret.

container_acls:get

2.4. Setting up Barbican 113

Barbican Documentation, Release 18.0.1.dev3

Default
True:%(enforce_new_defaults)s and (rule:container_project_admin
or (rule:container_project_member and rule:container_owner) or
(rule:container_project_member and rule:container_is_not_private))

Operations

• GET /v1/containers/{container-id}/acl

Scope Types

• project

Retrieve the ACL settings for a given container.

container_acls:delete

Default
True:%(enforce_new_defaults)s and (rule:container_project_admin
or (rule:container_project_member and rule:container_owner) or
(rule:container_project_member and rule:container_is_not_private))

Operations

• DELETE /v1/containers/{container-id}/acl

Scope Types

• project

Delete ACL for a given container. No content is returned in the case of successful deletion.

container_acls:put_patch

Default
True:%(enforce_new_defaults)s and (rule:container_project_admin
or (rule:container_project_member and rule:container_owner) or
(rule:container_project_member and rule:container_is_not_private))

Operations

• PUT /v1/containers/{container-id}/acl

• PATCH /v1/containers/{container-id}/acl

Scope Types

• project

Create new or replaces existing ACL for a given container.

consumer:get

Default
True:%(enforce_new_defaults)s and (role:admin or
(rule:container_project_member and rule:container_owner) or
(rule:container_project_member and rule:container_is_not_private)
or rule:container_acl_read)

Operations

• GET /v1/containers/{container-id}/consumers/{consumer-id}

Scope Types

114 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

• project

DEPRECATED: show information for a specific consumer

container_consumers:get

Default
True:%(enforce_new_defaults)s and (rule:container_project_admin
or (rule:container_project_member and rule:container_owner) or
(rule:container_project_member and rule:container_is_not_private)
or rule:container_acl_read)

Operations

• GET /v1/containers/{container-id}/consumers

Scope Types

• project

List a containers consumers.

container_consumers:post

Default
True:%(enforce_new_defaults)s and (rule:container_project_admin
or (rule:container_project_member and rule:container_owner) or
(rule:container_project_member and rule:container_is_not_private)
or rule:container_acl_read)

Operations

• POST /v1/containers/{container-id}/consumers

Scope Types

• project

Creates a consumer.

container_consumers:delete

Default
True:%(enforce_new_defaults)s and (rule:container_project_admin
or (rule:container_project_member and rule:container_owner) or
(rule:container_project_member and rule:container_is_not_private)
or rule:container_acl_read)

Operations

• DELETE /v1/containers/{container-id}/consumers

Scope Types

• project

Deletes a consumer.

secret_consumers:get

Default
True:%(enforce_new_defaults)s and (rule:secret_project_admin
or (rule:secret_project_member and rule:secret_owner) or

2.4. Setting up Barbican 115

Barbican Documentation, Release 18.0.1.dev3

(rule:secret_project_member and rule:secret_is_not_private)
or rule:secret_acl_read)

Operations

• GET /v1/secrets/{secret-id}/consumers

Scope Types

• project

List consumers for a secret.

secret_consumers:post

Default
True:%(enforce_new_defaults)s and (rule:secret_project_admin
or (rule:secret_project_member and rule:secret_owner) or
(rule:secret_project_member and rule:secret_is_not_private)
or rule:secret_acl_read)

Operations

• POST /v1/secrets/{secrets-id}/consumers

Scope Types

• project

Creates a consumer.

secret_consumers:delete

Default
True:%(enforce_new_defaults)s and (rule:secret_project_admin
or (rule:secret_project_member and rule:secret_owner) or
(rule:secret_project_member and rule:secret_is_not_private)
or rule:secret_acl_read)

Operations

• DELETE /v1/secrets/{secrets-id}/consumers

Scope Types

• project

Deletes a consumer.

containers:post

Default
True:%(enforce_new_defaults)s and role:member

Operations

• POST /v1/containers

Scope Types

• project

Creates a container.

containers:get

116 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Default
True:%(enforce_new_defaults)s and role:member

Operations

• GET /v1/containers

Scope Types

• project

Lists a projects containers.

container:get

Default
True:%(enforce_new_defaults)s and (rule:container_project_admin
or (rule:container_project_member and rule:container_owner) or
(rule:container_project_member and rule:container_is_not_private)
or rule:container_acl_read)

Operations

• GET /v1/containers/{container-id}

Scope Types

• project

Retrieves a single container.

container:delete

Default
True:%(enforce_new_defaults)s and (rule:container_project_admin
or (rule:container_project_member and rule:container_owner) or
(rule:container_project_member and rule:container_is_not_private))

Operations

• DELETE /v1/containers/{uuid}

Scope Types

• project

Deletes a container.

container_secret:post

Default
True:%(enforce_new_defaults)s and (rule:container_project_admin
or (rule:container_project_member and rule:container_owner) or
(rule:container_project_member and rule:container_is_not_private))

Operations

• POST /v1/containers/{container-id}/secrets

Scope Types

• project

Add a secret to an existing container.

2.4. Setting up Barbican 117

Barbican Documentation, Release 18.0.1.dev3

container_secret:delete

Default
True:%(enforce_new_defaults)s and (rule:container_project_admin
or (rule:container_project_member and rule:container_owner) or
(rule:container_project_member and rule:container_is_not_private))

Operations

• DELETE /v1/containers/{container-id}/secrets/{secret-id}

Scope Types

• project

Remove a secret from a container.

orders:get

Default
True:%(enforce_new_defaults)s and role:member

Operations

• GET /v1/orders

Scope Types

• project

Gets list of all orders associated with a project.

orders:post

Default
True:%(enforce_new_defaults)s and role:member

Operations

• POST /v1/orders

Scope Types

• project

Creates an order.

orders:put

Default
True:%(enforce_new_defaults)s and role:member

Operations

• PUT /v1/orders

Scope Types

• project

Unsupported method for the orders API.

order:get

Default
True:%(enforce_new_defaults)s and rule:order_project_member

118 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Operations

• GET /v1/orders/{order-id}

Scope Types

• project

Retrieves an orders metadata.

order:delete

Default
True:%(enforce_new_defaults)s and rule:order_project_member

Operations

• DELETE /v1/orders/{order-id}

Scope Types

• project

Deletes an order.

quotas:get

Default
True:%(enforce_new_defaults)s and role:reader

Operations

• GET /v1/quotas

Scope Types

• project

List quotas for the project the user belongs to.

project_quotas:get

Default
True:%(enforce_new_defaults)s and role:admin

Operations

• GET /v1/project-quotas

• GET /v1/project-quotas/{uuid}

Scope Types

• project

List quotas for the specified project.

project_quotas:put

Default
True:%(enforce_new_defaults)s and role:admin

Operations

• PUT /v1/project-quotas/{uuid}

Scope Types

2.4. Setting up Barbican 119

Barbican Documentation, Release 18.0.1.dev3

• project

Create or update the configured project quotas for the project with the specified UUID.

project_quotas:delete

Default
True:%(enforce_new_defaults)s and role:admin

Operations

• DELETE /v1/quotas}

Scope Types

• project

Delete the project quotas configuration for the project with the requested UUID.

secret_meta:get

Default
True:%(enforce_new_defaults)s and (rule:secret_project_admin
or (rule:secret_project_member and rule:secret_owner) or
(rule:secret_project_member and rule:secret_is_not_private)
or rule:secret_acl_read)

Operations

• GET /v1/secrets/{secret-id}/metadata

• GET /v1/secrets/{secret-id}/metadata/{meta-key}

Scope Types

• project

metadata/: Lists a secrets user-defined metadata. || metadata/{key}: Retrieves a secrets user-added
metadata.

secret_meta:post

Default
True:%(enforce_new_defaults)s and (rule:secret_project_admin
or (rule:secret_project_member and rule:secret_owner) or
(rule:secret_project_member and rule:secret_is_not_private))

Operations

• POST /v1/secrets/{secret-id}/metadata/{meta-key}

Scope Types

• project

Adds a new key/value pair to the secrets user-defined metadata.

secret_meta:put

Default
True:%(enforce_new_defaults)s and (rule:secret_project_admin
or (rule:secret_project_member and rule:secret_owner) or
(rule:secret_project_member and rule:secret_is_not_private))

120 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Operations

• PUT /v1/secrets/{secret-id}/metadata

• PUT /v1/secrets/{secret-id}/metadata/{meta-key}

Scope Types

• project

metadata/: Sets the user-defined metadata for a secret || metadata/{key}: Updates an existing
key/value pair in the secrets user-defined metadata.

secret_meta:delete

Default
True:%(enforce_new_defaults)s and (rule:secret_project_admin
or (rule:secret_project_member and rule:secret_owner) or
(rule:secret_project_member and rule:secret_is_not_private))

Operations

• DELETE /v1/secrets/{secret-id}/metadata/{meta-key}

Scope Types

• project

Delete secret user-defined metadata by key.

secret:decrypt

Default
True:%(enforce_new_defaults)s and (rule:secret_project_admin
or (rule:secret_project_member and rule:secret_owner) or
(rule:secret_project_member and rule:secret_is_not_private)
or rule:secret_acl_read)

Operations

• GET /v1/secrets/{uuid}/payload

Scope Types

• project

Retrieve a secrets payload.

secret:get

Default
True:%(enforce_new_defaults)s and (role:admin or
rule:secret_project_admin or (rule:secret_project_member
and rule:secret_owner) or (rule:secret_project_member and
rule:secret_is_not_private) or rule:secret_acl_read)

Operations

• GET /v1/secrets/{secret-id}

Scope Types

• project

2.4. Setting up Barbican 121

Barbican Documentation, Release 18.0.1.dev3

Retrieves a secrets metadata.

secret:put

Default
True:%(enforce_new_defaults)s and (rule:secret_project_admin
or (rule:secret_project_member and rule:secret_owner) or
(rule:secret_project_member and rule:secret_is_not_private))

Operations

• PUT /v1/secrets/{secret-id}

Scope Types

• project

Add the payload to an existing metadata-only secret.

secret:delete

Default
True:%(enforce_new_defaults)s and (role:admin or
rule:secret_project_admin or (rule:secret_project_member
and rule:secret_owner) or (rule:secret_project_member and
rule:secret_is_not_private))

Operations

• DELETE /v1/secrets/{secret-id}

Scope Types

• project

Delete a secret by uuid.

secrets:post

Default
True:%(enforce_new_defaults)s and role:member

Operations

• POST /v1/secrets

Scope Types

• project

Creates a Secret entity.

secrets:get

Default
True:%(enforce_new_defaults)s and role:member

Operations

• GET /v1/secrets

Scope Types

• project

122 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Lists a projects secrets.

secretstores:get

Default
True:%(enforce_new_defaults)s and role:reader

Operations

• GET /v1/secret-stores

Scope Types

• project

Get list of available secret store backends.

secretstores:get_global_default

Default
True:%(enforce_new_defaults)s and role:reader

Operations

• GET /v1/secret-stores/global-default

Scope Types

• project

Get a reference to the secret store that is used as default secret store backend for the deployment.

secretstores:get_preferred

Default
True:%(enforce_new_defaults)s and role:reader

Operations

• GET /v1/secret-stores/preferred

Scope Types

• project

Get a reference to the preferred secret store if assigned previously.

secretstore_preferred:post

Default
True:%(enforce_new_defaults)s and role:admin

Operations

• POST /v1/secret-stores/{ss-id}/preferred

Scope Types

• project

Set a secret store backend to be preferred store backend for their project.

secretstore_preferred:delete

Default
True:%(enforce_new_defaults)s and role:admin

2.4. Setting up Barbican 123

Barbican Documentation, Release 18.0.1.dev3

Operations

• DELETE /v1/secret-stores/{ss-id}/preferred

Scope Types

• project

Remove preferred secret store backend setting for their project.

secretstore:get

Default
True:%(enforce_new_defaults)s and role:reader

Operations

• GET /v1/secret-stores/{ss-id}

Scope Types

• project

Get details of secret store by its ID.

transport_key:get

Default
True:%(enforce_new_defaults)s and role:reader

Operations

• GET /v1/transport_keys/{key-id}}

Scope Types

• project

Get a specific transport key.

transport_key:delete

Default
True:%(enforce_new_defaults)s and role:admin

Operations

• DELETE /v1/transport_keys/{key-id}

Scope Types

• project

Delete a specific transport key.

transport_keys:get

Default
True:%(enforce_new_defaults)s and role:reader

Operations

• GET /v1/transport_keys

Scope Types

• project

124 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Get a list of all transport keys.

transport_keys:post

Default
True:%(enforce_new_defaults)s and role:admin

Operations

• POST /v1/transport_keys

Scope Types

• project

Create a new transport key.

2.5 Barbican for Developers

If youre new to OpenStack development you should start by reading the OpenStack Developers Guide.

Once youve read the OpenStack guide youll be ready to set up a local barbican development environment.

2.5.1 Setting up a Barbican Development Environment

These instructions are designed to help you setup a standalone version of Barbican which uses SQLite as
a database backend. This is not suitable for production due to the lack of authentication and an interface
to a secure encryption system such as an HSM (Hardware Security Module). In addition, the SQLite
backend has known issues with thread-safety. This setup is purely to aid in development workflows.

Installing system dependencies

Ubuntu 15.10:

Install development tools
sudo apt-get install git python-tox

Install dependency build requirements
sudo apt-get install libffi-dev libssl-dev python-dev gcc

Fedora 30:

Install development tools
sudo dnf install git python3-tox

Install dependency build requirements
sudo dnf install gcc libffi-devel openssl-devel redhat-rpm-config

2.5. Barbican for Developers 125

https://docs.openstack.org/infra/manual/developers.html

Barbican Documentation, Release 18.0.1.dev3

Setting up a virtual environment

We highly recommend using virtual environments for development. You can learn more about Virtual
Environments in The Python Tutorial.

If you installed tox in the previous step you should already have virtualenv installed as well.

Clone barbican source
git clone https://opendev.org/openstack/barbican
cd barbican

Create and activate a virtual environment
virtualenv .barbicanenv
. .barbicanenv/bin/activate

Install barbican in development mode
pip install -e $PWD

Configuring Barbican

Barbican uses oslo.config for configuration. By default the api process will look for the configuration
file in $HOME/barbican.conf or /etc/barbican/barbican.conf. The sample configuration files
included in the source code assume that youll be using /etc/barbican/ for configuration and /var/
lib/barbican for the database file location.

Create the directories and copy the config files
sudo mkdir /etc/barbican
sudo mkdir /var/lib/barbican
sudo chown $(whoami) /etc/barbican
sudo chown $(whoami) /var/lib/barbican
cp -r etc/barbican /etc
tox -e genconfig
cp etc/oslo-config-generator/barbican.conf /etc/barbican/barbican.conf
sed -i 's/\/v1: barbican-api-keystone/\/v1: barbican_api/' /etc/barbican/
↪→barbican-api-paste.ini

All the locations are configurable, so you dont have to use /etc and /var/lib in your development
machine if you dont want to.

Running Barbican

If you made it this far you should be able to run the barbican development server using this command:

bin/barbican-api

An instance of barbican will be listening on http://localhost:9311. Note that the default config-
uration uses the unauthenticated context. This means that requests should include the X-Project-Id
header instead of including a keystone token in the X-Auth-Token header. For example:

126 Chapter 2. API Guide

https://docs.python.org/3/tutorial/venv.html
https://docs.python.org/3/tutorial/venv.html

Barbican Documentation, Release 18.0.1.dev3

curl -v -H 'X-Project-Id: 12345' \
-H 'Accept: application/json' \
http://localhost:9311/v1/secrets

For more information on configuring Barbican with Keystone auth see the Keystone Configuration page.

Building the Documentation

You can build the html documentation using tox:

tox -e docs

Running the Unit Tests

You can run the unit test suite using tox:

tox -e py36

2.5.2 Running Barbican on DevStack

Barbican is currently available via the plugin interface within DevStack.

This installation guide assumes you are running devstack within a clean virtual machine (local or cloud
instance) using one of the supported Linux distributions with all available system package updates.

1. Make sure you are logged in as the stack user with sudo privileges

2. Install git

Debian/Ubuntu
sudo apt-get install git

CentOS
sudo dnf install git

3. Clone DevStack

git clone https://opendev.org/openstack/devstack.git
cd devstack/

4. Add the Barbican plugin to the local.conf file and verify the minimum services required are
included. You can pull down a specific branch by appending the name to the end of the git URL.
If you leave the space empty like below, then origin/master will be pulled.

enable_plugin barbican https://opendev.org/openstack/barbican
enable_service rabbit mysql key tempest

If this is your first time and you do not have a local.conf file, there is a working sample file in
the Barbican repository. Copy the file and place it in the devstack/ directory.

5. Start DevStack

2.5. Barbican for Developers 127

https://governance.openstack.org/tc/reference/project-testing-interface.html#linux-distributions
https://opendev.org/openstack/barbican/src/branch/master/devstack/local.conf.example

Barbican Documentation, Release 18.0.1.dev3

./stack.sh

6. Clone and install barbican-tempest-plugin

cd /opt/stack/
git clone https://opendev.org/openstack/barbican-tempest-plugin.git
pip install -e /opt/stack/barbican-tempest-plugin

When youre ready to dive deeper in to barbican take a look at:

2.5.3 Contributing to Barbican

For general information on contributing to OpenStack, please check out the contributor guide to get
started. It covers all the basics that are common to all OpenStack projects: the accounts you need, the
basics of interacting with our Gerrit review system, how we communicate as a community, etc.

Below will cover the more project specific information you need to get started with the Barbican project,
which is responsible for the following OpenStack deliverables:

barbican

The OpenStack Key Manager service.
code: https://opendev.org/openstack/barbican
docs: https://docs.openstack.org/barbican
api-ref: https://docs.openstack.org/barbican/latest/api/index.html#api-reference
Launchpad: https://bugs.launchpad.net/barbican

barbican-ui

Horizon extension for the OpenStack Key Manager API.
code: https://opendev.org/openstack/barbican-ui
Launchpad: https://bugs.launchpad.net/barbican-ui

python-barbicanclient

Python client library for the OpenStack Key Manager API.
code: https://opendev.org/openstack/python-barbicanclient
docs: https://docs.openstack.org/python-barbicanclient
Launchpad: https://bugs.launchpad.net/python-barbicanclient

barbican-tempest-plugin

Additional Barbican tempest-based tests beyond those in the main OpenStack Integration Test
Suite (tempest).
code: https://opendev.org/openstack/barbican-tempest-plugin
Launchpad: http://bugs.launchpad.net/barbican

ansible-role-lunasa-hsm

Ansible role to manage Luna SA Hardware Security Module (HSM) client software
code: https://opendev.org/openstack/ansible-role-lunasa-hsm
Launchpad: http://bugs.launchpad.net/barbican

128 Chapter 2. API Guide

https://docs.openstack.org/contributors/
https://opendev.org/openstack/barbican
https://docs.openstack.org/barbican
https://docs.openstack.org/barbican/latest/api/index.html#api-reference
https://bugs.launchpad.net/barbican
https://opendev.org/openstack/barbican-ui
https://bugs.launchpad.net/barbican-ui
https://opendev.org/openstack/python-barbicanclient
https://docs.openstack.org/python-barbicanclient
https://bugs.launchpad.net/python-barbicanclient
https://opendev.org/openstack/barbican-tempest-plugin
http://bugs.launchpad.net/barbican
https://opendev.org/openstack/ansible-role-lunasa-hsm
http://bugs.launchpad.net/barbican

Barbican Documentation, Release 18.0.1.dev3

See the CONTRIBUTING.rst file in each code repository for more information about contributing to that
specific deliverable. Additionally, you should look over the docs links above; most components have
helpful developer information specific to that deliverable.

Communication

IRC
People working on the Barbican project may be found in the #openstack-barbican channel on
OFTC during working hours in their timezone. The channel is logged, so if you ask a question when
no one is around, you can check the log to see if its been answered: http://eavesdrop.openstack.
org/irclogs/%23openstack-barbican/

weekly meeting
Tuesdays at 13:00 UTC in #openstack-barbican on OFTC. Meetings are logged: http://
eavesdrop.openstack.org/meetings/barbican/

More information (including a link to the Agenda, some pointers on meeting etiquette, and an
ICS file to put the meeting on your calendar) can be found at: http://eavesdrop.openstack.org/
#Barbican_Meeting

mailing list
We use the openstack-discuss@lists.openstack.org mailing list for asynchronous discussions or to
communicate with other OpenStack teams. Use the prefix [barbican] in your subject line (its a
high-volume list, so most people use email filters).

More information about the mailing list, including how to subscribe and read the archives, can be
found at: http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss

meet-ups
The Barbican project usually has a presence at the OpenDev/OpenStack Project Team Gathering
that takes place at the beginning of each development cycle. Planning happens on an etherpad
whose URL is announced at the weekly meetings and on the mailing list.

Contacting the Core Team

The barbican-core team is an active group of contributors who are responsible for directing and maintain-
ing the Barbican project. As a new contributor, your interaction with this group will be mostly through
code reviews, because only members of barbican-core can approve a code change to be merged into the
code repository.

Note: Although your contribution will require reviews by members of barbican-core, these arent the
only people whose reviews matter. Anyone with a gerrit account can post reviews, so you can ask other
developers you know to review your code and you can review theirs. (A good way to learn your way
around the codebase is to review other peoples patches.)

If youre thinking, Im new at this, how can I possibly provide a helpful review?, take a look at How to
Review Changes the OpenStack Way.

You can learn more about the role of core reviewers in the OpenStack governance documentation: https:
//docs.openstack.org/contributors/common/governance.html#core-reviewer

The membership list of barbican-core is maintained in gerrit: https://review.opendev.org/#/admin/
groups/178,members

2.5. Barbican for Developers 129

http://eavesdrop.openstack.org/irclogs/%23openstack-barbican/
http://eavesdrop.openstack.org/irclogs/%23openstack-barbican/
http://eavesdrop.openstack.org/meetings/barbican/
http://eavesdrop.openstack.org/meetings/barbican/
http://eavesdrop.openstack.org/#Barbican_Meeting
http://eavesdrop.openstack.org/#Barbican_Meeting
mailto:openstack-discuss@lists.openstack.org
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-discuss
https://docs.openstack.org/project-team-guide/review-the-openstack-way.html
https://docs.openstack.org/project-team-guide/review-the-openstack-way.html
https://docs.openstack.org/contributors/common/governance.html#core-reviewer
https://docs.openstack.org/contributors/common/governance.html#core-reviewer
https://review.opendev.org/#/admin/groups/178,members
https://review.opendev.org/#/admin/groups/178,members

Barbican Documentation, Release 18.0.1.dev3

New Feature Planning

The Barbican project uses both specs and blueprints to track new features. Heres a quick rundown of
what they are and how the Barbican project uses them.

specs

Exist in the barbican-specs repository. Each spec must have a Launchpad blueprint associated
with it for tracking purposes.

A spec is required for any new Barbican core feature, anything that changes the Key Manager
API, or anything that entails a mass change to the existing codebase.

The specs repository is: https://opendev.org/openstack/barbican-specs
It contains a README.rst file explaining how to file a spec.

You can read rendered specs docs at:
https://specs.openstack.org/openstack/barbican-specs/

blueprints

Exist in Launchpad, where they can be targeted to release milestones.
You file one at https://blueprints.launchpad.net/barbican

Examples of changes that can be covered by a blueprint only are:

• adding a new backend; or

• adding support for a defined capability that already exists in one or more existing backends.

Feel free to ask in #openstack-barbican or at the weekly meeting if you have an idea you want to
develop and youre not sure whether it requires a blueprint and a spec or simply a blueprint.

The Barbican project observes the OpenStack-wide deadlines, for example, final release of non-client
libraries (barbican), final release for client libraries (python-barbicanclient), feature freeze, etc. These
are also noted and explained on the release schedule for the current development cycle.

Task Tracking

We track our tasks in Launchpad. See the top of the page for the URL of each Barbican project deliverable.

If youre looking for some smaller, easier work item to pick up and get started on, search for the low-
hanging-fruit tag in the Bugs section.

When you start working on a bug, make sure you assign it to yourself. Otherwise someone else may also
start working on it, and we dont want to duplicate efforts. Also, if you find a bug in the code and want
to post a fix, make sure you file a bug (and assign it to yourself!) just in case someone else comes across
the problem in the meantime.

130 Chapter 2. API Guide

https://opendev.org/openstack/barbican-specs
https://specs.openstack.org/openstack/barbican-specs/
https://blueprints.launchpad.net/barbican
https://launchpad.net/barbican

Barbican Documentation, Release 18.0.1.dev3

Reporting a Bug

You found an issue and want to make sure we are aware of it? You can do so in the Launchpad bugs
tracker of the affected deliverable.

Getting Your Patch Merged

The Barbican project policy is that a patch must have two +2s before it can be merged. (Exceptions are
documentation changes, which require only a single +2, and specs, for which the PTL may require more
than two +2s, depending on the complexity of the proposal.)

Patches lacking unit tests are unlikely to be approved. Check out the testing-barbican section of the
Barbican Contributors Guide for a discussion of the kinds of testing we do with barbican.

In addition, some changes may require a release note. Any patch that changes functionality, adds func-
tionality, or addresses a significant bug should have a release note. You can find more information about
how to write a release note in the release-notes section of the Barbican Contributors Guide.

Keep in mind that the best way to make sure your patches are reviewed in a timely manner is to review
other peoples patches. Were engaged in a cooperative enterprise here.

You can see whos been doing what with Barbican recently in Stackalytics: https://www.stackalytics.com/
report/activity?module=barbican-group

Project Team Lead Duties

All common PTL duties are enumerated in the PTL guide.

2.5.4 Getting Involved

The best way to join the community and get involved is to talk with others online or at a meetup and offer
contributions. Here are some of the many ways you can contribute to the Barbican project:

• Development and Code Reviews

• Bug reporting/Bug fixes

• Wiki and Documentation

• Blueprints/Specifications

• Testing

• Deployment scripts

2.5. Barbican for Developers 131

https://www.stackalytics.com/report/activity?module=barbican-group
https://www.stackalytics.com/report/activity?module=barbican-group
https://docs.openstack.org/project-team-guide/ptl.html

Barbican Documentation, Release 18.0.1.dev3

OFTC IRC (Chat)

You can find Barbicaneers in our publicly accessible channel on OFTC #openstack-barbican. All
conversations are logged and stored for your convenience at eavesdrop.openstack.org. For more informa-
tion regarding OpenStack IRC channels please visit the OpenStack IRC Wiki.

Mailing List

The mailing list email is openstack@lists.openstack.org. This is a common mailing list across the Open-
Stack projects. If you wish to ask questions or have a discussion related to Barbican include [barbican]
in your email subject line. To participate on the mailing list:

• Subscribe to the mailing list

• Browse the mailing list archives

Launchpad

Most of the tools used for OpenStack require a Launchpad ID for authentication. Like other OpenStack
related projects, we utilize Launchpad for our bug and release tracking.

• Barbican Launchpad Project

Source Repository

Like other OpenStack related projects, the official Git repository is available on opendev.org; however,
the repository is also mirrored to GitHub for easier browsing.

• Barbican on GitHub

Gerrit

Like other OpenStack related projects, we utilize the OpenStack Gerrit review system for all code reviews.
If youre unfamiliar with using the OpenStack Gerrit review system, please review the Gerrit Workflow
wiki documentation.

2.5.5 Architecture

This document describes the architecture and technology selections for Barbican. In general, a goal is to
utilize the OpenStack architecture and technology selections as much as possible. An overall architecture
is presented first, followed by technology selection details to implement the system.

132 Chapter 2. API Guide

http://oftc.net
http://eavesdrop.openstack.org/irclogs/%23openstack-barbican/
https://wiki.openstack.org/wiki/IRC
mailto:openstack@lists.openstack.org
http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack
http://lists.openstack.org/pipermail/openstack
https://launchpad.net/barbican
https://opendev.org/openstack/barbican
https://github.com/openstack/barbican
https://docs.openstack.org/infra/manual/developers.html#development-workflow

Barbican Documentation, Release 18.0.1.dev3

Overall Architecture

The next figure presents an overall logical diagram for Barbican.

The API node(s) handle incoming REST requests to Barbican. These nodes can interact with the database
directly if the request can be completed synchronously (such as for GET requests), otherwise the queue
supports asynchronous processing by worker nodes. The latter could include interactions with third
parties such as certificate authorities. As implied in the diagram, the architecture supports multiple
API and worker nodes being added/removed to/from the network, to support advanced features such as
auto scaling. Eventually, the database could be replicated across data centers supporting region-agnostic
storage and retrieval of secured information, albeit with lags possible during data synchronization.

Technology Selection

In general, components from the Oslo commons project are used within Barbican, such as config, mes-
saging and logging.

The next figure examines the components within Barbican.

2.5. Barbican for Developers 133

https://wiki.openstack.org/wiki/Oslo

Barbican Documentation, Release 18.0.1.dev3

Several potential clients of the Barbican REST interface are noted, including Castellan which presents a
generic key management interface for other OpenStack projects with Barbican as an available plugin.

The API node noted in the previous section is a WSGI server. Similar to OpenStack projects such as
Glance it utilizes paste to support configurable middleware such as to interface with Keystone for au-
thentication and authorization services. Pecan (a lean Python web framework inspired by CherryPy,
TurboGears, and Pylons) is utilized to map resources to REST routes. These resources contain the con-
troller business logic for Barbican and can interface with encryption/decryption processes (via crypto
components), datastore (via repository components) and asynchronous tasks (via queue components).

The crypto components provide a means to encrypt and decrypt information that accommodates a va-
riety of encryption mechanisms and cryptographic backends (such as key management interoperability
protocol (KMIP) or hardware security module (HSM)) via a plugin interface.

The repository components provide an interface and database session context for the datastore, with
model components representing entities such as Secrets (used to store encrypted information such as
data encryption keys). SQLAlchemy is used as the object relational model (ORM) layer to the database,
including MySQL and PostgreSQL.

For asynchronous processing, Oslo Messaging is used to interact with the queue, including RabbitMQ.
The worker node processes tasks from the queue. Task components are similar to API resources in that
they implement business logic and also interface with the datastore and follow on asynchronous tasks as
needed. These asynchronous tasks can interface with external systems, such as certificate authorities for
SSL/TLS certificate processing.

134 Chapter 2. API Guide

https://github.com/openstack/castellan
https://docs.openstack.org/glance/latest/
https://docs.openstack.org/keystone/latest/
http://pecan.readthedocs.org/en/latest
http://www.sqlalchemy.org
https://www.mysql.com/
http://www.postgresql.org
https://wiki.openstack.org/wiki/Oslo/Messaging
https://www.rabbitmq.com/

Barbican Documentation, Release 18.0.1.dev3

2.5.6 Project Structure

1. barbican/ (Barbican-specific Python source files)

1. api/ (REST API related source files)

1. controllers/ (Pecan-based controllers handling REST-based requests)

2. middleware/ (Middleware business logic to process REST requests)

2. cmd/ (Barbican admin command source files)

3. common/ (Modules shared across other Barbican folders)

4. locale/ (Translation templates)

5. model/ (SQLAlchemy-based model classes)

6. plugin/ (Plugin related logic, interfaces and look-up management)

1. resources.py (Supports interactions with plugins)

2. crypto/ (Hardware security module (HSM) logic and plugins)

3. interface/ (Certificate manager and secret store interface classes)

4. (The remaining modules here are implementations of above interfaces)

7. queue/ (Client and server interfaces to the queue)

1. client.py (Allows clients to publish tasks to queue)

2. server.py (Runs the worker service, responds to enqueued tasks)

8. tasks/ (Worker-related controllers and implementations)

9. tests/ (Unit tests)

2. bin/ (Start-up scripts for the Barbican nodes)

3. devstack/ (Barbican DevStack plugin, DevStack gate configuration and
Vagrantfile for installing DevStack VM)

4. etc/barbican/ (Configuration files)

5. functionaltests (Functional Barbican tests)

6. doc/source (Sphinx documentation)

7. releasenotes (Barbican Release Notes)

2.5.7 Dataflow

Bootup flow when the Barbican API service begins

This is the sequence of calls for booting up the Barbican API server:

1. bin/barbican.sh start: Launches a WSGI service that performs a PasteDeploy process, in-
voking the middleware components found in barbican/api/middleware as configured in etc/
barbican/barbican-api-paste. The middleware components invoke and then execute the
Pecan application created via barbican/api/app.py:create_main_app(), which also defines
the controllers (defined in barbican/api/controllers/) used to process requested URI routes.

2.5. Barbican for Developers 135

Barbican Documentation, Release 18.0.1.dev3

Typical flow when the Barbican API executes

For synchronous calls, the following sequence is generally followed:

1. A client sends an HTTP REST request to the Barbican API server.

2. The WSGI server and routing invokes a method on one of the XxxxController classes in
barbican/api/controllers/xxxx.py, keyed to an HTTP verb (so one of POST, GET,
DELETE, or PUT).

1. Example - GET /secrets:

1. In barbican/api/controllers/secrets.py, the SecretControllers on_get()
is invoked.

2. A SecretRepo repository class (found in barbican/model/respositories.py) is
then used to retrieve the entity of interest, in this case as a Secret entity defined in
barbican/model/models.py.

3. The payload is decrypted as needed, via barbican/plugin/resources.pys
get_secret() function.

4. A response JSON is formed and returned to the client.

For asynchronous calls, the following sequence is generally followed:

1. A client sends an HTTP REST request to the Barbican API server.

2. The WSGI server and routing again invokes a method on one of the XxxxcController classes in
barbican/api/controllers/.

3. A remote procedure call (RPC) task is enqueue for later processing by a worker node.

1. Example - POST /orders:

1. In barbican/api/controllers/orders.py, the OrdersControllers on_post()
is invoked.

2. The OrderRepo repository class (found in barbican/model/respositories.py) is
then used to create the barbican/model/models.pys Order entity in a PENDING
state.

3. The Queue APIs process_type_order() method on the TaskClient class (found
in barbican/queue/client.py) is invoked to send a message to the queue for asyn-
chronous processing.

4. A response JSON is formed and returned to the client.

4. The Queue service receives the message sent above, invoking a corresponding method
on barbican/queue/server.pys Tasks class. This method then invokes the
process_and_suppress_exceptions() method on one of the barbican/tasks/
resources.pys BaseTask implementors. This method can then utilize repository classes
as needed to retrieve and update entities. It may also interface with third party systems via
plugins‘. The barbican/queue/client.pys TaskClient class above may also be invoked
from a worker node for follow on asynchronous processing steps.

1. Example - POST /orders (continued):

1. Continuing the example above, the queue would invoke the process_type_order()
method on barbican/queue/server.pys Tasks class. Note the method is named the
same as the TaskClient method above by convention.

136 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

2. This method then invokes process_and_suppress_exceptions() on the
barbican/tasks/resources.pys BeginTypeOrder class. This class is responsible
for processing all newly-POST-ed orders.

2.5.8 Adding/Updating Dependencies

Adding new Dependency

If you need to add a new dependency to Barbican, you must edit a few things:

1. Add the package name (and minimum version if applicable) to the requirements.txt file in the root
directory.

Note: All dependencies and their version specifiers must come from the OpenStack global re-
quirements repository.

2. We support deployment on CentOS 6.4, so you should check CentOS + EPEL 6 yum repos to
figure out the name of the rpm package that provides the package youre adding. Add this package
name as a dependency in rpmbuild/SPECS/barbican.spec.

3. If there is no package available in CentOS or EPEL, or if the latest available packages version is
lower than the minimum required version we must build an rpm for it ourselves. Add a line to
rpmbuild/package_dependencies.sh so that jenkins will build an rpm using fpm and upload
it to the cloudkeep yum repo.

2.5.9 Database Migrations

Database migrations are managed using the Alembic library. The consensus for OpenStack and
SQLAlchemy is that this library is preferred over sqlalchemy-migrate.

Database migrations can be performed two ways: (1) via the API startup process, and (2) via a separate
script.

Database migrations can be optionally enabled during the API startup process. Corollaries for this are
that a new deployment should begin with only one node to avoid migration race conditions.

Policy

A Barbican deployment goal is to update application and schema versions with zero downtime. The chal-
lenge is that at all times the database schema must be able to support two deployed application versions,
so that a single migration does not break existing nodes running the previous deployment. For example,
when deleting a column we would first deploy a new version that ignores the column. Once all nodes are
ignoring the column, a second deployment would be made to remove the column from the database.

To achieve this goal, the following rules will be observed for schema changes:

1. Do not remove columns or tables directly, but rather:

a. Create a version of the application not dependent on the removed column/table

b. Replace all nodes with this new application version

c. Create an Alembic version file to remove the column/table

2.5. Barbican for Developers 137

https://opendev.org/openstack/requirements/src/branch/master/global-requirements.txt
https://opendev.org/openstack/requirements/src/branch/master/global-requirements.txt
http://alembic.zzzcomputing.com/en/latest/
https://wiki.openstack.org/wiki/OpenStack_and_SQLAlchemy#Migrations
https://wiki.openstack.org/wiki/OpenStack_and_SQLAlchemy#Migrations

Barbican Documentation, Release 18.0.1.dev3

d. Apply this change in production manually, or automatically with a future version of the ap-
plication

2. Changing column attributes (types, names or widths) should be handled as follows:

a. TODO: This Stack Overflow Need to alter column types in production database page and
many others summarize the grief involved in doing these sorts of migrations

b. TODO: What about old and new application versions happening simultaneously?

i. Maybe have the new code perform migration to new column on each read similar to how
a no-sql db migration would occur?

3. Transforming column attributes (ex: splitting one name column into a first and last name):

a. TODO: An Alembic example, but not robust for large datasets.

Overview

Prior to invoking any migration steps below, change to your barbican projects folder and activate your
virtual environment per the Developer Guide.

If you are using PostgreSQL, please ensure you are using SQLAlchemy version 0.9.3 or higher,
otherwise the generated version files will not be correct.

You cannot use these migration tools and techniques with SQLite databases.

Consider taking a look at the Alembic tutorial. As a brief summary: Alembic keeps track of a linked list
of version files, each one applying a set of changes to the database schema that a previous version file in
the linked list modified. Each version file has a unique Alembic-generated ID associated with it. Alembic
generates a table in the project table space called alembic_version that keeps track of the unique ID
of the last version file applied to the schema. During an update, Alembic uses this stored version ID to
determine what if any follow on version files to process.

Generating Change Versions

To make schema changes, new version files need to be added to the barbican/model/migration/
alembic_migrations/versions/ folder. This section discusses two ways to add these files.

Automatically

Alembic autogenerates a new script by comparing a clean database (i.e., one without your recent changes)
with any modifications you make to the Models.py or other files. This being said, automatic generation
may miss changes it is more of an automatic assist with expert review. See What does Autogenerate
Detect in the Alembic documentation for more details.

First, you must start Barbican using a version of the code that does not include your changes, so that it
creates a clean database. This example uses Barbican launched with DevStack (see Barbican DevStack
wiki page for instructions).

1. Make changes to the barbican/model/models.py SQLAlchemy models or checkout your branch that
includes your changes using git.

2. Execute barbican-db-manage -d <Full URL to database, including user/pw>
revision -m '<your-summary-of-changes>' --autogenerate

138 Chapter 2. API Guide

http://stackoverflow.com/questions/5329255/need-to-alter-column-types-in-production-database-sql-server-2005
https://julo.ch/blog/migrating-content-with-alembic/
https://github.com/cloudkeep/barbican/wiki/Developer-Guide
http://alembic.zzzcomputing.com/en/latest/tutorial.html
http://alembic.zzzcomputing.com/en/latest/autogenerate.html#what-does-autogenerate-detect-and-what-does-it-not-detect
http://alembic.zzzcomputing.com/en/latest/autogenerate.html#what-does-autogenerate-detect-and-what-does-it-not-detect
https://docs.openstack.org/barbican/latest/contributor/devstack.html

Barbican Documentation, Release 18.0.1.dev3

a. For example: barbican-db-manage -d mysql+pymysql://root:password@127.
0.0.1/barbican?charset=utf8 revision -m 'Make unneeded verification
columns nullable' --autogenerate

3. Examine the generated version file, found in barbican/model/migration/
alembic_migrations/versions/:

a. Verify generated update/rollback steps, especially for modifications to existing
columns/tables

b. Remove autogenerated comments such as: ### commands auto generated by
Alembic - please adjust! ###

c. If you added new columns, follow this guidance:

1. For non-nullable columns you will need to add default values for the records al-
ready in the table, per what you configured in the barbican.model.models.
py module. You can add the server_default keyword argument for the
SQLAlchemy Column call per SQLAlchemys server_default. For boolean attributes,
use server_default=0 for False, or server_default=1 for True. For DateTime attributes,
use server_default=str(timeutils.utcnow()) to default to the current time.

2. If you add any constraint, please always name them in the barbican.model.models.py
module, and also in the Alembic version modules when creating/dropping constraints,
otherwise MySQL migrations might crash.

d. If you added new tables, follow this guidance:

1. Make sure you added your new table to the MODELS element of the barbican/model/
models.py module.

2. Note that when Barbican boots up, it will add the new table to the database. It will also
try to apply the database version (that also tries to add this table) via alembic. Therefore,
please edit the generated script file to add these lines:

a. ctx = op.get_context() (to get the alembic migration context in current trans-
action)

b. con = op.get_bind() (get the database connection)

c. table_exists = ctx.dialect.has_table(con.engine,
'your-new-table-name-here')

d. if not table_exists:

e. ...remaining create table logic here...

Note: For anything but trivial or brand new columns/tables, database backups and maintenance-window
downtimes might be called for.

2.5. Barbican for Developers 139

http://docs.sqlalchemy.org/en/latest/core/metadata.html?highlight=column#sqlalchemy.schema.Column.params.server_default

Barbican Documentation, Release 18.0.1.dev3

Manually

1. Execute: barbican-db-manage revision -m "<insert your change description
here>"

2. This will generate a new file in the barbican/model/migration/
alembic_migrations/versions/ folder, with this sort of file format:
<unique-Alembic-ID>_<your-change-description-from-above-but-truncated>.
py. Note that only the first 20 characters of the description are used.

3. You can then edit this file per tutorial and the Alembic Operation Reference page for available op-
erations you may make from the version files. You must properly fill in the upgrade()methods.

Applying Changes

Barbican utilizes the Alembic version files as managing delta changes to the database. Therefore the first
Alembic version file does not contain all time-zero database tables.

To create the initial Barbican tables in the database, execute the Barbican application per the Via Appli-
cation section.

Thereafter, it is suggested that only the barbican-db-manage command above be used to update the
database schema per the Manually section. Also, automatic database updates from the Barbican ap-
plication should be disabled by adding/updating db_auto_create = False in the barbican.conf
configuration file.

Note : Before attempting any upgrade, you should make a full database backup of your production data.
As of Kilo, database downgrades are not supported in OpenStack, and the only method available to get
back to a prior database version will be to restore from backup.

Via Application

The last section of the Alembic tutorial describes the process used by the Barbican application to create
and update the database table space automatically.

By default, when the Barbican API boots up it will try to create the Barbican database tables (using
SQLAlchemy), and then try to apply the latest version files (using Alembic). In this mode, the latest
version of the Barbican application can create a new database table space updated to the latest schema
version, or else it can update an existing database table space to the latest schema revision (called head
in the docs).

To bypass this automatic behavior, add db_auto_create = False to the barbican.conf file.

140 Chapter 2. API Guide

http://alembic.zzzcomputing.com/en/latest/ops.html
http://alembic.zzzcomputing.com/en/latest/tutorial.html

Barbican Documentation, Release 18.0.1.dev3

Manually

Run barbican-db-manage -d <Full URL to database, including user/pw> upgrade -v
head, which will cause Alembic to apply the changes found in all version files after the version currently
written in the target database, up until the latest version file in the linked chain of files.

To upgrade to a specific version, run this command: barbican-db-manage -d <Full URL
to database, including user/pw> upgrade -v <Alembic-ID-of-version>. The
Alembic-ID-of-version is a unique ID assigned to the change such as1a0c2cdafb38.

Downgrade

Upgrades involve complex operations and can fail. Before attempting any upgrade, you should make a
full database backup of your production data. As of Kilo, database downgrades are not supported, and
the only method available to get back to a prior database version will be to restore from backup.

You must complete these steps to successfully roll back your environment:

1. Roll back configuration files.

2. Restore databases from backup.

3. Roll back packages.

Rolling back upgrades is a tricky process because distributions tend to put much more effort into testing
upgrades than downgrades. Broken downgrades often take significantly more effort to troubleshoot and
resolve than broken upgrades. Only you can weigh the risks of trying to push a failed upgrade forward
versus rolling it back. Generally, consider rolling back as the very last option.

The backup instructions provided in Backup tutorial ensure that you have proper backups of your
databases and configuration files. Read through this section carefully and verify that you have the requi-
site backups to restore.

Note : The backup tutorial reference file only updated to Juno, DB backup operation will be similar for
Kilo. The link will be updated when the reference has updated.

For more information and examples about downgrade operation please see Downgrade tutorial as refer-
ence.

TODO Items

1. [Done - It works!] Verify alembic works with the current SQLAlchemy model configuration in
Barbican (which was borrowed from Glance).

2. [Done - It works, I was able to add/remove columns while app was running] Verify that
SQLAlchemy is tolerant of schema miss-matches. For example, if a column is added to a table
schema, will this break existing deployments that arent expecting this column?

3. [Done - It works] Add auto-migrate code to the boot up of models (see the barbican\model\
repositories.py file).

4. [Done - It works] Add guard in Barbican model logic to guard against running migrations with
SQLite databases.

5. Add detailed deployment steps for production, so how new nodes are rolled in and old ones rolled
out to complete move to new versions.

2.5. Barbican for Developers 141

http://docs.openstack.org/openstack-ops/content/upgrade-icehouse-juno.html#upgrade-icehouse-juno-backup
http://docs.openstack.org/openstack-ops/content/ops_upgrades-roll-back.html

Barbican Documentation, Release 18.0.1.dev3

6. [In Progress] Add a best-practices checklist section to this page.

a. This would provide guidance on safely migrating schemas, dos and donts, etc.

b. This could also provide code guidance, such as ensuring that new schema changes (eg. that
new column) arent required for proper functionality of the previous version of the code.

c. If a server bounce is needed, notification guidelines to the devop team would be spelled out
here.

2.5.10 API Microversions

Background

Barbican uses a framework we call API Microversions for allowing changes to the API while preserving
backward compatibility. The basic idea is that a user has to explicitly ask for their request to be treated
with a particular version of the API. So breaking changes can be added to the API without breaking users
who dont specifically ask for it. This is done with an HTTP header OpenStack-API-Versionwhich has
as its value a string containing the name of the service, key-manager, and a monotonically increasing
semantic version number starting from 1.0. The full form of the header takes the form:

OpenStack-API-Version: key-manager 1.1

If a user makes a request without specifying a version, they will get the MIN_API_VERSION as cal-
culated from the defined _MIN_MICROVERSION in barbican/api/controllers/versions.py.
This value is currently 1.0 and is expected to remain so for quite a long time.

There is a special value latest which can be specified, which will allow a client to always receive the
most recent version of API responses from the server.

Warning: The latest value is mostly meant for integration testing and would be dangerous to rely
on in client code since microversions are not following semver and therefore backward compatibility
is not guaranteed. Clients, like python-barbicanclient, should always require a specific microversion
but limit what is acceptable to the version range that it understands at the time.

For full details please read the Microversion Specification.

When do I need a new Microversion?

A microversion is needed when the contract to the user is changed. The user contract covers many kinds
of information such as:

• the Request

– the list of resource urls which exist on the server

Example: adding a new servers/{ID}/foo which didnt exist in a previous version of the code

– the list of query parameters that are valid on urls

Example: adding a new parameter is_yellow servers/{ID}?is_yellow=True

142 Chapter 2. API Guide

http://specs.openstack.org/openstack/api-wg/guidelines/microversion_specification.html

Barbican Documentation, Release 18.0.1.dev3

– the list of query parameter values for non free form fields

Example: parameter filter_by takes a small set of constants/enums A, B, C. Adding support
for new enum D.

– new headers accepted on a request

– the list of attributes and data structures accepted.

Example: adding a new attribute consumer: to the request body

• the Response

– the list of attributes and data structures returned

Example: adding a new attribute consumers: [] to the output of secrets/{ID}

– the allowed values of non free form fields

Example: adding a new allowed secret_type to secrets/{ID}

– the list of status codes allowed for a particular request

Example: an API previously could return 200, 400, 403, 404 and the change would make the
API now also be allowed to return 409.

See2 for the 400, 403, 404 and 415 cases.

– changing a status code on a particular response

Example: changing the return code of an API from 501 to 400.

Note: Fixing a bug so that a 400+ code is returned rather than a 500 or 503 does not require
a microversion change. Its assumed that clients are not expected to handle a 500 or 503
response and therefore should not need to opt-in to microversion changes that fixes a 500
or 503 response from happening. According to the OpenStack API Working Group, a 500
Internal Server Error should not be returned to the user for failures due to user error that
can be fixed by changing the request on the client side. See1.

– new headers returned on a response

The following flow chart attempts to walk through the process of do we need a microversion.
2 The exception to not needing a microversion when returning a previously unspecified error code is the 400, 403, 404

and 415 cases. This is considered OK to return even if previously unspecified in the code since its implied given keystone
authentication can fail with a 403 and API validation can fail with a 400 for invalid json request body. Request to url/resource
that does not exist always fails with 404. Invalid content types are handled before API methods are called which results in a
415.

1 When fixing 500 errors that previously caused stack traces, try to map the new error into the existing set of errors that
API call could previously return (400 if nothing else is appropriate). Changing the set of allowed status codes from a request is
changing the contract, and should be part of a microversion (except in2).

The reason why we are so strict on contract is that wed like application writers to be able to know, for sure, what the contract
is at every microversion in Barbican. If they do not, they will need to write conditional code in their application to handle
ambiguities.

When in doubt, consider application authors. If it would work with no client side changes on both Barbican versions, you
probably dont need a microversion. If, on the other hand, there is any ambiguity, a microversion is probably needed.

2.5. Barbican for Developers 143

Barbican Documentation, Release 18.0.1.dev3

Do I need a microversion?

Did we silently
fail to do what is asked?

Did we return a 500
before?

 no

No microversion needed, it's
a bug

yes

Are we changing what
 status code is returned?

 no

yes [1]

Did we add or remove an
 attribute to a payload?

 no

Yes, you need a microversion

yes

Did we add or remove
 an accepted query string parameter or value?

 no

yes

Did we add or remove a
resource url?

 no

yes

No microversion needed

 no

yes

Footnotes

When a microversion is not needed

A microversion is not needed in the following situation:

• the response

– Changing the error message without changing the response code does not require a new mi-
croversion.

– Removing an inapplicable HTTP header, for example, suppose the Retry-After HTTP header
is being returned with a 4xx code. This header should only be returned with a 503 or 3xx
response, so it may be removed without bumping the microversion.

– An obvious regression bug in an admin-only API where the bug can still be fixed upstream
on active stable branches. Admin-only APIs are less of a concern for interoperability and
generally a regression in behavior can be dealt with as a bug fix when the documentation

144 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

clearly shows the API behavior was unexpectedly regressed. See3 for an example from Nova.
Intentional behavior changes to an admin-only API do require a microversion.

Footnotes

In Code

In barbican/api/controllers/versions.py we define the is_supported function which is in-
tended to be used in Controller methods to check if API request version satisfies version restrictions.
The function accepts min_version and max_version arguments, and returns True when the requested
version meets those constrainst.

Note: Originally Nova also implemented a decorator API, but it frequently lead to code duplication. In
Barbican it was decided to limit the microversion API to just the is_supported function.

If you are adding a patch which adds a new microversion, it is necessary to add changes to other places
which describe your change:

• Update _MAX_MICROVERSION and bump _LAST_UPDATED in barbican/api/controllers/
versions.py

• Add a verbose description to doc/source/api/microversion_history.rst.

• Add a release note with a features section announcing the new or changed feature and the mi-
croversion.

• Update the expected versions in affected tests, add new tests to test both the old and new behavior
to avoid regressions.

• Make a new commit to python-barbicanclient and update corresponding files to enable the newly
added microversion API.

• If the microversion changes the response schema, a new schema and test for the microversion must
be added to Tempest.

• Update the API Reference documentation as appropriate. The source is located under
doc/source/api/reference/.

Allocating a microversion

If you are adding a patch which adds a new microversion, it is necessary to allocate the next microversion
number. Except under extremely unusual circumstances and this would have been mentioned in the
barbican spec for the change, the _MAX_MICROVERSION will be incremented. This will also be the new
minor version number for the API change.

It is possible that multiple microversion patches would be proposed in parallel and the microversions
would conflict between patches. This will cause a merge conflict. We dont reserve a microversion for each
patch in advance as we dont know the final merge order. Developers may need over time to rebase their
patch calculating a new version number as above based on the updated value of _MAX_MICROVERSION.

3 https://review.opendev.org/#/c/523194/

2.5. Barbican for Developers 145

https://docs.openstack.org/api-ref/key-manager/
https://review.opendev.org/#/c/523194/

Barbican Documentation, Release 18.0.1.dev3

Testing Microversioned API Methods

Testing a microversioned API method is very similar to a normal controller method test, you just need to
add the OpenStack-API-Version header For unit tests, barbican.test.utils.set_version function can be
used, for example:

def test_should_get_secret_as_json_v1(self):
utils.set_version(self.app, '1.1')
secret = self._test_should_get_secret_as_json()
self.assertIn('consumers', secret)

2.5.11 Plugin Developers Guide

This guide describes how to develop custom plugins for use by Barbican. While Barbican provides useful
plugin implementations, some OpenStack operators may require customized implementations, perhaps
to interact with an existing corporate database or service. This approach also gives flexibility to operators
of OpenStack clouds by allowing them to choose the right implementation for their cloud.

Plugin Status

A Barbican plugin may be considered stable, experimental or out-of-tree.

• A stable status indicates that the plugin is fully supported by the OpenStack Barbican Team

• An experimental status indicates that we intend to support the plugin, but it may be missing features
or may not be fully tested at the gate. Plugins in this status may occasionally break.

• An out-of-tree status indicates that no formal support will be provided, and the plugin may be
removed in a future release.

Graduation Process

By default, new plugins proposed to be in-tree will be in the experimental status. To be considered stable
a plugin must meet the following requirements:

• 100% unit test coverage, including branch coverage.

• Gate job that executes the functional test suite against an instance of Barbican configured to use
the plugin. The gate may be a devstack gate, or a third-party gate.

• Implement new features within one cycle after the new blueprint feature is approved.

146 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Demotion Process

Plugins should not stay in the experimental status for a long time. Plugins that stay in experimental for
more than two releases are expected to move into stable, as described by the Graduation Process, or move
into out-of-tree.

Plugins in the stable status may be deprecated by the team, and moved to out-of-tree.

Plugins that stay in the out-of-tree status for more than two releases may be removed from the tree.

Architecture

Barbicans plugin architecture enables developers to create their own implementations of features such
as secret storage and generation and event handling. The plugin pattern used defines an abstract class,
whose methods are invoked by Barbican logic (referred to as Barbican core in this guide) in a particular
sequence. Typically plugins do not interact with Barbicans data model directly, so Barbican core also
handles persisting any required information on the plugins behalf.

In general, Barbican core will invoke a variation of the plugins supports() method to determine if a
requested action can be implemented by the plugin. Once a supporting plugin is selected, Barbican core
will invoke one or more methods on the plugin to complete the action.

The links below provide further guidance on the various plugin types used by Barbican, as well as con-
figuration and deployment options.

Secret Store Plugin Development

This guide describes how to develop a custom secret store plugin for use by Barbican.

Barbican supports two storage modes for secrets: a secret store mode (detailed on this page), and a
cryptographic mode. The secret store mode offloads both encryption/decryption and encrypted secret
storage to the plugin implementation. Barbican includes plugin interfaces to a Red Hat Dogtag service
and to a Key Management Interoperability Protocol (KMIP) compliant security appliance.

Since the secret store mode defers the storage of encrypted secrets to plugins, Barbican core does not
need to store encrypted secrets into its data store, unlike the cryptographic mode. To accommodate the
discrepancy between the two secret storage modes, a secret store to cryptographic plugin adapter has
been included in Barbican core, as detailed in The Cryptographic Plugin Adapter section below.

secret_store Module

The barbican.plugin.interface.secret_store module contains the classes needed to implement
a custom plugin. These classes include the SecretStoreBase abstract base class which custom plugins
should inherit from, as well as several Data Transfer Object (DTO) classes used to transfer data between
Barbican and the plugin.

2.5. Barbican for Developers 147

Barbican Documentation, Release 18.0.1.dev3

Data Transfer Objects

The DTO classes are used to wrap data that is passed from Barbican to the plugin as well as data that
is returned from the plugin back to Barbican. They provide a level of isolation between the plugins and
Barbicans internal data models.

class barbican.plugin.interface.secret_store.SecretDTO(type, secret, key_spec,
content_type,
transport_key=None)

This object is a secret data transfer object (DTO).

This object encapsulates a key and attributes about the key. The attributes include a KeySpec that
contains the algorithm and bit length. The attributes also include information on the encoding of
the key.

class barbican.plugin.interface.secret_store.AsymmetricKeyMetadataDTO(private_key_meta=None,
pub-
lic_key_meta=None,
passphrase_meta=None)

This DTO encapsulates metadata(s) for asymmetric key components.

These components are private_key_meta, public_key_meta and passphrase_meta.

Secret Parameter Objects

The secret parameter classes encapsulate information about secrets to be stored within Barbican and/or
its plugins.

class barbican.plugin.interface.secret_store.SecretType

Constant to define the symmetric key type.

Used by getSecret to retrieve a symmetric key.

class barbican.plugin.interface.secret_store.KeyAlgorithm

Constant for the Diffie Hellman algorithm.

class barbican.plugin.interface.secret_store.KeySpec(alg=None, bit_length=None,
mode=None, passphrase=None)

This object specifies the algorithm and bit length for a key.

Plugin Base Class

Barbican secret store plugins should implement the abstract base class SecretStoreBase. Concrete
implementations of this class should be exposed to Barbican using stevedore mechanisms explained
in the configuration portion of this guide.

class barbican.plugin.interface.secret_store.SecretStoreBase

abstract delete_secret(secret_metadata)
Deletes a secret from the secret store.

Deletes a secret from a secret store. It can no longer be referenced after this call.

148 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Parameters
secret_metadata secret_metadata

abstract generate_asymmetric_key(key_spec)
Generate a new asymmetric key pair and store it.

Generates a new asymmetric key pair and stores it in the secret store. An object of type
AsymmetricKeyMetadataDTO will be returned containing attributes of metadata for newly
created key pairs. The metadata is stored by Barbican and passed into other methods to aid
the plugins. This can be useful for plugins that generate a unique ID in the external data store
and use it to retrieve the key pairs in the future.

Parameters
key_spec KeySpec that contains details on the type of key to generate

Returns
An object of type AsymmetricKeyMetadataDTO containing metadata about the
key pair.

abstract generate_supports(key_spec)
Returns a boolean indicating if the secret type is supported.

This checks if the algorithm and bit length are supported by the generate methods. This is
useful to call before calling generate_symmetric_key or generate_asymetric_key to see if the
key type is supported before trying to generate it.

Parameters
key_spec KeySpec that contains details on the algorithm and bit length

Returns
boolean indicating if the algorithm is supported

abstract generate_symmetric_key(key_spec)
Generate a new symmetric key and store it.

Generates a new symmetric key and stores it in the secret store. A dictionary is returned
that contains metadata about the newly created symmetric key. The dictionary of metadata
is stored by Barbican and passed into other methods to aid the plugins. This can be useful
for plugins that generate a unique ID in the external data store and use it to retrieve the key
in the future. The returned dictionary may be empty if the SecretStore does not require it.

Parameters
key_spec KeySpec that contains details on the type of key to generate

Returns
an optional dictionary containing metadata about the key

abstract get_plugin_name()

Gets user friendly plugin name.

This plugin name is expected to be read from config file. There will be a default defined for
plugin name which can be customized in specific deployment if needed.

This name needs to be unique across a deployment.

abstract get_secret(secret_type, secret_metadata)
Retrieves a secret from the secret store.

Retrieves a secret from the secret store and returns a SecretDTO that contains the secret.

2.5. Barbican for Developers 149

Barbican Documentation, Release 18.0.1.dev3

The secret_metadata parameter is the metadata returned from one of the generate or store
methods. This data is used by the plugins to retrieve the key.

The secret_type parameter may be useful for secret stores to know the expected format of the
secret. For instance if the type is SecretDTO.PRIVATE then a PKCS8 structure is returned.
This way secret stores do not need to manage the secret type on their own.

Parameters

• secret_type secret type

• secret_metadata secret metadata

Returns
SecretDTO that contains secret

get_transport_key()

Gets a transport key.

Returns the current valid transport key associated with this plugin. The transport key is ex-
pected to be a base64 encoded x509 certificate containing a public key. Admins are responsi-
ble for deleting old keys from the database using the DELETE method on the TransportKey
resource.

By default, returns None. Plugins that support transport key wrapping should override this
method.

is_transport_key_current(transport_key)
Determines if the provided transport key is the current valid key

Returns true if the transport key is the current valid transport key. If the key is not valid, then
barbican core will request a new transport key from the plugin.

Returns False by default. Plugins that support transport key wrapping should override this
method.

abstract store_secret(secret_dto)
Stores a key.

The SecretDTO contains the bytes of the secret and properties of the secret. The SecretStore
retrieves the secret bytes, stores them, and returns a dictionary of metadata about the secret.
This can be useful for plugins that generate a unique ID in the external data store and use it
to retrieve the secret in the future. The returned dictionary may be empty if the SecretStore
does not require it.

Parameters
secret_dto SecretDTO for secret

Returns
an optional dictionary containing metadata about the secret

abstract store_secret_supports(key_spec)
Returns a boolean indicating if the secret can be stored.

Checks if the secret store can store the secret, give the attributes of the secret in the KeySpec.
For example, some plugins may need to know the attributes in order to store the secret, but
other plugins may be able to store the secret as a blob if no attributes are given.

Parameters
key_spec KeySpec for the secret

150 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Returns
a boolean indicating if the secret can be stored

Barbican Core Plugin Sequence

The sequence that Barbican invokes methods on SecretStoreBase depends on the requested action
as detailed next. Note that these actions are invoked via the barbican.plugin.resources module,
which in turn is invoked via Barbicans API and Worker processes.

For secret storage actions, Barbican core calls the following methods:

1. get_transport_key() - If a transport key is requested to upload secrets for storage, this method
asks the plugin to provide the transport key.

2. store_secret_supports() - Asks the plugin if it can support storing a secret based on the
KeySpec parameter information as described above.

3. store_secret() - Asks the plugin to perform encryption of an unencrypted secret payload as
provided in the SecretDTO above, and then to store that secret. The plugin then returns a dictionary
of information about that secret (typically a unique reference to that stored secret that only makes
sense to the plugin). Barbican core will then persist this dictionary as a JSON attribute within its
data store, and also hand it back to the plugin for secret retrievals later. The name of the plugin
used to perform this storage is also persisted by Barbican core, to ensure we retrieve this secret
only with this plugin.

For secret retrievals, Barbican core will select the same plugin as was used to store the secret, and then
invoke its get_secret() method to return the unencrypted secret.

For symmetric key generation, Barbican core calls the following methods:

1. generate_supports() - Asks the plugin if it can support generating a symmetric key based on
the KeySpec parameter information as described above.

2. generate_symmetric_key() - Asks the plugin to both generate and store a symmetric key based
on the KeySpec parameter information. The plugin can then return a dictionary of information for
the stored secret similar to the storage process above, which Barbican core will persist for later
retrieval of this generated secret.

For asymmetric key generation, Barbican core calls the following methods:

1. generate_supports() - Asks the plugin if it can support generating an asymmetric key based
on the KeySpec parameter information as described above.

2. generate_asymmetric_key() - Asks the plugin to both generate and store an asymmet-
ric key based on the KeySpec parameter information. The plugin can then return an
AsymmetricKeyMetadataDTO object as described above, which contains secret metadata for each
of the three secrets generated and stored by this plugin: private key, public key and an optional
passphrase. Barbican core will then persist information for these secrets, and also create a con-
tainer to group them.

2.5. Barbican for Developers 151

Barbican Documentation, Release 18.0.1.dev3

The Cryptographic Plugin Adapter

Barbican core includes a specialized secret store plugin used to adapt to cryptographic plugins, called
StoreCryptoAdapterPlugin. This plugin functions as a secret store plugin, but it directs secret related
operations to cryptographic plugins for encryption/decryption/generation operations. Because crypto-
graphic plugins do not store encrypted secrets, this adapter plugin provides this storage capability via
Barbicans data store.

This adapter plugin also uses stevedore to access and utilize cryptographic plugins that can support
secret operations.

Cryptographic Plugin Development

This guide describes how to develop a custom cryptographic plugin for use by Barbican.

Barbican supports two storage modes for secrets: a cryptographic mode (detailed on this page), and a
secret store mode. The cryptographic mode stores encrypted secrets in Barbicans data store, utilizing a
cryptographic process or appliance (such as a hardware security module (HSM)) to perform the encryp-
tion/decryption. Barbican includes a PKCS11-based interface to SafeNet HSMs.

Note that cryptographic plugins are not invoked directly from Barbican core, but rather via a secret store
mode plugin adapter class, further described in The Cryptographic Plugin Adapter.

crypto Module

The barbican.plugin.crypto module contains the classes needed to implement a custom plugin.
These classes include the CryptoPluginBase abstract base class which custom plugins should inherit
from, as well as several Data Transfer Object (DTO) classes used to transfer data between Barbican and
the plugin.

Data Transfer Objects

The DTO classes are used to wrap data that is passed from Barbican to the plugin as well as data that
is returned from the plugin back to Barbican. They provide a level of isolation between the plugins and
Barbicans internal data models.

class barbican.plugin.crypto.base.KEKMetaDTO(kek_datum)

Key Encryption Key Meta DTO

Key Encryption Keys (KEKs) in Barbican are intended to represent a distinct key that is used to
perform encryption on secrets for a particular project.

KEKMetaDTO objects are provided to cryptographic backends by Barbican to allow plugins to per-
sist metadata related to the projects KEK.

For example, a plugin that interfaces with a Hardware Security Module (HSM) may want to use
a different encryption key for each project. Such a plugin could use the KEKMetaDTO object to
save the key ID used for that project. Barbican will persist the KEK metadata and ensure that it is
provided to the plugin every time a request from that same project is processed.

152 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

plugin_name

String attribute used by Barbican to identify the plugin that is bound to the KEK metadata.
Plugins should not change this attribute.

kek_label

String attribute used to label the projects KEK by the plugin. The value of this attribute
should be meaningful to the plugin. Barbican does not use this value.

algorithm

String attribute used to identify the encryption algorithm used by the plugin. e.g. AES,
3DES, etc. This value should be meaningful to the plugin. Barbican does not use this value.

mode

String attribute used to identify the algorithm mode used by the plugin. e.g. CBC, GCM,
etc. This value should be meaningful to the plugin. Barbican does not use this value.

bit_length

Integer attribute used to identify the bit length of the KEK by the plugin. This value should
be meaningful to the plugin. Barbican does not use this value.

plugin_meta

String attribute used to persist any additional metadata that does not fit in any other attribute.
The value of this attribute is defined by the plugin. It could be used to store external system
references, such as Key IDs in an HSM, URIs to an external service, or any other data that
the plugin deems necessary to persist. Because this is just a plain text field, a plug in may
even choose to persist data such as key value pairs in a JSON object.

class barbican.plugin.crypto.base.EncryptDTO(unencrypted)
Secret Encryption DTO

Data Transfer Object used to pass all the necessary data for the plugin to perform encryption of a
secret.

Currently, this DTO only contains the raw bytes to be encrypted by the plugin, but in the future
this may contain more information.

unencrypted

The secret data in Bytes to be encrypted by the plugin.

class barbican.plugin.crypto.base.DecryptDTO(encrypted)
Secret Decryption DTO

Data Transfer Object used to pass all the necessary data for the plugin to perform decryption of a
secret.

Currently, this DTO only contains the data produced by the plugin during encryption, but in the
future this DTO will contain more information, such as a transport key for secret wrapping back
to the client.

encrypted

The data that was produced by the plugin during encryption. For some plugins this will be
the actual bytes that need to be decrypted to produce the secret. In other implementations,
this may just be a reference to some external system that can produce the unencrypted secret.

class barbican.plugin.crypto.base.GenerateDTO(algorithm, bit_length, mode,
passphrase=None)

2.5. Barbican for Developers 153

Barbican Documentation, Release 18.0.1.dev3

Secret Generation DTO

Data Transfer Object used to pass all the necessary data for the plugin to generate a secret on behalf
of the user.

generation_type

String attribute used to identify the type of secret that should be generated. This will be either
"symmetric" or "asymmetric".

algorithm

String attribute used to specify what type of algorithm the secret will be used for. e.g. "AES"
for a "symmetric" type, or "RSA" for "asymmetric".

mode

String attribute used to specify what algorithm mode the secret will be used for. e.g. "CBC"
for "AES" algorithm.

bit_length

Integer attribute used to specify the bit length of the secret. For example, this attribute could
specify the key length for an encryption key to be used in AES-CBC.

class barbican.plugin.crypto.base.ResponseDTO(cypher_text, kek_meta_extended=None)
Data transfer object for secret generation response.

Barbican guarantees that both the cypher_text and kek_metadata_extended will be persisted
and then given back to the plugin when requesting a decryption operation.

kek_metadata_extended takes the idea of Key Encryption Key (KEK) metadata further by giv-
ing plugins the option to store secret-level KEK metadata. One example of using secret-level KEK
metadata would be plugins that want to use a unique KEK for every secret that is encrypted. Such
a plugin could use kek_metadata_extended to store the Key ID for the KEK used to encrypt
this particular secret.

Parameters

• cypher_text Byte data resulting from the encryption of the secret data.

• kek_meta_extended Optional String object to be persisted alongside the
cyphertext.

Plugin Base Class

Barbican cryptographic plugins should implement the abstract base class CryptoPluginBase. Concrete
implementations of this class should be exposed to barbican using stevedore mechanisms explained in
the configuration portion of this guide.

class barbican.plugin.crypto.base.CryptoPluginBase

Base class for all Crypto plugins.

Barbican requests operations by invoking the methods on an instance of the implementing class.
Barbicans plugin manager handles the life-cycle of the Data Transfer Objects (DTOs) that are
passed into these methods, and persist the data that is assigned to these DTOs by the plugin.

154 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

abstract bind_kek_metadata(kek_meta_dto)
Key Encryption Key Metadata binding function

Bind a key encryption key (KEK) metadata to the sub-system handling encryp-
tion/decryption, updating information about the key encryption key (KEK) metadata in the
supplied kek_metadata data-transfer-object instance, and then returning this instance.

This method is invoked prior to the encrypt() method above. Implementors should fill out
the supplied kek_meta_dto instance (an instance of KEKMetadata above) as needed to com-
pletely describe the kek metadata and to complete the binding process. Barbican will persist
the contents of this instance once this method returns.

Parameters
kek_meta_dto Key encryption key metadata to bind, with the kek_label at-
tribute guaranteed to be unique, and the and plugin_name attribute already con-
figured.

Returns
kek_meta_dto: Returns the specified DTO, after modifications.

abstract decrypt(decrypt_dto, kek_meta_dto, kek_meta_extended, project_id)
Decrypt encrypted_datum in the context of the provided project.

Parameters

• decrypt_dto data transfer object containing the cyphertext to be decrypted.

• kek_meta_dto Key encryption key metadata to use for decryption

• kek_meta_extended Optional per-secret KEK metadata to use for decryp-
tion.

• project_id Project ID associated with the encrypted datum.

Returns
str unencrypted byte data

abstract encrypt(encrypt_dto, kek_meta_dto, project_id)
Encryption handler function

This method will be called by Barbican when requesting an encryption operation on a secret
on behalf of a project.

Parameters

• encrypt_dto (EncryptDTO) EncryptDTO instance containing the raw se-
cret byte data to be encrypted.

• kek_meta_dto (KEKMetaDTO) KEKMetaDTO instance containing informa-
tion about the projects Key Encryption Key (KEK) to be used for encryption.
Plugins may assume that binding via bind_kek_metadata() has already
taken place before this instance is passed in.

• project_id Project ID associated with the unencrypted data.

Returns
A response DTO containing the cyphertext and KEK information.

Return type
ResponseDTO

2.5. Barbican for Developers 155

Barbican Documentation, Release 18.0.1.dev3

abstract generate_asymmetric(generate_dto, kek_meta_dto, project_id)
Create a new asymmetric key.

Parameters

• generate_dto data transfer object for the record associated with this gen-
eration request. Some relevant parameters can be extracted from this object,
including bit_length, algorithm and passphrase

• kek_meta_dto Key encryption key metadata to use for decryption

• project_id Project ID associated with the data.

Returns
A tuple containing objects for private_key, public_key and optionally one for
passphrase. The objects will be of type ResponseDTO. Each object containing
encrypted data and kek_meta_extended, the former the resultant cypher text,
the latter being optional per-secret metadata needed to decrypt (over and above
the per-project metadata managed outside of the plugins)

abstract generate_symmetric(generate_dto, kek_meta_dto, project_id)
Generate a new key.

Parameters

• generate_dto data transfer object for the record associated with this gen-
eration request. Some relevant parameters can be extracted from this object,
including bit_length, algorithm and mode

• kek_meta_dto Key encryption key metadata to use for decryption

• project_id Project ID associated with the data.

Returns
An object of type ResponseDTO containing encrypted data and
kek_meta_extended, the former the resultant cypher text, the latter being
optional per-secret metadata needed to decrypt (over and above the per-project
metadata managed outside of the plugins)

abstract get_plugin_name()

Gets user friendly plugin name.

This plugin name is expected to be read from config file. There will be a default defined for
plugin name which can be customized in specific deployment if needed.

This name needs to be unique across a deployment.

abstract supports(type_enum, algorithm=None, bit_length=None, mode=None)
Used to determine if the plugin supports the requested operation.

Parameters

• type_enum Enumeration from PluginSupportsType class

• algorithm String algorithm name if needed

156 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Barbican Core Plugin Sequence

Barbican invokes a different sequence of methods on the CryptoPluginBase plugin depending
on the requested action. Note that these actions are invoked via the secret store adapter class
StoreCryptoAdapterPlugin which is further described in The Cryptographic Plugin Adapter.

For secret storage actions, Barbican core calls the following methods:

1. supports() - Asks the plugin if it can support the barbican.plugin.crypto.base.
PluginSupportTypes.ENCRYPT_DECRYPT operation type.

2. bind_kek_metadata() - Allows a plugin to bind an internal key encryption key (KEK) to a
project-ID, typically as a label or reference to the actual KEK stored within the cryptographic
appliance. This KEK information is stored into Barbicans data store on behalf of the plugin, and
then provided back to the plugin for subsequent calls.

3. encrypt() - Asks the plugin to perform encryption of an unencrypted secret payload, utilizing the
KEK bound to the project-ID above. Barbican core will then persist the encrypted data returned
from this method for later retrieval. The name of the plugin used to perform this encryption is also
persisted into Barbican core, to ensure we decrypt this secret only with this plugin.

For secret decryptions and retrievals, Barbican core will select the same plugin as was used to store
the secret, and then invoke its decrypt() method, providing it both the previously-persisted encrypted
secret data as well as the project-ID KEK used to encrypt the secret.

For symmetric key generation, Barbican core calls the following methods:

1. supports() - Asks the plugin if it can support the barbican.plugin.crypto.base.
PluginSupportTypes.SYMMETRIC_KEY_GENERATION operation type.

2. bind_kek_metadata() - Same comments as for secret storage above.

3. generate_symmetric() - Asks the plugin to both generate a symmetric key, and then encrypted it
with the project-ID KEK. Barbican core persists this newly generated and encrypted secret similar
to secret storage above.

For asymmetric key generation, Barbican core calls the following methods:

1. supports() - Asks the plugin if it can support the barbican.plugin.crypto.base.
PluginSupportTypes.ASYMMETRIC_KEY_GENERATION operation type.

2. bind_kek_metadata() - Same comments as for secret storage above.

3. generate_asymmetric() - Asks the plugin to generate and encrypt asymmetric public and pri-
vate key (and optional passphrase) information, which Barbican core will persist as a container of
separate encrypted secrets.

2.5.12 Writing and Running Barbican Tests

As a part of every code review that is submitted to the Barbican project there are a number of gating
jobs which aid in the prevention of regression issues within Barbican. As a result, a Barbican developer
should be familiar with running Barbican tests locally.

For your convenience we provide the ability to run all tests through the tox utility. If you are unfamiliar
with tox please see refer to the tox documentation for assistance.

2.5. Barbican for Developers 157

https://tox.readthedocs.org/en/latest/

Barbican Documentation, Release 18.0.1.dev3

Unit Tests

Currently, we provide tox environments for Python 2.7 and 3.5. By default all available test environments
within the tox configuration will execute when calling tox. If you want to run them independently, you
can do so with the following command:

Executes tests on Python 2.7
tox -e py27

Note: If you do not have the appropriate Python versions available, consider setting up PyEnv to in-
stall multiple versions of Python. See the documentation regarding Setting up a Barbican Development
Environment for more information.

Note: Individual unit tests can also be run, using the following commands:

runs a single test with the function named
test_can_create_new_secret_one_step
tox -e py27 -- test_can_create_new_secret_one_step

runs only tests in the WhenTestingSecretsResource class and
the WhenTestingCAsResource class
tox -e py27 -- '(WhenTestingSecretsResource|WhenTestingCAsResource)'

The function name or class specified must be one located in the barbican/tests directory.

Groups of tests can also be run with a regex match after the --. For more information on what can be
done with testr, please see: http://testrepository.readthedocs.org/en/latest/MANUAL.html

You can also setup breakpoints in the unit tests. This can be done by adding import pdb; pdb.
set_trace() to the line of the unit test you want to examine, then running the following command:

Executes tests on Python 2.7
tox -e debug

Note: For a list of pdb commands, please see: https://docs.python.org/2/library/pdb.html

Python 3.5

In order to run the unit tests within the Python 3.5 unit testing environment you need to make sure you
have all necessary packages installed.

• On Ubuntu/Debian:

sudo apt-get install python3-dev

• On Fedora 21/RHEL7/CensOS7:

sudo yum install python3-devel

• On Fedora 22 and higher:

158 Chapter 2. API Guide

http://testrepository.readthedocs.org/en/latest/MANUAL.html
https://docs.python.org/2/library/pdb.html

Barbican Documentation, Release 18.0.1.dev3

sudo dnf install python3-devel

You then specify to run the unit tests within the Python 3.5 environment when invoking tox

Executes tests on Python 3.5
tox -e py35

Functional Tests

Unlike running unit tests, the functional tests require Barbican and Keystone services to be running in
order to execute. For more information on setting up a Barbican development environment and using
Keystone with Barbican, see our accompanying project documentation.

Once you have the appropriate services running and configured you can execute the functional tests
through tox.

Execute Barbican Functional Tests
tox -e functional

By default, the functional tox job will use testr to execute the functional tests as used in the gating job.

Note: In order to run an individual functional test function, you must use the following command:

runs a single test with the function named
test_secret_create_then_check_content_types
tox -e functional -- test_secret_create_then_check_content_types

runs only tests in the SecretsTestCase class and
the OrdersTestCase class
tox -e functional -- '(SecretsTestCase|OrdersTestCase)'

The function name or class specified must be one located in the functionaltests directory.

Groups of tests can also be run with a regex match after the --. For more information on what can be
done with testr, please see: http://testrepository.readthedocs.org/en/latest/MANUAL.html

Remote Debugging

In order to be able to hit break-points on API calls, you must use remote debugging. This can be done by
adding import rpdb; rpdb.set_trace() to the line of the API call you wish to test. For example,
adding the breakpoint in def on_post in barbican.api.controllers.secrets.py will allow you
to hit the breakpoint when a POST is done on the secrets URL.

Note: After performing the POST the application will freeze. In order to use rpdb, you must open up
another terminal and run the following:

enter rpdb using telnet
telnet localhost 4444

2.5. Barbican for Developers 159

http://testrepository.readthedocs.org/en/latest/MANUAL.html

Barbican Documentation, Release 18.0.1.dev3

Once in rpdb, you can use the same commands as pdb, as seen here: https://docs.python.org/2/library/
pdb.html

2.6 Barbican API Documentation

2.6.1 User Guide

The OpenStack Key Manager API version 1.0 supports microversions. See
doc/source/api/microversions.rst for details.

API guide docs are built to: https://docs.openstack.org/api-guide/key-manager/

2.6.2 API Reference

Secrets API - Reference

GET /v1/secrets

Lists a projects secrets.

The list of secrets can be filtered by the parameters passed in via the URL.

The actual secret payload data will not be listed here. Clients must instead make a separate call to retrieve
the secret payload data for each individual secret.

Parameters

Name Type Description
offset inte-

ger
The starting index within the total list of the secrets that you would like to retrieve.

limit inte-
ger

The maximum number of records to return (up to 100). The default limit is 10.

name string Selects all secrets with name similar to this value.
alg string Selects all secrets with algorithm similar to this value.
mode string Selects all secrets with mode similar to this value.
bits inte-

ger
Selects all secrets with bit_length equal to this value.

se-
cret_type

string Selects all secrets with secret_type equal to this value.

acl_only boolean Selects all secrets with an ACL that contains the user. Project scope is ignored.
created string Date filter to select all secrets with created matching the specified criteria. See

Date Filters below for more detail.
updated string Date filter to select all secrets with updated matching the specified criteria. See

Date Filters below for more detail.
expira-
tion

string Date filter to select all secrets with expiration matching the specified criteria. See
Date Filters below for more detail.

sort string Determines the sorted order of the returned list. See Sorting below for more detail.

160 Chapter 2. API Guide

https://docs.python.org/2/library/pdb.html
https://docs.python.org/2/library/pdb.html
https://docs.openstack.org/api-guide/key-manager/

Barbican Documentation, Release 18.0.1.dev3

Date Filters:

The values for the created, updated, and expiration parameters are comma-separated lists of time
stamps in ISO 8601 format. The time stamps can be prefixed with any of these comparison operators:
gt: (greater-than), gte: (greater-than-or-equal), lt: (less-than), lte: (less-than-or-equal).

For example, to get a list of secrets that will expire in January of 2020:

GET /v1/secrets?expiration=gte:2020-01-01T00:00:00,lt:2020-02-01T00:00:00

Sorting:

The value of the sort parameter is a comma-separated list of sort keys. Supported sort keys include
created, expiration, mode, name, secret_type, status, and updated.

Each sort key may also include a direction. Supported directions are :asc for ascending and :desc for
descending. The service will use :asc for every key that does not include a direction.

For example, to sort the list from most recently created to oldest:

GET /v1/secrets?sort=created:desc

Request:

GET /v1/secrets?offset=1&limit=2&sort=created
Headers:

Accept: application/json
X-Auth-Token: {keystone_token}
(or X-Project-Id: {project id})

Response:

{
"next": "http://{barbican_host}:9311/v1/secrets?limit=2&offset=3",
"previous": "http://{barbican_host}:9311/v1/secrets?limit=2&offset=0",
"secrets": [

{
"algorithm": null,
"bit_length": null,
"content_types": {

"default": "application/octet-stream"
},
"created": "2015-04-07T03:37:19.805835",
"creator_id": "3a7e3d2421384f56a8fb6cf082a8efab",
"expiration": null,
"mode": null,
"name": "opaque octet-stream base64",

(continues on next page)

2.6. Barbican API Documentation 161

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

"secret_ref": "http://{barbican_host}:9311/v1/secrets/{uuid}",
"secret_type": "opaque",
"status": "ACTIVE",
"updated": "2015-04-07T03:37:19.808337"

},
{

"algorithm": null,
"bit_length": null,
"content_types": {

"default": "application/octet-stream"
},
"created": "2015-04-07T03:41:02.184159",
"creator_id": "3a7e3d2421384f56a8fb6cf082a8efab",
"expiration": null,
"mode": null,
"name": "opaque random octet-stream base64",
"secret_ref": "http://{barbican_host}:9311/v1/secrets/{uuid}",
"secret_type": "opaque",
"status": "ACTIVE",
"updated": "2015-04-07T03:41:02.187823"

}
],
"total": 5

}

Response Attributes

NameType Description
se-
crets

list Contains a list of secrets. The attributes in the secret objects are the same as for an
individual secret.

to-
tal

in-
te-
ger

The total number of secrets available to the user.

next string A HATEOAS URL to retrieve the next set of secrets based on the offset and limit pa-
rameters. This attribute is only available when the total number of secrets is greater than
offset and limit parameter combined.

pre-
vi-
ous

string A HATEOAS URL to retrieve the previous set of secrets based on the offset and limit
parameters. This attribute is only available when the request offset is greater than 0.

162 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

HTTP Status Codes

Code Description
200 Successful Request
401 Invalid X-Auth-Token or the token doesnt have permissions to this resource

POST /v1/secrets

Creates a Secret entity. If the payload attribute is not included in the request, then only the metadata for
the secret is created, and a subsequent PUT request is required.

Attributes

Attribute
Name

Type Description De-
fault

name string (optional) The name of the secret set by the user. None
expiration string (optional) This is a UTC timestamp in ISO 8601 format

YYYY-MM-DDTHH:MM:SSZ. If set, the secret will not be available
after this time.

None

algorithm string (optional) Metadata provided by a user or system for informational pur-
poses.

None

bit_length in-
te-
ger

(optional) Metadata provided by a user or system for informational pur-
poses. Value must be greater than zero.

None

mode string (optional) Metadata provided by a user or system for informational pur-
poses.

None

payload string (optional) The secrets data to be stored. payload_content_type must
also be supplied if payload is included.

None

pay-
load_content_type

string (optional) (required if payload is included) The media type for the content
of the payload. For more information see Secret Types

None

pay-
load_content_encoding

string (optional) (required if payload is encoded) The encoding used for the pay-
load to be able to include it in the JSON request. Currently only base64
is supported.

None

secret_type string (optional) Used to indicate the type of secret being stored. For more in-
formation see Secret Types

opaque

2.6. Barbican API Documentation 163

Barbican Documentation, Release 18.0.1.dev3

Request:

POST /v1/secrets
Headers:

Content-Type: application/json
X-Auth-Token: <token>

Content:
{

"name": "AES key",
"expiration": "2015-12-28T19:14:44.180394",
"algorithm": "aes",
"bit_length": 256,
"mode": "cbc",
"payload": "YmVlcg==",
"payload_content_type": "application/octet-stream",
"payload_content_encoding": "base64"

}

Response:

201 Created

{
"secret_ref": "https://{barbican_host}/v1/secrets/{secret_uuid}"

}

HTTP Status Codes

Code Description
201 Successfully created a Secret
400 Bad Request
401 Invalid X-Auth-Token or the token doesnt have permissions to this resource
403 Forbidden. The user has been authenticated, but is not authorized to create a secret. This can

be based on the users role or the projects quota.
415 Unsupported media-type

164 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

GET /v1/secrets/{uuid}

Retrieves a secrets metadata.

Request:

GET /v1/secrets/{uuid}
Headers:

Accept: application/json
X-Auth-Token: {token}
(or X-Project-Id: {project_id})

Response:

200 OK

{
"status": "ACTIVE",
"created": "2015-03-23T20:46:51.650515",
"updated": "2015-03-23T20:46:51.654116",
"expiration": "2015-12-28T19:14:44.180394",
"algorithm": "aes",
"bit_length": 256,
"mode": "cbc",
"name": "AES key",
"secret_ref": "https://{barbican_host}/v1/secrets/{secret_uuid}",
"secret_type": "opaque",
"content_types": {

"default": "application/octet-stream"
}

}

Payload Request:

Warning: DEPRECATION WARNING: Previous releases of the API allowed the payload to be
retrieved from this same endpoint by changing the Accept header to be one of the values listed in
the content_types attribute of the Secret metadata. This was found to be problematic in some
situations, so new applications should make use of the /v1/secrets/{uuid}/payload endpoint instead.

GET /v1/secrets/{uuid}
Headers:

Accept: application/octet-stream
X-Auth-Token: <token>

2.6. Barbican API Documentation 165

Barbican Documentation, Release 18.0.1.dev3

Payload Response:

200 OK

beer

HTTP Status Codes

Code Description
200 Successful request
401 Invalid X-Auth-Token or the token doesnt have permissions to this resource
404 Not Found
406 Not Acceptable

PUT /v1/secrets/{uuid}

Add the payload to an existing metadata-only secret, such as one made by sending a POST /v1/secrets
request that does not include the payload attribute.

Note: This action can only be done for a secret that doesnt have a payload.

Headers

Name Description De-
fault

Content-
Type

Corresponds with the payload_content_type attribute of a normal secret cre-
ation request.

text/plain

Content-
Encoding

(optional) Corresponds with the payload_content_encoding attribute of a
normal secret creation request.

None

Request:

PUT /v1/secrets/{uuid}
Headers:

X-Auth-Token: <token>
Content-Type: application/octet-stream
Content-Encoding: base64

Content:
YmxhaA==

166 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Response:

204 No Content

HTTP Status Codes

Code Description
204 Successful request
401 Invalid X-Auth-Token or the token doesnt have permissions to this resource
404 Not Found

DELETE /v1/secrets/{uuid}

Delete a secret by uuid

Request:

DELETE /v1/secrets/{uuid}
Headers:

X-Auth-Token: <token>

Response:

204 No Content

HTTP Status Codes

Code Description
204 Successful request
401 Invalid X-Auth-Token or the token doesnt have permissions to this resource
404 Not Found

2.6. Barbican API Documentation 167

Barbican Documentation, Release 18.0.1.dev3

GET /v1/secrets/{uuid}/payload

Retrieve a secrets payload

Accept Header Options:

When making a request for a secrets payload, you must set the accept header to one of the values listed
in the content_types attribute of a secrets metadata.

Request:

GET /v1/secrets/{uuid}/payload
Headers:

Accept: text/plain
X-Auth-Token: <token>

Response:

200 OK

beer

HTTP Status Codes

Code Description
200 Successful request
401 Invalid X-Auth-Token or the token doesnt have permissions to this resource
404 Not Found
406 Not Acceptable

Secret Types - Reference

Every secret in Barbican has a type. Secret types are used to describe different kinds of secret data that are
stored in Barbican. The type for a particular secret is listed in the secrets metadata as the secret_type
attribute.

The possible secret types are:

• symmetric - Used for storing byte arrays such as keys suitable for symmetric encryption.

• public - Used for storing the public key of an asymmetric keypair.

• private - Used for storing the private key of an asymmetric keypair.

• passphrase - Used for storing plain text passphrases.

168 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

• certificate - Used for storing cryptographic certificates such as X.509 certificates.

• opaque - Used for backwards compatibility with previous versions of the API without typed se-
crets. New applications are encouraged to specify one of the other secret types.

Symmetric

The symmetric secret type is used to store byte arrays of sensitive data, such as keys that are used for
symmetric encryption. The content-type used with symmetric secrets is application/octet-stream.
When storing a symmetric secret with a single POST request, the data must be encoded so that it may be
included inside the JSON body of the request. In this case, the content encoding of base64 can be used.

Example 1.1

Create an encryption key for use in AES-256-CBC encryption and store it in Barbican. First, well see
how this can be done in a single POST request from the command line using curl.

Create an encryption_key file with 256 bits of random data
dd bs=32 count=1 if=/dev/urandom of=encryption_key

Encode the contents of the encryption key using base64 encoding
KEY_BASE64=$(base64 < encryption_key)

Send a request to store the key in Barbican
curl -vv -H "X-Auth-Token: $TOKEN" -H 'Accept: application/json' \
-H 'Content-Type: application/json' \
-d '{"name": "AES encryption key",

"secret_type": "symmetric",
"payload": "'"$KEY_BASE64"'",
"payload_content_type": "application/octet-stream",
"payload_content_encoding": "base64",
"algorithm": "AES",
"bit_length": 256,
"mode": "CBC"}' \

http://localhost:9311/v1/secrets | python -m json.tool

This should return a reference (URI) for the secret that was created:

{
"secret_ref": "http://localhost:9311/v1/secrets/48d24158-b4b4-45b8-9669-

↪→d9f0ef793c23"
}

We can use this reference to retrieve the secret metadata:

curl -vv -H "X-Auth-Token: $TOKEN" -H 'Accept: application/json' \
http://localhost:9311/v1/secrets/48d24158-b4b4-45b8-9669-d9f0ef793c23 |
python -m json.tool

The metadata will list the available content-types for the symmetric secret:

2.6. Barbican API Documentation 169

Barbican Documentation, Release 18.0.1.dev3

{
"algorithm": "AES",
"bit_length": 256,
"content_types": {

"default": "application/octet-stream"
},
"created": "2015-04-08T06:24:16.600393",
"creator_id": "3a7e3d2421384f56a8fb6cf082a8efab",
"expiration": null,
"mode": "CBC",
"name": "AES encryption key",
"secret_ref": "http://localhost:9311/v1/secrets/48d24158-b4b4-45b8-9669-

↪→d9f0ef793c23",
"secret_type": "symmetric",
"status": "ACTIVE",
"updated": "2015-04-08T06:24:16.614204"

}

The content_types attribute describes the content-types that can be used to retrieve the payload. In
this example, there is only the default content type of application/octet-stream. We can use it to
retrieve the payload:

Retrieve the payload and save it to a file
curl -vv -H "X-Auth-Token: $TOKEN" \
-H 'Accept: application/octet-stream' \
-o retrieved_key \
http://localhost:9311/v1/secrets/48d24158-b4b4-45b8-9669-d9f0ef793c23/payload

The retrieved_key file now contains the byte array we started with. Note that barbican returned the
byte array in binary format, not base64. This is because the payload_content_encoding is only used
when submitting the secret to barbican.

Public

The public secret type is used to store the public key of an asymmetric keypair. For example, a public
secret can be used to store the public key of an RSA keypair. Currently, there is only one file format
accepted for public secrets: A DER-encoded SubjectPublicKeyInfo structure as defined by X.509
RFC 5280 that has been Base64 encoded with a PEM header and footer. This is the type of public key that
is generated by the openssl tool by default. The content-type used with public secrets is application/
octet-stream. When storing a public secret with a single POST request, the contents of the file must
be encoded since JSON does not accept newline characters. In this case, the contents of the file must be
Base64 encoded and the content encoding of base64 can be used.

170 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Example 2.1

Create an RSA keypair and store the public key in Barbican. For this example, we will be using a
metadata-only POST followed by a PUT.

Create the RSA keypair
openssl genrsa -out private.pem 2048

Extract the public key
openssl rsa -in private.pem -out public.pem -pubout

Submit a metadata-only POST
curl -vv -H "X-Auth-Token: $TOKEN" \
-H 'Accept: application/json' \
-H 'Content-Type: application/json' \
-d '{"name": "RSA Public Key",

"secret_type": "public",
"algorithm": "RSA"}' \

http://localhost:9311/v1/secrets | python -m json.tool

This should return a reference (URI) for the secret that was created:

200 OK

{
"secret_ref": "http://localhost:9311/v1/secrets/cd20d134-c229-417a-a753-

↪→86432ad13bad"
}

We can use this reference to add the payload with a PUT request:

curl -vv -X PUT -H "X-Auth-Token: $TOKEN" \
-H 'Accept: application/json' \
-H 'Content-Type: application/octet-stream' \
--data-binary @public.pem \
http://localhost:9311/v1/secrets/cd20d134-c229-417a-a753-86432ad13bad

The server should respond with a 2xx response to indicate that the PUT request was processed success-
fully:

204 - No Content

Now we should be able to request the metadata and see the new content-type listed there:

curl -vv -H "X-Auth-Token: $TOKEN" \
-H 'Accept: application/json' \
http://localhost:9311/v1/secrets/cd20d134-c229-417a-a753-86432ad13bad |
python -m json.tool

{
"algorithm": "RSA",

(continues on next page)

2.6. Barbican API Documentation 171

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

"bit_length": null,
"content_types": {

"default": "application/octet-stream"
},
"created": "2015-04-08T21:45:59.239976",
"creator_id": "3a7e3d2421384f56a8fb6cf082a8efab",
"expiration": null,
"mode": null,
"name": "RSA Public Key",
"secret_ref": "http://localhost:9311/v1/secrets/cd20d134-c229-417a-a753-

↪→86432ad13bad",
"secret_type": "public",
"status": "ACTIVE",
"updated": "2015-04-08T21:52:57.523969"

}

Finally, we can use the default content-type listed in content_types to retrieve the public key:

curl -vv -H "X-Auth-Token: $TOKEN" \
-H 'Accept: application/octet-stream' \
-o retrieved_public.pem \
http://localhost:9311/v1/secrets/cd20d134-c229-417a-a753-86432ad13bad/payload

The retrieved_public.pem file now has the same contents as the public.pem file we started with.

Example 2.2

Create an RSA keypair and store the public key in Barbican. For this example we will be using a single
POST request.

Create the RSA keypair
openssl genrsa -out private.pem 2048

Extract the public key
openssl rsa -in private.pem -out public.pem -pubout

Base64 encode the contents of the public key
PUB_BASE64=$(base64 < public.pem)

curl -vv -H "X-Auth-Token: $TOKEN" \
-H 'Accept: application/json' \
-H 'Content-Type: application/json' \
-d '{"name": "RSA Public Key",

"secret_type": "public",
"payload": "'"$PUB_BASE64"'",
"payload_content_type": "application/octet-stream",
"payload_content_encoding": "base64",
"algorithm": "RSA"}' \

http://localhost:9311/v1/secrets | python -m json.tool

172 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

This should return a reference (URI) for the secret that was created.

200 OK

{
"secret_ref": "http://localhost:9311/v1/secrets/d553f0ac-c79d-43b4-b165-

↪→32594b612ad4"
}

Secret consumers API - Reference

GET {secret_ref}/consumers

Lists a secrets consumers.

The list of consumers can be filtered by the parameters passed in via the URL.

Parameters

Name Type Description
offset inte-

ger
The starting index within the total list of the consumers that you would like to re-
trieve.

limit inte-
ger

The maximum number of records to return (up to 100). The default limit is 10.

Request:

GET {secret_ref}/consumers
Headers:

X-Auth-Token: <token>

Response:

200 OK

{
"total": 3,
"consumers": [

{
"created": "2015-10-15T21:06:33.123872",
"updated": "2015-10-15T21:06:33.123878",
"status": "ACTIVE",
"service": "image",
"resource_type": "image",

(continues on next page)

2.6. Barbican API Documentation 173

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

"resource_id": "123e4567-e89b-12d3-a456-426614174001"
},
{

"created": "2015-10-15T21:17:08.092408",
"updated": "2015-10-15T21:17:08.092416",
"status": "ACTIVE",
"service": "volume",
"resource_type": "volume",
"resource_id": "123e4567-e89b-12d3-a456-426614174002"

},
{

"created": "2015-10-15T21:21:29.970365",
"updated": "2015-10-15T21:21:29.970370",
"status": "ACTIVE",
"service": "load-balancer",
"resource_type": "listener",
"resource_id": "123e4567-e89b-12d3-a456-426614174003"

}
]

}

Request:

GET {secret_ref}/consumers?limit=1&offset=1
Headers:

X-Auth-Token: <token>

{
"total": 3,
"next": "http://localhost:9311/v1/secrets/{secret_ref}/consumers?limit=1&

↪→offset=2",
"consumers": [

{
"created": "2015-10-15T21:17:08.092408",
"updated": "2015-10-15T21:17:08.092416",
"status": "ACTIVE",
"service": "volume",
"resource_type": "volume",
"resource_id": "123e4567-e89b-12d3-a456-426614174002"

}
],
"previous": "http://localhost:9311/v1/secrets/{secret_ref}/consumers?

↪→limit=1&offset=0"
}

174 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Response Attributes

Name Type Description
con-
sumers

list Contains a list of dictionaries filled with consumer metadata.

to-
tal

in-
te-
ger

The total number of consumers available to the user.

next string A HATEOAS URL to retrieve the next set of consumers based on the offset and limit
parameters. This attribute is only available when the total number of consumers is greater
than offset and limit parameter combined.

pre-
vi-
ous

string A HATEOAS URL to retrieve the previous set of consumers based on the offset and limit
parameters. This attribute is only available when the request offset is greater than 0.

HTTP Status Codes

Code Description
200 OK.
401 Invalid X-Auth-Token or the token doesnt have permissions to this resource.
403 Forbidden. The user has been authenticated, but is not authorized to list consumers. This can

be based on the users role.

POST {secret_ref}/consumers

Creates a consumer

2.6. Barbican API Documentation 175

Barbican Documentation, Release 18.0.1.dev3

Attributes

Attribute Name Type Description Default
service string Consumers OpenStack

service type. Each
service should prefer-
ably use its reserved
name, as shown in:
https://service-types.
openstack.org/
service-types.json

None

resource_type string
Name of the resource
type using the secret

e.g. images or
lbaas/loadbalancers

None

resource_id string Unique identifier for
the resource using this
secret.

None

Request:

POST {secret_ref}/consumers
Headers:

X-Auth-Token: <token>
Content-Type: application/json

Content:
{

"service": "image",
"resource_type": "image",
"resource_id": "123e4567-e89b-12d3-a456-426614174000"

}

Response:

200 OK

{
"status": "ACTIVE",
"updated": "2015-10-15T17:56:18.626724",
"name": "secret name",
"consumers": [

{
"service": "image",

(continues on next page)

176 Chapter 2. API Guide

https://service-types.openstack.org/service-types.json
https://service-types.openstack.org/service-types.json
https://service-types.openstack.org/service-types.json

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

"resource_type": "image",
"resource_id": "123e4567-e89b-12d3-a456-426614174000"

}
],
"created": "2015-10-15T17:55:44.380002",
"secret_ref": "http://localhost:9311/v1/secrets/74bbd3fd-9ba8-42ee-b87e-

↪→2eecf10e47b9",
"creator_id": "b17c815d80f946ea8505c34347a2aeba",
"secret_type": "opaque",
"expiration": null,
"algorithm": "aes",
"bit_length": 256,
"mode": "cbc"

}

HTTP Status Codes

Code Description
200 OK.
400 Bad Request.
401 Invalid X-Auth-Token or the token doesnt have permissions to this resource.
403 Forbidden. The user has been authenticated, but is not authorized to create a consumer. This

can be based on the users role or the projects quota.

DELETE {secret_ref}/consumers

Delete a consumer.

2.6. Barbican API Documentation 177

Barbican Documentation, Release 18.0.1.dev3

Attributes

Attribute Name Type Description Default
service string Consumers Open-

Stack service
type as shown in
https://service-types.
openstack.org/
service-types.json

None

resource_type string
Name of the resource
type using the secret

e.g. images or
lbaas/loadbalancers

None

resource_id string Unique identifier for
the resource using this
secret.

None

Request:

DELETE {secret_ref}/consumers
Headers:

X-Auth-Token: <token>
Content-Type: application/json

Content:
{

"service": "image",
"resource_type": "image",
"resource_id": "123e4567-e89b-12d3-a456-426614174000"

}

Response:

200 OK

{
"status": "ACTIVE",
"updated": "2015-10-15T17:56:18.626724",
"name": "secret name",
"consumers": [],
"created": "2015-10-15T17:55:44.380002",
"secret_ref": "http://localhost:9311/v1/secrets/74bbd3fd-9ba8-42ee-b87e-

↪→2eecf10e47b9",
"creator_id": "b17c815d80f946ea8505c34347a2aeba",

(continues on next page)

178 Chapter 2. API Guide

https://service-types.openstack.org/service-types.json
https://service-types.openstack.org/service-types.json
https://service-types.openstack.org/service-types.json

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

"secret_type": "opaque",
"expiration": null,
"algorithm": "aes",
"bit_length": 256,
"mode": "cbc"

}

HTTP Status Codes

Code Description
200 OK.
400 Bad Request.
401 Invalid X-Auth-Token or the token doesnt have permissions to this resource.
403 Forbidden. The user has been authenticated, but is not authorized to delete a consumer. This

can be based on the users role.
404 Consumer Not Found.

Secret Metadata API - Reference

GET /v1/secrets/{uuid}/metadata

Lists a secrets user-defined metadata.

If a secret does not contain any user metadata, an empty list will be returned.

Request:

GET /v1/secrets/{uuid}/metadata
Headers:

Accept: application/json
X-Auth-Token: <token>

Response:

{
'metadata': {
'description': 'contains the AES key',
'geolocation': '12.3456, -98.7654'
}

}

2.6. Barbican API Documentation 179

Barbican Documentation, Release 18.0.1.dev3

Response Attributes

Name Type Description
meta-
data

list Contains a list of the secret metadatas key/value pairs. The provided keys must be
lowercase. If not they will be converted to lowercase.

HTTP Status Codes

Code Description
200 Successful Request
401 Invalid X-Auth-Token or the token doesnt have permissions to access this resource.
403 Forbidden. The user has been authenticated, but is not authorized to retrieve secret metadata.

This can be based on the users role.
404 Not Found

PUT /v1/secrets/{uuid}/metadata

Sets the metadata for a secret. Any metadata that was previously set will be deleted and replaced with
this metadata.

Parameters

Name Type Description
meta-
data

list Contains a list of the secret metadatas key/value pairs. The provided keys must be
lowercase. If not they will be converted to lowercase.

Request:

PUT /v1/secrets/{uuid}/metadata
Headers:

Content-Type: application/json
X-Auth-Token: <token>

Content:
{
'metadata': {

'description': 'contains the AES key',
'geolocation': '12.3456, -98.7654'

}
}

180 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Response:

201 OK
{

"metadata_ref": "https://{barbican_host}/v1/secrets/{secret_uuid}/metadata
↪→"
}

HTTP Status Codes

Code Description
201 Successfully created/updated Secret Metadata
400 Bad Request
401 Invalid X-Auth-Token or the token doesnt have permissions to access this resource.
403 Forbidden. The user has been authenticated, but is not authorized to create secret metadata.

This can be based on the users role.

GET /v1/secrets/{uuid}/metadata/{key}

Retrieves a secrets user-added metadata.

Request:

GET /v1/secrets/{uuid}/metadata/{key}
Headers:

Accept: application/json
X-Auth-Token: <token>

Response:

200 OK
{

"key": "access-limit",
"value": "0"

}

2.6. Barbican API Documentation 181

Barbican Documentation, Release 18.0.1.dev3

HTTP Status Codes

Code Description
200 Successful request
401 Invalid X-Auth-Token or the token doesnt have permissions to access this resource
403 Forbidden. The user has been authenticated, but is not authorized to retrieve secret metadata.

This can be based on the users role.
404 Not Found

POST /v1/secrets/{uuid}/metadata/

Adds a new key/value pair to the secrets user metadata. The key sent in the request must not already
exist in the metadata. The key must also be in lowercase, otherwise it will automatically be changed to
lowercase.

Request:

POST /v1/secrets/{uuid}/metadata/
Headers:

X-Auth-Token: <token>
Content-Type: application/json

Content:
{
"key": "access-limit",
"value": "11"

}

Response:

201 Created
Secret Metadata Location: http://example.com:9311/v1/secrets/{uuid}/metadata/
↪→access-limit
{
"key": "access-limit",
"value": "11"

}

182 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

HTTP Status Codes

Code Description
201 Successful request
400 Bad Request
401 Invalid X-Auth-Token or the token doesnt have permissions to access this resource.
403 Forbidden. The user has been authenticated, but is not authorized to create secret metadata.

This can be based on the users role.
409 Conflict. The provided metadata key already exists.

PUT /v1/secrets/{uuid}/metadata/{key}

Updates an existing key/value pair in the secrets user metadata. The key sent in the request must already
exist in the metadata. The key must also be in lowercase, otherwise it will automatically be changed to
lowercase.

Request:

PUT /v1/secrets/{uuid}/metadata/{key}
Headers:

X-Auth-Token: <token>
Content-Type: application/json

Content:
{
"key": "access-limit",
"value": "11"

}

Response:

200 OK

{
"key": "access-limit",
"value": "11"

}

2.6. Barbican API Documentation 183

Barbican Documentation, Release 18.0.1.dev3

HTTP Status Codes

Code Description
200 Successful request
400 Bad Request
401 Invalid X-Auth-Token or the token doesnt have permissions to access this resource.
403 Forbidden. The user has been authenticated, but is not authorized to update secret metadata.

This can be based on the users role.
404 Not Found

DELETE /v1/secrets/{uuid}/metadata/{key}

Delete secret metadata by key.

Request:

DELETE /v1/secrets/{uuid}/metadata/{key}
Headers:

X-Auth-Token: <token>

Response:

204 No Content

HTTP Status Codes

Code Description
204 Successful request
401 Invalid X-Auth-Token or the token doesnt have permissions to access this resource.
403 Forbidden. The user has been authenticated, but is not authorized to delete secret metadata.

This can be based on the users role.
404 Not Found

184 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Secret Stores API - Reference

Barbican provides API to manage secret stores available in a deployment. APIs are provided for listing
available secret stores and to manage project level secret store mapping. There are two types of secret
stores. One is global default secret store which is used for all projects. And then project preferred secret
store which is used to store all new secrets created in that project. For an introduction to multiple store
backends support, see Using Multiple Secret Store Plugins . This document will focus on the details of
the Barbican /v1/secret-stores REST API.

When multiple secret store backends support is not enabled in service configuration, then all of these
API will return resource not found (http status code 404) error. Error message text will highlight that the
support is not enabled in configuration.

GET /v1/secret-stores

Project administrator can request list of available secret store backends. Response contains list of secret
stores which are currently configured in barbican deployment. If multiple store backends support is not
enabled, then list will return resource not found (404) error.

Request/Response:

Request:

GET /secret-stores
Headers:

X-Auth-Token: "f9cf2d480ba3485f85bdb9d07a4959f1"
Accept: application/json

Response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"secret_stores":[

{
"status": "ACTIVE",
"updated": "2016-08-22T23:46:45.114283",
"name": "PKCS11 HSM",
"created": "2016-08-22T23:46:45.114283",
"secret_store_ref": "http://localhost:9311/v1/secret-stores/

↪→4d27b7a7-b82f-491d-88c0-746bd67dadc8",
"global_default": True,
"crypto_plugin": "p11_crypto",
"secret_store_plugin": "store_crypto"

},
{

"status": "ACTIVE",
"updated": "2016-08-22T23:46:45.124554",

(continues on next page)

2.6. Barbican API Documentation 185

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

"name": "KMIP HSM",
"created": "2016-08-22T23:46:45.124554",
"secret_store_ref": "http://localhost:9311/v1/secret-stores/

↪→93869b0f-60eb-4830-adb9-e2f7154a080b",
"global_default": False,
"crypto_plugin": None,
"secret_store_plugin": "kmip_plugin"

},
{

"status": "ACTIVE",
"updated": "2016-08-22T23:46:45.127866",
"name": "Software Only Crypto",
"created": "2016-08-22T23:46:45.127866",
"secret_store_ref": "http://localhost:9311/v1/secret-stores/

↪→0da45858-9420-42fe-a269-011f5f35deaa",
"global_default": False,
"crypto_plugin": "simple_crypto",
"secret_store_plugin": "store_crypto"

}
}

Response Attributes

Name Type Description
secret_stores list A list of secret store references
name string store and crypto plugin name delimited by + (plus) sign.
secret_store _ref string URL for referencing a specific secret store

HTTP Status Codes

Code Description
200 Successful Request
401 Authentication error. Missing or invalid X-Auth-Token.
403 The user was authenticated, but is not authorized to perform this action
404 Not Found. When multiple secret store backends support is not enabled.

186 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

GET /v1/secret-stores/{secret_store_id}

A project administrator (user with admin role) can request details of secret store by its ID. Returned
response will highlight whether this secret store is currently configured as global default or not.

Request/Response:

Request:
GET /secret-stores/93869b0f-60eb-4830-adb9-e2f7154a080b
Headers:

X-Auth-Token: "f9cf2d480ba3485f85bdb9d07a4959f1"
Accept: application/json

Response:
HTTP/1.1 200 OK
Content-Type: application/json

{
"status": "ACTIVE",
"updated": "2016-08-22T23:46:45.124554",
"name": "KMIP HSM",
"created": "2016-08-22T23:46:45.124554",
"secret_store_ref": "http://localhost:9311/v1/secret-stores/93869b0f-

↪→60eb-4830-adb9-e2f7154a080b",
"global_default": False,
"crypto_plugin": None,
"secret_store_plugin": "kmip_plugin"

}

Response Attributes

Name Type Description
name string store and crypto plugin name delimited by + (plus) sign
global_default boolean flag indicating if this secret store is global default or not
status list Status of the secret store
updated time Date and time secret store was last updated
created time Date and time secret store was created
secret_store_ref string URL for referencing a specific secret store

2.6. Barbican API Documentation 187

Barbican Documentation, Release 18.0.1.dev3

HTTP Status Codes

Code Description
200 Successful Request
401 Authentication error. Missing or invalid X-Auth-Token.
403 The user was authenticated, but is not authorized to perform this action
404 Not Found. When multiple secret store backends support is not enabled or that secret store id

does not exist.

GET /v1/secret-stores/preferred

A project administrator (user with admin role) can request a reference to the preferred secret store if
assigned previously. When a preferred secret store is set for a project, then new project secrets are stored
using that store backend. If multiple secret store support is not enabled, then this resource will return
404 (Not Found) error.

Request/Response:

Request:

GET /v1/secret-stores/preferred
Headers:
X-Auth-Token: "f9cf2d480ba3485f85bdb9d07a4959f1"
Accept: application/json

Response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"status": "ACTIVE",
"updated": "2016-08-22T23:46:45.114283",
"name": "PKCS11 HSM",
"created": "2016-08-22T23:46:45.114283",
"secret_store_ref": "http://localhost:9311/v1/secret-stores/4d27b7a7-b82f-

↪→491d-88c0-746bd67dadc8",
"global_default": True,
"crypto_plugin": "p11_crypto",
"secret_store_plugin": "store_crypto"

}

188 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Response Attributes

Name Type Description
secret_store_ref string A URL that references a specific secret store

HTTP Status Codes

Code Description
200 Successful Request
401 Authentication error. Missing or invalid X-Auth-Token.
403 The user was authenticated, but is not authorized to perform this action
404 Not found. No preferred secret store has been defined or multiple secret store backends support

is not enabled.

POST /v1/secret-stores/{secret_store_id}/preferred

A project administrator can set a secret store backend to be preferred store backend for his/her project.
From there on, any new secret stored in that project will use specified plugin backend for storage and
reading thereafter. Existing secret storage will not be impacted as each secret captures its plugin backend
information when initially stored. If multiple secret store support is not enabled, then this resource will
return 404 (Not Found) error.

Request/Response:

Request:

POST /v1/secret-stores/7776adb8-e865-413c-8ccc-4f09c3fe0213/preferred
Headers:
X-Auth-Token: "f9cf2d480ba3485f85bdb9d07a4959f1"

Response:

HTTP/1.1 204 No Content

2.6. Barbican API Documentation 189

Barbican Documentation, Release 18.0.1.dev3

HTTP Status Codes

Code Description
204 Successful Request
401 Authentication error. Missing or invalid X-Auth-Token.
403 The user was authenticated, but is not authorized to perform this action
404 The requested entity was not found or multiple secret store backends support is not enabled.

DELETE /v1/secret-stores/{secret_store_id}/preferred

A project administrator can remove preferred secret store backend setting. If multiple secret store support
is not enabled, then this resource will return 404 (Not Found) error.

Request/Response:

Request:

DELETE /v1/secret-stores/7776adb8-e865-413c-8ccc-4f09c3fe0213/preferred
Headers:
X-Auth-Token: "f9cf2d480ba3485f85bdb9d07a4959f1"

Response:

HTTP/1.1 204 No Content

HTTP Status Codes

Code Description
204 Successful Request
401 Authentication error. Missing or invalid X-Auth-Token.
403 The user was authenticated, but is not authorized to perform this action
404 The requested entity was not found or multiple secret store backends support is not enabled.

GET /v1/secret-stores/global-default

A project or service administrator can request a reference to the secret store that is used as default secret
store backend for the deployment.

190 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Request/Response:

Request:

GET /v1/secret-stores/global-default
Headers:
X-Auth-Token: "f9cf2d480ba3485f85bdb9d07a4959f1"
Accept: application/json

Response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"status": "ACTIVE",
"updated": "2016-08-22T23:46:45.114283",
"name": "PKCS11 HSM",
"created": "2016-08-22T23:46:45.114283",
"secret_store_ref": "http://localhost:9311/v1/secret-stores/4d27b7a7-b82f-

↪→491d-88c0-746bd67dadc8",
"global_default": True,
"crypto_plugin": "p11_crypto",
"secret_store_plugin": "store_crypto"

}

Response Attributes

Name Type Description
secret_store_ref string A URL that references a specific secret store

HTTP Status Codes

Code Description
200 Successful Request
401 Authentication error. Missing or invalid X-Auth-Token.
403 The user was authenticated, but is not authorized to perform this action
404 Not Found. When multiple secret store backends support is not enabled.

2.6. Barbican API Documentation 191

Barbican Documentation, Release 18.0.1.dev3

Containers API - Reference

GET /v1/containers

Lists a projects containers.

Returned containers will be ordered by creation date; oldest to newest.

Parameters

Name Type Description
offset inte-

ger
The starting index within the total list of the containers that you would like to re-
trieve.

limit inte-
ger

The maximum number of containers to return (up to 100). The default limit is 10.

Response Attributes

NameType Description
con-
tain-
ers

list Contains a list of dictionaries filled with container data

to-
tal

in-
te-
ger

The total number of containers available to the user

next string A HATEOAS URL to retrieve the next set of containers based on the offset and limit
parameters. This attribute is only available when the total number of containers is greater
than offset and limit parameter combined.

pre-
vi-
ous

string A HATEOAS URL to retrieve the previous set of containers based on the offset and limit
parameters. This attribute is only available when the request offset is greater than 0.

Request:

GET /v1/containers
Headers:

X-Auth-Token: <token>

192 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Response:

{
"containers": [

{
"consumers": [],
"container_ref": "https://{barbican_host}/v1/containers/{uuid}",
"created": "2015-03-26T21:10:45.417835",
"name": "container name",
"secret_refs": [

{
"name": "private_key",
"secret_ref": "https://{barbican_host}/v1/secrets/{uuid}"

}
],
"status": "ACTIVE",
"type": "generic",
"updated": "2015-03-26T21:10:45.417835"

}
],
"total": 1

}

HTTP Status Codes

Code Description
200 Successful Request
401 Invalid X-Auth-Token or the token doesnt have permissions to this resource

GET /v1/containers/{uuid}

Retrieves a single container.

Response Attributes

Name Type Description
name string (optional) Human readable name for the container
type string Type of container. Options: generic, rsa, certificate
secret_refs list A list of dictionaries containing references to secrets

2.6. Barbican API Documentation 193

Barbican Documentation, Release 18.0.1.dev3

Request:

GET /v1/containers/{uuid}
Headers:

X-Auth-Token: <token>

Response:

{
"type": "generic",
"status": "ACTIVE",
"name": "container name",
"consumers": [],
"container_ref": "https://{barbican_host}/v1/containers/{uuid}",
"secret_refs": [

{
"name": "private_key",
"secret_ref": "https://{barbican_host}/v1/secrets/{uuid}"

}
],
"created": "2015-03-26T21:10:45.417835",
"updated": "2015-03-26T21:10:45.417835"

}

HTTP Status Codes

Code Description
200 Successful Request
401 Invalid X-Auth-Token or the token doesnt have permissions to this resource
404 Container not found or unavailable

POST /v1/containers

Create a container

There are three different types of containers that can be created: generic, rsa, and certificate.

Generic

This type of container holds any number of references to secrets. Each secret reference is accompanied by
a name. Unlike other container types, no specific restrictions are enforced on the contents name attribute.

RSA

This type of container is designed to hold references to only three different secrets. These secrets are
enforced by their accompanied names: public_key, private_key, and private_key_passphrase.

Certificate

194 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

This type of container is designed to hold a reference to a certificate and optionally private_key, pri-
vate_key_passphrase, and intermediates.

Request Attributes

Name Type Description
name string (optional) Human readable name for identifying your container
type string Type of container. Options: generic, rsa, certificate
secret_refs list A list of dictionaries containing references to secrets

Request:

POST /v1/containers
Headers:

X-Auth-Token: <token>

Content:
{

"type": "generic",
"name": "container name",
"secret_refs": [

{
"name": "private_key",
"secret_ref": "https://{barbican_host}/v1/secrets/{secret_uuid}"

}
]

}

Response:

{
"container_ref": "https://{barbican_host}/v1/containers/{container_uuid}"

}

HTTP Status Codes

Code Description
201 Successful creation of the container
401 Invalid X-Auth-Token or the token doesnt have permissions to this resource
403 Forbidden. The user has been authenticated, but is not authorized to create a container. This

can be based on the users role or the projects quota.

2.6. Barbican API Documentation 195

Barbican Documentation, Release 18.0.1.dev3

DELETE /v1/containers/{uuid}

Deletes a container

Request:

DELETE /v1/containers/{container_uuid}
Headers:

X-Auth-Token: <token>

Response:

204 No Content

HTTP Status Codes

Code Description
204 Successful deletion of a container
401 Invalid X-Auth-Token or the token doesnt have permissions to this resource
404 Container not found or unavailable

POST /v1/containers/{container_uuid}/secrets

Add a secret to an existing container. This is only supported on generic containers.

Request Attributes

Name Type Description
name string (optional) Human readable name for identifying your secret within the container.
se-
cret_ref

uri (required) Full URI reference to an existing secret.

196 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Request:

POST /v1/containers/{container_uuid}/secrets
Headers:

X-Project-Id: {project_id}

Content:
{

"name": "private_key",
"secret_ref": "https://{barbican_host}/v1/secrets/{secret_uuid}"

}

Response:

{
"container_ref": "https://{barbican_host}/v1/containers/{container_uuid}"

}

Note that the requesting container_uuid is the same as that provided in the response.

HTTP Status Codes

In general, error codes produced by the containers POST call pertain here as well, especially in regards
to the secret references that can be provided.

Code Description
201 Successful update of the container
400 Missing secret_ref
401 Invalid X-Auth-Token or the token doesnt have permissions to this resource
403 Forbidden. The user has been authenticated, but is not authorized to add the secret to the spec-

ified container. This can be based on the users role or the projects quota.

2.6. Barbican API Documentation 197

Barbican Documentation, Release 18.0.1.dev3

DELETE /v1/containers/{container_uuid}/secrets

Remove a secret from a container. This is only supported on generic containers.

Request Attributes

Name Type Description
name string (optional) Human readable name for identifying your secret within the container.
se-
cret_ref

uri (required) Full URI reference to an existing secret.

Request:

DELETE /v1/containers/{container_uuid}/secrets
Headers:

X-Project-Id: {project_id}

Content:
{

"name": "private key",
"secret_ref": "https://{barbican_host}/v1/secrets/{secret_uuid}"

}

Response:

204 No Content

HTTP Status Codes

Code Description
204 Successful removal of the secret from the container.
400 Missing secret_ref
401 Invalid X-Auth-Token or the token doesnt have permissions to this resource
403 Forbidden. The user has been authenticated, but is not authorized to remove the secret from the

specified container. This can be based on the users role or the projects quota.
404 Specified secret_ref is not found in the container.

198 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Container consumers API - Reference

GET {container_ref}/consumers

Lists a containers consumers.

The list of consumers can be filtered by the parameters passed in via the URL.

Parameters

Name Type Description
offset inte-

ger
The starting index within the total list of the consumers that you would like to re-
trieve.

limit inte-
ger

The maximum number of records to return (up to 100). The default limit is 10.

Request:

GET {container_ref}/consumers
Headers:

X-Auth-Token: <token>

Response:

200 OK

{
"total": 3,
"consumers": [

{
"status": "ACTIVE",
"URL": "consumerurl",
"updated": "2015-10-15T21:06:33.123878",
"name": "consumername",
"created": "2015-10-15T21:06:33.123872"

},
{

"status": "ACTIVE",
"URL": "consumerURL2",
"updated": "2015-10-15T21:17:08.092416",
"name": "consumername2",
"created": "2015-10-15T21:17:08.092408"

},
{

"status": "ACTIVE",
(continues on next page)

2.6. Barbican API Documentation 199

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

"URL": "consumerURL3",
"updated": "2015-10-15T21:21:29.970370",
"name": "consumername3",
"created": "2015-10-15T21:21:29.970365"

}
]

}

Request:

GET {container_ref}/consumers?limit=1\&offset=1
Headers:

X-Auth-Token: <token>

{
"total": 3,
"next": "http://localhost:9311/v1/containers/{container_ref}/consumers?

↪→limit=1&offset=2",
"consumers": [

{
"status": "ACTIVE",
"URL": "consumerURL2",
"updated": "2015-10-15T21:17:08.092416",
"name": "consumername2",
"created": "2015-10-15T21:17:08.092408"

}
],
"previous": "http://localhost:9311/v1/containers/{container_ref}/

↪→consumers?limit=1&offset=0"
}

Response Attributes

Name Type Description
con-
sumers

list Contains a list of dictionaries filled with consumer metadata.

to-
tal

in-
te-
ger

The total number of consumers available to the user.

next string A HATEOAS URL to retrieve the next set of consumers based on the offset and limit
parameters. This attribute is only available when the total number of consumers is greater
than offset and limit parameter combined.

pre-
vi-
ous

string A HATEOAS URL to retrieve the previous set of consumers based on the offset and limit
parameters. This attribute is only available when the request offset is greater than 0.

200 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

HTTP Status Codes

Code Description
200 OK.
401 Invalid X-Auth-Token or the token doesnt have permissions to this resource.
403 Forbidden. The user has been authenticated, but is not authorized to delete a consumer. This

can be based on the users role.

POST {container_ref}/consumers

Creates a consumer

Attributes

Attribute Name Type Description Default
name string The name of the consumer set by the user. None
url string The URL for the user or service using the container. None

Request:

POST {container_ref}/consumers
Headers:

X-Auth-Token: <token>
Content-Type: application/json

Content:
{

"name": "ConsumerName",
"url": "ConsumerURL"

}

Response:

200 OK

{
"status": "ACTIVE",
"updated": "2015-10-15T17:56:18.626724",
"name": "container name",
"consumers": [

{
"URL": "consumerURL",

(continues on next page)

2.6. Barbican API Documentation 201

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

"name": "consumername"
}

],
"created": "2015-10-15T17:55:44.380002",
"container_ref": "http://localhost:9311/v1/containers/74bbd3fd-9ba8-42ee-

↪→b87e-2eecf10e47b9",
"creator_id": "b17c815d80f946ea8505c34347a2aeba",
"secret_refs": [

{
"secret_ref": "http://localhost:9311/v1/secrets/b61613fc-be53-

↪→4696-ac01-c3a789e87973",
"name": "private_key"

}
],
"type": "generic"

}

HTTP Status Codes

Code Description
200 OK.
400 Bad Request.
401 Invalid X-Auth-Token or the token doesnt have permissions to this resource.
403 Forbidden. The user has been authenticated, but is not authorized to create a consumer. This

can be based on the users role or the projects quota.

DELETE {container_ref}/consumers

Delete a consumer.

202 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Attributes

Attribute Name Type Description Default
name string The name of the consumer set by the user. None
URL string The URL for the user or service using the container. None

Request:

DELETE {container_ref}/consumers
Headers:

X-Auth-Token: <token>
Content-Type: application/json

Content:
{

"name": "ConsumerName",
"URL": "ConsumerURL"

}

Response:

200 OK

{
"status": "ACTIVE",
"updated": "2015-10-15T17:56:18.626724",
"name": "container name",
"consumers": [],
"created": "2015-10-15T17:55:44.380002",
"container_ref": "http://localhost:9311/v1/containers/74bbd3fd-9ba8-42ee-

↪→b87e-2eecf10e47b9",
"creator_id": "b17c815d80f946ea8505c34347a2aeba",
"secret_refs": [

{
"secret_ref": "http://localhost:9311/v1/secrets/b61613fc-be53-

↪→4696-ac01-c3a789e87973",
"name": "private_key"

}
],

"type": "generic"
}

2.6. Barbican API Documentation 203

Barbican Documentation, Release 18.0.1.dev3

HTTP Status Codes

Code Description
200 OK.
400 Bad Request.
401 Invalid X-Auth-Token or the token doesnt have permissions to this resource.
403 Forbidden. The user has been authenticated, but is not authorized to delete a consumer. This

can be based on the users role.
404 Consumer Not Found.

ACL API - Reference

Note: This feature is applicable only when Barbican is used in an authenticated pipeline i.e. integrated
with Keystone.

Note: Currently the access control list (ACL) settings defined for a container are not propagated down
to associated secrets.

Warning: This ACL documentation is work in progress and may change in near future.

Secret ACL API

GET /v1/secrets/{uuid}/acl

Retrieve the ACL settings for a given secret.

If no ACL is defined for that secret, then Default ACL is returned.

Request/Response (With ACL defined):

Request:

GET /v1/secrets/{uuid}/acl
Headers:

X-Auth-Token: {token_id}

Response:

HTTP/1.1 200 OK
{

"read":{
(continues on next page)

204 Chapter 2. API Guide

https://docs.openstack.org/api-guide/key-manager/acls.html#default-acl

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

"updated":"2015-05-12T20:08:47.644264",
"created":"2015-05-12T19:23:44.019168",
"users":[

{user_id1},
{user_id2},
.....

],
"project-access":{project-access-flag}

}
}

Request/Response (With no ACL defined):

Request:

GET /v1/secrets/{uuid}/acl
Headers:

X-Auth-Token: {token_id}

Response:

HTTP/1.1 200 OK
{

"read":{
"project-access": true

}
}

HTTP Status Codes

Code Description
200 Successful request.
401 Missing or Invalid X-Auth-Token. Authentication required.
403 User does not have permission to access this resource.
404 Secret not found for the given UUID.

2.6. Barbican API Documentation 205

Barbican Documentation, Release 18.0.1.dev3

PUT /v1/secrets/{uuid}/acl

Create new or replaces existing ACL for a given secret.

This call is used to add new ACL for a secret. If the ACL is already set on a secret, this method will
replace it with the requested ACL settings. In case of create (first new explicit ACL) or replace existing
ACL, 200 is returned in both cases. To delete existing users from an ACL definition, pass empty list []
for users.

Returns an ACL reference in success case.

Attributes

The ACL resource detailed in this page allows access to individual secrets to be controlled. This access
is configured via operations on those secrets. Currently only the read operation (which includes GET
REST actions) is supported.

At-
tribute
Name

Type Description De-
fault

read parent
ele-
ment

ACL data for read operation. None

users [string] (optional) List of user ids. This needs to be a user id as returned by Keystone. []
project-
access

boolean (optional) Flag to mark a secret private so that the user who created the secret
and users specified in above list can only access the secret. Pass false to
mark the secret private.

true

Request/Response (Set or Replace ACL):

Request:

PUT /v1/secrets/{uuid}/acl
Headers:

Content-Type: application/json
X-Auth-Token: {token_id}

Body:
{

"read":{
"users":[

{user_id1},
{user_id2},
.....

],
"project-access":{project-access-flag}

}
}

(continues on next page)

206 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

Response:

HTTP/1.1 200 OK
{"acl_ref": "https://{barbican_host}/v1/secrets/{uuid}/acl"}

HTTP Status Codes

Code Description
200 Successfully set/replaced secret ACL.
400 Bad Request.
401 Missing or Invalid X-Auth-Token. Authentication required.
403 User does not have permission to access this resource.
404 Secret not found for the given UUID.
415 Unsupported Media Type.

PATCH /v1/secrets/{uuid}/acl

Updates existing ACL for a given secret. This method can be used to apply partial changes on existing
ACL settings. Client can update the users list and enable or disable project-access flag for existing ACL.
List of provided users replaces existing users if any. For an existing list of provided users from an ACL
definition, pass empty list [] for users.

Returns an ACL reference in success case.

Note: PATCH API support will be changing in near future.

Attributes

At-
tribute
Name

Type Description De-
fault

read parent
ele-
ment

ACL data for read operation. None

users [string] (optional) List of user ids. This needs to be a user id as returned by Keystone. None
project-
access

boolean (optional) Flag to mark a secret private so that the user who created the secret
and users specified in above list can only access the secret. Pass false to
mark the secret private.

None

2.6. Barbican API Documentation 207

Barbican Documentation, Release 18.0.1.dev3

Request/Response (Updating project-access flag):

PATCH /v1/secrets/{uuid}/acl
Headers:

Content-Type: application/json
X-Auth-Token: {token_id}

Body:
{

"read":
{

"project-access":false
}

}

Response:
HTTP/1.1 200 OK
{"acl_ref": "https://{barbican_host}/v1/secrets/{uuid}/acl"}

Request/Response (Removing all users from ACL):

PATCH /v1/secrets/{uuid}/acl
Headers:

Content-Type: application/json
X-Auth-Token: {token_id}

Body:
{

"read":
{

"users":[]
}

}

Response:
HTTP/1.1 200 OK
{"acl_ref": "https://{barbican_host}/v1/secrets/{uuid}/acl"}

208 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

HTTP Status Codes

Code Description
200 Successfully updated secret ACL.
400 Bad Request.
401 Missing or Invalid X-Auth-Token. Authentication required.
403 User does not have permission to access this resource.
404 Secret not found for the given UUID.
415 Unsupported Media Type.

DELETE /v1/secrets/{uuid}/acl

Delete ACL for a given secret. No content is returned in the case of successful deletion.

Request/Response:

DELETE /v1/secrets/{uuid}/acl
Headers:

X-Auth-Token: {token_id}

Response:
HTTP/1.1 200 OK

HTTP Status Codes

Code Description
200 Successfully deleted secret ACL.
401 Missing or Invalid X-Auth-Token. Authentication required.
403 User does not have permission to access this resource.
404 Secret not found for the given UUID.

Container ACL API

GET /v1/containers/{uuid}/acl

Retrieve the ACL settings for a given container.

If no ACL is defined for that container, then Default ACL is returned.

2.6. Barbican API Documentation 209

https://docs.openstack.org/api-guide/key-manager/acls.html#default-acl

Barbican Documentation, Release 18.0.1.dev3

Request/Response (With ACL defined):

Request:

GET /v1/containers/{uuid}/acl
Headers:

X-Auth-Token: {token_id}

Response:

HTTP/1.1 200 OK
{

"read":{
"updated":"2015-05-12T20:08:47.644264",
"created":"2015-05-12T19:23:44.019168",
"users":[

{user_id1},
{user_id2},
.....

],
"project-access":{project-access-flag}

}
}

Request/Response (With no ACL defined):

Request:

GET /v1/containers/{uuid}/acl
Headers:

X-Auth-Token: {token_id}

Response:

HTTP/1.1 200 OK
{

"read":{
"project-access": true

}
}

210 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

HTTP Status Codes

Code Description
200 Successful request.
401 Missing or Invalid X-Auth-Token. Authentication required.
403 User does not have permission to access this resource.
404 Container not found for the given UUID.

PUT /v1/containers/{uuid}/acl

Create new or replaces existing ACL for a given container.

This call is used to add new ACL for an container. If the ACL is already set on a container, this method
will replace it with the requested ACL settings. In case of create (first new explicit ACL) or replace
existing ACL, 200 is returned in both cases. To delete existing users from an ACL definition, pass empty
list [] for users.

Returns an ACL reference in success case.

Attributes

The ACL resource detailed in this page allows access to individual containers to be controlled. This access
is configured via operations on those containers. Currently only the read operation (which includes GET
REST actions) is supported.

At-
tribute
Name

Type Description De-
fault

read par-
ent
ele-
ment

ACL data for read operation. None

users [string] (optional) List of user ids. This needs to be a user id as returned by Keystone. []
project-
access

boolean (optional) Flag to mark a container private so that the user who created the
container and users specified in above list can only access the container.
Pass false to mark the container private.

true

Request/Response (Set or Replace ACL):

PUT /v1/containers/{uuid}/acl
Headers:

Content-Type: application/json
X-Auth-Token: {token_id}

Body:
(continues on next page)

2.6. Barbican API Documentation 211

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

{
"read":{
"users":[

{user_id1},
{user_id2},
.....

],
"project-access":{project-access-flag}

}
}

Response:
HTTP/1.1 200 OK
{"acl_ref": "https://{barbican_host}/v1/containers/{uuid}/acl"}

HTTP Status Codes

Code Description
200 Successfully set/replaced container ACL.
400 Bad Request.
401 Missing or Invalid X-Auth-Token. Authentication required.
403 User does not have permission to access this resource.
404 Container not found for the given UUID.
415 Unsupported Media Type.

PATCH /v1/containers/{uuid}/acl

Update existing ACL for a given container. This method can be used to apply partial changes on existing
ACL settings. Client can update users list and enable or disable project-access flag for existing ACL.
List of provided users replaces existing users if any. For an existing list of provided users from an ACL
definition, pass empty list [] for users.

Returns an ACL reference in success case.

Note: PATCH API support will be changing in near future.

212 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Attributes

At-
tribute
Name

Type Description De-
fault

read par-
ent
ele-
ment

ACL data for read operation. None

users [string] (optional) List of user ids. This needs to be a user id as returned by Keystone. None
project-
access

boolean (optional) Flag to mark a container private so that the user who created the
container and users specified in above list can only access the container.
Pass false to mark the container private.

None

Request/Response (Updating project-access flag):

PATCH /v1/containers/{uuid}/acl
Headers:

Content-Type: application/json
X-Auth-Token: {token_id}

Body:
{

"read":
{

"project-access":false
}

}

Response:
HTTP/1.1 200 OK
{"acl_ref": "https://{barbican_host}/v1/containers/{uuid}/acl"}

Request/Response (Removing all users from ACL):

PATCH /v1/containers/{uuid}/acl
Headers:

Content-Type: application/json
X-Auth-Token: {token_id}

Body:
{

"read":
{

"users":[]
(continues on next page)

2.6. Barbican API Documentation 213

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

}
}

Response:
HTTP/1.1 200 OK
{"acl_ref": "https://{barbican_host}/v1/containers/{uuid}/acl"}

HTTP Status Codes

Code Description
200 Successfully updated container ACL.
400 Bad Request.
401 Missing or Invalid X-Auth-Token. Authentication required.
403 User does not have permission to access this resource.
404 Container not found for the given UUID.
415 Unsupported Media Type.

DELETE /v1/containers/{uuid}/acl

Delete ACL for a given container. No content is returned in the case of successful deletion.

Request/Response:

DELETE /v1/containers/{uuid}/acl
Headers:

X-Auth-Token: {token_id}

Response:
HTTP/1.1 200 OK

HTTP Status Codes

Code Description
200 Successfully deleted container ACL.
401 Missing or Invalid X-Auth-Token. Authentication required.
403 User does not have permission to access this resource.
404 Container not found for the given UUID.

214 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Quotas API - Reference

GET /v1/quotas

Get the effective quotas for the project of the requester. The project id of the requester is derived from
the authentication token provided in the X-Auth-Token header.

Request/Response:

Request:

GET /v1/quotas
Headers:
X-Auth-Token:<token>
Accept: application/json

Response:

HTTP/1.1 200 OK
Content-Type: application/json

{
"quotas": {

"secrets": 10,
"orders": 20,
"containers": 10,
"consumers": -1,
"cas": 5

}
}

Response Attributes

Name Type Description
quotas dict Contains a dictionary with quota information
secrets inte-

ger
Contains the effective quota value of the current project for the secret resource.

orders inte-
ger

Contains the effective quota value of the current project for the orders resource.

contain-
ers

inte-
ger

Contains the effective quota value of the current project for the containers re-
source.

con-
sumers

inte-
ger

Contains the effective quota value of the current project for the consumers re-
source.

cas inte-
ger

Contains the effective quota value of the current project for the CAs resource.

2.6. Barbican API Documentation 215

Barbican Documentation, Release 18.0.1.dev3

Effective quota values are interpreted as follows:

Value Description
-1 A negative value indicates the resource is unconstrained by a quota.
0 A zero value indicates that the resource is disabled.
int A positive value indicates the maximum number of that resource that can be created for the

current project.

HTTP Status Codes

Code Description
200 Successful Request
401 Invalid X-Auth-Token or the token doesnt have permissions to this resource

GET /v1/project-quotas

Gets a list of configured project quota records. Paging is supported using the optional parameters offset
and limit.

Request/Response:

Request:

GET /v1/project-quotas
Headers:
X-Auth-Token:<token>
Accept: application/json

Response:

200 OK

Content-Type: application/json

{
"project_quotas": [

{
"project_id": "1234",
"project_quotas": {

"secrets": 2000,
"orders": 0,
"containers": -1,
"consumers": null,
"cas": null

(continues on next page)

216 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

}
},
{
"project_id": "5678",
"project_quotas": {

"secrets": 200,
"orders": 100,
"containers": -1,
"consumers": null,
"cas": null

}
},

],
"total" : 30,

}

Parameters

Name Type Description
offset inte-

ger
The starting index within the total list of the project quotas that you would like to
receive.

limit inte-
ger

The maximum number of records to return.

2.6. Barbican API Documentation 217

Barbican Documentation, Release 18.0.1.dev3

Response Attributes

Name Type Description
project-
id

string The UUID of a project with configured quota information.

project-
quotas

dict Contains a dictionary with project quota information.

se-
crets

in-
te-
ger

Contains the effective quota value of the current project for the secret resource.

or-
ders

in-
te-
ger

Contains the effective quota value of the current project for the orders resource.

con-
tain-
ers

in-
te-
ger

Contains the effective quota value of the current project for the containers resource.

con-
sumers

in-
te-
ger

Contains the effective quota value of the current project for the consumers resource.

cas in-
te-
ger

Contains the effective quota value of the current project for the CAs resource.

total in-
te-
ger

The total number of configured project quotas records.

next string A HATEOAS URL to retrieve the next set of quotas based on the offset and limit pa-
rameters. This attribute is only available when the total number of secrets is greater
than offset and limit parameter combined.

pre-
vious

string A HATEOAS URL to retrieve the previous set of quotas based on the offset and limit
parameters. This attribute is only available when the request offset is greater than 0.

Configured project quota values are interpreted as follows:

Value Description
-1 A negative value indicates the resource is unconstrained by a quota.
0 A zero value indicates that the resource is disabled.
int A positive value indicates the maximum number of that resource that can be created for the

current project.
null A null value indicates that the default quota value for the resource will be used as the quota for

this resource in the current project.

218 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

HTTP Status Codes

Code Description
200 Successful Request
401 Invalid X-Auth-Token or the token doesnt have permissions to this resource

GET /v1/project-quotas/{uuid}

Retrieves a projects configured project quota information.

Request/Response:

Request:

GET /v1/project-quotas/{uuid}
Headers:
X-Auth-Token:<token>
Accept: application/json

Response:

200 OK

Content-Type: application/json

{
"project_quotas": {

"secrets": 10,
"orders": 20,
"containers": -1,
"consumers": 10,
"cas": 5

}
}

2.6. Barbican API Documentation 219

Barbican Documentation, Release 18.0.1.dev3

Response Attributes

Name Type Description
project-
quotas

dict Contains a dictionary with project quota information.

secrets inte-
ger

Contains the configured quota value of the requested project for the secret
resource.

orders inte-
ger

Contains the configured quota value of the requested project for the orders
resource.

containers inte-
ger

Contains the configured quota value of the requested project for the containers
resource.

consumers inte-
ger

Contains the configured quota value of the requested project for the consumers
resource.

cas inte-
ger

Contains the configured quota value of the requested project for the CAs re-
source.

HTTP Status Codes

Code Description
200 Successful request
401 Invalid X-Auth-Token or the token doesnt have permissions to this resource
404 Not Found. The requested project does not have any configured quotas.

PUT /v1/project-quotas/{uuid}

Create or update the configured project quotas for the project with the specified UUID.

Request/Response:

Request:

PUT /v1/project-quotas/{uuid}
Headers:
X-Auth-Token:<token>
Content-Type: application/json

Body::

{
"project_quotas": {
"secrets": 50,
"orders": 10,
"containers": 20

(continues on next page)

220 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

}
}

Response:

204 OK

Request Attributes

Attribute Name Type Description
project-quotas dict A dictionary with project quota information.
secrets integer The value to set for this projects secret quota.
orders integer The value to set for this projects order quota.
containers integer The value to set for this projects container quota.
consumers integer The value to set for this projects consumer quota.
cas integer The value to set for this projects CA quota.

Configured project quota values are specified as follows:

Value Description
-1 A negative value indicates the resource is unconstrained by a quota.
0 A zero value indicates that the resource is disabled.
int A positive value indicates the maximum number of that resource that can be created for the

specified project.
If a value is not given for a resource, this indicates that the default quota should be used for
that resource for the specified project.

HTTP Status Codes

Code Description
204 Successful request
400 Bad Request
401 Invalid X-Auth-Token or the token doesnt have permissions to this resource

2.6. Barbican API Documentation 221

Barbican Documentation, Release 18.0.1.dev3

DELETE /v1/project-quotas/{uuid}

Delete the project quotas configuration for the project with the requested UUID. When the project quota
configuration is deleted, then the default quotas will be used for the specified project.

Request/Response:

Request:

DELETE v1/project-quotas/{uuid}
Headers:
X-Auth-Token:<token>

Response:

204 No Content

HTTP Status Codes

Code Description
204 Successful request
401 Invalid X-Auth-Token or the token doesnt have permissions to this resource
404 Not Found

Orders API - Reference

GET /v1/orders

Lists a projects orders.

The list of orders can be filtered by the parameters passed in via the URL.

Parameters

Name Type Description
offset inte-

ger
The starting index within the total list of the orders that you would like to retrieve.
(Default is 0)

limit inte-
ger

The maximum number of records to return (up to 100). (Default is 10)

222 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

Request:

GET /v1/orders
Headers:

Content-Type: application/json
X-Auth-Token: {token}

Response:

200 Success

{
"orders": [
{

"created": "2015-10-20T18:38:44",
"creator_id": "40540f978fbd45c1af18910e3e02b63f",
"meta": {

"algorithm": "AES",
"bit_length": 256,
"expiration": null,
"mode": "cbc",
"name": "secretname",
"payload_content_type": "application/octet-stream"

},
"order_ref": "http://localhost:9311/v1/orders/2284ba6f-f964-4de7-b61e-

↪→c413df5d1e47",
"secret_ref": "http://localhost:9311/v1/secrets/15dcf8e4-3138-4360-

↪→be9f-fc4bc2e64a19",
"status": "ACTIVE",
"sub_status": "Unknown",
"sub_status_message": "Unknown",
"type": "key",
"updated": "2015-10-20T18:38:44"

},
{

"created": "2015-10-20T18:38:47",
"creator_id": "40540f978fbd45c1af18910e3e02b63f",
"meta": {

"algorithm": "AES",
"bit_length": 256,
"expiration": null,
"mode": "cbc",
"name": "secretname",
"payload_content_type": "application/octet-stream"

},
"order_ref": "http://localhost:9311/v1/orders/87b7169e-3aa2-4cb1-8800-

↪→b5aadf6babd1",
"secret_ref": "http://localhost:9311/v1/secrets/80183f4b-c0de-4a94-

(continues on next page)

2.6. Barbican API Documentation 223

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

↪→91ad-6d55251acee2",
"status": "ACTIVE",
"sub_status": "Unknown",
"sub_status_message": "Unknown",
"type": "key",
"updated": "2015-10-20T18:38:47"

}
],
"total": 2

}

Response Attributes

NameType Description
or-
ders

list Contains a list of dictionaries filled with order metadata.

to-
tal

in-
te-
ger

The total number of orders available to the user.

next string A HATEOS URL to retrieve the next set of objects based on the offset and limit param-
eters. This attribute is only available when the total number of objects is greater than
offset and limit parameter combined.

pre-
vi-
ous

string A HATEOS URL to retrieve the previous set of objects based on the offset and limit
parameters. This attribute is only available when the request offset is greater than 0.

HTTP Status Codes

Code Description
200 Successful Request
401 Invalid X-Auth-Token or the token doesnt have permissions to this resource

224 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

POST /v1/orders

Creates an order

Parameters

Attribute
Name

Type Description De-
fault

type string The type of key to be generated. Valid types are key and asym-
metric

None

meta dict Dictionary containing the secret metadata used to generate the
secret.

None

Request:

POST /v1/orders
Headers:

Content-Type: application/json
X-Auth-Token: {token}

Content:
{

"type":"key",
"meta":

{
"name":"secretname",
"algorithm": "AES",
"bit_length": 256,
"mode": "cbc",
"payload_content_type":"application/octet-stream"

}
}

Response:

202 Created

{
"order_ref": "http://{barbican_host}/v1/orders/{order_uuid}"

}

2.6. Barbican API Documentation 225

Barbican Documentation, Release 18.0.1.dev3

Response Attributes

Name Type Description
order_ref string Order reference

HTTP Status Codes

Code Description
202 Successfully created an order
400 Bad Request
401 Invalid X-Auth-Token or the token doesnt have permissions to this resource
415 Unsupported media-type

GET /v1/orders/{uuid}

Retrieves an orders metadata

Request:

GET /v1/orders/{order_uuid}
Headers:

Accept: application/json
X-Auth-Token: {token}

Parameters

None

Response:

200 Success

{
"created": "2015-10-20T18:49:02",
"creator_id": "40540f978fbd45c1af18910e3e02b63f",
"meta": {

"algorithm": "AES",
"bit_length": 256,
"expiration": null,
"mode": "cbc",
"name": "secretname",

(continues on next page)

226 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

"payload_content_type": "application/octet-stream"
},
"order_ref": "http://localhost:9311/v1/orders/5443d349-fe0c-4bfd-bd9d-

↪→99c4a9770638",
"secret_ref": "http://localhost:9311/v1/secrets/16f8d4f3-d3dd-4160-a5bd-

↪→8e5095a42613",
"status": "ACTIVE",
"sub_status": "Unknown",
"sub_status_message": "Unknown",
"type": "key",
"updated": "2015-10-20T18:49:02"

}

Response Attributes

Name Type Description
created string Timestamp in ISO8601 format of when the order was created
creator_id string Keystone Id of the user who created the order
meta dict Secret metadata used for informational purposes
order_ref string Order href associated with the order
secret_ref string Secret href associated with the order
status string Current status of the order
sub_status string Metadata associated with the order
sub_status_message string Metadata associated with the order
type string Indicates the type of order
updated string Timestamp in ISO8601 format of the last time the order was updated.

HTTP Status Codes

Code Description
200 Successfully retrieved the order
400 Bad Request
401 Invalid X-Auth-Token or the token doesnt have permissions to this resource
404 Not Found

2.6. Barbican API Documentation 227

Barbican Documentation, Release 18.0.1.dev3

DELETE /v1/orders/{uuid}

Delete an order

Request:

DELETE /v1/orders/{order_uuid}
Headers:

X-Auth-Token: {token}

Parameters

None

Response:

204 Success

HTTP Status Codes

Code Description
204 Successfully deleted the order
400 Bad Request
401 Invalid X-Auth-Token or the token doesnt have permissions to this resource
404 Not Found

Microversions

API v1.0 supports microversions: small, documented changes to the API. A user can use microversions
to discover the latest API microversion supported in their cloud. A cloud that is upgraded to support
newer microversions will still support all older microversions to maintain the backward compatibility
for those users, who depend on older microversions. Users can also discover new features easily with
microversions, so that they can benefit from all the advantages and improvements of the current cloud.

There are multiple cases which you can resolve with microversions:

• Older clients with new cloud

Before using an old client to talk to a newer cloud, the old client can check the minimum version of
microversions to verify whether the cloud is compatible with the old API. This prevents the old client
from breaking with backwards incompatible API changes.

Currently the minimum version of microversions is 1.0, which is a microversion compatible with the
legacy v1 API. That means the legacy v1 API user doesnt need to worry that their older client software
will be broken when their cloud is upgraded with new versions. The cloud operator doesnt need to worry

228 Chapter 2. API Guide

Barbican Documentation, Release 18.0.1.dev3

that upgrading their cloud to newer versions will break any user with older clients that dont expect these
changes.

• User discovery of available features between clouds

The new features can be discovered by microversions. The user client should first check the microversions
supported by the server. New features are only enabled when clouds support it. In this way, the user client
can work with clouds that have deployed different microversions simultaneously.

Version Discovery

The Version API will return the minimum and maximum microversions. These values are used by the
client to discover the APIs supported microversion(s).

Requests to / will get version info for all endpoints. A response would look as follows:

{
"versions": [

{
"id": "v1.0",
"links": [

{
"href": "http://openstack.example.com/v1/",
"rel": "self"

}
],
"max_version": "1.1",
"min_version": "1.0",
"updated": "2021-02-10T00:00:00Z"

}
]

}

max_version is the maximum microversion, min_version is the minimum microversion. The client should
specify a microversion between (and including) the minimum and maximum microversion to access the
endpoint.

Client Interaction

A client specifies the microversion of the API they want by using the following HTTP header:

OpenStack-API-Version: key-manager 1.1

Note: For more detail on the syntax see the Microversion Specification.

This acts conceptually like the Accept header. Semantically this means:

• If OpenStack-API-Version (specifying key-manager) is not provided, act as if the minimum sup-
ported microversion was specified.

2.6. Barbican API Documentation 229

http://specs.openstack.org/openstack/api-wg/guidelines/microversion_specification.html

Barbican Documentation, Release 18.0.1.dev3

• If OpenStack-API-Version is provided, respond with the API at that microversion. If thats outside
of the range of microversions supported, return 406 Not Acceptable.

• OpenStack-API-Version has a value of latest (special keyword), act as if maximum was specified.

Warning: The latest value is mostly meant for integration testing and would be dangerous to rely
on in client code since microversions are not following semver and therefore backward compatibility
is not guaranteed. Clients should always require a specific microversion but limit what is acceptable
to the microversion range that it understands at the time.

This means that out of the box, an old client without any knowledge of microversions can work with an
OpenStack installation with microversions support.

From microversion 1.1 two additional headers are added to the response:

OpenStack-API-Version: key-manager microversion_number
Vary: OpenStack-API-Version

REST API Version History

This documents the changes made to the REST API with every microversion change. The description
for each version should be a verbose one which has enough information to be suitable for use in user
documentation.

1.0

This is the initial version of the v1.0 API which supports microversions.

A user can specify a header in the API request:

OpenStack-API-Version: key-manager <version>

where <version> is any valid api version for this API.

If no version is specified then the API will behave as if a version request of v1.0 was requested.

1.1 (Maximum in Wallaby)

Added Secret Consumers to Secrets.

When requesting Secrets (individual Secret or a list), the results contain an additional consumers key,
which contains references to Secret Consumers.

230 Chapter 2. API Guide

CHAPTER

THREE

SAMPLE FILES

3.1 Barbican Sample Configuration File

Use the barbican.conf file to configure most Key Manager service options:

3.2 Barbican Sample Policy

The following is a sample Barbican policy file that has been auto-generated from default policy values in
code. If youre using the default policies, then the maintenance of this file is not necessary, and it should
not be copied into a deployment. Doing so will result in duplicate policy definitions. It is here to help
explain which policy operations protect specific Barbican APIs, but it is not suggested to copy and paste
into a deployment unless youre planning on providing a different policy for an operation that is not the
default.

The sample policy file can also be viewed in file form.

#"secret_project_match": "project_id:%(target.secret.project_id)s"

#"secret_project_reader": "role:reader and rule:secret_project_match"

#"secret_project_member": "role:member and rule:secret_project_match"

#"secret_project_admin": "role:admin and rule:secret_project_match"

#"secret_owner": "user_id:%(target.secret.creator_id)s"

#"secret_is_not_private": "True:%(target.secret.read_project_access)s"

#"secret_acl_read": "'read':%(target.secret.read)s"

#"container_project_match": "project_id:%(target.container.project_id)s"

#"container_project_member": "role:member and rule:container_project_match"

#"container_project_admin": "role:admin and rule:container_project_match"

#"container_owner": "user_id:%(target.container.creator_id)s"

(continues on next page)

231

_static/barbican.policy.yaml.sample

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

#"container_is_not_private": "True:%(target.container.read_project_access)s"

#"container_acl_read": "'read':%(target.container.read)s"

#"order_project_match": "project_id:%(target.order.project_id)s"

#"order_project_member": "role:member and rule:order_project_match"

#"audit": "role:audit"

#"observer": "role:observer"

#"creator": "role:creator"

#"admin": "role:admin"

#"service_admin": "role:key-manager:service-admin"

#"all_users": "rule:admin or rule:observer or rule:creator or rule:audit or␣
↪→rule:service_admin"

#"all_but_audit": "rule:admin or rule:observer or rule:creator"

#"admin_or_creator": "rule:admin or rule:creator"

#"secret_creator_user": "user_id:%(target.secret.creator_id)s"

#"secret_private_read": "'False':%(target.secret.read_project_access)s"

#"secret_non_private_read": "rule:all_users and rule:secret_project_match and␣
↪→not rule:secret_private_read"

#"secret_decrypt_non_private_read": "rule:all_but_audit and rule:secret_
↪→project_match and not rule:secret_private_read"

#"secret_project_creator": "rule:creator and rule:secret_project_match and␣
↪→rule:secret_creator_user"

#"secret_project_creator_role": "rule:creator and rule:secret_project_match"

#"container_private_read": "'False':%(target.container.read_project_access)s"

#"container_creator_user": "user_id:%(target.container.creator_id)s"

#"container_non_private_read": "rule:all_users and rule:container_project_
↪→match and not rule:container_private_read"

#"container_project_creator": "rule:creator and rule:container_project_match␣
↪→and rule:container_creator_user"

(continues on next page)

232 Chapter 3. Sample Files

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

#"container_project_creator_role": "rule:creator and rule:container_project_
↪→match"

Retrieve the ACL settings for a given secret.If no ACL is defined
for that secret, then Default ACL is returned.
GET /v1/secrets/{secret-id}/acl
Intended scope(s): project
#"secret_acls:get": "True:%(enforce_new_defaults)s and (rule:secret_project_
↪→admin or (rule:secret_project_member and rule:secret_owner) or (rule:secret_
↪→project_member and rule:secret_is_not_private))"

DEPRECATED
"secret_acls:get":"rule:all_but_audit and rule:secret_project_match"
has been deprecated since W in favor of
"secret_acls:get":"True:%(enforce_new_defaults)s and
(rule:secret_project_admin or (rule:secret_project_member and
rule:secret_owner) or (rule:secret_project_member and
rule:secret_is_not_private))".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Delete the ACL settings for a given secret.
DELETE /v1/secrets/{secret-id}/acl
Intended scope(s): project
#"secret_acls:delete": "True:%(enforce_new_defaults)s and (rule:secret_
↪→project_admin or (rule:secret_project_member and rule:secret_owner) or␣
↪→(rule:secret_project_member and rule:secret_is_not_private))"

DEPRECATED
"secret_acls:delete":"rule:secret_project_admin or
rule:secret_project_creator or (rule:secret_project_creator_role and
rule:secret_non_private_read)" has been deprecated since W in favor
of "secret_acls:delete":"True:%(enforce_new_defaults)s and
(rule:secret_project_admin or (rule:secret_project_member and
rule:secret_owner) or (rule:secret_project_member and
rule:secret_is_not_private))".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Create new, replaces, or updates existing ACL for a given secret.
PUT /v1/secrets/{secret-id}/acl
PATCH /v1/secrets/{secret-id}/acl
Intended scope(s): project
#"secret_acls:put_patch": "True:%(enforce_new_defaults)s and (rule:secret_
↪→project_admin or (rule:secret_project_member and rule:secret_owner) or␣
↪→(rule:secret_project_member and rule:secret_is_not_private))"

DEPRECATED

(continues on next page)

3.2. Barbican Sample Policy 233

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

"secret_acls:put_patch":"rule:secret_project_admin or
rule:secret_project_creator or (rule:secret_project_creator_role and
rule:secret_non_private_read)" has been deprecated since W in favor
of "secret_acls:put_patch":"True:%(enforce_new_defaults)s and
(rule:secret_project_admin or (rule:secret_project_member and
rule:secret_owner) or (rule:secret_project_member and
rule:secret_is_not_private))".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Retrieve the ACL settings for a given container.
GET /v1/containers/{container-id}/acl
Intended scope(s): project
#"container_acls:get": "True:%(enforce_new_defaults)s and (rule:container_
↪→project_admin or (rule:container_project_member and rule:container_owner)␣
↪→or (rule:container_project_member and rule:container_is_not_private))"

DEPRECATED
"container_acls:get":"rule:all_but_audit and
rule:container_project_match" has been deprecated since W in favor
of "container_acls:get":"True:%(enforce_new_defaults)s and
(rule:container_project_admin or (rule:container_project_member and
rule:container_owner) or (rule:container_project_member and
rule:container_is_not_private))".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Delete ACL for a given container. No content is returned in the case
of successful deletion.
DELETE /v1/containers/{container-id}/acl
Intended scope(s): project
#"container_acls:delete": "True:%(enforce_new_defaults)s and (rule:container_
↪→project_admin or (rule:container_project_member and rule:container_owner)␣
↪→or (rule:container_project_member and rule:container_is_not_private))"

DEPRECATED
"container_acls:delete":"rule:container_project_admin or
rule:container_project_creator or
(rule:container_project_creator_role and
rule:container_non_private_read)" has been deprecated since W in
favor of "container_acls:delete":"True:%(enforce_new_defaults)s and
(rule:container_project_admin or (rule:container_project_member and
rule:container_owner) or (rule:container_project_member and
rule:container_is_not_private))".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Create new or replaces existing ACL for a given container.
PUT /v1/containers/{container-id}/acl

(continues on next page)

234 Chapter 3. Sample Files

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

PATCH /v1/containers/{container-id}/acl
Intended scope(s): project
#"container_acls:put_patch": "True:%(enforce_new_defaults)s and␣
↪→(rule:container_project_admin or (rule:container_project_member and␣
↪→rule:container_owner) or (rule:container_project_member and rule:container_
↪→is_not_private))"

DEPRECATED
"container_acls:put_patch":"rule:container_project_admin or
rule:container_project_creator or
(rule:container_project_creator_role and
rule:container_non_private_read)" has been deprecated since W in
favor of "container_acls:put_patch":"True:%(enforce_new_defaults)s
and (rule:container_project_admin or (rule:container_project_member
and rule:container_owner) or (rule:container_project_member and
rule:container_is_not_private))".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

DEPRECATED: show information for a specific consumer
GET /v1/containers/{container-id}/consumers/{consumer-id}
Intended scope(s): project
#"consumer:get": "True:%(enforce_new_defaults)s and (role:admin or␣
↪→(rule:container_project_member and rule:container_owner) or (rule:container_
↪→project_member and rule:container_is_not_private) or rule:container_acl_
↪→read)"

DEPRECATED
"consumer:get":"rule:admin or rule:observer or rule:creator or
rule:audit or rule:container_non_private_read or
rule:container_project_creator or rule:container_project_admin or
rule:container_acl_read" has been deprecated since W in favor of
"consumer:get":"True:%(enforce_new_defaults)s and (role:admin or
(rule:container_project_member and rule:container_owner) or
(rule:container_project_member and rule:container_is_not_private)
or rule:container_acl_read)".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

List a containers consumers.
GET /v1/containers/{container-id}/consumers
Intended scope(s): project
#"container_consumers:get": "True:%(enforce_new_defaults)s and␣
↪→(rule:container_project_admin or (rule:container_project_member and␣
↪→rule:container_owner) or (rule:container_project_member and rule:container_
↪→is_not_private) or rule:container_acl_read)"

DEPRECATED
"container_consumers:get":"rule:container_non_private_read or

(continues on next page)

3.2. Barbican Sample Policy 235

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

rule:container_project_creator or rule:container_project_admin or
rule:container_acl_read" has been deprecated since W in favor of
"container_consumers:get":"True:%(enforce_new_defaults)s and
(rule:container_project_admin or (rule:container_project_member and
rule:container_owner) or (rule:container_project_member and
rule:container_is_not_private) or rule:container_acl_read)".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Creates a consumer.
POST /v1/containers/{container-id}/consumers
Intended scope(s): project
#"container_consumers:post": "True:%(enforce_new_defaults)s and␣
↪→(rule:container_project_admin or (rule:container_project_member and␣
↪→rule:container_owner) or (rule:container_project_member and rule:container_
↪→is_not_private) or rule:container_acl_read)"

DEPRECATED
"container_consumers:post":"rule:container_non_private_read or
rule:container_project_creator or rule:container_project_admin or
rule:container_acl_read " has been deprecated since W in favor of
"container_consumers:post":"True:%(enforce_new_defaults)s and
(rule:container_project_admin or (rule:container_project_member and
rule:container_owner) or (rule:container_project_member and
rule:container_is_not_private) or rule:container_acl_read)".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Deletes a consumer.
DELETE /v1/containers/{container-id}/consumers
Intended scope(s): project
#"container_consumers:delete": "True:%(enforce_new_defaults)s and␣
↪→(rule:container_project_admin or (rule:container_project_member and␣
↪→rule:container_owner) or (rule:container_project_member and rule:container_
↪→is_not_private) or rule:container_acl_read)"

DEPRECATED
"container_consumers:delete":"rule:container_non_private_read or
rule:container_project_creator or rule:container_project_admin or
rule:container_acl_read " has been deprecated since W in favor of
"container_consumers:delete":"True:%(enforce_new_defaults)s and
(rule:container_project_admin or (rule:container_project_member and
rule:container_owner) or (rule:container_project_member and
rule:container_is_not_private) or rule:container_acl_read)".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

List consumers for a secret.
GET /v1/secrets/{secret-id}/consumers

(continues on next page)

236 Chapter 3. Sample Files

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

Intended scope(s): project
#"secret_consumers:get": "True:%(enforce_new_defaults)s and (rule:secret_
↪→project_admin or (rule:secret_project_member and rule:secret_owner) or␣
↪→(rule:secret_project_member and rule:secret_is_not_private) or rule:secret_
↪→acl_read)"

DEPRECATED
"secret_consumers:get":"rule:secret_non_private_read or
rule:secret_project_creator or rule:secret_project_admin or
rule:secret_acl_read" has been deprecated since W in favor of
"secret_consumers:get":"True:%(enforce_new_defaults)s and
(rule:secret_project_admin or (rule:secret_project_member and
rule:secret_owner) or (rule:secret_project_member and
rule:secret_is_not_private) or rule:secret_acl_read)".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Creates a consumer.
POST /v1/secrets/{secrets-id}/consumers
Intended scope(s): project
#"secret_consumers:post": "True:%(enforce_new_defaults)s and (rule:secret_
↪→project_admin or (rule:secret_project_member and rule:secret_owner) or␣
↪→(rule:secret_project_member and rule:secret_is_not_private) or rule:secret_
↪→acl_read)"

DEPRECATED
"secret_consumers:post":"rule:secret_non_private_read or
rule:secret_project_creator or rule:secret_project_admin or
rule:secret_acl_read" has been deprecated since W in favor of
"secret_consumers:post":"True:%(enforce_new_defaults)s and
(rule:secret_project_admin or (rule:secret_project_member and
rule:secret_owner) or (rule:secret_project_member and
rule:secret_is_not_private) or rule:secret_acl_read)".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Deletes a consumer.
DELETE /v1/secrets/{secrets-id}/consumers
Intended scope(s): project
#"secret_consumers:delete": "True:%(enforce_new_defaults)s and (rule:secret_
↪→project_admin or (rule:secret_project_member and rule:secret_owner) or␣
↪→(rule:secret_project_member and rule:secret_is_not_private) or rule:secret_
↪→acl_read)"

DEPRECATED
"secret_consumers:delete":"rule:secret_non_private_read or
rule:secret_project_creator or rule:secret_project_admin or
rule:secret_acl_read" has been deprecated since W in favor of
"secret_consumers:delete":"True:%(enforce_new_defaults)s and

(continues on next page)

3.2. Barbican Sample Policy 237

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

(rule:secret_project_admin or (rule:secret_project_member and
rule:secret_owner) or (rule:secret_project_member and
rule:secret_is_not_private) or rule:secret_acl_read)".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Creates a container.
POST /v1/containers
Intended scope(s): project
#"containers:post": "True:%(enforce_new_defaults)s and role:member"

DEPRECATED
"containers:post":"rule:admin_or_creator" has been deprecated since
W in favor of "containers:post":"True:%(enforce_new_defaults)s and
role:member".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Lists a projects containers.
GET /v1/containers
Intended scope(s): project
#"containers:get": "True:%(enforce_new_defaults)s and role:member"

DEPRECATED
"containers:get":"rule:all_but_audit" has been deprecated since W in
favor of "containers:get":"True:%(enforce_new_defaults)s and
role:member".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Retrieves a single container.
GET /v1/containers/{container-id}
Intended scope(s): project
#"container:get": "True:%(enforce_new_defaults)s and (rule:container_project_
↪→admin or (rule:container_project_member and rule:container_owner) or␣
↪→(rule:container_project_member and rule:container_is_not_private) or␣
↪→rule:container_acl_read)"

DEPRECATED
"container:get":"rule:container_non_private_read or
rule:container_project_creator or rule:container_project_admin or
rule:container_acl_read" has been deprecated since W in favor of
"container:get":"True:%(enforce_new_defaults)s and
(rule:container_project_admin or (rule:container_project_member and
rule:container_owner) or (rule:container_project_member and
rule:container_is_not_private) or rule:container_acl_read)".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

(continues on next page)

238 Chapter 3. Sample Files

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

Deletes a container.
DELETE /v1/containers/{uuid}
Intended scope(s): project
#"container:delete": "True:%(enforce_new_defaults)s and (rule:container_
↪→project_admin or (rule:container_project_member and rule:container_owner)␣
↪→or (rule:container_project_member and rule:container_is_not_private))"

DEPRECATED
"container:delete":"rule:container_project_admin or
rule:container_project_creator" has been deprecated since W in favor
of "container:delete":"True:%(enforce_new_defaults)s and
(rule:container_project_admin or (rule:container_project_member and
rule:container_owner) or (rule:container_project_member and
rule:container_is_not_private))".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Add a secret to an existing container.
POST /v1/containers/{container-id}/secrets
Intended scope(s): project
#"container_secret:post": "True:%(enforce_new_defaults)s and (rule:container_
↪→project_admin or (rule:container_project_member and rule:container_owner)␣
↪→or (rule:container_project_member and rule:container_is_not_private))"

DEPRECATED
"container_secret:post":"rule:container_project_admin or
rule:container_project_creator or
rule:container_project_creator_role and
rule:container_non_private_read" has been deprecated since W in
favor of "container_secret:post":"True:%(enforce_new_defaults)s and
(rule:container_project_admin or (rule:container_project_member and
rule:container_owner) or (rule:container_project_member and
rule:container_is_not_private))".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Remove a secret from a container.
DELETE /v1/containers/{container-id}/secrets/{secret-id}
Intended scope(s): project
#"container_secret:delete": "True:%(enforce_new_defaults)s and␣
↪→(rule:container_project_admin or (rule:container_project_member and␣
↪→rule:container_owner) or (rule:container_project_member and rule:container_
↪→is_not_private))"

DEPRECATED
"container_secret:delete":"rule:container_project_admin or
rule:container_project_creator or
rule:container_project_creator_role and
rule:container_non_private_read" has been deprecated since W in

(continues on next page)

3.2. Barbican Sample Policy 239

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

favor of "container_secret:delete":"True:%(enforce_new_defaults)s
and (rule:container_project_admin or (rule:container_project_member
and rule:container_owner) or (rule:container_project_member and
rule:container_is_not_private))".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Gets list of all orders associated with a project.
GET /v1/orders
Intended scope(s): project
#"orders:get": "True:%(enforce_new_defaults)s and role:member"

DEPRECATED
"orders:get":"rule:all_but_audit" has been deprecated since W in
favor of "orders:get":"True:%(enforce_new_defaults)s and
role:member".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Creates an order.
POST /v1/orders
Intended scope(s): project
#"orders:post": "True:%(enforce_new_defaults)s and role:member"

DEPRECATED
"orders:post":"rule:admin_or_creator" has been deprecated since W in
favor of "orders:post":"True:%(enforce_new_defaults)s and
role:member".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Unsupported method for the orders API.
PUT /v1/orders
Intended scope(s): project
#"orders:put": "True:%(enforce_new_defaults)s and role:member"

DEPRECATED
"orders:put":"rule:admin_or_creator" has been deprecated since W in
favor of "orders:put":"True:%(enforce_new_defaults)s and
role:member".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Retrieves an orders metadata.
GET /v1/orders/{order-id}
Intended scope(s): project
#"order:get": "True:%(enforce_new_defaults)s and rule:order_project_member"

DEPRECATED

(continues on next page)

240 Chapter 3. Sample Files

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

"order:get":"rule:all_users and
project_id:%(target.order.project_id)s" has been deprecated since W
in favor of "order:get":"True:%(enforce_new_defaults)s and
rule:order_project_member".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Deletes an order.
DELETE /v1/orders/{order-id}
Intended scope(s): project
#"order:delete": "True:%(enforce_new_defaults)s and rule:order_project_member"

DEPRECATED
"order:delete":"rule:admin and
project_id:%(target.order.project_id)s" has been deprecated since W
in favor of "order:delete":"True:%(enforce_new_defaults)s and
rule:order_project_member".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

List quotas for the project the user belongs to.
GET /v1/quotas
Intended scope(s): project
#"quotas:get": "True:%(enforce_new_defaults)s and role:reader"

DEPRECATED
"quotas:get":"rule:all_users" has been deprecated since W in favor
of "quotas:get":"True:%(enforce_new_defaults)s and role:reader".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

List quotas for the specified project.
GET /v1/project-quotas
GET /v1/project-quotas/{uuid}
Intended scope(s): project
#"project_quotas:get": "True:%(enforce_new_defaults)s and role:admin"

DEPRECATED
"project_quotas:get":"rule:service_admin" has been deprecated since
W in favor of "project_quotas:get":"True:%(enforce_new_defaults)s
and role:admin".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Create or update the configured project quotas for the project with
the specified UUID.
PUT /v1/project-quotas/{uuid}
Intended scope(s): project
#"project_quotas:put": "True:%(enforce_new_defaults)s and role:admin"

(continues on next page)

3.2. Barbican Sample Policy 241

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

DEPRECATED
"project_quotas:put":"rule:service_admin" has been deprecated since
W in favor of "project_quotas:put":"True:%(enforce_new_defaults)s
and role:admin".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Delete the project quotas configuration for the project with the
requested UUID.
DELETE /v1/quotas}
Intended scope(s): project
#"project_quotas:delete": "True:%(enforce_new_defaults)s and role:admin"

DEPRECATED
"project_quotas:delete":"rule:service_admin" has been deprecated
since W in favor of
"project_quotas:delete":"True:%(enforce_new_defaults)s and
role:admin".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

metadata/: Lists a secrets user-defined metadata. || metadata/{key}:
Retrieves a secrets user-added metadata.
GET /v1/secrets/{secret-id}/metadata
GET /v1/secrets/{secret-id}/metadata/{meta-key}
Intended scope(s): project
#"secret_meta:get": "True:%(enforce_new_defaults)s and (rule:secret_project_
↪→admin or (rule:secret_project_member and rule:secret_owner) or (rule:secret_
↪→project_member and rule:secret_is_not_private) or rule:secret_acl_read)"

DEPRECATED
"secret_meta:get":"rule:secret_non_private_read or
rule:secret_project_creator or rule:secret_project_admin or
rule:secret_acl_read" has been deprecated since W in favor of
"secret_meta:get":"True:%(enforce_new_defaults)s and
(rule:secret_project_admin or (rule:secret_project_member and
rule:secret_owner) or (rule:secret_project_member and
rule:secret_is_not_private) or rule:secret_acl_read)".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Adds a new key/value pair to the secrets user-defined metadata.
POST /v1/secrets/{secret-id}/metadata/{meta-key}
Intended scope(s): project
#"secret_meta:post": "True:%(enforce_new_defaults)s and (rule:secret_project_
↪→admin or (rule:secret_project_member and rule:secret_owner) or (rule:secret_
↪→project_member and rule:secret_is_not_private))"

(continues on next page)

242 Chapter 3. Sample Files

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

DEPRECATED
"secret_meta:post":"rule:secret_project_admin or
rule:secret_project_creator or (rule:secret_project_creator_role and
rule:secret_non_private_read)" has been deprecated since W in favor
of "secret_meta:post":"True:%(enforce_new_defaults)s and
(rule:secret_project_admin or (rule:secret_project_member and
rule:secret_owner) or (rule:secret_project_member and
rule:secret_is_not_private))".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

metadata/: Sets the user-defined metadata for a secret ||
metadata/{key}: Updates an existing key/value pair in the secrets
user-defined metadata.
PUT /v1/secrets/{secret-id}/metadata
PUT /v1/secrets/{secret-id}/metadata/{meta-key}
Intended scope(s): project
#"secret_meta:put": "True:%(enforce_new_defaults)s and (rule:secret_project_
↪→admin or (rule:secret_project_member and rule:secret_owner) or (rule:secret_
↪→project_member and rule:secret_is_not_private))"

DEPRECATED
"secret_meta:put":"rule:secret_project_admin or
rule:secret_project_creator or (rule:secret_project_creator_role and
rule:secret_non_private_read)" has been deprecated since W in favor
of "secret_meta:put":"True:%(enforce_new_defaults)s and
(rule:secret_project_admin or (rule:secret_project_member and
rule:secret_owner) or (rule:secret_project_member and
rule:secret_is_not_private))".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Delete secret user-defined metadata by key.
DELETE /v1/secrets/{secret-id}/metadata/{meta-key}
Intended scope(s): project
#"secret_meta:delete": "True:%(enforce_new_defaults)s and (rule:secret_
↪→project_admin or (rule:secret_project_member and rule:secret_owner) or␣
↪→(rule:secret_project_member and rule:secret_is_not_private))"

DEPRECATED
"secret_meta:delete":"rule:secret_project_admin or
rule:secret_project_creator or (rule:secret_project_creator_role and
rule:secret_non_private_read)" has been deprecated since W in favor
of "secret_meta:delete":"True:%(enforce_new_defaults)s and
(rule:secret_project_admin or (rule:secret_project_member and
rule:secret_owner) or (rule:secret_project_member and
rule:secret_is_not_private))".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

(continues on next page)

3.2. Barbican Sample Policy 243

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

Retrieve a secrets payload.
GET /v1/secrets/{uuid}/payload
Intended scope(s): project
#"secret:decrypt": "True:%(enforce_new_defaults)s and (rule:secret_project_
↪→admin or (rule:secret_project_member and rule:secret_owner) or (rule:secret_
↪→project_member and rule:secret_is_not_private) or rule:secret_acl_read)"

DEPRECATED
"secret:decrypt":"rule:secret_decrypt_non_private_read or
rule:secret_project_creator or rule:secret_project_admin or
rule:secret_acl_read" has been deprecated since W in favor of
"secret:decrypt":"True:%(enforce_new_defaults)s and
(rule:secret_project_admin or (rule:secret_project_member and
rule:secret_owner) or (rule:secret_project_member and
rule:secret_is_not_private) or rule:secret_acl_read)".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Retrieves a secrets metadata.
GET /v1/secrets/{secret-id}
Intended scope(s): project
#"secret:get": "True:%(enforce_new_defaults)s and (role:admin or rule:secret_
↪→project_admin or (rule:secret_project_member and rule:secret_owner) or␣
↪→(rule:secret_project_member and rule:secret_is_not_private) or rule:secret_
↪→acl_read)"

DEPRECATED
"secret:get":"rule:secret_non_private_read or
rule:secret_project_creator or rule:secret_project_admin or
rule:secret_acl_read" has been deprecated since W in favor of
"secret:get":"True:%(enforce_new_defaults)s and (role:admin or
rule:secret_project_admin or (rule:secret_project_member and
rule:secret_owner) or (rule:secret_project_member and
rule:secret_is_not_private) or rule:secret_acl_read)".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Add the payload to an existing metadata-only secret.
PUT /v1/secrets/{secret-id}
Intended scope(s): project
#"secret:put": "True:%(enforce_new_defaults)s and (rule:secret_project_admin␣
↪→or (rule:secret_project_member and rule:secret_owner) or (rule:secret_
↪→project_member and rule:secret_is_not_private))"

DEPRECATED
"secret:put":"rule:admin_or_creator and rule:secret_project_match"
has been deprecated since W in favor of
"secret:put":"True:%(enforce_new_defaults)s and

(continues on next page)

244 Chapter 3. Sample Files

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

(rule:secret_project_admin or (rule:secret_project_member and
rule:secret_owner) or (rule:secret_project_member and
rule:secret_is_not_private))".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Delete a secret by uuid.
DELETE /v1/secrets/{secret-id}
Intended scope(s): project
#"secret:delete": "True:%(enforce_new_defaults)s and (role:admin or␣
↪→rule:secret_project_admin or (rule:secret_project_member and rule:secret_
↪→owner) or (rule:secret_project_member and rule:secret_is_not_private))"

DEPRECATED
"secret:delete":"rule:secret_project_admin or
rule:secret_project_creator or (rule:secret_project_creator_role and
not rule:secret_private_read)" has been deprecated since W in favor
of "secret:delete":"True:%(enforce_new_defaults)s and (role:admin or
rule:secret_project_admin or (rule:secret_project_member and
rule:secret_owner) or (rule:secret_project_member and
rule:secret_is_not_private))".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Creates a Secret entity.
POST /v1/secrets
Intended scope(s): project
#"secrets:post": "True:%(enforce_new_defaults)s and role:member"

DEPRECATED
"secrets:post":"rule:admin_or_creator" has been deprecated since W
in favor of "secrets:post":"True:%(enforce_new_defaults)s and
role:member".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Lists a projects secrets.
GET /v1/secrets
Intended scope(s): project
#"secrets:get": "True:%(enforce_new_defaults)s and role:member"

DEPRECATED
"secrets:get":"rule:all_but_audit" has been deprecated since W in
favor of "secrets:get":"True:%(enforce_new_defaults)s and
role:member".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Get list of available secret store backends.

(continues on next page)

3.2. Barbican Sample Policy 245

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

GET /v1/secret-stores
Intended scope(s): project
#"secretstores:get": "True:%(enforce_new_defaults)s and role:reader"

DEPRECATED
"secretstores:get":"rule:all_users" has been deprecated since W in
favor of "secretstores:get":"True:%(enforce_new_defaults)s and
role:reader".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Get a reference to the secret store that is used as default secret
store backend for the deployment.
GET /v1/secret-stores/global-default
Intended scope(s): project
#"secretstores:get_global_default": "True:%(enforce_new_defaults)s and␣
↪→role:reader"

DEPRECATED
"secretstores:get_global_default":"rule:all_users" has been
deprecated since W in favor of
"secretstores:get_global_default":"True:%(enforce_new_defaults)s and
role:reader".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Get a reference to the preferred secret store if assigned
previously.
GET /v1/secret-stores/preferred
Intended scope(s): project
#"secretstores:get_preferred": "True:%(enforce_new_defaults)s and role:reader"

DEPRECATED
"secretstores:get_preferred":"rule:all_users" has been deprecated
since W in favor of
"secretstores:get_preferred":"True:%(enforce_new_defaults)s and
role:reader".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Set a secret store backend to be preferred store backend for their
project.
POST /v1/secret-stores/{ss-id}/preferred
Intended scope(s): project
#"secretstore_preferred:post": "True:%(enforce_new_defaults)s and role:admin"

DEPRECATED
"secretstore_preferred:post":"rule:admin" has been deprecated since
W in favor of

(continues on next page)

246 Chapter 3. Sample Files

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

"secretstore_preferred:post":"True:%(enforce_new_defaults)s and
role:admin".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Remove preferred secret store backend setting for their project.
DELETE /v1/secret-stores/{ss-id}/preferred
Intended scope(s): project
#"secretstore_preferred:delete": "True:%(enforce_new_defaults)s and role:admin
↪→"

DEPRECATED
"secretstore_preferred:delete":"rule:admin" has been deprecated
since W in favor of
"secretstore_preferred:delete":"True:%(enforce_new_defaults)s and
role:admin".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Get details of secret store by its ID.
GET /v1/secret-stores/{ss-id}
Intended scope(s): project
#"secretstore:get": "True:%(enforce_new_defaults)s and role:reader"

DEPRECATED
"secretstore:get":"rule:all_users" has been deprecated since W in
favor of "secretstore:get":"True:%(enforce_new_defaults)s and
role:reader".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Get a specific transport key.
GET /v1/transport_keys/{key-id}}
Intended scope(s): project
#"transport_key:get": "True:%(enforce_new_defaults)s and role:reader"

DEPRECATED
"transport_key:get":"rule:all_users" has been deprecated since W in
favor of "transport_key:get":"True:%(enforce_new_defaults)s and
role:reader".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Delete a specific transport key.
DELETE /v1/transport_keys/{key-id}
Intended scope(s): project
#"transport_key:delete": "True:%(enforce_new_defaults)s and role:admin"

DEPRECATED

(continues on next page)

3.2. Barbican Sample Policy 247

Barbican Documentation, Release 18.0.1.dev3

(continued from previous page)

"transport_key:delete":"rule:service_admin" has been deprecated
since W in favor of
"transport_key:delete":"True:%(enforce_new_defaults)s and
role:admin".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Get a list of all transport keys.
GET /v1/transport_keys
Intended scope(s): project
#"transport_keys:get": "True:%(enforce_new_defaults)s and role:reader"

DEPRECATED
"transport_keys:get":"rule:all_users" has been deprecated since W in
favor of "transport_keys:get":"True:%(enforce_new_defaults)s and
role:reader".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

Create a new transport key.
POST /v1/transport_keys
Intended scope(s): project
#"transport_keys:post": "True:%(enforce_new_defaults)s and role:admin"

DEPRECATED
"transport_keys:post":"rule:service_admin" has been deprecated since
W in favor of "transport_keys:post":"True:%(enforce_new_defaults)s
and role:admin".
The default policy for the Key Manager API has been updated to use
scopes and default roles.

248 Chapter 3. Sample Files

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

249

Barbican Documentation, Release 18.0.1.dev3

250 Chapter 4. Indices and tables

PYTHON MODULE INDEX

b
barbican.plugin.crypto.base, 152
barbican.plugin.interface.secret_store,

147

251

Barbican Documentation, Release 18.0.1.dev3

252 Python Module Index

INDEX

A
algorithm (barbi-

can.plugin.crypto.base.GenerateDTO
attribute), 154

algorithm (barbi-
can.plugin.crypto.base.KEKMetaDTO
attribute), 153

AsymmetricKeyMetadataDTO (class in barbi-
can.plugin.interface.secret_store), 148

B
barbican.plugin.crypto.base

module, 152
barbican.plugin.interface.secret_store

module, 147
bind_kek_metadata() (barbi-

can.plugin.crypto.base.CryptoPluginBase
method), 154

bit_length (barbi-
can.plugin.crypto.base.GenerateDTO
attribute), 154

bit_length (barbi-
can.plugin.crypto.base.KEKMetaDTO
attribute), 153

C
CryptoPluginBase (class in barbi-

can.plugin.crypto.base), 154

D
decrypt() (barbi-

can.plugin.crypto.base.CryptoPluginBase
method), 155

DecryptDTO (class in barbi-
can.plugin.crypto.base), 153

delete_secret() (barbi-
can.plugin.interface.secret_store.SecretStoreBase
method), 148

E
encrypt() (barbi-

can.plugin.crypto.base.CryptoPluginBase

method), 155
EncryptDTO (class in barbi-

can.plugin.crypto.base), 153
encrypted (barbi-

can.plugin.crypto.base.DecryptDTO
attribute), 153

G
generate_asymmetric() (barbi-

can.plugin.crypto.base.CryptoPluginBase
method), 155

generate_asymmetric_key() (barbi-
can.plugin.interface.secret_store.SecretStoreBase
method), 149

generate_supports() (barbi-
can.plugin.interface.secret_store.SecretStoreBase
method), 149

generate_symmetric() (barbi-
can.plugin.crypto.base.CryptoPluginBase
method), 156

generate_symmetric_key() (barbi-
can.plugin.interface.secret_store.SecretStoreBase
method), 149

GenerateDTO (class in barbi-
can.plugin.crypto.base), 153

generation_type (barbi-
can.plugin.crypto.base.GenerateDTO
attribute), 154

get_plugin_name() (barbi-
can.plugin.crypto.base.CryptoPluginBase
method), 156

get_plugin_name() (barbi-
can.plugin.interface.secret_store.SecretStoreBase
method), 149

get_secret() (barbi-
can.plugin.interface.secret_store.SecretStoreBase
method), 149

get_transport_key() (barbi-
can.plugin.interface.secret_store.SecretStoreBase
method), 150

253

Barbican Documentation, Release 18.0.1.dev3

I
is_transport_key_current() (barbi-

can.plugin.interface.secret_store.SecretStoreBase
method), 150

K
kek_label (barbi-

can.plugin.crypto.base.KEKMetaDTO
attribute), 153

KEKMetaDTO (class in barbi-
can.plugin.crypto.base), 152

KeyAlgorithm (class in barbi-
can.plugin.interface.secret_store),
148

KeySpec (class in barbi-
can.plugin.interface.secret_store),
148

M
mode (barbican.plugin.crypto.base.GenerateDTO

attribute), 154
mode (barbican.plugin.crypto.base.KEKMetaDTO

attribute), 153
module

barbican.plugin.crypto.base, 152
barbican.plugin.interface.secret_store,

147

P
plugin_meta (barbi-

can.plugin.crypto.base.KEKMetaDTO
attribute), 153

plugin_name (barbi-
can.plugin.crypto.base.KEKMetaDTO
attribute), 152

R
ResponseDTO (class in barbi-

can.plugin.crypto.base), 154

S
SecretDTO (class in barbi-

can.plugin.interface.secret_store),
148

SecretStoreBase (class in barbi-
can.plugin.interface.secret_store),
148

SecretType (class in barbi-
can.plugin.interface.secret_store),
148

store_secret() (barbi-
can.plugin.interface.secret_store.SecretStoreBase
method), 150

store_secret_supports() (barbi-
can.plugin.interface.secret_store.SecretStoreBase
method), 150

supports() (barbi-
can.plugin.crypto.base.CryptoPluginBase
method), 156

U
unencrypted (barbi-

can.plugin.crypto.base.EncryptDTO
attribute), 153

254 Index

	What is Barbican?
	API Guide
	Cloud Administrator Guide - Key Manager service
	Access Control
	Role Based Access Control (RBAC)
	Default Policy

	Access Control List API

	Barbican Service Management Utility
	Description
	Options
	Barbican Database
	Barbican PKCS11/HSM

	Database Cleaning
	Commands
	Cron Job
	Crontab
	Crontab Examples

	Key Manager Service Upgrade Guide
	Plan to Upgrade
	Upgrade from Newton to Ocata
	Upgrade from Mitaka to Newton
	Upgrade from Liberty to Mitaka

	CLI Reference
	barbican-status
	Synopsis
	Description
	Options
	Upgrade

	Key Manager service
	Key Manager service overview
	Install and configure
	Install and configure for openSUSE and SUSE Linux Enterprise
	Prerequisites
	Install and configure components
	Finalize installation

	Install and configure for Red Hat Enterprise Linux and CentOS
	Prerequisites
	Install and configure components
	Finalize installation

	Install and configure for Ubuntu
	Prerequisites
	Install and configure components
	Finalize installation

	Configure Secret Store Back-end
	Simple Crypto Plugin
	PKCS#11 Crypto Plugin
	Thales Luna Network HSM
	nCipher
	ATOS Bull
	Utimaco

	KMIP Plugin
	Dogtag Plugin
	Vault Plugin

	Verify operation
	Next steps

	Setting up Barbican
	Using Keystone Middleware with Barbican
	Prerequisites
	Hooking up Barbican to Keystone

	Troubleshooting your Barbican Setup
	Getting a Barbican HTTP 401 error after a successful authentication to Keystone
	What you might see
	Caused by
	How to avoid

	Returned refs use localhost instead of the correct hostname
	What you might see
	Caused by
	How to avoid

	Barbican’s tox tests fail to run on my Mac
	What you might see
	How to avoid

	Barbican’s tox tests fail to find ffi.h on my Mac
	What you might see
	How to avoid

	Barbican’s tox tests fail with “ImportError: No module named _bsddb”
	What you might see
	How to avoid

	uWSGI logs ‘OOPS ! failed loading app’
	What you might see
	Caused by
	How to avoid

	“Cannot register CLI option” error when importing logging
	What you might see
	Caused by
	How to avoid

	Responder raised TypeError: 'NoneType' object has no attribute '__getitem__'
	What you might see
	Caused by
	How to avoid

	uWSGI config issue: ImportError: No module named site
	What you might see
	Caused by
	How to avoid

	REST Request Fails with JSON error
	What you might see
	Caused by
	How to avoid

	Crypto Mime Type Not Supported when I try to run tests or hit the API
	What you might see
	Caused by
	How to avoid

	Python “can’t find module errors” with the uWSGI scripts
	What you might see
	Caused by
	How to avoid

	‘unable to open database file None None’ errors running scripts
	What you might see
	Caused by
	How to avoid

	‘ValueError: No JSON object could be decoded’ with Keystoneclient middleware
	What you might see
	Caused by
	How to avoid

	“accept-encoding of ‘gzip,deflate,sdch’ not supported”
	What you might see
	Caused by
	How to avoid

	No Auth barbican
	Using Audit Middleware with Barbican
	Background
	Enabling Audit for API Requests
	Steps

	Sample Audit Event

	Using Secret Store Plugins in Barbican
	Summary
	Enabling Multiple Barbican Backends

	barbican.conf
	DEFAULT
	audit_middleware_notifications
	cors
	crypto
	database
	dogtag_plugin
	healthcheck
	keystone_authtoken
	keystone_notifications
	kmip_plugin
	oslo_messaging_amqp
	oslo_messaging_kafka
	oslo_messaging_notifications
	oslo_messaging_rabbit
	oslo_middleware
	oslo_policy
	oslo_versionedobjects
	p11_crypto_plugin
	queue
	quotas
	retry_scheduler
	secretstore
	simple_crypto_plugin
	vault_plugin

	Policy configuration
	Configuration
	barbican

	Barbican for Developers
	Setting up a Barbican Development Environment
	Installing system dependencies
	Setting up a virtual environment
	Configuring Barbican
	Running Barbican
	Building the Documentation
	Running the Unit Tests

	Running Barbican on DevStack
	Contributing to Barbican
	Communication
	Contacting the Core Team
	New Feature Planning
	Task Tracking
	Reporting a Bug
	Getting Your Patch Merged
	Project Team Lead Duties

	Getting Involved
	OFTC IRC (Chat)
	Mailing List
	Launchpad
	Source Repository
	Gerrit

	Architecture
	Overall Architecture
	Technology Selection

	Project Structure
	Dataflow
	Bootup flow when the Barbican API service begins
	Typical flow when the Barbican API executes

	Adding/Updating Dependencies
	Adding new Dependency

	Database Migrations
	Policy
	Overview
	Generating Change Versions
	Automatically
	Manually

	Applying Changes
	Via Application
	Manually
	Downgrade

	TODO Items

	API Microversions
	Background
	When do I need a new Microversion?
	When a microversion is not needed
	In Code
	Allocating a microversion
	Testing Microversioned API Methods

	Plugin Developers Guide
	Plugin Status
	Graduation Process
	Demotion Process

	Architecture
	Secret Store Plugin Development
	secret_store Module
	Data Transfer Objects
	Secret Parameter Objects
	Plugin Base Class
	Barbican Core Plugin Sequence
	The Cryptographic Plugin Adapter

	Cryptographic Plugin Development
	crypto Module
	Data Transfer Objects
	Plugin Base Class
	Barbican Core Plugin Sequence

	Writing and Running Barbican Tests
	Unit Tests
	Functional Tests
	Remote Debugging

	Barbican API Documentation
	User Guide
	API Reference
	Secrets API - Reference
	GET /v1/secrets
	Parameters
	Date Filters:
	Sorting:
	Request:
	Response:
	Response Attributes
	HTTP Status Codes

	POST /v1/secrets
	Attributes
	Request:
	Response:
	HTTP Status Codes

	GET /v1/secrets/{uuid}
	Request:
	Response:
	Payload Request:
	Payload Response:
	HTTP Status Codes

	PUT /v1/secrets/{uuid}
	Headers
	Request:
	Response:
	HTTP Status Codes

	DELETE /v1/secrets/{uuid}
	Request:
	Response:
	HTTP Status Codes

	GET /v1/secrets/{uuid}/payload
	Accept Header Options:
	Request:
	Response:
	HTTP Status Codes

	Secret Types - Reference
	Symmetric
	Example 1.1

	Public
	Example 2.1
	Example 2.2

	Secret consumers API - Reference
	GET {secret_ref}/consumers
	Parameters
	Request:
	Response:
	Request:
	Response Attributes
	HTTP Status Codes

	POST {secret_ref}/consumers
	Attributes
	Request:
	Response:
	HTTP Status Codes

	DELETE {secret_ref}/consumers
	Attributes
	Request:
	Response:
	HTTP Status Codes

	Secret Metadata API - Reference
	GET /v1/secrets/{uuid}/metadata
	Request:
	Response:
	Response Attributes
	HTTP Status Codes

	PUT /v1/secrets/{uuid}/metadata
	Parameters
	Request:
	Response:
	HTTP Status Codes

	GET /v1/secrets/{uuid}/metadata/{key}
	Request:
	Response:
	HTTP Status Codes

	POST /v1/secrets/{uuid}/metadata/
	Request:
	Response:
	HTTP Status Codes

	PUT /v1/secrets/{uuid}/metadata/{key}
	Request:
	Response:
	HTTP Status Codes

	DELETE /v1/secrets/{uuid}/metadata/{key}
	Request:
	Response:
	HTTP Status Codes

	Secret Stores API - Reference
	GET /v1/secret-stores
	Request/Response:
	Response Attributes
	HTTP Status Codes

	GET /v1/secret-stores/{secret_store_id}
	Request/Response:
	Response Attributes
	HTTP Status Codes

	GET /v1/secret-stores/preferred
	Request/Response:
	Response Attributes
	HTTP Status Codes

	POST /v1/secret-stores/{secret_store_id}/preferred
	Request/Response:
	HTTP Status Codes

	DELETE /v1/secret-stores/{secret_store_id}/preferred
	Request/Response:
	HTTP Status Codes

	GET /v1/secret-stores/global-default
	Request/Response:
	Response Attributes
	HTTP Status Codes

	Containers API - Reference
	GET /v1/containers
	Parameters
	Response Attributes
	Request:
	Response:
	HTTP Status Codes

	GET /v1/containers/{uuid}
	Response Attributes
	Request:
	Response:
	HTTP Status Codes

	POST /v1/containers
	Request Attributes
	Request:
	Response:
	HTTP Status Codes

	DELETE /v1/containers/{uuid}
	Request:
	Response:
	HTTP Status Codes

	POST /v1/containers/{container_uuid}/secrets
	Request Attributes
	Request:
	Response:
	HTTP Status Codes

	DELETE /v1/containers/{container_uuid}/secrets
	Request Attributes
	Request:
	Response:
	HTTP Status Codes

	Container consumers API - Reference
	GET {container_ref}/consumers
	Parameters
	Request:
	Response:
	Request:
	Response Attributes
	HTTP Status Codes

	POST {container_ref}/consumers
	Attributes
	Request:
	Response:
	HTTP Status Codes

	DELETE {container_ref}/consumers
	Attributes
	Request:
	Response:
	HTTP Status Codes

	ACL API - Reference
	Secret ACL API
	GET /v1/secrets/{uuid}/acl
	Request/Response (With ACL defined):
	Request/Response (With no ACL defined):
	HTTP Status Codes
	PUT /v1/secrets/{uuid}/acl
	Attributes
	Request/Response (Set or Replace ACL):
	HTTP Status Codes
	PATCH /v1/secrets/{uuid}/acl
	Attributes
	Request/Response (Updating project-access flag):
	Request/Response (Removing all users from ACL):
	HTTP Status Codes
	DELETE /v1/secrets/{uuid}/acl
	Request/Response:
	HTTP Status Codes

	Container ACL API
	GET /v1/containers/{uuid}/acl
	Request/Response (With ACL defined):
	Request/Response (With no ACL defined):
	HTTP Status Codes
	PUT /v1/containers/{uuid}/acl
	Attributes
	Request/Response (Set or Replace ACL):
	HTTP Status Codes
	PATCH /v1/containers/{uuid}/acl
	Attributes
	Request/Response (Updating project-access flag):
	Request/Response (Removing all users from ACL):
	HTTP Status Codes
	DELETE /v1/containers/{uuid}/acl
	Request/Response:
	HTTP Status Codes

	Quotas API - Reference
	GET /v1/quotas
	Request/Response:
	Response Attributes
	HTTP Status Codes

	GET /v1/project-quotas
	Request/Response:
	Parameters
	Response Attributes
	HTTP Status Codes

	GET /v1/project-quotas/{uuid}
	Request/Response:
	Response Attributes
	HTTP Status Codes

	PUT /v1/project-quotas/{uuid}
	Request/Response:
	Request Attributes
	HTTP Status Codes

	DELETE /v1/project-quotas/{uuid}
	Request/Response:
	HTTP Status Codes

	Orders API - Reference
	GET /v1/orders
	Parameters
	Request:
	Response:
	Response Attributes
	HTTP Status Codes

	POST /v1/orders
	Parameters
	Request:
	Response:
	Response Attributes
	HTTP Status Codes

	GET /v1/orders/{uuid}
	Request:
	Parameters
	Response:
	Response Attributes
	HTTP Status Codes

	DELETE /v1/orders/{uuid}
	Request:
	Parameters
	Response:
	HTTP Status Codes

	Microversions
	Version Discovery
	Client Interaction

	REST API Version History
	1.0

	Sample Files
	Barbican Sample Configuration File
	Barbican Sample Policy

	Indices and tables
	Python Module Index
	Index

